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ABSTRACT

Compactrepresentations of data are very useful in many applications such as cod-
ing, denoising or feature extraction. “Classical” transforms such as Discrete Cosine
Transforms (DCT) or Discrete Wavelets Transforms (DWT) provide sparse approxima-
tions of smooth signals, but lose efficiency when they are applied to signals with large
discontinuities. In such casedirectional transforms, which are able to adapt their ba-
sis functions to the underlying signal structure, improve the performance of “classical”
transforms.

In this PhD Thesis we describe a general cladgtofg transforms on graphs that
can be seen as¥-dimensional directional transforms. Graphs are constructed so that
every node corresponds to a specific sample point of a discrete N-dimensional signal and
links between nodes represent correlation between samples. Therefore, non-correlated
samples (e.g., samples across a large discontinuity in the signal) should not be linked.

We propose a lifting-based directional transform that can be applied to any undi-
rected graph. In this transform, filtering operations are performed following high-
correlation directions (indicated by the links between nodes), thus avoiding filtering
across large discontinuities that give rise to large high-pass coefficients in those loca-
tions. In this way, the transform efficiently exploits the correlation that exists between
data on the graph, leading to a more compact representation.

We mainly focus on the design and optimization of these lifting transforms on
graphs, studying and discussing the three main steps required to obtain an invertible
and critically sampled transform: (i) graph construction, (ii) design of “good” graph bi-
partitions, and (iii) filter design. We also explain how to extend the transforfiie¢gels
of decomposition, obtaining a multiresolution analysis of the original N-dimensional
signal.

The proposed transform has many desirable properties, such as perfect reconstruc-
tion, critically-sampled, easy generalization to N-dimensional domains, non-separable
and one-dimensional filtering operations, localization in frequency and in the original
domain, and the ability to choose any filtering direction.

As an application, we develop a graph-based video encoder where the goal is to
obtain a compact representation of the original video sequence. To this end, we first



propose a graph-representation of the video sequence anddébgm a 3-dimensional
(spatio-temporal) non-separable directional transform. This can be viewed as an exten-
sion of wavelet transform-based video encoders that operate in the spatial and in the
temporal domains independently. Our transform yields better compaction ability (in
terms of non-linear approximation) than a state of the art motion-compensated tempo-
ral filtering transform (which can be interpreted as a temporal wavelet transform) and
a comparable hybrid Discrete Cosine Transform (DCT)-based video encoder (which is
the basis of the latest video coding standards).

In order to obtain a complete video encoder, the transform coefficients and the side
information (needed to obtain an invertible scheme) should be entropy coded and sent
to the decoder. Therefore, we also propose a coefficient-reordering method based on
the information of the graph which allows to improve the compression ability of the en-
tropy encoder. Furthermore, we design two different low-cost approaches which aim to
reduce the extensive computational complexity of the proposed system without causing
significant losses of compression performance. The proposed complete system leads
to an efficient encoder which significantly outperforms a comparable hybrid DCT-based
encoder in rate-distortion terms. Finally, we investigate how rate-distortion optimization
can be applied to the proposed coding scheme.



RESUMEN

La representabin compacta de &eales resultaitil en diversas aplicaciones, tales
como compresin, reducdn de ruido, o extracén de caractésticas. Transformadas
“clasicas” como la Transformada Discreta del Coseno (DCT) o la Transformada Wavelet
Discreta (DWT) logran aproximaciones compactas deles suaves, pero pierden su
eficiencia al ser aplicadas sobrdiakes que contienen grandes discontinuidades. En
estos casos, lamnsformadas direccionales, capaces de adaptar sus funciones base a la
estructura de la $&al a analizar, mejoran la eficiencia de las transformadasitas”.

En esta tesis nos centramos en el idlisg optimizacdn detransformadas “lifting”
sobre grafos, las cuales pueden ser interpretadas doamsformadas direccionales
N-dimensionales.

Los grafos son construidos de manera que cada nodo se corresponde con una muestra
espedfica de una d&al discreta N-dimensional, y los enlaces entre los nodos represen-
tan correladn entre muestras. Asnuestras no correlacionadas (por ejemplo, muestras
gue se encuentran a ambos lados de una discontinuidad) ndashebstar unidas. So-
bre el grafo formado aplicaremos transformadas basadas en el esquema “lifting”, en las
gue las operaciones de filtrado se realizan siguiendo las direcciones indicadas por los
enlaces entre nodos (direcciones de alta cori@@acDe esta manera, evitaremos filtrar
cruzando a tra&s de largas discontinuidades (lo que resigtan coeficientes con alto
valor en dichas discontinuidades), dando lugar a una transformada direccional que ex-
plota la correlad@n que existe entre las muestras de f@sen el grafo, obteniendo una
representadin compacta de dichafsal.

En esta tesis nos centramos, principalmente, en investigar los tres principales pasos
requeridos para obtener una transformada direccional basada en el esquema “lifting”
aplicado en grafos: (i) la construéai del grafo, (ii) el disBo de biparticiones del grafo,

y (iii) la definicion de los filtros. El buen di$® de estos tres procesos deternanar
entre otras cosas, la capacidad para compactar laiardgda transformada. Tan@bi
explicamos 6mo extender este tipo de transformadas riveles de descomposixi,
obteniendo un alisis multi-resoludn de la s@al N-dimensional original. La trans-
formada propuesta tiene muchas propiedades deseables, tales como recongiareci
fecta, muestreo @ico, facil generalizadéin a dominios N-dimensionales, operaciones



de filtrado no separables y unidimensionales, localiraen frecuencia y en el dominio
original, y capacidad de elegir cualquier dirgotde filtrado.

Como aplicadn, desarrollamos un codificador dedeo basado en grafos donde
el objetivo es obtener una vedsi compacta de la 8al de vdeo original. Para ello,
primero proponemos una represendacen grafos de la secuencia deleo y luego
diséhiamos transformadas no separables direccionales 3-dimensionales (espacio-tiempo).
Nuestro codificador puede interpretarse como una exters los codificadores de
video basados en “wavelets”, los cuales operan independientemente (de forma sepa-
rable) en el dominio espacial y en el temporal. La transformada propuesta consigue
mejores resultados (erminos de aproximagn no lineal) que un &todo del estado
del arte basado en “wavelets” temporales compensadas en movimiento, y un codificador
DCT comparable (base de lakimos eshndares de codificamn de ideo).

Para conseguir un codificador dedeo completo, los coeficientes resultantes de
la transformada y la informa@mn secundaria (necesaria para obtener un esquema in-
vertible) deben ser codificados éicamente y enviados al decodificador. Por ello,
tambien proponemos en esta tesis uetato de reordenamn de los coeficientes basado
en la informaaddn del grafo que permite mejorar la capacidad de commedel cod-
ificador entbpico. El esquema de codificaa propuesto mejora significativamente la
eficiencia de un codificadoilirido basado en DCT eirminos de tasa-distosi. Sin
embargo, nuestro @todo tiene la desventaja de su gran complejidad computacional.
Para tratar de paliar este problema, d&®mos dos algoritmos que tratan de reducir dicha
complejidad sin que ello afecte en la capacidad de confprestinalmente, investig-
amos como realizar optimizaxi tasa-distoréin sobre el codificador basado en grafos
propuesto.
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Chapter 1

Intr oduction

There are many applications in which it is useful to achieve a sparse signal representa-
tion. Discrete Cosine Transforms (DCT) and “classical” Discrete Wavelets Transforms
(DWT) usually obtain an efficient representation of smooth functions, and have been
widely used in image and video coding standards (e.g., DCT has been used in JPEG,
H.261/H.263, MPEG1/2/4 and H.264/AVC, and DWT in JPEG2000). However, for
functions with large discontinuities, good DCT approximations require high energy co-
efficients in numerous cosine basis functions, and DWT expansions need large magni-
tude coefficients in the wavelet basis functions, leading to non-sparse representations of
the signal.

Figure 1.1 illustrates this behaviour in a one-dimensional signal. In particutlar
shows the absolute value of DCT and DWT coefficients of a smooth signal (left column)
and a signal with large discontinuities (right column). Note that coefficients are sorted
in decreasing order of their absolute value.

The same concept applies to N-dimensional signals such as images or video se-
quences, where large discontinuities (e.g., confoarsimages) produce many high
enegy coefficients. In such casedirectional transformsare useful since they allow
us to obtain a more sparse representation of multidimensional signals with large dis-
continuities (note that directional information is a unique feature of multidimensional
signals).

In this thesis we describe and optimize a general cladtioig transforms on
graphsthat can be interpreted &sdimensional directional transforms.

This chapter is organized as follows. We first provide some motivation for the con-
struction of new N-dimensional directional transforms in Secfidh In Sectionl.2
we give a brief overview of some selected state-of-the-art directioaasforms which

1 To avoid confusion we call image “contours” edges that appear in the image, between sets of pixels
of different intensities, while we reserve the term “edge”, for the links between nodes in a graph.
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can be considered the inspiration for this thesis. Given thaptbposed transforms

are graph-based, we briefly describe graph-representations of N-dimensional signals in
Sectionl.3and introduce lifting transforms on general graphs in SectidnThis will
beuseful to describe the starting point and summarize the contributions of this thesis in
Sectionl.5. Finally, the contents of this thesis are outlined in Sectién
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Figure 1.1: DCT and DWT coefficients of a smooth signal (left columd a signal
with large discontinuities (right column).
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1.1 Motivation

In several applications such as coding, denoising, or feature extraction, it is useful to
achieve a sparse representation of the signal of interest, compacting most of the infor-
mation into a small number of coefficients (e.g., in an image or video coding applica-
tion, overall bit rates can be reduced if the selected transform compacts the signal into a
smaller number of large coefficients).

Standard separable DWT and DCT transforms have been widely used for compact
signal representation. Nevertheless, applying these transforms to signals with large dis-
continuities (e.g., contours in images) may give rise to many large high-frequency coef-
ficients to represent these discontinuities, thus reducing the sparsity of the representation
(e.g., this can be costly in terms of rate in a coding application).

This observation has motivated the interedimectional transforms, which are able
to adapt their basis functions in order to filter along high-correlation paths (e.g., direc-
tions of low variation in pixel intensity in an image or video sequence), avoiding filtering
across large discontinuities, and resulting in smaller high frequency coefficients in those
locations. In general, the construction of sutifectional transformss mathematically
complex, and their generalization to N-dimensional domains is not easy. Furthermore,
most of these transforms are restricted to a given number of feasible directions, limiting
their adaptation to the specific signal structure.

When conventional transforms are applied to N-dimensional domains, they usually
work in a separable way, filtering independently in each direction (e.g., when conven-
tional wavelets are applied to image processing, they usually operate independently in
rows and columns; or when wavelets are applied to video coding, they firstly filter in
the temporal domain and then in the spatial one, or vice versa). Some of the direc-
tional transforms proposed in the literature are separable too. Separable wavelets (e.qg.,
2-dimensional wavelets constructed as a separable extension of 1-dimensional bases)
have the disadvantage that they do not “see” the smoothness along contours, thus poorly
capturing directional information of multidimensional signals.

Finally, it is interesting to have a critically-sampled transform. This means that the
transform generates as many coefficients as samples in the original signal, avoiding
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redundancy in the representation. Some of the directional transfomop®sed in the
literature are not critically-sampled (e.@ontourletq1]).

Themotivation of this thesis is tdesign and optimize non-separable and critically-
sampled graph-basedDirectional transformsconstructed by means of the lifting
scheme[2]. Relying on the versatility and simplicity of the lifting scherard on the
graph-based representation of data, we dediiggctional transforms in N-dimensional
domainsthat arentuitive, can easy being interpreted, and thaian adapt their filter-
ing operations to any possible direction. Finally, we test their performance vi@eo
coding application.

1.2 Directional Transforms

The main advantage of directional transforms with respect to conventional ones is their
ability to compact the fundamental information of a signal into a smaller number of
coefficients [3]. For image coding, directional transforms have been projposeder

to filter following the directions of low variation in pixel intensity, avoiding filtering
crossing contours [4], [5For video coding, filtering along the motion trajectories, e.g.,
motion-compensataémporal filtering (MCTF), has been investigatél [7], [8]. Side
information (e.g., motion vectors or contour locations) is typically transmitted so that
the decoder can identify the selected directional transform.

Some of these work®], [7], [8], [5] are based on the lifting scheme, which is an
intuitive and structurally invertible approach to construct multiresolution signal repre-
sentations [2]. In [6], lifting is applied in the temporal domain, using motion compen-
satedifting steps to implement the transform. I8][ lifting wavelet transforms in trees
areapplied to image coding9[ extends the application of lifting transforms to graphs
in the Euclidean space and [10] to general undirected graphs.

Theseworks can be considered as thiarting point and the inspiration for this
thesis. To understand the main contributions of our work (outlined in Sedét®) in
thenext sections we provide a brief overview of graph representations of data and lifting
transforms on graphs.
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1.3 Graph-Based Representation of Data

A graph-basedepresentation of data allows us to generalize standard signal processing
operations, such as filtering or transforms, to a broad class of N-dimensional signals
[11], [12], [13], [14], [19].

In this way, there are many scenarios in which one can construct a graph which
represents N-dimensional signals and that reflects some relationships among data (e.g.,
correlation, geometric distance or connectivity). For example, in video data each node
on the graph can represent a pixel and links between nodes may capture similarity be-
tween luminance values; or in Wireless Sensor Networks (WSN), each node on the
graph can correspond to a point in Euclidean space containing data read by each sensor
and links between nodes can capture the connectivity between sensors. In this thesis,
we assume that every node on the graph represents a specific sample point of a discrete
signal, while links between nodes capture the correlation between samples.

1.4 Lifting Transforms on Graphs

The design of the proposed directional transforms is based on applying the lifting scheme
to general graph signal representations.

The lifting scheme makes it possible to easily construct wavelets and multiresolution
signal representations. Basically, lifting on graphs is specified by three main stages,
namely: (i) asplit stage, which finds a bipartition of the graph so that the input data
at each specific level of decompositigns split into prediction(P;) and update(l;)
disjoint sets; (ii) aprediction stage, where the data of the set is predicted from the
data of the/; set using the predictiopi filters, yielding thedetail coefficients; (i) and
anupdate stage, where the data of thieset is filtered with detail coefficients of te,
set using the update; filters, giving rise to thesmooth coefficients.

Transform invertibility is guaranteed for arbitra¥ /P; disjoint splittings, ang;
andu; filters definitions; thus the lifting scheme is a very versatile way to construct
perfect reconstruction transforms.
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1.5 Contributions

In this thesis wealescribe and optimize lifting transforms on graphs, and, based on
these transforms, we present a nemmework that allows to easily generalize the
construction of directional transforms to N-dimensional domains.

We first investigate the graph construction, which leads to a weighted graph in which
the filtering directions are defined by means of the links on the graph. Regarding the
transform optimization, we investigate new split designs to obtain optifyyd®; graph
bipartitions (using optimization criteria to minimize the expected energy of the detalil
coefficients) under two different approaches. Afterwards, we describe a way to design
optimal prediction filterp; given an arbitrary weighted graph andidnP; bipartition,
and considering” different kinds of links between nodes to construct the prediction
(e.g., in a video sparse representation, we consider two different kinds of links, related
to the spatial and the temporal domains). The update filtease designed to be orthog-
onal to the prediction filters of their prediction neighbors as explainetigh Once we
have constructed a graph, found a bipartition of the graph, and specified the update and
predict filters, we have completely defined an N-dimensional directional transform that
is invertible and critically-sampled. The optimized lifting transform can be performed
in J levels of decomposition to obtain a multiresolution representation of the original
signal which compacts the energy in the low-frequency subbands.

In terms of applications, we use these lifting transforms for video coding. First,
we construct a graph in which any pixel could be linked to an arbitrary number of spa-
tial and temporal correlated neighbors (i.e., avoiding linking pixels of very different
luminance values) thus defining the filtering directions. Next, we apply the proposed
transform to this graph.

Initially, our approach can filter following any 3-dimensional direction of the spatio-
temporal domain, giving rise to a directional non-separable transform that allows spatial
and temporal correlation to be jointly exploited, in contrast to existing techniques in
video coding that can be seen as separable transforms. This transform shows improve-
ments in terms of energy compaction ability when compared to the LIMAT method
[6] and to a motion compensated DCT-based video encoder. Moremweproposed
scheme can avoid problems due to occlusions and uncovered areas that appear in the
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LIMAT method (and in general in MCTF approaches), leading to a sirapteally-
sampled invertible transform.

Furthermore, we propose new coefficient reordering techniques, leading to an effi-
cient encoder which improves the performance of a comparable motion compensated
DCT video encoder in rate-distortion terms. Given that the graphs created to represent
the video information can be very large, we consider two different low-complexity ver-
sions of the proposed transform: (i) one that can operate on subgraphs and (ii) another
that operates in a distributed manner. Note that the two contributions proposed for video
coding, that is, the low complexity approach and the new reordering techniques, are
general contributions and can be used in other applications for similar purposes.

Finally, we investigate how to perform rate-distortion optimization in our graph-
based video encoder.
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Summarizing, oucontributionsare:
1. Optimization of lifting transforms on graphs:
e Description of a general framework to construct N-dimensional directional
transforms based on lifting on graphs.
e Graph weighting.
e New/ /P graph-partition techniques based on two different approaches.

¢ Novel prediction filter design for lifting transforms on arbitrary graphs.
2. Video coding application of the transform:

e Extension of lifting transforms on graphs fdevels of decomposition.
e New coefficient reordering technique.
e Low-complexity versions of the transform.

e Rate-distortion optimization of the proposed scheme.

1.6 Thesis Outline

This thesis is organized as follows. First, we provide an overview of lifting transforms
on graphs and directional transforms in ChagteWe then describe our contributions to
lifting transforms on graphs and propose a general framework to obtain N-dimensional
directional transforms in Chapt&: In Chapted we apply these transforms to video
codingand propose techniques to improve the coding performance and to reduce the
computational cost of the transform. Furthermore, we investigate rate-distortion opti-
mization of the encoder. Finally, some concluding remarks and directions for future
work are discussed in Chapter



Chapter 2

Overview of Lifting and Directional
Transforms

In this chapter we present the necessary background to understand the main contribu-
tions of this thesis. These contributions can be summarized as: (i) optimizatitiimgf
transforms on graphs; (ii) proposal of a new framework to constrididimensional
directional transforms based orifting on graphs; and (iii) application of this kind of
transformgo video coding, leading to 3-dimensional directional transforms. Therefore,
the overview is focused on lifting transforms on graphs and directional transforms.

In Section2.1 we present thdifting scheme[2], which allows to easily obtain a
multiresolutionanalysis (MRA) of a given signal. In every sitep of the transform,
lifting provides subsampled low-pass (smooth coefficients) and high-pass (detail coeffi-
cients) versions of the signal at the immediately lower lgvell. If detail coefficients
are close to zero, the main information of the signal is kept in the smooth coefficients,
thus obtaining a more compact representation. Applying this process iteratively leads to
a MRA [17] of the original signal. The lifting scheme can be interpreted cascade of
filter banks, or as the projection of the signal at leyvel 1 onto the approximation (
and detail (W) subspaces at levg! Section2.2is devoted to the construction of lifting
transformson arbitrary graphslj0], where every sample can have a different number of
neighborsand, thus, the subsampling and filtering operations become complicated.

Finally, Section2.3 gives an overview and describes the main properties of some
dir ectional transforms presented in the literature. In this way, we will be able to un-
derstand the general features and the main advantages of the proposed directional trans-
forms as compared to the ones of the state of the art.

1 Step level of decomposition, or resolution refer to the same concept.

10
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2.1 Lifting Transforms

In this section we describe the lifting scheme from a practical and intuitive point of
view [18]. Details about the relation between lifting, second generat@avrelets, and
MRA can be found in2], [19] and [20Q.

Given a digital signal at a specific resolution, the lifting transform can lead to a
compact representation of this signal with some interesting properties.

Consider a signaid;_; at resolution (i.e., level of decompositiofn)- 1 which we
would like to transform into a coarsesignal s; and a detail signad;. This can be
easily achieved applying the lifting transform. It consists of three stages: split, predict
and update.

¢ Split®: This stage basically consists on splitting the signal into digjoint sets of
samples that we will calPredict(P;) andUpdate(/;) sets throughout this thesis.

e Predict: The predict stage aims to remove the local correlation of the signal. To
do that, each sample of ti%¢, set is predicted from samples of the set. If the
local correlation of the signal is high, it should be possible to obtagaaonably
accurate prediction, giving rise to small residual information (sme#tail co-
efficients) and, thereforesompaction of the information. We will characterize
this stage with the predict filtg.

e Update: The Update stage can be designed with different objectives in mind. One
of these objectives could be to keep the average value of the coefficients across
multiple levels of decomposition, thus reducing the aliasing and obtaining a better
frequency localization1[8]. Another goal would be to design the update stage
so that low-pass and high-pass equivalent fitteise orthogonal, which would

2 In this thesis we follow the convention of using smaljéndices to represent finer approximations,
as in Mallat's book21] and as opposite to other works as Mallat's MRA original pap@é} ¢r Sweldens’s
papers.

3 Notethat the split stage of the transform will be referred td/a$ splitting, 2/ /P assignment or
graph bipartition problem throughout this thesis.

4 We refer to the filtering that results from the predict and update stages as equivalent filters. It
can be seen that, generally, the equivalent filter of the predict stagkigh#gass filter(giving rise to
detail coefficients), and the equivalent filter of the update stagéis-pass filter(giving rise tosmooth
coefficients).

11
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minimize the reconstruction distortion due to quantizatiotheftransform coef-
ficients [23. In the update stage, data at nodes U{; arefiltered using detail
coefficients of theP; set, leading to themooth coefficients. We will characterize
this stage with the update filter

Following these stages, the data, at level of decomposition — 1 should be
split into prediction (%) and update (Zj disjoint sets (split stage), and the predict
(P,.;(m € P;)) and update (1;(n € U;)) filters should be specified. Then, theth
detail coefficient at leveJ, d,, ;, can be computed frorh € ¢/; update neighbors using
the predict filter (predict stage), and the-th smooth coefficient,, ; can be computed
from [ € P, prediction neighbors using the update filter (update stage). Mathemati-
cally, we can write:

Am,j =Smj-1 — Z pm,j(h)sh,jfla

hEZx{j

Sng =Snj1 + Y W j(1)dy;. (2.1)
leP;

This way, the smooth coefficients at the— 1)-th decomposition level (s ;) are
projected onto the approximation (Mand detail (W) subspaces, yielding, respectively,
the smooth (5 ;) and detail (¢, ;) coefficients at thg-th decomposition level. Applying
this process iteratively gives rise to a multiresolution decomposition. In FRjdrene
lifting structure for two levels of decomposition is illustrated, where data at jevel
is the original raw data, denoted @s(i.e.,z; = s, j—0)-

Therefore, given a signal at scglg a lifting transform representation of this signal
is composed of detail coefficients at scajes< 7 < J, plus the smooth coefficients at
the largest scald:

[dj oerer) sj} . 2.2)

Generally, this transformation can be interpreted as a filter bank decomposition,
where thes; coefficients are the low-pass version (smooth projection) and tho®-
efficients the high-pass version (detail projection) of coefficientsat (j — 1)-th level.

