
Telematic Engineering Department

Final Year Project

NFC ANDROID APPLICATION
DEVELOPMENT:

UNITENFC

Author: Izan D́ıez Sánchez

Tutor: Mario Muñoz Organero

Leganés, October 2013

ii

“The more I see the less I know”

Red Hot Chili Peppers

iii

iv

Acknowledgments

I would like to acknowledge to all the people that took part of my life during
the last five years: friends, family, classmates, erasmus people, workmates, football
teammates... For good, they all have contributed to make me as I am today.

I am particularly grateful for the company provided by Diego, Miguel and
Daniel during all this time in any imaginable situation.

Finally I would like to thank my parents, Manuel and Maŕıa de los Ángeles,
and my sister, Alba, for being always there and giving me the chance to pursuit
my dreams.

v

vi

Abstract

Virtual world is getting richer every day, everything is connected and people
demand smarter devices which allow them to control any situation. New tech-
nologies are being developed, trying to integrate as many functions as possible, to
deliver innovative solutions. One of this brand new technologies is NFC, which
can connect devices instantly without any previous configuration, including pas-
sive devices which can store and deliver information of many kinds.

The work presented here reports an Android application project development
with the Near Field Communication technology. The application developed is
planned to add value to the NFC environment, increasing its discoverability and
consumer awareness by building up a cloud of locations in which NFC interaction
can be carried out. Besides, a community of users will be created in which they will
be able to share their experiences and interact between them. The application will
feed from the users, being the ones both producing and consuming information.
All the data of the application will be available every-time and every-where with
Internet connection, as any other service does nowadays.

Topics discussed in this document include Android programming, NFC, cloud
services, software libraries, back-end development, integration with social net-
works, working methodology and details on the different development stages and
tasks. A complete understanding of the system is tried to be transmitted as well.

To conclude, an approach to the market will be carried out, publishing the
application on Google Play and analyzing the first impressions.

Keywords: NFC, RFID, API, tag, Android, NFC-Forum, NDEF, Reader-
Writer, Peer to Peer, Card Emulation, NFC Point, UniteNFC, MVC, REST, cloud,
back-end, Android Beam, integration, SDK.

vii

viii

Resumen

El mundo virtual crece cada d́ıa, todo está conectado y los consumidores de-
mandan cada vez dispositivos más inteligentes que puedan controlar cualquier
situación. Se están desarrollando nuevas tecnoloǵıas, tratando de integrar tan-
tas funciones como sea posible para ofrecer soluciones innovadoras. Una de estas
nuevas tecnoloǵıas es NFC, que permite conectar dispositivos instantáneamente sin
configuración previa. Incluso dispositivos pasivos que, sin alimentación, puedan
almacenar y transmitir información.

El trabajo aqúı documentado trata del desarrollo de una aplicación Android
con la tecnoloǵıa Near Field Communication. La aplicación desarrollada tratará de
añadir valor al entorno de NFC, mejorando su descubribilidad y su reconocimiento,
creando una nube de localizaciones en la que se pueda realizar algún tipo de in-
teracción con NFC. Además se creará una comunidad de usuarios en la que se
compartirán experiencias y podrán interactuar entre ellos. La aplicación se ali-
mentará de los usuarios, los cuales tanto crearán como consumirán la información.
Todos los datos de la aplicación estarán disponibles en cualquier lugar y momento
con conexión a Internet, como cualquier otro servicio hoy en d́ıa.

Los siguientes temas van a ser analizados: programación en Android, NFC,
servicios en la nube, libreŕıas de software, desarrollo de back-end, integración con
redes sociales y detalles sobre las diferentes etapas del desarrollo y sus tareas. Se
intenrará de trasmitir una visión completa del sistema al mismo tiempo.

Por último, se realizará una primera aproximación al mercado, publicando la
aplicación en Google Play y analizando las primeras impresiones.

Palabras clave: NFC, RFID, API, etiqueta, Android, NFC-Forum, NDEF,
Lector-Escritor, Peer to Peer, Emulación de tarjeta, Punto NFC, UniteNFC, MVC,
REST, nube, back-end, Android Beam, integración, SDK.

ix

x

Contents

List of Figures . xxi
List of Tables . xxii
Notations . xxiii

1 INTRODUCTION AND GOALS 1
1.1 Introduction . 1
1.2 Goals . 2

1.2.1 To Explore and Understand NFC 2
1.2.2 To Dive Into the Android Ecosystem 2
1.2.3 To Study the Main Concepts of Cloud and REST API . . . 2
1.2.4 To Develop a Long-Term Project 3
1.2.5 To Demonstrate and Improve Problem Solving Skills 3
1.2.6 To Add Value to the NFC Environment 3

1.3 Development Stages . 3
1.3.1 1st Stage: NFC Technological Study 3
1.3.2 2nd Stage: Android Base Application Development 4
1.3.3 3rd Stage: Web Service Development 4
1.3.4 4th Stage: Final Platform Integration 5
1.3.5 5th Stage: Documentation 5

1.4 Resources . 5
1.4.1 Hardware . 5
1.4.2 Software . 6
1.4.3 Web Services . 7
1.4.4 Others . 7

1.5 Thesis Structure . 7
1.5.1 Chapter 1: Introduction and Goals 7
1.5.2 Chapter 2: State of the Art 8
1.5.3 Chapter 3: System Analysis and Design 8
1.5.4 Chapter 4: Implementation 8

xi

1.5.5 Chapter 5: Testing and Further Development 8
1.5.6 Chapter 6: Problems encountered 8
1.5.7 Chapter 7: Planning and Budget 8
1.5.8 Chapter 8: Conclusions . 8
1.5.9 Appendix A: Compatible Devices 8
1.5.10 Appendix B: User Manual 9
1.5.11 Appendix C: Application Code 9

2 STATE OF THE ART 10
2.1 NFC Technology . 10

2.1.1 Description . 10
2.1.2 Operating Modes . 12

2.1.2.1 Reader-Writer . 13
2.1.2.2 Peer to Peer . 13
2.1.2.3 Card Emulation 14

2.1.3 Use Cases . 14
2.1.4 Commercial Applications . 15
2.1.5 NFC-Enabled Mobile Phones 18

2.1.5.1 Symbian Phones 18
2.1.5.2 Android Phones 19
2.1.5.3 Blackberry OS Phones 19
2.1.5.4 Windows 8 Phones 20

2.1.6 Comparison with other Technologies 20
2.2 History and Evolution . 23

2.2.1 Origins . 23
2.2.2 RFID . 23
2.2.3 Milestones . 23

2.3 NFC Forum . 24
2.3.1 What is it? . 24
2.3.2 Mission and Goals . 25
2.3.3 Members . 26
2.3.4 N-Mark . 28

2.4 Technical Specifications . 28
2.4.1 NFC Architecture . 28

2.4.1.1 NFC Forum Protocols 29
2.4.1.1.1 NFC Analog Technical Specification . . . 29
2.4.1.1.2 NFC Digital Protocol 29
2.4.1.1.3 NFC Activity Technical Specification . . . 29
2.4.1.1.4 LLCP . 29
2.4.1.1.5 SNEP . 30
2.4.1.1.6 Tag Operation Specification 30

xii

2.4.1.1.7 NCI Technical Specification 30
2.4.1.2 Reader-Writer Protocol Stack 30
2.4.1.3 Peer to Peer Protocol Stack 31
2.4.1.4 Card Emulation Protocol Stack 31
2.4.1.5 Hardware . 31

2.4.1.5.1 NFC in Mobile Phones 32
2.4.2 NFC Data Exchange Format (NDEF) 33

2.4.2.1 RTD (NFC Record Type Definition) 35
2.4.3 Tags . 36

2.4.3.1 NFC Forum Type 1 Tag 37
2.4.3.2 NFC Forum Type 2 Tag 37
2.4.3.3 NFC Forum Type 3 Tag 37
2.4.3.4 NFC Forum Type 4 Tag 38
2.4.3.5 Comparison . 38

2.4.4 Security . 38
2.4.4.1 Attacks . 39

2.4.4.1.1 Eavesdropping 39
2.4.4.1.2 Data modification 40
2.4.4.1.3 Man-in-the-middle 40
2.4.4.1.4 Lost property 41
2.4.4.1.5 Walk-off 41

2.5 NFC Software Development . 41
2.5.1 APIs . 41

2.5.1.1 Earliest APIs . 42
2.5.1.2 Android . 43
2.5.1.3 Windows Phone 8 44
2.5.1.4 Blackberry OS . 44
2.5.1.5 Other Open Source APIs 45

2.6 Near Future Foresight . 45
2.6.1 Market Acceptance . 45
2.6.2 Future Research . 46

3 SYSTEM ANALYSIS AND DESIGN 47
3.1 Naming and Logo . 47

3.1.1 Name . 47
3.1.2 Logo . 48

3.2 Scenarios . 49
3.2.1 Fairs and Events . 49
3.2.2 Tourism . 49
3.2.3 Augmented Reality Games 50
3.2.4 Marketing and Publicity Campaigns 50

xiii

3.3 Use Cases . 50
3.3.1 Use Cases Definition . 50

3.3.1.1 View NFC Points in Map 50
3.3.1.2 Filter NFC Points by Type 51
3.3.1.3 View a History of Visited NFC Points 51
3.3.1.4 View a History of Registered NFC Points 51
3.3.1.5 Register a New NFC Point 51
3.3.1.6 Scan an NFC Point 51
3.3.1.7 Connect with Facebook 51
3.3.1.8 Add New Friend 51
3.3.1.9 View a List of Friends 52
3.3.1.10 View Friend Information 52
3.3.1.11 Edit User Data . 52
3.3.1.12 View Walls . 52
3.3.1.13 Rate NFC Point 52
3.3.1.14 Comment on NFC Point Wall 52
3.3.1.15 Administrate Wall 52
3.3.1.16 Share Information 52
3.3.1.17 Receive Notifications of Nearby NFC Points 53
3.3.1.18 Obtain Application Usage Feedback 53

3.3.2 Diagram . 53
3.4 Architecture . 53

3.4.1 Android . 53
3.4.1.1 Hardware permissions 53
3.4.1.2 Code Structure . 55
3.4.1.3 Libraries and SDKs 56
3.4.1.4 Background Processing 56

3.4.1.4.1 Threads 57
3.4.1.4.2 Asynctasks 57
3.4.1.4.3 Comparison 58

3.4.2 Cloud Architecture . 58
3.4.2.1 Back-end . 58

3.4.2.1.1 Pattern: Model-View-Controller (MVC) . 59
3.4.2.1.2 Principle: REST 60
3.4.2.1.3 Data Format: JSON 60
3.4.2.1.4 Development Framework: Django 61
3.4.2.1.5 Hosting: Heroku 62

3.4.2.2 Other Services . 62
3.4.2.2.1 Topoos 62
3.4.2.2.2 Google Maps 62

xiv

3.4.2.2.3 Facebook 63
3.4.2.2.4 Google Analytics 63

3.5 Application Flow . 63
3.5.1 Launch Flow . 63
3.5.2 Settings, Report Bug and Sharing Flow 63
3.5.3 MapFragment Flow . 65
3.5.4 SocialFragment Flow . 65
3.5.5 NFCPointsFragment Flow 66
3.5.6 ServeActivity flow . 67
3.5.7 WallActivity Flow . 67

4 IMPLEMENTATION 69
4.1 User Interface . 69

4.1.1 Look and Feel . 69
4.1.1.1 Tools . 69
4.1.1.2 Styling . 70
4.1.1.3 Interface Navigation 72

4.1.1.3.1 ActionBar 72
4.1.1.3.2 Menu . 72
4.1.1.3.3 Tabs . 72

4.1.2 ListViews Creation . 74
4.1.2.1 Single Element Layout 74
4.1.2.2 Single Element Class 74
4.1.2.3 ListViewAdapter 74

4.1.3 Map . 76
4.1.3.1 Camera . 76
4.1.3.2 Markers . 77

4.1.4 Dialogs and Toasts . 78
4.2 Location . 79

4.2.1 LocationManager and LocationListener Setup 79
4.3 NFC Block . 80

4.3.1 NFC Setup . 80
4.3.1.1 Manifest . 80
4.3.1.2 NFC IntentFilters 81

4.3.2 Interacting with NFC Points: Tag Reading 83
4.3.2.1 Catching the Intent 83
4.3.2.2 Foreground Dispatch 83
4.3.2.3 Parse Tag Content 84

4.3.3 Adding Friends: Android Beam 87
4.4 NFC Points . 90

4.4.1 POI topoos . 90

xv

4.4.2 Registering New NFC Point 90
4.4.3 Checking in NFC Point . 92

4.5 RESTFUL Web Development . 93
4.5.1 Implementing MVC with Django 93

4.5.1.1 Model . 94
4.5.1.2 Controller . 96
4.5.1.3 View . 97

4.5.2 Django Administration . 98
4.5.3 Deploying to the Cloud with Heroku 98
4.5.4 Communication with Android Application 100

4.6 Users Management . 102
4.6.1 Authentication . 102

4.6.1.1 Login and Registration 102
4.6.1.2 Logout . 103

4.6.2 User Data . 103
4.6.2.1 Restoring User Data 103
4.6.2.2 Saving User Data 103
4.6.2.3 Profile Picture . 104

4.7 Facebook Integration . 106
4.7.1 Setting-up Facebook Application 106

4.7.1.1 Creating Facebook Application 106
4.7.1.2 Importing Facebook SDK 107
4.7.1.3 Adding Facebook Lifecycle 108

4.7.2 Connecting Account . 109
4.7.3 Adding Friends . 110
4.7.4 Publishing on Wall with Hashtags 111

4.8 Adding Language Support . 114
4.8.1 Strings in Android . 115
4.8.2 Resources Folders . 115
4.8.3 Summary: How to Add a New Language 116

4.9 Notifications . 116
4.9.1 Launching Service . 116
4.9.2 Service . 117
4.9.3 Notification Creation . 117

4.10 Google Analytics . 118
4.10.1 Setting-up Account . 118
4.10.2 Adding Analytics to the Android Life-cycle 119
4.10.3 Statistics . 119

4.11 Publishing on Google Play . 121
4.11.1 Versioning . 123

xvi

5 TESTING AND FURTHER DEVELOPMENT 125
5.1 Testing . 125

5.1.1 Debugging the Android Application 125
5.1.2 REST API Testing . 126
5.1.3 System Testing . 127
5.1.4 Feedback . 127

5.2 Further Development . 129
5.2.1 Optimizing for Other Screen Dimensions and Densities . . . 129
5.2.2 Adding More Language Support 129
5.2.3 Better Instructions in the Application 129
5.2.4 Optimizing Image Loading and Cache 129
5.2.5 Code Cleaning and Maintenance 130

6 PROBLEMS ENCOUNTERED 131
6.1 Testing Hardware Related Functionalities 131
6.2 Android Fragmentation . 131
6.3 NFC Android Beam . 132
6.4 Topoos Incomplete API . 133
6.5 Web Development Inexperience . 133

7 PLANNING AND BUDGET 134
7.1 Gantt Chart . 134
7.2 Project Budget . 137

8 CONCLUSIONS 140
8.1 General Conclusions . 140
8.2 Personal Conclusions . 141

A Compatible Devices 142

B User Manual 146
B.1 Installation and Launch . 146
B.2 Login . 147
B.3 Main Screen . 147
B.4 Map Screen . 148
B.5 NFC Points Screen . 149
B.6 Social Screen . 149
B.7 Wall Screen . 150
B.8 NFC Points Reader . 151
B.9 Notifications . 151
B.10 Settings . 152

xvii

C Application Code 154
C.1 UniteNFC Client-side Android Code 154
C.2 UniteNFC Back-End Code . 154

Bibliography 159

xviii

List of Figures

2.1 NFC supported modes . 11
2.2 NFC Operating Modes . 13
2.3 Reader/Writer [10] . 13
2.4 Peer-to-Peer mode [10] . 13
2.5 Card Emulation [10] . 14
2.6 NFC used for multiple purposes [11] 15
2.7 NFC application icons [https://play.google.com] 17
2.8 Symbian NFC mobile phones . 18
2.9 Android NFC mobile phones . 19
2.10 Blackberry NFC mobile phones . 19
2.11 Windos 8 NFC mobile phones . 20
2.12 Wireless technologies [11] . 21
2.13 NFC Forum logo [11] . 25
2.14 NFC Forum environment [11] . 26
2.15 N-Mark [11] . 28
2.16 NFC Forum Architecture [11] . 28
2.17 Reader-Writer protocol stack . 30
2.18 Peer to Peer protocol stack . 31
2.19 Card Emulation protocol stack . 32
2.20 NFC-enabled mobile phone internal scheme [Smart Card Alliance] . 32
2.21 NDEF Message layout [10] . 33
2.22 NDEF Record layout [28] . 35
2.23 NFC Forum Tag Types . 37
2.24 NFC development. OS logos . 42

3.1 UniteNFC logo . 48
3.2 Markers on UniteNFC . 48
3.3 Use Cases . 54

xix

https://play.google.com

3.4 Android application structure . 55
3.5 Cloud Architecture . 59
3.6 Typical MVC collaboration . 59
3.7 Application launch flow . 64
3.8 Application settings, report bug and sharing flow 64
3.9 MapFragment flow . 65
3.10 SocialFragment flow . 66
3.11 NFCPointsFragment flow . 67
3.12 ServeActivity flow . 68
3.13 WallActivity flow . 68

4.1 Styled button not pressed and pressed 71
4.2 Tag Dispatch System [43] . 81
4.3 Beam flow . 89
4.4 Registration Dialog . 91
4.5 Profile picture selector . 104
4.6 UniteNFC Facebook page . 107
4.7 Facebook Dialog . 110
4.8 Facebook flow (I) . 111
4.9 Facebook flow (II) . 112
4.10 Example publication on Facebook 114
4.11 Different languages resource folders 116
4.12 Notification of nearby NFC Point 118
4.13 UniteNFC user sessions statistics (03/10/2013) 120
4.14 UniteNFC device statistics (03/10/2013) 121
4.15 UniteNFC language statistics (03/10/2013) 121
4.16 UniteNFC engagement flow statistics (03/10/2013) 122

5.1 Logcat example logs . 126
5.2 REST API testing . 128
5.3 UniteNFC in a tablet . 130

6.1 Android vs. iOS fragmentation [45] 132

7.1 Gantt Chart . 136

B.1 Installation and Launch . 146
B.2 Login . 147
B.3 Main screen . 148
B.4 Map screen . 149
B.5 NFC Points screen . 150
B.6 Social screen . 151

xx

B.7 Wall screen . 152
B.8 Reader screen and notifications . 153
B.9 Settings . 153

xxi

List of Tables

2.1 NFC basic specifications . 12
2.2 Short-range wireless technologies comparison 22
2.3 NFC Forum members . 27
2.4 NFC Forum tag types . 39

3.1 Thread vs. Asynctask . 58

7.1 Project tasks breakdown . 135
7.2 Personnel budget . 137
7.3 Equipment budget . 137
7.4 Software budget . 138
7.5 Other services budget . 138
7.6 Total budget . 139

xxii

Notations

API: Application Programming Interface 2

IDE: Integrated Development Environment 6

IEC: International Electrotechnical Commission 6

IrDA: Infrared Data Association 21

ISO: International Organization for Standarization 6

LLCP: Logical Link Control Protocol 29

MVC: Model-View-Controller 4

NCI: NFC Controller Interface 30

NDEF: NFC Data Exchange Format 30

REST: Representational State Transfe 4

NFC: Near Field Communication 1

RF: Radio Frequency 2

RFID: Radio Frequency Identification 16

SIM: Subscriber Identification Module 33

SNEP: Simple NDEF Exchange Protocol 30

xxiii

1
INTRODUCTION AND GOALS

T
his chapter will introduce the reader to the project described throughout
all the document. Background on the NFC technology will be given along
with basic details of the development stages and resources used.

1.1 Introduction

Not long ago every device was designed to accomplish a single task. Cameras
took pictures, TVs showed images, phones made calls, fax sent messages, MP3
players played music, etc. Nowadays devices are taking shapes that were hard to
ever imagine. Now all those features can be carried out by a single device that
is small enough to carry everywhere, i.e. the smart-phone. Technology is being
driven by a rush of innovative solutions that are quickly integrated in devices cov-
ering all kind of needs.

One of these technologies is Near Field Communication. NFC is a fresh tech-
nology that is gaining ground slowly and which potential is yet to be unveiled.
The possibilities are huge. It is really easy to use, involving a physical gesture and
getting instant feedback.

Simultaneously Internet services are getting richer, data-centers becoming big-
ger and connections faster. The Cloud is well-established already and smart devices
perform transactions with it regularly.

1

CHAPTER 1. INTRODUCTION AND GOALS

The application developed arrange all that concepts. First of all it has been
developed for mobile devices, Android ones specifically. Moreover, it makes use
of an emerging technology, NFC. And last, but not least, it makes use of several
cloud services to offer a more complete experience.

UniteNFC will act as a portal to the NFC world, allowing to discover and share
NFC Points based on the location. UniteNFC will be the main NFC application
on the mobile, managing all the content read through its interface and storing
a history. At the same time, it is intended to be as social as possible, allowing
interaction with other users by friendship relationships and comments on the NFC
Points. In a future where NFC had reached the masses there would have to be a
way to unify all the transactions made with NFC and UniteNFC would be such
way.

1.2 Goals

The main goal of the project is to be able to develop an innovative service for
NFC using the platforms and tools available at the moment, applying concepts
and skills acquired during the degree.

From that premise more specific underlaying goals are going to be described.

1.2.1 To Explore and Understand NFC

Explore NFC, understand what makes this technology special, study its state of
the art, analyze opportunities and get to know all the technical details. Eventually
achieving expertise in some of the fields that NFC involves.

1.2.2 To Dive Into the Android Ecosystem

Go into detail on how this operative system for mobile phone works. Learn
how Android life-cycle works and what are its main elements. Program according
to the best practices stated by the Android community and be able to create a
sufficiently complex application.

1.2.3 To Study the Main Concepts of Cloud and REST
API

Analyze how cloud services are structured nowadays. Understand the concepts
of REST API, data models and request flows. With all that in mind, a simple

2

CHAPTER 1. INTRODUCTION AND GOALS

cloud service for the Android application could be implemented.

1.2.4 To Develop a Long-Term Project

Carry out a long term project focusing on the final result. An extremely im-
portant point is to meet the planned schedule, which can be difficult if the project
is not prioritize properly against other life issues.

1.2.5 To Demonstrate and Improve Problem Solving Skills

Despite of the variety of courses taken in the degree, one common factor bring
all together: problem solving. Facing this project individually has to confirm that
all these years journey was not fruitless. The tutor will be consulted as little as
possible.

1.2.6 To Add Value to the NFC Environment

The NFC world lacks of a killer application or use case. The developed appli-
cation should boost it and enhance it as far as possible.

1.3 Development Stages

This section will describe the different stages that the project has gone through.
In each stage of the project the tasks accomplished were driven to achieve a com-
mon goal, that will be explained in the following subsections.

1.3.1 1st Stage: NFC Technological Study

Firstly, after the project was chosen and the goals were more or less established,
a broad study about the technology selected was carried out. Even-though many
of the concepts studied in this stage were not directly applied into the project
development, a wide view of the NFC environment and philosophy was attained.

That view was very useful to redefine the initial scope of the project, since
the possibilities available for a developer with any hardware but an NFC enabled
mobile phone running Android were quite limited due to API constraints [2.5.1]
and unavailability of secure element access. Therefore Card Emulation mode [2.1.2]
had to be discarded from the beginning and with regard to Peer-to-Peer, developers
are tied to Android Beam feature which requires extra boring user interaction.

3

CHAPTER 1. INTRODUCTION AND GOALS

1.3.2 2nd Stage: Android Base Application Development

Once all the constraints of NFC were identified, the Android application devel-
opment was started. In this stage, the purpose was to built up a simple application
where all the (what were named) NFC Points were spotted in a map and a history
of visited points could be looked up. Such NFC Points had to be registered by
users, which could log in and register in the application.

To cope with these tasks, additional libraries were needed. The representation
of the NFC Points was achieved by means of the well known Google Maps API [1].
User management and points of interest support was added by topoos [2]. This
service made really easy to implement the desired operations, although is in beta
version. Besides it offers Rest API which can be useful to communicate from a
web in the cloud.

The main flow of Android user interface elements (Activity, Fragment, Dialogs,
etc.) was also implemented at this moment, acting as the skeleton for the above
described functionalities. With it all the NFC actions were programmed too. Us-
ing Reader-Writer mode to register NFC Points and adding Peer-to-Peer for future
friend addition.

1.3.3 3rd Stage: Web Service Development

Services provided by third party can be very powerful and easy to use, but
sometimes it may not fit your needs. In this case, topoos social features were not
mature enough to meet the target needs (by the time this paragraph is written it
actually is) and the history returned by the API was not rich enough. Hence, at
this point the decision of developing a proprietary cloud web service was made.

The little experience earned by using topoos API was helpful to be aware of
REST architecture and understand how the client-side application communicates
with the server-side application. With help of a web application framework, Django
[3], and using the MVC model all the REST concepts were applied and the de-
sired function implemented. To make this service accessible from everywhere, the
website was hosted on Heroku [4], a cloud platform.

After the service is running in the cloud, the Android application can call any of
the functions implemented with a simple web request. Then, friendship relations
were added along with richer information about registered NFC Points storage,
gathering comments and ratings.

4

CHAPTER 1. INTRODUCTION AND GOALS

1.3.4 4th Stage: Final Platform Integration

Development stages are coming to an end and still are many interesting fea-
tures to be added. Furthermore, it is important that the user experience when
using the application is smooth, with enough information about what is going on
beneath the interface, error handling and, above all, no crashing.

One of the functionalities that was added in this stage is Facebook integration
[5]. Almost every application that includes social capabilities is integrated with
the biggest social network ever. Doing so, allows you to connect more people, share
the content and adds a viral component that can help you application to spread
quickly.

Another interesting functionality, that was unplanned at the beginning, is
Google Analytics. Really easy to integrate and get statistics about what is go-
ing on in you application [6].

Finally, testing was done and necessary changes were made. The application
was upload to Google Play and the feedback of the first users was received.

1.3.5 5th Stage: Documentation

Before the project can be considered finished, all the knowledge, experience,
ideas, questions and conclusions acquired during all these months, need to be
recorded so that it depicts, as accurately as possible, the work done.

1.4 Resources

All the material used in the realization of the project, divided into hardware
and software, and additional services will be explained briefly in this section.

1.4.1 Hardware

• Sony Vaio VPCCA1S1E: 4x Intel(R) Core(TM) i5-2410M CPU @ 2.30GHz
processor, 4078.5MB RAM memory, 320GB hard disk. Laptop. More than
enough if the Android Virtual Device emulator is not used.

• Logitech Wireless Mouse M305: small wireless mouse.

• Sony Xperia S: 1.5 GHz Qualcomm Dual Core processor, 1GB RAM memory,
with NFC chip. Android Jelly Bean 4.1. No malfunctioning noticed during
the whole project period.

5

CHAPTER 1. INTRODUCTION AND GOALS

• Samsung Galaxy S2 Plus: 1.2 GHz Broadcom Dual Core processor, 1GB
RAM memory, with NFC chip. Android Jelly Bean 4.1. No malfunctioning
noticed during the whole project period.

• Mobile NFC Tag Testing Set: set of NFC tags including

– MIFARE Ultralight: NFC Forum Type 2 tag (ISO/IEC 14443 Type A),
384-bit user memory. [7]

– MIFARE Ultralight C: NFC Forum Type 2 tag (ISO/IEC 14443 Type
A), 1184-bit user memory. [7]

– Broadcom Topaz: NFC Forum Type 1 tag, 768-bit user memory. [8]

1.4.2 Software

• Ubuntu 12.04-13.04 LTS: Linux kernel operating system. Free and open
source software.

• Java Platform (JDK) 7u40: Java software development kit. Android is pro-
grammed in Java.

• Android SDK 4.0-4.3: set of development tools and libraries, including an
emulator.

• Eclipse Helios 3.6.2: multi-language IDE. Needs of ANT plugin to work with
the Android SDK.

• Android Studio IDE: exclusive Android IDE. Similar to Eclipse but with
much better user interface edition. Use Gradle and Maveen to manage the
projects.

• GIMP Image Editor 2.8: image editing tool. Same concept as Photoshop
but it is free software under the GNU project.

• Sublime Text 2: source code and text editor, cross-platform. Lots of plugins
are available making coding fast and efficient.

• Django: Python web framework that follows MVC (model-view-controller)
architecture.

6

CHAPTER 1. INTRODUCTION AND GOALS

1.4.3 Web Services

• Google Play Developer Account: Android application distribution system.
A fee has to be paid to be regarded as developer and be free to upload as
many applications as you want.

