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Abstract. This paper presents a multi-agent framework using NetLogo
to simulate human and collective behaviors during emergency evacua-
tions. Emergency situation appears when an unexpected event occurs. In
indoor emergency situation, evacuation plans defined by facility manager
explain procedure and safety ways to follow in an emergency situation.
Critical and public scenarios are buildings where there is an everyday
transit of thousands of people. In this case the importance is related with
incidents statistics regarding overcrowding and crushing in public build-
ings. Simulation has the objective of evaluating building layouts consid-
ering several possible configurations. Agents could be based on reactive
behavior like avoid danger or follow other agent, or in deliberative be-
havior based on BDI model. This tool provides decision support in a real
emergency scenario like an public buildings, analyzing alternative solu-
tions to the evacuation process.

Keywords: emergency situations, multi-agent systems, indoor environ-
ments, simulation

1 Introduction

Emergency situations appear when an unexpected event occurs as, for exam-
ple, earthquake, flood, terrorist attack, burning building, sinking of a ship or of
an offshore oil platform, etc. In indoor emergency situations, evacuation plans
defined by facility manager explain procedure and safety ways to follow in an
emergency situation. One of the key issues identified by facility managers is
safe egress based on the layout of the public building and the crowds behavior.
The importance of this issue is related with incidents reported regarding over-
crowding and crushing in public buildings [?]. It has been observed that humans
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in emergency situations tend to fall into simple behavior patterns [3]. There-
fore the agent paradigm fits very well to model this kind of human response.
Our approach was the development of an agent based framework, using NetL-
ogo to simulate human and collective behaviors during emergency evacuations.
Simulation has the objective of evaluating building layouts considering several
possible configurations. The proposed model considers three heterogeneous types
of agent. Each one represents specific human factors in the collective behavior
with levels of interaction as a function of the individual capacities. An objec-
tive evaluation function, based on the percentage of live people at the end of a
simulation, is considered.

2 Agent Based Simulation for Emergency Evacuation

In agent simulation, the model specifies behaviors of individuals, in contrast to
macro simulation techniques that are based on mathematical models (Davidsson
2002). The use of agent based simulation for modeling emergency evacuation is
related with the capacity to analyze collective behavior. In macro simulations,
the collective is defined by a number of variables, whereas in micro simulations
the collective goes defined by the emergence from the interactions among indi-
viduals. Several approaches in literature model the collective human behavior
using agent systems. One of them are centered in simulating a realistic crowd,
where the behavior of individuals allows represent different collective behavior
similar to a real world. One of the main approaches in this line is Braun and
colleagues (Braun et al. 2003). In this work, the multi agent crowd simulation
system has individualized agents with particular properties, such as dependence
on others and altruism levels, and act according to these behaviors. The sim-
ulation try to represent the collective behavior in a realistic way, for example,
in a room exiting task, some agents being faster than others and some going
back to help others who needed help. The main goal is to generate realistic
crowd behavior in a simulation, which can be used in virtual reality or movies.
An application of these simulators is the analysis and the design of buildings
and evacuation plans. In (Pan et al. 2007) a multi-agent simulation framework
is developed for simulating individual cognitive processes for exploring emer-
gent phenomena such as social or collective behaviors. The paper presents a
Multi-Agent Simulation System prototype for Egress analysis (MASSEgress).
The main focus of this work is modeling frequently observed human social be-
haviors in emergencies, such as competitive, queuing, and herding behaviors,
through simulating the cognitive processes of individual agents and interactions
among multiple agents in an artificial environment. The MASSEgress tool ana-
lyzes these situations on a predefined building design, this mean when and where
occur. Then, using MASSEgress tool and a visual inspection of the simulation,
an expert in the field could determine which the best building design for evacua-
tion purposes is. Other works are centered in the possibility to apply simulation
in real time. These tools give decision support in a real emergence, analyzing al-
ternative solutions as the evacuation evolves. (Filippoupolitis et al. 2008) present
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an augmented reality simulation system to operate in an emergency disaster to
evaluate evacuation strategies in real-time, named Building Evacuation Simula-
tor. The system is able to evaluate evacuation policies for a specific building.
Authors show the effect of individual and collective behaviors in an evacuation
procedure, including grouping behaviors and the inclusion of the leadership role.
But these approaches lack of a simplified model of agents, for instance those that
react with panic behavior, and they do not allow agents to dynamically change
types. Also, we consider multiple forms of communication among agents, explicit
and implicit. There are other types of modeling and simulation, that are based
in physical properties of humans taking them as particles (e.g. Helbing et al.
2002). These models are very exact for mass crowds but they lack the possibility
of specifying more complex individual behavior, at a cognitive level.