12
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é—» Split_, P u,
= J=2 n,j=2
Uj=1 Sn,j:1
+
( >S

U]=2 n,j:2

Figure 2.1: Lifting scheme. Two levels of decomposition of the forward transform.

Figure2.2shows an illustrative example of the application of theritiransform to
a 1-dimensional signal. The left column shows the corresponding stages of the transform
at decomposition level = 1, and right column aj = 2. Finally, the last row of the
figure shows the subband decomposition for each level. Note that in the example, the
splitting process is trivial: every odd (resp. even) sample belongs t& tfiesp. P)
set at each level of decomposition. Then, every sampte P is predicted from its
two adjacent/ neighbors, and every samplec U/ is updated from its two adjaceft
neighbors. The signal at levgl= 2 is composed of the resultiig samples aj = 1,
andlU; = U, U P,. If one chooses the filtens so that, at each level, every detail
coefficientm € P is calculated as the difference between the value of me@ad the
average of ity € U adjacent neighbors (fh =m — 1) = p,(h = m+ 1) = 1/2),
andu so that for every update coefficiemtc ¢/, u,(l =n—1) =u,(l =n+1) = 1/4,
this scheme leads to thg'3 biorthogonal wavelet transform of Cohen-Deaubechies-
Feauveau (CDF)23], [18].

One of the main advantages of the lifting scheme is that the inverse transform is
immediately obtained by inverting the operations of the forward transform. Again, we
have three stages:

e Undo Update: Givend,, ; ands, ;, we can recover thapdate s, ;_; samples
simply subtracting the update information.

13
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Figure 2.2: Example of the lifting scheme applied to a 1-dimensisigall.

Frequency

e Undo Predict: Givend,, ; ands,, ;_;, we can recover thpredict s,, ;_; samples
subtracting the predict information.

e Merge: Given the update and predict samples obtained before, we put them to-
gether in their corresponding location to recover the original signal.

Mathematically, we can write:

Sn,j—1 =Sn,j — Z un,j<l)dl,j7

IeP;

Sm,j—1 :dm,j —+ Z pm’j<h)8h,j_1. (23)

hEUj

An inverse transform with two levels is illustrated in Fig@&.8.

14
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Shj=2 {TD
Sn,j=1
umyj:Z pnyj:z Mergﬁzz _Q
é

um,j:1 pnJ=l Merg%:1—>x

m,j=2

d

m,j=1 \+/
Figure 2.3: Lifting scheme. Two levels of decomposition ofitiherse transform.

Finally, Figure2.4shows the multiresolution approximatiosisn| (left column) and
detailsd;[m] (right column) of a specific discrete signal, computed withdfilifting
transform. Three levels of decomposition are shown.

Some remarks extracted from this example can be good for summarize the previ-
ously explained concepts:

e Smoothcoefficientsat a coarse level, s;[n|, can be obtained by low-pass filter-
ing and subsampling the smooth coefficients of a finer lgvell, s;_;[n] (2.1).
Thereforeas illustrated in the left column of Figu4, each levej is a low-pass
version of the approximation at levgl- 1 and contains half of the samples. Fur-
thermore, the smooth coefficients at level of decompositi¢)[n]) characterize
the projection of the original signal into the approximation subspsces

¢ Detail coefficientsat a coarse level, d;[m], can be obtained by high-pass filtering
and subsampling the smooth coefficients of a finer lgvel 1, s, 1[n] (2.1) .
Detail coefficients at levej characterize the projection of the original signal into
the detail subspaced ;. See right column of Figurg.4.

¢ Given that filtering operations are local, coefficients are localized in time. Note for
example that the position of large magnitude detail (high-frequency) coefficients
d, j=1 are in agreement with positions of large variation in the original signal.
Frequency localization is given by the cascade of low-pass and high-pass filters.

¢ Detail coefficientsd; can be thought of as the difference between consecutive
approximations of the signal at resolutions 1 andj.

15
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Original Discrete Signal. j=0. Original Discrete Signal. j=0.

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Smooth Coefficients, j=1 (sn j=l). Detail coefficients, j=1 (d ).

m,j=1

m,j:Z)'

78

Smooth Coefficients, j=3 (sn j=3). Detail coefficients, j=3 (dm j:3).

Figure 2.4: Smooth and detail coefficients.

e Thelifting representation of the signal {slj(jo<j<J), Sy
considered level. Thus, in the example of FigBréin which three levels of de-
compositionare shown|d;—1, sj=1], [dj=1,2, sj=2], and[d;—1 2 3, s;—3] are perfect

reconstruction and critically sampled representations.

, whereJ is the coarsest

¢ Note that the sparse representation of the signal is obtained because coefficients
are nearly zero at fine scales (high-pass subbands). In fact, where the signal is
locally smooth, there will be high correlation between low-pass coefficients at
different levels of the transform (i.e., coefficients will be nearly zero at various
subbands). Therefore, in the example, it will usually be more efficient to transmit
[dj=123, sj=3], where three levels of the transform have been decorrelated, than
any other of the above representations (8dj..; 2, s;—2]).

16
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e One can interpret the process shown in the example as the decomposition of the
original signal in a set of independent frequency channels or the projection of the
original signal on successive smooth and detail subspaces.

Thanks to these interesting features of the lifting scheme, it has been used in many
applications achieving a very good performance, e.g., image and video compression
[24], [25], [5], [26], [6], [27], data denoising [10], distributed data gathering][239],

[30], feature extraction in brain-computer interface][332], or audio coding [33].

2.2 Lifting Transforms on Graphs

Lifting transforms on arbitrary graphs were initially proposed BY gnd [10]. The
main concepts are those mentioned above, and the stages and equations of S&ction
hold. Nevertheless, some important peculiarities and open queatiges This section
presents these peculiarities, which will be handled in this thesis.

Assume we are given an arbitrary undirected graph. At this point, we do not make
assumptions about the structure of the graph or the links between nodes, so that every
node can have a different number of neighbors.

If P, andi/; aredisjoint sets, the lifting transform on the graph is critically sampled
(i.e., the number of samples of the original sigrnat s;— is equal to the number of co-
i=0<j<J) SJ]). Besides, [2Pshowed that ifP; and
U; aredisjoint sets, lifting transforms on graphs are invertible by construction. Thus,
arbitrary P;/U; disjoint splittings and p and u filter designs can be used without
compromising the perfect reconstruction and critically sampled propertiesof the

efficients of any decompositio{dj(

transform. This implies that lifting transforms on graphs are very flexible (in the sense
that they can operate with different splittings and filters), which is an important feature
to design the proposed N-dimensional directional transforms, but, at the same time, they
open some questions that need be solved in order to obtain an efficient transformation.
Some of them are:

e How should the graphs be constructed to capture the correlation of the sig-
nal?

17
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One has total freedom to construct the graph representatiarsiginal deciding
which nodes should be linked to which ones. Therefore, a signal can give rise to
different graph representations, and as a function of the selected representation,
the correlation between samples can be better or worse captured.

The graph construction will influence the compaction ability of the transform as

well as the support of the filters (higher number of neighbors, higher support),
which affects the overlapping of the filtering operations. Besides, the graph con-
struction will influence the hop length of the filters (one node can be linked to

n-hops neighbors), and thus the localization of the transform in frequency and in
the original domain (i.e., spatial or temporal).

This question is discussed in Secti®A.

e How should thel/ /P splitting be performed?

The Ul /P splitting process requires assigning a labeldi/P) to each node of

the graph, which is usually trivial when one works with 1-dimensional signals
(as in the example of Figur2.2) or when working with regular grids in which
thelocal topology of the graph is the same around each vertex (same number of
neighbors, same relative position for the neighbors), such as the quincunx grid
[21]. Nevertheless, it becomes a complex problem in arbitrary graphghich

every node can have a different number (and location) of neighbors. Besides, due
to the arbitrary structure of the graph, it may not be possible to assign a different
label to each pair of connected nodes in the gtaiven thatP nodes(resp.i/
nodes) are predicted (resp. updated) fidmeighbors (respP neighbors), links
between same-label neighbors are not useful to perform the transform, and are
discarded.

Some properties of the transformation, such as the energy compaction ability, de-
pend on this assignation. The prediction residuals and thus the detail coefficients
d,,.; Will be small if i/ and’P are chosen so that they are correlated, thus obtaining
a compact representation of the underlying signal.

5 In graph theory literature, this is a graph coloring problem, and the sentence means that the graph
may not be 2-colorable.
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The formulation of this problem and some propo&g@ splittingtechniques are
described in Sectior3.2and3.3.

e How should the p and u filters be defined?

p andu filters should be designed for each node of the graph taking into account
that eachP (resp. U/) node could be predicted (resp. updated) from a different
number ofi/ (resp.P) neighbors, in contrast to standard lifting approaches as the
5/3 CDF or the quincunx wavelet21].

The compaction ability of the transform also depends on the designfilers
because as the predictors are better, the average energy of detail coeffigients

is smaller;u filters can be designed to be orthogonal to the arbitrary number of
filters of P neighbors. Besides, given a graph, the support of the filters depends
on their definition (higher number of nodes used in the filters, higher support).

This problem is studied in Secti@4.

e How should the graphs be constructed at decomposition levejs> 1?

Once we have the graph at level of decompositica 1, we should decide how

to construct the graph at subsequent levels of decomposition in order to retain the
correlation between linked samples at different levels and thus further decorrelate
the signal. Again, this operation is not difficult in standard lifting approaches as
5/3 or quincunx, but becomes harder in arbitrary graphs.

One approach to construct the graph at decomposition lgvel$ is proposed in
Section4.1.3.

Finally, note that as a function of the graph construction, the selection &f tfresplit-
ting, and the design gf andu filters, the transform leads to different equivalent low-pass
and high-pass filters, which determine the subband representation obtained.
Figure2.5shows an example of the application of lifting transform on graples
column shows the corresponding stages of the transform at decomposition {eviel
and right column aj = 2. Note that in the example, the splitting process is not trivial,
because every node of the original grapty at 1 and at; = 2 can have a different
number of neighbors. Therefore, every sample= P is predicted from an arbitrary
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Figure 2.5: Example of the lifting scheme applied to a graph. Discdmdkslare indi-
cated with dashed lines in the split process.

number o/ neighbors, and every samplec I/ is updated from it$? neighbors. Note
that the signal aj = 2 level consists of thé/ samples aj = 1, andli; = Uy U Ps.
Nevertheless, one should decide how to link nodgs-at to construct the graph at this
level using the information of the graph at 1.

Finally, we summarize some important ideas explained so far:

e If P; andi4; aredisjoint sets, lifting transforms are invertible and critically-
sampled by construction. Thus, arbitraPy/U/; disjoint splittings andb andu
filter designs can be used, which implies that lifting transforms are highly versa-
tile.
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e Lifting transformsdecorelatethe data, obtaining a more compact representation
than the original one. This means than we can obtain an accurate approximation
of the original signal by only using a small fraction of coefficients.

e Lifting transforms can be designed to be localized in the original domain (i.e.,
time or space) by building filters with compact support (e.g., only allowing nodes
to use neighbor data in the filtering operations), what implies that the filtering
operations are local.

e Generally, lifting decomposition gives rise to a MRA and thus can be interpreted
as a filter bank decomposition, where thecoefficients are the low-pass version
and thed; coefficients the high-pass version of the signal,.

e The frequency localization comes from the interpretation of the transform as, on
the one hand, the low-pass filtered and downsampled version of the signal (smooth
coefficients) and, on the other hand, the band-pass filtered and downsampled ver-
sion of the signal (detaitoefficients).

2.3 Directional Transforms

Directional transforms can filter along directional paths, in order to avoid crossing large
discontinuities, which leads to a sparser representation of the original signal than that
obtained with non-directional transforms. This would be useful in several applications
such as coding, denoising or feature extraction.

In general, directional transforms can be classified into adaptive (i.e., which use
knowledge of the intrinsic structure of the object and adapts the basis to that structure)
or non-adaptive (i.e., the representation is constructed without using the knowledge of
the underlying object). Note that, in some cases, adaptation requires side information
(overhead).

2.3.1 Directional Transforms for Sparse Image Representation

Candes and Donoho3] quantified how well different transforms compact the energy
of a functionf € R?, which has a discontinuity and which is otherwise smooth, into
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a few coefficients (i.e., the performance of different expansioms an asymptotic
point of view). They show that wavelets outperform Fourier representations and that
directional approaches are better than wavelets. Furthermore, they conclude that non-
adaptive methods can achieve similar performance to that of adaptive methods, and
propose a non-adaptive transform call@édrvelet. To be more precise and justify the
use of directional transforms, we present their results below.

Suppose that there is an object supportel@d.in]?, which has a discontinuity across
a curvel’, and which is otherwise smooth. If one approximdtesth f built from the
bestm non zero coefficients using different transforms, one obtains:

~112
e Fourier RepresentatiorH:f — fH ~m Y2 m— oo
) 112
o Wavelet RepresentatlovH;f — fH ~m~,m— oo
. ~112
e Adaptive methodHf — fH ~m 2, m — oo

~12
o Non-adaptive Curvelets#f — fll £ Cm™2(logm)3, m — oc.

The quadratic error between the original functioand the reconstructiofi as a
function of the number of coefficienis decays faster as thevalue inm = is higher.
Therefore, directional methods (adaptive or non-adaptive) can reconstruct the original
signal with the same quality than wavelets and Fourier transforms using less coefficients.

In [1] Do and Vetterli proposed another non-adaptive transfohma,Gontourlet
transform. Unlike the Curvelet, Contourlettransforms work directly in the discrete
domain. Contourletshave elongated supports at various scales, directions and aspects
ratios, allowing to efficiently approximate a smooth contour at multiple resolutions (see
Figure2.6). Contourletis a non-separable (i.e., it performs non-separable filter opera-
tions) and non-critically sampled (it has a redundancy of about 33%) transform. Some
other directional wavelets proposed in the literature for image processing are adaptive
methods and thus are based on information of the underlying object (e.g., the contours).

Candes and Donoho non-adaptiveurveletsachieved a significant improvement
over wavelets for typical images with smooth contours and similar performance com-
pared to adaptive methods. Nevertheless, Le Pennec and Mallat observed [34] that the
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Figure 2.6: Wavelets (left side) ar@ontourlets(right side) support at two different
resolutions.

curvelets approximation lose their near optimal properties if contours are along irregu-
lar curves of finite length. The authors presented the so-cBbedeletgmathematical
details appear in3db]) and applied them to image compression and noise reduction. The
Bandeletsaareadaptive wavelet basis that are warped along the geometric flow. For their
construction, the authors partition the image into small square regions so that each re-
gion includes at most one contour. Then, bandelets are constructed in those regions
by warping separable wavelet basis so that they follow the lines of the geometric flow,
taking advantage of the regularity along it.

Velisavljevic et al. proposed thdirectonletstransforms in [4]. Directionletsare
critically sampled, perfect reconstruction and discrete transforms that retain the separa-
ble filtering, subsampling, computations and filter design from the standard 2-dimensional
wavelet transform. They are “separable” transforms based on independent operations on
one dimensional wavelets, but allowing directionality and anisotropy. Additionally, di-
rectional DCT basis for image coding have been proposes8h [

Thetransforms that we propose in this thesis are perfect reconstruction and critically-
sampled, which are generally desirable properties. They operate in N-dimensional do-
mains by construction (i.e., without needing complex operations to be generalized), and
perform non-separable filtering operations following directions of high correlation. Be-
sides, our proposed transform provides a great freedom to choose these directions, which
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are defined by means of the links between nodes on the graph. Faraiyer important
property is that our proposal is useful for irregularly spaced sample grids.

As was explained in Sectidhl, the lifting approach allows us to construct wavelets
adaptedto the domain in a simple way. Therefore, some directional transforms for
image processing based on lifting have been proposed in the litera@tearid [38]
incorporatecadaptivity via lifting by choosing the prediction filterbased on the local
properties of the image. Wavelets with large support generally work very well away
from the contours, exhibiting a fast decay of the coefficients value. Nevertheless, this
large support leads to a larger set of coefficients affected by the contours. Therefore, the
authors basically proposed to choose larger predictors (which correspond to smoother
basis functions) away from the contours and to reduce the order of the predictor (and
thus the support) near the contours, so that the neighborhood they used to predict never
overlaps the contour.

Similarly, [26] proposed adaptive non-separable lifting transforms for incuye-
pression which use prediction filters that are sensitive to directional information, ex-
ploiting local orientation at contour boundaries. Another example of compact image
representation using lifting was proposed &ih. [The key novelty in this paper is that
theauthors define critically sampled separable transforms that operate in arbitrary trees.
These trees can be constructed to follow the geometric flow of an image, capturing the
directional information and thus obtaining a directional transform.

The proposed transforms can be considered a generalization of these previous works.
By means of the graph construction and the filter design, our transforms allow to choose
any predictors length at any point of the N-dimensional domain. These predictors per-
form non-separable filtering operations.

2.3.2 Directional Transforms for Sparse Video Representation

Directional transforms for video representation are usually constructed via lifting, which
is applied in the temporal domain. The main multiresolution decomposition structures
in wavelet-based video coding are referred to as 2D” and “2D + ¢”. In the former,

the video sequence is first filtered in the temporal direction along the motion trajecto-
ries (MCTF) and then a 2-dimensional wavelet transform is carried out in the spatial
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Chapter 2. Overview of Lifting and Directional Transforms

domain [39]. In the latter, each frame is first wavelet transformed in the sjplatial

main, followed by MCTF. Focusing on the temporal domain, representative examples
of MCTF implementations are [6] and][Avhich use motion-compensated lifting steps

to implement the temporal wavelet transform, filtering along a set of motion trajectories
described by a specific motion model. These approaches can be described as “separa-
ble” because spatial and temporal filtering are applied in separate steps. Side informa-
tion (e.g., motion vectors) is typically transmitted so that the decoder can identify the
directional transform that was selected. Therefore, we can consider these approaches as
adaptive methods.

In all of these works, in order to perform the prediction and update steps of the lift-
ing scheme, the input sequence is split into update (even frames) and prediction (odd
frames) subsequences (see Fig®, and for each level of the transform, the predic-
tion subsequence is predicted from the update subsequence giving rise to the high-pass
subband sequence, and the update subsequence is updated by using a filtered version
of the prediction one, thus obtaining the low-pass subband sequence. In cases in which
the motion model cannot accurately capture the real motion of the scene, this kind of
splitting into even and odd frames will lead to the linking of update and prediction pix-
els with very different luminance values. In this way, prediction frames will be poorly
predicted from update frames, leading to significant energy in the high pass subband
sequence, and thus relatively low energy compaction. Moreover, when using MCTF,
problems arise due to occlusions and uncovered areas (pixels that are filtered several
times or are not filtered at all). Some authors handle this problem by identifying un-
connected and multiple connected pixels and adapting the predict and update operators
accordingly (e.g.,37).

Finally, graph-based transforms are used to coding depth maps for view synthesis in
multi-view video coding in [4Dand [41].

Whenwe apply the proposed transforms to video coding, they generalize wavelets
approaches, which usually work in a separable way (first in the spatial and then in the
temporal domain or vice versa). Thanks to the versatility of the proposed scheme,
andP nodes and filters can be arbitrarily chosen, solving some problems that arise in
the MCTF approaches, such as those described above, or the needed of several frames
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Figure 2.7: Update-Predict assignment in typical MCTF approaches.

to obtain a MRA. Furthermore, this versatility allows the transform to adapt to the video
content, thus improving its performance.
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Chapter 3

Lifting Transforms on Graphs

In order to perform lifting transforms on graphs one needs three essential elements: (i)
a givengraph, (ii) an U /P splitting, and (iii) a definition of p and u filters. In this
chapter we discuss the design and optimization of these three elements.
We first focus on the graph construction, explaining how to obtagmagh rep-
resentation of N-dimensional signals including directional informationin order to
adapt the filtering operations to the domain. Then, we discus# tfe splitting and
the p andu filter construction considering given arbitrary graph, obtaining general
results on the design and optimizationlifting transforms on arbitrary undirected
graphsthat represent a generic signal. At that point, we will have all the necessary in-
gredients to obtairN-dimensional directional transforms based on lifting transforms
on graphs with some particular properties that will be discussed at the end of the chapter.
A correct graph construction is crucial to obtain an efficient transform. Intuitively, if
linked nodes are not correlated, the prediction of a node from its neighbors will usually
be inaccurate, leading to large detail coefficients and thus, low energy compaction. Be-
sides, it will be useful to weight the links of the graph in order to capture the different
correlations that exist between linked nodes. This is discussed in S8ction
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Chapter 3. Lifting Transforms on Graphs

Lifting transforms on graphs are invertible for aiyP disjointsplitting. Neverthe-
less, the appropriate choice of these sets on arbitrary graphs is not an easy problem, and
greatly influence the performance and properties of the transform (e.g., if the éliosen
and’P sets are not correlated, the predictiorfofrom &/ will be inaccurate). Our goal
when performing thé{ /P assignment is to obtain a sparse representation of the original
signal, so that we search partitions that minimize the detail coefficient energy. With this
goal in mind, varioug{/P assignment procedures based on different philosophies are
discussed, namely: (i) techniques that only depend on the weighted graph previously
defined (Sectior8.2), (ii) techniques that assume a signal model and a predictor and
minimizethe expected value of the quadratic prediction error (Se&i8h

Thefilter design is studied in Sectidh4. Given an arbitrary weighted graph and an
U /P splitting, the predictionp filters are designed as a function of the weights of the
graph. If these weights were “correctly” chosen in the weighting process, the prediction
filters will be close to minimize the detail coefficient energy. We also briefly described
the updateu filters used in this thesis, which are designed to make the low-pass and
high-pass filters orthogonal §].

3.1 Graph construction

This section discusses the graph construction, which includes the graph-based signal
representation (that defines the links between nodes -samples- of a generic signal), and
the graph weighting (which tries to characterize the correlation between different con-
nected nodes). Sectidl.1presents the definition of graph-based signal representa-
tion, and shows two illustrative examples of video and N-channel audio graph repre-
sentations. Note that there are no restrictions associated with the graph construction,
so that any node could be linked to an arbitrary set of nodes, and therefore the graph
representation of a signal is not unique. The graph weighting affects different processes
of the transform, and therefore, its performance. Se@idr2 proposes two different
approacheso weight the graph.
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Chapter 3. Lifting Transforms on Graphs

Given that the filtering operations are performed using neighbdlinied) nodes,
the graph representation defines the filtering directions, and the weighting process al-
lows to give, more or less “importance”, to the different defined directions. The graph
construction at levels of the transforin> 1 will be discussed in Chapté.

3.1.1 Graph-Based Representation of a Generic Signal

Graph-based representation of data allows us to generalize standard signal processing
operations to a broad class of signals. In this thesis we focus on the lifting transform,
which can be defined on arbitrary graphs. As discussed in Chapgeme properties of
thetransform depend on the suitable construction of the graph, in the sense of accurately
representing correlation between signal samples.

