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A Projection Method For Multiobjective multiclass SVM

Belén Martín-Barragán⇤ Franciso Javier Prieto† Ling Liu‡
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Abstract

Support Vector Machines (SVMs) have become a very popular technique in the ma-
chine learning field for classification problems. It is originally proposed for classification
of two classes. Various multiclass models with a single objective have been proposed
mostly based on two families of methods: an all-together approach and a one-against-all
approach. However, most of these single-objective models consider neither the differ-
ent costs of misclassification nor the user’s preferences. To overcome these drawbacks,
multiobjective models have been proposed.

In this paper we rewrite the different approaches that deal with the multiclass SVM
using multiobjective techniques. These multiobjective techniques can give us weakly
Pareto-optimal solutions. We propose a multiobjective technique called Projected Mul-
tiobjective All-Together (PMAT) which works in a higher-dimension space than the
object space. With this technique, we can theoretically characterize the Pareto-optimal
solution set. For these multiobjective techniques, we try to get approximate sets of the
Pareto-optimal solutions. For these sets, we use hypervolume and epsilon indicators to
evaluate different multiobjective techniques. From the experimental results, we can see
that PMAT outperfoms the other multiobjective techniques. When facing classification
problems with very large numbers of classes, we suggest to combine a tree method and
multiobjective techniques.

KEYWORDS: Multiclass multiobjective SVM; Weakly Pareto-optimal solution;
Pareto-optimal solution

1 Introduction

Data mining has become a crucial application area in modern science, industry and society
due to the growing size of available databases. One of the main applications in this area is
supervised classification: to obtain a model that predicts the value of one variable (class) based
on the information from other variables. SVM is a popular approach to solve this problem.
In [9], Cortes and Vapnik proposed the classical SVM for classification of two classes. The
main idea is to generate a discriminant hyperplane which separates the input objects. During
the last couple of decades, hundreds of applications and experiments have shown the high
classification accuracy of SVM, e.g.[2, 14, 30]. SVM methods have been proved to be effective
not only in applications but also in theory, see [18, 31, 32].

In real life, we have classification problems with more than two classes. It becomes inter-
esting to extend this efficient method to multiclass classification. Researchers have proposed
several methods to use SVM for solving multiclass classification problems. These methods
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can be roughly grouped into two families. The first family constructs and combines several
binary (two classes) classification problems, such as one-against-one, one-against-all and di-
rected acyclic graph (DAG) SVMs, see [15, 16, 23, 31]. Alternatively, all-together methods
directly find a discriminant function by solving a single optimization problem, which attempts
to classify all patterns into the corresponding classes, e.g.[1, 10, 15, 34].

The aforementioned methods are based on solving single-objective optimization problems.
They have one main drawback: they do not consider different costs for different misclassifica-
tion errors, nor a priori information. This difference is important in many applications. For
example, in medical diagnosis it is known that the cost of misclassifying a healthy patient
as ill is different from misclassifying an ill patient as healthy. To overcome this drawback, a
simple way is using a weighted single objective function. These weights are rough indexes for
the importance of misclassification costs. But it is hard to associate real numbers with these
importances. An alternative way is using a multiobjective approach.

In 2006, Carrizosa and Martin-Barragan proposed biobjective SVM for classification of
two classes, see [3]. In that paper, they charaterized all the Pareto-optimal solutions of the
biobjective SVM. In 2007, K-Tatsumi et al. used multiobjective multiclass SVM for pattern
recognition, see [25]. Based on one-against-all and all-together methods, they proposed a
series of multiobjective SVMs to solve multiclass classification problems, e.g.[26, 27, 28, 29].
However, the solutions given by them are weakly Pareto-optimal. Besides, they ignored that
the cost of misclassifying class A objects as class B objects may be different from the cost
of misclassifying class B objects as class A objects. Not only in medical diagnosis, but also
in many other applications, this difference needs to be considered. For example, an investor
may need a SVM which can identify high volatility shares as different from low volatility
shares, while it may be acceptable to misclassify some of the low volatility shares as high
volatility shares. Still, there is another problem that needs to be addressed. When facing
classification problems for many classes, the multiobjective SVMs based on the all-together
and one-against-all methods proposed in their papers require the values of many parameters
to be selected. This may be a big challenge in practice.

In this paper, we first rewrite the multiobjective SVM based on one-against-all and all-
together methods in order to consider asymmetric misclassification costs. However, one-
against-one is also a widely used method for multiclass classification. It shows comparable
results with respect to one-against-all and all-together methods, see [15, 21]. So, we also
extend the multiobjective SVM based on a one-against-one method. By using an "�constraint
method, these multiobjective approaches will give us weakly Pareto-optimal solutions.

The second contribution of this work is to provide another model called Projected Mul-
tiobjective All-Together (PMAT) for which Pareto-optimal solutions can be characterized.
When facing classification problems with a large number of classes, we suggest to use a tree
method combined with multiobjective SVMs. Nowadays, the most commonly used methods
for this kind of large-class classification problems are based on binary trees and single-objective
models, [4, 5, 17]. From the experimental results in this paper,we can see that the proposed
projected multiobjective SVM outperforms the other multiobjective approaches mentioned
in this paper. Secondly, with a proper division of the classes, combining tree methods with
multiobjective approaches performs efficiently. However, how to divide the classes optimally
is still an open question that deserves further study.

This paper is organized as follows: Section 2 is devoted to the multiobjective SVMs based
on all-together, one-against-all and one-agianst-one methods. Specifically, we introduce the
hard-margin versions in Section 2.1 and the soft-margin versions in Section 2.2. To solve these
multiobjective SVMs, we suggest to use "�constraint method in Section 2.3. In Section 3, we
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propose PMAT with which we can characterize the corresponding Pareto-optimal solutions.
For this approach, we have hard-margin version showed in Section 3.1 and soft-margin version
presented in Section 3.2. For large-class classification problems, a multidecision tree method
combined with the multiobjective approaches is suggested in Section 4. Computational results
are shown in Section 5. Finally, conclusions are presented in Section 6.

2 Multiclass multiobjective SVMs

In what follows we assume that we have a training set I = {xi}ki=1 ✓ Rl corresponding to m

different classes, and let yi 2 G = {1, ...,m} denote the class membership of vector xi. The
number of observations in the training set belonging to class p is denoted by k

p. Our aim
is to generate a decision function which can help us to predict with high accuracy the class
memberships of new objects. To achieve this aim, we generate the discriminant hyperplanes
as follows:

• The discriminant hyperplane to separate class p data against class q data:

L

pq
: (!

pq
)

T
x+ b

pq
= 0, p 6= q, p, q 2 G.

Ideally, we would like to have all class p objects above hyperplane L

pq, and all class q objects
below L

pq
, p 6= q, p, q 2 G. If we can find hyperplanes such that the training objects satisfy

this ideal situation, we say that the training objects are linearly separable. The following
figure is an example of linearly separable training objects.

Figure 1. Linearly separable training objects

Before introducing the multiobjective approaches based on all-together, one-against-all
and one-against-one models, we briefly review the single-objective approaches for multiclass
classification. As in the binary classical SVM [9], the margin between class p objects and
class q objects is defined as the distance between two support hyperplanes, which is equal
to 2/k!pqk. To consider the nonlinearly separable case and the over-fitting phenomenon,
we introduce auxiliary variables ⇠

pq
, p 6= q, p, q 2 G to allow some class p objects to be
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misclassified as class q objects. To get a high generalization ability and high classification
accuracy, we should maximize all the margins and minimize the classification errors. Following
[15, 22, 35] and based on the squares of these auxiliary variables, we can construct the following
single-objective problem:

min

!,b
k!k2 +

m
X

p=1

X

q 6=p

c

pq
X

x2Ip

(⇠

pq
x )

2
,

s.t. (!

pq
)

T
x+ b

pq
+ ⇠

pq
x � 1, x 2 Ip, p 6= q, p, q 2 G,

� (!

pq
)

T
x� b

pq
+ ⇠

qp
x � 1, x 2 Iq, p 6= q, p, q 2 G.

(1)

where, Ip = {x 2 I|x 2 class p}, ! = (!

12
,!

13
, · · · ,!(m�1)m

) and c

pq � 0. The above
program (1) is a strictly convex quadratic problem, so it has an unique optimizer.

After computing these !

pq
, b

pq
, q > p, p, q 2 G, we need to construct the decision rule to

determine the class membership of new objects. To achieve this aim, we take (!pq)T x+bpq

k!pqk as
the score obtained from L

pq
: (!

pq
)

T
x + b

pq
= 0 for class p when given object x. We then

collect all the scores generated for class p as:

d

p
=

X

q 6=p,q2G

(!

pq
)

T
x+ b

pq

k!pqk , p 2 G.