• Google Play Services SDK: Which include the Google Maps API necessary
to draw the maps and retrieve your location.

• Heroku: Cloud platform as a service. Supports several programming lan-
guage. Fast setup of a cloud web server. Free support with limited processing
power.

• Github Public Repository: Git version control service with free hosting for
open source projects.

• Facebook Android SDK: Library to easily integrate with Facebook.

• Topoos Android SDK: Location based and context-aware service provider.
Still in beta version.

• Google Analytics Android SDK: application tracking with Google Analytics
in Android native application. Easy integration and nice representation of
statistics.

1.4.4 Others

• ADSL Internet Connection: for daily work.

• 3G Internet connection: essential to make field testings, registry of events
while walking on the street.

1.5 Thesis Structure

This thesis is divided in eigth chapters with three extra appendices. To facili-
tate the reading, a brief summary of each chapter is included.

1.5.1 Chapter 1: Introduction and Goals

This first chapter that is concluding is meant to give the reader a short intro-
duction to the project along with its motivation. Besides, the development stages
and the necessary resources to carry out the project are specified.

7

CHAPTER 1. INTRODUCTION AND GOALS

1.5.2 Chapter 2: State of the Art

The reader is provided with all the information needed to the understanding
of the NFC technology and how it fits into today’s digital world.

1.5.3 Chapter 3: System Analysis and Design

Definition of the platform to be developed, architecture, UML diagrams, anal-
ysis of technologies and final choices.

1.5.4 Chapter 4: Implementation

How all the described system in the previous section has been built and all the
pieces put to work together.

1.5.5 Chapter 5: Testing and Further Development

Methods and tools used to test the correct working of the application and future
tasks to be commited if the project was to be continued.

1.5.6 Chapter 6: Problems encountered

The problems and obstacles that have arisen during the nine months the project
has last and how have been overcomed.

1.5.7 Chapter 7: Planning and Budget

Detailed breakdown of project tasks, timing and costs of implementing the
project that will be described.

1.5.8 Chapter 8: Conclusions

A compendium of insights acquired during the development of the project. In
addition a personal opinion on what the project has meant to me will be given.

1.5.9 Appendix A: Compatible Devices

A complete list of compatible Android devices (mobile phones and tablets) is
given. Basically these devices must fulfill two requirements, to have integrated an
NFC chip and to be compatible with Android 4.0. or higher.

8

CHAPTER 1. INTRODUCTION AND GOALS

1.5.10 Appendix B: User Manual

Instructions on how to, from the user point of view, install, register, play around
with NFC tags and squeeze all the functionalities the application provides.

1.5.11 Appendix C: Application Code

Links to the public repositories where the code that has been deployed into the
project is stored.

9

2
STATE OF THE ART

T
his chapter contains all the relevant information of Near Field Communica-
tions. A deep study has been carried out to give a rich outlook of the state
of the art of this technology.

2.1 NFC Technology

This section will introduce the reader with a background to the technology
studied. A basic description is presented, along with a more detailed explanation
of its functioning, uses of NFC and in which devices it is found.

2.1.1 Description

Near Field Communication (NFC) is a high frequency, short range, wireless
technology used to transmit data between devices through a radio communication.
It defines a set of standards specifying data format and protocols to establish such
connection. NFC comprises and harmonizes a set of standards for close proximity
communication already present in the industry. Devices are connected instantly
by touching them together or bringing them into a range of few centimeters. It
works in the unlicensed band of 13,56 MHz, so there is no need of license to use it.

NFC always involves an initiator and a target. The former actively generates a
field that may power a passive target. This permits NFC targets to take very sim-
ple format such as tags, stickers, key holders, or cards that do not require batteries.
NFC communication with passive devices is possible thanks to the induction of a
magnetic field, in which two antennas are placed inside each other’s near field [9].

10

CHAPTER 2. STATE OF THE ART

When both devices are powered, NFC peer-to-peer communication is possible.

According to this NFC supports two modes:

• Active: Each device generates its own RF field. Thus, normally both devices
have power supplies. Initiator and target alternate their fields, i.e. a device
deactivates its generated field while waiting for data.

• Passive: In this case the initiator is a powered device, whereas the target is a
passive transponder that modulates the electromagnetic carrier field provided
by the initiator. The required power needed for such modulation is extracted
from the initiator RF field.

(a) NFC active mode

(b) NFC passive mode

Figure 2.1: NFC supported modes

NFC employs two different codings to transfer data. A modified Miller coding
with 100% modulation is used when the active device transfers data at a rate of 106
kbit/s. In all other cases Manchester coding is used with a 10% modulation ratio.
As NFC devices are able to receive and transmit data at the same time, they can
check for potential collisions if the received signal frequency does not match with
the transmitted signal’s frequency. Communication finishes either on command or

11

CHAPTER 2. STATE OF THE ART

Basic Specifications

Active Passive

Speed 106 kbit/s, Modified Miller
100% ASK

106 kbit/s, Manchester 10%
ASK

212 kbit/s Manchester 10% ASK

424 kbit/s Manchester 10% ASK

Range Up to 20cm (typically < 5cm)

Standards ISO/IEC 18092, ECMA-340 and ETSI

Table 2.1: NFC basic specifications

when the devices separate. A summary with these basic specifications is presented
in table 2.1.

The objectives of this kind of technology is not to be a substitute of the ex-
isting ones but to complement them. Allowing devices to interconnect easily, pro-
vide ad-hoc communication, transmit data, initialize other type of communication
(Bluetooth, WiFi). It seems to be an adequate medium for electronic payments
and access control. Besides, it is not necessary that all devices have an own energy
source.

Mobile phones are the target to increase the reach and scope of NFC technology,
as it is the electronic device everybody has. More than 100 million of commercial
handsets are NFC phones, and it is expected to keep growing.

2.1.2 Operating Modes

An NFC communication is a point to point connection that involves two de-
vices. Depending on the way the devices interact between them three modes
of operation are considered: reader/writer, peer-to-peer, and card emulation. The
different operating modes are based on the ISO/IEC 18092 NFC IP-1 and ISO/IEC
14443 contactless smart card standards and are defined by the NFC Forum. In
figure 2.2 a simple scheme of the operating modes is presented. Every NFC com-
munication has to be based in one of these three operating modes.

12

CHAPTER 2. STATE OF THE ART

Figure 2.2: NFC Operating Modes

2.1.2.1 Reader-Writer

Figure 2.3: Reader/Writer [10]

In reader/writer mode, the NFC (active)
device is capable of reading (passive) NFC
Forum-compliant tag types, such as a tag em-
bedded in an NFC smart poster. The read-
er/writer mode on the RF interface is compli-
ant with the ISO 14443 and FeliCa schemes
[11].

2.1.2.2 Peer to Peer

Figure 2.4: Peer-to-Peer mode
[10]

In Peer-to-Peer mode, two (active) NFC
devices can exchange data. For exam-
ple, you can share Bluetooth or WiFi
link set-up parameters or you can exchange
data such as virtual business cards or dig-
ital photos. Peer-to-Peer mode is stan-
dardized on the ISO/IEC 18092 standard
[11].

13

CHAPTER 2. STATE OF THE ART

2.1.2.3 Card Emulation

Figure 2.5: Card Emulation [10]

In Card Emulation mode, the NFC device
appears to an external reader much the same
as a traditional contactless smart card. This
enables contactless payments and ticketing by
NFC devices without changing the existing in-
frastructure [11].

2.1.3 Use Cases

What makes NFC unique is that it allows electronic devices to interact with
the physical world. In other words, it gives a connection with the digital world,
in which the amount of data and transaction is growing every day, with just an
intuitive touch. Having this in mind the variety of use cases can be wide and rich.

Generally, the applications follow the tendency of using the NFC operating
mode that best fits to its purpose. For example:

• Connect Electronic Devices =⇒ Peer-to-Peer.

• Access Digital Content =⇒ Reader/Writer.

• Make Contactless Transactions =⇒ Card Emulation.

NFC applications are limited only by the imagination and individual creativ-
ity. NFC makes the experience of mobile internet and other mobile services fast
and convenient, and opens up a host of new opportunities. Mobiles are bringing
the world of NFC to new audiences, including advertisers, marketing agencies and
potentially every consumer using a mobile NFC phone. [12]

Some use cases are presented to make the reader aware of the amount of dif-
ferent applications in which NFC can be deployed[13]:

• Pay with NFC phones at contact-
less POS

• Touch tags to collect shopping list

• Store electronic keys on NFC
phones

• Business card & calendar

• Bluetooth coupling with car
phone/radio

• Home entertainment systems

• Theater/attraction/event tickets
storage on NFC phone

• Download coupons from smart

14

CHAPTER 2. STATE OF THE ART

Figure 2.6: NFC used for multiple purposes [11]

poster to NFC phone

• Gaming & toys

• Read smart posters to NFC phone
with information

• Social Media & advertising

• Enhance loyalty programs

• Access rooms and buildings with
NFC phone and contactless reader

• Anything inspired by your imagi-
nation!

2.1.4 Commercial Applications

a) Foursquare: the popular location-based social network for mobile devices. Users
“check in” at venues by selecting from a list of venues the application locates
nearby, based in GPS or network location. In 2012 an update was released in
which NFC was added to “check in” automatically by tapping on tags available
at some venues.

b) Google Wallet: mobile payment system developed by Google that allows its
users to store debit cards, credit cards, loyalty cards, and gift cards among
other things, as well as redeeming sales promotions on their mobile phone.
Google Wallet uses NFC to “make secure payments fast and convenient by
simply tapping the phone on any PayPass-enabled terminal at checkout”[14].

c) ISIS: The Isis Mobile Wallet stores virtual versions of many things your physical
wallet does, such as payment cards. The Wallet allows you to organize payment

15

CHAPTER 2. STATE OF THE ART

cards, offers and loyalty cards on your mobile phone. With NFC capability you
are able to communicate with the checkout terminal at any Isis Ready merchant.
Isis is a joint venture between AT&T, T-Mobile and Verizon Wireless in the
mobile payment space and the main competitor of Google Wallet.

d) NFC TagInfo by NXP: provided by NXP Semiconductors the TagInfo applica-
tion allows you to browse the content of any NFC Forum compliant tag and
also some other contactless technologies (like RFID) present in public transport
and payment cards.

e) NFC TagWriter by NXP: this application can write contacts, bookmarks, Blue-
tooth Handover, email addresses, SMS, geo location, plain text and many more
to any NFC-enabled tag as well as to items like poster, business cards, watches
and many more containing NFC-enabled electronics. The data stored in the tag
can be viewed using this app too and launch other applications automatically
based on the programmed data.

f) PayPal: the most widespread global e-commerce business that allows payments
and money transfers to be made through the Internet. Online money transfers
serve as electronic alternatives to paying with traditional paper methods, such
as checks and money orders. NFC support was added in 2011 but it has been
recently given up to adopt a different strategy (cloud based).

g) Madrid Metro|Bus|Cercanias: essential Android application for Madrid citizens
and tourits dayly life. It contains all the information (maps, schedules, routes
calculation) about the three means of public transport present in the city: bus,
train and underground. NFC stickers are placed in bus stops to make the app
consultation as fast as a tap, avoiding having to search or type in the mobile
phone.

h) PPTLagartoSpock: simple application that emulates the Rock-paper-scissors-
lizard-Spock handgame(five-gesture expansion of the classic selection method
game rock-paper-scissors). Each player makes the selection in its own mobile
phone and then communicate using Android Beam(P2P) to see the winner. It
also works storing a player’s choice in a tag and reading it to see the result.

i) BT TagWriter: makes pairing of your Bluetooth speakers and your mobile
phone easy and fast. All you need is Android device with NFC support and a
writable NFC tag. The handover configuration is written in a NFC tag so that
just reading it your Bluetooth speakers get instantly connected.

j) NFC TagInfo: similar to NFC TagInfo by NXP but developed by a company
independent person, this app allows you to see all the conten stored in NFC

16

CHAPTER 2. STATE OF THE ART

compatible contactless cards. What makes the difference is that, this one,
allows you to borwse the content sector by sector giving you the information of
whether a specific sector is protected, it belongs to the header or whatever.

k) Think&Go NFC Shopping: NFC-Commerce platform providing all the basic
services and ready to be deployed in a retail environment. Tap-to-Basket, per-
sonalized product information, couponing, contextual advertising and advanced
customer profiling are some of the functions it is ready to provide.

l) TagCenter NFC Offers: allows you to find and collect exclusive coupons, content
and applications from your favourite brands and stores by tapping posters at
participating locations. It is still a prototype, but gives an interesting starting
point for future apps.

(a) Foursquare (b) Google
Wallet

(c) ISIS (d) TagInfo

(e) TagWriter (f) PayPal (g) Trans-
portes Madrid

(h) PPTLagar-
toSpock

(i) BT Tag-
Writer

(j) NFC Tag-
Info

(k) Think&Go (l) TagCenter
NFC Offers

Figure 2.7: NFC application icons [https://play.google.com]

17

https://play.google.com

CHAPTER 2. STATE OF THE ART

2.1.5 NFC-Enabled Mobile Phones

NFC is reaching more people thanks to its integration within, mainly, mobile
phones. Two or three years ago very few people would have known what is about.
On the contrary, now NFC is a characteristic that is being included in the best
devices and people look for. It will not be too hazard to say almost every mobile
phone manufacturer has some NFC-enabled phone among their products.

The main obstacle NFC has encounter to spread even more has been the lack
of support from Apple, who decided not to include it in the new iPhone5. This
fact may have delayed the awaited final boom of NFC.

Lists with all NFC handsets are available[15] in which you can find every exist-
ing device. In the following subsection a classification of NFC mobile phones has
been made with some examples. The criteria followed to divide them has been the
operating system, which has become the most important reason to buy one mobile
phone or a different one.

2.1.5.1 Symbian Phones

The first NFC-enabled mobile phones that hit the market were the Nokia run-
ning on its own operating system, Symbian. The pioneer was the Nokia 6131
NFC[15]. By the time it was a big revolution and many handsets were expected
to follow it. However Symbian was about to lose its popularity and market share
in favour of Android and iOS devices, costing Nokia to fight against bankrupt.
Nowadays Symbian is almost abandoned. Two of the last released NFC Symbian
mobile phones can be viewed in figure 2.8.

(a) Nokia 603 (b) Nokia C7

Figure 2.8: Symbian NFC mobile phones

18

CHAPTER 2. STATE OF THE ART

2.1.5.2 Android Phones

Android is a Linux-based operating system, designed for smartphones and
tablets. Since it was unveiled Android popularity has grown up to the point of
becoming the world’s most widely used smartphone platform. In 2010 the Nexus
S is released, being the first NFC Android phone. Google has been one the main
driving forces to provide NFC to the mass market.

(a) Google Nexus S (b) Sony Xperia S

Figure 2.9: Android NFC mobile phones

2.1.5.3 Blackberry OS Phones

Research In Motion, as Nokia, is having some troubles in maintaining good
sales numbers. Instead on changing the platform on which they used to work,
Blackberry has insisted in its own OS. Lot of research has been made to adapt
it to the current consumer needs and to offer the latest technological innovation.
RIM has been working with NFC for couple of years already an offers the same
capabilities of its main competitors.

(a) BB Bold 9790 (b) BB Bold 9900

Figure 2.10: Blackberry NFC mobile phones

19

CHAPTER 2. STATE OF THE ART

2.1.5.4 Windows 8 Phones

The last operating system to be released of the majority ones has been Windows
Phone 8. Nokia created an alliance with Microsoft to use Windows Phone 8 as
the OS for its devices to try to recover from the failure. The attractiveness of
this brand new OS has brought many other manufacturers as HTC and Samsung
to launch mobile phones running on Windows Phone 8. Microsoft has provided
with a fairly simple API to enhance the experience of users by means of developers
work.

(a) HTC 8X (b) Nokia Lumia 920

Figure 2.11: Windos 8 NFC mobile phones

2.1.6 Comparison with other Technologies

Each kind of wireless technology brings us a number of characteristics that
make it appropriate for several uses and scenarios. Different configuration and
modes of operation with its corresponding characteristics (bit-rate, setting time,
range, security, etc), makes every technology suitable for different needs.

A detailed comparison of the main characteristics between some wireless tech-
nologies is made in table 2.2. A brief description of each of the technologies ap-
pearing in the table is presented to put the reader into context.

• RFID: predecessor of NFC. Wireless technology that provides an automatic
identification method based in the remote recovery of data stored in RFID
tags.

• Bluetooth: designed in its origin to replace data cables between devices, such
as the RS-232. Bluetooth is a wireless technology standard for exchanging
data over short distances from fixed and mobile devices with high levels of
security.

20

CHAPTER 2. STATE OF THE ART

• IrDa: low-range wireless technology that transmits and receives data through
infrared light. Used in computers and mobile phones.

• ZigBee: wireless technology that allows the control and tracking of industrial
applications and domotics. Targeted at applications requiring low data rates,
long battery life, and secure networking.

Figure 2.12: Wireless technologies [11]

Looking at the different features of each technology first thing to note is that
they can not be compared in absolute terms. One specific technology may have
some advantage in one characteristic, but lose it in another. Or, what is more, an
attribute that seems to be useless can be very helpful in some special situation.

For instance, the low range that requires NFC can be thought as nonsense for
a wireless technology. But as a consequence it provides a intrinsic security against
sniffers the rest need to implement by other means in higher layers, except for
IrDa in which the intrinsic nature of light needs of a line of sight communication
being thus difficult to capture (and making the process, at the same time, more
tedious). Also the close proximity that devices connected using NFC must be to
each other is actually useful in crowded locations, allowing to prevent interferences
caused when other devices are present trying to communicate. Bluetooth may have
trouble dealing with interference when trying to send signals between two devices,
especially when several other devices are in close proximity [16].

21

CHAPTER 2. STATE OF THE ART

NFC RFID Bluetooth IrDa ZigBee

Set-up
time

<0.1s <0.1s ∼6s ∼0.5s ∼0.03s

Range 0.01m 3m 30m 1m 70m

Frequency 13.56 MHz 13.56 MHz 2.4-2.5
GHz

>300 Ghz 2.4 Ghz

Bit rate 424 kbit/s 424 kbit/s 3 Mbit/s 2.4 kbit/s-
4 Mbit/s

250 kbit/s

Security High Medium High, PIN
based

LOS (Line
of sight)

High

Network
type

Point-to-
point

Point-to-
point

WPAN Point-to-
point

WPAN

Ease of use One touch One touch Pairing
configura-
tion

No con-
figuration
needed

Network
configura-
tion

Uses Building
access,
payments,
bluetooth
handover,
etc

Identification,
product
tracking, etc

Data ex-
change
network

Data ex-
change
and re-
mote
controls

Domotics,
industrial
control,
etc.

Table 2.2: Short-range wireless technologies comparison

The set-up time is another important issue. RFID and NFC are practically
instant connection, compared to Bluetooth in which the negotiation delays a bit
the initiation. Though in the case a big file needs to be transmitted the higher
bit-rate of Bluetooth will give a better general performance. IrDa and ZigBee are
able to reach even lower set-up times due to its simplicity, however ZigBee max-
imum bit-rate is lower and it has been already commented the main problem of
IrDa.

So what really makes NFC special is the combination of the lowest operation
range and the fast set-up time. This blending results very convenient to comple-
ment many of the most popular wireless technologies as the ones listed. Besides,
it can be fully compatible with the existing contact-less cards infrastructure and
allows the consumer to use only one device across multiple platforms. To sum up,
with NFC technology many simple and fast connection can be made, including
transactions and data sharing.

22

CHAPTER 2. STATE OF THE ART

2.2 History and Evolution

This section will summarize the facts that made the appearance of NFC possible
and through its evolution to its actual state.

2.2.1 Origins

NFC is a quite new standard based on the already established RFID. NFC
keeps most of the characteristics of its forerunner and enhance its possibilities
integrating many other contact-less short range technologies. NFC inception takes
place during 2002, created mainly by Philips and Sony which were searching for
a protocol compatible between existing RFID cards, such as Mifare and Felica.
That is why NFC is also an extension of standard proximity cards ISO 14443.

2.2.2 RFID

Radio Frequency Identification (RFID) is a system that uses electromagnetic
waves to communicate between a device an a tag for the purposes of automatic
identification and tracking. The RFID tag may contain a battery or not, in which
case it is fed via magnetic induction from the reader device radio waves [17]. Some
advantage against other solutions like bar codes or QR codes are that RFID com-
munication does not need to be in line of sight and therefore the token to read
can be miniaturized and embedded. A wide range of applications exist for this
technology, each one using different frequency bands depending mainly on the
communication range.

NFC is a newer standard that take root from RFID, it preserves many of the
characteristics and functions but, in principle, is not intended to substitute. NFC
enlarge the possibilities that RFID technology can bring. The main advantage is
the integration within mobile phones and the increase of security as a consequence
of the working range.

2.2.3 Milestones

1. 1983: The first patent to be associated with the abbreviation RFID was
granted to Charles Walton. [18]

2. 2003: NFC standard issued in 2003. An interface technology for short-range
data communication working in the frequency band of 13.56 MHz. [11]

3. 2004: Nokia, Philips and Sony established the Near Field Communication
(NFC) Forum. [19]

23

CHAPTER 2. STATE OF THE ART

4. 2006: Initial specifications for NFC Tags and “SmartPoster” records. [11]

5. 2006: The Nokia 6131 NFC was the first commercially available handset with
integrated NFC. [15]

6. 2009: NFC Forum Unveiled Target N-Mark. [11]

7. 2009 Jan: NFC Forum released Peer-to-Peer standards to transfer contact,
URL, initiate Bluetooth, etc. [11]

8. 2010: Google step in. Samsung Nexus S: First Android NFC phone shown.
[20]

9. 2011: Google I/O “How to NFC” demonstrated NFC to initiate a game and
to share a contact, URL, app, video, etc. [21]

10. 2011: Research In Motion is the first company for its devices to be certified
by MasterCard Worldwide, the functionality of PayPass.[22]

11. 2011: Launching Google Wallet on Sprint and working with Visa, American
Express and Discover. [23]

12. 2012: Sony introduces the “Smart Tags”, which use NFC technology to
change modes and profiles on a Sony smartphone at close range, included
in the package of the Sony Xperia P Smartphone released the same year.
[24]

13. 2012: Windows 8 release with NFC API included in the Proximity package.
[25]

14. 2013 Jan: NFC Forum Launches Special Interest Groups to Support NFC
Market Implementations. [26]

2.3 NFC Forum

This section will give an overview of the main promoter of NFC.

2.3.1 What is it?

The Near Field Communication Forum is a non-profit association created in
2004 formed by many members in the industry, that promotes the use of NFC.

24

CHAPTER 2. STATE OF THE ART

Figure 2.13: NFC Forum logo [11]

It collects the set of standards that compose
NFC and gives them validity. Any new speci-
fication ready to be included in the technology
has to be firstly approved by this organization.
Through its website, events and campaigns the
Forum tries to empower the use of NFC in con-
sumer electronics such as mobile devices and
PCs, remarking the impact this technology can
(and will) have both in the industry and the fi-
nal user.

The NFC Forum was founded in 2004 by Sony Corporation, Nokia Corporation
and NXP Semiconductors (formerly Panasonic Semiconductors), and many mem-
bers have joined since then. Besides the NFC Forum welcomes liaison relationships
with relevant external organizations, like the WiFi Alliance and EMVCo.

2.3.2 Mission and Goals

The forum states the following as its mission [11]:

The Near Field Communication Forum was formed to advance the use of Near
Field Communication technology by developing specifications, ensuring interoper-
ability among devices and services, and educating the market.

More precisely it has a set of defined goals to achieve the mission which can be
split in the following:

• Develop standards-based Near Field Communication specifications.

• Encourage the development of products using NFC Forum specifications.

• Work to ensure that products claiming NFC capabilities comply with NFC
Forum specifications.

• Educate consumers and enterprises globally about NFC

These aspects are essential to ensure interoperability for NFC devices and pro-
tocols and a stable and secure framework for application development. The NFC
Forum provides a highly stable framework for extensive application development,
seamless interoperable solutions, and security for NFC-enabled transactions. It
has formally outlined the architecture for NFC technology [11]. The Forum has
released 16 specifications to date. The specifications provide a “road map” that
enables all interested parties to create powerful new consumer-driven products.

25

CHAPTER 2. STATE OF THE ART

Figure 2.14: NFC Forum environment [11]

2.3.3 Members

Members in the NFC Forum are companies in different industries that aim
to get benefited from NFC technology and the relation with the forum and the
other affiliates. As it can be expected many different business are interested in
joining the group, from chip and electronic devices manufacturers, to application
developers and financial institutions. The figure 2.14, which was extracted from
[11] shows the complete business drivers that surrounds the forum. The Forum
has now more than 170 members, which are divided depending on the degree
of economical involvement in five different groups: Sponsor Members, Principal
Members, Associate Members, Non-Profit Members and Implementer Members.
At the same time each one has distinct rights inside the committees of the forum.
The NFC Forum has coordinated the work of hundreds of member organizations
by creating Committees and Working Groups.

• Special Interest Group (SIG) Committee, which has five Working Groups
that are open to all members, with voting rights for Sponsor and Principal
Members

• Technical Committee, which has three Working Groups that are open to all
members except Implementer members, with voting rights for Sponsor and
Principal Members

26

CHAPTER 2. STATE OF THE ART

Group Companies

Sponsor Members Sony Corporation, Nokia Corporation, NXP Semi-
conductors, MasterCard Worldwide, NEC Corporation,
QUALCOMM Inc., Broadcom Corporation, Intel Corpo-
ration

Principal Members American Express, AT&T, Barclaycard, Cambridge Sil-
icon Radio, CANON INC., Google Inc., Hewlett
Packard, Huawei Technologies Co, Ltd., INSIDE Se-
cure S.A., Kovio Inc., LG Electronics, NTT DOCOMO,
INC.,PayPal, Texas Instruments Incorporated

Associate Members Acer Incorporated, Agilent Technologies, Bell Mobility,
China Mobile Communication Corporation, Clear2Pay
(Integri), ERICSSON AB, Gemalto NV, Hitachi, Lenovo,
MediaTek, Micropross, Microsoft Corporation, Ltd.,
National Instruments

Implementer Members 3ALogics Inc., Advanced Card Systems Ltd., ALPS Elec-
tric Co., Ltd., HTC Corporation, Identive-Group, Inc.,
Isis, ITN International, Inc., JC Square Inc., Johnson
Controls, Inc., Kyocera Corporation

Non-Profit Members GSM Association, Hungarian Mobile Wallet Association,
ITSO, Japan IC Card System Application Council (JIC-
SAP), National Payments Corporation of India, Universi-
dad Pontificia de Salamanca- MIMO, WIMA

Table 2.3: NFC Forum members

• Compliance Committee, which has three Working Groups that are open to
all members except Implementer members, with voting rights for Sponsor
and Principal Members

Table 2.3 lists some of the main members of each group. The full board of
members is in the NFC Forum website [11]. Some of them have been highlighted
for its importance.

27

CHAPTER 2. STATE OF THE ART

2.3.4 N-Mark

Figure 2.15: N-Mark
[11]

The N-Mark is the universal symbol for NFC that
the NFC Forum has developed. It allows the consumers
to easily recognize NFC-enabled and services. Displayed
in a screen, packaging or product, it indicates that the
product or service has NFC capabilities.

2.4 Technical Specifications

This section will go deeper in the technical specifi-
cations. A description of the architecture and data format will be addressed along
with more details of tags. To conclude a security analysis with the main concerns
is presented.

2.4.1 NFC Architecture

NFC is a converging evolution of already existing standards, aiming to create
a contactless technology that allows interoperability. The NFC Forum defines the
components that belong to the NFC architecture.

Figure 2.16: NFC Forum Architecture [11]

Figure 3.4 describes the different components of the technical architecture of
NFC in more detail, making a distinction between operating modes. Some of
the existing recognized standards are ISO/IEC 18092, ISO/IEC 14443-2,3,4, JIS

28

CHAPTER 2. STATE OF THE ART

X6319-4, among others. NFC Forum specifications include parts of these stan-
dards. Therefore, compliant devices behave in the most consistent way, and the
evolution of existing infrastructure toward full NFC is facilitated.

2.4.1.1 NFC Forum Protocols

In this section a brief description of the protocols and specifications issued by
the NFC Forum will be given. For a full and more accurate specification refer to
the datasheets [27].

2.4.1.1.1 NFC Analog Technical Specification Defines the analog radio
frequency characteristics of an NFC Forum device, for example, shape and strength
of RF fields. The specification characterizes and specifies the externally observable
signals for an NFC-Enabled Device without specifying antenna design, for the dif-
ferent NFC technologies (ISO 14443-3A, ISO 14443-3B, and JIS 6319-4), operating
modes and for all the different bit rates (106kbps, 212kbps, and 424kbps) [27].