3 Problem formulation

People, represented by agents, move in an indoor building defined in a layout.
When an emergency occurs (that is propagate all over the layout, as the fire,
with a speed and a certain topology), agents can move to search the exit with
a certain speed or warn others about the emergency and about exits. In that
case, agents will form a kind of a network quickly spreading the warnings over
possibly all agents and the whole environment. This will strongly depend on the
communication range of the agents.

(a) Scenario  Tradi- (b) Scenario Corridor (c) Scenario U
tional

Fig. 1. Scenario configuration

3.1 World definition

The world is a 2D matrix of cell position, in which agents act upon, is represented
as a directed graph G = (V, E, ¢), for which V is a non-empty set of nodes; F is
a set of edges, one for each link; and ¢ is a weight function from path E reflecting
nonzero positive real numbers. The number of nodes is denoted by n, and the
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Fig. 2. MEA planner for the cognitive agent.

number of the directed edges m. A directed edge in E is denoted by an ordered
pair of nodes from V. If directed edge e = uv € E jnode v is said to be reachable
from node u in E. The weight of edge uv is denoted by ¢(uv). A path between
two nodes vy and vy, is nite sequence p = vg, v1...v; of nodes such that for each
0 <i < k,vvi11 € E, and the weight of the path is ¢(p) = > ;o1 (Vi vit1).

According to this representation of the world, agents are always located in
a node cell, moving from node to node to find an escape route. They may have
a partial or total view of the world, a sub graph that includes the information
of reachable and avoidable nodes. The more they see the world, the better there
chance to perceive an escape node. At any given time an agent is in one of the
13 possible situations varying from totally free to totally blocked or in imminent
death. His sight can see more than just its neighbour, but for simplicity it was
a single neighbour distance sight reach.

Since they will be moving in the environment, they need an algorithm to
trace a path. The shortest path between two nodes is denoted as the distance
between the two nodes, dist(u,v) whenever v is reachable from u by the path.
Dijkstras shortest path algorithm calculates the distance, according to a path,
between two nodes reachable. The time complexity of Dijkstras algorithm is
in the order of O(m + nlogy,) time for which m is the number of edges and
n is the number of vertices of the graph. The world is dynamic. As time goes
by, agents change position, the danger spreads meaning the graph connections
change. Consequently, even when agent starts knowing the entire world, this
knowledge keeps downgrading with time. That fact justifies the helpfulness of
exchanging information when meeting other agents even when agents know the
world.
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Danger spots start in cell units that can be either randomly allocated, such
as in a forest fire that we never know the focus points, or pre-defined, such as
in a dam river that we know the weak points. In order to run a simulation, it
is necessary to define spread function. Consequently, at the same time agents
are moving and making cells temporarily occupied, danger keeps spreading out
throughout the environment cells. Our premise is that once in danger, the cell
will stay in danger forever during the simulation and the set of blocked nodes
in danger keeps increasing according to a pre-defined danger spreading function
from a triggered cell. We consider a damaged cell a world unit from which agents
should stay away from it to stay alive.

The emergency simulation runs in continuous time steps. Agents resources
are mapped to time units of their life. Each type action differently decreases units
of agents lifetime. For instance, depending o the scenario, moving form one cell to
another may require less lifetime resource than exchanging information to other
agents. The simulation runs in two different modes: exhaustive and bounded by
time frame. In the first scenario, the simulation runs until either agents escape,
die or get locked. In the later scenario, the simulation runs for a specified amount
of time.

3.2 Emergency Model

Emergency is represented as a set of events originated by external agents, such
as a fire spot, that destroy world cell units and may damage agents whenever in
contact with them. There may be one or more source of these events that spreads
into the world with time according to some spreading function. The emergency
changes the status of the cell from available to destroyed. An emergency event
(Ev) has a degree of severity that reflects the degree of damage on an agent
according to the distance between them, varying from 0 (no damage) to 1(kill
agent whenever touches it).