Then we can determine the class membership of object x by :

x belongs to class p, if and only if p = arg

⇢

max

q2G
d

q

�

. (2)

Problem (1) is the basic singleobjective problem for classifying all the classes at the same
time. Based on this model, we can introduce the multiobjective SVM based on all-together
method. A one-against-all method solves m binary SVMs. From these m binary SVMs, we
get a series of start points. These starting points are then used in a multiobjective SVM based
on a one-against-all method defined from the combination of a one-against-all method and
the multiobjective extension of problem (1). In a similar manner, we adapt the multiobjective
SVM based on the one-against-one method.

2.1 Hard-margin multiobjective SVMs

In this section we assume that the training objects are linearly separable. As in [28], we can
take (W

p
)

T
x+B

p to measure the degree of confidence of assigining object x to class p instead
of other classes. Then we can get the hyperplane for class p against class q data as:

L

pq
: (W

p �W

q
)

T
x+B

p �B

q
= 0, p 6= q, p, q 2 G. (3)

That’s to say !

pq
= W

p�W

q
, b

pq
= B

p�B

q
, p 6= q, p, q 2 G. As mentioned before, we will

consider the asymmetry of misclassification costs. So here, instead of using margins defined
as 2

k!pqk =

2
kW p�W qk , we take the geometric margins as:

• The geometric margin from class p to class q is:

⇢

pq
= min

x2Ip

|(W p �W

q
)

T
x+B

p �B

q|
kW p �W

qk , q 6= p, p, q 2 G.
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2.1.1 Hard-margin multiobjective SVM based on all-together method

In [27], the authors proposed a multiobjective SVM based on an all-together method. They
maximize all the pair-wise interclass margins defined as min{⇢pq, ⇢qp}, p 6= q, p, q 2 G. How-
ever, this approach ignores any asymmetric misclassification costs. Instead, in this paper,
we maximize all the geometric margins ⇢

pq
, p 6= q, p, q 2 G. With this idea in mind, we can

formulate the hard-margin multiobjective SVM based on an all-together method as:

max

W,B

⇣

⇢

12
, ⇢

21
, · · · , ⇢(m�1)m

, ⇢

m(m�1)
⌘

,

s.t. (W

p �W

q
)

T
x+B

p �B

q � 1, x 2 Ip, p 6= q, p, q 2 G.

(4)

To simplify the above formulation (4), we let

�

pq
= min

x2Ip
(W

p �W

q
)

T
x+B

p �B

q
, p 6= q, p, q 2 G.

Then, the geometric margins are given by ⇢

pq
=

�pq

kW p�W qk , p 6= q, p, q 2 G, and we can rewrite
(4) as follows:

max

W,B,�

 

�

12

kW 1 �W

2k ,
�

21

kW 1 �W

2k , · · · ,
�

(m�1)m

kWm�1 �W

mk ,
�

m(m�1)

kWm�1 �W

mk

!

,

s.t. (W

p �W

q
)

T
x+B

p �B

q � �

pq
, x 2 Ip, q 6= p, p, q 2 G,

�

pq � 1, q 6= p, p, q 2 G.

(5)

We denote this problem as HMAT (Hard-margin Multiobjective All-Together). This is a
multiobjective optimization problem with m(m � 1) objectives, m(m + l) decision variables
and (m� 1)k constraints.

2.1.2 Hard-margin multiobjective SVM based on one-against-all method

One-against-all methods solve m binary SVMs, where each of these binary SVMs has low
computational cost. The p-th binary SVM classify class p objects against all other objects.
The unbalance in the numbers of class objects in these binary SVMs may affect the accuracy
of classification and their generalization ability, [28, 29]. There are also some experimental
results showing that a one-against-all method may have a worse accuracy for some problems
compared with all-together, one-against-one and DAG methods, see [15].

We want to combine the advantages of a one-against-all method and the merits of an all-
together method. To achieve this aim, we process the multiclass classification in two phases
as in [28]. In the first phase, we use single-objective binary SVMs based on a one-against-all
method to get a set of values W

p
, B

p
, p 2 G. In the second phase, we define W

p to have the
form ↵

p
W

p. Instead of maximizing all the pair-wise interclass margins [28], we maximize all
the geometric margins to get the values for ↵

p and B

p. With this in mind, we can construct
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our hard-margin multiobjective SVM based on one-against-all method as follows:

max

↵,B,�

 

�

12

k↵1
W

1 � ↵

2
W

2k
,

�

21

k↵1
W

1 � ↵

2
W

2k
, · · · , �

(m�1)m

k↵m�1
W

m�1 � ↵

m
W

mk
,

�

m(m�1)

k↵m�1
W

m�1 � ↵

m
W

mk

!

,

s.t.
�

↵

p
W

p � ↵

q
W

q�T
x+B

p �B

q � �

pq
, x 2 Ip, q 6= p, p, q 2 G,

�

pq � 1, q 6= p, p, q 2 G.

(6)

For convenience, we call the above problem (6) as HMOAA (Hard-margin Multiobjective
One-Against-All). It has m(m + 1) decision variables, (m � 1)k constraints and m(m � 1)

objective functions.

2.1.3 Hard-margin multiobjective SVM based on one-against-one method

A one-against-one method solves m(m�1)
2 binary SVMs, where each SVM considers just two of

these classes. In some experiments, one-against-one methods show a comparable performance
with respect to one-against-all and all-together methods, see [7, 15]. So we believe it is also
interesting to extend this method to multiobjective SVMs.

As in Section 2.1.2, we define the multiobjective SVM based on a one-against-one method
in two phases. First, from m(m�1)

2 binary SVMs, we get a series of values !̄

pq. !̄

pq is the
vector of coefficients of the separating hyperplane for class p against class q. We introduce the
combination

X

q 6=p,q2G
↵

pq
!̄

pq as the coefficients of the hyperplane separating class p against the

rest of the classes. Now we can reconstruct the discriminant hyperplane for class p against
class q as follows:

L

pq
:

0

@

X

r 6=p,r2G
↵

pr
!̄

pr �
X

t 6=q,t2G
↵

qt
!̄

qt

1

A

T

x+B

p �B

q
= 0, p 6= q, p, q 2 G.

As before, by maximizing all the the pairwise geometric margins, we get our hard-margin
multiobjective SVM based on a one-against-one method, as follows:

max

↵,B,�

0

B

B

B

@

�

12

k
X

r 6=1

↵

1r
!̄

1r �
X

t 6=2

↵

2t
!̄

2tk
,

�

21

k
X

r 6=1

↵

1r
!̄

1r �
X

t 6=2

↵

2t
!̄

2tk
, · · · ,

�

m(m�1)

k
X

r 6=m�1

↵

(m�1)r
!̄

(m�1)r �
X

t 6=m

↵

mt
!̄

mtk

1

C

C

C

A

,

s.t.

0

@

X

r 6=p

↵

pr
!̄

pr �
X

t 6=q

↵

qt
!̄

qt

1

A

T

x+B

p �B

q � �

pq
, x 2 Ip, q 6= p, p, q 2 G,

�

pq � 1, q 6= p, p, q 2 G.

(7)
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We denote the above optimization problem (7) as HMOAO (Hard-margin Multiobjective
One-Against-One). It has m(m � 1) objectives, m(2m � 1) decision variables and (m � 1)k

constraints.

2.2 Soft-margin multiobjective SVMs

The constraints in the hard-margin methods may be too strict for general problems, as they
assume that the training objects are linearly separable and they may lead to the overfitting
phenomenon. As in (1), we can add ⇠

pq
, p 6= q, p, q 2 G, to allow some objects from class p

to be incorrectly classified as class q. In multiobjective SVMs, we should consider not only
maximizing all the geometric margins but also minimizing the misclassification errors.

In order to simplify the problem, unlike [27, 28], we define the geometric margins with ⇠

pq

embedded within the vectors !. So instead of both maximizing all the geometric margins and
minimizing the misclassification errors, we only need to maximize all the geometric margins
where these margins are computed for the modified data that incorporates information on
the slack variables ⇠

pq. To achieve this aim, we project the objects onto a higher-dimension
space, as in [3]. In that higher dimension space, we can redefine the separating hyperplanes
as:

L

pq
: (W

p �W

q
, c

pq
⇠

pq
, c

qp
⇠

qp
)

T
(x, �

pq
⇠x, �

qp
⇠x) +B

p �B

q
= 0,

where �

pq
⇠x =

1
cpq ei, and ei is the i-th unit vector, if x is the i-th object in class p; else �

pq
⇠x = 0.