Definition 3.1. Graph-based signal representation of a signal

Letx = {xk}ﬁil be an N-dimensional digital signal sampled in an N-dimensional
grid. Assume that data is organized in a gra@h= (V, &), whereV = {1,..., M} is
a set of ordered nodes associated with the sampig$,~ ,, and€ C V x V is a set
of edges between nodes that in some way represent the correlation between them (i.e.,
nodesz andb are linked if they are correlated). Note that node V), associated ta,,,
can be linked to any subset of nodés- {V\ {a}} without restrictions (i.e., graph can
represent correlations between multiple nodes in the different domains). This leads to a

graph-based signal representation (or for short a graph representatiox.) of

Observe that there exist several graph representations of thexsi@pending on the
way in which the correlation between nodes is defined. Therefore, the main challenge
when constructing the graph representation of a sigmahow to link the nodes of the
graph in order to accurately capture the correlation between samples. As a first approxi-
mation to construct the graph, one could link all the pixels together (all-connected graph)
and remove those links between nodes with very different signal values. Another ap-
proach could consist on making some assumptions about the correlation between nodes.
For example, it seems reasonable that closer data in a WSN, or in an image, are more
correlated, so that one could decide to link together closer nodes (i.e., one-hop or in
general n-hop neighbors) and not link the farther ones.
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Figure 3.1: Graph representation of video data.

In a coding application, the encoder should send some side information to allow the
decoder to correctly construct the same graph. Therefore, a trade-off exists between
accuracy in the graph description and side information to be sent. Next, two different
graph representation examples are described, namely, the graph representation of a video
signal, and of an N-channel audio signal.

3.1.1.1 Graph-Based Representation of a Video Signal

Some examples and experimental results throughout this chapter are based on real video
data. To make easier the explanation and understanding of subsequent sections, we
briefly introduce now the graph representation of video data. More details about video
representations are given in Chapter

Let {xk}ff:l be a given video sequence whetgrefers to the luminance value of the
pixel a belonging to a specific frame and spatial position. et (V, ) be its graph
representation, so that pixelcan be linked to several correlated pix&isc {V\ {a}}
without restrictions. Consider that edges (links) between nodes (pixels) can be spatial
(S) or temporal (2) with differentiated statistical dependencies (correlations). Every
edge belongst6d or7 sothatSuU7 = €£.

An example of the graph representation of a video signal is shown in F&lire
where,in this case, every pixel is linked (i) to one temporal neighbor (i.e., a pixel of
frame in time instant linked to a pixel in frame + 1) following a motion estimation
(ME) process and (ii) to some one-hop spatial neighbors (i.e., pixels of the same frame),
assuming that spatial neighboring pixels will have similar luminance values. Therefore,
spatio-temporal pixel correlation is jointly considered.
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Figure 3.2: Graph representation of video data removing spatkd that cross the
contours of a frame.

Moreover, a reasonable approach to improve the spatial correlation could be to re-
move links between spatial neighboring pixels that cross contours of an image (frame)
assuming that they will have very different luminance value. This gives rise to the
graph representation shown in Figu#2, where red dashed lines represent contours of
a frame.Finally note that, in a video coding application, the accuracy-side information
trade-off holds (e.g., using lower block sizes in the ME, such as blocksxof pixels,
leads to more accurate graphs, but higher side information to be sent).

3.1.1.2 Graph-Based Representation of an N-Channel Digital Audio Signal

Digital audio signals usually exhibit a high level of correlation among neighboring sam-
ples. These correlations are exploited by means of linear prediction in predictive coders.
Therefore, the encoder generates an estimatd the current sample, from previous
samples. Then, the encoder subtracts the prediction from the input sample to generate a
residual signald, = z;, — z, which in general has smaller amplitude thgn This is

called theshort-termprediction.

Moreover, most audio signals have long-term correlations due to the harmonic nature
of speech or musical instruments. Some audio encoders such as the MPEG-4 ALS have
a dedicatedong-termprediction scheme. This way, the residdét) is predicted from
long-term residuals a&(k) = d(k) — (ij_s yd(k — 1+ j)), wherey andr are the
gainandlag parameters, respectively, anthdicates the number of long-term residuals
that are used to predidtk).

Finally, for stereo or more generally multi-channel audio signals, there exist an in-
herent correlation between every pair of channels. Then, a residual chéhjfetan
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be predicted from one reference residual chawlfe)”, andsend the difference signal
é(k)e = d(k)c — d(k)". This is referred to amter-channeprediction.
Figure 3.3 illustrate thelong-term(red-solidline) andinter-channel(blue-dashed

line) correlations in a stereo audio signal.

x 10 Left Channel
2 : 7_ .
1 - /
1} 7AKY
\
\
1 \
1
. 1 : : :
0 : 50 100 150 200
]
x10t 1 Right Channel
2 £ .
7
1
0
At
.2 1 1 1
0 50 100 150 200

Figure 3.3:Long-term(red-solidline) andinter-channelblue-dashed line) correlations
in a stereo audio signal.

Now, we present a graph representation of multi-channel audio signals. Every spe-
cific samplea can be linked to a set of “short-term”, “long-term” and “inter-channel”
samples in order to exploit the inherent correlations that arise in multi-channel audio
signals. Therefore, every audio sample could be simultaneously linked to an arbitrary
number of “short-term”, “long-term” and “inter-channel” samples, depending on the
graph construction strategy followed.

Figure 3.4 shows an illustrative example in which every node is linked tanits
mediately previous and subsequent samples (“short-term” correlation, grey solid lines),
to one “inter-channel” sample (blue dashed lines), and to one “long-term” sample (red

solid lines) following the displacement indicated by the lag parameteAny other
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graph construction (e.g., considering N-“short-term” or “long-termaighbors, consid-

ering a lag parameter in the “inter-channel” correlation, or breaking the “short-term”
links between samples of very different sound pressure level values of each channel)
can be made.

T

Left
Channel

Right & i § ¢
Channel © OO0 O

Figure 3.4: Stereo audio graph construction example.

Note that, as in the video coding example, there exists a trade-off between side
information to be sent to the decoder and accurate graph representation (and thus better
prediction). For exampldag parameterscan be calculated every W samples (using
windows of size W). When W is lower, the correlation between nodes is more accurately
captured, but the side information is larger.

Given this graph representation of the N-channel audio signal, lifting transforms can
be applied on this graph, obtaining a directional transformation of the data in which the
different correlations are jointly exploited, and which is localized in frequency (which is
very important in audio coding to consider the perceptual models) and spatio-temporal
domains. This procedure can establish an interesting new framework for audio coding,
since nowadays state of the art systems are generally based on transforms that remove
the different redundancies separately. Therefore, it could be an interesting future re-
search line.

3.1.2 Graph Weighting

Statistical dependencies (correlations) between nodes depends on the nature of links
between them and on the specific graph representation used for the signal at hand. In
order to take these features into account, it is useful to assign a specific weight to every
link of the same nature (e.g., in a video representation, every spatial (resp. temporal)
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link is associated with a specific spatial (resp. temporal) weidtt)s weight selection
influences thé//P assignment, th@ andu filters design, and the reordering of the
coefficients, to be discussed in Secti@®, 3.4, and Chaptet respectively.

In this section we propose two approaches to obtain the weights of the graph: (i)
assuming fixed weights (as a function of the a-priori knowledge of the signal and its
graph representation), and (ii) optimizing the weights in order to minimize the prediction
error when using one-hop prediction filters (as a function of the signal at hand). In the
second case, we first show how to calculate the optimal weights in a video representation
example, and then we extend this resulfidifferent kinds of links. Previous work on
this topic was introduced by the authors 42].

3.1.2.1 Fixed Weighting

As a starting point, weights (uof the graph can be chosen fixed as a function of the
a-priori knowledge of the signal and its graph representation. For example, in the graph
representation of a video signal illustrated in Fig@r#&, temporal links are identified
using an explicit search that minimizes a distortion measure (i.e., the standard ME)
and spatial links are constructed by linking every node to its one-hop spatial neighbors.
Therefore, in general, temporal links in the graph are more reliable than spatial links,
that is, the expected correlation between temporal-linked pixels is higher than that be-
tween spatial-linked pixels. In this way, it is reasonable to assign higher weights to
temporal connections. On the other hand, one can construct a graph representation of a
video signal in which every pixel is linked to its spatial neighbors that do not cross con-
tours as in Figur@.2, and to its co-located pixels in the temporal domain (i.e., without
usingan explicit motion model to identify temporal correlated pixels). In this represen-
tation, temporal connections in the graph will be less correlated (and spatial connections
more correlated) than in the previous example.

Given a graph representation, if one does not have any knowledge about the signal on
the graph and how the representation was obtained, the weights can be fixed 1o
leading to an unweighted graph (i.e., non-connected neighbors can be considered to have
w = 0).
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3.1.2.2 Optimal Weighting for a Video Representation Example

Thelocal correlation between neighboring nodes on the graph depends on the underly-
ing signal. For example, in a video signal, the correlation between temporal and spatial
neighbors changes with the video content, and thus the value of graph weights would
change as well. Fixed weights are not suitable to handle these situations.

We now find the optimal graph weights that minimize the quadratic prediction error
(assuming one-hop prediction filters defined below) for a given graph representation
G = (V, ). The optimal weights can be computed for any subgfdpt G (i.e., their
value can change for every subgraph) and at any level of decompogitiona video
representation case, optimal weights can be computed, for example, in a frame-by-frame
or in a block-by-block basis, as we will see in SectbA.2.

First, we consider a graph video representation example and derive the optimal
weighting. In the next section, we extend the resulftgeneral kinds of edges with
different correlations.

LetG = (V, €) be an undirected graph, wheve= {1,..., N} is a set of nodes and
E CV xVasetof edges. L&f, 7T the set of spatial and temporal edges, respectively,
withSUT = &£. Let N¥ = {j : ij € S} denote one-hop spatial neighborhood,dbr
all nodesi € V.

Thus, the mean value of the spatial neighbors of nadelefined as

e —s Y (3.1)

S
il JENT

Where\/\/f{ is the number of spatial neighbors©fThe mean value of the temporal
neighbors is calculated similarly. Let us assume that every naslknearly predicted
from its spatial and temporal neighbors as:

T = w,T + w, T (3.2)

Then, we seek the weights, andw, that minimize the quadratic prediction error
over all the nodes € V:
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. _s £\ 2
min E (.I'l — WsT; — wtxi) .
Ws,Wt

%
(3.3)
Differentiating with respect to, andw, we obtain:
w* = [w* w] =R 'r, (3.4)
where
Doiey TiTi D iey T
and
r=> [ ‘”i] (3.6)
i€V L

are the correlation matrices.

Usually, the graph topology is defined by means of its adjacency matrix. Next, we
express the optimal weights as a function of the adjacency matrix of the graph. Let
A, = [a,,,] andA; = [a,,] bethe adjacency matrices of the subgraphs containing
only the spatial and temporal edges, respectively, where each column is normalized
(e.a,, =1/|N?|ifij € S;a,, = 0if ij ¢ S). Vectorizing the sequence into a
1 x (L x H x K) row vectorx, whereL x H is the frame size an& the number of
frames considered, we can write:

(3.7)

— —T T — T T —1 - .7
W — xAA X" xAA X ] [XASX ]

S
xA A xT xA A, xT xAxT

S

Notethat, in a coding application, the weights should be sent to the decoder as side
information. Therefore, a trade-off exists between accuracy in the weights selection
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(lower subgraph sizes in which the weights are computed) andrgiienation to be

sent. Oncev* has been calculated, we assigh(resp.wy) to every spatial (resp. tem-
poral) link, leading to a weighted graph that accurately captures the correlation between
nodes.

3.1.2.3 Optimal Weighting for F' Different Kinds of Links

We now generalize the result in previous section to the casedifferent kinds of links
with different correlations.
Let us define the mean value of the clgsseighbors of nodeé as:

z! L >y, (3.8)

i —f

Wherer = {j :1j € f} is the number of one-hop neighborsiahat belong to the
classf. Assuming that every node W s linearly predicted from itg’ types of neigh-
bors, we would like to find the weights,, ws, ..., wr that minimize the quadratic
prediction error over all the nodesV:

min Z (x; — i’,-)Q = min Z (:rl — W T} — WeTE — ... — wpa_:f)z . (3.9

Extending (3.7), is straightforward to obtain the optimal weight vector,

w* = [wy,ws ... ,wg|, @S:
— o . o —_ _1 — _ —_

XAlA;FxT xAlA;FXT cee XAlA:XT xAxT
-~ x T —-— T — —T —

xAsA; xT xALALxT . xA,ALxT xAoxT

wo=| T e S (3.10)

AAY T A AT T A ALY T .

xApA;x" xApA,x* -+ xApAgpx XApx

3.1.3 Discussion

The explained graph construction (i.e., graph representation of a signal and graph weight-
ing) leads to a weighted graph that characterizes the correlation between samples of an
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N-dimensional signal. Therefore, it can be useful to perforriredéht signal processing
operations.

The weighting process can be made over any given undirected graph. In this thesis
we focus on the lifting transform, which needs a bipartion of the graph to apply the
filtering. Therefore, given a graph and a bipartition (2&/7 assignment), one can find
the optimal weights of the graph that minimize the detail coefficient energy of the predict
stage when using one-hop prediction filters. To do that, the label of each node has to be
taken into account in the optimization process described in Se@iar&2and3.1.2.3.

We experimentally observed that the weight values do not significantly change if they
are calculated before ( minimizing over all the nodes of the graph) or aftew tife
assignment (minimizing over the prediction nodes, using only the update neighbors to
obtain the prediction), so that our graph weighting will be near optimal in the sense of
minimizing the detail coefficient energy. The formulation to obtain the optimal weights
that minimize the detail coefficient energy using a gi#etP assignment, which is quite
similar to the one presented below, is described in Appe@dix

Given the total freedom in the graph representation, one could link n-hop temporal
or spatial neighbors (i.e., temporal links between nodes that are n-frames away or spatial
links between nodes that are n-spatial hops away), and assign n different temporal and
spatial weights as a function of the distance between linked nodes.

3.2 Graph-Based//P Assignment Methods

As discussed in Chapte; the first stage to compute lifting transforms on graphs con-
sistson splitting nodes into Update {tand Prediction (7 disjoint sets. One has great
freedom to select which nodes will belong to #eset (and thus will be the low pass
coefficients) and which ones will belong to tieset (and thus will be the high pass co-
efficients). Besides, the number@fP nodes for each level of the transforhtan be
arbitrarily chosen without compromising the invertibility of the transform, in contrast to
the dyadic decomposition of classical wavelets (where one half of samples are low-pass
coefficients and the other half high-pass coefficients in each level of the trangform
thus having subsamplings éf)
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Figure3.5shows an illustrative example of two differddf P disjointassignments
for the same original graph. Note that each one gives rise to different number and loca-
tion of detail (high-pass) and smooth (low-pass) coefficients, implying different filtering
operations and thus different (invertible) transformations of the original data. Besides,
each assignment is a bipartition and leads to a different number of links being used in
the transform.
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O Prediction nodes ' ' O Prediction nodes
@ Update nodes @ Update nodes
O @ {J

p

p P
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(a) Example 1. (b) Example 2.

Figure3.5: Two different transformations of the same original graph.

In this section we study differegraph-basedi/ /P assignment techniques. Given
a weighted graph, these methods find bipartitions without making any assumption about
the graph signal

The graph-based/ /P splitting is essentially a 2-coléigraph-partition problem in
which one color, chosen from the two available ones, is assigned to each node of the
graph following some design criterion that does not depend on the signal at hand. These
graph-partition problems have been widely studied in the graph-theory literature for

1 Notethat, if the weights on the graph correctly capture correlation between nodes, some information
of the signal is implicitly considered in these weights.

2 Terms “color”(white/grey) , “label”(1/0), “set”(RA) or “parity” will refer to the same concept.
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different design criteria, and will be referred to as “classicaliph-partition problems
throughout this thesis. Sectid2.1describes the “classicafhaximum-cui@and set-
coveringproblems.

In Section3.2.2we summarize various graph-bageédP assignmentnethods for
lifting transforms on graphs that have been proposed in the literature, and their con-
nection to “classical” graph-partition problems described in Se@i@ri. In a coding
application,it is natural to search graph-partitions in which a high numbeP afodes
can be well predicted fro#¥ neighbor nodes, obtaining many small detail coefficients.
Intuitively, a “good” U/ /P assignment to achieve this goal is the solution to the “clas-
sical” weighted maximum-cygroblem, as the authors point out in [48hd [44]. This
U /P assignmeninethod is discussed in Secti8rR.3.

3.2.1 Some “Classical” Graph-Partition Problems

In this section we describe two of the most well-known “classical” graph-partition prob-
lems: themaximum-cui@nd theset-coveringproblems. These two problems and the
different solutions proposed in the literature will be useful in the gédp® splitting
process for lifting transforms.

Note that we use the convention of represenfthgndi/ nodes as white and grey
nodes, respectively, in the figures of this thesis.

3.2.1.1 Set-Covering Problem

A set-cover is a partition of the node (vertex) set of a graph into two disjoint subsets so
that every node of one of the subsets has, at least, one neighbor in the other subset (i.e.,
every node in one subset is linked to the other subset) s€heoveringproblem can be
defined as the problem of finding a set-cover in which one of the sets has the minimum
possible number of elements.

Let us formally define theet-covering SC) problem.

LetG = (V, &) be an undirected graph. Denote one-hop neighborhoéd &f, =
{ueV: kue &}, and closed neighborhood bf Ny = N, U k, for all nodesk € V.
Given a collectionM of all sets\;, a set-cove€ C M is a subcollection of the sets

3 For simplicity, hereafter we refer to the solution of the SC problem as SC solution.
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whose union i3). Theset-coweringproblem is, givenM, to find a minimum-cardinality

gooe

goee

versa (SG).

3.2.1.2 Maximum-Cut Problem

The maximum-cutproblem can be viewed as finding the partition of the node set of a
graph into two disjoint subsets which has maximum number of edges (or more generally,
if the edges are weighted, the maximum sum of the weights) between elements of both
subsets.

Let us formally define thenaximum-cu{MC) andweighted maximum-ctvVMC)
problems.

Consider an undirecteztige-weightedgraph(G, w), whereG = (V, £) is the graph
andw is the weight function. Acut is defined as a partition of the node set into two
disjoint subset#/ andP := V\U. Theweight of the cut (W) is given by the function

WU, P) = > wy, (3.11)

i€P,jel

wherew;; is the weight of the link (edge) between nodesd.
A weighted maximum-cug a cut of maximum weight, and is defined as:

WMC(G,w) = \%gmu, P). (3.12)

Themaximum-cuproblem is defined similarly for an unweighted grapk- (V, £),
that is, an edge-weighted graph defining the weight function as:

1, ifijeé&
wy=4 (3.13)
0, ifij ¢¢&.

Figure3.6shows different graph-partition solutions to the problems explaahede
and the weight of the cut})/, obtained for each solution, for a given graph. Note that
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MC solution P
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Figure 3.6: “Classical” graph-partition strategies.

in the example each color (white and black) has been associated with a specific set of
nodes (Pandl/ sets respectively).

3.2.2 UI'P Assignment Methods for Lifting Transforms on Graphs

In this section we summarize some graph-bdg¢® assignment techniques proposed
in the literature to perform the graph transformation and their link to the described “clas-
sical” graph-partition problems.

The U /P assignment proposed idg] attempts to optimize the total energy con-
sumptionin a wireless sensor network minimizing the number of nodes that have to
transmit raw (not decorrelated) data in the network (the updates nodég). In addi-
tion, in order to reduce the energy in prediction nodlesP, every: must have at least
oneld neighbor to compute its detail coefficient. The authors show that this is equivalent
to the SG, problem defined in Sectiod.2.1.

As explained in Chapte2, for an arbitrary//P assignmentnodes that are neigh-
bors in the graph are not guaranteed to have opposite parity. Connected nodes of the
same parity cannot use each other’s data to perform the transform, and edges connect-
ing nodes of the same parity are considered “discarded” edges. As a solution to this
problem, techniques that minimize the number of “discarded” edges (i.e., the percent-
age of direct neighbors in the graph that have the same parity) have been prdd)sed |
A similar idea was presented i, where the authors proved that th&'P graph-
partitionthat minimizes the error between the transform in the original graph and in the
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simplified graph (i.e., after edges discard) correspond tedhgion to the classical MC
problem of the grapy defined in Sectio.2.1.

3.2.3 Proposed Splitting Solution for a Coding Application

In a coding application it will be of interest to maximize energy compaction, which
means storing the maximum amount of energy in the smallest number of coefficients
(i.e., obtaining a large number of small detail coefficients).

One criterion to do that will be to maximize the reliability with which update nodes
can predict prediction neighbors. Intuitively, a good approach to achieve this goal is the
well known WMC, which we proposed idB] and in [44] for a video coding application.
Next, we analyze this intuition more in depth.

Let us assume that the edgédetween nodes are weighted with specific values
we € R, which in some way are a similarity measure (e.g., similar luminance or correla-
tion in an image) between nodes. IntuitivelyPanode is better predicted (i.e., the detail
coefficient is smaller) if it has a higher number of similar (with a higtialue)l/ neigh-
bor nodes. If we impose that every node must have at least one different-parity neighbor
in order to make it possible to perform the update and predict stages of the transform, the
solution to this problem is close to the solution of the;S&oblem (which maximizes
the number ot/ neighbors that nodeB have). Nevertheless, the g@ives rise to a
low number ofP nodes, and we would like to obtain a high numbePaiodes in which
the data is decorrelated. Alternatively, we could find the, SGlution, thus obtaining
a large number of nodes (detail coefficients) but with a low numberoheighbors
(and thus not well estimated).

A good trade-off in this problem is thus to maximize the total weight (similarity)
of the edges between tlfe¢ and thel/ sets, which will give rise to a large number of
P nodes with many reliable (correlatetf) neighbors. Besides, this usually leads to
balancedP andi/ sets, similar to the dyadic decomposition in classical wavelets. This
problem is the WMC problem defined in Sectidr2.2.

Notethat the WMC usually has a closed solution that gives rise to a specific location
and number ot/ (|Uwric|) andP (|Pwuc|) nodes. Therefore, for a give®y rc|
nodes, WMC maximizes the weight betwdéran P sets, leading to accurate predic-
tions, as we will show in experimental results of Sectod.4.

43



Chapter 3. Lifting Transforms on Graphs

To compute the WMC solution we use the greedy approach ¢flgaving for future
work the study of alternative methods. Note that, if the given graph is unweighted, the
algorithm provides the MC solution. The algorithm is described in Algorithwhere
U; andP; form a bipartition of the node sét;_,, and we considegain of a node to be
the sum of weights (i.e., the number of neighbors if the graph is unweighted) of all its
incident edges.