In order to simulate our crowd evacuation scenario, it is important to define
the world density (AD), in terms of number of agents per squared cell unit.
Additionally, for each agent in play, we have to define its characteristics (Agi)
including its initial position cell (Cs), the time when it started playing (Ts), its
cognitive skills (Think), such as Reactive, Cognitive or Follower, for reaching
their goal of escaping or saving somebody else, their physical skills such as its
motion (Move), vision (See) and hearing abilities (Hear), and its role (Role) in
the world such as being a civilian, a villain or a hero. Agents initial position can
be specifically defined, such as for a fireman starting at an exit cell, or randomly
determined. Each agent occupies exactly one unit. Each unit has exactly one
agent at a time, except when and agent is carrying another.

We are interested in studying individual behavior for individual as well as
population survival in emergency scenarios. As for the population, we will look at
averages and standard deviations of duration to escape. For individual analysis,
we will be looking at: time to escape (Te), starting point (Cs), stating time (T's)
and chosen exit (Exit). As measurements, or outputs, of the experiments we
defined the following observables:
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— Nd;: number of deaths, per agent type.
— Te;: average time survivors took to escape the environment, per agent type.
— Tp: number of iterations completed until no more agents in the environment

We also record, for each experiment, the location of the fire breakout so that
we can latter correlate its location with the escape results. For instance, fire
breakouts near an exit are prone to produce much worse results than most of
the other breakout locations.

4 Agents Architecture

We are simulating crowd behavior in emergency scenario using two different
approaches. In the first approach, we model individual agents varying their cog-
nitive skills as the building block unit to create the society. In the second ap-
proach, we model the crowd as a compact unit based on swarm theory. In order
to model each individual agent in the world scenario, it is necessary to describe
the way they perceive and perform on the environment as well as their reasoning
abilities. Our agents present the following skills:

1. Agents initial position: reflect its coordinates in the world graph;

2. Agents resources: reflect the available resource to perform the actions to
achieve its goals. Different types of resources can be mapped to a single one.
In our case we are mapping to time units of life.

3. Agents interaction abilities: reflect its abilities to perceive and act on the

environment.
(a) Perception skills include:
i. Sight range defines from its current location the depth of the sub-

graph of the world it is able to see.

ii. Hearing range defines from how far the agent can listen to messages.
Similarly to sight range, it defines the maximum distance to others an
agent can be in order to transfer information (communicate) about

the world.
(b) Acting skills include:
i. Speed to move defines how fast the agent can move in the environ-

ment meaning how many cells per unit of time simulation the agent
can move.
ii. Communication to others defines the ability agent has to transmit

and receive information in a shared communication language.
4. Agents learning skills: reflect the amount of information the agent can in-

corporate in its memory.
5. Agents reasoning ability defines the way they decide its next action.

Agents vary in their reasoning skills from no reason to full alternative gener-
ation and evaluation. No matter the reasoning process, agents act perceiving the
environment though their sensors, such as hearing and sight sensors, choosing
what to do next and acting in the environment though their actuators, such
as moving, communicating or planning what to do next. We are considering
three main types of agents inhabiting the environment: purely reactive agents,
followers and cognitive agents.
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Reactive agents Purely reactive agents randomly choose their next action,
just avoiding the immediate danger. There is neither memory from the past
nor a rational decision-making process associated with their next move. Their
inference algorithm is similar to a blind search with no memory of previous states
as described in Algorithm 1.