We define the distance from object x 2 Ip to hyperplane L

pq as:

⇢̄

pq
x =

|(W p �W

q
)

T
x+B

p �B

q
+ ⇠

pq
x |

k
�

W

p �W

q
, c

pq
⇠

pq
, c

qp
⇠

qp
�

k
, p 6= q, p, q 2 G.

We redefine the geometric margin ⇢̄

pq as the distance from hyperplane L

pq to the closest
object in class p.

• The geometric margin for class p objects against class q objects is defined as:

⇢̄

pq
= min

x2Ip

|(W p �W

q
)

T
x+B

p �B

q
+ ⇠

pq
x |

k
�

W

p �W

q
, c

pq
⇠

pq
, c

qp
⇠

qp
�T k

, q 6= p, p, q 2 G.

2.2.1 Soft-margin multiobjective SVM based on all-together method

By maximizing all the geometric margins with slack variables embedded, we can formulate
the soft-margin multiobjective SVM based on all-together method as:

max

W,B,⇠

⇣

⇢̄

12
, ⇢̄

21
, · · · , ⇢̄(m�1)m

, ⇢̄

m(m�1)
⌘

,

s.t. (W

p �W

q
)

T
x+B

p �B

q � 1, x 2 Ip, p 6= q, p, q 2 G,

⇠

pq
x � 0, x 2 Ip, p 6= q, p, q 2 G.

(8)

To simplify the formulation of problem (8), we define �̄

pq
= min

x2Ip
|(W p � W

q
)

T
x + B

p �

B

q
+ ⇠

pq
x |. Then a simplified formulation for the soft-margin multiobjective SVM based on an
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all-together method is:

max

W,B,�̄,⇠

 

�̄

12

k(W 1 �W

2
, ⇠

12
, ⇠

21
)kc

,

�̄

21

k(W 1 �W

2
, ⇠

12
, ⇠

21
)kc

, · · · , �̄

m(m�1)

k(Wm�1 �W

m
, ⇠

(m�1)m
, ⇠

m(m�1)
)kc

!

,

s.t. (W

p �W

q
)

T
x+B

p �B

q
+ ⇠

pq
x � �̄

pq
, x 2 Ip, p 6= q, p, q 2 G,

�̄

pq � 1, ⇠

pq
x � 0, x 2 Ip, p 6= q, p, q 2 G,

(9)

where, k(W p �W

q
, ⇠

pq
, ⇠

qp
)kc = k(W p �W

q
, c

pq
⇠

pq
, c

qp
⇠

qp
)k, q 6= p, p, q 2 G.

We refer to the above formulation (9) as SMAT (Soft-margin Multiobjective All-Together).
This multiobjective optimization problem has m(m�1) objectives, (m+ l)m+(m�1)k vari-
ables and (m� 1)k constraints.

2.2.2 Soft-margin multiobjective SVM based on one-against-all method

As in Section 2.1.2, we construct a soft-margin multiobjective SVM based on a one-against-all
method in two phases. In the first phase, we compute values W p by solving a series of binary
SVMs. The p-th binary SVM classifies class p objects against all the other objects. Then, we
introduce a second phase where all the geometric margins are maximized as in Section 2.2.1.
We can formulate a SMOAA (Soft-margin Multiobjective One-Against-All) problem as:

max

↵,B,�̄,⇠

 

�̄

12

k(↵1
W

1 � ↵

2
W

2
, ⇠

12
, ⇠

21
)kc

,

�̄

21

k(↵1
W

1 � ↵

2
W

2
, ⇠

12
, ⇠

21
)kc

, · · · ,

�̄

m(m�1)

k(↵m�1
W

m�1 � ↵

m
W

m
, ⇠

(m�1)m
, ⇠

m(m�1)
)kc

!

,

s.t. (↵

p
W

p � ↵

q
W

q
)

T
x+B

p �B

q
+ ⇠

pq
x � �̄

pq
, x 2 Ip, p 6= q, p, q 2 G,

�̄

pq � 1, ⇠

pq
x � 0, x 2 Ip, p 6= q, p, q 2 G.

(10)

This is a multiobjective optimization problem with m(m�1) objectives, (m+1)m+(m�1)k

variables and (m� 1)k constraints.

2.2.3 Soft-margin multiobjective SVM based on one-agianst-one method

In a manner similar to the one presented in Section 2.1.3, after computing a series of values
!̄

pq we can construct a soft-margin multiobjective SVM based on a one-against-one method.
Here, !̄pq

, p 6= q, p, q 2 G, is computed from a binary SVM which classifies class p objects
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against class q objects:

max

↵,B,�̄,⇠

0

B

B

B

@

�̄

12

k(
X

r 6=1

↵

1r
!̄

1r �
X

t 6=2

↵

2t
!̄

2t
, ⇠

12
, ⇠

21
)kc

,

�̄

21

k(
X

r 6=1

↵

1r
!̄

1r �
X

t 6=2

↵

2t
!̄

2t
, ⇠

12
, ⇠

21
)kc

, · · · ,

�̄

m(m�1)

k(
X

r 6=m�1

↵

(m�1)r
!̄

(m�1)r �
X

t 6=m

↵

mt
!̄

mt
, ⇠

(m�1)m
, ⇠

m(m�1)
)kc

1

C

C

C

A

,

s.t. (

X

r 6=p

↵

pr
!̄

pr �
X

t 6=q

↵

qt
!̄

qt
)

T
x+B

p �B

q
+ ⇠

pq
x � �̄

pq
, x 2 Ip, p 6= q, p, q 2 G,

�̄

pq � 1, ⇠

pq
x � 0, x 2 Ip, p 6= q, p, q 2 G.

(11)

We refer to the above problem (11) as SMOAO (Soft-margin Multiobjective One-Against-
One). It has m(m� 1) objectives, (m� 1)k+m(2m� 1) variables and (m� 1)k constraints.

2.3 "�constraint method to solve multiobjective SVMs

To solve the multiobjective SVMs introduced in Sections 2.1 and 2.2, we first review some basic
concepts. For multiobjective optimization problems, as the objectives may be conflicting,
it may be impossible to find an optimal solution. Instead, we try to get Pareto-optimal
solutions. Following [8, 11, 12], we can define Pareto-optimal solutions and weakly Pareto-
optimal solutions as follows:

Given a general multiobjective problem:

max

µ2C
(f1(µ), f2(µ), · · · , fh(µ)).

• A feasible solution µ

⇤ is Pareto-optimal iff there does not exist another feasible solution
µ 2 C such that fi(µ) � fi(µ

⇤
) for all i 2 {1, 2, · · · , h}, and fj(µ) > fj(µ

⇤
) for at least

one j 2 {1, 2, · · · , h}.

• A feasible solution µ

⇤ is weakly Pareto-optimal iff there does not exist another feasible
solution µ 2 C such that fi(µ) > fi(µ

⇤
) for all i 2 {1, 2, · · · , h}.

Let’s denote P as the set of all the Pareto-optimal solutions of a multiobjective problem.
However, it is hard to compute all these Pareto-optimal solutions. In the past decades,
researchers have proposed different methods to obtain an approximating set of Pareto-optimal
solutions, such as the weighted-sum method, the "�constraint method, the hybrid method,
Benson’s method and so on, see [8, 11, 12]. The weighted-sum method gives solutions that are
guaranteed to be Pareto-optimal. However, in the nonconvex case, there is no guarantee that
any Pareto-optimal solution is achievable by this method, see [12, 20]. Both the hybrid method
and Benson’s method need some initial solutions. These initial solutions may be hard to find
for some problems. The hybrid method is a combination of weighted sum and "�constraint
methods. Benson’s method can be seen as a method to check if the initial solution is Pareto-
optimal or not. If the initial solution is not Pareto-optimal, then it will guide us to find a
Pareto-optimal solution. As the "�constraint method may produce more solutions and these

9



solutions are at least weakly Pareto-optimal [12, 20], we choose the "�constraint method to
solve our multiobjective problems.

The "�constaint method works in this way: It takes one of the objectives of the multiob-
jective problem as the objective function of the single-objective problem. The other objectives
will be used as constraints.

For example, we try to solve (9) with "�constraint method as follows:

max

W,B,�,⇠

�

rs

k(W r �W

s
, ⇠

rs
, ⇠

sr
)kc

,

s.t.
�

pq

k(W p �W

q
, ⇠

pq
, ⇠

qpkc
� "

pq
, (p, q) 6= (r, s), q 6= p, p, q 2 G,

(W

p �W

q
)

T
x+B

p �B

q
+ ⇠

pq
x � �

pq
, x 2 IP , q 6= p, p, q 2 G,

�

pq � 1, ⇠

pq
x � 0, x 2 Ip, (p, q) 6= (r, s), p 6= q, p, q 2 G.