2.4.1.1.2 NFC Digital Protocol Specification for digital aspects for NFC-
enabled devices communication, defining the building blocks to be implemented on
top of the ISO/IEC 18092 and ISO/IEC 14443 standards. This layer harmonizes
contactless technologies defining options and limits of the standards, such as bit
level coding, bit rates, frame formats, protocols, and command sets. It can be
bound to the LLCP protocol [27].

2.4.1.1.3 NFC Activity Technical Specification It is based on the build-
ing blocks of the digital protocol, and it specifies the activities, i.e. what to do,
to set up an interoperable communication. The specification describes how the
digital protocol specification may be used to setting up a communication, being
the specific combination of several activities called Profile. Different Profiles are
available and can be modified as well [27].

2.4.1.1.4 LLCP Logical Link Control Protocol (LLCP). It corresponds to an
OSI layer-2 protocol based on the industry standard IEEE 802.2, what makes it
able to multiplex between protocols, supporting network protocols such as OBEX
and TCP/IP. LLCP is intended to carry out peer-to-peer communication in bidirec-
tional communications. It describes link activation, supervision and deactivation
for two service types, connectionless and connection-oriented. LLCP improve the
basic functionality offered by ISO/IEC 18092, without any impact in the interop-
erability [27].

29

CHAPTER 2. STATE OF THE ART

2.4.1.1.5 SNEP Simple NDEF Exchange Protocol (SNEP). Protocol that al-
lows a peer-to-peer NFC application to exchange NDEF with another NFC device.
It is implemented just on top LLCP in connection-oriented transport mode, pro-
viding reliable data transfer [27].

2.4.1.1.6 Tag Operation Specification Description of the four tag types
that are operable with NFC devices, defining how to read and write from/to a tag.
It is considered the backbone of interoperability for NFC, as different tag providers
and manufacturers provides the same consistent user experience [27].

2.4.1.1.7 NCI Technical Specification NFC Controller Interface (NCI) de-
fines a standard physical interface for NFC controllers to communicate with the
NFC device main application processor. NCI provides a logical interface that can
be used with different physical transports, such as UART, SPI, and I2C. In this
way device manufacturers can integrate more easily different chipsets no matter
what the chip manufacturer is or the device wanted to be built [27].

2.4.1.2 Reader-Writer Protocol Stack

The main building block for the Reader-Writer operating mode is the Tag Op-
eration Specification. Lower level protocols/specifications are shared among the
different operating modes, and then are built up from the NFC Digital Protocol
by means of the corresponding Activities and Profiles. Tag types will be examined
in more detail in section 2.4.3. There are some NFC Forum specific applications,
the NDEF Reference Applications, such as smartposters or handover. In addi-
tion, third parties applications may be programmed to follow the NFC Forum
specifications or not.

Figure 2.17: Reader-Writer protocol stack

30

CHAPTER 2. STATE OF THE ART

2.4.1.3 Peer to Peer Protocol Stack

Peer to Peer is possible thanks to the LLCP protocol. Furthermore, it gives
a flexibility to this operating mode that makes it unique and suitable for almost
every application. The role of SNEP has already been described. NPP is an
homonym developed by Google before SNEP specification was released. Yet the
most common way to go is using the NFC Forum defined protocol for NDEF
transmission, there are some other registered protocols, e.g. OBEX, for which the
forum provide the Protocol Bindings. Finally, as in Reader-Writer mode, other
applications can use their own protocol, although being NFC Forum compliant is
recommended.

Figure 2.18: Peer to Peer protocol stack

2.4.1.4 Card Emulation Protocol Stack

Unlike the two other operating modes, the Card Emulation lacks from stan-
dards defined by the NFC Forum at a higher level. So far the few applications
made public have used proprietary procedures, making them incompatible. Spec-
ification for this mode may be released in the future as the industry evolves to a
common solution.

2.4.1.5 Hardware

At a hardware level, devices that want to acquire NFC capabilities has to inte-
grate a NFC microcontroller. This microcontroller contain at least one chip called
the NFC radio, which has the antenna to generate the RF field and the processor
to control and produce the signals that drive the the antenna. Besides, there is
need of another chip or mechanism to run applications which deal with sensitive
data and a certain degree of security is required. This is called the Secure element.
The NFC radio is connected to a host controller, which can be the baseband or

31

CHAPTER 2. STATE OF THE ART

Figure 2.19: Card Emulation protocol stack

application processor on a phone.

The secure element (SE) can be implemented in several ways. It must contain
a secure processor, a tamperproof storage and execution memory. Note that the
secure element’s processor has to be different from the host processor to ensure
the independence and, thus, a secure path for the data. The SE contains applica-
tions which rely on secure keys running inside the secure processor. Applications
running on the secure element typically do it on a Javacard OS.

2.4.1.5.1 NFC in Mobile Phones The architecture of the NFC chip in mo-
bile phones can be regarded in the following figure. As it can be seen the mobile

Figure 2.20: NFC-enabled mobile phone internal scheme [Smart Card Alliance]

phone holds a NFC chip that contains the microcontroller connected to the an-

32

CHAPTER 2. STATE OF THE ART

tenna an communicating with the mobile processor. Also in the same chip a SE is
embedded, this element is an smart card and is usually delivered along with the
NFC microcontroller in the same package.

There are multiple ways that the SE may be connected to the radio:

• Smart Card: normally integrated with the NFC microcontroller. It belongs
to the handset manufacturer.

• SIM (UICC): connected through SWP (single wire protocol), provides the
secure environment to install applications to make transactions. It belongs
to the network operator.

• SD Card: not showed in figure 2.20. An SD card inserted in the slot could be
used to work as the SE. More complicated as different mobile phones handle
do not handle the cards in the same way.

2.4.2 NFC Data Exchange Format (NDEF)

The NFC Data Exchange Format (NDEF) is one of the initial specification is-
sued by the NFC Forum. NDEF specifies a common data format for NFC Forum-
compliant devices and NFC Forum-compliant tags. [28]

Figure 2.21: NDEF Message layout [10]

33

CHAPTER 2. STATE OF THE ART

NDEF is specified to allow interoperability when transferring data through
NFC interface between enabled devices or to store in any storage medium such
as a tag. It is a lightweight and compact binary format that can carry URLs,
vCards, and NFC-specific data types[10]. Each NDEF message can transport
multiple payloads of any type encapsulated in a lower common data format called
NDEF Record. In this way NDEF hides all the specific details of the application
information and simply relies in the protocol stack to transmit the message. To the
receiver, the NDEF message will appear just as a sequence of records with known
format and easy to interpret. Figure 2.21 shows what has just been explained.

The NDEF message lacks of header and it contains a minimum of one record
and the maximum is unbounded. The different records are cut out looking inside
the record’s header in which the payload length is specified. An identifier and the
payload type is indicated as well. This last one is specially important to be able
to parse the payload and later will be explained in more detail. Other important
fields are the MB (Message Begin) and the ME (Message End) which are used to
identify if the record is the first or the last one in the message respectively. Actu-
ally, the header is not as simple and a full description of all the fields is present
in figure 2.22. NDEF records do not carry an index number, the order is the one
followed when the records are serialized. Moreover, NDEF messages must not be
nested using MB and ME. To do so, a whole message has to be encapsulated in
another NDEF message (more precisely into a record of it).

The NDEF record information is presented at an octet level. The transmission
order is from left to right and from top to bottom in such a way the most signif-
icant bit of an octet or octet string is the leftmost bit, being the first one to be
transmitted.

The string contained in the TYPE field specifies the name of the record type
(record type name). Record type names are used by NDEF applications to identify
the semantics and structure of the record content. Each record type definition is
identified by its record type name. The record type name format is specified in
the TNF (Type Name Format) field of the NDEF record header. The TNF field
value indicates the structure that will follow the TYPE field. Record type names
can absolute URIs, MIME media types, NFC Forum external type names, or well-
known NFC type names.

This combination of TNF and record type name makes the definition of types
very flexible, while congruous with existing types specifications, allowing every
third party to create its own record type just following the guidelines.

34

CHAPTER 2. STATE OF THE ART

Figure 2.22: NDEF Record layout [28]

2.4.2.1 RTD (NFC Record Type Definition)

The RTD specification of the NFC Forum provide the guidelines for the speci-
fication of the record type standards that can be included in NDEF messages. As
stated before the record type formats can be MIME media types, absolute URIs,
NFC Forum external type names and well-known NFC type names. This specifi-
cation covers the last two of them, as the others are already well-defined in RFC.

The NFC Forum Well-known Type is a dense format designed for tags. It is
meant to be used in case there is no equivalent URI or MIME type available, or
when message size limitations require a very short name. The Well-known Type
can take different forms which will be indicated in the TYPE field, the following
are defined [28]:

• Text Record Type: record that contains ASCII chracters, i.e. plain text. It
can be used to describe any information or, for example, the contents of the
tag.

• URI Record Type: NFC RTD describing a record to be used with the NFC

35

CHAPTER 2. STATE OF THE ART

Data Exchange Format (NDEF) to retrieve a URI stored in a NFC-compliant
tag or to transport a URI from one NFC device to another.

• Smart Poster Record Type: defines how to put URLs, SMSs, or phone num-
bers on an NFC Forum Tag or how to transport them between devices.

• Signature Record Type: contains a digital signature related to one or more
records within an NDEF message. The signature can be used to verify the
integrity and authenticity of the content, i.e., the data records that have been
signed.

The External Type Name is meant for organizations or third parties that wish
to self-allocate a name space to be used for their own purposes. The pattern to
follow is explained in the RTD technical specification document.

2.4.3 Tags

NFC Tags are the passive elements that can be used to store information and
communicate with any NFC powered device (in reader/writer operation). Basi-
cally the tag is a loop antenna, designed to capture energy and transmit responses,
provided with a small chip with EPROM memory, which will keep the received
data. Due to the simplicity of its components, the integration is easy and can be
done in a flat surface. This kind of tags are easy to fabricate and can be purchased
economically in big amounts, and its price is expected to lower as NFC definitely
hits the mass market.

The operation mode is as follows: when the active device (e.g. mobile phone)
touches the tag, the small circuit of the tag is fed by the elecromagnetic field cre-
ated by the active player. The energy extracted is enough to activate the circuit
works producing a modulated backscatter (signal reflection in the transmitted di-
rection) to communicate with the reader. This fundamental scheme is used both
for read and write, the main difference is the response and the storage of the trans-
mitted message. Lecture range is, theoretically, up to 10cm. However test run with
commercial mobile phones demonstrate that the typical range is below 3cm.

Tags can be used to store urls, vcards and many other URI types that can be
placed, for instance, in so called smart-posters. Also classical applications from
RFID can be performed such as transport, identification and access cards with an
integrated passive tag. In any case the size of the stored information has to be
small. More precise data will be given when analyzing the different types of tag. In
the first NFC Forum release in which the a general architecture of the technology
was presented, it was defined four types of tag. Designed with numbers from 1 to

36

CHAPTER 2. STATE OF THE ART

4, having each one different formats and capacities, this specification was designed
to guarantee the compatibility between technologies, including existing RFID ISO
1443 (Type A, B) ones and Sony Felica ISO 18092.

(a) Electromagnetic field

(b) Induction scheme

Figure 2.23: NFC Forum Tag Types

2.4.3.1 NFC Forum Type 1 Tag

Type 1 Tag is based on ISO/IEC 14443A. Tags are read and re-write capable
and users can configure the tag to become read-only. Memory size is 96 bytes and
expandable to 2 kByte. Transmission speed is 106 kbit/s. Due to its simplicity
the price is low [29].

2.4.3.2 NFC Forum Type 2 Tag

Very similar to Type 1. Type 2 Tag is based on ISO/IEC 14443A. Tags are
read and re-write capable and users can configure the tag to become read-only as
well. Memory availability is 48 bytes and expandable to 2 kByte. Transmission
speed is 106 kbit/s. Again the price is low [29].

2.4.3.3 NFC Forum Type 3 Tag

Type 3 Tag is based on the Japanese Industrial Standard (JIS) X 6319-4, also
known as FeliCa. Tags are pre-configured at production to be either read and re-
writable, or read-only. Memory availability is variable, theoretical memory limit
is 1 MByte per service. Transmission speed is 212 kbit/s or 424 kbit/s. This type

37

CHAPTER 2. STATE OF THE ART

of tag gives more flexibility to carry data for more complex application. The price
in this case is higher than previous ones [29].

2.4.3.4 NFC Forum Type 4 Tag

Type 4 Tag is fully compatible with the ISO/IEC 14443 standard series (A and
B). Tags are pre-configured at manufacture to be either read and re-writable, or
read-only. The memory availability is variable, up to 32 KBytes per service. The
communication interface is either Type A or Type B compliant with a speed of
424 kbit/s. Variable price depending on the manufacturer [29].

2.4.3.5 Comparison

Regarding the determining aspects when choosing a tag for specific application,
memory and price will be the most critical. As it can be seen in table 2.4 these
factors follow an inverse relation. 96 kBytes is enough to store a simple NDEF
message with one NDEF record or, perhaps, two; but if the number of records is
increased or more sophisticated data is carried in the record will not be possible
to be saved.

So, for instance, if the application that is going to be developed requires lots
of tags, the information stored in them shall be small enough to fit in Type 1 or
2 tags to keep the project feasible. Unless the resources are not limited, what in
general is never true.

Another possible scenario could be that the equipment necessary is already
available from a previous RFID application, lets say Felica readers and writers. In
that case would be preferable to buy only tags for that technology than to invest
in a whole new NFC compliant equipment. Therefore a balance has to be done
taking into account the scope of the project and the characteristics of each tag
type.

2.4.4 Security

Security is one of the main concerns when it comes to deal sensitive data of
the users using NFC. By itself, NFC does not provide any type of security service,
having to be implemented in higher layers. Nevertheless, due to the characteristics
of the radio interface and the short range in which the communication takes place,
the security is almost guaranteed for typical threats.

38

CHAPTER 2. STATE OF THE ART

Type 1 Type 2 Type 3 Type 4

RF Interface ISO 14443
A-2

ISO 14443
A-2

Felica (ISO
18092)

ISO 14443-2

Initialization ISO 14443
A-3

ISO 14443
A-3

Felica (ISO
18092)

ISO 14443-3

Speer 106 Kbits/s 106 Kbits/s 212 Kbits/s 106-424
Kbits/s

Protocol Specific
Command
Set

Specific
Command
Set

Felica Proto-
col

ISO 14443-4,
ISO 7816-4
Commands

Memory Up to 1KB Up to 2KB Up to 1MB Up to 64KB

Cost Low Low Moderate Moderate

Use Cases Tags with small memory
for single application

Flexible tags with larger
memory offering multi-
application capabilities

Table 2.4: NFC Forum tag types

An attacker can capture the data transmission via an antenna which may be
located at a maximum distance of a few meters. In addition, if the target device to
listen is in passive mode, it does not generate its own RF field, being much more
difficult to capture the data. Besides, the short range in which the attack has to
be performed could make the user to realize it is being attacked. The destruction
of the data being transferred is, however, as simple as using an RFID jammer.
Although there is no way to prevent the previous attack, it can be detected so the
harm is minimum.

2.4.4.1 Attacks

In this section the most alarming security holes are going to be described.
These attacks have already been studied and some solutions have been suggested
as well[30][31]. In spite of that, none solution has been included in the ISO standard
and NFC still does not offer protection against not authorized listenings. So perfect
security can only be obtained when dedicated cryptography is used to establish a
secure channel between communicating devices.

2.4.4.1.1 Eavesdropping Eavesdropping (also known as sniffing) is the most
evident attack on wireless communications. An attacker can listen to any data
being sent between devices by means of an antenna and analysis equipment. As it
have been said the close proximity and low power makes the attack, in this case the

39

CHAPTER 2. STATE OF THE ART

eavesdropping, harder to perform with NFC than any other wireless technology
with bigger ranges. How hard it exactly is to eavesdrop a NFC conversation
unfortunately depends on too many physical (RF signal emitted, antennas used,
receiver used) and environmental (location, noise, position of the attacker) factors.
Also, eavesdropping is highly affected by the communication mode. A passive
device which does not create its own RF field is much harder to eavesdrop on than
an active one. The typical range in which an attacker can eavesdrop is within 10m
and 1m for active devices and passive devices.

2.4.4.1.2 Data modification Data can be easily destroyed using an RFID
jammer causing denial of service and it is almost impossible to prevent. The only
thing NFC devices can do is to check the RF field during transmission, detecting
collisions and, thence, attacks. However, attackers are usually interested in more
useful attacks such as modifying the data being sent out. But modifying the data
in such a way that it appears to be valid to users is way more complicated.

An intruder has to deal with the single bits of the RF signal. The feasibility of
this attack, is amongst others subject to the strength of the amplitude modulation.
If data is transmitted with the modified Miller coding and a modulation of 100%,
only certain bits can be modified. This type of modulation makes possible to elim-
inate a pause of the RF signal, but it is impossible to generate a pause if it has not
previously been one. Therefore, only a 1 followed by another 1 could be changed.
On the other hand, transmitting Manchester-encoded bits with a modulation ratio
of 10% allows a modification attack on all the bits.

To conclude, recalling table 2.1, data modification in a communication is pos-
sible for bit rates higher than 106 kbit/s and possible only to some small extend
for the 106 kbit/s bit rate.

2.4.4.1.3 Man-in-the-middle In MITM attacks, the attacker sits in between
two parties that are communicating, presumably, securely with each other. The
attacker intercepts messages sent by one device and then sets up a new communi-
cation with the second device. Then, he catches the response of the second device
and sends his own response to the first device. To ensure both devices do not dis-
cover the fraud, the attacker has to jam the signal from the first party while at the
same time sends its own data out. The problem here is that NFC devices are able
to receive and transmit data at the same time. Thus, collisions can be detected
when checking the radio frequency field and received and transmitted signal do not
match. Therefore jamming or incoherent signals can be detected. Plus the fact
that NFC is a short range communication, MITM type of attacks are practically

40

CHAPTER 2. STATE OF THE ART

impossible to carry out.

However it has been shown that some kind of relay-attacks can be feasible
(as NFC include ISO/IEC 14443 protocols) using only two NFC-enabled mobile
phones [32].

2.4.4.1.4 Lost property Losing the NFC card or the mobile phone will open
access to any finder and act as a single-factor authenticating entity. If the mobile
phones is protected by a PIN code, this would act as the unique authenticating
factor. In any case, this problem is present also in the conventional wallet or cards
and should not persuade users to avoid NFC.

2.4.4.1.5 Walk-off NFC function normally is shut down when the transaction
is completed or after a period of inactivity (time-out closing to protect the open
access to NFC secure data). Attacks could happen while the bearer “walks-off”
and the countdown to shut down the communication has not finished. Additional
features to cover such an attack scenario dynamically shall make use of another
wireless authentication key that remains with the bearer during the activity period
to validate its identity.

2.5 NFC Software Development

This section will review the software development alternatives existing for mo-
bile phones. The main characteristics will be studied and compared between them.

2.5.1 APIs

The review on the APIs found will be done highlighting what have been con-
sidered the main characteristics that an NFC API can have, that are the following.

1. Programming language: in which it has to be programmed. It will depend
on the underlying operating system the API is made for.

2. Supported operating modes: if every mode can be programmed or only some
of them.

3. Supported data format: two possible scenarios. The API supports NDEF
data (compulsory) or it also support raw data.

4. Access to the secure element: whether is it possible to access the secure
element or not. Tightly related to the operating system and manufacturer.

41

CHAPTER 2. STATE OF THE ART

5. Complexity/Ease of use: level of usability and flexibility.

6. Current state: the situation that surrounds the API.

7. Other comments: relevant aspects of a particular API that distinguish it
from the others.

(a) Android logo (b) Windows Phone 8 logo

(c) Blackberry OS logo (d) Open-NFC logo

Figure 2.24: NFC development. OS logos

2.5.1.1 Earliest APIs

As it has been mentioned before, Nokia was the first company integrating NFC
within its commercial mobile phones. Thus, first APIs that appeared were made
for Symbian, Nokia’s flagship OS.

JSR-257, released in 2006 and included in the Java ME platform:

1. Java.

2. Every operating mode supported at a low level. In other words, the NFC
Forum defined operating modes had to be built by the combination of simple
instructions.

3. Every kind of data format allowed. Including a dedicated class for NDEF
format.

4. Possibility of unlocking the embedded secure element. Previous request to
Nokia.

42

CHAPTER 2. STATE OF THE ART

5. Complex API, specially compared with the more recent ones.

6. Abandoned due to Symbian decay.

7. Complete compatibility with ISO/IEC 14443-4, i.e, some no NFC Forum
compliant tag/cards are supported.

QtMobility 1.2, 2010:

1. C++.

2. No card emulation mode. Otherwise, operating modes supported at a low
level.

3. Both raw and NDEF format data.

4. Possibility of unlocking the embedded secure element. Previous request to
Nokia.

5. Simpler API than JSR-257, similar functionality level than Android one.

6. Complete set of mobility functions, like NFC, hardly used.

7. Only Symbian compatible although is an independent platform.

2.5.1.2 Android

Google was one of the first “software companies” on betting for NFC. The
Android API was released in 2010 gaining considerable impact after 2011 Google
I/O event.

1. Java.

2. Reader-Writer and Peer to Peer fully implemented. No Card Emulation
though.

3. Both raw and NDEF format data.

4. No official mean of secure element unlocking.

5. Fairly simple usage. Also flexible as it allows many low instructions to be
accessed. Classes for messages, tags and connection management.

6. In development. Upgrades have been released with new Android versions.
Card emulation expected in next upgrades.

43

CHAPTER 2. STATE OF THE ART

7. Implements a port of the proprietary library libnfc-NXP which indeed sup-
ports card emulation. Also MIFARE classic tag type despite the fact it does
not correspond with any NFC Forum specification. WiFi and Bluetooth
handover functions already implemented.

2.5.1.3 Windows Phone 8

On October 29, 2012, Microsoft released Windows Phone 8, a new generation
of the operating system. This system includes NFC capabilities. Previously, a
partnership with Nokia had been announced. An alliance that will benefit NFC
environment. Within the proximity set of classes of WP8 the ones to deal with
NFC can be found.

1. C#.

2. Reader-Writer and Peer to Peer fully implemented. Emulation Card through
SWP and SIM card as secure element.

3. Only NDEF format data. Very easy to create NDEF messages and records.

4. Need of a compatible Mobile Network Operator that allows to unlock the
secure element for developers.

5. Easiest of the existing APIs. Nice wrappers. Some flexibility is lost, low level
functions not accessible.

6. Recently released. A higher influence is expected to be achieved as the
operating system gets widespread.

7. Allows P2P session encryption with a symmetric key (AES encryption stan-
dard).

2.5.1.4 Blackberry OS

Blackberry API dates back to 2011 when the seventh version of its operating
system was released. Blackberry had been experimenting with NFC for a while
already, becoming one of the few manufacturers certified by MasterCard to make
mobile payments.

1. Java.

2. Every operating mode supported. Card Emulation supported both with SIM
and smart card.

3. Both raw and NDEF format data.

44

CHAPTER 2. STATE OF THE ART

4. Possibility for Blackberry developers to unlock the smart card secure element.

5. More complex API, but less restrictive in return.

6. Despite being one of the last to be released it presents a complete set of
functions perfectly integrated with Blackberry devices.

7. Interesting API from the developer point of view. Blackberry OS still creates
doubt.

2.5.1.5 Other Open Source APIs

Open NFC [35] is a software stack implementing NFC functionalities on top of
an NFC controller chip-set. Sponsored by INSIDE Secure, is an open source NFC
software project that wish to become the reference NFC software stack for every
platform. Supports all the functions commented for other APIs and is indepen-
dent of the underlying operating system, previous porting to the corresponding
OS. Also different hardware could be adapted by means of a hardware abstraction
layer present in the stack.

All these huge advantages have two big inconveniences. The main companies
driving the NFC market have opt for other solutions already tested and, besides,
is not straight forward to put the stack to work.

2.6 Near Future Foresight

This section will bring to a close the state of the art. The market situation will
be exposed and future research analyzed.

2.6.1 Market Acceptance

The truth is that NFC has not reach the point yet to say is well established
and everybody has heard of it. Many companies have decided not to bet for it,
the most representative example is Apple. Although there were rumors of iPhone
5 bringing NFC within it, finally it was not included. This means that roughly a
third of the mobile phones will not have NFC during years, at least the lifetime
of current iPhones. A big slow down to NFC Forum expectation. Moreover, it is
still not widespread among all the rest of cell-phone manufacturers.

On the other hand, there are a bunch of big companies pushing ahead. Sony has
launched a set of consumer electronics which all have NFC perfectly integrated,

45

CHAPTER 2. STATE OF THE ART

allowing all the devices to connect between them and share content instantly,
highlighting the benefits of this “new” technology. It is likely that other companies
follow Sony in this initiative.

A long path is yet to be covered. The development of new applications and
systems is the way to follow to create a rewarding environment to the user. Proto-
types are being tested in different cities all over the world and will hit the market
gradually as these test become successful.

Additionally, the mobile payment through NFC is awaited. This is thought to
be the killer app that will make everybody want to buy a NFC-enabled phone.
The problem is that the interest aroused around this functionality has brought
many big players to fight fiercely to be the one providing this service. With the
added difficulty of the secure element management needed to make this kind of
transactions, for which and agreement with a trusted service manager is required.

2.6.2 Future Research

Since NFC came to light back in 2003 lot of effort has been deployed on making
the technology ready to compete against other solutions. The NFC Forum mem-
bers have been the main promoters according to the specifications.

Developers embraced NFC eager to build new applications and solutions for
all the operating modes. Read-Write and Peer to Peer were dominated, and have
become quite simple to work with. However, the more interesting mode, from a
developing point of view, is hard to put it to work. Card Emulation should be eas-
ily accessible to developers to bring up again their enthusiasm. For that purpose
more agreement will be needed between the trusted service managers and network
operators, phone manufacturers or other entities controlling the secure element on
mobile phones. Besides, additional NFC Forum specifications for this operating
mode may help to reach a consensus.

Leaving apart Card Emulation and taking into account the two other modes
are easy to implement, research struggle should put into creation of rich systems
that really add value to the consumer’s use of NFC. Finally, interoperability, which
is fairly good already, must be granted between all the devices using NFC and a
definite step should be made.

46

3
SYSTEM ANALYSIS AND

DESIGN

T
his chapter will present the results of the analysis carried out in the first
stage of the development process, when most of the decisions were taken
with respect to functionalities to implement, structure of the application

and interaction with the user. UML diagrams will be presented when relevant.

3.1 Naming and Logo

Every worthwhile application needs a recognizable name and an attractive logo.
The main ideas behind the application branding will be described briefly.

3.1.1 Name

Four very simple premises were set as constraints. The name must:

• Contain NFC in the name: NFC is still not well known and needs recognition
and promotion. At the same time, as people starts to know NFC more people
will discover the application. Thus having the acronym in the name causes
a positive feedback.

• Have a meaning related with what the application does: the application can
do many tasks like, e.g. reading tags, but its philosophy is to become the
neural center of the NFC environment unifying all the content distributed
by NFC.

47

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

• Sound good: complicated names were avoided. It had to be an easy name
to remember.

• Have a domain which is free: a domain in the form www.yourdomain.com
looks trustful and professional. Sometimes such domains are reserved (either
some other activity is being held in the domain or it is just for sale for a big
amount of money). Acquiring a domain with the name for future promotion
was seen as an important point.

Adding up all together the name UniteNFC was created. Being the word unite
defined by the Oxford English Dictionary [36] as:

unite: (verb) come or bring together for a common purpose or action

The main element of the application, NFC tags registered into UniteNFC, will
be called from now on NFC Points.

3.1.2 Logo

Figure 3.1: UniteNFC logo

The design of the logo followed some of
the reasoning exposed in the previous sec-
tion too. Easy to recognize and contain the
N-Mark 2.15. Besides, seemed a good idea
that the symbol itself was part of the appli-
cation interface. As one of the many func-
tionalities is to locate NFC Points in the
map, the logo was drawn as a circle with
a tip pointing downwards, i.e. resembling a
marker.

The high resolution (512 x 512 px) logo can be seen in figure 3.1, while the
markers with different colors used for the application are shown on figure 3.2.

Figure 3.2: Markers on UniteNFC

48

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.2 Scenarios

UniteNFC was not thought to cover an specific need, but to provide the user
with a tool that may be used in different scenarios. These scenarios are related with
the possibilities that NFC provides and a new way to interact with the physical
world from the digital or vice-versa.