Algorithm 1: Reactive Agent reasoning algorithm

Input: Agent State, Agent Goal
Output: Reactive reasoning
1 AskEnvironment(CurrentNode, EnvironmentSubGraph, SightRange)
2 if Reached(CurrentNode, Goal) then
L Exit with Success
3 if AgentRemainingLifetime = 0 then
L Exit with Success
4 Case
a Reachable(Exit, CurrentNode, EnvironmentSubGraph): HeadTo(Closest(Exit),
CurrentNode, EnvironmentSubGraph)
b Reachable(DangerNode, CurrentNode, EnvironmentSubGraph):
if Reachable(LocalExit, CurrentNode, EnvironmentSubGraph) and
CloserTo(LocalEzit, DangerNodeS) then
| HeadTo(LocalExit, CurrentNode, EnvironmentSubGraph)
Head Away(DangerNodeS, CurrentNode, EnvironmentSubGraph)
¢ Reachable(LocalExit,CurrentNode, EnvironmentSubGraph): HeadTo(LocalExit,
CurrentNode, EnvironmentSubGraph)
d Otherwise StepRandomly(CurrentNode, EnvironmentSubGraph)
5 DecreaseLifetime(ActionCost)

Follower agents Followers are agents that react differently. Their systematic
behavior consists in following the others strategy. They have a glint of reasoning
when needed. They follow the group with more followers. Whenever there is no
one to follow, they behave just as the purely reactive agents. They also have
no memory of previous history. Their inference algorithm is mostly blind search
based, with a cheap reasoning when meeting others, as described in Algorithm
2.

Cognitive agents Cognitive agents are the ones that follow a rational decision
making process to choose their next action. They also learn as they act upon the
environment. They have memory and consider their history of interactions to
choose the best move considering what they have already learnt from the world.
There are many approaches to rational agents. Here, we take a practical rea-
soning approach to represent cognitive agents considering they reason towards
actions [?] . Agents will act according to plans they create plans to fulfil Inten-
tions to accomplish Desires considering a set of Beliefs about the environment
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and their own abilities, i.e. cognitive agents will be represented as BDI agents
[?] . Cognitive agents reason to decide the behavior for achieving adequate per-
formance when deliberation is subject to resource bounds [?] . The beliefs keep
updating as times goes by. While beliefs remain, agents keep following their
plans. The plan will be executed consuming agents lifetime according to the cost
involved to execute each action of the plan. See Figure 3.

Algorithm 2: Follower Agent reasoning algorithm

Input: Agent State, Agent Goal
Output: Follower reasoning
1 AskEnvironment(CurrentNode, EnvironmentSubGraph, SightRange)
2 if Reached(CurrentNode, Goal) then
L Exit with Success
3 if AgentRemainingLifetime = 0 then
L Exit with Success
4 Case
a Reachable(Exit, CurrentNode, EnvironmentSubGraph): HeadTo(Closest(Exit),
CurrentNode, EnvironmentSubGraph)
b Reachable(DangerNode, CurrentNode, EnvironmentSubGraph):
if Reachable(Agent, EnvironmentSubGraph) and CloserTo(Agent,
DangerNodeS) then
| VergeHeading(Agent, CurrentNode, EnvironmentSubGraph)
else if Reachable(LocalExit, CurrentNode, EnvironmentSubGraph) AND
CloserTo(LocalExit, DangerNodeS) then
| HeadTo(LocalExit, CurrentNode, EnvironmentSubGraph)

¢ Reachable(Agent, EnvironmentSubGraph): VergeHeading(NEAREST Agent,
CurrentNode, EnvironmentSubGraph)

d Reachable(LocalExit,CurrentNode, EnvironmentSubGraph):Head To(NEAREST
LocalExitNodeS, CurrentNode, EnvironmentSubGraph)

e Otherwise StepRandomly(CurrentNode, EnvironmentSubGraph)

5 DecreaseLifetime(ActionCost)

Each action consumes a certain amount of agents lifetime resource that
should be configured to better reflect the world being modeled. We have consid-
ered all actions as consuming 1 unit of resource, except for the communication
action. In this last case, we assume the effort is a function of the amount to
be communicated. The agent assumes the other agent has the same amount of
information to communicate too. Consequently, the communicative act will take
from both agents the number of nodes they know together multiplied by an ad-
justment factor since communicate should be much faster than move. Agents
create a plan based on the meansends analysis [?] planning procedure described
below in Figure 4.