Algorithm 1 Weightedviaximum-CutAlgorithm
Require: U; = {@}, P; = {U;_1}

1: Calculatethe Gain of thel/;_; node set
2: Select the node with largestGain, a = max(Gain)
3: while Gain > 0 do
4:  LetU; — U; U {a}
5: Let Pj — P]\ {CL}
6
7
8
9

Change the sign of the incident edge weights
UpdateGains of adjacent nodes
. Select the node with largestGain, a = max(Gain)
. end while
10: return U; andP;

Note that, even though the WMC has a closed solution, the algodtuid stop at
any iteration, given a near optimal solution to problem of finding the maximum number
of U neighbors for a giveiff°| nodes.

3.3 Signal Model-Based//P Assignment Methods

In this section we propodé /P assignment criteria based on minimizing the expected
value of the quadratic prediction error assuming a signal model and a predictor. In
Section3.3.1we formally formulate out{//P assignmenproblem, which is focused

on minimize the detail coefficients energy. Secti8r%2,3.3.3and3.3.4present three
different approaches to design partition algorithms that rely on model-based approaches.
To do so, we assume a data generation model and a predictor, and find an expression
of the mean squared prediction error under the assumed model and predictor. Then, we
minimize it using different greedy algorithms, thus finding a near-optimal solution to
the problem defined in Sectid3.1.
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The first model assumes that data in each node is a noisy versisongé con-
stant. Despite of its simplicity, some interesting conclusions regarding the split crite-
ria can be extracted from its analysis. The second model assumes smooth variations
between neighbor nodes values and therefore implicitly considers some correlation be-
tween them. This second model is further extended to consider that different links be-
tween nodes can be more or less correlated as a function of the nature of the link.

3.3.1 Proposed Signal Model-Baseld /P Assignment Problem For-
mulation for Lifting Transforms on Graphs

As discussed before, to obtain a sparse representation of the original signal, it is inter-
esting to have small detail coefficients so that the signal energy is compacted on the
smooth coefficients. Therefore, our goal is to find &P assignment that minimizes
the expected value of the detail coefficient energy (i.e., the expected value of the squared
prediction errorfor a given number of P nodes.

Assuminga signal model and a predictor, the problem can be stated as follows:

Problem 3.1.4 /P Assignment Problem Formulation.

LetG = (V,€&) be a given undirected graph, where = {1,..., N} is a set of
nodes and® C V x V a set of edges. Let be a set ofV random variables, such
that z; represents the data value associated with nodethe graph. For each node
i € P, consider the predictof;. Define the total prediction error (&) as the sum of
the expected value of the squared error overfheodes.

Find thel/ /P assignment that minimizds,; for a given number ofP nodes,|P|:

. _ . o ,\‘ 2
gl/lgEmt = gl/l})lZE{(xl )} (3.14)
Fixing |P| in the problem formulation is important becauBg; is minimized by
minimizing the size ofP. Thus, solving (3.14) is practical only if some constraint on

thesize of P is introduced.

4 Note that given thafi/| = N — |P| (where N is the number of nodes on the graph), fixing the
number ofP nodes is equivalent to fixing the numberdhodes.
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Note that the brute-force solution would be unfeasible becanseshould try every
possiblel/ /P assignment and calculate the squared error over afPthedes for each
of these assignments.

3.3.2 Noisy Model (NM)

In this section we assume a simplistic signal model in which the value of each node of
the graph is a noisy version of some constant. Under the assumed model and predictor,
we obtain and analyze an expression of the expected value of the quadratic prediction
error. Then, we minimize it for a give{P| using a greedy algorithm, thus solving
Problem3.1.

This model is generally not realistic (e.qg., if the graph represents a video signal, it
would be a noisy version of a sequence of constant frames). Nevertheless, it can be
taken as locally true (e.g., if the graph only represents subregions of the video sequence
with similar pixels, the NM can be a more reasonable approximation of the real signal).

Definition 3.2. Noisy Model

LetG = (V, &) be an undirected unweighted graph. L¥tbe a set ofN random
variables, such that; € X represents the data value associated with node the
graph.

Let us assume thai; is a noisy version of some constantn such a way that

wheren; are independent noise variables with zero mean and variance

Definition 3.3. Unweighted Predictor
LetN; = {j € V :ij € £} be the set of neighbors of nodeFor each node € P,
consider the predictor

1
po= E , 3.16
i = xj, ( )

vjeN;NU

wheem; = |N; nU].

Proposition 3.1. Noisy Model Prediction Error
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Let z; and z; satisfyDefinition 3.2 and Definition3.3 respectively. Consider that
v; = v for anyj. The total prediction error over all nodes= P is given by

FEromnm = ZE{(iUz — )%} =v <|P’ + Z mi> : (3.17)

icP iep

Proof. z; is an unbiased estimate gfi.e.,

E{i:} = c = E{z;}, (3.18)
with variance
1
var(t;) = — > v (3.19)
T jeN;NU

Ouraim is to user; as a prediction for;. The mean square prediction error is

B{(2:—2:)?} = B{(2; — c + ¢ — &;)*}
=E{(z; — ¢)*} + E{(c — %)} + 2E{(z; — ¢)(c — &)}
—v; 4+ var(;) + 2E{(z; — ¢)(c — 2;)}

1
=vi+ — ‘Z V), (3.20)
vogeNinuU

wherewe have used (3.15), (3.16) and the independence of the noise variables.
Thetotal prediction error is

Etotnm = ZE{(% - fz)Q}

ieP
1
_ %; v; + %; (mg je%:mu vj> . (3.21)

If v; = v forall j,

1
EtotNM = <|,P| -+ Z E) . (322)
icp "t
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For a fixed|P|, some interesting conclusions can be extracted from }3.17

1. Fiwwv iNncreasesvith the variance of the nodes(e.g., in a video coding applica-
tion, Einwv Will be higher in sequences with complex textures or motions).

2. The first term of the right side of (3.}, %|P|, represents the intrinsic variance of
nodes <€ P. The secondterm;,) . ., L refersto the variance of the prediction,

m;

which decreases with the number¢heighbors of each nodez P, m;.

3. ForafixedP| and weight of the cutl” = >, _, m; = W, (note that given that the
graph is unweighted}’ is the number of links betwee andP), the best graph-
partition that one can construct in order to minimiZgyw (under the assumed
NM and predictor) is to equally distribute these links amongst all thé® nodes.
This is formally stated in Corollar$.1.

Corollary 3.1. Optimal Criteria for FixedP| andWW = W,
For a fixed|P| andWW = W, the optimal criteria to minimiz&,nm over theseP
nodes is that all of them have the same numbér néighbor nodes.

Proof. We want to seek the:; Vi € P that minimizesEoww for a fixed|P| andV =

W..:
min {U <|73\ + E —1 )}
" iep MM

SLW=> m=W, (3.23)
i€P

which, for a fixed/P|, is equivalent to minimizing

) 1
min E —
i€P

SLW=>Y m=W. (3.24)
i€P
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Figure 3.7: MC and NM/{/P assignmenstrategies.

Defining the Lagrangian:

EZZ%JFA(ZW—WC) (3.25)

andminimizing with respect to each;:

oL 1

1
- 1A=0 = — =K. 3.26
o e + = mi= (3.26)
Furthermore,
W.
> mi=KP|=W, = K= B (3.27)

icP

So,given a weight for the cuit. and|P|, we obtain the minimum of when every
node: € P has the same number&@fneighborsk = IV;;T. [

Figure 3.7 shows an example of tw&d /P graph-partitionsvith the samél” and
the same number @f (dark) andP (white) nodes. Note that in the upper partition the
number ofi/ neighbors ofP nodes is more balanced, giving rise to a smaller prediction

error.
Hereafter we refer to thid /P assignment strategy that aims to minimize (3 for

agiven|P| as NM solution.
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3.3.2.1 Proposed NM Greedy Solution

To obtain theNM solution and thus solve Problem3.1, we design a greedy algorithm
thatlocally minimizes 8.17) in each iteration. First, the algorithm finds the,&0lu-
tion (SC solution with minimum number @f nodes) in order to guarantee that every
nodec P has at least one neighber i/ and can be predicted. Theim, each itera-
tion ¢, the algorithm changes %@ the nodec € P that, when is changed, minimizes
Eiinu (3.17) (thisc is referred to ag*). Note that each iterationcorresponds with a
specific|P|;, so that the process should end when the gj#rdefined in Problen3.1

is reached.

It would be very computationally expensive to calculéig;y,, for every of the
possiblec € P candidates to be changedioin each iteratiort. Actually, we are inter-
ested in finding:* and not in the total cost,,;y ), at each iteration of the algorithm.
Therefore, we focus on finding thec P that, when is changed @, maximizes the
Ei.:n s difference between iterationst — 1 and .

Let Et{ott’f@M be theE,. v Obtained if node: € P is changed té/ at iterationt. We

want to minimizeEfj;ﬁM over all possible candidates= P:

. t,c
minEy,. (3.28)

Note thatEf(ftﬁV}M can be written as a function of the cost at the past iteratien
(E{t—l} .
totNM7*

Bl =B el (3.29)

where©{:<} represents the changesiiy, v, that occur, from iteratiom — 1 to ¢,
if we move node: from P to /. Note that, as;;y ), decreases when we incorporate
morel/ nodes, we have that'’ '} > El" and st < 0.

Given thatEfj[A}& does not depend on the node that will be moving at iteratjon
thus @3.28) can be written, using (3.2%s:
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minF, 3y, = mint. (3.30)
The advantage of minimizin@{*<} instead ofEt{(ft’f\}M is that now we can find*
just by observing howF,; v, changes in the neighborhood of every candidate node
(specifically, looking at two-hop neighbors), and thus without having to evaluigte,,
summing over all nodese P for everyc.
The intrinsic variance (|P|) in En (3.17) does not depend on the node that is
changedso that, using3.17), (3.30) can be written:

e g ¥ (G ) e @
kENNP ¢

wherem,. andm, arethe number ot/ neighbors of candidate node and of its
k € P neighbors, respectively. The terms in the sum3r81) indicates that, it is
moved tol, its k € P neighbors will have one mor& neighbor to be predicted.
Last term in (3.31) reflects that; ;v is also reduced because nadeecomes$/, and
therefore it should not be taken into account in the calculatiafi 9f;,,. Note that now,
in order to findc*, we just have to sum over its neighbors.

Figure 3.8 illustrates an example. The left side shows théP of the graph at
iterationt — 1, and right side at iterationy assuming that candidate noslés changed
to Y. Note that changing nodgimplies that nodeg, 4, and6, go from having oné{
neighbors to two. So tha®{*=3} = (1/2 —~14+1/2-14+1/2-1) — 1.

Finally, note tha®®{-<} can be calculated for everywith a few simple matrix op-
eration$, obtaining the vecto®"} = [@lt=ltglte=2t  @lt=IPl}] The complete
NM greedy approach is summarized in Algoriti2n

5 Sourcecode related to this thesis will be available online at www.tsc.uc3m-esmenriquez/.
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Iteration (t-1) Iteration (t)
Q Prediction nodes

© Update nodes

Figure 3.8: Greedy algorithm for the NM.

Algorithm 2 NM Greedy Algorithm

Require: Graphg = (V, ), |P| nodes
1: Calculate the Sgsolution

2: while |P|, > |P| do

3: Calculate®{t<}

4:  Select the node* with minimum©{:-<}, ¢* = min @<}

5. Letd —UU{c"}

6

7

8

LetP — P\ {c*}
: end while
: return U /P assignment

3.3.2.2 Experimental Results

In this subsection we present some experimental results in terms of the quadratic pre-
diction error (i.e., the energy of the detail coefficients) in the first level of the transform
(7 = 1) when applying different//P assignment “classical” strategies studied in Sec-
tion 3.2.1and the proposed one in Secti®!3.2(NM).

The experiments have been carried out in the context of video representation, using
subgraphs of real data obtained from different standard test sequences (i.e., the sub-
graphs contain data from a specific area and number of frames of each video). The
graph representation of the video follows the philosophy of Fiduie in which any
noderepresents the luminance value of a pixel and can have some spatial and temporal
neighbors simultaneously. In this case, every node is connected to its 8-one hop spa-
tial neighbors and to an arbitrary number of temporal neighbors following a ME model.
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Note that the NM does not distinguish between spatial or tempaighbors, so that

the links between different nodes are not weighted and the nature of each link is not

taken into account. Therefore, we have an unweighted graph)(B.1&hich everyls
neighborof a’P node has the same importance in the predictbh).

To evaluate the performance of each approach, we measuagehage prediction
error over all nodes iP as:

P P

1 . 1
Eav-meas™= W Z (gjz - xi)Q = W Z (di)Qa

i€P 1€P
(3.32)

wherez; is the luminance value of the pixels, andthe prediction, defined as in (316
To obtain the NMI/ /P assignment solution and thus solve Problgmwe use Algo-
rithm 2.

Figure3.9shavs experimental results whef, mead the first level of the transform
(j = 1) is plotted as a function of the relatidt¥|/N selected by the differerit /P
strategies (MC, S&, SCp and the proposed NM solutidh)

Note that the number of/ /P nodes is fixed for the MC, SC€and SG solutions,
and can vary in the NM approach (by letting the giyén in Problem3.1 vary). The
reasonis that the MC, S¢ and SG have closed solutions that give rise to a specific
U /P bipartition (and thus a specific number and locatiot/aindP nodes), while the
NM aims to minimize 8.17) for any given number @ and” nodes.

Someconclusions can be extracted from the experimental results shown in Figure

3.9:

¢ If we compare the proposed NM optimization method and the MC ifttheéVv
that is solution to the MC, in general, NM achieves lowgy. measthan the MC

method. The reason is that, in spite of the fact that MC gives rise to a higher

average number @f neighbors (because for th@t|/N, MC maximizes the cut
and thus the number &f neighbors thaP nodes have), NM generates a similar
number ofi/ neighbors for all theéP nodes. This is illustrated in Figui10,

6 Thegreedy algorithm used to find the §Tor SCp) solution is given in AppendiA.
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Figure3.9: F,,.meadfor different sequences. A comparison of NM with several “classic”

solutions to thé/ /P assignment problem.

which shows, for the NM and the MC, the mean numbey)(and the standard

deviation (g;) of U neighbors tha® nodes have as a function @f|/N, in the

sequencéoreman.
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Figure 3.10:4;,, andoy, for the sequencEBoreman.

e Note that, as expectedy,,.measgenerally decreases as the proposed algorithm
chooses a higher number#fnodes, because the obtained predictions are better.

e The S, solution involves obtaining the minimum numbei6hodes (and there-
fore low pass coefficients) that guarantees that efenode has at least ori¢
neighbor and thus can be predicted. This implies that we will have a large number
of nodesP in which the data is decorrelated (giving rise to the detail coefficients).
Nevertheless, minimizing the number &f nodes implies thaf nodes would
have, in general, a low number &f neighbors to calculate the detail coefficient
and thus the prediction of this detail coefficients will not usually be so accurate.
Therefore, the mean energy of detail coefficiefifgneaswill be large as is shown
in Figure3.9.

e Onthe other hand, the SGsolution implies that we will have accurate predictions
(e.g., theEy, measWill be low, as shown in Figur8.9) but a low number of detail
coeficients in which data is predicted.

¢ In sequences with low pixel variance)(such as the fragment ékiyo, which is
quite homogeneous and stationary , fa@odes do not need ma®dy neighbors
to be correctly predicted. Thus, once the algorithm reaches a reasonable value
of [U|/N, increases in this value do not improve the prediction, andth& eas
remains almost constant.
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Note that, as it was discussed before, in a coding application éx&sts a trade-

off between obtaining a low number of low pass coefficients (i.e., low number
of U nodes) and having small detail coefficients (i.e., high numbér okigh-

bor nodes). Furthermore, this trade-off depends on the video content (i.e., in se-
guences such akiyo, one does not need too manyodes to obtain “good” pre-
dictions and thus low detail coefficients; while in sequences su€oastguard

every new/ node makes the prediction better, decreadingnea). Therefore, it
would be of interest to have an encoder procedure that tells the decoder the opti-
mal number ot/ andP nodes depending on the video content and the available
resources (i.e., a target quality or bit rate).

We have drawn some interesting conclusions regarding tiieassignment problem
based on the analysis of NM. In the next section we introduceMbeing Average
Model, which considers smooth noise variations between neighbor nodes.

3.3.3 Moving Average Model (MA)

Generally, data across nearby sample points present some correlation (e.g., nearby pixels
in an image or video usually have similar luminance values; adjacent sample points in
audio data generally present similar sound pressure level (SPL) values; or neighboring
data in a WSN tend to be correlated). In this section we propose a data generation model
that considersmooth noise variationsbetween neighbors on the graph. Specifically,

we consider that data in nodés generated as is defined below.

Definition 3.4. Moving Average Model

LetG = (V, &) be an undirected graph. Let us assume thgais generated as the
mean noise; value of the closed neighborhood of nadelus an independent noisg
as:

1
T = —— €; + an;, (3.33)
Nl 2

g jEN[i]

wheree; andn; are zero-mean independent random variables, with variamceand
vy, respectively;\V;; is the closed neighborhood set of nadg\;; = N; U4), anda is
an arbitrary nonnegative real constant.
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Thus, this model can be viewed as a low-pass filtered noisy (eatg with noise
¢;) random graph signal plus an additive independent random noise (every node with
noisen;). Figure3.11lillustrates the data generation following this model, which |
referred to as Moving Average (MA) model.

LPF —a(?—p

Qrtj; L

Figure 3.11: MA data generation model.

Despiteits simplicity, similar models have been employed in the literature for image
texture representatiod§], and for image [49] [50], audio and speech modeling. Define
the clusteringdegreeof nodesm andn on graphg as

N N Ny
N [V |

c(m,n) =

(3.34)

Next, we calculate the expected value of the prediction error assuming the MA data
generation model333) and using the unweighted predictor defined in Defini@idh

Proposition 3.2. Moving Average Model Prediction Error

Let z; and z; satisfy Definition3.4 and Definition3.3 respectively. Consider that
v,, = v, andthatv., = v, for anyi € V. The prediction error of a nodee P is given
by

Ewa, = B{(z; — ;)*} = E{(z)*} + E{(2:)*} — 2E{w3;} (3.35)

— a%u, + ‘AU[;’ O"U'n Ue Z Z
~————

i my FEINNU| kEINGNU|

A B
oY Z c(i k).
mi ke|N;NU|
¢

Theproof is in AppendixB.1.
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Let us now analyze (3.35). The terms insllaepresenthe variance of the ob-
servation, E{(z;)?} (given thatE{(z;)} = 0, var(z;) = E{(x;)?}). Note that the first
term inside A is due to the independent nois®f each node, and does not depend on
the node at hand (because of our assumption,of= v,). The second factor is due
to the smooth variation of the noise (the low-pass filtered noisy graph signal). Note
that as the number of neighbors of nad@\V);|) increases, this second factor (and thus
the variance of the observation) is lower, which is reasonable becaisebtained by
averaging with a higher number of samples. In this way, frort AR strategy point of
view, will be of interest to choose &2 nodes (nodes to be predicted) those nodes that
have more neighbors and thus can be more easily predicted (e.g., assuming that we are
given a graph representation of an image which links neighbor nodes that do not cross
contours of the image, it will be better to chooseTashose nodes that are far away
from the contours and thus have more neighbors because their value will be smoother
and thus more easily predicted).

The terms insideB represent theariance of the predictor, E{(z;)?}. It is com-
posed of two factors, which decrease as the numbér okighbors of node (m;)
increases. Therefore, as expected, the variance of the predictor is lower as we have
more data to perform the prediction. Furthermore, the variance decreases as the factor
c(7,k) (i.e., the clustering degrd®tweeni/ neighbors of node:) decreases. Note that
c(j, k) indicates the proportion of shared neighbors between npdesl k. Thus, it is
of interest to have uncorrelatéfineighbors of (i.e.,i/ neighbors of that do not share
many neighbors/information) to perform its prediction.

To give some insight into the behaviour of tig(#;)?} term, Figure3.12 shows
thevalues that it takes for different situations and graph topologies. In this example we
considen, = v, = v anda = 1.
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Figure 3.12IE{(%;)?} for different graph topologies.

Note that, in each row of the figure, the nod® be predicted (the most left white
node in every example) has the same numbér ¢dark) neighborsin;. First column
shows that, considering the same topology, varidbfe’;)*} is lower asm; is higher
(E{(24)*} > E{(25)*} > E{(Z¢)’}, and in generalE{(#;)*} = 3.~ + §. Inthe
second row of the figure, the noddo be predicted has:; = 2 in all the examples.
NeverthelessE{(z;)?} decreases as tieneighbors of nodéhave more neighbors that
they do not share with each other (i.e., asdtiek) factor is lower).

Finally, the term insideC represents theross-correlation between the estimate
and the observation,E{x;z;}. Note that this term increases as is lower and as
the clustering degreletween nodei and its ¢/ neighbors, ¢(i, k), is higher (i.e., the
observationz; and the predictos; will be more correlated as they share more neigh-
bors/information).
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Once we have explained (3.)3%ve calculate the total prediction error just by sum-
ming over all nodes € P. After reordering the equation we get the following expres-
sion:

FEiotma = ZE{(% — 3;)%} (3.36)
ieP
2 .
~atu (14 )”EZ(N 2 2 R ) (Z’k))'
ieP il gew | kel NinU| kelNinU|
A B

Notethat the terms irA are related to the independent noise of each node, and thus
are equivalent to the total prediction error of the N811(7). The terms ifB aredue to
the smooth variations of the low-pass filtered noisy graph signal.

Some interesting remarks have been extracted from the analysis Of4&BE3.36).
Nevertheless, as in the NM, the total prediction erB86) is minimized by minimizing
thesize of P, and thus some constraint on the sizéPok needed.

In next section we propose a Greedy algorithm that minimizes 308@ given|P|
andthus solves Probler8.1.

3.3.3.1 Proposed MA Greedy Solution

To obtain the MA solution, we design a greedy algorithm that, as in the NM approach,
first finds the Sg solution and then, in each iteration, movegtahe node inP that
minimizesFioma.-

The philosophy of the algorithm is the same to that of the NM, explained in Section
3.3.2.1. Therefore, the algorithm finds the candidate P that minimizes Eiwma by
minimizing the changes ifua from iterationt — 1 to ¢ (i.e., minimizing®{t<h).

In the MA, the problem of minimizing@{* is defined as follows:

min® " = min (Al — gttt — olhed) | (3.37)
ceP ceP
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where At} indicatesthe Eiowa in the neighborhood of candidatec P if it is
changed td/{, B1*<} the Eiowia before changing, andCt-} the Eigua reduction due
to nodec becomeg/ and thus is not taken into account in thgyya calculation.