(12)

From [12], we know that each optimal solution of problem (12) is weakly Pareto-optimal for
problem (9). Moreover, each Pareto-optimal solution of (9) will also be optimal for problem
(12) and some proper choice of ". However, (12) is still not easy to solve. In [27], they
proposed to approximate the Pareto-optimal solutions by fixing the value of �̄rs to a certain
value c. Thanks to the homogeneity of the solutions, we approximate the set of Pareto-optimal
solutions for (9) by solving:

max

W,B,�̄�rs,⇠

c

k(W r �W

s
, ⇠

rs
, ⇠

sr
)kc

,

s.t.
�̄

pq

k(W p �W

q
, ⇠

pq
, ⇠

qp
)kc

� "

pq
, (p, q) 6= (r, s), q 6= p, p, q 2 G,

(W

r �W

s
)

T
x+B

r �B

s
+ ⇠

rs
x � c, x 2 Ir,

(W

p �W

q
)

T
x+B

p �B

q
+ ⇠

pq
x � �̄

pq
, (p, q) 6= (r, s), x 2 IP , q 6= p, p, q 2 G,

�̄

pq � 1, (p, q) 6= (r, s), p 6= q, p, q 2 G,

⇠

pq
x � 0, x 2 Ip, (p, q) 6= (r, s), p 6= q, p, q 2 G.

(13)

Problem (13) can be seen as a SOCP (second-order cone program). Using different values
of the parameters "

pq we can obtain different solutions. In [27, 28], they suggest to fix the
value of "pq based on the solution of a single objective SVM problem (1). To approximate the
set of all Pareto-optimal solutions, we suggest to use different values of "pq selected to ensure
that problem (13) remains feasible.

The other multiobjective SVMs mentioned in Sections 2.1 and 2.2 can also be solved using
similar methods. In practice, it is more flexible to use soft-margin multiobjective approaches
than to use hard-margin multiobjective approaches. From Sections 2.2.1, 2.2.2 and 2.2.3, we
can see that SMOAA has the fewest variables. And when the dimension l is larger than
the number of classes, SMOAO has fewer variables than SMAT. What’s more, the optimal
values ↵p

W

p obtained from SMOAA and the optimal
P

r 6=p ↵
pr
!̄

pr obtained from SMOAO
are also feasible for (9). So we can see that an optimal solution of (9) can’t be strictly
dominated by optimal solutions of either (10) or (11).
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3 Projected multiobjective all-together

In Section 2.3 we have commented how the "�constraint method provides weakly Pareto-
optimal solutions for the multiobjective models introduced in Sections 2.1 and 2.2. In this
section, we propose a new and simpler multiobjective approach for these problems, having the
property that we can characterize all its Pareto-optimal solutions. It is based on projecting the
objective space onto a higher-dimension space, in which we can define the geometric margins
in a tractable way. We will refer to the simplified multiobjective SVM based on the use of
that projected space as PMAT (Projected Multiobjective SVM based on All-Together). As
before, the next two sections will introduce the hard-margin PMAT and the soft-margin
PMAT versions of the model.

3.1 Hard-margin projected multiobjective all-together

For linearly separable training objects, we introduce the following (projection) transformation.
Let

�

pq
x = (�

12
x , �

13
x , · · · , �(m�1)m

x ), p < q, p, q 2 G,

with

�

ij
x =

(

x, if (i, j) = (p, q);

0, else.
(14)

Then we can express hyperplane L

pq in the projected space as: L

pq
: !

T
�

pq
x + b

pq
= 0, where

! = (!

12
,!

13
, . . . ,!

(m�1)m
).

We redefine the geometric margin from object x 2 Ip to hyperplane L

pq as the Euclidean
distance in the projected space:

%

pq
x (!, b) =

|(!)T�pq
x + b

pq|
k!k =

(!

pq
)

T
x+ b

pq

k!k , x 2 Ip, p 6= q, p, q 2 G.

Notice that, in the separable case, we have all class p objects over hyperplane L

pq. So we
have (!

pq
)

T
x+ b

pq
> 0, for all x 2 Ip, p 6= q, p, q 2 G.

As before, we can define the geometric margin from class p to hyperplane L

pq as :

%

pq
(!, b) = min

x2Ip

%

pq
x (!, b), p 6= q, p, q 2 G.

In order to maximize all the pair-wise geometric margins %

pq
(!, b), we can construct the

hard-margin projected multiobjective SVM based on all-together method as:

max

!,b

⇣

%

12
(!, b), %

21
(!, b), · · · , %(m�1)m

(!, b), %

m(m�1)
(!, b)

⌘

s.t. (!

pq
)

T
x+ b

pq
> 0, x 2 Ip, q > p, p, q 2 G,

� (!

pq
)

T
x� b

pq
> 0, x 2 Iq, q > p, p, q 2 G.

(15)

We refer to the above multiobjective optimization problem as HPMAT (Hard-margin Pro-
jected Multiobjective All-Together). For this multiobjective problem, we define the following
minimax weighted problem that provides Pareto-optimal solutions of problem (15):

max

!,b
min

⇣

%

12
(!, b), ✓

21
%

21
(!, b), · · · , ✓(m�1)m

%

(m�1)m
(!, b), ✓

m(m�1)
%

m(m�1)
(!, b)

⌘

s.t. (!pq
)

T
x+ b

pq
> 0, x 2 Ip, q > p, p, q 2 G,

� (!

pq
)

T
x� b

pq
> 0, x 2 Iq, q > p, p, q 2 G.

(16)
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The above problem (16) will be a bridge for us to get the characterization of the Pareto-
optimal solutions of HPMAT. The following lemma establishes the relationship between
(16) and HPMAT. The values ✓

pq can be seen as the proportions of the geometric margin
%

12 over the geometric margins %

pq.

Lemma 3.1. (1) The optimal solution of (16) is weakly Pareto-optimal for HPMAT;
(2) The weakly Pareto-optimal solutions of HPMAT are optimal for (16) given some specific
values ✓

✓

✓ = (✓

21
, · · · , ✓(m�1)m

, ✓

m(m�1)
) > 0.

The proof can be seen in Appendix 1.

Before attempting to characterize the optimal solutions of (16), we introduce the following
problem that provides useful information on the optimal solution of (16):

min

!,b
k!k2,

s.t. (!

pq
)

T
x+ b

pq � 1, x 2 Ip, q > p, p, q 2 G,

� (!

pq
)

T
x� b

pq � 1, x 2 Iq, p > q, p, q 2 G.

(P1)

Problem (16) can be easily replaced with a quadratic problem. By solving that quadratic prob-
lem, we can characterize the weakly Pareto-optimal solutions of HPMAT, as the following
theorem shows.

Theorem 3.2. The set of weakly Pareto-optimal solutions for HPMAT is :
n

(!

!

!, b

b

b) =

⇣

µ!

12
✓ , · · · , µ!(m�1)m

✓ , µb

12
✓ , · · · , , µb(m�1)m

✓

⌘

|µ > 0, ✓

pq
> 0, p < q, p, q 2 G

o

,

where ✓

12
= 1, !pq

✓ =

✓pq+✓qp

2✓pq✓qp !
pq
1 and b

pq
✓ =

✓qp�✓pq

2✓pq✓qp +

✓pq+✓qp

2✓pq✓qp b
pq
1 for all p 6= q, p, q 2 G, with

(w1, b1) being optimal to (P1) .

Proof. First, using the definition of the geometric margins, we can rewrite (16) as:

min

!,b

k!k

min

⇢

min

x2I1
!

12
x+ b

12
, ✓

21
min

x2I2
�!

12
x� b

12
, · · · , ✓m(m�1)

min

x2Im
�!

(m�1)m
x� b

(m�1)m

�

s.t. !

pq
x+ b

pq
> 0, x 2 Ip, q > p, p, q 2 G,

� (!

pq
)

T
x� b

pq
> 0, x 2 Iq, q > p, p, q 2 G.

(17)

We can see that (!, b) is optimal for (17) iff (µ!, µb) is optimal for (17) for any µ > 0. So we
can standardize the denominator of the objective. Then we can solve the following problem
to get the optimal solution of (17):

min

!,b
k!k

s.t.min

⇢

min

x2I1
(!

12
)

T
x+ b

12
, ✓

21
min

x2I2
(�!

12
)

T
x� b

12
, · · · , ✓m(m�1)

min

x2Im
(�!

(m�1)m
)

T
x� b

(m�1)m

�

= 1.