The MEA technique [?] is a strategy to control search in problem-solving.
Given a current state and a goal state, an action is chosen which will reduce
the difference between the two. The action is performed on the current state to
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Agents Perception ® AskEnvironment(CurrentPosition, SightRange, World, Memory)

Agents Beliefs ® Known Closest Exit Updated

* Known Closest Danger Updated
® Known Leader Agent Updated
* Known World Updated

Agents Possible Actions |® HeadTowards(CurrentPosition, NextPosition)

* HeadAwayFrom(CurrentPosition, DangerPosition)

* VergeHeadToAgent(CurrentPosition, ClosestAgent)

e Communicate(TargetAgent, KnownEnvironmentSub- graph,NewSubGraph)
* FollowRoute(Route)

* GenerateRoute(CurrentPosition, TargetPosition)

Agents Desires  InExit and Alive

Agents Intentions ® Know Exit

® Know More of the Environment
e Close to Agent

® Know Exit Route

® Perceive Room

* Follow Agent

Fig. 3. Agents’ perceptions, Beliefs, Desires, Intentions.

produce a new state, and the process is recursively applied to this new state and
the goal state.

We consider simple cognitive agents planning as following the means-ends
analysis problem-solving technique (MEA) [?] . Problem solving with MEA re-
quires agents to represent the states the world assumes at each iteration time.
Given a current and a goal state, an action is chosen which will reduce the differ-
ence between the two. The action is performed on the current state to produce
a new state, and the process is recursively applied to this new state and the goal
state. The MEA table, illustrated in Figure 4 , represents the reasoning strategy
for the cognitive agents acting in the emergency world. Column in blue repre-
sents the difference between current and goal states to be removed. The line in
orange means the operators capable of removing differences and, finally, the line
in yellow represents the set of pre-conditions for applying a specific operator,
as illustrated in Figure 4. Duplicate lines reflect there is more than one way to
remove a difference. More than one X in the same line means more than one
operator must be applied.

We use Andersons algorithm [?] to execute MEA as described below:

Apply the operator that will make the most important difference to the
current state. In selecting the operator to apply, match the conditions of the
operator to the current state to identify the most important difference. In this
paper, we consider the following decision-making strategy in case of conflict.
In any circumstances, survival is the most important goal, consequently head
away from the danger will take over. Rational agents always prefer to head to
an available exit whenever they know a route towards it, except when a fire is
close to the exit. Otherwise they need to decide upon the alternative actions:
explore the world in a rational way (following a previously generated route),
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Perceive Head Away |Head Towards |Verge Heading| . Generate
RN ALRRAY Environment  [From Danger |Exit To Agent [ommmiz Route EelogRents

INOT In Exit X
NOT Alive X
INOT Alive X
INOT Far from Danger X
INOT Know Environment X
INOT Know Environment X
INOT Know Environment X
INOT Close to Agent
INOT Know Exit X
INOT Know Exit X
INOT Know Exit X
INOT Know Danger X
|Room
INOT Know Room Exit X
INOT Know Route X

( Perceive (e ( Know ( Know

[Room Environment _|Environment
AGENT REASONING ( Know ( Perceive ( Far from ( Far from ( Perceive b sy ]

Danger Room Danger Danger [Room

hirme |l (Gl (e

Agent Agent

Fig. 4. MEA planner for the cognitive agent.

Algorithm 3: MEA reasoning algorithm

Input: CurrentState, GoalState
Output: MEA
Begin
To Transform current state into goal state
Match current state to goal state to find the most important difference.
While difference detected between current and goal states.
Subgoal: Eliminate the difference.
ii If fail then EXIT: Failure.
Match current state to goal state to find the most important difference.
3 Exit: Success.
End

- T e

N

verge heading to another agent, exchange information about the world with
others and generate a route.

Whenever agent knowledge is insufficient to rationally create a route, it can
randomly choose between two options: head to any local exit or verge heading
to another agent. As the agent gains knowledge it makes sense to plan its own
route trying to find an exit. Since we are neither considering agents reputation
nor information truthfulness, communication is the preferred operation whenever
meeting other agents, whenever the expected gain of information is greater than
the expected gain of information exploring the world. Agents expectation about
others agents knowledge of the world is directly proportional of their own current
knowledge. This heuristic is based on the idea that all agents think they are alike.
Consequently they believe everybody is acquiring information at the same rate.
This is a reasonable assumption with homogeneous agents, since the size of the
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Algorithm 4: Eliminate diference
Input: CurrentState, GoalState
Output: EliminateDifference
Begin
while there are operators to be examined and difference has not been

eliminated do
| Search for operator relevant to reducing the difference

if no operators found then
| EXIT: Failure

else
while success do
Match condition of operator to current state to find most important
difference
if differences are detected then
| EliminateDifference (recursive step)

else
| EXIT: Apply operator

End

explored world tends to be the same fro each of them. Notice that, when the
amount of knowledge the agent has about the environment is very large, the
expected gain in exchanging information with other agents decreases. At this
point, agent falls naturally into planning its own route stopping communication.