Using (3.35), and considering tha = v. = v anda = 1, Att}, Biteh andC{t<}
can be written in the minimization probler8.87) as:

{te} = 1 1 1 .

keN.NP JEINRNU| he|NNU|

mk2+1 Z C(k’h)>’

he|NNU|

(e} 1 1 1 I )
B = 2 (<mk>+w+<mk>2 2 2. il 2 (W)’

m
kENNP JEINwAU| helNwnU| k helNenu|
(3.39)

1 1 1 2
cltel = +——+ 5 Y. Y k) —— Y cleh).  (3.40)
(me) MC] (me) FEINNU| hE|N.NU| Me heINNU|
Note that the number @# neighbors of every: € A, N P increases fronB{t<}
to Aft<}, because becomes a new neighbor for itsP neighbors. Neverthelesa/;
does not change, because it just depends on the graph topology and notZofPthe

assignment. The same applies &f, k), so that it can be calculated just once for every

combination of node$j, k), obtaining the clustering degree matx= [c;x]. As in

the NM, ©t-<} can be computed for everywith some matrix operations without using

loops, obtaining the vect@® "<} = [@it=1tglte=2t  @ite=IPll],
Details about the proposed MA greedy approach are in AlgorBhm
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Algorithm 3 MA Greedy Algorithm
Require: Graphg = (V, &), |P| nodes
1: Calculate the clustering degree mat€ix= [c; ;]
2: Calculate the Sgsolution
3: while |P[; > |P| do
4:  Calculate®t<}
5. Select the node* with minimum©{<}, ¢* = min @14
6
7
8
9

Letid — U U {c*}
LetP — P\ {c*}

: end while

. return U /P assignment

3.3.3.2 Experimental Results

Next we present some experimental results in terms the quadratic prediction error in the
first level of the transform (= 1) when applying different//P assignment strategies,
comparing MC, NM and MA.

The experiments have been carried out using the same video segments of Section
3.3.2. Nevertheless, in this case links of the graph between neighbarites with very
different luminance values (i.e., links between neighbor nodes that cross contours) are
removed, as illustrated in FiguB2. In this manner, assuming that the contours are well
defined,we have smooth luminance variations, which is the main hypothesis of the
MA model.

Summarizing, we have an unweighted graph as define®.i8) in which every
nodei couldhave very different number of neighbors |/

To evaluate the performance of each approach, we medsurgasas in (3.32),
andto obtain the MAL{ /P assignment solution we employ the algorithm described in
previous section.

Figure3.13shows achieved,, measvalues as a function of the proportioniehodes
on the graph (|(/|V) selected by each method. In the experimenjss v. anda = 1.
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Figure3.13: F,y.measfor different sequences. MA Vs NM.

Some conclusions can be derived from the results shown in F&jlige

e Consideringsmooth noise variations between neighboring pixels leads to a more
realistic model and thus thB,,.measfor the MA model is usually lower than for
the NM and the MC solutions.
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e MA considerably outperforms NM in regions where the luminance value of neigh-
boring pixels changes smoothly (in both the spatial and the temporal domains)
because the model is accurate (eRaris or Container, after removing the high
frequencies). On the other hand, in noisy areas, the results are similar to the ones
achieved with NM (e.g.Garden).

e F..measfOr the NM approach is consistently lower in FiguBel3than in Figure
3.9for the same video sequences and test conditions. This is doe fact that, in
the former, spatial links between neighbors that cross contours are broken (graph
representation of Figurg.2) while in the latter do not (graph representation of
Figure3.1).In other words, including the directional information helpsmprove
the prediction and thus to decrease the detail coefficient energy.

e As expectedF, . measusually decreases as the numbetfohodes on the graph
increases.

As discussed before, in a video representation, temporal correlation will usually be
stronger than spatial correlation, and thus pixels linked by means of “temporal links”
will usually be more correlated than pixels linked by means of “spatial links”. NM and
MA models do not consider this fact.

3.3.4 Spatio-Temporal Model (STM)

The MA model can be extended to take into account that spatial and temporal neighbor
pixels may have differentiated correlations. Next, we focus on a video representation,
obtaining the expected value of the prediction error assuming that data is generated
from temporal and spatial neighbors. This model will be referred to as Spatio-Temporal

model (STM). The result could be generalized to the case whealdferent kinds of

links, with different correlation values, are considered.

Definition 3.5. Spatio-Temporal Model
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LetG = (V, &) bean undirected graph. Let; be a random variable that represents
the data value associated to nodim the graph. Let us assume that

Wy
T; = W Z Ej | Z Ej + arnj;, (341)
[ jens, JEN,

where/\/[j] and/\/[;ﬁ] are the closed sets of spatial and temporal neighbors, respectively,
of nodei; w; is an arbitrary constant irf0, 1], with w, = 1 — wj; €; and; are zero-
mean independent random variables with varianeesanduv,,, respectively; andv is

an arbitrary nonnegative real constant.

Definition 3.6. Weighted Predictor
Consider the predictions given by

x:;z_ Yoot N (3.42)

: jEJ\/fﬁU ge/\/tmu
wheem$ = |NFNU|andm! = [N nU|.

Let theclustering degree(m, n) be defined as in (3.34).

Define
VG NNl
Dy = Y Y J—d (3.43)
JENANU keNPrU [j] | ’Mk}‘
and Ao AN
c N 1
D;d (Z) ‘ [J] [1] ’ (344)

NN
jeEN U | [J]|’Mi]|
for a, b, c,d equal to“s” or “t”.
Proposition 3.3. Spatio-Temporal Model Prediction Error

Let z; and z; satisfy Definition3.5 and Definition3.6 respectively. Consider that
v,, = v, andthatv,, = v, for anyi € V. The prediction error of a nodee P is given

by
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Est = E{(z; — 2:)*} = E{(2:)*} + E{(2,)?} — 2E{2;3,} (3.45)

2, 4 w2 . wt2 L 2wwy
= a v, + v, »
! NVal Wl NIV

.

A
2 2 2 2 2w,
+a2vn<wi+ﬁ)+ve( wSQG—l— Yt og oy w'wt[)

i Q

ARt
A

%
~
B

— 2, (w—ZJ—l— KftK),
m; m;

. J/

C

where

G = w?D% + w?D + 2w,w, D2, (3.46)
H = w?D + wlD}l + 2wgw;, Dyl

I =w?D% + w} D% + waw, (D + DY),

J = w?D* + w; D! + wav, (D + D),
K = w2D}* + w; D! + wsw(D;' + D}*).

The proof is in AppendidB.2.
Theterms in A consider the variance of the model; the term®inrepresent the

variance of the predictor; and the termsGrrepresent the correlation between model
and predictor.

Expression (3.45) is quite similar to that of the MA model (3.3bhe main differ-
enceis that in STM all the factors are weighted by spatio-temporal terms, thus taking
into account the different statistical dependencies of temporal and spatial links. There-
fore for example— in (3.35) becomeé”— - “’t in (3.45), or 5 in (3.35) becomes
| m' + w o+ WQ%;’M' in (3.45).

Flnally, summingEsr, (3.45) over all nodes € P, the total prediction error is:
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P| IP|
Biost=» E{(z; — )’} = _ Esr,. (3.47)
1€P i€P

Some other important remarks about expressi8mb| and (3.47) are outlined be-
low:

¢ Note that nowEsy, strongly depends on the nature of the links between nodes.
This way, for example, ifv; >> w, it will be useful to partition the graph so that
m} and |/\f[§]] are large, in order to reduce the variance of the predictor and the
observation, respectively.

e Likewise, observe that if one of the weights is much higher than the other, STM
tends to be similar to the MA model. Therefore, if for example— 1 (and thus
ws — 0), Esr, (3.45)— Ewna, (3.35), ignoring the spatial links.

e Optimizing Eist ignoring the termsG, H, I, J and K, gives rise to a similar
result to Corollary3.1for the NM case, but now taking into account the different
weightsof spatial and temporal neighbors. That is, in order to minimize the de-
tail coefficient energy, every node should have the same proportion of temporal
and spatial update neighbors, and the right proportion depends amdw, (the
higherw,, the higher proportion of temporal update neighbors).

3.3.4.1 Proposed STM Greedy Solution

Next, we present a greedy algorithm that finds the STM solution. To that end, the
algorithm moves t@/ the node inP that minimizeskiyst (3.47) in each iteration. For
simplicity, we assume that the terrs H, .J, and K in (3.45) are insignificant

Therefore settingv,, = v. = v anda = 1, the function to be minimized becomes:

" Notethat, in our video representation examples, this is a reasonable assumption because some of the
intersection between sets in the numerator of teRffsand D¢ are empty or small, and thus the terms
are zero or close to zero.
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P 2 2 2 2
Wy wj 2wswy w; Wi
—= 4+ = . 3.48
Z(!Af[ﬁ]\+]Nt\Jr\N[‘j}HN[g]\erermg) (3.48)

icP [i]

Asin the NM and MA greedy solutions, the algorithm finds the candidateP that
minimizes©{:<} (instead of 8.48)), defined as in (3.37), whergt<}, Bit< andCite
are conceptually the same as in the MA algorithm. Nevertheless, nowg hoved to
U, its P neighbors have one moté neighbor to be used in the prediction, but it can
be spatial or temporal (i.ex$ andm! do not increase their value in one fraii*< to
Atteh) . Asin the MA, ©{5¢ can be computed for everywith some matrix operations
without using loops.

Details about the proposed STM greedy approach are in Algodthm

Algorithm 4 STM Greedy Algorithm
Require: GraphGg = (V, ), |P| nodesws, w;
1: Calculate the Sg solution
while |P|; > |P| do
Calculate® <}
Select the node* with minimum©{<}, ¢ = min @1}
Letd — U U {c*}
LetP «— P\ {c*}
end while
return /P assignment

3.3.4.2 Experimental Results

In this section we comparg,,-measachieved when applying differebt/P assignment
techniques to the same fragments of video sequences used in previous sections. Graph-
based representations of these sequences are defined after disconnecting links between
nodes across contours (Figl8&) as in Sectiod.3.3.

In this case, we have an edge-weighted graph (with weigh&ndw;, for the spa-
tial and temporal neighbors respectively) in which every nodey have a different
number of spatial and temporal neighbors. The predictions are thus obtained following
(3.42) (i.e., given different importance to temporal and spatiaklihkeighbors). The
w,s andw; weights used in the experiments were chosen using the method described in
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Section3.1.2.2. We compare the proposed WMC and STM solutions. To obtain the
STM solution we employ the algorithm explained in Sect®8.4.1.

Figure3.14shavs some results af,,.measasa function of the proportion @ff nodes
on the graph (|U{|N) selected by WMC and STM solutions.
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Figure3.14: E,,.measfor different sequences. STM.
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Next, some conclusions extracted from Fig8ré4are outlined:

e For the same number dif selected nodes, STM gives generally rise to lower
Fav-measthan WMC. This can be viewed as indicating that STM leads tnd P
sets with better prediction ability (i.eR set is better predicted from tli¢ set)
than WMC.

¢ WMC tries to maximize the cut betweéhandP sets. This generally leads to a
certain number oP nodes having a large numberéicorrelated neighbors, while
other nodes may not have any correlated neighbor, giving rise to good and bad
predictions respectively. STM tries to obtain a solution in which every node has
a balanced number of correlated neighbors, thus improving the mean prediction
error when considering all nodes’

o WMC obtains reasonably good results (excep@Qontaine), that are close to the
STM solution. Thus, it can be considered a good heuristic.

e F. . measObtained with STM (Figur&.14) is greatly lower than the one obtained
with the MA model (Figure8.13), so it can be concluded that it is very important
to take into account that temporal and spatial linked neighbors usually have dif-
ferent correlations. Specifically, this will influence g P assignment and the
predictors (filters) used to calculate the detail coefficients.

3.3.5 Discussion

In the NM, z; is modeled as a noisy version of some constdBt15), which represents
themean luminance value. MA3(33) and STM (3.41ldo not consider any constant in
their models for simplicity. Nevertheless, it can be proven that this fact does not affect
theE{(z; — ,;)?} calculation (i.e., the MSE expression obtained in Propositoaand
3.3would be exactly the same if constaris considered in the models).

Note that, for simplicity, we are assuming the same arbitrary constants(j.and
wy) iIn the STM model generation (3.4a&nd in the predictors (3.42A practical way to
choosethese constants is to use the optimal weight values of the graph as explained in
Section3.1.2.2.
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When considering more than one decomposition level in the transfiwed// P
assignment solution at levgl= 1 will influence thel//P assignment at levels > 1
and thus the global performance of the transform. Therefore, it would be useful to find
optimall/ /P assignment designs by considering jointly several levels of the transform.
This is an interesting research question, which is left for future work.

3.4 Filter Design

As discussed before, in the predict stage of the transform the data is decorrelated. To do
that, eachP node is linearly predicted from itg neighbors as; = Zheuj pi(h)zy, and
the detail coefficient is obtained ds = z; — z;. To obtain an efficient representation
of the original data, it would be desirable that ~ z; and thusd, ~ 0. Therefore,
given a graphg = (V, ) and two disjoint sets off and P nodes, choosing a good
prediction filterp is crucial to obtain accurate predictions@hodes and thus a compact
representation of the original data.

Finally, it is also necessary to define the updateters to perform the update stage
of the transform. In Sectio8.4.2we briefly describe the update filter design, which is
basedon the method proposed bi4].

Note that through all this section we assume a given weighted graph for which a
bipartition of the graph (i.el{/P assignment), has been chosen.

3.4.1 Prediction Filter Design

In this section we outline some prediction filter designs for lifting transforms proposed
in the literature and the peculiarities that arise in the contegtagbh lifting transforms.
Then, we propose the design of prediction filters based on the given weighted graph.

3.4.1.1 Filter Design for Lifting Transforms on Graphs

The problem of optimizing prediction filters in lifting transforms has been considered
by several authors, typically based on optimization criteria that seek to minimize the
expected energy of the detail coefficients. In this way, [51] obtained the optimal predic-
torsof an arbitrary lifting scheme and applied them to lossless image compregstbn. |
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minimized the energy of the detail coefficients through an additipredict stage, im-
proving the compression performance of the transfo2B] flesigned a predict stage
thatminimized the expected energy of the detail signal in a generalized lifting scheme,
and [53] proposed to jointly find the forward and backward motion vedttas min-
imized the energy of detail coefficients in a motion compensated 5/3 transfsdin. [
proposedo use adaptive filters to estimate the optimal prediction filters. This approach
has the advantage that no side information is required to be sent to the decoder in a
coding application. Nevertheless, in order for the decoder to reproduce the same pre-
diction filters used at the encoder, both must have the same prediction errors and initial
prediction filters. Note that, if quantization is used (e.g. in a lossy coding application),
encoder and decoder must use the same quantized prediction errors to update the filters.
We focus on the design of prediction filtarsthe context of graph lifting trans-
forms, in which every node can have an arbitrary number of neighbors of different
classes (e.g., spatial or temporal neighbors in video representation). Therefore, calcu-
lating a different weight for each relative location a$jf8 or quincunx wavelets (e.qg.,
w; for the left-side neighbor of evely w, for the upper-side neighbor of everyand so
on) is not possible since every nodeas an arbitrary number and location of its neigh-
bors. Furthermore, is important to note that the proper choipedejpends on how data
is correlated across nodes. With these observations in mind, we design filters that are
based on the graph weights, which, in our case, represent an estimate of the correlation
between nodes.

3.4.1.2 Graph-Based Filter Design

In Section3.1.2, links on the graph were optimized in order to minimize the one-hop
predictionerror. Thus, prediction filters constructed from the graph weights should
lead to accurate predictions. To obtain the prediction of pixel P, we define filters
that weight it/ neighboring pixels taking into account the weights of their respective
connections ta.

Let us define the prediction filter for nodec P as:

pi:[p17p27'-~n7Lipk7"'7pmi]’ (349)
> k1 Pk
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wherep;, is the prediction value associated to ndde N;NU andm; is the number of/
neighbors of (i.e., |V; NU|). The normalization factoy ", p, is important to obtain
a normalized predictor when fixed weights are used in the graph or to define prediction
filters in higher levels of the transfofim

In a video representation example, every link can be spatiab{Semporal (7),
with weightsw, andw,, respectively. Let us define? (resp. m7) as the number of
U spatial (resp. temporal) neighbors iof Normalizing the weights byn andm?,
respectivelypy is obtained as:

ws/m$, if ik € S,
Dk = { / (3.50)

w;/m?T, ifikeT.

Note that this design leads to the prediction filters used in the SSTA2J. Also note
that,if the nature of the links is not taken into account in the graph weighting, we have
an unweighted graph and thys, = 1/m;, leading to predictors used in NM and MA
(3.16). Chapted shows experiments about the energy compaction achieved comparing
filters constructed from fixed and optimal weights.

ConsideringF’ different kinds of linksp;, is defined analogously to the video repre-
sentation example, so that, for tlieh kind of link, p,, = wf/mf if ik e f.

3.4.2 Update Filter Design

So far we have completely defined differéif P assignments on the graph and the
prediction filter design. In this section we focus on the design of the update filters,
completely determining the graph transform. Our update filters are designed based on
the method proposed bg§]. We briefly outline theu filter that we employ for the sake

of completeness.

For each update node we design an update filter that is orthogonal to the predic-
tion filters of its neighboring prediction neighbors. While the resulting update filters
are not orthogonal to all the prediction filters, this solution reduces the impact of the
“worst-case” coherence, because the prediction filters centered in prediction nodes that

8 In higher levels of the transforp> 1, pj, at;j will be calculated as the product of the weights in the
path between connected nodeg at 1, as explained in Sectioch1.3.
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are not neighbors have little or no common support with the giyeatate filter. Other
approaches for update filter design can be found in the literab3fe[56].

3.4.3 Discussion

Note that the predictors defined i8.50) are very similar to that used for optimizing the
weightsof the graph in Sectio.1.2.2, and, therefore, provide a near optimal solution
in the sense of minimizing the detail coefficient energy. The difference between both
cases is that in (3.50) we use th&'P bipartition information. Actually, the graph
weights could be recalculated after tH¢P assignment as is discussed in Sec8dh3,
leadingto optimal filters. Nevertheless, it is not worthy because weight values do not
significantly change.

3.5 Summary of the Properties of the Transform

We now focus on analyzing the main features of the proposed N-dimensional directional
transform. Some of these features, such as invertibility (perfect reconstruction) are de-
rived by the lifting-based construction of the transform (i.e., these features are inherent
to the lifting scheme). Other characteristics, such as energy compaction and frequency
and spatio-temporal (original domain) localization, depend o@/tf#e assignment, the
u andp filters design, and the graph construction.

Next, we outline some properties of the proposed transform:

e Perfect Reconstruction Transform.

Since the transform is based on the lifting scheme, it is guaranteed to be invertible
if the &/ andP sets are disjoint sets, as it was explained in Chaptaote that

all thel/ /P assignment methods discussed in this thesis give rigg ®disjoint

sets.

e Easy generalization to N-dimensional domains.

The transform can be applied to any arbitrary graph. Besides, one can easily re-
flect correlations of N-dimensional signals using the graph representation of data
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explained in3.1.1. Therefore, obtaining an N-dimensional transform is straight-
forward, just constructing the graph representation of the N-dimensional signal
and applying the lifting transform on this graph. Furthermore, it gives rise to a
simple process in which the formulation and the conceptual idea do not become
complicated as the dimensionality of the input signal is higher.

e Useful for irregularly spaced sample grids.

The graph representation of data is versatile enough to cope with data sampled in
an irregular grid, which is common to many applications such as WSNs. Then,
given the graph, the transform operates on it in the usual way.
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e Any feasible filtering direction.

Thanksto the total freedom in the graph construction (i.e., one can link any node
(sample point) to any other node (or set of nodes)), the proposed transform allows
filtering operations in any direction with no restrictions.

e Non-separable filtering operations.

In the graph representation of a signal, one node can have an arbitrary number
of different kinds of neighbors (e.g., spatial and temporal neighbors in a video
representation). Then, the filtering operations are performed using the available
neighbors of every node, giving rise to non-separable filtering operations in which
all types of neighbors are jointly considered (e.g., in a video representation, this
gives rise to spatio-temporal filtering), in contrast to the “separable” way, in which
filtering operations are performed separately in each direction.

e One-dimensional filtering operations.

Independently of the dimensionality of the original signal, once we obtain its
graph representation, the resulting predict and update filtering operations to per-
form the transform are one-dimensional operatiéh$)(

e Critically-sampled transform.

Given twol/ /P disjoint sets, the proposed transform is critically sampled (in-
dependently of the number of levels of decomposition of the transfrm the

sense that it generates the same number of coefficients than samples of the original
signal, avoiding redundancy in the representation.

3.6 Conclusions

In this chapter we have discussed different strategies for the optimization of lifting trans-
forms on graphs.

First, we have explained the graph construction, which involves the graph represen-
tation of an N-dimensional signal and the graph weighting. The directionality of the
transform is determined by the graph representation as long as the filtering operations
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are performed through linked nodes. Regarding the graph weightgbave proposed

two methods: (i) assuming fixed weights; and (ii) optimizing the weights in order to
minimize the quadratic prediction error when using one-hop predictors and considering
F kinds of links with differentiated statistical properties.

In this chapter we have also investigated th&P assignment process, discussing
two different approaches to find a suitable bipartition of the graph in order to minimize
the detail coefficient energy: (i) based on the given weighted graph and (ii) based on
signal models.

Graph-based//P assignment methods find bipartitions without making any as-
sumption about the graph signal. In this way, we have proposed a solution which relies
on the next intuition: if weights of the graph represent similarity between nodes (i.e.,
similar luminance value), the WMC maximizes the similarity betw&eand P node
sets. Signal model-basét)P assignment methods are optimal in the sense that, given
an arbitrary graph and a data generation model, the average detail coefficient energy is
minimized. Three data generation models have been proposed, namely: (i) the NM,
which assumes that the value of each node on the graph is a noisy version of a con-
stant; (ii) the MA model, which considers smooth variations between neighbor nodes;
and (iii), the STM model, that considers different statistical properties for spatial and
temporal neighbors. We have experimentally shown that the WMC is a good method for
coding applications, since it reaches near optimal solutions with less complexity than
signal-model based approaches.

We have also described the update and prediction filter design, which is based on
the weights of the graph. Finally, the main properties of the proposed N-dimensional
transform have been summarized.
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Video Coding Application

In this chapter we describe the application of our proposed graph-based lifting trans-
forms to video coding. As discussed in Chaptethe key novelty in our approach is
describinghe video sequence as a weighted graph of connected pixels and applying the
lifting transform on this graph.

The connections in the graph are constructed in such a way that pixels expected to
have similar luminance tend to be connected. These connections can be temporal or
spatial, and the number of neighbors that one pixel can have in the graph can vary lo-
cally. Therefore, we can have flexibility in designing the corresponding spatio-temporal
filtering operations, which can be selected to follow spatio-temporal directions of high
correlation. To achieve a more accurate prediction, the connection between any pair of
pixels is weighted as a function of estimates of correlation between the pixels.

Our work could be considered as a generalization of wavelet-based video coding. In
particular, our proposal gives rise to a more versatile solution where spatial and temporal
operations are no longer separable. The transform requires that some side information
be sent to the decoder, so that the same graph can be constructed at both encoder and
decoder. Specifically, temporal information (motion vectors) and spatial information
(contours) have to be sent. Most of the work described in this chapter was published
in [43], [44] and [42.