(18)

Easily we can see the above problem (18) is equivalent to

min

!,b
k!k

s.t. ✓

pq
[(!

pq
)

T
x+ b

pq
] � 1, x 2 Ip, q > p, p, q 2 G,

✓

qp
[�(!

pq
)

T
x� b

pq
] � 1, x 2 Iq, q > p, p, q 2 G.

(19)
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This problem is equivalent to:

min

!,b
k!k2

s.t. ✓

pq
[(!

pq
)

T
x+ b

pq
] � 1, x 2 Ip, q > p, p, q 2 G,

✓

qp
[�(!

pq
)

T
x� b

pq
] � 1, x 2 Iq, q > p, p, q 2 G.

(20)

As the objective function of (20) is strictly convex, we can see that the optimal solution !✓ is
unique. Besides, considering that the objective of (20) is quadratic (positive definite) and the
constraints are affine functions, KKT conditions are necessary and sufficient for optimality.
The KKT conditions for (20) are:

2!

pq
= ✓

pq
X

x2Ip

�

pq
x x� ✓

qp
X

x2Iq

�

qp
x x, q > p, p, q 2 G,

✓

pq
X

x2Ip

�

pq
x � ✓

qp
X

x2Iq

�

qp
x = 0, q > p, p, q 2 G

�

pq
x [✓

pq
(!

pq
)

T
x+ ✓

pq
b

pq � 1] = 0, x 2 Ip, q > q, p, q 2 G,

�

qp
x [✓

qp
(�!

pq
)

T
x� ✓

qp
b

pq � 1] = 0, x 2 Iq, q > p, p, q 2 G,

�

pq
x � 0, p 6= q, p, q 2 G, 8x 2 I,

✓

pq
[(!

pq
)

T
x+ b

pq
] � 1, x 2 Ip, q > p, p, q 2 G,

✓

qp
[�(!

pq
)

T
x� b

pq
] � 1, x 2 Iq, q > p, p, q 2 G

(21)

From these KKT conditions, we can see that (�

pq
,�

qp
) 6= 0, q > p, p, q 2 G. Without loss of

generality, we can say that, for each p, q 2 G with q > p, there exist some xpq 2 Ip such that
�

pq
xpq 6= 0. Then we get

b

pq
=

1

✓

pq
� (!

pq
)

T
xpq, q > p, p, q 2 G.

So we can see that the set of optimal solutions for (20) is nonempty. Considering the convexity
of the objective function, we have that (20) has a unique optimal solution.

(!1, b1) is optimal for (P1). Let �1 be the corresponding KKT multiplier vector. Then
take:

!

pq
✓ =

✓

pq
+ ✓

qp

2✓

pq
✓

qp
!

pq
1 , q > p, p, q 2 G,

b

pq
✓ =

✓

qp � ✓

pq

2✓

pq
✓

qp
+

✓

qp
+ ✓

pq

2✓

pq
✓

qp
⇥ b

pq
1 , q > p, q, p 2 G,

�

pq
✓x =

✓

pq
+ ✓

qp

2✓

pq
✓

qp
⇥ 1

✓

pq
�

pq
1x, x 2 Ip, p 6= q, p, q 2 G.

(22)

Then (!✓, b✓) will be the unique optimal solution of (20), since it satisfies the KKT conditions.
Then, for any µ > 0 we have that (µ!✓, µb✓) is optimal for (17). Using Lemma 3.1, we conclude
that (µ!✓, µb✓) is weakly Pareto-optimal for HPMAT.

After characterizing these weakly Pareto-optimal solutions of HPMAT, we try to identify
its Pareto-optimal solutions. We now show that these weakly Pareto-optimal solutions will
also be Pareto-optimal for HPMAT.

Corollary 3.3. The Pareto-optimal solution set of HPMAT will be:
n

(!, b

!, b

!, b) =

⇣

µ!

12
✓ , · · · , µ!(m�1)m

✓ , µb

12
✓ , · · · , µb(m�1)m

✓

⌘

|µ > 0, ✓

pq
> 0, p < q, p, q 2 G

o

,

where ✓

12
= 1, !pq

✓ =

✓pq+✓qp

2✓pq✓qp !
pq
1 and b

pq
✓ =

✓qp�✓pq

2✓pq✓qp +

✓pq+✓qp

2✓pq✓qp b
pq
1 for all q > p, p, q 2 G, with

(w1, b1) being optimal to (P1) .
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Proof. From the definitions of Pareto-optimal and weakly Pareto-optimal solutions, we know
that the Pareto-optimal solutions will also be weakly Pareto-optimal. So we only need to
prove that the weakly Pareto-optimal solutions of HPMAT will also be Pareto-optimal.

Let (!⇤, b⇤) be a weakly Pareto-optimal solution of HPMAT. Then, there exist some
✓ > 0 and µ > 0 such that (µ!⇤, µb⇤) will be optimal for (20). Suppose (!⇤, b⇤) is not Pareto-
optimal for HPMAT. For any µ > 0 we have %

pq
(!, b) = %

pq
(µ!, µb). So (µ!⇤, µb⇤), 8µ > 0

will not be Pareto-optimal for HPMAT. Then there exist (!0, b0) such that:

%

pq
(!0, b0) � %

pq
(µ!⇤, µb⇤), p 6= q, p, q 2 G, (23)

and at least one (i, j), i 6= j, i, j 2 G, such that %

ij
(!0, b0) > %

ij
(µ!⇤, µb⇤).

Without loss of generality, we can take k!0k = kµ!⇤k. Then we have:

(!

pq
0 )

T
x+ b

pq
0 � (µ!

pq
⇤ )

T
x+ µb

pq
⇤ , x 2 Ip, p 6= q, p, q 2 G.

As (µ!⇤, µb⇤) is optimal for (20), we have that (!0, b0) is also feasible for (20). As k!0k =

kµ!⇤k, we can say that (!0, b0) is optimal for (20). Since (20) has a unique optimal solution,
we must have !0 = µ!⇤, b0 = µb⇤. Thus, we have:

%

pq
(!0, b0) = %

pq
(µ!⇤, µb⇤), 8p 6= q, p, q 2 G.

This contradicts our assumption that (23) has at least one strict inequality. We then conclude
that (!⇤, b⇤) is Pareto-optimal for HPMAT.

3.2 Soft-margin projected multiobjective all-together

In Section 3.1 we have introduced the HPMAT problem. As before, in order to consider
the overfitting problem and nonlinearly separable training objects, we derive a soft-margin
variant for that problem. We need to properly define the geometric margins so that we can
characterize the Pareto-optimal solutions for the resulting soft-margin multiobjective problem.
We consider the following projection:

�

pq
⇠x = (�

12
⇠x, �

21
⇠x, · · · , �

m(m�1)
⇠x ), q > p, p, q 2 G,

where
�

ij
⇠x =

⇢

1
cpq ei if (i, j) = (p, q) and x is the i-th object in class p,
0 if (i, j) 6= (p, q), i 6= j, i, j 2 G,

and ei is the i-th unit vector.

In the projected space we can construct the hyperplane classifying class p objects against
class q objects as:

L

pq
: (!, c⇠)

T
(�

pq
x ,�

pq
⇠x) + b

pq
= 0, q > p, p, q 2 G,

where, c⇠ = (c

12
⇠

12
, c

21
⇠

21
, · · · , cm(m�1)

⇠

m(m�1)
) and �

pq
x defined as in Section 3.1.

We define the geometric margin from object x to hyperplane Lpq as the Euclidean distance
in the projected space.

• The geometric margin from object x 2 Ip to hyperplane L

pq is:

%̄

pq
x (!, c⇠, b) =

|(!, c⇠)T (�pq
x ,�

pq
⇠x) + b

pq|
k(!, c⇠)k =

(!

pq
)

T
x+ ⇠

pq
+ b

pq

k(!, c⇠)k , x 2 Ip, p 6= q, p, q 2 G.
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• The geometric margin for class p objects against class q objects is:

%̄

pq
(!, c⇠, b) = min

x2Ip
%̄

pq
x (!, c⇠, b), p 6= q, p, q 2 G.

We wish to maximize all the geometric margins defined with the slack variables embedded.
We formulate the following multiobjective problem:

max

!,b

⇣

%̄

12
(!, b), %̄

21
(!, b), · · · , %̄(m�1)m

(!, b), %̄

m(m�1)
(!, b)

⌘

s.t. (!

pq
)

T
x+ b

pq
+ ⇠

pq
x > 0, x 2 Ip, q > p, p, q 2 G,

� (!

pq
)

T
x� b

pq
+ ⇠

qp
x > 0, x 2 Iq, q > p, p, q 2 G,

⇠

pq
x � 0, x 2 Ip, p 6= q, p, q 2 G.