5 Experiments

In this first approach we devised a set of experiments to evaluate the objective
function results (defined in Introduction as the percentage of live agents at the
end of the simulation) of different scenarios. The general approach was to sim-
ulate population compositions with different percentages of each type of agent.
Results are analyzed in order to identify to what extent can we draw conclu-
sions from the model. In this set of experiments we considered fire as the cause of
emergency. Depending on the exposition of the agents to fire they can be injured.
Injuries are represented by a decrease of health points from the maximum corre-
sponding to perfect health that agents start with. Agents die when the amount
of health points reaches zero. An agent moves about in a closed environment,
representing a building floor, until it detects a fire breakout in its vicinity. In
that situation it tries to escape the environment, with its characteristic strategy
type. That happens when the agent exits through one of the doors that allow a
passage between the closed environment and the external world. Each run may
complete when one of the two following conditions is met: all agents have either
escaped or died; a limit number of iterations is completed.
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5.1 Dependent and Independent Variables

The number of variables is quite large and therefore we fixed most of the param-
eters to keep the experiments in a reasonable size. We varied the composition of
the population from 100Three types of environments were defined. One in the
form of a regular lattice of square rooms, in which one has communication doors
between all adjacent rooms (Scenario Traditional) and the other has only doors
between rooms and corridor (Scenario Corridor) . The other environment char-
acterize configurations where rooms are not uniformly distributed. The rooms
form a kind of a U configuration (Scenario U). In one set of experiments the
fire breakout was on a fixed room, in a corner of the environment to test for the
sensitivity of the model to the random positioning of agents, in a situation in
which the fire could take more time to percolate through the whole environment.
A subsequent set of experiments considered four fire breakouts in and around
that same corner, to analyze the influence of small variations in fire breakout
position. All other simulations used random positioning of one fire breakout.
The initial density of agents was constant with the value of 7.5/room, over all
the experiments. Since one of the main goals of this work is to study the influ-
ence of the population composition in the escaping results, we varied the initial
percentage of each type of agents according to Figure 5.1.

In one set of experiments the fire breakout was on a fixed room, in a corner of
the environment to test for the sensitivity of the model to the random positioning
of agents, in a situation in which the fire could take more time to percolate
through the whole environment. A subsequent set of experiments considered
four fire breakouts in and around that same corner, to analyse the influence of
small variations in fire breakout position. All other simulations used random
positioning of one fire breakout. The initial density of agents was constant with
the value of 7.5/room, over all the experiments. Since one of the main goals of
this work is to study the influence of the population composition in the escaping
results, we varied the initial percentage of different types of agents according to
Figure 5.1 .

5.2 Results

For each parameter configuration, 30 runs were made, with random initial agent
positions, to obtain statistically significant results. Results of computing mean
and standard deviation (; ) are presented for each scenario . See Figure 4, 5,
6. Following, the results of computing data acquired by the simulation. Graph-
ics resulting of computing 13 different configurations let us conclude about the
influence of the population composition in each type of scenario. We take into
account the confidence interval drawn by the graphics. See Figures: 7, 8, 9. In
buildings with Traditional configuration, cognitive agents have a better perfor-
mance, followed by reactive agents. There are less agents deads, so when there
is the case of this kind of scenario, it would be good to invest on training people
for this kind of situations. On the other hand, we can appreciate that for sce-
nario Corridor, reactive agents ends the simulation with less deaths, it can be
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Agents
Agent density] 7.5/room | 7.5/room | 7.5/room
Vision range} 1 1 1
Hearing rangd 1 1 1
Moving Speed| 1 1 1
Reactives| Followers | Cognitives (St 1 1 1
n Cost}
Config 1 100 0 0 Decision cost] 1 1 1
Config 2 0 100 0 Environment
Config 3 0 0 100 Type| Tradicional | Corridor| U’
Config 4 50 50 0 Size] 10 10 10
Config 5 50 0 50 Emergency
Config 6 0 50 50 Typd] Fire Fire Fire
Config 7 10 60 40 Nr BV
(number of] 4 4 4
. 10 40 60 trigger dangeq]
Config 8 spots)
Config 9 40 60 10 Fdl
Radial Radial Radial
40 10 60 (danger spltead
Config 10 function)
Config 11 60 40 10 C§
(spot dangeq]
Config 12 60 10 40 .
E coordinated (v | (xy) | ooy
generated by}
. 33 33 33 random|
Config 13 function)