This chapter is organized as follows. In Sectibid we present our proposed graph-
basedransform for video coding and evaluate its energy compaction ability in compar-
ison with other schemes. Furthermore, we show how the proposed transform can over-
come classical problems that arise in MTCF approaches (e.g., LIMAT), such as their
poor performance in uncovered areas. Once we experimentally prove the efficiency of
our scheme in terms of energy compaction, we move towards a complete encoder in
Section4.2, describing a new reordering approach to sort the coeffichitge they
are entropy coded, and discussing low-complexity versions of the transform. Finally, in
Sectiord.3, we present how to apply rate-distortion optimization tocmaingscheme.
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4.1 Graph-Based Transform for Video Coding

Theprocesses needed to perform lifting transform on graphs (graph constragtien,
assignment, and filter design) were studied in Chaptdn this section we give some
detailsabout these processes applied to video coding. Graph construction is defined in
Section4.1.1, whilel/ /P assignmenand filter design are described in Sectid.2.

In Section4.1.3, we discuss how to obtain a MRA of the original signal extending the
transformto J decomposition levels. In Sectiochl.4, we evaluate its performance

in non-linear approximation terms (which allows to estimate the energy compaction
performance of the transform, and does not depend on other typical encoders processes
such as quantization or entropy coding) and compare it with the LIMAT apprdch [
andwith a simple DCT based video encoder (which is the basis of the latest video coding
standards). Finally, we compare the performance in uncovered areas of the proposed
scheme and the LIMAT in Sectioh1.5.

4.1.1 Graph Construction

The goal in the construction of the graph at thth level of decomposition is to link
pixels with similar luminance values, so that detail coefficief)ts in (2.1) are very
closeto zero. In this manner, the energy of the high pass subband at thig keilebe

low, achieving an efficient representation of the data. First, we explain how to form the
graph at they = 1 level of decomposition from the original video sequence. Then, in
successive levelg > 1, we construct the graph at levefrom the graph at level — 1

as explained in Sectiofh.1.3.

Considera video sequence df frames of sizel. x H and a subsequence &f
frames (K < V). We will employ a new graph representation for every subset of
K frames, until all thel” frames in the sequence are coded. Let}. /" be the
luminance value of pixels € O = {1,2,..., L x H x K}, whose graph representation
isG = (0,&) so that any pixek € O can be linked to any subset of pixet¢ C
{O\ {k}}, following criteria to be described next. Since we exploit the spatial and
temporal correlation jointly, a pixel can be linked to spatial and temporal neighbors at
the same time.
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With respect to the spatial correlation, the criterion for graphstruction is very
similar to that employed inH] for image compression. Pixels that are close to each
otherand, in general, pixels that belong to the same object, will tend to have correlated
luminance values. In contrast, when filtering across contours, there can be a significant
amount of energy in the high pass subbands, because the value of neighboring pixels
can be very different. Thus, if we avoid filtering across the contours, we are more likely
to obtain a more compact representation of the data. Following this reasoning, we link
those pixels that are one-hop neighbors in any direction and do not cross any contour.
To do that, we need to estimate the contours and send this information to the decoder.
To reduce the resulting overhead, we note that if there are no occlusions and the motion
model captures object motion accurately, it is possible to estimate the contours of the
current frame using contour data obtained from the reference frame along with motion
information. Thus, in practice we only need to explicitly send contour information to
the decoder once every frames.

Regarding the temporal correlation, we link those pixels that are related by means
of a motion model. In our case, block matching is used, and every pixel belonging to a
block is linked to the corresponding pixel belonging to the best block match in the ref-
erence frame. Motion vectors (MV) need to be sent to the decoder in order to describe
the motion. Finally, note that motion mappings are estimated using the original video
frames, that is, the reference frame is not a reconstruction from a previously encoded
frame as in the latest video coding standards such as H.264/AVC and H.265/HEVC
(High Efficiency Video Coding). An example of graph construction and contour infor-
mation transmission is shown in Figudel for two frames, where it can be seen that
links between pixels follow the motion direction and avoid crossing contours within a
frame.

4.1.1.1 Graph Weighting

As discussed in SectioB.1.2, the weights of the graph are used in the design of the
U /P assignmenprocess and thp andu filters, and in the construction of the graph

in successive levels of decomposition, thus helping improve prediction at all levels.
Furthermore, this weighting will be useful to reorder the coefficients before they are
arithmetically coded.
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MxN+1 MxN +2

Reference frame Current frame

Figure 4.1: Spatio-temporal graph construction. The gresi lmpresents the luminance
value of each pixel; the red-thick dashed lines are the object contours; the green-fine
dashed lines represent temporal connections, and the blue solid lines spatial connections.
Finally, the black dashed lines represent the block size.

As a starting point, fixed weights are used as described in Se@tioR.1. Given
thattemporal links are identified using ME, the expected correlation between temporal-
linked pixels is higher than that between spatial-linked pixels. In particular, we experi-
mentally setv, = 10 for temporal connections and, = 2 for spatial connections.

4.1.2 U/P Assignment and Filter Design

We have proposed in Secti@3 somel//P assignmenstrategies that minimize detail
coefficient energy under certain data generation models, and we have compared them
to graph-basetl /P assignment strategies described in Sec8dh As we concluded,
usingmodel-based solutions lead to lower detail coefficient energy for a given number
of |P| nodes. Nevertheless, these solutions are more computationally expensive than
MC and WMC because they need more complex greedy algorithms. Another relevant
conclusion extracted from analysis in Sect®B8.4is that it is very important to include
spatialand temporal information to perform tli¢/? assignment. Furthermore, we

81



Chapter 4. Video Coding Application

concluded that the WMC solution is a good approximation to the opswiation under
the assumed spatio-temporal data generation model.

Summarizing, given the lower computational cost and the near-optimal performance
of the WMC, we use it as criterion to assign a label to each pixel in every level of the
transformy, obtaining theP; and the/; disjoint sets. To compute the WMC solution we
use the greedy approach described in Algorithrn example of thé/ /P assignment
for two levels of decomposition is shown in Figur2. Note that thé/ nodesare usually
connected by means of reliable linksPmodes, so we can obtain an accurate prediction
of theseP nodes from thé/ nodes. Discarded links (same label connected pixels) are
indicated as broken links.

Finally, to obtain the detail coefficient in a prediction pixet P, we define the fil-
ters as in SectioB3.4.1, thus obtaining robust prediction filters that weightZitreeigh-
bor pixels taking into account the reliability of each of their connections Tthe update
u filters are designed as was explained in Sec3i@n2.

4.1.3 Extending the Transform to Multiple Levels of Decomposition

In order to carry out a multiresolution analysis, the low pass coefficients are successively
projected in different transformation levels onto smooth and detail subspaces. To obtain
the graph at transformation levglfrom the graph at leve] — 1, we connect thos&

nodes that are directly connected or at two-hop of distance in the graph aj level

so that the simplified graph continues to capture the correlation between pixels. If the
link exists at levelj — 1 then the corresponding link at levginherits the same weight.
Alternatively, if two nodes are linked that were two hops away at lgvell then the
corresponding link weight is the product of the weights in the path between connected
nodes at level — 1. Once we have constructed the graph at lgyele should split

the nodes again into prediction (f”and update ({§ disjoint sets in order to perform the
transform. Figurel.2shows an example of graph construction at leviebm a graph at
level j — 1, and the/ /P assignment at both transformation levels.
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(j-1) level

Figure 4.2: Graph construction for consecutive levels of decompositienl0, b = 5
andc = 3 are the different weight values. Grey nodesreodes, and white ones are
P nodes.

4.1.4 Experimental Results

To evaluate the performance of the proposed transform, we emplé&yé¢n® non-linear
approximation (outlined in4]), which consists of keeping tHelargest coefficients of

the transform and setting the rest to zero. This is a good indicator of energy compaction
ability of the transform (and thus of the potential coding performance). We compute
the average PSNR of each sequence consisting ef 100 frames as a function of the
percentage of retained coefficients.

In our experiments, five levels of decomposition of the transform are performed on
the constructed graphs. Our method is compared to the Haar version of the MCTF ap-
proach described in6] (the LIMAT method), and to a motion-compensated discrete
cosinetransform (DCT)-based video coder. In the DCT-based coder, the residual im-
age, obtained after block motion estimation (ME) and compensation processes, is trans-
formed by a8 x 8 DCT. This scheme is the basis of the latest video coding standards
such as H.264/AVC or H.265/HEVC.

Given that our purpose is to evaluate the compaction ability of the different trans-
forms keeping itk largest coefficients and measuring the quality of the reconstructed
signals, side information is not taken into account in these first results. Nevertheless,
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note that in the proposed method we will have an overhead assowikethe tempo-

ral and spatial information needed to construct the graph at the decoder. Regarding the
temporal overhead, the same motion model is employedl icompared methods, i.e.,

a standard motion vector ghx 8 pixel blocks is assumed (only one reference frame),

and thus this overhead does not need to be considered in the comparison. Regarding the
spatial information overhead, we chodse= 20 and assume that a binary contours map
(obtained using Roberts’ gradient operators) is sent to the decoder oncésefrarypes,

so that the spatial side information will be very low, as we will see in the rate-distortion
experimental results provided in Sectir2.5.

Notethat, as discussed in Secti8ri, there exists a trade-off between how accurately
thegraph captures correlation information and the side information needed to construct
the graph. A higher rate to describe the spatial and temporal information (e.g., very
small block sizes for motion) means that the correlation between linked pixels is also
better captured by the graph, leading to potential compression gains. The weights used
in these experiments ate = 10 andw, = 2.

Figure4.3shows PSNR as a function of percentage of retained coeffiatitsee
different QCIF sequencebjobile, CarphoneandForeman. The proposed method out-
performs the DCT and the LIMAT transforms. In th®bile sequence, when 40 percent
of coefficients are retained, our method is 7 dB and 4 dB better than the DCT and the
LIMAT, respectively. However, the LIMAT is better than the proposed one when a very
small percentage of coefficients are retained folMlodile sequence. One possible rea-
son could be that we may have to chosen spatio-temporal filtering directions worse than
the temporal-only ones chosen by the LIMAT.

For subjective evaluation, Figuded shows the original version of the frame number
12 of the sequenc&lobile (upper-left part) and the reconstruction obtained from the
DCT transform applied on the residual (upper-right part), LIMAT (lower-left part), and
the proposed method (lower-right part). The reconstruction is carried out from the 20
% of retained coefficients. It can be seen that our transform achieves significantly better
perceptual quality than the DCT, and slight improvements over LIMAT (see for example
the three animals of the upper-left part of the frames).
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N-Term Approximation N-Term Approximation
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Figure 4.3: PSNR versus percentage of retained coefficients.

Table4.1: Comparison of LIMAT and the proposed transform coding different areas.

PSNR(dB) in Area 1 | PSNR(dB) in Area 2
Proposed 43.1 36
LIMAT 42.4 33.3
A 0.7 2.7

4.1.5 Performance in Uncovered Areas

To further explain the advantages of the proposed scheme we now consider in more de-
tail situations involving uncovered areas. Figdté shows the motion mappings used

by the Haar version of the LIMAT approach with two levels of decomposition. Predic-
tion frames (P) will be filtered following the directions indicated by the MV, and update
frames (U) will be updated using inverse mappings MVGrey pixels represent non-
updated pixels in thg — 1 level of decomposition, that is, pixels that have not been
low-pass filtered and thus contain high frequency energy. This high frequency content
will not be removed using the smooth coefficientg &vel, giving rise to inefficiency.

The black pixel represents a pixel that has not been decorrelated at any level, so that the
coefficient after both levels of decomposition will be the “raw” original pixel, instead

85



Chapter 4. Video Coding Application

P -
L] B
e T

i o = m @8 FE_I.
RN PR
nEDuERE" )

T

Figure 4.4: Original (upper-left) and reconstruction with®0of the transform coeffi-
cients from the DCT applied on the residual image (upper-right), LIMAT (lower-left)
and the proposed method (lower-right).

of a transform coefficient. The proposed method can solve this problem by represent-
ing video information as a graph (Figudel) leading to a versatil&f /P assignment,

in which P andi/ nodes can belong to the same frame. To illustrate this statement,
we have encoded two differe@2 x 32 pixel areas of the sequen€ereman. Area 1
starts at pixel (1,1), so that could be considered a fairly static area. Area 2 starts at
pixel (80,80), corresponding to a very dynamic area (the face of the man). The results
in terms of PSNR when the 20 % of the coefficients are preserved are given in Table
4.1. The proposed method obtains slightly better results than TlIMAArea 1, while

it significantly outperforms LIMAT in Area 2, where there is a lot of motion and the
uncovered background problem manifests itself.
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(J-1)
level

]
level

Figure 4.5: Uncovered areas in LIMAT.

4.2 Towards a Complete Encoder

So far we have evaluated the performance of the proposed graph-based transform for
video coding, obtaining promising results in non-linear approximation terms. Never-
theless, in practical encoders, coefficients of the transform are reordered, quantized and
entropy coded (together with the side information) thus obtaining a bitstream of specific
rate R.

In this section a complete graph-based transform video encoder is proposed. To this
end, in Sectior4.2.1we present a new reordering technique to be applied in our graph
transformin order to sort the coefficients and thus increase the coding efficiency. Then,
in Sectio4.2.2, we obtain the optimal weights as a function of the video coatewas
discussed in SectioB.1.2.2, and compare the coding performance when using these
optimal weights and the fixed weights of previous section. Furthermore, in order to
reduce the high complexity of our encoder (especially ofthi®> assignment process),
we design two low-complexity versions of this process that work (i) with sub-graphs
formed from the original graph and (ii) in a distributed manner. This is presented in
Section4.2.4. Finally, rate-distortion results are provided to evaluatg#réormance
of our coding scheme and compare it with a DCT-based encoder in Sdc2idén
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4.2.1 Coefficient Reordering

In typical practical encoders, quantized transform coefficients are scanned in certain or-
der before applying entropy coding. For example, in DCT-based encoders, the reorder-
ing is usually performed following a zigzag scanning order within each block, while
in wavelet-based approaches, bitplane by bitplane scanning of transform coefficients
has been a popular approad@¥], [58]. We next propose two different approaches to
re-orderthe coefficients generated by our graph-based transform: (i) inter-subband re-
ordering, which implies sorting the coefficients as a function of the subband to which
they belong; and (ii) intra-subband reordering, which sorts the coefficients of a subband
as a function of the reliability with which they were predicted.

4.2.1.1 Inter-subband reordering

Because our transform achieves significant energy compaction, the energy in the middle-
high frequency subbands tends to be very low, so that these sub-bands likely have
a large number of zero coefficients after quantization. Based on this, we group co-
efficients that belong to the same subband, increasing the probability of having long
strings of zero coefficients. Specifically, the coefficients are sortetbeffs;,;., =
[s7=7,d7=7, d7=/71, ... d='], wheres’=’ are the smooth coefficients at level of de-
compositionj = J (the lower frequency subband), adél are the detail coefficients at

a generic level of decompositigh Refer to Figuret.6 for an example of the effect of
orderingon quantized coefficients frog frames of the sequen€&arphone.

4.2.1.2 Intra-subband reordering

The graph is known at both encoder and decoder. Its edge weights provide an esti-
mate of the reliability with which oné® node is predicted frond/ neighbors. We
make the assumption that the magnitude of detail coefficien3 nodes tend to be
smaller if they have been predicted from more “reliabdé neighbors (i.e., predic-

tion is better). Thus, we propose to reorder the coefficients in each subband according
to the reliability of their links, grouping together the more reliably predicted nodes,
which likely lead to smaller magnitude detail coefficients. An example of this re-
ordering is shown in Figurd.7. In the example, the detail coefficients (white nodes)

of a generic subbang, d’ = [1,2,3,5,6,7], have the following reliability values,
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Coefficients evolution

Coefficient value

-50 I I I I I
0 0.5 1 15 2 25 3 35 4 4.5 5

Coefficient number x 10°

Coefficients evoution with inter-band reordering

50

TN TR O PP V[T T
= N

Coefficient value
o

Il
0 0.5 1 15 2 25 3 3.5 4 4.5 5
Coefficient number % 10°

Figure 4.6: Inter-subband reordering example. Top: origioaifficients. Bottom: re-
ordered coefficients.
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Table 4.2: Performance comparison using inter-subband and intra-subband reordering.
Without Inter Inter and Intra
reordering | reordering reordering
Foreman | 503 Kbps | 404 Kbps 350 Kbps
Carphone| 502 Kbps | 425 Kbps 371 Kbps

v/ = [a,2a,a,3a/2,(a+b)/2,3b/3], respectively, calculated as the average of the
weights of all graph edges used to compute that coefficient. Assuming that this

gives rise to the following intra-subband reordered coefficieﬂﬂ;;;,a =17,6,1,3,5,2].
Figure4.8 shows a real example of the detail coefficients at decompodéiatj = 4

in the sequenc€arphone. The upper part of the figure shows the quantized coeffi-
cients vector without reordering, and the lower part shows the coefficients after the
intra-subband reordering.

Table4.2 shows bit rates (Kbps) after coding 20 frames of the sequeffaresnan
andCarphoneat different qualities (32.9 dB and 36 dB, respectively) without reordering
the coefficients, employing inter-reordering, and inter and intra reordering. The rate is
obtained with an arithmetic coder as is explained in Secti@rb.
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Fiaure 4.7: Intra-subband reorderina examnple.
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Figure 4.8: Intra-subband reordering. Predict coefficientieabmposition level j=4.

4.2.2 Optimal Weighting Vs. Fixed Weighting

In the first approximation to the application of the transform to video coding (Section
4.1) the weights on the graph were experimentally fixed, with values= 10 and

w, = 2 for temporal and spatial links, respectively. In this section we compare the
detail coefficient energy obtained using these fixed weights and the optimal weights
(calculated as discussed in Secti®i.2.2). To perform the prediction stage of the
transformwe use the prediction filters defined in Secti®4.1.

90



Chapter 4. Video Coding Application

Table 4.3: Comparison between different weightings. Detailfmeft energy per co-

efficienting = 1: Ey,_,.

Carphone| Mobile | Airshow Football
(scene cut)| (fast motion)
Eav-measj—1 W = (wy, wy) = [2, 10] 14 44 34 408
Eav-meas =1 W* 12 37 17 240

Table4.3 shows examples of detail coefficient energy normalized by the nuaiber

[Pi=1l 7

‘P nodes in the first level of the transform= 1 (Eav-meas, j=1— ﬁ ZmePH m,j=1
i =1 m,

obtainedcoding 20 frames using the optimal weights (calculated in a frame-by-frame
basis) and using the fixed weights. Note tha}.meas, j-1iS lower when the optimal
weights are used for all the considered cases.

Figure 4.9 shows the detail coefficient values obtained using the optimeadhts
(right part of each subfigure) and the fixed weights (left part of each subfigure). The
example corresponds to a region of a specific fram&ighow(scene cut) anBootball
(fast motion). It can be seen that the absolute value of the detail coefficients is lower
when using the optimal weights. Specifically, in the scene clAighow, we have
(wi,wf) = (0.7,0.3), and thus the filtering mainly follows the spatial directions, giv-
ing rise to better predictions and lower detail coefficients energy. The evolution of the
(w?,wy) values is shown in Figur4.10. Observe that, iAirshow,w; is close to one
(actuallyAirshowis a very static sequence) except in the scene cuts (frames number 6
and 16), wherev! becomes larger. Also note that pixels in the first frame do not have
any temporal forward neighbors, and therefete= 1 andw; = 0.

(a) Airshow (b) Football

Figure4.9: Detail coefficient values. Darker colors indicate higher negative coefficient
values, while brighter colors mean higher positive coefficient values. Grey indicates
coefficients close to zero.
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Figure 4.11: Encoder and decoder data flow.
4.2.3 Encoder and Decoder Data Flow

Figure4.11 shows the encoder and the decoder data flow, assuming that the optimal
weightingis selected to weight the graph.

First, ME and contour detection processes are performed, obtaining the MVs and
contour map that are needed to construct the graph at level of decompgsitiomn
(Sectiord.1.1). Once we have the graph, the encoder calculates the link weighist,
this point, the encoder performs thé_, /P;—, assignment process solving the WMC
problem. Next, the weighted graphs at levgls- 1 are obtained as is explained in
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Section4.1.3, and thé{;-, /P,~, assignments are made. Once we have the graphs and
U /P assignments for all levels of decomposition, the encoder performs the transform,
guantizes the coefficients, and reorders them (Sedtidri). Finally, an entropy coder

is used to generate the definitive bitstream.

Note that, as it can be seen in Fig4rd 1, the weight values are needed to perform
thel( /P assignmentthe filtering operations of the transform, and the reordering of the
coefficients. Also note that, since the motion vectors, the contour map, and the weights
are sent to the decoder, the process performed at the encoder is known at the decoder so
that the system is invertible.

4.2.4 Low Complexity Approach

Low complexity is an important feature of practical encoders, especially for real-time
applications. Therefore, there are many works that propose low-complexity approaches
for video coders which aims to reduce the operations to be performed in the encoder
without deteriorate the coding performance. Some examples in the context of the stan-
dard H.264/AVC have been proposed by the authos4h, [60], [61], [62], [63] or [64].

Next, we explain two different approaches to reduce the computational cost of the
proposed transform. Specifically, we focus on th&P assignment process, which is
the most time demanding subsystem of the encoder.

4.2.4.1 Low complexity Transform Using Subgraphs

The complexity of the graph-partition process/@{assignment) increases rapidly with
the number of noded/. In particular, the worse-case time complexity for the greedy
WMC assignment algorithm used in our encode®i§N? - logN) [47]. Therefore, it
becomeghe most complex process of the proposed encoder. Besides, another problem
with operating in the whole graph is memory and delay. We now present a transform
that operates on subgraphs of the original graph in order to reduce overall complexity
with negligible loss of performance.

The goal is to divide the original graph node ¥edf sizeL x H x K (whereL x H
is the frame size and the number of frames considered in the graph construction)
in I subsetsA;, so that in any of the subgraphs formed with the nodes of each subset
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Si (A;, &) we can obtain a transform that is invertible and critically sampled, which
takes into account the interactions between the nodes of different subgraphs. Critical
sampling in this context means that the number of transform coefficients generated over
all sub-graphs is the same as the original number of pixels. A necessary condition to
achieve these objectives will be that thenode subsets have to be disjoint.

The proposed solution creates subgraphs based on disjoint subsets that contain linked
pixels in K temporal hops , thus keeping the more reliable links of the subgraph in any
level of the transform (under the assumption that temporal links are more reliable than
spatial ones).

To do that, we divide each frame into blocks of si2ze< ). Then, we perform the
motion estimation for each of these blocks in tieframes. With this information, a
tree is generated in which the children of a given blecke the blocks of the reference
frame that are linked ta by means of the motion model. Finally, each subgraph is
composed of the pixels that belong to the blocks that are linked along tframes.

This is achieved using AlgorithrB, which given an initial set ofi groupsG;, each
composed by a block and its children, constructs the subgraphs by joining groups that
have common elements, and deleting those groups that have already been aggregated
into a subgraph. An example of the subgraph construction is shown in Fdige

Algorithm 5 SubgrapH~ormation
Require: n GroupsG;

1: while Flag # 0 do

2. SetFlag=0

3. fori=1tondo
4: if G; # deleted then
5: for j =i+ 1tondo
6: if (G; # deleted) and(G; N G; # ¢) then
7. SetFlag =1
8: SetGl = Gz U Gj
o: DeleteG;
10: end if
11: end for
12: end if
13:  end for
14: end while

15: return G, and Index Vector of Non-deleted Groups
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Figure 4.12: Subgraph construction from 4 frames. Top: mal&pendency tree. Bot-
tom: two subgraphs are formed corresponding to dark and light grey block pixels, re-
spectively.