3.2.1 Fairs and Events

Imagine a big event like the Campus Party or the NFC World Congress. Nor-
mally these events are placed in big constructions where companies share the space
and locate their booths where they offer corporative information among others.
One original way to distribute such information across the event would be placing
an registering an NFC tag in UniteNFC and, if you wish, offer some kind of re-
ward to the ones going to your booth and checking in. Perhaps you are including
in your tag a link to all the information the company want to deliver saving this
way lots of paper. Moreover, thanks to the social functionalities participants in
the event can see, for example, which booths your friends have visited and check
out the opinion of all users in the wall of the NFC Point. Why to have a physical
map with the location of the booths when you can have it on your phone with
additional functionalities.

3.2.2 Tourism

UniteNFC allows you to spot the monuments, squares and places worth to visit
in a city. In each spot an NFC tag will be available to get historical information
about what you are visiting. This information can be an audio record, images,
text, etc. In any case the content stored in the tag will be a link to that info since,
remember from table 2.4, the small capacity of tags make impossible to store lots
of data, so what is normally done is to store a link to the desired information
stored somewhere else on the Cloud.

Similar systems already exists using other technologies like Bluetooth. How-
ever many advantages are drawn from NFC characteristics along with UniteNFC
functionalities. No set up is required and does not require extra hardware, just
tap the NFC Point with your mobile and get the information. The exploration is
interactive, you see yourself on the map and you can see the NFC Points to which
you head. And finally, you obtain extra information from the wall like precise
address and other tourists reviews.

49

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.2.3 Augmented Reality Games

Augmented reality is becoming day by day a (forgive the repetition) reality.
With it a new way of gaming is appearing as well: augmented reality games. NFC
opens a world of opportunities to new ways of gaming across the cities. NFC
Points can act as beacons that you need to collect or find the messages inside the
tags to solve a mystery or complete a puzzle. This way of gaming falls in between
two classical dimensions. Physical and digital, needing an interaction with both to
achieve the goals established in the game. This fact should not surprise the reader
since NFC acts as an interface between both worlds (needs of a physical proximity
to get digital information).

3.2.4 Marketing and Publicity Campaigns

NFC tags can be placed in bus stops, posters, magazines... storing a promotion
code, a link to an offer or much more. Stores can be located in UniteNFC’s map
offering some kind of promotion to attract users to the physical store. Advertising
in this manner also provides a mechanism to gamificate around a brand, improving
user engagement. Furthermore, it gives a channel for users to give reviews on
products or services offered in the NFC Points.

3.3 Use Cases

This section will deal with the operations that users can do in the application.
A use case represents, in a clear and simple way, a coherent functional unit of a
system, subsystem or class. Its definition is the main step to determine what the
application is capable of.

3.3.1 Use Cases Definition

The list of all the functionalities performed by the application are itemized and
described individually.

3.3.1.1 View NFC Points in Map

A logged user has to be able to see, located on the map, the NFC Points
that surrounds him. They will be identified by the icons in figure 3.2, each color
identifying one type of NFC Point.

50

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.3.1.2 Filter NFC Points by Type

A logged user has to be able to select from a list the type of NFC Point that
want to view represented on the map, omitting the ones unselected from the list.

3.3.1.3 View a History of Visited NFC Points

A logged user has to be able to view a list of the last NFC Points that has
visited, ordered from most recent to less recent, showing basic information like
record date, NFC Point title and type.

3.3.1.4 View a History of Registered NFC Points

A logged user has to be able to view a list of the last NFC Points that has
register, ordered from most recent to less recent, showing basic information like
record date, NFC Point title and type.

3.3.1.5 Register a New NFC Point

A logged user has to be able to register a new NFC Point, scanning an NFC
tag and filling a form with basic information. That NFC Point will be part from
that moment of the application, being showed on the map, histories and having a
wall.

3.3.1.6 Scan an NFC Point

A logged user has to be able to scan an NFC Point or, in other words, view the
content stored in an NFC tag. This action has to be performed from every point
of the system when the mobile phone taps the tag. The data stored will be read,
parsed and finally shown to the user.

3.3.1.7 Connect with Facebook

A logged user has to be able to connect with Facebook, giving UniteNFC
permissions to access his friends list and public on his behalf.

3.3.1.8 Add New Friend

A logged user has to be able to add another user using UniteNFC as a friend.
Two alternatives will be possible: through NFC or through Facebook connection.

51

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.3.1.9 View a List of Friends

A logged user has to be able to view a list of added friends. In this list, the
name of the user and its profile picture will be shown.

3.3.1.10 View Friend Information

A logged user has to be able to view more detailed information about a friend.
For example, a history of NFC Points visited by the friend.

3.3.1.11 Edit User Data

A logged user has to be able to edit the data that is shown to other users,
such as the name and the profile picture. Besides, it has to be possible to change
preferences on how some functionalities work.

3.3.1.12 View Walls

A logged user has to be able to select an NFC Point from a history or the
map and view detailed information about it. Including address, last seen date, tag
content, mean rating and comments.

3.3.1.13 Rate NFC Point

A logged user has to be able to rate an NFC Point selecting from a bar a mark
from zero to five and submitting the selection. This can be done just once per
wall.

3.3.1.14 Comment on NFC Point Wall

A logged user has to be able to leave a message on an NFC Point wall.

3.3.1.15 Administrate Wall

A logged user has to be able to administrate walls of those NFC Points regis-
tered by himself. The administrator role allows the user to delete comments and
make the tag content private or public as desired.

3.3.1.16 Share Information

A logged user has to be able to share information about the activity taking
place in UniteNFC. This information can be shared through the Android sharing
system or automatically through Facebook if it is connected.

52

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.3.1.17 Receive Notifications of Nearby NFC Points

A logged user has to be able to receive notifications when is close to an NFC
Point. It will be shown in the Android notification bar with a link to the application
showing the location of the NFC Point on the map.

3.3.1.18 Obtain Application Usage Feedback

The application developer has to be able to obtain feedback from the use that
users make of UniteNFC. This can be done directly from user suggestions or from
another tool like Google Analytics.

3.3.2 Diagram

The diagram with all the use cases defined and its relations is depicted in figure
3.3. The types of relations between use cases are:

• << Include >>: when a use case needs of the previous execution of another
one.

• << Extend >>: when after a use case, another may be executed optionally.

3.4 Architecture

Planning the structure of the application constitutes one of the most important
steps in the designing process. How the different parts are going to be developed
and put together will make the difference between success or failure on meeting
the application requirements. The analysis will be divided in two, separating client
application (Android) and cloud services, including the back-end that is going to
be developed exclusively for UniteNFC.

3.4.1 Android

The main aspects of the Android application will be detailed in this section.

3.4.1.1 Hardware permissions

Apart from the essential hardware for the system to run, i.e. processors, RAM
and ROM memory, screen, etc; there are other peripherals that an application
may make use of. Normally to access extra hardware a permission clause has to
be written in the manifest, to let the user decide whether those permissions are

53

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

Figure 3.3: Use Cases

granted or not upon installation. The hardware permissions required for UniteNFC
are:

• NFC: access NFC interface to read or write data through it

54

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

• INTERNET: permissions to send and receive data through network interfaces

• ACCESS NETWORK STATE: check whether the network interfaces are
available and its state

• WRITE EXTERNAL STORAGE: permissions to write to an external mem-
ory, e.g. an SD card.

• ACCESS FINE LOCATION: access GPS locations.

• VIBRATE: turn on and off the small motor that makes the device vibrate.

3.4.1.2 Code Structure

Figure 3.4 gives an idea of how the Android application will be structured.
There will be a main block holding the skeleton of the application, i.e. naviga-
tion between activities, fragments and dialogs management, preferences and other
structures such as list loaders and model objects. To this base functionalities will
be added via new modules.

Figure 3.4: Android application structure

Looking at the modules that deal with the Android system (intents, services,
broadcast receivers) and lower level operations, three different blocks can be seen.
The NFC block will manage all operations regarding NFC, reading and parsing,
Android Beam, etc; and its implementation will be explained in detail later. Stor-
ing session information and updating it will be carried out by the back-up block
which will be synchronized with the back-end. The last module of these three is
the notifications, which will be in charge of notifying the user when certain condi-
tions, e.g. being five meters or less near an NFC Point, meet.

The blocks placed on top of the base application are quite similar. These are
the ones that communicate with the web services that are being used. The way this

55

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

communication is done is through the SDKs that these services provide, except for
the back-end communication which has been done through the REST API (HTTP
requests) directly, instead of programming another SDK. More detailed informa-
tion about the web services will be given in 3.4.2 where the cloud architecture is
discussed.

3.4.1.3 Libraries and SDKs

The Android Software Development Kit includes the basic tools to allow the
creation of applications for its operating system. Lots of functions are available to
handle all the Android elements and, at the same time, all the Java classical API
is compatible.

However, sometimes more sophisticated functions are needed and have been de-
veloped by a third party before, being possible to import a library and have them.
Besides, normally web services provide with a SDK to ease the access to the service.

The complete list of libraries and SDKs used and needed to build the applica-
tion is the following:

• Android SDK.

• topoos SDK for Android: facilitate to develop applications on topoos in
Android.

• google-play-services: library that includes Google Maps API v2.

• Facebook SDK: functions and objects to integrate easily Facebook into the
application.

• gson: library to transform to and from JSON. It maps a JSON string to an
specified object or serialize an object to a JSON string.

• mail: necessary to send a mail over an SMTP server.

• Google Analytics Services SDK: contains the latest Google Analytics libraries
for mobile devices.

3.4.1.4 Background Processing

Android programming language is Java and, thus, concurrency can be handled.
The main application thread in Android is in charge of managing user interface,
activity life-cycle, callbacks and input events. Intensive tasks can not occur in the

56

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

main thread since it will block the other tasks which are essential to the normal
flow of the application. Moreover, if common sense is not applied and something
heavy is tried to run in the main thread the application will crash.

Internet connections may suffer delays with long waits until all the data is
received, specially if using mobile Internet. Tasks such requests to the server have
to be pulled out from the main thread using one of the two mechanism available
in Android.

3.4.1.4.1 Threads The well-known Java Threads, and all the related func-
tions. Part of the Java API. Caution must be taken with this option since synchro-
nization and communication with the main thread are in hands of the programmer.

The minimum amount of code for a Thread to be executed (omitting synchro-
nization and handlers) is:

new Thread(new Runnable({

@Override

public void run() {

//your task here

}

})).start();

Note that the Runnable does not need to be written every time. If it was going
to be used repeatedly, a class inheriting from it would be defined.

3.4.1.4.2 Asynctasks The recommended option, provided by the Android
SDK. It runs a synchronized thread with callbacks to the main thread during task
execution and when the task finishes. AsyncTasks make threading in Android a
painless experience for the programmer, who can forget about all the typical prob-
lems that come with concurrency.

The minimum amount of code for an Asynctask to be executed is:

new AsyncTask<Void, Void, Void>(){

@Override

protected void onPreExecute(){

//executed before task with access to main thread

}

@Override

protected void doInBackground(Void... params) {

57

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

//your task here

}

@Override

protected void onPostExecute() {

//executed after task with access to main thread

}

}.execute();

Note that all the code of the Asynctask does not need to be written every time
you want to execute it. If it was going to be used repeatedly, a class inheriting
from it would be defined.

3.4.1.4.3 Comparison Most of the times recommendation was followed and
Asynctasks were used. But still some Threads were used when the task did not
compromise any resources and main thread was unnecessary to access after exe-
cution. Table 3.1 summarize briefly what has been discussed previously.

Pros Cons

Threads Fast threading Risky threading

Asynctasks Safe and rich threading Slower threading

Table 3.1: Thread vs. Asynctask

3.4.2 Cloud Architecture

While most of the user interaction is carried out in the Android application,
some services are too heavy, provided by third parties or need to be accessible
from everywhere. In those cases, computation is moved to the cloud. UniteNFC,
i.e. the client application, then needs to communicate with services resident on
the Internet. Figure 3.5 shows a conceptual map of the situation.

In the picture a client application running in an Android mobile phone access
to a series of services in the cloud. The services represented are from left to right:
Google Maps, Facebook, UniteNFC’s back-end, Google analytics, topoos.

3.4.2.1 Back-end

As explained before, a proprietary web service to act as back-end for some func-
tionalities (social features, information about registered NFC Points, comments,

58

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

Figure 3.5: Cloud Architecture

ratings, etc.) and database storage was developed. Before coding a set of guidelines
based on the state of the art on web development were followed.

3.4.2.1.1 Pattern: Model-View-Controller (MVC) The goal of this pat-
tern is to improve reusability, decoupling the business logic, i.e. the Model, from
the presentation, i.e. the View. The Controller acts as a middle-ware connecting
both parts.

Figure 3.6: Typical MVC collaboration

Furthermore, MVC is scaffolded by many web application frameworks, making
it very suitable to develop a web service with some guarantees.

59

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.4.2.1.2 Principle: REST Standing for Representational State Transfer is
the predominant web API design model. The main principles of REST are:

• Stateless client-server protocol: all the information required to process one
request is self-contained, so there is no need to monitor communications.

• Requests defined by the HTTP protocol: GET, POST, etc. instructions.

• Universal syntax: resources identified by the called URI.

• Hypermedia as the engine of application state: i.e. state derived from hy-
pertext received from the server, typically HTML, XML or JSON.

These constraints will be respected in order to develop what is known as a RESTful
web service.

3.4.2.1.3 Data Format: JSON Acronym for JavaScript Object Notation, it
is a lightweight human readable format for data exchange. JSON is a language
to represent objects, simple data structures and arrays. Due to its simplicity
its becoming widely used on the Internet, in many cases substituting XML. An
example of the JSON representation of an object modeling the solar system would
be:

{

"galaxyName":"Milky Way",

"star": {

"name":"Sun",

"ageInBillions": 4.6,

"isActive": true

},

"planets": [

{

"name":"Mercury",

"satelites": null

},

{

"name":"Earth",

"satellites": [

{

"name":"Moon",

"distanceInKm": 384400

}

]

}

60

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

]

}

In this example the JSON syntax and data types can be appreciated:

• String: surrounded by double quotation marks (“String”).

• Boolean: true or false.

• empty or null: keyword null.

• Number: double precision.

• Array: surrounded by square brackets ([Array]).

• Object: collection of key:value pairs surrounded by brackets ({Object})

Besides, different items are separated by comma and all the keys are treated as
Strings and hence surrounded by double quotation marks.

3.4.2.1.4 Development Framework: Django A web application framework
is a software tool designed to facilitate and speed up web development. It provides
libraries that abstract developers from details such as access to databases, manag-
ing user session and follow MVC pattern.

Since there was not previous experience in web development any framework
could have been chosen. The main reasons for choosing Django among others
were:

• Python: the programming language should be easy to learn. In that sense
Python’s syntax seeks legibility and transparency. Besides, it is a multi-
paradigm language that uses dynamic type and automatic memory manage-
ment.

• Documentation and community: support should be as big as possible. It is
extremely important to have manuals and examples well explained. Django
documentation [3] is carefully written. Moreover, a simple search in Google
will show lots of recent entries about the framework indicating its actual
magnitude.

Some interesting features of Django are the automatic admin interface that it
generates useful to monitor your database, the URL design allowing you to easily
stick to REST and the object-relational mapper (ORM) which gives you access to
databases through a model entirely defined in Python.

61

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.4.2.1.5 Hosting: Heroku The developed web service need to be hosted
somewhere on the Internet to be accessible from any point by the client applica-
tion. Heroku is a platform in which you can deploy your web application to be
hosted on the cloud. It offers a software layer that makes very simple to manage
the infrastructure of your application and scale it if necessary. A free developer ac-
count is available with limited virtual processing power (1 CPU and 512MB RAM
[4]). If more resources were needed, extra power could be hired as your application
grows thanks to its distributed architecture.

Heroku offers a lot of plug-ins too, some of them for free, such as PostgreSQL
support. Precisely this one will be used, since PostgreSQL is one of the databases
supported by Django.

3.4.2.2 Other Services

Many of the SDKs used in the Android application and listed in 3.4.1.3 provides
the functions to communicate with a cloud service. In this section those services,
also shown in figure 3.4, are going to be described.

Access to those services, in general, is granted through token-based authenti-
cation [34]:

The general concept behind a token-based authentication system is simple. Al-
low users to enter their username and password in order to obtain a token which
allows them to fetch a specific resource without using their username and password.
Once their token has been obtained, the user can offer the token which offers access
to a specific resource for a time period to the remote site.

This principle is implemented by the OAuth protocol which is an open protocol
to secure API access and it defines the flows to obtain the required token.

3.4.2.2.1 Topoos Cloud service that provides you with a back-end to con-
struct context-aware applications. Functionalities used from it are location track-
ing, points of interest registration and localization, user authentication and image
hosting.

3.4.2.2.2 Google Maps Google Maps gives you the tools to add maps to your
application, handling for you how the map is represented, user interaction with it
and access to Google Maps servers to get information like routes.

62

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.4.2.2.3 Facebook The biggest social network allows you to profit from it
adding Facebook functionalities to your application making it more engaging.
UniteNFC can use Facebook relationship to connect new users with friends from
Facebook and to publish using hash-tags to share user experience with all their
contacts.

3.4.2.2.4 Google Analytics Google Analytics makes the task of gathering
statistics about usage as simple as adding a line of code in your application. From
that premise you can get charts and plots showing you information about users,
devices in which the application is installed, locations of the sessions, blocks and
exceptions, language configurations used and much more.

3.5 Application Flow

Another important decision that is convenient to make at the design stage is
how the user interacts with the application, what screens are shown and how the
navigation through activities, fragments and dialogs is implemented. To give an
understanding of the application flow, sequences diagram, i.e. objects interactions
in chronological order, will be shown.

3.5.1 Launch Flow

When a user clicks the application icon an SplashActivity1 begins, showing the
application logo for a few milliseconds. Then, if the user is already logged-in, it
will go directly to the MainActivity. Otherwise, a LoginActivity will be shown
where the user can login or navigate to a RegistrationActivity. Once the user is
logged-in correctly, as it was said, it goes to the MainActivity, in which, if it has
not already done before, it will pop out a FacebookDialog asking to connect with
Facebook.

3.5.2 Settings, Report Bug and Sharing Flow

While the user is logged-in and in the MainActivity, three actions can be per-
formed. First, he can give some feedback by means of the ReportBugDialog. Sec-
ond, he can share what there is on the screen by means of the ShareDialog. And
third, he can open the Settings activity and change some preference thanks to the
CustomSettingDialogs.

1Names of activities, fragments and dialogs may not be exactly equal in the application code.

63

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

Figure 3.7: Application launch flow

Figure 3.8: Application settings, report bug and sharing flow

64

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

3.5.3 MapFragment Flow

The MainActivity acts as a container for the three main screens (fragments).
The navigation will be implemented with tabs, changing the fragment loaded onto
the activity depending on which is selected. One of these is the MapFragment
which will deal with all the functions related to the map. The type of NFC
Points can be filtered in the VisiblePOIDialog. Besides, if the NFC Points markers
are clicked a MarkerInfoWindow is shown inside the map with a name and a
description. Finally, if the marker window is pressed the WallActivity will be
loaded showing information about the corresponding NFC Point.

Figure 3.9: MapFragment flow

3.5.4 SocialFragment Flow

The SocialFragment is also loaded onto the MainActivity. In this case it will be
in charge of the social functionalities. A selectable list of friends will be displayed
in the SocialFragment. The UserCardActivity will have two duties, showing any
friend’s information when they are clicked and being the interface for adding friends
with Android Beam. If one wish to add a friend but NFC is not active, an intent
will be sent to launch network settings and activate it. Last thing to mention is

65

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

that, from a friend information in the UserCardActivity the WallActivity can be
accessed for the last NFC Points visited by that friend.

Figure 3.10: SocialFragment flow

3.5.5 NFCPointsFragment Flow

The third fragment loaded onto the MainActivity is the NFCPointsFragment.
This one will hold the history of visited and registered NFC Points. The lists
will be clickable constituting another access point to the WallActivity. New NFC
Points will be registered from this fragment too. As in the SocialFragment if
NFC is not active the network settings will appear. If not, a loading wheel, i.e.
NFCPendingIntentLoadingDialog will appear waiting for the user to scan a NFC
tag. If the detected tag has not been registered before, the RegisterNFCPointDialog
will appear to fill in some information.

66

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

Figure 3.11: NFCPointsFragment flow

3.5.6 ServeActivity flow

UniteNFC will parse the data of NFC tags scanned with the mobile phone
and then show the content in the ServeActivity. No matter what the state of the
application is, it will be launched when a tag is scanned. This activity will manage
the functions of check-in if the NFC Point is registered but with no interaction of
the user. Depending on the content it may have some associated behavior, e.g. a
telephone number will yield in a call to that number, so the corresponding intent
will be sent. To conclude, the WallActivity will be accessible from here too if the
NFC Point is registered.

3.5.7 WallActivity Flow

The last flow to describe is the one of the WallActivity. User interaction in
the previous flows may end-up in this activity. From the WallActivity comments
will be added, through the AddCommentDialog, and administration tasks will be
selected on the ContextMenu.

67

CHAPTER 3. SYSTEM ANALYSIS AND DESIGN

Figure 3.12: ServeActivity flow

Figure 3.13: WallActivity flow

68

4
IMPLEMENTATION

T
his chapter will cover the solutions developed to build-up the designed ap-
plication. While some subjects will be intentionally skipped, like general
Android programming, interesting pices of code or methods will be de-

scribed.

4.1 User Interface

The user interface comprises all the visual elements the application uses to
communicate with the user, either text messages, menus, buttons and other widgets
or icons.

4.1.1 Look and Feel

Android uses XML files to define the layout of the activities and fragments in
which then are inflated (loaded). Editing XML files directly can be tedious unless
you are very used to all the widgets and fields and how they affect the layout.

4.1.1.1 Tools

Fortunately, the Android community works hard to deliver powerful solutions
to make life easier to developers. The following tools have been used to create and
edit the user interface of UniteNFC:

• Android Studio: the main reason to change from Eclipse to Android Studio
IDE when it was released was the clean and effective graphical editor included
in the later. Quite complex layouts were created just dragging widgets from

69

CHAPTER 4. IMPLEMENTATION

the palette and nesting them properly. Besides, it also provides an XML
editor in which you can see changes in a display on the fly.

• Android Asset Studio [39]:

– Launcher icons: adapts your icon to different resolutions of launcher
icons.

– Action bar and tab icons: same as before. Providing it an icon (must
be with transparent background) it gives you the set of assets adapted
for each resolution.

– Simple nine-patch generator: imagine you want to place a background
image in a layout. You only have this image at a single resolution. If you
just use this one for every screen density the image will be shown de-
formed specially in the borders (the image is enlarged to fit the screen).
To avoid this effect, the nine-patch generator generates a set of images
that keeps the proportions between screen densities.

– Action bar style generator: as its name says, it generates all the assets
like background, tabs colors, etc; to style your action bar according to
the colors you use.

– Android holo color generator: generates colors so that all the widgets
are coherent with your application style.

UniteNFC follows a Holo Ligh with Dark ActionBar style with color #0254c2 for
the ActionBar and buttons, and #99cc00 for secondary details, selections and the
splash screen background.

4.1.1.2 Styling

When an style is specified in the manifest all the widgets in the application
will be styled by default in that way. However, there are no restrictions to create
custom styles for the widgets you want and apply them. For the purpose an XML
file with a special syntax is added to the res/drawable folder and then called by
the attribute android:background within a widget. Sadly, no graphical editor exists
yet for this task.

In UniteNFC a custom style was created for the buttons to make them look
better and keep the style used for the ActionBar. The following code defines the
custom button style:

<selector xmlns:android="http://schemas.android.com/apk/res/android">

<item android:state_pressed="true" >

70

CHAPTER 4. IMPLEMENTATION

<shape>

<solid

android:color="#0254c2" />

<stroke

android:width="1dp"

android:color="#01214c" />

<padding

android:left="10dp"

android:top="10dp"

android:right="10dp"

android:bottom="10dp" />

</shape>

</item>

<item>

<shape>

<solid

android:color="#003274" />

<stroke

android:width="1dp"

android:color="#01214c" />

<padding

android:left="10dp"

android:top="10dp"

android:right="10dp"

android:bottom="10dp" />

</shape>

</item>

</selector>

Looking at the code you can see that two identical items are defined, with the only
difference of the android:state pressed attribute which indicates that the first item
style will be applied when the widget is pressed. Borders and padding are defined
resulting in the button shown in figure 4.1.

Figure 4.1: Styled button not pressed and pressed

71

CHAPTER 4. IMPLEMENTATION

4.1.1.3 Interface Navigation

In this section navigation and action items used in UniteNFC user interface
are going to be described as well as how to implement them.

4.1.1.3.1 ActionBar The ActionBar is the upper most bar of the application
which can be hidden or not, holding buttons for specific actions and tabs. In this
case an ActionBar for tab navigation was chosen. The following code shows how
to set it.

ActionBar actionBar = getActionBar();

actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

Buttons appearing in the ActionBar are just menu items that are marked to be
placed there if there is enough room as it is going to be explained in the following
section.

4.1.1.3.2 Menu Applications normally have menus with many options to choose.
The menu in UniteNFC will give access to less used actions or screens. Android
provides an XML syntax to define menus in a simple way. The different items
appearing on the menu are specified by an ID, a title and, optionally, by the at-
tribute android:showAsAction it can be placed in the ActionBar. A piece of code
of UniteNFC’s menu make evident what have been explained:

<menu xmlns:android="http://schemas.android.com/apk/res/android" >

<item android:id="@+id/menu_share"

android:actionProviderClass="android.widget.ShareActionProvider"

android:title="@string/action_share"

android:showAsAction="ifRoom"/>

<item android:id="@+id/settings"

android:title="@string/action_settings"

android:showAsAction="never"/>

</menu>

Menus XML files are placed under res/menu and then inflated in the Activity
during the onCreateOptionsMenu(Menu menu) method. The listener to menu
items is then implemented in onOptionsItemSelected(MenuItem item) which passes
you the item that has been selected by the user.

4.1.1.3.3 Tabs To navigate between fragments, tabs will be added to the Ac-
tionBar. For each tab, a tab listener associated to a fragment will be created.
This listener will perform the transaction of removing one fragment and loading

72

CHAPTER 4. IMPLEMENTATION

the following. The next snippet shows how tab navigation is loaded during onCre-
ate(Bundle savedInstanceState).

TabListener maptablistener = new CustomTabListener(new

CustomMapFragment());

TabListener scantablistener = new CustomTabListener(new ScanFragment());

TabListener socialtablistener = new CustomTabListener(new

SocialFragment());

Tab map_tab =

actionBar.newTab().setText(getString(R.string.map_tab)).setTabListener(maptablistener);

Tab scan_tab =

actionBar.newTab().setText(getString(R.string.nfc_points_tab)).setTabListener(scantablistener);

Tab social_tab =

actionBar.newTab().setText(getString(R.string.social_tab)).setTabListener(socialtablistener);

actionBar.addTab(map_tab);

actionBar.addTab(scan_tab);

actionBar.addTab(social_tab);

As was said, one tab listener manages one fragment and is associated to the click
event of one tab. The tab listener is implemented in the following way:

public class CustomTabListener implements TabListener{

private Fragment fragment;

private boolean isActive;

public CustomTabListener(Fragment fragment){

this.fragment = fragment;

}

@Override

public void onTabReselected(Tab tab, FragmentTransaction ft) {

}

@Override

public void onTabSelected(Tab tab, FragmentTransaction ft) {

isActive = true;

ft.add(R.id.fragment_holder,fragment, null);

}

@Override

public void onTabUnselected(Tab tab, FragmentTransaction ft) {

isActive = false;

ft.remove(fragment);

}

73

CHAPTER 4. IMPLEMENTATION

public boolean isActive() {

return isActive;

}

}

When the tab is selected the overridden method onTabSelected(Tab tab, Frag-
mentTransaction ft) is called adding the fragment to the fragment holder (which
is a LinearLayout of the Activity layout) and when another tab is selected the
onTabUnselected(Tab tab, FragmentTransaction ft) method removes the fragment.

4.1.2 ListViews Creation

ListViews are holders for a group of scrollable items. Such holders are loaded
by an Adapter which needs to know from the single item layout and content. Note
that the creation of Adapters is recommended by the Android community and is
considered a good design pattern [41].

4.1.2.1 Single Element Layout

The layout is defined as any other. For example, an ImageView with a profile
picture next to a TextView with the name of a user. This means that every item
in the ListView will be the same.