Fig. 5. Agent composition and parameters for experiments.
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explained by the distribution of the scenario. And for scenario U, followers has
a better disengagement.

For each parameter configuration, 30 runs were made, with random initial
agent positions, to obtain statistically significant results. Result of computing
mean and standard deviation (u; o) are presented for each scenario . See Figure
6, 7, 8.

N2.Reactive alive |N2 Follower alive |N2 Cognitive alive |N2 Reactive dead-fire [N Follower dead-fire N2 Cognitive dead-fire
Config 1 (50,1; 6,5) (0;0) (0;0) (49,9; 6,5) (0;0) (0;0)
Config 2| (0;0) (37,9; 8,0) (0;0) (0;0) (62,1; 8,0 (0;0)
Config 3 (0;0) (0;0) (37,4;5,8) (0;0) (0;0) (62,6; 5,8)
Config 4 (30,9;2,9) (22,0;4,1) (0;0) (19,1;2,9) (28,0;4,1) (0;0)
Config 5| (25,5; 3,4) (0;0) (13,1;3,2) (24,5; 3,4) (0;0) (36,9; 3,2)
Config 6| (0;0) (18,5; 4,9) (16,5; 3,8) (0;0) (31,5; 4,9) (33,5;3,8)
Config 7| (6,1;1,9) (22,8;3,9) (21,7;3,9) (3,9;1,9) (37,2;3,9) (18,3;3,9)
Config 8 (6,8; 1,9) (14,6; 3,2) (30,4; 4,2) (3,2;1,9) (25,4; 3,2) (29,6; 4,2)
Config 9| (23,2;3,1) (24,6; 4,8) (5,9;1,2) (16,8; 3,1) (35,4; 4,8) (4,1;1,2)
Config 10| (25,6; 4,5) (4,5; 1,2) (28,0; 3,5) (14,4; 4,5) (5,5; 1,2) (32,0;3,5)
Config 11 (30,7; 2,8) (14,5; 4,0) (5,5; 1,4) (29,3;2,8) (25,5; 4,0) (4,5;1,4)
Config 12| (32,9;3,0) (3,0;1,2) (14,0;2,2) (28,0; 3,0) (7,0;1,2) (26,0;2,2)
Config 13| (14,7; 3,6) (10,6; 3,3) (13,1;3,2) (18,3; 3,6) (22,4;3,3) (19,9; 3,2)

Fig. 6. Experiment results (u; o) for Scenario Traditional configuration.

N2.Reactive alive [N Follower alive [N2 Cognitive alive |N2 Reactive dead-fire |N2 Follower dead-fire |N2 Cognitive dead-fire
Config 1 (50,8; 5,2) (0;0) (0;0) (49,2;5,2) (0;0) (0;0)
Config 2| (0;0) (40,4; 7,6) (0;0) (0;0) (59,6; 7,6) (0;0)
Config 3| (0;0) (0;0) (30,3;5,8) (0,0) (0;0) (49,2;5,2)
Config 4| (35,7; 1,5) (23,5;3,9) (0;0) (14,3; 1,5) (26,5; 3,9) (0;0)
Config 5| (31,7, 2,6) (0,0) (29,3;4,2) (18,3; 2,6) (0;0) (20,7;4,2)
Config 6| (0;0) (18,9; 4,5) (22,7;3,8) (0;0) (31,1;4,5) (27,3; 3,8)
Config 7| (6,8;1,7) (22,2;4,2) (23,5;3,4) (3.2,1,7) (37,8, 4,2) (16,5; 3,4)
Config 8| (5,7;1,7) (14,1; 3,6) (18;3,8) (4,3;1,7) (25,9; 3,6) (42;3,9)
Config 9| (23,1;3,6) (25,8; 4,6) (6,1;2,0) (16,9; 3,6) (34,2; 4,6) (3,9;2,1)
Config 10| (23,7;2,9) (5,1;1,7) (37,2; 3,6) (16,3; 2,9) (4,9;1,7) (22,8; 3,6)
Config 11 (39,2;2,4) (18,9; 4,4) (5,9; 1,6) (20,8; 2,4) (21,1;4,5) (4,1;1,6)
Config 12| (32,3;4,9) (4,3;1,0) (19,1; 4,6) (27,7, 4,9) (5,7, 1,0) (20,9; 4,6)
Config 13| (19,4; 2,1) (15,6; 4,1) (19,8; 1,9) (13,6; 2,1) (17,4; 4,1) (13,2; 1,9)