Table4.4 provides experimental results for 20 frames of three QCIF sequéices
bile, Foremanand Carphone). The table shows the number of subgraphs formed and
the corresponding complexity reduction (§; €alculated as the ratio of encoding times
when using the subgraphs and the original graph. It can be seen that the complexity
reduction can be significant. Nevertheless, one drawback of this approach is that the
final complexity depends on the motion content of the video sequence (faster motion se-
guences tend to lead to larger subgraphs). There are several approaches to mitigate this
problem. For example, motion vectors could be constrained (e.g., motion vectors would
have to point to co-located slices in previous frame). Alternatively, links between nodes
in the bigger subgraphs could be removed leading to new smaller disjoint subgraphs un-
til a required complexity restriction is achieved, or the maximum number of blocks that
a subgraph can have in AlgorithBhcould be limited. Any of these approaches would
leadto a simpler transform but would have an impact on performance.
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Table 4.4: Subgraph approach performance.

Number of Subgraphs | CR

Mobile 82 48
Foreman 14

Carphone 1 1

4.2.4.2 Distributed!/ /P assignment

We now propose an approach for performing #h&P assignment that works in a dis-
tributed manner, leading to a computational complexity almost independent of the video
content. This method reduces the complexity of the WMC greedy algorithm used, from
the O (N? - log N) worse-case complexity of [47to O (% B® - log B), whereB is the

block size used in the algorithm. Note that for a fixBd the complexity increases
linearly with N in the distributed approach.

The idea consists in calculating the WMC solution in blocks of dizemaking
local U/ /P decisions, and transferring this information to neighboring blocks. This is
achieved by operating with overlapping blocks. Note that there exists a complexity-
precision trade-off in the selection &f. The larger the block sizB, the more complex
and accurate the solution.

The proposed greedy solution is described in Algoritmvherel/; andP; form
abipartition of the node sé#;_,, F; andg, form a bipartition of3;, and we consider
Gainof a node to be the sum of weights of all its incident edges. The algorithm requires
N5 blocks of sizeB so thatl J B; = V, covering all the nodes of the graph. Every block
must “see” the decisions Zteaj\l%en in neighboring blocks, which in the algorithm means
thatB; N B; # <, wherei is the block to be processed ajds each one of the already
processed neighboring blocks. The intersection is the information that they share, and
must include the nodes ifi; that have edges that go from blogko block:. Figure
4.13 llustrates two iterations of the algorithm. In the first iteratipaft part of the
figure), a local WMC solution is found in block;. Then, in the second iteration, block
Bs includes the nodes dB, that have edges that go frofy to B, (boundary nodes).
Therefore, the local WMC irB; is influenced by the already known colors (labels) of
these boundary nodes, which means that the solution for kigckffects the solution
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for block B,. With this simple approach we get the speed-up benefits of operating with
blocks, while guaranteeing a consistent solution across blocks.

Algorithm 6 DistributedWeighted Maximum-Cutlgorithm
Require: U; = {@}, P; = {U;_1}, N blocks of sizeB
1: for i = 1to Nz do
2. F;,={o}andg; =B,
Fi — B, NU; andG; — G\ F;
Change the sign of the incident edge weights to every rfodeF;
Calculate th&7ain of the nodesC B;
Select the node with largestGain, a = max(Gain)
while Gain > 0 do
Let F; — F; U {a}
LetG; — G:\ {a}
10: Change the sign of the incident edge weights to node
11: UpdateGains of adjacent nodes
12: Select the node with largestGain, a = max(Gain)
13:  end while
14: U — U UF;
15:  P; — P\F;
16: end for
17: return U; andP;

Figure 4.13: Distributed WMC.

The experimental results for the complexity reduction (¥,'&alculated as the ratio
of encoding times when coding 20 frames using the centralized and the distributed ap-
proaches (CR= %T’f) show the efficiency of the proposed method. Using a block

size of B = 512, we experimentally obtai@®’R = 228 in Carphone,C’R = 203 in
MobileandC' R = 197 in Container, keeping the cut of the graph and the numbéf of
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and’P nodes selected very similar to those chosen in the centralized approach, and thus
causinga negligible loss in performance.

4.2.5 Experimental Results

To evaluate the coding performance of the proposed encoder, we compare it with a
motion-compensated DCT video encoder in terms of rate-distortion for different test
sequences. The coefficients are quantized using a uniform dead-zone quantizer in the
DCT, and a subband dependent quantization in our encoder (i.e., the quantization step
is lower in low frequency subbands and vice versa). These quantized coefficients are
scanned as explained in Sectiér2.1in our proposed method, and in the traditional
zigzagscanning order in the DCT-based encoder. Note that this process is performed
in scanning units of siz&. Then, run-length encoding (RLE) is performed in both
encoders, obtaining the symbols to be entropy coded. An end-of-block special symbol
is used to indicate that all remaining coefficients in the scanning unit are quantized to
zero. Finally, the bitstream is obtained coding the symbols using an adaptive arithmetic
coder.

Regarding the side information, motion vectors are differentially encoded with re-
spect to a predicted motion vector obtained from adjacent blocks. Then, a variable
length code (VLC) is used to code the difference motion vector. Note that the motion
vectors to transmit will be different in the proposed and in the DCT based encoders,
since the matching is carried out in original frames in the former and in reconstructed
reference frames in the latter. Nevertheless, the rate turns out to be similar in both cases.
The proposed encoder has an extra overhead because it should send the contour infor-
mation to the decoder once evekyframes and the optimal weight values every frame,
since they are calculated as in Sect@.2. Contour maps are encoded using JBIG,
obtainingnegligible rates of around 10 Kbps, and weights are coded using 9 bits per
weight, giving rise to insignificant rates.

In the experimentsK = 20, S = 256, and five levels of decomposition of the
proposed transform are performed. Block size$tok 16 and one reference frame are
assumed in the motion estimation process. In the DCT encoder, we xuseDCT.

Finally, the block size used in the low cost approach is sét te 512.
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Figure4.14shows the rate-distortion curves for four different QCIF sequemdes,
bile, Carphone,Flower andContainer. In general, the proposed method outperforms
the DCT-based approach. Mobile sequence, our method is 4 dB better than the DCT
in medium to high qualities. The gain is also significant in the rest of sequences (around
1-1.5 dB inCarphone, an 2 dB ii€ontainerand Flower). However, the efficiency of
the encoder at low qualities gets worse, losing against the DCT based enc@ier in
phonefor qualities lower than 32 dB. The results are in agreement with the non-linear
approximation results presented in Sectoh.4.
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4.3 Rate-Distortion Graph Optimization

In Chapter3 we discussed some optinl/P assignmenstrategies which minimize
the detail coefficient energy under specific data generation modelsforrdgiven
number of P nodes(|P|). Therefore, these models do not provide the optif#4
which actually depends on the application.

In a typical coding application, the encoder performs rate-distortion optimization
(RDO) to find the coding parameters that minimize the distortion under a rate con-
straint. Thus, for our proposed coding schef#,(and some others parameters) should
be chosen by solving the RDO. As a first approximation, one can assume tiat, as
increases, the distortion (/increases (because worse predictions are obtained, as is
shown in the experimental results of Sect®2) and the rate (Jdecreasegbecause
detail coefficients need lower number of bits to be represented).

In this section we study how to apply RDO to our proposed graph-based video en-
coder. We first formulate the original RDO problem in Sectb8.1, turning it to an
unconstrainegroblem as in§5]. Then, in Sectiond.3.2and4.3.3we provide, respec-
tively, D and R models that depend on tli¢/P assignment (which implicitly deter-
mines|P|), and the quantization step of smooth coefficients for decomposition level
j = 1. Although some simplifying assumptions are needed to construct the models,
they give useful intuition into how to apply RDO to predict node selection. In Section
4.3.4we use the proposeld and D modelsto obtain analytically the\ parameter that
balances the weight of the and D terms in the unconstrained RDO problem. We pro-
vide a formula that relates and A, remaining only one parameter in the optimization
process, which is described in Sect®B.5.

It should be noted that the goal of this section is just to give some intuitions and
illustrate how the RDO process could be done, so that we make some assumptions and
simplifications explained in Sectioh3.1. Finally, in Sectior#.3.6, we discuss how
thesesimplifications affect the RDO, and the way it could be extended in order to obtain
a more realistic process.
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4.3.1 Rate-Distortion Optimization Problem for Lifting Transforms
on Graphs

In this section we formulate the RDO problem in general sense for the lifting transform
on graphs. Usually, a video encoder performs the RDO aiming to find the coding option
that minimizes aD measure subject to a givenrestriction.

Let @ be a combination of the different coding options:

0 = {As, MV's, contour mapld;/Pj, wi} , (4.1)

where A, is the quantization step vector used to quantize each subband of the lifting
representation given ir2(2)(i.e., Ay = [Aq,_, ... Ay, Ay, ]), U;/P; is theld;/P; as-
signment for each level of the transforimandw; represents the weights of the links on
the graph for each level

Thus, the problem can be formulated as:

Problem 4.1. RDO Problem Formulation.

mein {D(0)} subjecttoR(0) < R., (4.2)

where D(0) represents the) between the original and the reconstructed coding
unit; R(0) is the R needed to encode it (the number of bits needed to encode headers,
side information -MVs, contour map, weight afdvalues, ...- and transform coeffi-
cients); andR. the maximun® allowed (theR constraint).

Using a Lagrange formulation, this constrained optimization problem can be con-
verted into an unconstrained proble@b], [66], [67]:

mein {J(0)}
with J () = D(0) + AR(6), (4.3)

where) is the Lagrange multiplier that weights the relative importance betvig#)
andR(0). A given value of) yields a solutiorf*()) that is also an optimal solution to
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the original RDO problem (4)Zor a particular value o, = R(0"). Thereforegiven
aR., one should find tha multiplier so thatR(6*(\)) = R...

To solve Problerd.1, we make somassumptionsand simplifications, namely: (i)
we only optimize the first level of the transformh = 1; (ii) we employ two quantizers
related byA,,_, = 2A,,_,; (iii) we do not take into account the side information in
the optimization process; and (iv) we obtain the optimal weights, as explained in
Section3.1.2.2.

Given that we just optimize the first level of the transform, hereafter, for simplicity,
we omit the subindey = 1, so thatA refers toA,,_, (andA,4,_, = 24), andU/ /P
refers told;—; /Pj-1.

Under these assumptions and simplifications, Proldehean be written, using the
Lagranggormulation, as:

Problem 4.2. RDO Problem Formulation with Simplifications.

MI%;TIAJ(U/'P, A) = u%?A {DU/P,A)+ AR(U/P,A)}. (4.4)
Note that optimizing thé//P assignment we are optimizing tfe|. Other param-
eters could be easily considered in the problem formulation, as the side information of
the MVs and the contour map.
Next, we presend (U /P, A) andR(U /P, A) models and we derive themultiplier
as a function ofA\, so that both parameters are tied together. This way, givevalue
and a sequence, one can solve Problem (4.2) by finding tfiethatminimizes.J.

4.3.2 Distortion Model

In this section we propose & model for lifting transforms on graphs, under the as-
sumptions given in previous section. The distortion of the lifting transform on the graph
can be expressed as:

DWU/PA) =D (v — 7))+ Y (1, — 3,)°, (4.5)

uel pEP
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wherez, represents thg-th reconstructed pixel after quantization and inverse transfor-
mation. Assuming that the transform does not perform the update stage and tat the
coefficients are orthogonal to its neighbors,D can be written as:

DWU/P,A) =Y (su—5)"+) | D Plsu—5)

ueU pEP  \ueN,NU

(4 -d) (4.6)
peEP
where\, is the set of one-hop neighbors of ngde P, m, is the number of one-hop
U neighbors of node, andp is the prediction filter used.
Now, considering thats, — s,) is the same value for evetye N, N, and assum-
ing high-resolution quantizatio®§] of the s,, coefficients and thé, non-zeraquantized
coefficients, we get

DU/P,A) ~ §N+ 3 (dp—cip>2+ 3 ()

Pnz€P p-€P
A? (2A)°
~—N D 4.7
5V + g [Pzl + Do, (4.7)

wherep, (resp.p,.) are thep € P nodes in which the correspondirg coefficients are
quantized to zero (resp. are not quantized to z&Ry),(resp.|P,..|) is the number of de-
tail coefficients quantized to zero (resp. not quantized to zero)/gnd ZZZZE'P (d,)”.
Note thatD depends on th& /P assignment throug|P,,.| and Dy. From (4.7) we can
concludethat, in general, increasing the numberZpiodes would imply decreasing
|P,..| and Dy, and thusD.

Figure4.15shows some examples of actual PSNR values and PSNR estimated using
(4.7)for the SC solution with minimunti/| (SCj,) and with minimum|P| (SCp)). In
the experimental results, we use three fragments of specific areas of the video sequences
Carphone Mobile and Container, and the video encoder described in Secti@n but
workingjust in the first level of the transform.

Some observations can be made from the analysis of FiyliEe
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Figure4.15: PSNR estimation for different sequences.

e As it was to be expected, thteC|p achieves higher PSNR values than 81€,,
in all the examples.

e The PSNR estimation is reasonably good @arphoneand Container(around
-0.4 dB on average), and slightly worse fdobile (-0.7 dB).

e CarphoneandContainerare examples of sequences with homogeneous and sta-
tionary areas, where B node does not need too matyneighbors to be accu-
rately predicted. Therefore, the PSNR obtained forhg, andSC)p solutions
is similar. On the contrary, iMobile, a video fragment with complex texture,
SC'p significantly outperforms th§ ', solution.

4.3.3 Rate Model

Next, we propose a rate model for lifting transforms on graphs for video coding, under
the assumptions given in Sectidn3.1. This model estimated obtainedwhen em-
ploying the RLE and arithmetic coders used in Sectidh5. We consider a parametric
logarithmic model:

R(U/P,A) = mln(A) + G(M), (4.8)
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wherem is a sequence-dependent negative constant that indicates the decay velocity of
R with A (thehigher|m/|, the faster the decay)y is the number of non-zero quantized
coefficients; and~ (/) is an unknown functiohthat increases with/.

It is important to highlight that we will employ the model to derive\ as a function
of A. Therefore, we focus on the dependencerofvith A, and not in obtaining an
accurate expression f6f(M ).

Firstly, G(M) depends om\ through M, because ad decreases)/ should in-

crease. Nevertheless, one can prove that, given¥hat = 2A in general|P,,.| is

Sjm1
low? and thusM = || for any A. This implies thatR increases with the number of
U nodes, and depends onh just through m In(A). Let us analyze this observation.
To obtainRk, we employ a RLE over the quantized coefficients, and then the resulting
symbols are arithmetically coded. Therefofedepends on the number of symbols to
be encoded and their entroplyor a giveni/ /P assignment(i.e., [{|), the RLE leads
to a similar number of symbols for every. Neverthelessk decreases ag\ increases
because the variance (and thus the entropy) of the symbols decreasaa@sases,
and therefore they are arithmetically coded more efficiently. Nowfixvine A value.
In this caseR increases withi/| because ag/| increases, the number of long strings of
zeros decreases, and the RLE gives rise to a higher number of symbols to be encoded.
Figure4.16 showsR(A) obtainedwith three different/ /P assignments (namely:
WMC, SG,, and SG) and our estimated for the WMC case (i.e., for the WMC,
we consider the mode® = mIn(A) + K, and estimate the parametensand K by
regression using the Least Squares method). The experiments have been made using
three fragments extracted from QCIF sequer@agphone Mobile andContainer, and
employing the entropy coding of SectidiP.
Someconclusions can be extracted from Figdt&6:

e Themodel accurately fits the WMC solution.

1 G(M) couldbe modeled a&/'(M) = Mc + d, with ¢ andd constants that depend on the sequence.
In this way, R would increase linearly witd/ [69].

2 Thisassumption is analyzed in Sectiér8.6.
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Figure4.16: Rate estimation for different sequences.

e As expected,R increases withl{|. Therefore, the lowesR values in all the
sequences are obtained for the,Slution, which minimizes the number of
nodes.

e For a given video, all curves are almost parallel, and thaepends om\ mostly
throughm In(A) and with only a small dependence in termgigt/). Therefore,
the factorG(U) just displaces the curve as a function|@f. This is especially
true for the WMC and Sg solutions.

e To estimate the rate at and/|, one should displace the estimation of WMC a
factor indicated by~ (i/) (e.g., an estimation for th® of the SG, could be made
by subtracting a constant value to the estimation of the WMC).

e In Carphone, theR of the SG, is considerably lower than th& of the SG,
contrary to what occurs iMobile. This is because the g@nd the S¢ solu-
tions are distant ifCarphone(i.e., they lead to ratios ot/s¢,,|/N = 0.26 and
Usc,|/N = 0.73, respectively), and closer iMobile (|{U/s¢,|/N = 0.36 and
\Usc,|/N = 0.64). These differences are due to the different graph topologies.

Finally, note that in a practical implementation of this rate model, its parameters
should be estimatedn the fly
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4.3.4 Lambda Calculation

In this section we derive thie parameter that balances the weight of thand D terms
in the minimization Problem.2as a function of thé\ usedin the coding process.
Minimizing J as a function of\, we get:

0]  9(D+ AR)

mAan = N A =0. (4.9)
From(4.9), the\ parameter can be calculated as:
oD OR

GiventhatA,;,_, = 2A,,_,|P,.|is generally small and thu®,..| << N, M ~ |U|,
and|P.| ~ |P| for any A. Therefore, for a fixedP|, we can assume th&l, does not
depend om\. Differentiating in (4.10 we obtain:

A= —(zﬁj\/f)A/u = EZA? (4.11)

Thisrelation gives the Lagrange multipligras a function ofA and the negative param-
eterm, which depends on the sequence. Specificallfecreases whelm:| increases.
Let us analyze this behaviour.

Lower |m| values imply lower decay aoR with A, and thus faster decay &f with
R. X can be interpreted as the slope of the line tangent to the operafigiglconvex
hull at the pointR(\) = R. [66]. Therefore, to reach an specifi¢- D trade-of, the
optimal A should be higher dsn| is lower, as indicated ind(11). Figure4d.17shows an
exampleto graphically illustrate this fact. Note that(Slope 1) is higher irfContainer,
which has a lowm|, than inMobile (Slope 2), in whichm/| is large, for the samé
value. Finally, note thak is proportional taA?, which is a reasonable result as is shown
in [70].
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Figure 4.17: Relation betweenandthe parametem of the sequence.

4.3.5 Optimization Process

In this section we explain how the RDO can be performed using the results and as-
sumptions discussed previously. Furthermore, we provide a greedy algorithm to solve
the simplified RDO Problerd.2 and give an experimental evaluation that shows the
benefitsof RDO.

In the simplified problem, the parameters to be optimizeddare (U4 /P, A). Note
that letting\ vary we are guaranteed to minimizefor a fixed R. = R(6*()\)). Equa-
tion (4.11) relates analyticallx andthe optimalA. Therefore, we assume a givén
value (which fixes\), and search th&/ /P assignment on the graph that minimizés
in Problem4.2, obtaining the optimal parameté&s = ((U/P)*, A*) which solve the
problem forR. = R(6"(\)).

Using the models of (4)8(4.7), and (4.11) in Probledh.2we can write:

A? 2A)°
minJ ~ min{—N+ (24) |Poz| + Do

u/p u/p | 12 12
- Gﬁmy (mln(A) + G(M)) }. (4.12)
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Minimizing (4.12) is equivalent to finding thé/ /P assignmenthat minimizesD
for a given number of\/ nonzero quantized coefficients. Assuming tffat.| is low
(i.e., M =~ |U|), the minimization of (4.1Rgiven |{| is achieved by finding théf /P
assignment that minimizeS, (because the rest of the terms do not depend oty i
assignment), that is, finding smadll amplitude coefficients. Note that, considering one
of the pixel generation models of Secti®:2, this is equivalent to solving Proble38.1,
which can be done using one of the greedy algorithms proposed in that section.

To solve Problen.2 given aA value and a sequence, one could start by searching
the SG, solution and calculating the cost= D + AR using realD and R data for
thati//P assignment. Then, in each iterationPanode should be “converted” @
following criteria given in algorithms of SectioB.2, thus minimizing the), for that
specific|l{|. Finally, the optimal{/P assignment would be the one that minimizes
The greedy approach of Algorithiperforms this process.

Algorithm 7 RDO process.
Require: A
1: Findtheset-coveringsolution with minimum|Z{(|, SG,
Estimate parameten
Calculatex
Calculate the cost((U/P)sc,,) = D(U/P)sc,) + AR(U/P)scy,)
Jopt = J
(U/P)" = U/P)scy
for Vi € I do
Convert inl{ the nodeP that solves Probler8.3.1
Calculate the cost ((U/P);) = D((U/P);) + AR((U/P);)
if J < Jop then
Jopt - J
(U/P) = U/P);
end if
. end for
. return (U/P)*

© O NDTORE®®DN

e i e el
ahrewdNER O

Note that the algorithm should calculate the “re&l”’and R values for eacld/ /P
assignment, so that it is not practical for a real implementation. In Sedth6 we
discusshow to perform the RDO process in a block-by-block basis, which considerably
would reduce the complexity.
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Table 4.5: Proportion dff nodesselected by the RDO.

WMC | A=10| A=20| A=30| A=140

Carphone| 0.44 0.30 0.43 0.43 0.44
Mobile 0.42 0.35 0.41 0.42 0.42

Container| 0.46 0.46 0.24 0.36 0.36

Figure4.18shows somek-D experimentatesults obtained for three specific areas
and fragments of QCIF sequenc€srphone Mobile andContainer, using the encoder
described in SectioA.2 under the assumptions given in SectbB.1. The figure gives
the R-D curves obtained using the RDO of Algorithfrand the WMC solution. Be-
sides,Table4.5indicates the proportion @f nodeg|¢/|/N) chosen by the RDO process
for eachA value, and the proportion for the WMC (which does not dependjpn

PSNR (dB)
PSNR (dB)

85 40 50 60 60 150 200 ~ 250 300 13 20 25 30
Bit rate (Kbps) Bit rate (Kbps) Bit rate (Kbps)
(a) Carphone (b) Mobile (c) Container

Figure4.18: RDO Vs WMC for different sequences.

The RDO solution improves the WMC in all the examples, as expected. Specifi-
cally, in the fragment o€ontainer, which is homogeneous and stationary, RDO clearly
outperforms WMC. Note that, in this case, RDO selects a lower proportibhnafdes,
because increasing this proportion does not significantly improvétherm, but, on
the other hand, it increases the Therefore, the optimal trade-off is found by choosing
a low |¢/|. Unlike Container, theMobile fragment has complex textures. This way, it is
worth to select a high proportion éf nodes on the graph so that predictions are better
andD is lower, despite of the? is increased. Therefore, the optin] is close to the
WMC solution.
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4.3.6 Discussion

The RDO process explained above is derived under some assumptions and simplifica-
tions. Next, we give some ideas of how the RDO process could be extended to obtain a
more realistic and practical process.