4.1.2.2 Single Element Class

Then a Java class has to be defined to model the object with the content that
will fill up the layout. Following the example, the class will have two attributes:
an String to write on the TextView and a BitMap to load into the ImageView.
Setters and getters need to be implemented too. Additionally, the abstract class
Comparable may be interesting to implement ordering on your lists, for example,
alphabetically.

4.1.2.3 ListViewAdapter

Finally the Adapter maps the content of an object to the layout and inflates it
into the ListView:

public class CustomListViewAdapter extends ArrayAdapter<RowItem> {

private Context context;

public CustomListViewAdapter(Context context, int resourceId,

74

CHAPTER 4. IMPLEMENTATION

List<RowItem> items) {

super(context, resourceId, items);

this.context = context;

}

/*private view holder class*/

private class ViewHolder {

ImageView imageView;

TextView txtTitle;

}

public View getView(int position, View convertView, ViewGroup

parent) {

ViewHolder holder;

RowItem rowItem = getItem(position);

LayoutInflater mInflater = (LayoutInflater) context

.getSystemService(Activity.LAYOUT_INFLATER_SERVICE);

if (convertView == null) {

convertView = mInflater.inflate(R.layout.list, null);

holder = new ViewHolder();

holder.txtTitle = (TextView)

convertView.findViewById(R.id.text1);

holder.imageView = (ImageView)

convertView.findViewById(R.id.icon);

convertView.setTag(holder);

} else {

holder = (ViewHolder) convertView.getTag();

}

holder.txtTitle.setText(rowItem.getTitle());

holder.imageView.setImageBitmap(rowItem.getImageId());

return convertView;

}

}

It extends ArrayAdapter of type your class to adapt (in this case RowItem). To
conclude the array of items is passed to the adapter with its layout and the ListView
adapter is set:

CustomListViewAdapter adapter1 = new

CustomListViewAdapter(getApplicationContext(),R.layout.rowitem, r1);

list.setAdapter(adapter1);

Being r1 a list of RowItem and list a ListView object.

75

CHAPTER 4. IMPLEMENTATION

4.1.3 Map

One of the use cases was to view the NFC Points on a map with different colors
for different types. The map is going to be held in a Fragment which will be loaded
pressing the first tab of the ActionBar in the main Activity. This is possible thanks
to the MapFragment of the Google Maps Android API v2 which includes typical
functionalities like map exploration by gestures. To add custom functionalities to
the ones provided, the MapFragment was extended and new functions to control
markers, map type, camera and click events on markers were implemented.

public class CustomMapFragment extends MapFragment implements

OnInfoWindowClickListener{

public CustomMapFragment() {

super(); //when super() is called the map is initialized

}

@Override

public void onInfoWindowClick(Marker marker) {

//

}

}

The CustomMapFragment created is kept as an attribute in the main Activity
class being able to alter what the map shows calling methods defined in it.

The map will not be shown unless proper configuration is carried out. You
need to register your application in the Google API Console, add Google Maps
Android API v2 service, generate an API key from the package name of the An-
droid application and the SHA1 hash of the certificate used to sign it. At last, you
need to add the resulting API key to the manifest.

4.1.3.1 Camera

The view of the map can be changed with a CameraPosition object:

CameraPosition camPos = new CameraPosition.Builder()

.target(new LatLng(40.317,-3.782)) //geolocation

.zoom(19)

.bearing(45)

.tilt(70)

.build();

CameraUpdate camUpd = CameraUpdateFactory.newCameraPosition(camPos);

this.getMap().animateCamera(camUpd);

76

CHAPTER 4. IMPLEMENTATION

}

Besides, the transition can be animated, as the code shows, to the specified point
on the map with the desired zoom, camera bearing and tilt.

4.1.3.2 Markers

Markers are going to show the position of NFC Points. For that task the
following method is defined:

public void POIMarkers() throws NullPointerException{

if(poi_list !=null){

getMap().clear();

Marker mrk;

for(POI poi:poi_list){

int poiType = poi.getCategories().get(0).getId();

LatLng POIloc = new LatLng(poi.getLatitude(),

poi.getLongitude());

BitmapDescriptor icon;

String title = poi.getName().substring(16);

String description = poi.getDescription();

boolean visibility;

switch(poiType){

case POICategories.TURISM: icon= nfc_orange;

visibility = poi_vis[1];

break;

case POICategories.LEISURE: icon=

nfc_violet;

visibility = poi_vis[2];

break;

case POICategories.EVENT: icon= nfc_green;

visibility = poi_vis[3];

break;

default: icon= nfc_blue;

visibility = poi_vis[0];

break;

}

mrk = this.getMap().addMarker(

new MarkerOptions().icon(icon).position(POIloc)

.title(title).snippet(description));

mrk.setVisible(visibility);

mrklist.add(mrk);

77

CHAPTER 4. IMPLEMENTATION

}

}

}

Every-time the NFC Points list is updated this method is executed. The NFC
Points are in the poi list variable as POI objects which is a class provided by the
topoos API and will be explained later in section 4.4.1. If the list is not null
(meaning that the update is correct) all the markers are cleared out and then the
list is iterated getting title, description and type. The title is gotten cropping
out the first 16 characters of the name field of the POI because those are where
the NFC tag ID is stored (more on this in section 4.4.2). Depending on which
NFC Point is, a different icon is loaded and will it be visible whether the user has
selected it or not from a menu to filter them.

4.1.4 Dialogs and Toasts

The last elements to comment on regarding user interface are Dialogs and
Toasts. Both are pop-ups used to give information to the user but, while Dialogs
allow more complex layouts and user interaction, Toasts only show a message dur-
ing a small period of time. Therefore, Toasts where used to give feedback to the
user about errors or other information messages.

Toasts can be created and shown just writing one line of code in the following
way:

Toast.makeText(getApplicationContext(), "Hello World!",

Toast.LENGTH_SHORT).show();

Care must be taken when calling a function to get the context, since is not the
same to call getApplicationContext() from an Activity than from a Dialog in which
will return null, for example.

Dialogs can hold buttons and a layout with widgets and associated listeners. All
this is configured during the onCreateDialog(Bundle savedInstanceState) method
of a class extending DialogFragment. In the following example a layout called
comment is loaded along with a confirmation button an a negation one.

@Override

public Dialog onCreateDialog(Bundle savedInstanceState) {

// Use the Builder class for convenient dialog construction

AlertDialog.Builder builder = new AlertDialog.Builder(getActivity());

LayoutInflater inflater = getActivity().getLayoutInflater();

78

CHAPTER 4. IMPLEMENTATION

builder.setView(inflater.inflate(R.layout.comment, null));

builder

.setTitle(getString(R.string.report_title))

.setPositiveButton(getString(R.string.report_send),

positiveListener)

.setNegativeButton(getString(R.string.new_nfc_no),

negativeListener);

return builder.create();

}

4.2 Location

UniteNFC will show on the map the user position constantly. For that to be
possible the user location has to be known. Android SDK provides the tools to
implement it in a very simple way.

4.2.1 LocationManager and LocationListener Setup

In section 3.4.1.1 was explained that extra hardware need to be specified in the
manifest. To access location capabilities, permissions need to be requested on the
manifest.

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"

/>

ACCESS FINE LOCATION includes both possible location providers, i.e. GPS
and network localization. The alternative would be to use ACCESS COARSE LOCATION
instead that only access the network localization information. However, as the
name suggest, the alternative results in worse location estimates.

The main Activity will hold a MapFragment and will be in charge of updating
its information when changes occur in the user position. LocationManager and
LocationListener are the Android objects that manage the reception of new loca-
tion as requested. The following code shows how these elements are created and
configured when the Activity is created:

mCustomLocationListener = new RegisterPosition();

mLocationManager = (LocationManager)

this.getSystemService(Context.LOCATION_SERVICE);

mLocationManager.requestLocationUpdates(LocationManager.NETWORK_PROVIDER,

1000, 0, mCustomLocationListener);

79

CHAPTER 4. IMPLEMENTATION

mLocationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER,

1000, 0, mCustomLocationListener);

A LocationManager is created and then it asks for location updates from both
providers passing the listener that will handle them. The integers passed to the
method are time in milliseconds and distance in meters between updates respec-
tively. Hence, both providers will be receiving at most one update per second
no matter what the distance difference is. The class RegisterPosition is actually
implementing the LocationListener. Its code is not going to be shown, since it is
basically the same as in Android Developers documentation [42]. To summarize,
when a new location is obtained the map is updated with that location.

4.3 NFC Block

This section contains all the aspects of how NFC works in Android and how it
has been implemented into the application. Therefore, it is going to be explained
thoroughly trying to be as clear as possible.

4.3.1 NFC Setup

As long as the device has an NFC chip integrated in it, it can be accessed in
software with the Android SDK. However, some software configuration needs to
be carried out to let Android know that is going to use NFC functionalities and
when to pass the Intents to UniteNFC.

4.3.1.1 Manifest

The first step to integrate NFC into your application is to ask for permissions
on the manifest.

<uses-permission android:name="android.permission.NFC"/>

<uses-feature android:name="android.hardware.nfc"

android:required="true" />

The uses-feature clause is optional, but recommended. It guarantees that only
devices with NFC capabilities can find the application in Google Play, avoiding in
this way unpleasant user experience for those trying to use the application without
knowing the requirements.

80

CHAPTER 4. IMPLEMENTATION

4.3.1.2 NFC IntentFilters

The Android Tag-Dispatch System is continuously looking for NFC events when
the device screen is on, identifying them and building the Intents with the event
information (tag content, format, etc). The Intent created is served to the Activity
that filters for it. Android IntentFilter System is designed so that the Intent is
sent to the most suitable Activity without asking the user what to do with it.

There are three types of Intents defined for NFC events:

• ACTION NDEF DISCOVERED : Intent created when the payload has NDEF
format. Remind that this is the format specified by the NFC Forum 2.4.2.

• ACTION TECH DISCOVERED : Intent created when not NDEF payload
is found but the NFC technology is known.

• ACTION TAG DISCOVERED : Intent created when neither the payload nor
the technology are identified.

These Intents are ordered from highest to lowest priority, i.e. Android will try to
create the first type and if not possible, continue with the next option. This is
illustrated in figure 4.2 which has been extracted from Android Developers.

Figure 4.2: Tag Dispatch System [43]

So that the Intent is delivered to the correct Activity, it needs to have defined an
IntentFilter in the manifest. The following filters have been defined for UniteNFC:

<intent-filter>

<action android:name="android.nfc.action.NDEF_DISCOVERED"/>

81

CHAPTER 4. IMPLEMENTATION

<category android:name="android.intent.category.DEFAULT"/>

<data android:mimeType="text/plain"/>

<data android:mimeType="text/x-vCard"/>

</intent-filter>

<intent-filter>

<action android:name="android.nfc.action.NDEF_DISCOVERED"/>

<category android:name="android.intent.category.DEFAULT"/>

<data android:scheme="sms"/>

<data android:scheme="tel"/>

<data android:scheme="geo"/>

<data android:scheme="mailto"/>

<data android:scheme="wifi"/>

<data android:scheme=""/>

<data android:scheme="http"/>

<data android:scheme="https"/>

<data android:scheme="urn:nfc:ext:android.com:pkg"/>

<data android:scheme="file"/>

</intent-filter>

<intent-filter>

<action android:name="android.nfc.action.TECH_DISCOVERED"/>

</intent-filter>

<meta-data android:name="android.nfc.action.TECH_DISCOVERED"

android:resource="@xml/nfxc_tech_filter" />

Note the rich variety of IntentFilters that can be defined. As UniteNFC would
like to handle all the NFC tags read by the device to record the visits to NFC
Points, most cases have been tried to be covered. The NDEF DISCOVERED
IntentFilter is defined in two parts to indicate that data with the MIME type tex-
t/plain or text/x-vCard and data scheme as specified has to be served to this Ac-
tivity. Intuition may suggest to put the android:mmimeType and android:scheme
inside the same IntentFilter, but in that case any of them would work. For the
TECH DISCOVERED IntentFilter a list of technologies has to be specified in an
XML file stored in the res/xml folder. Whenever one technology present in the file
is found (without NDEF format) the filter will match the Intent and the Activity
will receive it. No filter is defined for the third kind of Intent since there is no way
to know the data format and show something meaningful to the user.

The list of technologies filtered for UniteNFC is:

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">

<tech-list>

<tech>android.nfc.tech.IsoDep</tech>

<tech>android.nfc.tech.NfcA</tech>

82

CHAPTER 4. IMPLEMENTATION

<tech>android.nfc.tech.NfcB</tech>

<tech>android.nfc.tech.NfcF</tech>

<tech>android.nfc.tech.NfcV</tech>

<tech>android.nfc.tech.Ndef</tech>

<tech>android.nfc.tech.NdefFormatable</tech>

<tech>android.nfc.tech.MifareClassic</tech>

<tech>android.nfc.tech.MifareUltralight</tech>

</tech-list>

</resources>

Basically, this covers all NFC Forum compliant tags, i.e. type 1, 2, 3 and 4; plus
the MifareClassic tag which is widely used in many RFID systems.

4.3.2 Interacting with NFC Points: Tag Reading

Reader-Writer NFC mode is going to be the basis for the application, since
it will be used to interact with NFC Points. More precisely, only reading will
be implemented working on the assumption that tags have already been written.
There already exist many writer tools and there is no added value in having one
integrated in UniteNFC. In this section NFC tag reading is going to be explained.
In other words, how to get information from the NFC Points.

4.3.2.1 Catching the Intent

When an Intent matches any of the filters described, UniteNFC Activity will
receive it during its onCreate method calling getIntent. If two Activities have
defined the same filter Android will ask the user to choose between those. The
Intent will hold all the information read through the NFC radio interface.

4.3.2.2 Foreground Dispatch

Another way to read a tag is using a PendingIntent. This type of Intent works,
somehow, the other way around. Instead of being an action what creates the
Intent, an Intent is created and the action is awaited to occur to fill up the Intent.
The wait is performed in the foreground and all the IntentFilters are disabled.
Therefore, is a useful option when the set-up IntentFilters need to be overridden
for a short period of time.

The NFC adapter is gotten, a PendingIntent is created for the current Activity
with the associated filter and the foreground dispatch is enabled passing both the
PendingIntent and the IntentFilter.

83

CHAPTER 4. IMPLEMENTATION

NfcAdapter mAdapter =

NfcAdapter.getDefaultAdapter(this.getApplicationContext());

PendingIntent pendingIntent =

PendingIntent.getActivity(this.getActivity(), 0, new

Intent(this.getActivity(),

getActivity().getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP),

0);

IntentFilter [] intentfilter = new IntentFilter[] {new

IntentFilter(NfcAdapter.ACTION_TAG_DISCOVERED)};

mAdapter.enableForegroundDispatch(this.getActivity(), pendingIntent,

intentfilter, null);

A comment should be made on the IntentFilter, as the ones defined in the manifest
are not available while the foreground dispatch is enabled, the lowest priority filter
has been set to comprise all the possible options. The foreground Activity will
receive the Intent on the onNewIntent callback method.

This type of Intent will be useful to register new NFC Points, the user will
press a button indicating he wants to do it, the button’s listener will launch the
PendingIntent and wait for 5 seconds to receive the Intent of the NFC Point the
user wants to register. The wait limit is set to not block the application flow and
should be enough to put the device over the tag. How the NFC Point is registered
will be explained in more detail in section in section 4.4.2.

4.3.2.3 Parse Tag Content

Once the Intent has been received the tag data has to be parsed. The most
important part in this process is to identify data format. If the Intent is of the
kind NDEF DISCOVERED, it implies the data format will be NDEF for which
Android provides automated method to be parsed. In any other case, the data
received will be treated as RAW data, i.e. without any format.

Intent intent = getIntent();

String action = intent.getAction();

if (NfcAdapter.ACTION_TECH_DISCOVERED.equals(action)

|| NfcAdapter.ACTION_NDEF_DISCOVERED.equals(action)) {

Parcelable[] rawMsgs =

intent.getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);

NdefMessage[] msgs;

if (rawMsgs != null) { // NDEF

msgs = new NdefMessage[rawMsgs.length];

for (int i = 0; i < rawMsgs.length; i++) {

84

CHAPTER 4. IMPLEMENTATION

msgs[i] = (NdefMessage) rawMsgs[i];

}

} else { // Unknown tag type

byte[] empty = new byte[0];

byte[] id = intent.getByteArrayExtra(NfcAdapter.EXTRA_ID);

Parcelable tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);

byte[] payload = dumpTagData(tag).getBytes();

NdefRecord record = new NdefRecord(NdefRecord.TNF_UNKNOWN,

empty, id, payload);

NdefMessage msg = new NdefMessage(new NdefRecord[] { record });

msgs = new NdefMessage[] { msg };

}

}

The Activity may be created by more of one Intent type, in that case is advisable to
check the action received. In the code above it checks whether the Intent has been
created by an NFC event. In that case, the message has to be parsed. The method
getParcelableArrayExtra(NfcAdapter.EXTRA NDEF MESSAGES) will extract the
NDEF messages if any. When that is the case an array of NDEF messages is cre-
ated just casting the obtained ones. Otherwise, all the bytes will be extracted
without any distinction and an NDEF message will be created with that raw bytes
as the payload of a single record. Now, both types can be treated equally.

Next step is to determine the record type that the messages hold. Four types
of records are expected:

• URI record: record with TNF equals TNF WELL KNOWN and record type
RTD URI or TNF equal TNF ABSOLUTE URI.

• Text record: record with TNF equals TNF WELL KNOWN and record type
RTD TEXT.

• Smart Poster record: record with TNF equals TNF WELL KNOWN and
record type RTD SMART POSTER.

• Unknown/Raw record: any not belonging to the previous groups.

Once the record type is known, the process to parse each of them is slightly differ-
ent.

For text records nothing else needs to be done, the payload will contain a string
with the message.

85

CHAPTER 4. IMPLEMENTATION

URI records are more complicated to parse, since there are many possibilities.
If the TNF is TNF ABSOLUTE URI, all the payload will be a URI that can be
parsed with the Android Uri class. In the other case, the URI type has to be
identified checking the first byte of the payload before parsing, again, with the Uri
class.

public static UriRecord parse(NdefRecord record) {

short tnf = record.getTnf();

if (tnf == NdefRecord.TNF_WELL_KNOWN) {

return parseWellKnown(record);

} else if (tnf == NdefRecord.TNF_ABSOLUTE_URI) {

return parseAbsolute(record);

}

throw new IllegalArgumentException("Unknown TNF " + tnf);

}

private static UriRecord parseAbsolute(NdefRecord record) {

byte[] payload = record.getPayload();

Uri uri = Uri.parse(new String(payload, Charset.forName("UTF-8")));

return new UriRecord(uri);

}

private static UriRecord parseWellKnown(NdefRecord record) {

Preconditions.checkArgument(Arrays.equals(record.getType(),

NdefRecord.RTD_URI));

prefix = URI_PREFIX_MAP.get(payload[0]);

byte[] fullUri =

Bytes.concat(prefix.getBytes(Charset.forName("UTF-8")),

Arrays.copyOfRange(payload, 1, payload.length));

Uri uri = Uri.parse(new String(fullUri, Charset.forName("UTF-8")));

return new UriRecord(uri);

}

To fully understand the example it is necessary to know that UriRecord is an
object representing a parsed URI record that is what is being built. Note that
when parsing in the TNF WELL KNOWN case, the URI type is obtained from
the URI PREFIX MAP which is a dictionary with the bytes being the keys and
the URI types being the values.

private static final BiMap<Byte, String> URI_PREFIX_MAP =

ImmutableBiMap.<Byte, String>builder()

.put((byte) 0x00, "")

.put((byte) 0x01, "http://www.")

.put((byte) 0x02, "https://www.")

.put((byte) 0x03, "http://")

86

CHAPTER 4. IMPLEMENTATION

.put((byte) 0x04, "https://")

//etc

So when the first byte is 0x01 the parser knows the URI is a URL starting with
http://www..

There is no much to explain left of how to parse a Smart Poster, as it is just
the addition of a text record and an URI record. After the records are identified
parsing can be done as explained for each type.

The last type of record is not parsed indeed. What is done is to extract the
bytes of the payload as a string and hopes the user can understand it.

Finally the content is shown in the screen, inside a ListView, along with the
date. If the message has an action associated, e.g. send an email, the content itself
is a link which launches an Intent to call the Activity that performs that action.

4.3.3 Adding Friends: Android Beam

The second functionality for which NFC is used is to quickly and seamlessly
add new friends. For the purpose NFC Peer-to-Peer mode will be used. Android
P2P capabilities are restricted to Android Beam, that is a software implementing
the SNEP protocol with an extra software layer. Even-though this system can ease
a lot P2P programming, it also limits many aspects that makes P2P an interesting
mode. Such limitations include:

• Unidirectional communication: whilst P2P is defined as bidirectional.

• Application level: being impossible to define your own protocol.

• Requires user interaction: making it slower.

Android Beam works like follows, from a user point of view. When NFC and
Android Beam are activated application content can be transferred between de-
vices. Two devices are put back to back so that both NFC antennas face each
other (the antenna is placed in different positions for different devices, but it tends
to be in the center of the back part), and the Android Beam screen will appear.
The application screen is shrunk and floating with a message that says Touch to
transfer. After the user touches the screen in any point it starts the communication
as the initiator and, while holding the devices still together, an NDEF message
is sent from initiator to target. The message contains the foreground Activity
and, if such Activity has implemented the onNdefPushMessageCallback it will add

87

CHAPTER 4. IMPLEMENTATION

content to the message. For example, Youtube transfers not only the link that is
being watched but the state of the reproduction like volume and the reproduction
time. The target receives an Intent that sends to the same application and in the
case that application does not exist in the target device it looks for it in Google
Play and shows it to the user.

Now, some insights about how to implement it in your application, more than
just transferring screens, will be given. One mechanism has already been com-
mented, the onNdefPushMessageCallback. This callback allows you to generate a
custom NDEF message to send over. You can generate your own MIME type to
uniquely identify you application and put whatever you want inside the payload
field of the NDEF message.

public final String MIME_TYPE = "application/es.quantum.unitenfc";

@Override

public NdefMessage createNdefMessage(NfcEvent arg0) {

return createMessage();

}

private NdefMessage createMessage(){

SharedPreferences prefs =

PreferenceManager.getDefaultSharedPreferences(getApplicationContext());

byte[] payload = (prefs.getString("session",

"")+";"+prefs.getString("username",

"")+";"+prefs.getString("imageuri", "dummy_4")).getBytes();

byte[] mimeBytes = MIME_TYPE.getBytes(Charset.forName("US-ASCII"));

NdefRecord cardRecord = new NdefRecord(NdefRecord.TNF_MIME_MEDIA,

mimeBytes, new byte[0], payload);

return new NdefMessage(new NdefRecord[] {cardRecord});

}

This example is how a user information message is created to send it with Android
Beam in UniteNFC. The MIME type is specified to be on the NDEF record header
and the payload just contains the necessary information to identify a user. The
second callback that the initiator can manage is the onNdefPushComplete. It is
used to define what is done after the transaction has finished.

@Override

public void onNdefPushComplete(NfcEvent event) {

//method body

}

88

CHAPTER 4. IMPLEMENTATION

The code inside the method has been omitted since it does not provide any relevant
information on Android Beam.

Looking at the target side, everything works as if an NFC tag is read. So the
first task to do is define the appropriate IntentFilter.

<intent-filter>

<action android:name="android.nfc.action.NDEF_DISCOVERED" />

<data android:mimeType="application/es.quantum.unitenfc" />

<category android:name="android.intent.category.DEFAULT" />

</intent-filter>

Note that the MIME type is defined to match the one the initiator has created.
This filter guarantees that no other Activity reacts to the message sent by your
application. Once the IntentFilter has been defined, remember that the Activity
received the Intent on the callback onNewIntent where it can handle it and decide
what to do.

Figure 4.3: Beam flow

89

CHAPTER 4. IMPLEMENTATION

As was said at the beginning of the section, Android Beam has been used as
the communication channel to add new friends. Due to the restrictions already
commented, the initiator sends its user information and the target will carry out
the communication with the back-end to create the relationship. The initial idea
was to show instantly the data of the new friend on the screen, right after the
Android Beam transmission takes part. There is no problem for the target since
it receives the information directly through NFC. However, the initiator needs to
poll the server until the target has finished his request. To make the interactions
taking part clearer the flow diagram of figure 4.3 has been created.

4.4 NFC Points

NFC Points are the key element around which UniteNFC is created. An NFC
Point is a point of interest in which an NFC operation can be performed. More
precisely, it is a location in which an NFC tag is available to be read. UniteNFC
needs to perform operations with them to offer a solution to the analyzed scenarios
in section 3.2. Such operation comprises NFC Point registration, NFC Point check-
in and NFC Point positioning.

4.4.1 POI topoos

Most operations to be implemented are related to the management of points of
interest (POI), for which topoos is a powerful tool. With topoos you can register a
POI with a series of attributes such as name, description, POI type and location;
and then get all the POIs filtering by distance to represent them in a map, for
example. So, to sum up, an NFC tag will be read and its information plus its
location will be stored in the topoos server as a POI (that in UniteNFC is called
NFC Point).

4.4.2 Registering New NFC Point

The process of registering a new NFC Point will be as follows: an NFC tag will
be scanned by the user, if the tag is not registered yet a dialog will be prompted
asking the user to complete the information about the NFC Point and finally the
NFC Point is registered both in topoos as a POI and in UniteNFC’s back-end.

Explained in more detail step by step, first of all the user has to communicate
the application that he wants to register an NFC Point. This will be done using
a button in one of the screens. Then a PendingIntent will be launched waiting for

90

CHAPTER 4. IMPLEMENTATION

the user to scan the tag, exactly as was explained in section 4.3.2.2. As soon as the
Intent is received the tag ID is extracted to check whether it has been registered
before or not. An NFC Point can be registered only once and to check upon that
condition the unique tag ID is used. All the registered tags’ ID are stored along
with the name in topoos making it possible.

When it has been checked out that the NFC Point is not registered yet a dialog
will ask the user to input some information as in figure 4.4. There are 4 types of
NFC Points, that can be mapped with each of the scenarios previously proposed
but are not tied to them. Name and description does not need further explanation.
The check-box gives the user the option of hiding or showing the tag content in
the NFC Point wall. Note that the content will always be available physically into
the tag, but may not be of interest to post it on-line.

Figure 4.4: Registration Dialog

At last, after the user presses Register in the dialog, the NFC Point is stored in
the cloud. Since topoos does not provide all the functionalities that were required
to implement a wall system with user interaction, the NFC Point is registered both
on topoos and on UniteNFC’s back-end. The following code is the corresponding
to register a POI in topoos:

Integer[] categories = new Integer[2];

91

CHAPTER 4. IMPLEMENTATION

categories[0] = poiType;

categories[1] = POICategories.NFC;

try {

POI newPoi = topoos.POI.Operations.Add(ctx, tagid+name,

location.getLatitude(), location.getLongitude(), categories,

(double)0, (double)0, (double)0, description, null, null, null,

null, null, null, null);

} catch (TopoosException e) {

e.printStackTrace();

}

This function must be carried out in a different thread, as they imply network
connections. Observe how simple topoos SDK makes it. The variables poiType,
name and description are directly obtained from the dialog, while location is the
current user position and tagid is obtained when the tag is scanned. As there is no
other field to store the tagid and it is of fixed length (16 bytes) it is concatenated
with the name string. The application knows this convention and tag id and name
will be split when necessary.

Registration of the NFC Point in the UniteNFC’s back-end will be explained
later in section 4.5.4 in which rules on how to communicate with the REST server
will be addressed.

4.4.3 Checking in NFC Point

When a user visits an NFC Point and reads a tag, UniteNFC will record that
event. Of course, the NFC Point must be registered before. Otherwise, the check-
in will not be performed when the tag content is served. This allows the user
to store a history and compare with other friend history, discovering perhaps an
interesting NFC Point that was not aware of. So once the NFC Point content
has been properly parsed and shown, the check-in operations take part. Again
as for registration, the check-in will be carried out with topoos and with the own
developed server. Principally, one big limitation of topoos API is that only stores
the last check-in, so that limitation has been overcome with a tailor-made function
in the back-end.

User me = topoos.Users.Operations.Get(getApplicationContext(), "me");

Position current_pos =

topoos.Positions.Operations.GetLastUser(getApplicationContext(),

me.getId());

Location location = new

topoos.Objects.Location(current_pos.getLatitude(),current_pos.getLongitude());

92

CHAPTER 4. IMPLEMENTATION

Integer[] categories = new Integer[1];

categories[0] = POICategories.NFC;

List<POI> poi_list = topoos.POI.Operations.GetNear(ctx,

location.getLatitude(), location.getLongitude(), 10, categories);

for(POI poi:poi_list){

if(poi.getName().substring(0, 16).compareTo(tagid)==0){

topoos.Checkin.Operations.Add(ctx, poi.getId(), new

Date());

}

}

This snippet looks for NFC Points around the user with the function provided
in topoos topoos.POI.Operations.GetNear and from the obtained NFC Point list,
iterates it searching for a match comparing tags ID. If the scanned NFC Point tag
ID coincides with one of the list, it means that the NFC Point is registered in the
system and, then, a check-in is done.