Fig. 7. Experiment results (y; o) for Scenario Corridor configuration.

Following, the results of computing data acquired by the simulation. Graph-
ics resulting of computing 13 different configurations let us conclude about the
influence of the population composition in each type of scenario. We take into
account the confidence interval drawn by the graphics. In an Airport scenario
with ”Traditional” configuration, cognitive agents has a better performance, fol-
lowed by reactive agents. There are less agents deads, so when there is the case
of this kind of scenario, it would be good to invest on training people for this
kind of situations. On the other hand, we can appreciate that for Scenario Cor-
ridor, reactive agents ends the simulation with less deaths, it can be explained
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N2.Reactive alive |N2 Follower alive |N2 Cognitive alive |N2 Reactive dead-fire |N2 Follower dead-fire N¢@ Cognitive dead-fire
Config 1| (21,1; 3,0) (0,0) (0,0) (78,9; 3,0) (0;0) (0,0)
Config 2| (0,0) (25,0; 4,0) (0;0) (0;0) (75,0; 4,0) (0;0)
Config 3 (0;0) (0;0) (25,1;3,7) (0;0) (0;0) (74,9;3,7)
Config 4| (26,1;2,8) (17,3;2,9) (0;0) (23,9,2,8) (32,7;2,9) (0;0)
Config 5| (12,5;2,7) (0;0) (5,9;2,2) (37,5; 2,7) (0;0) (44,1;2,2)
Config 6| (0,0) (14,4; 4,2) (21,1;4,7) (0;0) (35,6; 4,2) (28,9;4,7)
Config 7| (2,9;1,2) (11,9; 3,0) (5,6; 3,3) (7,1;1,2) (48,1;3,0) (34,4;3,3)
Config 8| (4,1;1,2) (12,7;2,7) (23,1;4,3) (5,9;1,2) (27,3;2,7) (36,9; 4,3)
Config 9| (10,6; 2,6) (13,4; 4,0) (0,7;0,8) (29,4; 2,6) (46,6; 4,0) (9,3;0,8)
Config 10| (10,2; 1,8) (3,2;1,5) (9,4; 4,0) (29,8; 1,8) (6,8; 1,5) (50,6; 4,0)
Config 11 (17,3;3,5) (10,9; 2,3) (2,4;1,5) (42,7;3,5) (29,1;2,3) (7,6; 1,5)
Config 12 (19,1;3,9) (2,8;1,2) (9,7; 3,0) (40,9; 3,9) (7,2;1,2) (30,3; 3,0)
Config 13 (18,3; 3,4) (2,6;1,3) (9,5; 2,5) (14,7; 3,4) (30,4; 1,3) (23,5;2,5)

Fig. 8. Experiment results (u; o) for Scenario U configuration.

by the distribution of the scenario. And for Scenario U, followers has a better
disengagement.

6 Conclusions

The simulation results help us to establish the direct relation between population
of the crowd and type of scenarios. It also provides us with an estimate for an
Airport scenario of where we should put the effort depending on the number
of people for every scenario considered. Experiments and graphics resulting of
computing 13 different configurations let us conclude about the influence of the
population composition in each type of scenario. It allow us to decide where to
put the efforts, i.e: investing money and time training people for this emergency
situations; or putting effort choosing an adequate scenario to be built in a specific
domain of application.
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