(24)

We refer to the above multiobjective optimization problem (24) as SPMAT (Soft-margin
Projected Multiobjective All-Together). By applying procedures similar to the ones used in
Theorem 3.2 and Corollary 3.3, we can characterize the weakly Pareto-optimal and Pareto-
optimal solutions for SPMAT.

Theorem 3.4. The set of weakly Pareto-optimal solutions for SPMAT is :
n

(!, b

!, b

!, b) =

⇣

µ!

12
✓ , · · · , µ!(m�1)m

✓ , µb

12
✓ , · · · , , µb(m�1)m

✓

⌘

|µ > 0, ✓

pq
> 0, p < q, p, q 2 G

o

,

where ✓

12
= 1, !pq

✓ =

✓pq+✓qp

2✓pq✓qp !
pq
1 and b

pq
✓ =

✓qp�✓pq

2✓pq✓qp +

✓pq+✓qp

2✓pq✓qp b
pq
1 for all q > p, p, q 2 G, with

(!1, b1) being optimal to (1).

The proof is similar to the proof of Theorem 3.2. The details can be found in Appendix
2.

Corollary 3.5. The Pareto-optimal solution set of SPMAT will be:
n

(!, b

!, b

!, b) =

⇣

µ!

12
✓ , · · · , µ!(m�1)m

✓ , µb

12
✓ , · · · , , µb(m�1)m

✓

⌘

|µ > 0, ✓

pq
> 0, p < q, p, q 2 G

o

,

where ✓

12
= 1, !pq

✓ =

✓pq+✓qp

2✓pq✓qp !
pq
1 and b

pq
✓ =

✓qp�✓pq

2✓pq✓qp +

✓pq+✓qp

2✓pq✓qp b
pq
1 for all q > p, p, q 2 G, with

(!1, b1) being optimal to (1).

The proof of this result is identical to the proof for Corollary 3.3.

4 Multiobjective approaches for many classes

In Sections 2 and 3 we have introduced the multiobjective approaches for multiclass classifi-
cation problems. We have also argued that the soft-margin multiobjective versions are more
suitable for their application to general data. For SMAT, SMOAA and SMOAO, we use
an "�constraint method to get their weakly Pareto-optimal solutions. In practical cases we
have many constraints and a large number of objectives, since m is large, This implies that we
need to fix m(m�1)�1 values corresponding to "

pq
, (p, q) 6= (r, s), p 6= q, p, q 2 G. For all the

soft-margin multiobjective problems, we need to find m(m� 1) values for cpq, p 6= q, p, q 2 G.
Besides, considering too many classes at one time may lead us to low classification accuracies.
So we have chosen an approach based on dividing the classes into groups. In this way, at
each node we will just need to solve a classification problem for a small number of classes (or
groups).
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Researchers have already used efficient tree-based methods for multiclassification prob-
lems, such as [4, 5, 17]. In these papers, the researchers have focused on binary-tree methods.
This will also be problematic when m is very large, because many SVMs will need to be
solved, requiring a large computational effort. With the goal of generating an efficient tree
structure, our choice is a multidecision tree that uses multiobjective multiclass SVMs in each
node. Consider the following tree structure as an illustration:

Figure 2. The tree proceeding for classification of many classes

With different choices of class divisions, we will have different numbers of layers and of
SVMs to be solved. The dividing method will also affect the classification accuracies. To
divide classes into two groups, we can use a simple method: first select a linear combination
of the attributes, and then for the projected values get the mean for all the data in all classes.
Then collect the classes which have a mean smaller than the total mean in one group and the
rest of the classes in the other group. Of course, we can also use the median or quartiles to
divide the classes into different groups. How to select this linear combination, and in general
how to divide the classes in an optimal manner is still an open problem that we plan to study
in the future.

5 Computation experiment

For multiobjective SVMs we aim to approximate the Pareto-optimal solution set. For SMAT,
SMOAA and SMOAO, we can obtain the weakly Pareto-optimal solutions by using a
"�constraint method. Still, even though we can characterize the Pareto-optimal solution set
for SPMAT, it is still computationally hard to get all the Pareto-optimal solutions, because
we may have an infinite number of Pareto-optimal solutions.

We will compare different methods with respect to the quality of their approximations for
the Pareto-optimal set; we will say that a method outperforms another when it approximates
this set better than the other. Test accuracies are also important, since we want to construct
a decision function to predict the class membership of new objects. We use the solutions
generated from the soft-margin multiobjective SVMs corresponding to SMAT, SMOAA,
SMOAO and SPMAT to obtain the corresponding test accuracies, and to compare them.
In this paper, we use the epsilon and hypervolume indicators, together with the test accuracies
as objectives to measure the performance of these multiobjective SVMs. Following [13], the
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hypervolume indicator IH(A) measures the hypervolume of that portion of the objective space
that is weakly dominated by an approximating set of Pareto-optimal solutions A. And the
epsilon indicator is defined as I✏+ = inf✏2R{8z2 2 R, 9z1 2 A such that z

1 �✏+ z

2}, where R

is an reference set. These indicators are Pareto compliant.

We have used the following data sets: IRIS, WINE, SEEDS, CAR (Car Evaluation),
SCC (Synthetic Control Chart Time Series) and CTG (Cardiotocography). All of them are
available in the UCI Machine Learning Repository. A summary of the information of these
data sets is listed in the following table:

Table 1. Data set description

Data set size of the data set No. of Dim. No. of classes
IRIS 150 4 3

WINE 178 13 3
SEEDS 210 7 3
CAR 1728 16 4
SCC 600 60 6
CTG 2126 35 10

For the epsilon indicator, we select the reference set R as {(1, 1, . . . , 1, 1)} ⇢ Rm, which
is the ideal test accuracy. And for the hypervolume indicator, we take the reference point
as (0, 0, . . . , 0, 0) 2 Rm. Based on the definition of the hypervolume indicator in [13], the
method which has the largest hypervolume indicator (closest to 1 among all the methods)
outperforms the others. Similarly, if one method has an epsilon indicator value that is closer
to 0 than that for the other methods, we indicate that this method outperforms the others.

To explore the performance of SMAT, SMOAA, SMOAO and SPMAT with these
experimental data sets, we get 50 approximate test accuracy sets for each of these methods.
Then we generate 50 indicator values for each of the methods. For SMAT, SMOAA and
SMOAO, to get the first indicator value we complete the following steps:

• Step 1: We arrange the objects in a random order. We then choose the last 20% objects
as test objects and leave the rest as training objects.

• Step 2: We use a "�constraint method to solve SMAT, SMOAA and SMOAO as de-
scribed in (13) for SMAT, and their analogous for SMOAA and SMOAO. But before
solving these SOCPs, we need to fix the values of (r, s), (c12, c21, · · · , c(m�1)m

, c

m(m�1)
)

and "

pq
, (p, q) 6= (r, s), p 6= q, p, q 2 G.

For (c12, c21, · · · , c(m�1)m
, c

m(m�1)
) we apply a 10-fold cross-validation method to prob-

lem (1). The "�constraint method will give us a solution x that is at least weakly
Pareto-optimal, [12]. And x is Pareto-optimal if and only if there exists a "⇤ such that x
is an optimal solution of the SOCP (13) for all (r, s), r, s 2 G. So we can fix (r, s) = (1, 2).
Then we choose "

21
, "

13
, · · · , "m(m�1) as uniform random values from (0, r

pq
). Here r

pq

is an upper bound for "pq. It should be chosen properly to ensure that the corresponding
single objective problem (13) is feasible. After solving these SOCPs, we get a solution
which is at least weakly Pareto-optimal for each of these three methods.

• Step 3: For each of the three methods, and the weakly Pareto-optimal solutions ob-
tained in Step 2, we use (2) to get the corresponding test classification accuracy vector
(a

1
, a

2
, · · · , am). Here a

p is the test classification accuracy for class p.
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• Step 4: We repeat Steps 2 and 3 a large enough number of times (in this paper, we
repeat the steps 100 times) to get a set of test classification accuracy vectors for each of
these three methods. We use Matlab and Mosek to solve the SOCPs. In many cases we
obtain the optimal solutions, but sometimes it will give us near optimal solutions and
sometimes it will fail to compute a solution. We only keep the optimal solutions, and
we may end up with a set of test classification accuracy vectors having less than 100
vectors.

• Step 5: For each of these three methods, with the set of test accuracy vectors that we
get in Step 4, we calculate the corresponding indicator values for the given reference set
and reference point.