4.5 RESTFUL Web Development

UniteNFC needs of many functions that are not provided by the software li-
braries that are being used, as was explained in section 3.4.2. To carry out the
task of developing a REST compliant web server, the Django Framework is going
to be used.

4.5.1 Implementing MVC with Django

Django framework structure follows the MVC pattern itself. It isolates each
part of the pattern (models, controllers, views), even in a different file, to ease the
programmer with independent developments. Django uses a nomenclature that
can be confusing. While models go into the models.py file, controllers go into the
views.py file. Views are directly served from controllers but stored into the tem-
plates folder in which, for example, HTML files that are the actual views will be
stored.

Django fosters code reusing, separating functionalities in small application that
should be portable between projects. In the case of UniteNFC, a single application
has been created. This application called objects will manage all the readings from
and writing to the database, in which all the application information will be stored.
This operations will be accessed through HTTP requests, more precisely GET re-
quests for reading and POST for writing. Furthermore, each resource must have
an unique URL to accomplish REST. The responses to the requests commented

93

CHAPTER 4. IMPLEMENTATION

will have JSON format containing a representation of the requested resource.

It is not the aim of this section to serve as tutorial of how to program on Django,
all the documentation necessary is available in the Django website [3]. What is
going to be explained includes general concepts and specific implementation of the
back-end developed for UniteNFC.

4.5.1.1 Model

In the model, the items that need to be stored in the database are defined as
simple classes, there is no need to make any operation directly on the database,
such as creating tables or making queries, thanks to the object-relational mapping
abstraction layer. ORM as it names suggests, translates manipulation of objects
into transactions in a relational database. Django offers a quite simple syntax to
make any kind of query, with the possibility of filtering for multiple criteria simul-
taneously. Moreover, this practice protect against SQL injections automatically,
which is one of the most common attacks.

Django works with most SQL flavors like MySQL, SQLite and PostgreSQL.
The latest has been used for the reasons addressed in the analysis chapter. To en-
sure that the database is properly synchronized with Heroku some configurations
needs to be written in the settings.py that is automatically generated when the
Django project is started.

The objects defined in the model are the following:

• UserInfo: it contains all the information related to a user, i.e. name, profile
picture URI, ID and a link to a list of friends.

• ContactRelationship: this object represents a friendship relationship, it links
one user with another.

• NFCPoint: represents an NFC point, either registered or visited. Its at-
tributes are name, ID, date, address, a boolean to know if it is a registration
record or a check-in record and a link to the user that has perform the oper-
ation.

• Wall: an screen in which all the information of an NFC Point will be shown,
containing comments and user ratings. The attributes for this objects are ID,
NFC Point type, title, description, last seen date, NFC Point (tag) content
and if the content is private.

94

CHAPTER 4. IMPLEMENTATION

• Entry: a comment entry on the wall. It contains a message, an author name
and picture and a link to the wall it belongs.

• Rating: a mark that a user gives to a wall or NFC Point. An integer number
from 0 to 5, a link to the rated wall and a link to the user that rates form
the model.

• Fblink: maps a user ID with its Facebook ID, therefore it just contains two
char fields one with each ID.

A Python class is similar to the ones in other object oriented programming
languages, a series of attributes can be defined (which can be initialized in the
constructor) and then methods performed. So that the class is included into the
database through the ORM, it needs to inherits from the Model class of Django. In
that case all the attributes will be stored into the database. Objects relationships
are created with two fields: ForeignKey for one to N and ManyToManyField for N
to N relations. In the second case it is advisable to create an intermediate object
manually, although Django will create it for you if necessary.

The following example corresponds to the UserInfo object which has the fields
described recently. The link to a list of friends is implemented by the friends
attribute, which is a ManyToManyField that makes the relation through the Con-
tactRelationship object. Having a look at the code it can be noticed that the
simmetrical option is disabled, however symmetry is manually created so that if
user “A” is friend of “B”, “B” is also friend of “A”.

class UserInfo(models.Model):

def __unicode__(self):

return self.user_name

user_id = models.CharField(max_length=50, unique=True)

user_name = models.CharField(max_length=50)

user_pic_uri = models.CharField(max_length=50, default =

"dummy_4")

friends = models.ManyToManyField(’self’, symmetrical = False,

blank = True, null = True, through=’ContactRelationship’,

related_name=’friends+’)

def getJsonInfo(self):

result =

simplejson.dumps(UserInfo.objects.all().filter(user_id=self.user_id)

.values(’user_name’, ’user_pic_uri’)[0])[:-1]+’,

"registered":[’

95

CHAPTER 4. IMPLEMENTATION

registered =

self.nfcpoint_set.filter(registered=True).order_by(’when’)

.reverse().values(’name’, ’posId’, ’date’, ’wall’)

for reg in registered:

result = result+simplejson.dumps(reg)+", "

result= result.replace(’user_pic_uri’, ’pic_uri’)

if len(registered) == 0:

result = result+’], "visited":[’

else:

result = result[:-2]+’], "visited":[’

#method croped, keep building the JSON

return result

The method getJsonInfo returns a JSON representation of this specific object and
others associated to it. It has been included to show the simplicity of database
queries. UserInfo.objects.all() gets all the elements on the database of the UserInfo
class. Then a filter to that list can be added with .filter(user id=self.user id).
What it is actually happening in the second case is that a SELECT query with
the condition specified in the filter is being performed, as simple as that.

4.5.1.2 Controller

Controllers wire user requests with models and views by means of URLs.
Django has a file for it, urls.py. In that file a URL with a specific syntax is
associated with a method of the controller. All the access points to UniteNFC’s
back-end are the following:

urlpatterns = patterns(

url(r’^objects/users/name/(?P<user_req>.+)/$’,

views.nameupdate_view, name=’nameupdate_view’),

url(r’^objects/users/picuri/(?P<user_req>.+)/$’,

views.picuriupdate_view, name=’picuriupdate_view’),

url(r’^objects/users/fblink/$’, views.getfb_view,

name=’getfb_view’),

url(r’^objects/users/friend/$’, views.addfriend_view,

name=’addfriend_view’),

url(r’^objects/users/new/$’, views.reguser_view,

name=’reguser_view’),

url(r’^objects/users/(?P<user_req>.+)/$’, views.restore_view,

name=’restore_view’),

url(r’^objects/nfcp/(?P<user_req>.+)/(?P<isReg>.+)/$’,

96

CHAPTER 4. IMPLEMENTATION

views.regpoint_view, name=’regpoint_view’),

url(r’^objects/wall/rate/$’, views.ratewall_view,

name=’ratewall_view’),

url(r’^objects/wall/updateprivacy/$’,

views.wallupdateprivacy_view,

name=’wallupdateprivacy_view’),

url(r’^objects/wall/(?P<wall_req>.+)/(?P<user_req>.+)/$’,

views.getwall_view, name=’getwall_view’),

url(r’^objects/entry/delete/$’, views.deleteentry_view,

name=’deleteentry_view’),

url(r’^objects/entry/(?P<wall_req>.+)/$’, views.addentry_view,

name=’addentry_view’),

url(r’^admin/’, include(admin.site.urls)),

)

To read the URL some guidelines may be necessary. The r’ˆ characters denote
the host part or the URL, and the regular expression (?P<user req>.+) means
that a string of characters is expected and will be assigned to the variable user req.

Each resource is associated with a single URL, being this the only requirement
to know what to answer. As you can see, every URL has associated a method in
the same line, which are the ones written in the views.py file.

def restore_view(request, user_req):

user_obj = get_object_or_404(UserInfo, user_id=user_req)

return HttpResponse(user_obj.getJsonInfo() ,

mimetype=’application/json’)

This method corresponds to a GET request, i.e. reading an object, the parameter
passed to the URL goes as a variable inputed to the function, with it the requested
object is extracted from the database and returns the view.

A write operation will be carried out through a POST request and the object
to be written will go in JSON format on the request body.

4.5.1.3 View

The view would be the one the HttpResponse method returns in the code above.
Following the example, if a GET request is made to http://unitenfc.herokuapp.
com/objects/users/c1984937-5592-4868-82d0-cdde05195166/, being c1984937-
5592-4868-82d0-cdde05195166 an actual user ID, the controller restore view will

97

http://unitenfc.herokuapp.com/objects/users/c1984937-5592-4868-82d0-cdde05195166/
http://unitenfc.herokuapp.com/objects/users/c1984937-5592-4868-82d0-cdde05195166/

CHAPTER 4. IMPLEMENTATION

be called and will access the model generating the following view in JSON format:

{"pic_uri": "quantum_2", "user_name": "Test Account 2",

"registered":[], "visited":[], "friends":[{"friend_pic_uri":

"izan10saz_9", "friend_name": "Izan D\u00edez", "friend_id":

"1e9f756a-accd-4171-a5d6-c9a3afcdd7bc"}, {"friend_pic_uri":

"unitenfc_5", "friend_name": "Test Account 1", "friend_id":

"6f1ffd8f-9bf8-406b-a2f5-79d39deb991b"}]}

4.5.2 Django Administration

Django provides a very interesting feature: to build an administration website
for your resources. The website created will allow you to see the objects stored in
your database, create new ones, edit the existing ones and delete them. Having
this tool created, it is going to be of great help for testing of both the server and
the complete system.

Once defined the model, just a few lines of code are needed to indicate which
objects are going to be shown in the administration site. The admin.py file is in
charge of holding the code to add more objects to the administration template.
The administration created contains all the links, buttons, spinners and so on to
interact with the administrator, to such point that even someone without a tech-
nical background could perform maintenance operations on the database. Access
credentials will be created upon database configuration.

4.5.3 Deploying to the Cloud with Heroku

One of the main objectives of Heroku is to make deployment as fast as pos-
sible and with the smallest effort. Just installing the Heroku django-toolbelt, a
command-line interface to the Heroku Web API, you can create a new application
and push your project repository with Git to the Heroku server. Heroku will auto-
matically recognize the programming language, install the required software and
wire all the dependencies for you. When that process finishes you are already able
to access your website from the host URL associated to your Heroku application.

Supposing you are working with VCS and a git repository, the essential steps
are the following:

• Install Heroku Toolbelt:

$ pip install django-toolbelt

98

CHAPTER 4. IMPLEMENTATION

Installing collected packages: Django, psycopg2, gunicorn,

dj-database-url, dj-static, static

...

Successfully installed Django psycopg2 gunicorn

dj-database-url dj-static static

Cleaning up...

• Add a file called Procfile with the following content to allow Heroku identify
the application and the number of processes:

web: gunicorn hellodjango.wsgi

• Freeze your requirement to let Heroku know the software it needs to install:

$ pip freeze > requirements.txt

• Create the Heroku application:

$ heroku create fasttest

Creating fasttest... done, stack is cedar

http://fasttest.herokuapp.com/ | git@heroku.com:fasttest.git

• Push your committed repository to Heroku:

$ git push heroku master

Counting objects: 11, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (9/9), done.

Writing objects: 100% (11/11), 4.01 KiB, done.

Total 11 (delta 0), reused 0 (delta 0)

-----> Python app detected

-----> No runtime.txt provided; assuming python-2.7.4.

-----> Preparing Python runtime (python-2.7.4)

-----> Installing Distribute (0.6.36)

-----> Installing Pip (1.3.1)

-----> Installing dependencies using Pip (1.3.1)

Downloading/unpacking Django==1.5 (from -r

requirements.txt (line 1))

...

99

CHAPTER 4. IMPLEMENTATION

Successfully installed Django psycopg2 gunicorn

dj-database-url dj-static static

Cleaning up...

-----> Collecting static files

0 static files copied.

-----> Discovering process types

Procfile declares types -> web

-----> Compiled slug size is 29.5MB

-----> Launching... done, v6

http://fasttest.herokuapp.com deployed to Heroku

Of course some configuration steps have been omitted. Nevertheless, it should not
take more than half an hour to set up everything for the first time and subsequent
deployment just need of a single git push.

4.5.4 Communication with Android Application

So now the server is up, the Android application has to find a way to commu-
nicate with it. As the server is REST, the client just needs to know the requests
that it accepts. Those requests must be carried out in a background thread, e.g.
in an AsyncTask.

Assuming the HTTP request was successful the server will respond with a
JSON object. The objects returned by the back-end are modeled in Android as
Java classes. Then with the help of the gson library, parsing a JSON into a Java
object requires no more than a couple of lines of code and the JSON fields can
be accessed through the object attributes. After this step all the data is cached
with SharedPreferences to avoid making connections repeatedly, which will slow
the application.

Although there are different URLs for different operations, the request process
itself is always the same with the subtle difference of whether is GET or POST
request and the received object. An example of such process would be the follow-
ing:

String filename = usr.getId();

HttpClient httpclient = new DefaultHttpClient();

HttpResponse response = null;

try {

100

CHAPTER 4. IMPLEMENTATION

response = httpclient.execute(new

HttpGet(http://unitenfc.herokuapp.com/objects/users/+filename));

} catch (ClientProtocolException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

StatusLine statusLine = response.getStatusLine();

if(statusLine.getStatusCode() == HttpStatus.SC_OK){

ByteArrayOutputStream out = new ByteArrayOutputStream();

try {

response.getEntity().writeTo(out);

out.close();

} catch (IOException e) {

e.printStackTrace();

}

String responseString = out.toString();

Gson gson = new Gson();

UserInfo session = gson.fromJson(responseString,

UserInfo.class);

} else{

try {

response.getEntity().getContent().close();

} catch (IllegalStateException e) {

e.printStackTrace();

} catch (IOException e) {

e.printStackTrace();

}

try {

throw new IOException(statusLine.getReasonPhrase());

} catch (IOException e) {

e.printStackTrace();

}

}

Note that once the response String is obtained, just passing the class model to the
Gson object is enough to parse it. Finally, further handling of bad responses and
Exceptions can be implemented inside the catch clauses.

101

CHAPTER 4. IMPLEMENTATION

4.6 Users Management

Users using UniteNFC should be able to identify themselves, have personal
records and history and interact with other people. Besides, will be interesting to
offer the possibility that more than one user can use the application in the same
device. The implementation of these requirements are going to be divided in user
authentication with session management and user data administration.

4.6.1 Authentication

The topoos API provides user management, helping you to avoid implementing
access forms and security flows. topoos user authentication is based on OAuth 2.0,
hence, security is guaranteed. When the user is properly identified in the server a
token is provided to access the services that are allowed, like getting NFC Points
or uploading a picture to the topoos server.

4.6.1.1 Login and Registration

Login and registration are implemented in topoos by a single Activity, Logi-
nActivity. Actually, this Activity consist of a single WebView component which
connects with topoos service as if a browser was it. The website is adapted for
mobile phones keeping it simple trying to resemble the best to a native design. To
link logged and registered users with your topoos application, the developer needs
to add the CLIENT ID, i.e. one of the keys obtained when the application was
registered, to the intent launching the Activity.

When the Activity starts a login form is shown. If the user is not registered yet,
there is a link to a registration form. Just after registration, topoos platform will
ask the user to give permissions to UniteNFC. After that it will be redirected to
the login form. One interesting thing of the LoginActivity is that after a successful
login it stores the received token into the application Context, being this the object
you need to pass to all the functions of topoos Android SDK to prove your identity.

This piece of code shows how to start the mentioned LoginActivity. You may
notice that the chosen method to launch the Activity is startActivityForResult.
Doing so, when the Activity finishes the launching Activity receives a callback,
managing in this way the result of the launched Activity.

Intent intent = new Intent((Context) this, LoginActivity.class);

//being "this" the launching Activity

intent.putExtra(LoginActivity.CLIENT_ID, CLIENT_ID);

102

CHAPTER 4. IMPLEMENTATION

this.startActivityForResult(intent, 1);

4.6.1.2 Logout

User session will be maintained as long as the token does not expire or the
user wants to logout. First condition can be checked with topoos SDK. To check
the second one, a variable called saveuser will be saved on the SharedPreferences
(framework to store and retrieve session persistent key-value pairs of primitive data
types) that will be set to true every time a user logs-in and set to false when the
logged user decides to logout selecting the available option from the menu.

4.6.2 User Data

Once user session is properly managed, the mechanism to restore data from
previous sessions and storing the changes should be provided. User data will be
stored in two different ways: in the back-end’s database which is available always,
in the SharedPreferences of the application which is available as long as the user
session is active. In other words, the user data will be stored in the cloud and
cached when the user is using the application.

User data to be stored are user ID and name, profile picture URI, a list of
friends and a list of NFC Points either visited or registered.

4.6.2.1 Restoring User Data

When a user logs-in the application will send a request to the back-end to
recover all the data belonging to this user, specifying it in the request by its ID.
Section 4.5 explains in detail how the request has to be. While the application
is waiting for all the data to be downloaded a loading dialog will be shown. As
soon as the response is received the dialog is dismissed, the response (recall it is
received in JSON format) is parsed and the data stored into SharedPreferences for
quick access.

4.6.2.2 Saving User Data

Every-time new information is generated or existing one is modified by the
application, a back-up is sent to the cloud. This information can be of many kinds,
e.g. a new NFC Point is registered, the user name is changed, a new user is created,
a friend is added, etc. The changes are stored locally in the SharedPreferences
(cached) and sent to the server in a POST request to the appropriate URL.

103

CHAPTER 4. IMPLEMENTATION

4.6.2.3 Profile Picture

Users have the choice of selecting an image to identify them. By default, an
image with the topoos mascot will be the profile picture for new users. This image
is stored within the application resources at res/drawable.

If a user wish to change the profile picture it can be done in the preferences
menu. So far, only pictures from the gallery can be selected. After pressing the
Gallery button, the Android gallery will be launch allowing the user to select one
picture from it. That picture is uploaded to the topoos image storage service and
set as profile picture.

Figure 4.5: Profile picture selector

Before the image is uploaded to the server, some processing is carried out to
lower the weight and resolution. The following snippet check if any of the two
sides of the image is larger than 98 pixels. In that case, it takes the smallest side
and compress it to 98 pixels, compressing the larger size by the same ratio.

BitmapFactory.Options options = new BitmapFactory.Options();

options.inJustDecodeBounds = true;

if(route != null) BitmapFactory.decodeFile(route,options);

else BitmapFactory.decodeResource(ctx.getResources(),

R.drawable.dummy, options);

int height = options.outHeight;

int width = options.outWidth;

int inSampleSize = 1;

if (height > 98 || width > 98) {

int heightRatio = Math.round((float) height / (float) 98);

int widthRatio = Math.round((float) width / (float) 98);

inSampleSize = heightRatio < widthRatio ? heightRatio :

104

CHAPTER 4. IMPLEMENTATION

widthRatio;

}

options.inSampleSize = inSampleSize;

options.inJustDecodeBounds = false;

Bitmap bmp = BitmapFactory.decodeFile(route,options);

ByteArrayOutputStream stream = new ByteArrayOutputStream();

bmp.compress(Bitmap.CompressFormat.PNG, 100, stream);

byte[] byteArray = stream.toByteArray();

topoos.Objects.Image i =

topoos.Images.Operations.ImageUploadPosition(ctx, byteArray,

name, 0);

In addition to set the selected picture (or downloaded picture in case the image
is retrieved from the server when the session starts) more processing is done. Profile
pictures in UniteNFC have square shape and therefore if the obtained image does
not follow this convention it has to be cropped.

Bitmap bmp = TopoosInterface.LoadImageFromWebOperations(i);

int width = bmp.getWidth();

int heigth = bmp.getHeight();

Bitmap croppedBmp;

if(width == heigth) {

croppedBmp = bmp;

}

else if(width > heigth) {

croppedBmp = Bitmap.createBitmap(bmp,(width-heigth)/2, 0,

heigth, heigth);

}

else {

croppedBmp = Bitmap.createBitmap(bmp,0, (heigth-width)/2,

width, width);

}

String path = Environment.getExternalStorageDirectory().toString();

File dir = new File(path,"/unitenfc");

dir.mkdir();

File file = new File(dir,"profile.png");

FileOutputStream out;

try {

out = new FileOutputStream(file);

Bitmap.createScaledBitmap(croppedBmp,98,98,false)

.compress(Bitmap.CompressFormat.PNG, 100, out);

105

CHAPTER 4. IMPLEMENTATION

} catch (FileNotFoundException e) {

e.printStackTrace();

}

catch (NullPointerException e) {

e.printStackTrace();

}

The code shown above crops the image exactly in the center, cutting out the same
number of pixels on both extremes of the larger side.

4.7 Facebook Integration

This section will cover the topic of adding sociability with Facebook to the
application. Furthermore, it can serve as an important diffusion and promotion
channel the day of tomorrow.

4.7.1 Setting-up Facebook Application

How to configure your application to use Facebook services is going to be
explained in two parts. Firstly the application need to be registered in the system.
Secondly, the SDK has to be added to the Android project and some lines of code
written.

4.7.1.1 Creating Facebook Application

If you want to use Facebook information resources and APIs you need to reg-
ister an application within Facebook with a developer account. A native Android
application is selected and the package name of the application and the main Ac-
tivity class need to be indicated. Then, a key hash has to be provided, to allow
Facebook identify your application securely. To obtain the key hash, as it is ex-
plained in the Facebook Getting Started tutorial [5], the following command has
to be executed in the terminal.

keytool -exportcert -alias <RELEASE_KEY_ALIAS> -keystore

<RELEASE_KEY_PATH> | openssl sha1 -binary | openssl base64

Next step is to complete the application details for which it is compulsory to create
a Facebook Page. The details of creating the page are going to be skipped, but
filling up a form is all you need to do. The result can be seen in figure 4.6.

106

CHAPTER 4. IMPLEMENTATION

Figure 4.6: UniteNFC Facebook page

Permissions required for the application have to be explicitly specified. There
are dozens of different types of permission, e.g. access user email, user inter-
ests, user books, friends likes, friends locations, photo upload, create event and
almost every functionality available on Facebook. The permissions necessary for
UniteNFC are, access to user friends and publish action. These two permissions
are included by default, so there is no need to add extra permissions. The token
received will be able to handle them, asking for user confirmation when a spe-
cific resource is going to be access for the first time. For example, the first time
UniteNFC is going to publish on the user behalf, a prompt will be shown to ask
the user for consent.

By far, Facebook set-up has been the most tedious one. Still has not finished,
further configuration is needed in the Android Application to make it work.

4.7.1.2 Importing Facebook SDK

Facebook SDK is somehow different than what has been found for others SDKs.
Instead of being distributed as a compiled JAR file as most libraries are, the de-
veloper gets the project folder which includes its own manifest and can confuse
the compiler. The steps to follow, in Android Studio, are the following: copy the
facebook library folder to the libs folder. Go to File/Project Structure... and mark
the facebook module as a library. Add the dependency of you application module
to the facebook module. And, to conclude, make sure that every library is only

107

CHAPTER 4. IMPLEMENTATION

added once. A common error is to add the android-support-v4 library twice, one
when the facebook module is compiled and another one when the application mod-
ule is compiled, falling into a compiler error.

As for most SDKs, the API key has to be specified to identify the application
requests. In this case, a meta-data tag is included in the manifest indicating it.

<meta-data android:name="com.facebook.sdk.ApplicationId"

android:value="@string/fb_app_id"/>

4.7.1.3 Adding Facebook Lifecycle

Facebook SDK includes a class called UiLifecycleHelper that manages Facebook
session status. It knows every-time the state, helping to restore previous sessions,
and reacts to events by means of callbacks. According to Facebook documentation,
it needs to be integrated in the Activity life-cycle for which you want Facebook
functionalities. As it can be seen in the code implementing this, the helper object
needs to call its own onCreate, onPause, onResume, onPause, onSaveInstanceState
and onDestroy.

private UiLifecycleHelper uiHelper;

private Session.StatusCallback callback = new

Session.StatusCallback() {

@Override

public void call(Session session, SessionState state, Exception

exception) {

onSessionStateChange(session, state, exception);

}

};

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

uiHelper = new UiLifecycleHelper(this, callback);

uiHelper.onCreate(savedInstanceState);

}

@Override

public void onResume() {

super.onResume();

uiHelper.onResume();

}

108

CHAPTER 4. IMPLEMENTATION

@Override

public void onPause() {

super.onPause();

uiHelper.onPause();

}

@Override

public void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);

uiHelper.onSaveInstanceState(outState);

}

protected void onDestroy() {

super.onDestroy();

uiHelper.onDestroy();

}

Note that the callback object class is also provided in the SDK and that the
method called in it is not shown but will handle what actions are taken when the
session status changes, e.g. when a user connects with an existing session when
the Facebook button is pressed.

4.7.2 Connecting Account

After a long set-up, fortunately, many automated functions and widgets are
ready to use. The user will be asked to connect with Facebook right after the
login. Facebook SDK provides a LoginButton element that handles the connec-
tion, making automatically all the necessary requests. That button is going to be
embedded into the dialog that is going to be shown to be user on session start.

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent">

<com.facebook.widget.LoginButton

android:id="@+id/authButton"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_alignParentTop="true"

android:layout_centerHorizontal="true"/>

<CheckBox

android:layout_width="wrap_content"

109

CHAPTER 4. IMPLEMENTATION

android:layout_height="wrap_content"

android:text="@string/fb_reminder"

android:id="@+id/checkBox"

android:layout_below="@+id/authButton"

android:checked="false"

android:layout_centerHorizontal="true"/>

</RelativeLayout>

This XML code will be inflated into the dialog shown to the user, being the result
the shown in figure 4.7. The user can choose to login with Facebook, cancel or
cancel and not show again the dialog. Besides, this dialog can be accessed from
the preferences, allowing to login or logout at any time.

Figure 4.7: Facebook Dialog

The complete flow of Facebook login and logout is depicted in figures 4.8 and
4.9, one for each entry point that has been defined.

4.7.3 Adding Friends

How friends are added is almost completely explained in the two flow dia-
grams. Furthermore, although the user interaction may be different, how friends
are searched and found is done in the same way for both cases.

When a user is linked what is being done is to create a one to one relation in
UniteNFC’s back-end with the topoos ID (i.e. what is treated as UniteNFC ID)
as a value and the Facebook ID as a key. Then, a query is carried out to Facebook
to obtain all the Facebook user friends and another one to UniteNFC’s server to
get all the mentioned one to one relations in the shape of key-value pairs. Every
user that has previously connected with Facebook will be among them, allowing
to ask for a given key (all the Facebook friends IDs) and, if not null, obtain the

110

CHAPTER 4. IMPLEMENTATION

Figure 4.8: Facebook flow (I)

linked user in UniteNFC. Finally, when a friend is found it is added in UniteNFC
and backed-up to the server.

4.7.4 Publishing on Wall with Hashtags

Last functionality to explain is how to publish in user’s wall automatically.
This feature will allow the user to share his activity in the application, when the
user registers a new NFC Point or visits an existing one, in Facebook. Besides,
thanks to the hashtag marks that recently Facebook has activated an interesting
opportunity of classifying messages and user interaction is opened. The following
method contains all the instructions needed to publish a message.

Permissions are requested at the beginning if they have not been provided
previously and then, a Bundle is created in which all the data to be posted is

111

CHAPTER 4. IMPLEMENTATION

Figure 4.9: Facebook flow (II)

appended. The actual message that will be published is the message String inputed
to the method.

public static void publishStory(Activity act, String message) {

Session session = Session.getActiveSession();

List<String> permissions = session.getPermissions();

if (!isSubsetOf(PERMISSIONS, permissions)) {

112

CHAPTER 4. IMPLEMENTATION

pendingPublishReauthorization = true;

Session.NewPermissionsRequest newPermissionsRequest =

new Session.NewPermissionsRequest(act, PERMISSIONS);

session.requestNewPublishPermissions(newPermissionsRequest);

return;

}

Bundle postParams = new Bundle();

postParams.putString("message", message);

postParams.putString("name", "UniteNFC for Android");

postParams.putString("caption", "The unique portal to NFC

world.");

postParams.putString("description", "Discover and share NFC

points that surrounds you. Register new NFC Points you

may encounter and comment on its content on the wall!");

postParams.putString("link",

"https://developers.facebook.com/android");

postParams.putString("picture",

"http://s23.postimg.org/bq7oqpfzr/nfc_blue.png");

Request.Callback callback= new Request.Callback() {

public void onCompleted(Response response) {

JSONObject graphResponse = response

.getGraphObject()

.getInnerJSONObject();

String postId = null;

try {

postId = graphResponse.getString("id");

} catch (JSONException e) {

Log.i("TAG", "JSON error "+ e.getMessage());

}

}

};

Request request = new Request(session, "me/feed",

postParams, HttpMethod.POST, callback);

RequestAsyncTask task = new RequestAsyncTask(request);

task.execute();

}

}

The structure of the message will always be the same: the name of NFC Point,
the action performed (visited or registered), the type of the NFC Point and a se-
ries of hashtags including the physical tag ID, the NFC word, and the application

113

CHAPTER 4. IMPLEMENTATION

name. Note that if someone wants to see all the messages posted on Facebook
from UniteNFC it could be done just clicking the hashtag. Moreover, imagine how
easy is to track all the records for a particular NFC Point. Possibilities if users
tend to share their activity in Facebook are huge. An example of a message posted
when an NFC Point is visited has been captured in figure 4.10.