Working in a block by block basis is an important property of video encoders. Be-
sides, in the case of the lifting transforms on graphs, performing the transform on graphs
of size N = M x H x F, with F' the number of frames antl/ x H the size of each
frame, is computationally unapproachable.

Assume that we havB blocks and that we would like to optimize some parameters
in order to minimize the totaD (in the B blocks) subject to a globak constraint
(Zf:1 Ry, < R.). If we consider that thé&-D curves are independent for each black
andthatk = 3", | R,andD = > | D,, we can write §7):

B B
min (Z D, + )\Rb) = min (D, + ARy), (4.13)
b=1 b=1
so that the minimum can be computed independently for each blobk that end, the
same) should be used for every block, leading to a so catledstant slope optimiza-

tion.

To do that, we could use Algorithm, performing thé{/P assignmentocally in
each bloclk, and transferring the taken decisions to its neighboring blocks as in Section
4.2.4.2. TheR-D values to be used in the algorithm for each block could be obtained by
performingthe transform with the information of two-hop distance neighbors (Figure
4.19). In this way, the algorithm would return the optimglP assignmentor each
block b, minimizing the totalD for the R, constraint.

Finally, note that the encoder should send to the decoder the optimal nuntider of
nodes for each block, but not the label of each node (the decoder knows the criteria to
perform thel/ /P assignment).

Other extensions of our proposed RDO could be to optimize all the levels of the
transform. Given that the filtering operations are not orthogonal, but biorthogonal, they
are not energy conserving, so that one should weighbtbéeach subband as a function
of the closeness of the biorthogonal filters to the class of orthogonal filters to compute
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= @56 d7 Two-hop
neighbors

....

One_hO[;-----.,, ‘
neighbors

Figure 4.19: Transform by blocks.

theglobal D (i.e., the globalD should be computed as a weighted sum offthie each
subband) (T1]). Once the weights are computed, they can be used to solve allocation
problemsusing standard algorithmg2], [73].

In our experiments, thé value (and thus\) is swept, obtaining, by means of the
RDO, parameters that are optimum if the resultid@\) = R.. Nevertheless, in a real
application, one should find the desired optimalvhich is not known a priori, in order
to obtain the desired target budget. This can be done using fast algorithms [66] or
modelingthe resultingR as a function of\ or A.

Assumptiond,,_, = 2A,,_, allows us to relate two of the parameters to be opti-
mized, thus making easier the RDO process. Nevertheless, this relation could not be
optimal. Specifically, one should optimiz® for each subband (4, as is posted in
Problemd4.1.

Finally, note that the hypothesis of the 10®,.| (i.e., M ~ |U]) used to derive
A is quite accurate in our framework. Specifically, foarphone, the worse case (the
case in whichP,..| is higher) is|P,..|/N = 0.03, while in Mobile the worse case is
|P..|/N = 0.08, both forA = 10. Different results between the two sequences can be
explained by the fact that i@arphonepredictions are more accurate.
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4.4 Conclusions

In this chapter we have proposed a complete video encoder based on lifting transforms
on graphs presented in Chap8r The proposed system gives rise to a non-separable
3-dimensionaMdirectional transform which is critically-sampled, versatile and of easy
interpretation. Our transform outperforms a MCTF and DCT based transforms in energy
compaction ability. Furthermore, it solves some typical problems inherent in temporal
wavelet transforms (i.e., MCTF approaches).

Besides, we have described a new coefficient reordering method which is based on
the graph information that improves the compression ability of the entropy encoder,
leading to a system that outperforms a DCT based video encoderirterms. Given
that one drawback of our system is the computational complexity, we have investigated
two low complexity approaches that reduce the computational cost of tReassign-
ment process.

Finally, we have described how the RDO process can be performed in our coding
scheme under some simplifying assumptions.
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Conclusionsand Future Work

5.1 Conclusions

A general class ofraph-based transforms for N-dimensional signalsand their opti-
mization have been proposed. These kind of transforms can be sBedim&nsional
directional transforms that avoid filtering across large discontinuities. They may be
employed for compact representation of N-dimensional signals in many scenarios and
for different applications such as coding, denoising or feature extraction.

To perform the proposed lifting transform, the first step consists in constructing a
suitable graph. In Chapt& we discussed how to obtain a graph representation of a
genericN-dimensional signal, giving examples of multichannel audio and video rep-
resentations. To maximize energy compaction, graphs should be constructed so that
they accurately capture correlation between samples. Given that filtering operations are
performed using linked nodes, directional information is implicit in the graph repre-
sentation. Graph weighting greatly influences the performance of the transform, be-
cause some processes are based on the graph weights. We discussed two approaches
for weighting the graph in Chapt8r At that point, we have a weighted graph that cap-
turesthe correlation between samples, and which is useful to perform different signal
processing operations.

Given an undirected graph, the lifting transform is guaranteed to be invertible and
critically sampled by finding a graph bipartition (7 assignment) and defining the
updateu and predictionp filters. Therefore, we mainly focused on the optimization
of these two processes in order to minimize the detail coefficient energy. Regarding
the U/ /P assignment, we proposed graph-based and signal model-based approaches.
Graph-based designs use the information of the weighted graph in order to obtain the
splitting, while signal model-based approaches assume different data generation models
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and predictors, and assign a label to each node on the graph a@mmgpimize the
expected value of the squared prediction error.

Predictionp filters that provide “good” predictors for a given arbitrary weighted
graph were also proposed in Chap8rFinally, the main properties of the proposed
transform,some of them inherent to the lifting scheme and others related @ tie
assignment, tha andp filters design, and the graph construction, were summarized.

In Chapter4 we designed graph-based transform for use in video coding. These
transformsfollow 3-dimensional spatio-temporal high-correlation filtering paths, and
can be considered a generalization of classical s+t or t+s MTCF wavelet encoders.

Specifically, we used the WMC splitting method and the filter design explained in
Chapter3, and provided a way to perform the transform at multiple leeélsining a
MRA of the original sequence. This led to more efficient representations than a MCTF
and a DCT-based transforms for video coding. Also, we explained how the proposed
transform is able to handle different problems that arise in MCTF approaches.

As a final contribution, we presented a complete video encoder in SektRorin
particular we proposed an efficient way to reorder the coefficients before they are en-
tropy coded, improving the compression performance of the proposed encoder. This
led to very efficient video representations that outperform a comparable hybrid DCT
based video encoder, which is the basis of the latest video coding standards. Besides,
we proposed two low complexity approaches which allows to reduce the computational
complexity of the proposed scheme incurring a negligible loss of performance. Finally,
we investigated how to apply rate-distortion optimization to our proposed scheme.

5.2 Future Work

There are some interesting directions for future work.

The signal model-based/P assignment methods proposed in ChaBtgrovide an
ideaof how to assign a label to each node in order to minimize the detail coefficients
energy in the first level of the transform. Nevertheless, this may be extended in order to
jointly consider the optimization of the transform at all levels. This way, for example,
one could perform théf /P assignment at any arbitrary level taking into account how
this assignment will influence the expected value of the coefficient energy of the final
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transformed graph signal. Three signal model-basga assignmentlesigns were dis-
cussed in SectioB.3. It would be interesting to use more accurate models as Gaussian
Markov random fields74] and try to find optimal/ /P assignmentethods under these
models.

RDO process presented in Secti3 assumed some simplifications, discussed in
that section. Given that experimental results obtained using RDO are promising, an
interesting direction for future work could be to design a practical RDO process.

The flexibility of the transform and the good results obtained in a video coding
application provides confidence that it may be successfully applied in a broad kind of
signals and applications. For example, as discussed in Seécfidh it may be used for
multichannel-audi@oding, trying to jointly exploit the different correlations that arise
in audio signals, obtaining a frequency and time localized compact representation of
the multiple channels, which is an important property in order to consider subjective
models. Other applications could be image and video denoising, or biomedical signals
compact representation, where one usually has multiple signals that present correlation
in different domains (e.g., data extracted from the temporal evolution of different brain
sensors present spatial and temporal correlation).
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Appendix A

Greedy Algorithm for the SC;,/SCp

This appendix contains the greedy algorithm used to obtain thesSlDtion. Note that
the SG solution is equivalent, and thus can be found with the same algorithm, just by
exchangingP andi/ sets.

V is the set of nodes of the graph/ is a collection of all setd/};;, with k£ € V, and
Gainof a node is the number of neighbors that a node has.

Algorithm 8 SG, Algorithm

Require: M = {N;}, o0, R=V,U ={2}, P = {0}
1: Calculate thezain of the R node set
2: Select the node with largestGain, a = max(Gain)
3: while R # {@} do

Letdd — U U {a}

LetP — PUN,

Remove the incident edges{o U N, }

UpdateGain

Select the node with largestGain, a = max(Gain)
90 R+« R\{aUN,}

10: end while

11: return U andP

© N o g R

118



Appendix B

Additional Proofs

This appendix contains additional proofs for Chaf@er

B.1 Proof of Proposition 3.2

Proof. LetG = (V, £) be an undirected graph, wheve= {1,..., N} is a set of nodes
and€ C V x V a set of edges. Let be a set ofNV random variables, such that
represents the data value associated to naaée graph.

Let us assume that is generated as the mean noise valuef the closed neighbor-
hood of node plus an independent noiggas:

1
ri= = > & +am, (B.1)
lil

wheree; andy; are zero-mean independent random variables, with varian@slv,),
respectively;\}; is the closed neighborhood set of nagd@ndc is an arbitrary non-
negative real constant. Note that we are consideringithat v, and that,, = v. for
any: € V.

For each nodeé € P, consider the estimator given by

m.
tjeN;nU

wherem; = |N; NU|.
Z; Is an unbiased estimate ©f,

E{w:} = mi > E{x;} = mi > (/\}m kz E{ek}+aIE{nj}> =0. (B.3)

CjeNinU b jENnU Ny
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The expected value of the squared error of nodanbe written as:

E{(z; — 2:)*} = B{(2:)?} + E{(2,)*} — 2E{x;3,;} = var(x;) + var(d;) — 2E{2;,},

(B.4)
where we have used th&{ (z;)} = E{(z;)} = 0.
Let us first calculate the variance of the model, var(x
E{(z;)*} = var(z) > e +an)’ (B.5)
[Z]’ jGJ\f[
1
= WE{( > )} + ’B{n}} + E{ > emi}
Nl &R, Nal &R,
[1]
1 2
- Wml2 2, 2 Blaea) 'y
meN;) neN;
|Mz]|2 Z Z S + Py
meN[) neEN
+ o ,
’MZ]| !

wherewe have used that andn; are zero-mean independent random variables, and that

ZmENm ZTLE.N-[Z] m,n |MZ]|
Next we obtain the variance of the estimator, wgk(

nlﬂ( > :Lz Y>> E{ewwa). (B6)

iojeNinu meN;NU neN;NU

E{(%;)*} = var(z;) = E{
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Note that

1
E{xmxn} :E{< N Z €j+a77m []| Z €k+a77n

[m]’ TEN m) kGN[ ]

Z Z E{Egﬁk}-i— E{ Z €M }

|Mn]| FEN ) kEN ) FENm)
N ——E{ Y e} + E{nmmn}
| [n] | kEN )
> D Gkt atudu,
|N ||M”]| meNj neN
N VNl |
= el 626, (B.7)
N[Nl !

wherewe have used that andr, are zero-mean independent random variables.

From (B.6) and (B.7) we get

- L Wimg O Nl o }
var(z;) = m? Z Z { |-/\/[m]||~/\/[n| + a"vy0mn (B.8)

meN[;) U neN;;NU
W{m] ANl

S 22 Nyl

m; mEN; MU nEN ;U

wherewe have used thgt,, .. v/ D nen,ru Omn = M-

Now, we obtain the correlation between the model and the estifidtat; } :

tjeN;nu
1
= — > E{wa}

i JEN;NU
Wi NN

= i Z {UE}— + 0621)77(51'73'}
m; N V]

vjeN;NU
_ v N 0 Ml
m; N lVG]

b GENNU

wherewe have used th@j@\[{v]m v,0;; = 0.
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From (B.6), (B.8), and (B.9), we obtain the mean squared prediction error of a node
1€ P

E{(z; — )"} = E{(z:)*} + E{(A »)2} - 2E{m-} (B.10)
NNy
— o2y & Ve J]
! |'/\/['L | 'L 7, jE/\Zﬂu kE/\Z[:]ﬂZ/{ []]||N |
s N NNl
m; JEN U Nal NV

Definetheclustering degre®f nodes;j andk on graphg as

. N N N
c(j, k) = A= (B.11)
NG V|
From(B.10) and (B.11) we have:
. v Ve .
E{(z: = &)%) = 0%y + 1 N T —ths >, D, ik (812
b JENNU kEN};NU
Ve .
—2— .
- Z c(i, k)
keN; U
O

B.2 Proof of Proposition3.3

Proof. LetG = (V, £) be an undirected graph, wheve= {1, ..., N} is a set of nodes
and€& C V x V a set of edges. Let be a set ofN random variables, such that
represents the data value associated to naaée graph.

Let us assume that

r
= — + an;, B.13
T (Mf}];m |/\/t| Z Ek) an; ( )

keN;
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where/\/ﬁ] and [Z] are the closed sets of spatial and temporal neighbors, respectively,

of nodes; r, is an arbitrary constant if0, 1], with r, = 1 — r,; ¢; andn, are zero-

mean independent random variables with variancgsandv,,, respectively; and. is

an arbitrary nonnegative real constant.
Consider the predictions given by

= ED DR 2D Dt
JENSFW je/\/’mu
wherem; = N2 NU| andm! = [N} nU|.
Consider thav,, = v, and that,, = v, for anyi € V.
Estimatez; is an unbiased estimate of,

E{z;} = Z E{e} + Z E{er} + aE{n} =0

[z]' JENE, | M' kEN,

and

E{ii}:% 3 E{x]}+ LN E{w) =0

tjeNgnu ’ keN U

The expected value of the squared error of nodan be written as:

(B.14)

(B.15)

(B.16)

E{(z; — )%} = E{(z:)*} + E{(2;)*} — 2E{x;3;} = var(z;) + var(z;) — 2E{x;3;}.

where we have used th@f{z;} = E{z;} = 0.
Let us first calculate the variance of the model, vgr(z
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E{(2:)°} = var(z;) = B{(

| | Z | Z ex + am;)? (B.18)

JENG kEN,
2 2
r
=E{| —— €| + €k
A jEZNﬁ ) EN:

re T
! Z ejen + a’n?}

PNV &,

= (ﬁ) Z Z E{emen} + <|N |> Z Z E{emen}

meN) neN, me/\f[fi] ne/\/[ti]
+2 Z Z E{emen} + 042E{771 }
] [Z] meN) neNj,
:<> > 5o () B B
meNE, neNE meNt nEN
Ts Tt

Z Om,n + a’Ef{n}}

| | | [’L] | mE/\/S ENt

2 2
9 T U 27“57”1;
= "V, + U, )

wherewe have used that andn; are zero-mean independent random variables, and that

Ve Zmé/\fﬁ] Zne/\/[j.] S = v€|j\/[j]| (similarly for the temporal neighbors) and

Ve Zme./\/’[i] ZHEN[Z] (5m7n = Ve.
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Next we obtain the variance of the estimator, ¥gr( Estimatez; is unbiased, with

variance:
~ wS
var(i;) = E{(-— > :cj+— > a)?
]ENsﬂU M keNtNU
;Y Y B
m;) mGNSﬂuneNsﬂL{
> 2. 2 Efeww}
meNNU neNNU
2 s
DTN ST E{amd. (B.19)
i JENFNU keN U
Note that
E{z;zc} = ‘ HNS Z Z E{emer}+ - | Z Z E{enes}
(4] meN, reN, ol neNt, seNt,
N:s%t Z Z E{emes }+ Ttrjvs Z Z E{e.c,}
| || [k] me/\/'S e/\/'t [J]H | .g/\/'t TGNSk]
+ o’ E{nm}
_ vers NG ANl el O NGyl verrd NGy 0 V|
NGV NG IV NG IV
rere N N
adi o ] 020,05, (B.20)
NGV
wherewe have used thatandr are zero-mean independent random variables.
Define
NN
D)= Y WG O NGl j’“' (B.21)
VGV

JENFNU ke NPNU

for a, b, c,d equal to“s” or “t”.
From (B.19), (B.20, and (B.21) we get:
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S (r2D33(0) + 12 DI (i) + 2r,r(DL(0)) + aoym?)

(m; )

vew?

(m?"

20W Wy

~

var(z;) =

+ 5 (r2D3 (i) + 17 Dy (i) 4 2rer (D) (i) + a®vym})

DB (2D 3) + 12DI () + rar D) + D).

1 7

(B.22)

where we have used thax’ (i) = D (i) and D;! (i) = D (i).
Finally, we obtain the correlation between the model and the estiniigtosz; }.

Define A
N
D(i) = WG 0N (B.23)
JENFNU | [J]H [z]|
for a, ¢, d equal to“s” or “t”.
We can write:
E{z@:} :E{%(& Z T+ — Z xr) } (B.24)
mi Toml
JENFNU keNENU
W Wt
v jeENsNU v keNnU
Using definition (B.23) in (B.24), we get:
E{zdi} = - o 2 (2D (i) + r2DI (i) + ror(D3(0) + DI(0))
VW S8 S s
7 (P23 (i) + 17 DY (i) + ror( D} (i) + D (i)).
(B.25)

Fixing r, = w, andr; = w; and using (B.17), (B.19), (B.22) and (B.25), the ex-
pectedvalue of the squared error of nodean be written as:
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R w? w? 2w wy;
Flo met (iNfﬂ A mwm)

2 2 2 2 2
talu (=2 ) g (e g+
ms (ms> t

Poom i <m1)2 mgms
o, (w_zj T %K) |
m; i
where
G = wngj + wa?; + 2wsth§§, (B.27)

H = w?D; + w2D! + 2waw, DY,

I = wiD3 + w; DY + wawy (D3 + D%,
J = wD¥ + w?D' + wuwy (D + DY),
K = w?D;® + w; D}’ + wswy(D;* + D}*).
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Appendix C

Optimal Weighting for a Given Graph
and U /P Assignment

This appendix contains the formulation to obtain the optimal weights that minimize
the detail coefficient energy using a given graph &® assignment, and assuming
one-hop filters defined below. First, in SectiGrl, we consider a video representation
example.Then, in sectiorC.2, we extend this result t6 kinds of edges with different
correlations.

C.1 Optimal Weighting for a Video Representation Given
anU /P Assignment

LetG = (V,€) be an undirected graph, wheve= {1,..., N} is a set of nodes and

£ C VxVasetofedges. L&, 7 be the set of spatial and temporal edges, respectively,
with SUT = £. Denote one-hop spatial neighborhood aN° = {j € V : ij € S}.
Letm?$ = |N° NU| be the number of one-hop spatial update neighbors of hed®.
Thus, the mean value of the update spatial neighbors of ainede is defined as

S
ms
_ 1 -
T = —5 z T, (C.1)
my =S
JENZ U

andis defined similarly for the temporal neighbors. Assuming that every nad® is
linearly predicted from its spatial and temporal update neighbors as:

T; = WT; + w, T, (C.2)
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we want to find the weights, andw; thatminimize the quadratic prediction error
over all the nodes € P:

min Z (z; — #;)° = min Z (d;)* = min Z (zi — w,z — wtff)z : (C.3)
W, Wt Ws, Wt Ws, Wt

icP 1€P 1€P

Differentiating with respect ta, andw, we obtain the solution:

w* = (wiwf) =R 'r (C.4)
where
diep TiTE Y iep TiT,
and

r=3s [ x] (C.6)

are the correlation matrices.

Next, we express the optimal weight vectet as a function of matrices derived
from the spatial and temporal adjacency matrices of the graph.

Let A; = [a,,,] andA¢ = [a,, ] be the adjacency matrices of the subgraphs con-
taining only the spatial and temporal edges, respectively.

Let i, (resp. ip) be aN x 1 indicator vector in which{i,} = 1 if nodeh € U
(resp. € P), and zero otherwise. Léd{, (resp.Ip) be a diagonal matrix in which the
main diagonal id;, (resp.ip). DenoteBs = I;AI» andB; = I;A{I», and letB, =
[bs,,] andBy = [0y, ,] bethe By andB; matrices where each column is normalized
(i.e., defining|\/7| as the number of non-zero elements of columt,, = 1/ |7 if
bs,, =1;b,, =0if by, , = 0).

Si,g Si,j
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“Vectorize” the graph data into & x N row vectorx (e.g., if the data is a video
sequence, we obtainlax (L x H x K) row vector, wherd. x H is the frame size and

K the number of frames considered).
The optimal weight vectow* can be written as:

-1

. [ xBBIxT xB.B;xT xBoxT
W= e N T = T (C.7)
xB¢B, x* xB;B, x xBix

Proof. The matrix producl;, A is the spatial adjacency matrix, but setting P rows
as zero vectors, and similarlpsI» is the spatial adjacency matrix in whiech € U/
columns are zero vectors. Therefol®, = I;;A I, can be interpreted as a matrix in
which the non-zero columnrepresents the nodec P and the indices of its non-zero
elements are the € U/ spatial neighbors of

Normalizing by columnsB; = [b;, |, whereb,, , = 1/|N7|. Note thath,, , # 0 if
j € P,i €U, andij € S, andthat\”|is the number of: € U spatial neighbors that the
nodec P of column; has. Multiplying thel x NV data vectoi by B, a = [a;] = xBs,
we obtain al x N row vector:

z;, ifkeP,
ag) = C.8
o { 0, ifkeu. €9

The above reasoning is equivalent for the temporal adjacency n#ggrix
Thereforeaa™ = >, _, :7; = xB (XES)T = xB,B, xT.

— e = =T
Similarly, 3", z52! = xB,B, xT.

130



Chapter C. Optimal Weighting for a Given Graph dngP Assignment

C.2 Optimal Weighting for I’ Different Kinds of Links
Given anl{ /P Assignment

We now generalize the result il€(7) to the case off’ different kinds of links with
different correlations.
For every nodé < P, let us define the mean value of its update neighbors linked by
means of links of clasg as:
_ 1 -
L ojeNynu
Assumingthat every node irP is linearly predicted from itg" types of neighbors, we

would like to find the weightsv;, ws, . .., wr that minimize the quadratic prediction
error over all the nodes P:

Y [P
~ 2 2
min g (x; — ;)" = min g (xl — unT; — Wl — — WpT; )
W1, W2, W W1, W2,ee ey WE
i€P i€P
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The optimal weights can be obtained as:

— __1 - -

xB,B;xT xB;B,x* --- xB;Bpx” xB;xT
= =T = =T = =T =
xB,B;xT xB,B,xT ... xB,BnxT xBox T
W = = o aF : 2 (C.11)
xBpB,xT xBpB,x* - xBpBgxT xBpxT
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