Note that in order to obtain an indicator for SMAT, SMOAA and SMOAO, we need a
set of test accuracy vectors, requiring the solution of a large number of SVMs, and a large
computational effort. We repeat the preceding five steps 50 times to get the 50 hypervolume
and epsilon indicators.

From the theoretical results of Corollary 3.5, we know that using SPMAT we get Pareto-
optimal solutions. As before, to use the epsilon and hypervolume indicators to evaluate
the performance of SPMAT, we apply the following method to get the first epsilon and
hypervolume indicators:

• Step 1: Using the same training and test objects and values of (c12, c21, · · · , c(m�1)m
, c

m(m�1)
)

that we chose for SMAT, SMOAA and SMOAO, we solve (1) to get (!1, b1).

• Step 2: From Lemma 3.1, we have ✓

pq
=

%12⇤
%pq⇤

. We generate uniform random values z

pq

for all p 6= q, p, q 2 G, from (0, 1), and we let ✓

pq
=

z12

zpq . By using Corollary 3.5 with
(!1, b1), we obtain a Pareto-optimal solution of SPMAT.

• Step 3: With the solution from Step 2, we use (2) to get a test accuracy vector.

• Step 4: Repeat Step 2 and Step 3 100 times (or 10000 times) to get a set of test accuracy
vectors which contains exactly 100 vectors (or 10000 vectors).

• Step 5: With the given reference set and reference point, we calculate the epsilon and
hypervolume indicators for SPMAT.

Notice that to obtain an indicator for SPMAT we only need to solve one single objective
SVM (1). This saves a lot of computational cost. Besides, we can get a larger approximating
set which has exactly 100 (or 10000) test accuracy vectors. This process is repeated for each
test set, as done for the other methods, obtaining 50 hypervolume and epsilon indicators.

For IRIS, WINE and SEEDS, as they have only three classes, following the above steps,
we get the results presented in the following figures (Figure 3 to Figure 8) and tables (Table 2
to Table 7). As in Section 4, for classification problems with many classes, we suggest to use
multidecision trees that use multiobjective SVMs in each node. For example, in this paper, for
CAR,SCC and CTG, we combine a tree method and multiobjective SVMs to get the epsilon
and hypervolume indicators. The corresponding results can be seen in Figure 9 to Figure 14
and Table 8 to Table 13. In Appendix 3, we show the partitioning ways that we have used
for these data sets.

In the following tables and figures, SPMAT1 denotes the indicators calculated from
a set of 100 test accuracy vectors from SPMAT, and SPMAT2 denotes the indicators
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calculated from a set of 10000 test accuracy vectors from SPMAT. Each of the following
figures contains five boxplots of indicators gotten by SMAT, SMOAA, SMOAO, SPMAT1
and SPMAT2 separately. Each of the following tables contains ten columns. The first colum
lists the methods that we have used. The following seven columns (column 2 to column 8)
show the mean values, variances, minimums, 25 percentiles, medians, 75 percentiles and the
maximums of the corresponding indicators. In the ninth column, ‘set size’ refers to the average
approximate set size for each of these soft-margin multiobjective approaches. And in the last
colum, ‘time’ refers to the average time for getting a hypervolume and epsilon indicator with
respect to each of these soft-margin multiobjective approaches.

Figure 3. The epsilon indicators for IRIS data set

Method mean variance min 25% median 75% max set size time(s)
SMAT -0.092 0.0175 -0.5 -0.1 -0.05 0 0 79.3 38.65

SMOAA -0.124 0.0108 -0.4 -0.2 -0.1 -0.1 0 64.3 40.74
SMOAO -0.09 0.0177 -0.5 -0.1 0 0 0 79.16 40.75
SPMAT1 -0.036 0.0028 -0.2 -0.1 0 0 0 100 0.47
SPMAT2 -0.03 0.0026 -0.2 -0.1 0 0 0 10000 3.49

Table 2. Epsilon indicator statistic information for IRIS data
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Figure 4. The hypervolume indicators for IRIS data set

Method mean variance min 25% median 75% max set size time(s)
SMAT 0.9338 0.0182 0.4161 0.9705 0.9955 1 1 79.3 38.65

SMOAA 0.9350 0.0077 0.6806 0.9161 0.9688 0.9899 1 64.3 40.74
SMOAO 0.9337 0.0182 0.4424 0.9700 1 1 1 79.16 40.75
SPMAT1 0.9943 0.0001 0.9609 0.9903 1 1 1 100 0.47
SPMAT2 0.9954 0.0001 0.9603 0.9913 1 1 1 10000 3.49

Table 3. Hypervolume indicator statistic information for IRIS data

Figure 5. The epsilon indicators for WINE data set
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Method mean variance min 25% median 75% max set size time(s)
SMAT -0.1397 0.0072 -0.3571 -0.2143 -0.1429 -0.0714 0 53.9 28.69

SMOAA -0.1566 0.0095 -0.5 -0.2143 -0.1429 -0.0714 0 60.74 31.05
SMOAO -0.1747 0.0104 -0.5 -0.222 -0.1429 -0.1111 0 68.12 30.21
SPMAT1 -0.048 0.0025 -0.1429 -0.0714 -0.0714 0 0 100 0.33
SPMAT2 -0.039 0.0024 -0.1429 -0.0714 0 0 0 10000 3.69

Table 4. Epsilon indicator statistic information for WINE data

Figure 6. The hypervolume indicators for WINE data set

Method mean variance min 25% median 75% max set size time(s)
SMAT 0.8502 0.0094 0.5648 0.7848 0.8571 0.9284 1 53.9 28.69

SMOAA 0.8163 0.0145 0.5073 0.7523 0.8549 0.9252 1 60.74 31.05
SMOAO 0.7788 0.0165 0.4404 0.6814 0.8233 0.8596 1 68.12 30.21
SPMAT1 0.9742 0.0017 0.8539 0.9604 0.9993 1 1 100 0.33
SPMAT2 0.9802 0.0014 0.8515 0.9797 1 1 1 10000 3.69

Table 5. Hypervolume indicator statistic information for WINE data
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Figure 7. The epsilon indicators for SEEDS data set

Method mean variance min 25% median 75% max set size time(s)
SMAT -0.14 0.0187 -0.8571 -0.2143 -0.1429 -0.0714 0 93.32 45.79

SMOAA -0.1914 0.0272 -1 -0.2143 -0.1429 -0.1429 0 83.54 48.61
SMOAO -0.1314 0.0088 -0.4286 -0.1429 -0.1429 -0.0714 0 84.92 48.71
SPMAT1 -0.0929 0.0017 -0.2143 -0.0714 -0.0714 -0.0714 0 100 0.52
SPMAT2 -0.0829 0.0022 -0.2143 -0.0714 -0.0714 -0.0714 0 10000 3.79

Table 6. Epsilon indicator statistic information for SEEDS data

Figure 8. The hypervolume indicators for SEEDS data set
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Method mean variance min 25% median 75% max set size time(s)
SMAT 0.8625 0.022 0.1352 0.8114 0.8813 0.9844 1 93.32 45.79

SMOAA 0.8135 0.033 0 0.7741 0.8650 0.9177 1 83.54 48.61
SMOAO 0.8699 0.0122 0.5291 0.7930 0.8898 0.9455 1 84.92 48.71
SPMAT1 0.9577 0.0015 0.8390 0.9325 0.9684 0.9888 1 100 0.52
SPMAT2 0.9763 0.0007 0.8595 0.9709 0.9847 0.9933 1 10000 3.79

Table 7. Hypervolume indicator statistic information for SEEDS data

Figure 9. The epsilon indicators for CAR data set

Method mean variance min 25% median 75% max set size time(s)
SMAT -0.285 0.0181 -0.7692 -0.3421 -0.25 -0.1842 -0.1316 35.34 65.7

SMOAA -0.2717 0.0141 -0.7692 -0.3077 -0.2404 -0.1974 -0.1538 30.4 60.22
SMOAO -0.2894 0.0181 -0.7692 -0.3158 -0.2632 -0.2105 -0.1184 31.56 60.98
SPMAT1 -0.154 0.0009 -0.2895 -0.1711 -0.1538 -0.1322 -0.0921 100 1
SPMAT2 -0.1283 0.0005 -0.1842 -0.1447 -0.1298 -0.1157 -0.0769 10000 3.6

Table 8. Epsilon indicator statistic information for CAR data
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Figure 10. The hypervolume indicators for CAR data set

Method mean variance min 25% median 75% max set size time(s)
SMAT 0.7259 0.0243 0.1932 0.6708 0.7719 0.8206 0.9322 35.34 65.7