Figure 4.10: Example publication on Facebook

4.8 Adding Language Support

Users expect to use the application in its local language and not being able
can establish a big entry barrier. Supporting several languages is a key aspect to
attract users all over the world. Android provides a very simple mechanism for
language support that is going to be described briefly.

Currently UniteNFC supports two languages, English and Spanish.

114

CHAPTER 4. IMPLEMENTATION

4.8.1 Strings in Android

Strings in Android can be handled in two ways, either you declare the String
directly in the application code or you get the String from a resource file where
all the Strings are declared. One of advantages of having a resource file with the
Strings is reutilization, you write you String once and use it in several places of your
code, for example an error message that is shown in different activities. Secondly,
you can have different String resource file for different languages without changing
a letter on you code, since strings are identified by an id (i.e. name field of the
string item in the XML file) and Android knows which resource file has to look at.
The following piece of code shows how to declare the String in the resource file.

<resources>

<string name="action_share">Share</string>

<resources>

Get it in XML for the layouts:

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/action_share" />

Get it in Java:

String string = getString(R.string.action_share);

The same concept applies for String arrays. They need a resource file for each
language you want to support.

4.8.2 Resources Folders

Under the res folder all the resources including XML and images are placed.
Strings and arrays, among others, are inside the res/values folders. It has been
said that Android knows which resource folder corresponds to each language, and
it does just looking at the folder name.

Knowing the system language, Android looks for the language code after the
folder name. In figure 4.11 values-es stands for Spanish language. If no folder
matches the sought code, it falls back to the default language residing in the
values folder, which in UniteNFC is English.

115

CHAPTER 4. IMPLEMENTATION

Figure 4.11: Different languages resource folders

4.8.3 Summary: How to Add a New Language

To summarize, if support for a new language, e.g. German, was going to be
added the following steps would need to be followed:

• Create a new values folder with the language code at the end, e.g. values-de.

• Add all the Strings from other language resource and, keeping the id, sub-
stitute all the values for the corresponding translated String, e.g.

<string name="action_share">Teilen</string>

4.9 Notifications

An important feature of UniteNFC is the possibility of receiving notifications
on proximity of NFC Points. Notifications improves discoverability of NFC Points
that the user would not be aware of unless a direct interaction with the application
map was taking part. The concept is simple, an Android Service will run periodi-
cally polling for NFC Points on the surroundings of the user location. If any NFC
Point is found, and has not been notified recently (in case the user is not moving),
a notification is sent to the notifications bar. How to program these notifications
will be explained in more detail.

4.9.1 Launching Service

A Service is an Android element corresponding to a task of an application that
does not need user interaction nor graphical interface or a task to supply function-
ality for others applications. UniteNFC needs a Service to be run periodically and
to do so, Android provides the AlarmManager which allows you to set periodical
alarms.

116

CHAPTER 4. IMPLEMENTATION

Intent intent = new Intent(this, ProximityNotifier.class);

PendingIntent pintent = PendingIntent.getService(this, 0, intent,

0);

AlarmManager alarm =

(AlarmManager)getSystemService(Context.ALARM_SERVICE);

int PERIOD = 30000; //milliseconds

alarm.setRepeating(AlarmManager.ELAPSED_REALTIME,

SystemClock.elapsedRealtime() + PERIOD, PERIOD, pintent);

In the snippet above an alarm is created to be repeated every PERIOD, i.e. 30
seconds. When the alarm fires, the PendingIntent waiting for it sends the explicit
Intent that launches the Service which will determine whether an NFC Point is
near the user.

4.9.2 Service

The IntentService will handle the sent Intent in the onHandleIntent(Intent
intent) in which all the logical work will be performed. The user location will be
updated and then a function will retrieve all the NFC Points in terms of a center
location and a radius. This function belongs to the topoos API which makes the
operation really simple. From the returned NFC Points the closest one is chosen
an broadcast to the Android system in an Intent. In the code, an Intent is filled
up with the NFC Position (latitude and longitude) and type.

Intent localIntent = new

Intent().setAction(Constants.BROADCAST_ACTION)

.putExtra(Constants.EXTENDED_DATA_STATUS,poi.getCategories().getId())

.putExtra("lat",poi.getLatitude())

.putExtra("lon",poi.getLongitude());

sendBroadcast(localIntent);

4.9.3 Notification Creation

The last step consists of creating the BroadcastReceiver that will get the mes-
sage with the NFC Point position and type and create the notification. The Noti-
fication is constructed with a Builder and several items can be added.

PendingIntent contentIntent = PendingIntent.getActivity(context, 0,

new Intent(context,

MainActivity.class).setAction(Constants.NOTIFY)

117

CHAPTER 4. IMPLEMENTATION

.putExtra("lat",latitude).putExtra("lon",longitude), 0);

NotificationCompat.Builder mBuilder = new

NotificationCompat.Builder(context)

.setSmallIcon(R.drawable.scan_tab)

.setLargeIcon(BitmapFactory.decodeResource(context.getResources(),res))

.setContentTitle(context.getString(R.string.app_name))

.setContentText(context.getString(R.string.notification_text));

mBuilder.setContentIntent(contentIntent);

mBuilder.setDefaults(Notification.DEFAULT_SOUND);

mBuilder.setAutoCancel(true);

mBuilder.setVibrate(new long[]{100, 100, 100, 400});

mBuilder.setLights(Color.CYAN, 300, 300);

NotificationManager mNotificationManager = (NotificationManager)

context.getSystemService(Context.NOTIFICATION_SERVICE);

mNotificationManager.notify(1, mBuilder.build());

In this case, a large and an small icons are added, a title and a description and
a PendingIntent that will fire when the users selects the notification. That Intent
will have the NFC Point position information to locate it at the map automatically
for the user. Besides, the notification sound, vibration pattern and LED blinking
color and pattern are set as well.

Figure 4.12: Notification of nearby NFC Point

4.10 Google Analytics

In this section how to use Google Analytics and what you can get from it is
going to be described.

4.10.1 Setting-up Account

Any Google user can access this service and start tracking websites or mobile
applications such as UniteNFC. The first step is registering the application filling
in a simple form in which you specify the application name, the industry sector,
time zone and a few more options. Given that you obtain a track ID, which will

118

CHAPTER 4. IMPLEMENTATION

be the application identifier when it communicates with the service. That is all
concerning account set-up. Lots of options are available but default configuration
is enough for beginners and still you get a lot of information.

4.10.2 Adding Analytics to the Android Life-cycle

Once you have the track ID it is possible to integrate Analytics services into
the Android Application. Google Analytics SDK library needs to be added to the
libs folder. Now, the following XML file has to be added to the res/values folder
with name analytics.xml to indicate the track ID and other characteristics.

<resources>

<string name="ga_trackingId">UA-XXXXXXXX-X</string>

<bool name="ga_autoActivityTracking">true</bool>

<bool name="ga_reportUncaughtExceptions">true</bool>

</resources>

The string parameter is the already mentioned track ID which is indispensable for
Analytics to work. The second and third line configure automatic tracking and
exceptions reports respectively, and are set to true. At last, just a few lines of code
are left to be written to have the application monitored by Analytics services.

@Override

public void onStart() {

super.onStart();

EasyTracker.getInstance(this).activityStart(this);

}

@Override

public void onStop(){

super.onStop();

EasyTracker.getInstance(this).activityStop(this);

}

In this code it can be seen that just one line of code is necessary to start Easy-
Tracker and another one to stop it, including them in the normal Android life-cycle
for every Activity that is going to be tracked. EasyTracker encapsulation will do
all the work of communicating relevant events to the server.

4.10.3 Statistics

It has been explained how easy is to put Google Analytics to work. Yet no
result has been shown. Statistics gathered are diverse and include, among others:

119

CHAPTER 4. IMPLEMENTATION

• New users

• Active users

• Location

• Language

• Operating system

• Service provider

• Device

• Screen resolution

• Number of screens per session

• Sessions duration

• Screen views

• Crashes and exceptions

• Engagement flow

There is no doubt about the usefulness of this information. Google Analytics
reports can determine which languages are chosen to be supported in the first
place or to what screen dimensions is interesting to adapt the application to please
the consumer, help to know how user recruitment is evolving or which Activities
(screens) are preferred or, on the contrary, causes users to stop using the applica-
tion.

To round off, data are shown in a very attractive way. Figure 4.13 shows a
chart of the number of active users per day on UniteNFC. Note the peaks corre-
spond to the testing spikes for two different versions of the applications.

Figure 4.13: UniteNFC user sessions statistics (03/10/2013)

On figure 4.14 statistics about devices on which UniteNFC has run, with its
operating system and network provider are depicted. These numbers are biased
by the main testing device which clearly was an Xperia running an Android 4.1.2
and with network provider Telefonica.

The languages of devices using UniteNFC can be seen in figure 4.15. Again
note that most of the sessions correspond to tests which where carried out in a
device with Spanish language configured.

120

CHAPTER 4. IMPLEMENTATION

Figure 4.14: UniteNFC device statistics (03/10/2013)

Figure 4.15: UniteNFC language statistics (03/10/2013)

Last example, figure 4.16, shows screen flow represented as a net of connected
Activities and gives a very intuitive view of user costumes when using the applica-
tion in such a way you could think of manipulating them to serve your purposes.

4.11 Publishing on Google Play

Even though when the application development started there was no plan to
publish UniteNFC in the market, once it was finished there was no reason to stop
doing it and check whether some people downloads it or not.

121

CHAPTER 4. IMPLEMENTATION

Figure 4.16: UniteNFC engagement flow statistics (03/10/2013)

Accessing Google Play is easy and uploading your first application very quick
with very few restrictions. The only thing you need to do is to register as a devel-
oper and pay the 25$ lifelong fee. As soon as you do it you can start publishing.
The information required to let you publish the application is the following:

• Default language: should be the language by default in the application, since
people expect the application info in the same language as the Google Play
entry. For UniteNFC, default language is English.

• Title: the application name.

• Description: description up to 4000 characters.

• Screen-shots: at least two screen-shots of the application.

• High resolution icon: 32 bits PNG file with resolution 512x512 to be shown
in the application page. UniteNFC’s was already shown in figure 3.1.

• Application type: game or application.

• Category: application purpose or field. Among the available options UniteNFC
best fits to the communication category.

• Content classification: maturity level. Since it is a first release and its pub-
lication information is not as complete as it should, low maturity level was
chosen for UniteNFC.

• Website: application website. At this moment the website is www.unitenfc.
com and redirects to the Facebook application page.

122

www.unitenfc.com
www.unitenfc.com

CHAPTER 4. IMPLEMENTATION

• Email: developer contact email.

• Privacy policy: URL with the privacy policy for the application. It can be
left blank, as for UniteNFC.

• Distribution price: price to charge for its download. To try to attract the
most users as possible it will be free for now.

That is all the information you need to provide to publish the application. You
can complete it with more screen-shots for different resolutions, adding an adver-
tising text or indicating your last changes. Then Google Play allows you to upload
your application in three different schemes: production, beta Testing and alpha
Testing. In alpha and beta testing you can choose who has access by specifying a
Google Group or Google+ community. UniteNFC was launch directly in produc-
tion as no group of testers were planned to analyze the application and anyhow
this could be done in production as well.

The application is uploaded in APK (Application PacKage File) format, i.e.
the file format used in Android to distribute applications. It must be digitally
signed with a certificate whose private key is held by the application’s developer
[44]. Generating the signed APK with Android Studio IDE is straight forward.
Going to Build/Generate Signed APK... a wizard is shown in which you can select
a private key under your control or create a new one and finally create the APK
of your application to upload it. Caution must be taken to store the key since all
the versions of the application have to be signed with the same key.

4.11.1 Versioning

Different versions of the application can be uploaded as it is improved. Users
who have installed the application will receive the notification of a new version or
it will be updated automatically depending on the configuration. To define a new
version two fields need to be changed in the manifest.

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

package="com.quantum.unitenfc"

android:versionCode="2"

android:versionName="1.1" >

The versionCode field is a positive integer indicating version order with respect to
others. A newer version must always have a greater value than previous versions,
allowing the system to check for upgrades or downgrades. On the other hand

123

CHAPTER 4. IMPLEMENTATION

versionName is only the version code shown to users. To conclude, note that the
package field must remain the same for all the versions.

124

5
TESTING AND FURTHER

DEVELOPMENT

T
his chapter will address the methodology followed to test the application in
the different development stages. In addition, a set of possible future tasks
will be listed.

5.1 Testing

One fundamental step in the software development flow is testing. When talk-
ing about software testing several approaches are available: depending on how
frequently you test, whether you test functions in a unitary way, by blocks or the
complete system; whether test are carried out in an automated way or manually,
etc. [37]

Due to the mixed characteristics of the project and the need, at some points,
of testing directly the hardware, different methods were used for each phase of the
project, not following any particular convention. The next sections will describe
the four main processes repeated for testing the developed application.

5.1.1 Debugging the Android Application

Android AVD provides a way to test you application without owning a physical
device. It comes with the SDK and you can define a wide range of virtual devices.
Some are predefined, but you can define your own specifying its characteristics:
CPU architecture, RAM memory, hardware available on the emulated device and
screen density. So far, a very flexible and useful tool, but it is not that simple.

125

CHAPTER 5. TESTING AND FURTHER DEVELOPMENT

When it comes to performance there is still a lot of work to be done by Google,
the emulator is just too slow. Apparently they have not found the way to convert
between architectures efficiently. The requirements are huge and having a power-
ful equipment does not guarantee emulation smoothness either. Furthermore, not
every hardware can be emulated. For example there is no way to test NFC into
the emulator. For these reasons all the tests where made directly into the mobile
phone.

The fact of needing a physical device slows testing but, apart from that, all
the tools can be used normally. Logcat provides an interface to Android system
messages, allowing you to filter by type of message, process, intent, activity and
date. Logcat was the main tool used to monitor the application flow during testing.
Figure 5.1 shows a sample screen-shot where Logcat verbosity can be appreciated.

Figure 5.1: Logcat example logs

When an error was detected in Logcat but the cause was hard to figure out, a
more precise analysis of the code had to be performed. The Java code could be
debugged as in the virtual machine when running on the mobile phone, so some
breakpoints were enough to make the application stops when desired and inspect
if the variable values were as expected.

In summary every time a new functionality was added to the application the
mentioned steps were followed, iterating until no errors arose. Direct interaction
with the mobile plus Logcat examination. If better understanding was needed the
debugger made the rest.

5.1.2 REST API Testing

Testing on the server was completely isolated from the client application thanks
to its RESTful behavior. As explained in 3.4.2.1.2 the cloud service is stateless
in such a way that the response only depends on the request. Therefore, testing
every kind of request and assuring the response is the correct one is more than

126

CHAPTER 5. TESTING AND FURTHER DEVELOPMENT

enough. There is no need to care on how client and server are connected or how
the data will be handled.

For this task the REST console [38] was the selected tool, which is just an HTTP
request visualizer and constructor tool. Basically the request was constructed with
the form host+intruction if it was a read request, i.e. GET, or host+intruction
plus a JSON body if it was a write instruction, i.e. POST. Then, the response
was viewed and checked, first, that the JSON format was correct and, second, that
the received item was the expected according to the data present in the database.
The first verification was made in http://jsonviewer.stack.hu/. The second
verification could be easily made thanks to the administration site provided by
Django, where all the objects in the server can be seen. Figure 5.2 shows these
steps for a better understanding of the reader.

Worths to mention other services being REST, e.g. topoos, could be tested in
a similar way with the REST console.

5.1.3 System Testing

Once the server and all the services are integrated, further testing has to be
carried out. As a result of not having followed an strict testing methodology,
when all the working parts were assembled some of them broke. Hence the full
application was tested (like an alpha testing) and fixes were made until everything
worked. No specific method was followed and, depending on the bug, a mixture of
the already described procedures were followed.

5.1.4 Feedback

Getting feedback is an interesting tool to have somewhat a continuous like
testing. Feedback allows you to know what is happening on you application, what
works and what does not, and many more things. Two feedback sources were
added to the application, thus being able to detect bugs from the user experience:

• User bug report: an option was added in the menu to allow users report
unpleasant experience like crashes. The first users reported some of them,
spotting some sloppy code that was overlooked.

• Google Analytics: not only gives you information about the users, it gives ac-
tivity recurrence information and exceptions thrown. Very useful to monitor
the application health.

127

http://jsonviewer.stack.hu/

CHAPTER 5. TESTING AND FURTHER DEVELOPMENT

Figure 5.2: REST API testing

Finally, although no formal testing team was put to play around with the
application, some acquaintances agreed to give a try to the first version and very
valuable feedback was obtained. Many bugs were identified and solved in later
versions.

128

CHAPTER 5. TESTING AND FURTHER DEVELOPMENT

5.2 Further Development

This section will describe some tasks that would need to be performed if the
project is continued in the future. Most of them do not cover any of the technical
issues discussed on this thesis so, due to the lack of time, have been considered to
fall apart from the scope of the project.

5.2.1 Optimizing for Other Screen Dimensions and Densi-
ties

Android fragmentation is a nightmare for developers as will be discussed later
in section 6.2, one of the reasons is the diversity of screen dimensions and densities.
UniteNFC has been developed only for the testing device, Sony Xperia S, which
holds a 342 dpi screen falling into XHDPI classification and in portrait mode. The
application interface may be oversize for smaller densities and not well distributed
over a tablet as can be observed in figure 5.3.

5.2.2 Adding More Language Support

UniteNFC offers multi-language support from its inception, in Spanish and
English. To increase the scope and reach many more countries additional languages
should be added. Simply including one strings resource file for each language is
enough.

5.2.3 Better Instructions in the Application

Many people may not know what is NFC, or find the application complex or
nonsense. Clearer messages on what it is and how to use it has to be added both
in the application and in the Google Play entry. This step is crucial to attract new
users. Video promotions and tutorial may be of great help.

5.2.4 Optimizing Image Loading and Cache

Interfaces containing images or data loaded from the web show a loading
progress bar and then inflate at once all the graphics. Caching better that data,
some it is actually done, and allowing to asynchronously inflate the interface by
dynamic graphics inflation could improve a lot user experience.

129

CHAPTER 5. TESTING AND FURTHER DEVELOPMENT

Figure 5.3: UniteNFC in a tablet

5.2.5 Code Cleaning and Maintenance

Code’s value decreases as its entropy increases. Code tidiness has been tried
to keep during the programming stages. However, when the code got bigger and
the deadlines became closer was almost impossible to avoid messing up the code.
If a new developer is to come and looks at the code, should be able to understand
it. For that to be possible some refactoring needs to be done ensuring posterior
maintenance.

130

6
PROBLEMS ENCOUNTERED

T
his chapter will comment on the difficulties and problems that arose during
the project development.

6.1 Testing Hardware Related Functionalities

Needing to test NFC slowed down the programming a lot. The main problem is
that you cannot test a function without building the whole system into the mobile
phone. As was commented in the previous section this limited the testing to the
system testing, also known as black-box testing. To deal with this problem lot
of patience was invested, but not smart solution was found. The greatest delay
was caused by the testing of Android Beam, which needs of two devices. One was
borrowed but was not available always.

One possible solution to think of for next projects is to use the Open NFC
Simulator [35]. Running on Windows, it emulates two NFC controllers and a
variety of virtual cards and can be connected with an Android Virtual Device.
In principle, the application could be tested without the need of any hardware.
However, the lack of examples on the website can be taken as a reference of the
state of the project.

6.2 Android Fragmentation

Fragmentation in Android ecosystem is a controversial topic and there are opin-
ions of all kinds. On one hand you have the freedom of an open system, everyone
can tweak the operative system and make it work on their device making it very

131

CHAPTER 6. PROBLEMS ENCOUNTERED

easy to spread. On the other hand you have device and version fragmentation,
having different hardware specification for the former and software features for the
later, losing control and optimization.

As a developer you can find fragmentation a bit of a mess. Extra work has
to be done to fit properly an application to all the screen densities and sizes, you
cannot use the same hardware in all the devices or some functions you use from
the SDK may not be supported in previous versions. These issues hardly appear
in the main competitor, i.e. iOS, which higher control helps to avoid them.

Figure 6.1: Android vs. iOS fragmentation [45]

For the sake of the project the scope of Android versions was reduced. A critical
point was the introduction of the new NFC functions in API 14 that allowed
to develop NFC applications easily and compatible with 4.0 or higher versions.
Therefore, that API was set as minimum SDK version leaving out, approximately,
half of the total Android devices. Nevertheless, note that very few of those devices
have NFC support and would not be compatible devices in any case. A complete
list of compatible devices can be found in appendix A.

6.3 NFC Android Beam

Peer-to-Peer protocol stack allows to built many protocols on top of LLCP as
was seen in 2.18 and not restricted exclusively to SNEP or NPP. The first idea was
to built up an own protocol to transfer friend data and perhaps some other data
like tag content. However, this is not possible with the current Android SDK, in
which the low level functionalities are unaccessible to the developer.

P2P specification says it is bidirectional, but Android Beam is not. That issue,
does not allow to perform a two way operation in a single NFC communication. To
simulate this behavior, the response had to be sent over the Internet and processed

132

CHAPTER 6. PROBLEMS ENCOUNTERED

on the server making the communication in one single mobile.

Finally, Android Beam requires user interaction (touching the screen) and loses
much of the NFC charm. If two people are holding their unlocked mobiles back to
each other they certainly know they want to share something, why asking again?

6.4 Topoos Incomplete API

Topoos API offer is attractive. Point of interest support, geolocation and social
functions, etc. But it is still young. Before being chosen as one of the main
building blocks of the application, more research should have been done to know
exactly what worked and what did not. The BETA word was trying to warn
but was overlooked. Due to this bad election in the beginning some restructuring
was carried out to implement for example, friendship. Nevertheless, it has to be
said that what was working by then was performing rather well and by know its
promises are closer to reality.

6.5 Web Development Inexperience

When the project was first depicted, one of the main challenges was to learn
some good practices on web development and applying them to develop a web
server to store and deliver data to the client applications.

Learning a new framework is not easy and documentation is not always good
enough. That was one of the reasons of choosing Django and Python. But still
some headaches were produced by the complicated documentation.

Although the project was slowed down a bit because of this, the planned ser-
vices were implemented correctly. But security was too big to handle. An oauth2
flow should be implemented. Support of a more experienced web developer would
be needed.

133

7
PLANNING AND BUDGET

T
his chapter will present a Gantt Chart with all the tasks involved in the
project development and, in a later section, a complete budget will be
calculated in order to estimate the cost of replicating the project.

7.1 Gantt Chart

To be able to calculate the budget of the presented project, a breakdown of
the main tasks carried out is shown. Note that these tasks are part of the stages
described in section 1.3. An estimation of the hours spent in each task is also
presented to give an outlook of the weight of each task in the project.

Another issue to have into consideration when regarding the tables and figures
that will follow is that: during the first five months, only four hours a day (five
days a week), i.e. part time, were dedicated to the project development; whereas
the last four months, eight hours a day, i.e. full time, were invested in it.

In table 7.1 all the tasks are listed in chronological order. Overlapping tasks
share the period of time fairly, in other words, time is split equally in both tasks
as mostly often was.

Finally a more visual schedule is presented by means of the Gantt chart in
figure 7.1.

134

CHAPTER 7. PLANNING AND BUDGET

Task Starting Date Ending Date Number of hours

NFC Research 07-01-2013 25-01-2013 50

NFC Documentation 21-01-2013 01-02-2013 30

Workbench Setup 04-02-2013 08-02-2013 10

System Definition 04-02-2013 15-02-2013 30

GUI Implementation 18-02-2013 08-03-2013 30

NFC Block Implementation 25-02-2013 10-05-2013 210

Topoos Block Implementation 13-05-2013 21-06-2013 130

RESTFUL Web Development 24-06-2013 26-07-2013 200

Friendship Implementation 29-07-2013 02-08-2013 40

Walls Block Implementation 05-08-2013 16-08-2013 80

Facebook Integration 19-08-2013 23-08-2013 40

Complete System Integration 26-08-2013 30-08-2013 20

Google Analytics Integration 02-09-2013 06-09-2013 20

Testing and Bug Fixing 26-08-2013 20-09-2013 95

Publication on Google Play 16-09-2013 20-09-2013 5

Thesis Writing 09-09-2013 04-10-2013 100

Thesis Revision 07-10-2013 11-10-2013 40

Table 7.1: Project tasks breakdown

135

CHAPTER 7. PLANNING AND BUDGET

2013
07 jan 04 feb 04 mar 01 apr 29apr

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1st Stage
NFC Research

NFC Documentation

2nd Stage
Workbench Setup
System Definition

GUI Implementation
NFC Block Implementation

Topoos Block Implementation

Full Time Start

2013
27 may 17 jun 15 jul 12 aug 09 sep

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

2nd Stage
Topoos Block Implementation

3rd Stage
RESTFUL Web Development

Friendship Implementation
Walls Block Implementation

4th Stage
Facebook Integration

Complete System Integration
Google Analytics Integration

Testing and Bugs Fixing
Publication on Google Play

5th Stage
Thesis Writing

Thesis Revision

Figure 7.1: Gantt Chart

136

CHAPTER 7. PLANNING AND BUDGET

Surname and
Name

Proffesional
Category

Devoted Time
Worker x Month

Worker Cost by
Month (Euros)

Total Cost
(Euros)

Dı́ez Sánchez,
Izan

Engineer 6.5 1 2,694.39 e 17,513.54 e

Table 7.2: Personnel budget

Description Cost (Euros) Project Devoted
Time (%)

Devoted Time
(Months)

Depreciation
Cost

Attributable
Cost

Sony Vaio
VPCCA1S1E

696.18 e 100 9 60 104.43 e

Logitech Wire-
less Mouse M305

24.56 e 100 9 60 3.68 e

Sony Xperia S 329.75 e 100 8 60 43.97 e

Samsung Galaxy
S2 Plus

230.58 e 100 2 60 7.69 e

Mobile NFC Tag
Testing Set

49.59 e 100 8 60 6.61 e

Total 166.38 e

Table 7.3: Equipment budget

7.2 Project Budget

Once all the tasks have been defined and the project duration is well known,
all the costs for the project can be calculated. To do so, the template eased by the
Universidad Carlos III de Madrid has been followed.

The attributable cost for perishable goods has been calculated with the follow-
ing formula:

amortization =
number of months

depreciation period
· equipment cost · use % (7.1)

Appart from the personal budget, all the elements listed in the rest of budgets
(equipment, software,services) correspond to the resources earlier mentioned in 1.4.

1January-May Part time. June-September Full time.

137

CHAPTER 7. PLANNING AND BUDGET

Description Cost (Euros) Project Devoted
Time (%)

Devoted Time
(Months)

Depreciation
Cost

Attributable
Cost

Ubuntu 12.04-
13.04 LTS

0 e 100 9 60 0 e

Java Platform
(JDK) 7u40

0 e 100 8 60 0 e

Android SDK
4.0-4.3

0 e 100 8 60 0 e

Eclipse Helios
3.6.2

0 e 100 3 60 0 e

Android Studio
IDE

0 e 100 5 60 0 e

GIMP Image Ed-
itor 2.8

0 e 100 2 60 0 e

Sublime Text 2 0 e 100 9 60 0 e

Total 0 e

Table 7.4: Software budget

Description Company Cost (Euros)

Google Play Devel-
oper Account

Google Inc. 16.05 e

Cloud Platform as
a Service

Heroku 0 e

Git Version Control
Public Repository

GitHub Inc. 0 e

Total 16.05 e

Table 7.5: Other services budget

At last, a 20% of indirect costs accounting for other costs not taken into account
in previous tables and hardly measurable (such as derivated costs of using the
premises where the project has been developed, Internet connection, possible trips,
etc.) is added.