SMOAA 0.6801 0.0166 0.1903 0.6443 0.7109 0.7572 0.8426 30.4 60.22
SMOAO 0.6632 0.0237 0.1817 0.6302 0.7042 0.7574 0.8339 31.56 60.98
SPMAT1 0.8770 0.0014 0.7156 0.8604 0.8845 0.8997 0.9543 100 1
SPMAT2 0.9212 0.0007 0.8168 0.9105 0.9256 0.9363 0.9698 10000 3.6

Table 9. Hypervolume indicator statistic information for CAR data

Figure 11. The epsilon indicators for SCC data set
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Method mean variance min 25% median 75% max set size time(s)
SMAT -0.057 0.0009 -0.15 -0.05 -0.05 -0.05 0 91.31 411.2

SMOAA -0.054 0.0007 -0.1 -0.05 -0.05 -0.05 0 32.27 407
SMOAO -0.056 0.00088 -0.15 -0.05 -0.05 -0.05 0 36.71 296.6
SPMAT1 -0.037 0.0005 -0.05 -0.05 -0.05 0 0 100 2.83
SPMAT2 -0.029 0.0006 -0.05 -0.05 -0.05 0 0 10000 4.63

Table 10. Epsilon indicator statistic information for SCC data

Figure 12. The hypervolume indicators for SCC data set

Method mean variance min 25% median 75% max set size time(s)
SMAT 0.9151 0.0026 0.7627 0.9015 0.9074 0.9525 1 91.31 411.2

SMOAA 0.9179 0.022 0.8121 0.9012 0.9040 0.9526 1 32.27 407
SMOAO 0.9161 0.0023 0.8141 0.9010 0.9041 0.9503 1 36.71 296.6
SPMAT1 0.9968 0.0000 0.9882 0.9951 0.9965 1 1 100 2.83
SPMAT2 0.9977 0.0000 0.9921 0.9970 0.9975 1 1 10000 4.63

Table 11. Hypervolume indicator statistic information for SCC data
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Figure 13. The epsilon indicators for CTG data set

Method mean varaince min 25% median 75% max set size time(s)
SMAT -0.1473 0.0623 -1 -0.1 -0.0885 -0.0476 0 38.8 315.6

SMOAA -0.0535 0.0023 -0.1429 -0.1 -0.0476 0 0 17.3 290.8
SMOAO -0.0547 0.0022 -0.1429 -0.1 -0.0476 0 0 12.2 130.0
SPMAT1 -0.0783 0.0024 -0.25 -0.1 -0.0714 -0.0513 -0.0087 100 5.06
SPMAT2 -0.0702 0.0021 -0.2143 -0.1 -0.0625 -0.0455 -0.0087 10000 10.66

Table 12. Epsilon indicator statistic information for CTG data

Figure 14. The hypervolume indicators for CTG data set
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Method mean varaince min 25% median 75% max set size time(s)
SMAT 0.8131 0.0654 0 0.8099 0.8834 0.9533 1 38.8 315.6

SMOAA 0.9357 0.0041 0.7700 0.9034 0.9527 1 17.3 290.8
SMOAO 0.9281 0.0061 0.6176 0.8889 0.9380 1 1 12.2 130.0
SPMAT1 0.9230 0.0049 0.7307 0.8727 0.9497 0.9765 0.9989 100 5.06
SPMAT2 0.9392 0.0036 0.7880 0.8974 0.9627 0.9857 0.9998 10000 10.66

Table 13. Hypervolume indicator statistic information for CTG data

6 Conclusion

The results in Section 5 show that SPMAT outperforms the other methods in most cases.
For IRIS, WINE, SEEDS, CAR and SCC, we can see SPMAT has the largest mean indi-
cators and the largest minimal indicators (hypervolume indicators and epsilon indicators),
compared with SMAT, SMOAA and SMOAO. For CTG data set, SPMAT shows com-
parable performance with respect to the other three multiobjective approaches considered in
this paper.

The experimental results with the IRIS, SEEDS, WINE, CAR, SCC and CTG data sets
show that SPMAT is efficient. Besides, as we mentioned, SPMAT is able to provide ex-
act Pareto-optimal solutions while the other methods only give us weakly Pareto-optimal
solutions. Finally, using SPMAT the computational costs to get the approximating set of
Pareto-optimal solutions will be much lower than those required by SMAT, SMOAA and
SMOAO.

The experimental results also suggest that combining a tree method with multiobjective
SVMs may be efficient. However, how to divide the classes optimally for general data remains
an open problem.
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Appendix 1

Proof of Lemma 3.1

First, assume that (!⇤
, b

⇤
) is optimal for (16). Notice that the feasible region of (16) and the

feasible region of HPMAT are the same.
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) is not weakly Pareto-optimal for HPMAT, there will exist a feasible (!0, b0)

such that
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As a consequence, (!⇤
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Formulate the following problem:
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It is easy to see that (!
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Thus, (!⇤
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⇤
) is also optimal for (26).
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Appendix 2

Proof of Theorem 3.4

As before, the weakly Pareto-optimal solution of SPMAT can be found by solving the fol-
lowing problem:
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By introducing a condition to bound away from zero the denominator of the objective
function, we obtain the equivalent problem
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Problem (29) is also equivalent to

min

!,b,⇠
k(!, c⇠)k2,

s.t. ✓

pq
((!

pq
)

T
x+ b

pq
+ ⇠

pq
(x)) � 1, x 2 Ip, q > p, p, q 2 G,

✓

pq
(�(!

pq
)

T
x� b

pq
+ ⇠

qp
(x)) � 1, x 2 Iq, q > p, p, q 2 G,

⇠

pq
(x) � 0, x 2 Ip, p 6= q, p, q 2 G.

(30)

From the strict convexity of the objective function of (30) its optimal solution (!⇤, ⇠⇤) is
unique. As the constraints are affine functions and the objective is quadratic (and positive
definite), the KKT conditions are necessary and sufficient for optimality.
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These KKT conditions are:

2!

pq
= ✓

pq
X

x2Ip

�

pq
x x� ✓

qp
X

x2Iq

�

qp
x x, q > p, p, q 2 G,

X

x2Ip

✓

pq
�

pq
x � ✓

qp
X

x2Iq

�

qp
x = 0, q > p, p, q 2 G

2c

pq
⇠

pq
(x) = ✓

pq
�

pq
x , x 2 Ip, p 6= q, p, q 2 G,

�

pq
x [✓

pq
(!

pq
)

T
x+ ✓

pq
b

pq
+ ✓

pq
⇠

pq
(x)� 1] = 0, x 2 Ip, q > p, p, q 2 G,

�

qp
x [�✓

qp
(!

pq
)

T
x� ✓

qp
b

pq
+ ✓

qp
⇠

qp
(x)� 1] = 0, x 2 Iq, q > p, p, q 2 G,

�

pq
x � 0, p 6= q, p, q 2 G, 8x 2 Ip,

✓

pq
[(!

pq
)

T
x+ b

pq
+ ⇠

pq
(x)] � 1, x 2 Ip, q > p, p, q 2 G,

✓

qp
[�(!

pq
)

T
x� b

pq
+ ⇠

qp
(x)] � 1, x 2 Iq, q > p, p, q 2 G.

(31)

From these conditions we can see that (�

pq
,�

qp
) 6= 0, q > p, p, q 2 G. Then, there exists

some xpq 2 Ip( without loss of generality), such that

b

pq
=

1

✓

pq
� (!

pq
)

T
xpq � ⇠

pq
(xpq), q > p, p, q 2 G.

From this characterization, the set of optimal solutions for (30) is nonempty. From the
convexity of the objective function, we have that (30) has a unique optimal solution. When
✓ = (1, 1, · · · , 1, 1), we have (30) () (1).

Suppose (!1, b1) is optimal for (1) and �1 are the corresponding KKT multipliers. Then
let

!

pq
✓ =

✓

pq
+ ✓

qp

2✓

pq
✓

qp
!

pq
1 , q > p, p, q 2 G

b

pq
✓ =
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+
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2✓

pq
✓
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b

pq
1 , q > p, q, p 2 G,

⇠

pq
✓x =

✓

pq
+ ✓

qp

2✓

pq
✓

qp
⇠

pq
1 (x), p 6= q, p, q 2 G,

�

pq
✓x =

✓

pq
+ ✓

qp

2✓

pq
✓

qp

1

✓

pq
�

pq
1x, x 2 Ip, p 6= q, p, q 2 G.

(32)

These values (!✓, b✓, ⇠✓) are the unique optimal solution of (30), since they satisfy the KKT
conditions (31).
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Appendix 3

The trees used for CAR, SCC and CTG data sets

Figure 15. The dividing for CAR data set

Figure 16. The dividing for SCC data set

Figure 17. The dividing for CTG data set
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