138

CHAPTER 7. PLANNING AND BUDGET

Description Cost (Euros)

Personnel Costs 17,513.54 e

Equipment
Costs

166.38 e

Software Costs 0 e

Other Costs 16.05 e

Indirect Costs 3,539.19 e

VAT Free Costs 21,235.16 e

TOTAL 25,694.54 e

Table 7.6: Total budget

Adding the value added tax, that in Spain is 21%, the total project budget
amounts to twenty five thousand six hundred ninety four euros with fifty four
cents.

139

8
CONCLUSIONS

T
his chapter will bring to a close the thesis. Conclusions on the technologies
used and some personal opinion about the project result will be summa-
rized.

8.1 General Conclusions

Technology needs time to settle down. Standardization, development, market
penetration and people awareness need to be achieved. NFC is a valuable technol-
ogy, useful to the user, respectful with existing standards and can work together
with already well-known technologies such as Wifi and Bluetooth. It is just a mat-
ter of time for NFC to become widespread and the reference for all short range
contact-less communications. The expectation for coming years is that NFC will
keep growing interest at the actual pace. Then, by the time it reaches all kind of
mobile phones and interesting applications are ready to use it will finally become
popular.

Regarding web services, the cloud is growing at an unimaginable speed, thanks
to a solid and wide accepted architecture like REST and the proliferation of data-
centers and host providers. This infrastructure allows developers to find solution
for almost any issue, being always connected, with the collaboration of many ac-
tors that enhance this environment and profit from it offering their services.

With respect to the back-end development carried out, it has been quite im-
pressive the huge shortcut that web application development frameworks provide
thanks to the MVC abstraction, while making it very easy to be REST compliant.

140

CHAPTER 8. CONCLUSIONS

Finally, the Android ecosystem is still at its peak with millions of downloads in
Google Play every day. Android sustainability strongly depends on developers, so
they usually tend to make things easier for them. A very mature platform has been
found with lots of tools and documentation, both official and from third parties.

8.2 Personal Conclusions

Personally, I have to admit that I am very satisfied with this period that is
about to end. Not only for the result, but for the experience I have acquired dur-
ing these months. As they say, the journey is the destination.

I have learned to program in Android at a good level, built up a back-end
by myself, integrate as many libraries and services as I have proposed to and, in
general, demonstrate to myself how capable I am of overcoming problems that can
arise during a project development being able to find a compromise. In that sense
I consider I have achieved most of the goals one day I established.

However there is always a margin for improvement. For example, I could have
been more organized. But what I am, somehow, disappointed of is to have devel-
oped an application which purpose is a bit complicated to understand and to use
if you do not have any previous knowledge of what NFC is. A bittersweet taste
comes to my mouth when I think of the slow evolution NFC has had since I began
studying it. Moreover, I realized, from the insignificant amount of downloads I
have gotten so far, how important is to have an strategy defined when an applica-
tion is published.

In any case the overall feeling about my final year project, as I said at the
beginning, is very positive.

141

A
Compatible Devices

• Acer

– CloudMobile S500-a9

– E330-C7

– Anydata

– Philips W336-Crane

• Asus

– PadFone Infinity-ASUS-
A80

– PadFone Infinity-A80

– PadFone 2-A68

• Coolpad

– CP9970-9970

– Vodafone Smart 4G-
cp8860u

– STARADDICT III-
cp8861u

• Foxconn International Holdings
Limited

– IN810-VKY

• Fujitsu

– ARROWS A SoftBank
201F-SBM201F

– ARROWS NX F-06E-
F06E

– ARROWS V F-04E-
F04E

– ARROWS X F-02E-
F02E

– ARROWS Kiss F-03E-
F03E

– STYLISTIC M702-
M702

– ARROWS S EM01F-
EM01F

– ARROWS A SoftBank
202F-SBM202F

– ARROWS Tab Wi-Fi
FAR70B-FAR70B

– Disney Mobile on do-
como F-07E-F07E

– ARROWS Tab F-05E-
F05E

• Fujitsu Toshiba Mobile Commu-
nications Limited

– ARROWS ef FJL21-
FJL21

• Google

– Nexus S-crespo4g

– Nexus S-crespo

– Nexus 7-deb

– Nexus 7-grouper

– Nexus 4-mako

– Galaxy Nexus-toro

– Nexus 7-tilapia

– Nexus 10-manta

– Nexus 7-flo

• HTC

– HTC Desire 600c dual
sim-cp3dcg

– HTC One-m7cdwg

– HTC One SV-k2plccl

– HTC Desire 500-z4u

– HTC EVA UTL-evitautl

– HTC One X-endeavoru

– KDDI Infobar A02-imnj

– HTC One-m7cdtu

– Butterfly s-dlxpul

– HTC Amaze 4G-ruby

– HTC 608t-cp3dtg

– HTC One SV-k2u

– HTC J Butterfly-dlxj

– HTC One-m7wls

– HTC first-mystul

– HTC Desire 500 dual
sim-z4dug

– HTC PO091-csndug

– Desire 601-zara

– HTC One SV-k2ul

– HTC EVO 4G LTE-
jewel

– HTC One XL-evita

– Droid DNA-dlx

– AT&T HTC One X+-
evitareul

– HTC J One-m7wlj

– HTC Butterfly-dlxu

– HTC One-m7wlv

– HTC One-m7

– HTC Desire 600-cp3dug

– HTC One SV-k2cl

– HTC One X+-enrc2b

– ADR6410LRA-fireball

– HTC One-m7cdug

– HTC One VX-totemc2

142

APPENDIX A. COMPATIBLE DEVICES

• Hisense

– M470BSE-m470bse

– M470BSA-m470

– M470BSS-m470bss

– M470BSD-m470bsd

• Huawei

– HUAWEI U8666N-
hwu8666n

– HUAWEI U8950N-51-
hwu8950N-51

– HUAWEI U8950N-1-
hwu8950N-1

– TURKCELL
MaxiPRO5-hwu8860

– P2-hwp2-6070

– HUAWEI U8815N-
hwu8815n

– G526-hwG526-L11

– HUAWEI P2-6011-
hwp2-6011

– HUAWEI T8950N-
hwt8950N

• Intel

– Xolo X900-blackbay

– AZ210A-noonhill

– Orange San Diego-
AZ210A

• KT Tech

– KM-S220-s220

– KM-S300-s300

• Kyocera Corporation

– Torque-E6710

– URBANO L01-KYY21

– KYL21-KYL21

– Hydro Elite-C6750

• LGE

– Optimus 4X HD-x3

– Optimus LTE-l1a

– Optimus Vu2-vu2sk

– Optimus L7-u0

– LG Optimus L5 II-
vee5nfc

– Optimus Vu-batman lgu

– LG Optimus L9II-l9ii

– LG MachÃćâĂd̄Âć-l2s

– LG Optimus G-geehrc4g

– Optimus G Pro-geefhd

– LG Optimus F7-fx1

– LG Optimus LTE Tag-
cayman

– Optimus G Pro-
geefhd4g

– LG G2-g2

– Optimus Vu2-vu2kt

– LG optimus LTE2-d1lkt

– LG optimus it-L05E

– Optimus Vu-batman

– LG optimus LTE2-d1lsk

– Optimus 3D Cube-cx2

– Optimus LTE-i skt

– LG Optimus LTE3-
fx1sk

– Optimus Vu2-vu2u

– Intuition-batman vzw

– LG-P875h-l1e

– Optimus LTE-i u

– Optimus Vu-vu10

– Optimus Vu-batman skt

– LG optimus LTE2-d1lu

– LG Optimus G-geeb

– Spectrum 2-d1lv

– Optimus G Pro-geevl04e

– LG Optimus G-geehrc

– Optimus L9-u2

– Optimus GK-gvfhd

– Optimus G-geehdc

• Lenovo Mobile

– Lenovo K800-K800

• Motorola

– DROID RAZR HD-
vanquish

– RAZR D3-hawk40 umts

– XT905-scorpion mini u

– Droid Ultra-obake

– XT897-asanti c

– DROID RAZR i-smi

– Droid MAXX-obake-
maxx

– DROID RAZR HD-
vanquish u

– XT901-solstice

– DROID RAZR M-
scorpion mini

– Droid Mini-obakem

– Moto X-ghost

• NEC

– G’zOne CA-201L-
CA201L

– NE-201-NE-201

– CASIO G’zOne Com-
mando 4G LTE-C811

– MEDIAS X N-06E-N-
06E

• Oppo

– X909-FIND5

• Panasonic Corporation

– JT-B1-B1

• Panasonic Mobile Communica-
tions

– EB-4063-X-EB-4063-X

– ELUGA P-P-03E

– ELUGA X-P-02E

– ELUGA-pana2 4o

• PantechÃğ

– IM-A870K-ef52k

– IM-A830KE-ef45kv

– IM-A770K-ef34k

– PTL21-maruko

– IM-840SP-IM-A840SP

– IM-A830L-ef46l

– IM-A850K-ef49k

– IM-A860L-ef51l

– IM-A860K-ef51k

– IM-A810K-ef40k

– Vega LTE M-ef65l

– P9090-magnus

– IM-A830S-ef47s

– IM-A850S-ef48s

– IM-A860S-ef51s

– ADR930L-ADR930L

– IM-A880S-EF56S

– IM-A800S-ef39s

– IM-A840S-IM-A840S

– AT1-at1

– IM-A810S-ef40s

– IM-A760S-ef33s

– IM-A850L-ef50l

– IM-A870S-ef52s

– IM-A830K-ef45k

– IM-A870L-ef52l

– IM-A775C-ef34c

• Philips Electronics

– PI3900-T7p Duo 93

• SHARP

– AQUOS PAD SHT21-
SHT21

– SH-06E-SH-06E

– AQUOS PHONE SERIE
SHL22-SHL22

143

APPENDIX A. COMPATIBLE DEVICES

– AQUOS PAD SH-08E-
SH-08E

– PANTONE 6 SoftBank
200SH-SBM200SH

– SoftBank AQUOS
PHONE Xx 203SH-
SBM203SH

– Disney Mobile
DM014SH-DM014SH

– AQUOS PHONE EX
SH-04E-SH04E

– AQUOS PHONE si SH-
07E-SH-07E

– AQUOS PHONE Xx
206SH-SBM206SH

– AQUOS PHONE ZETA
SH-02E-SH02E

– AQUOS PHONE SERIE
SHL21-SHL21

– AQUOS PHONE SERIE
ISW16SH-SHI16

• Samsung

– Galaxy Mega-melius3g

– Galaxy S Advance-GT-
I9070P

– Galaxy Note II-t03gctc

– Galaxy S4-
jflteMetroPCS

– Galaxy Fame-nevisp

– Galaxy S III-d2can

– Galaxy Note-SGH-
I717M

– Galaxy Note-SGH-
I717R

– Galaxy S III-d2vmu

– Galaxy S III Mini-
golden

– Galaxy Pop-
superiorlteskt

– Galaxy S III-d2att

– Galaxy Note II -
t0ltevzw

– Galaxy Mega-
meliuslteatt

– Galaxy Grand-
baffinltektt

– Galaxy Mega-
meliusltecan

– GT-I9260-superiorchn

– Galaxy S III-d2vzw

– Galaxy S4 mini-
serranolte

– Galaxy Express -
expressatt

– Galaxy S III-d2cri

– Galaxy S 4-jfltetmo

– Galaxy S4 Zoom-
mprojectqlte

– Galaxy S3-d2xar

– Galaxy S III-c1att

– Galaxy Note II-t0ltecan

– Galaxy S II-SGH-I757M

– Galaxy S 4-jalteskt

– Galaxy S II-SHW-
M250K

– Galaxy Grand-
baffinvektt

– Galaxy Note-SC-05D

– Galaxy S 4-SC-04E

– Galaxy S III-d2spi

– Galaxy S II-SHV-E120S

– Galaxy Note-SHV-
E160L

– Galaxy S 4-ja3g

– Galaxy Note II-t0ltelgt

– Galaxy Exhilarate-
SGH-I577

– Galaxy S4 Zoom-
mproject3g

– Baffin-baffinltelgt

– Galaxy MEGA-
meliuslte

– Galaxy Note II-t03g

– Galaxy S4 LTE A-
ks01ltelgt

– Galaxy Note II-t0lte

– Galaxy-aruba3gcmcc

– Galaxy S4 Active-
jactivelte

– Galaxy S 4-jfltevzw

– Galaxy S III-d2tmo

– Galaxy S4 Active-
jactivelteatt

– Galaxy S II-SHV-E120L

– Galaxy Golden-
ks02lteskt

– Galaxy R-Style-jaguark

– Galaxy S3-d2tfnvzw

– Galaxy Note II-
t03gcmcc

– Galaxy S III-d2ltetmo

– Galaxy S4 LTE A-
ks01lteskt

– Galaxy Victory-
goghvmu

– Galaxy Rugby-
comanchecan

– Galaxy S III -m0ctc

– Galaxy S 4-jfltecri

– Galaxy S III-c1lgt

– Galaxy Note II -t0ltespr

– GT-I9210T-GT-I9210T

– Galaxy R-Style-jaguars

– Galaxy S III-m0skt

– Galaxy S II-SGH-T989

– Galaxy Express-
expresslte

– Galaxy S 4 Google Play
edition-jgedlte

– Galaxy Tab 3 7.0 Wifi-
lt02wifilgt

– Galaxy S II-ISW11SC

– Galaxy S4-jflteaio

– Galaxy Note 3-ha3g

– Galaxy S 4-jflteusc

– Galaxy S III-d2usc

– Galaxy Rugby Pro-
comancheatt

– Galaxy S III-d2tfnspr

– Galaxy Note II-t0ltektt

– GT-I9100P-GT-I9100P

– Galaxy S III-m0ctcduos

– Galaxy Express-
expressziglteatt

– Galaxy S II Plus -s2vep

– Galaxy S II-GT-I9210

– Galaxy S4 mini-
serranoltekx

– Galaxy S 4-jflteatt

– Galaxy Ace II-GT-
I8160P

– Galaxy Golden-
ks02ltektt

– Galaxy Note-SGH-I717

– Galaxy Grand-
baffinlteskt

– Galaxy S III-m0

– Samsung Stratosphere
II-aegis2vzw

– Galaxy S4 TD-LTE-
jftdd

– Galaxy Mega 6.3-
meliuslteusc

– Galaxy S III-m0cmcc

– Galaxy S4 Zoom-
mprojectlteatt

– SHV-E110S-SHV-E110S

– Galaxy S4 LTE A-
ks01ltektt

– Galaxy Premier-
superior

– Galaxy S III-d2mtr

– Galaxy S Blaze-SGH-
T769

– Galaxy Victory-goghspr

– Galaxy S II-SGH-I727R

– Galaxy S 4-jaltektt

– Galaxy S II-SHW-
M250S

– Galaxy Note-SHV-
E160K

– Galaxy Note II -
t0ltetmo

– Galaxy Nexus-toroplus

– Galaxy S III-d2spr

144

APPENDIX A. COMPATIBLE DEVICES

– SPH-L500-stunnerltespr

– Galaxy Note II-t0lteatt

– Galaxy Note II-
t03gcuduos

– Galaxy S4-jfltelra

– Galaxy S III-m0apt

– Galaxy S BlazeQ-
apexqtmo

– Galaxy S 4 Duos-
ja3gchnduos

– Galaxy Note II-t03gchn

– Galaxy Mega 6.3-
meliusltelgt

– Galaxy S4-jfltecsp

– Galaxy Note II-t0lteskt

– Galaxy S 4-jflte

– Galaxy SII Skyrocket-
SGH-I727

– Galaxy ACE 3-
loganrelte

– Galaxy S III-c1ktt

– Galaxy Axiom -
infiniteusc

– Galaxy Mega 6.3-
meliusltektt

– Galaxy S II-SHV-E120K

– SCH-I425-godivaltevzw

– Galaxy Nexus-maguro

– Galaxy Premier -
superiorcmcc

– Galaxy S 4-jfltespr

– Galaxy S 4-jaltelgt

– Galaxy Note-SGH-T879

– Galaxy R-Style-jaguarl

– Galaxy S II-SC-03D

– Galaxy S III-c1skt

– Galaxy Note-SHV-
E160S

– Galaxy S II-SGH-
T989D

– Galaxy Note II -t0lteusc

– Galaxy Mega 6.3-
melius3gduosctc

– Galaxy Young-royssnfc

– Galaxy Note II-
t03gchnduos

– Galaxy Mega-
meliuslteskt

– Galaxy S4 mini-
serranoltektt

– Galaxy S III LTE-m3

– Galaxy Note-SGH-
I717D

– Galaxy S 4-jfltecan

– Galaxy S 4-ja3gduosctc

– Galaxy Grand-
baffinveskt

– Galaxy S III-m0chn

– Galaxy S3 Mini-
goldenlteatt

– Galaxy S4 LTE-A-
ks01lte

– Galaxy Note3-hltespr

– Galaxy Note 3-hlte

– Galaxy S III-
d2lteMetroPCS

• Sony Ericsson

– LT28h-LT28h

– LT22i-LT22i

– Xperia UL-SOL22

– LT26i-LT26i

– Xperia TX-LT29i

– Xperia T-LT30p

– Xperia Z-C6616

– Xperia AX-SO-01E

– LT28i-LT28i

– Xperia V-LT25i

– Xperia Z1-C6903

– Xperia Z-C6606

– Xperia A-SO-04E

– Xperia M-C1905

– Xperia Tablet Z-
SGP311

– Xperia sola-MT27i

– Xperia acro S-LT26w

– Xperia T-LT30a

– Xperia SP-C5303

– Xperia T-LT30at

– Xperia Z -SO-02E

– Xperia ion-LT28at

– Xperia VL-SOL21

– Xperia SL-LT26ii

– Xperia Tablet Z-SO-03E

– Xperia ZL-C6506

– Xperia ZL-C6502

– Xperia Z-C6602

– Xperia Z-C6603

– Xperia SP-M35c

• TCT Mobile Limited (Alcatel)

– Vodafone 975N-
SmartIII4

– Vodafone Smart III
(with NFC)-Vodafone
975N

– Orange infinity 996-one
touch 996 gsm

• Vertu

– VERTU Ti-hermione

• Xiaomi

– MI 2A-taurus

• ZTE

– N9510-warplte

– Turkcell Maxi Plus 5-
nice

– N9810-quantum

– N9100-hayes

– N9500-gordon

– NX501-NX501

– STARXTREM-prindle

• iRIver

– W1011A-w1011a

• Desconocido

– Ibuddy Connect

– crane-a721

– nuclear-Polaroid705

– PMP5580C

– crane-a106

– e100

– crane-a702-Imobile

– jeldd

– smq u

– GT-I9300

– generic

– SGP312

– GT-P3100

– endeavortd

– crane-a760

– nuclear-f727

– Nexus 7

– F-ONE

– HTC One X

– C2105

– C5502

– C5302

– A12

– GT-N7100

– crane-a702

– rk2906

– X909

– DROID RAZR

– crane-m799

– NX40X

– kai

– hwG510-0100

– nuclear-a7028

– TOUCHPAD 9

– TouchPad 7

– nuclear-a702UNIDEN

– crane-hn

– C2104

– nuclear-kf012

– crane-a1001Polaroid

– stvmx

– C5503

– WEXLER

– C5306

– s330

– C1904

– SGP321

– FunTab Pro

– wing-s738

– f6

– C6503

– ADM8000KP A

– C6802

– goghcri

– nuclear-f900

– crane-a702jh-Starmobil

145

B
User Manual

B.1 Installation and Launch

UniteNFC can be downloaded from https://play.google.com/store/apps/

details?id=com.quantum.unitenfc or searching for unitenfc in Google Play search
bar.

Figure B.1: Installation and Launch

146

https://play.google.com/store/apps/details?id=com.quantum.unitenfc
https://play.google.com/store/apps/details?id=com.quantum.unitenfc

APPENDIX B. USER MANUAL

Once installed, every-time the application is launched an splash screen showing
the application name and logo will appear for a few milliseconds.

B.2 Login

When the application starts a login screen will appear. If it is the first time
using UniteNFC and you do not have an account on topoos platform a registration
form is available from the login screen. After successful login UniteNFC will ask
you to connect with Facebook. Pressing on Facebook button will synchronize
your Facebook data with UniteNFC. Eventually, Facebook will ask you to grant
permissions to UniteNFC when necessary. You can dismiss this dialog and choose
to not show again, otherwise it will remind you to connect with Facebook every-
time you launch UniteNFC.

Figure B.2: Login

B.3 Main Screen

UniteNFC’s main screen is divided at the same time in three different screens
one for each key functionality of the application that can be accessed from the

147

APPENDIX B. USER MANUAL

tabs on the top. From left to right: map screen, NFC Points history screen and
social screen. In the map the NFC Points can be viewed and explored. The NFC
Points tab will show a list of registered NFC Points and another one with visited.
Besides, in the bottom there is a button to register new NFC Points. The last one,
the social tab consists of a list of friends showing their name and picture. Detailed
information can be obtained clicking in them. Also, in the bottom the button to
add a new friend is available.

Figure B.3: Main screen

B.4 Map Screen

NFC Points can be discovered on the map, where the ones around you will be
represented and can be selected to obtain information about them. Three actions
are available on the right part of the top bar. Map centering, map type switching
between standard and satellite view and NFC Points filtering by type to show only
relevant items to you.

148

APPENDIX B. USER MANUAL

Figure B.4: Map screen

B.5 NFC Points Screen

Apart from showing visited and registered NFC Point records, new NFC Points
can be registered from this view. For that NFC must be enabled. Pressing the
button a dialog will appear asking you to scan a tag to register. If the NFC Point
is not in the system yet a form will then appear asking you to fill up a name and
description, set the NFC Point type and choose whether you like to show the tag
content or make it private.

B.6 Social Screen

From the friend list in the social tab, individualized information can be ac-
cessed. This view is called User Card, in which you can find the NFC Points
visited by your friends. If a new friend is going to be added, your own User Card
will be shown and then it is time to use Android Beam to interchange your user
data.

149

APPENDIX B. USER MANUAL

Figure B.5: NFC Points screen

B.7 Wall Screen

Every NFC Point will have an associated wall. Selecting the NFC Point from
the map or from any history list the wall will be shown. It contains some relevant
data like name, description, content address and last seen date. Furthermore, there
is an space to rate the NFC Point and see the mean rating and another one to
leave a comment on the wall and see other users’ comments. If the user is viewing
the wall happens to be the one that registered that NFC Point and (Admin) clause
will appear, meaning that you can delete any comment and hide or show the NFC
Point content whenever you want.

150

APPENDIX B. USER MANUAL

Figure B.6: Social screen

B.8 NFC Points Reader

Unite NFC will read the NFC Points you may find and record them as a visit
if they have been registered previously. The content will be shown and will be
click-able if any action is associated to them. A button in the bottom will show
the associated wall if the NFC Point is registered.

B.9 Notifications

UniteNFC will alert you of NFC Points near you in the Android notifications
bar. Clicking the notification you will be directed to the point of the map where
the NFC Point is in UniteNFC.

151

APPENDIX B. USER MANUAL

Figure B.7: Wall screen

B.10 Settings

Some characteristics in UniteNFC can be modified. Pushing menu button in
your device and Settings an screen showing all the editable fields will appear.
They are divided in two: user account and map settings. In the former user name,
profile picture and connection with Facebook can be modified. Regarding the map
settings the radius of NFC Points discover-ability can be set from 10 meter (for
high density areas) to 100 kilometers (for low density areas). You can also choose
to track your position so that the map is moving with you, much like a GPS. Last
option allows you to enable or disable the notifications.

152

APPENDIX B. USER MANUAL

Figure B.8: Reader screen and notifications

Figure B.9: Settings

153

C
Application Code

C.1 UniteNFC Client-side Android Code

https://github.com/idiez/UniteNFC

C.2 UniteNFC Back-End Code

https://github.com/idiez/unfcbe

154

https://github.com/idiez/UniteNFC
https://github.com/idiez/unfcbe

Bibliography

[1] Google Maps Android API v2 [Last access: apr. 2013]:

https://developers.google.com/maps/documentation/android/start#

installing_the_google_maps_android_v2_api

[2] Creating context-aware applications has never been easier [Last access: aug.
2013]:

http://www.topoos.com/home.aspx

[3] The Web framework for perfectionists with deadlines | Django [Last access:
sep. 2013]:

https://www.djangoproject.com/

[4] Heroku | Cloud Application Platform [Last access: sep. 2013]:

https://www.heroku.com/

[5] Facebook SDK for Android [Last access: sep. 2013]:

https://developers.facebook.com/docs/android/

[6] Android Native Application Tracking Overview [Last access: aug. 2013]:

https://developers.google.com/analytics/devguides/collection/

android/

[7] Mifare Smart Cards ICs [Last access: mar. 2013]:

http://www.nxp.com/products/identification_and_security/smart_

card_ics/mifare_smart_card_ics/

[8] Which NFC Tag is Right for my Project [Last access: mar. 2013]:

http://www.nfctags.com/nfc-applications-which-tag

155

https://developers.google.com/maps/documentation/android/start#installing_the_google_maps_android_v2_api
https://developers.google.com/maps/documentation/android/start#installing_the_google_maps_android_v2_api
http://www.topoos.com/home.aspx
https://www.djangoproject.com/
https://www.heroku.com/
https://developers.facebook.com/docs/android/
https://developers.google.com/analytics/devguides/collection/android/
https://developers.google.com/analytics/devguides/collection/android/
http://www.nxp.com/products/identification_and_security/smart_card_ics/mifare_smart_card_ics/
http://www.nxp.com/products/identification_and_security/smart_card_ics/mifare_smart_card_ics/
http://www.nfctags.com/nfc-applications-which-tag

BIBLIOGRAPHY

[9] Everything You Need to Know About Near Field Communication [Last access:
mar. 2013]:

http://www.popsci.com/gadgets/article/2011-02/near-field-

communication-helping-your-smartphone-replace-your-wallet-2010/

[10] Introduction to NFC, Nokia Developers, 8 July 2011. Version 1.1. [Last access:
apr. 2013]:

http://www.developer.nokia.com/dp?uri=http%3A%2F%2Fsw.nokia.

com%2Fid%2Fbdaa4a0f-fcf3-4a4b-b800-c664387d6894%2FIntroduction_

to_NFC

[11] NFC Forum Web-Site[Last access: jun. 2013] :

http://www.nfc-forum.org

[12] NFC Use-cases [Last access: jun. 2013]:

http://www.nfctags.com/nfc-usecases

[13] Peter Preuss, NFC Forum Marketing Committee Chairman, “NFC Forum and
NFC Use Cases” [Last access: mar. 2013]:

http://www.nfc-forum.org/events/oulu_spotlight/Forum_and_Use_

Cases.pdf

[14] MasterCard Press Releases. Google, Citi, MasterCard, First Data and Sprint
Team Up to Make Your Phone Your Wallet, May 26, 2011 [Last access: mar.
2013]:

http://newsroom.mastercard.com/press-releases/google-citi-

mastercard-first-data-and-sprint-team-up-to-make-your-phone-

your-wallet/

[15] NFC phones The definitive list [Last access: sep. 2013]:

http://www.nfcworld.com/nfc-phones-list/

[16] Near Field Communication versus Bluetooth[Last access: mar. 2013] :

http://www.nearfieldcommunication.org/bluetooth.html

[17] Patauner, C, “EuraSIP”: High Speed RFID/NFC at the Frequency of 13.56
MHz.

[18] Charles A. Walton “Portable radio frequency emitting identifier” U.S. Patent
4,384,288 issue date May 17, 1983.

156

http://www.popsci.com/gadgets/article/2011-02/near-field-communication-helping-your-smartphone-replace-your-wallet-2010/
http://www.popsci.com/gadgets/article/2011-02/near-field-communication-helping-your-smartphone-replace-your-wallet-2010/
http://www.developer.nokia.com/dp?uri=http%3A%2F%2Fsw.nokia.com%2Fid%2Fbdaa4a0f-fcf3-4a4b-b800-c664387d6894%2FIntroduction_to_NFC
http://www.developer.nokia.com/dp?uri=http%3A%2F%2Fsw.nokia.com%2Fid%2Fbdaa4a0f-fcf3-4a4b-b800-c664387d6894%2FIntroduction_to_NFC
http://www.developer.nokia.com/dp?uri=http%3A%2F%2Fsw.nokia.com%2Fid%2Fbdaa4a0f-fcf3-4a4b-b800-c664387d6894%2FIntroduction_to_NFC
http://www.nfc-forum.org
http://www.nfctags.com/nfc-usecases
http://www.nfc-forum.org/events/oulu_spotlight/Forum_and_Use_Cases.pdf
http://www.nfc-forum.org/events/oulu_spotlight/Forum_and_Use_Cases.pdf
http://newsroom.mastercard.com/press-releases/google-citi-mastercard-first-data-and-sprint-team-up-to-make-your-phone-your-wallet/
http://newsroom.mastercard.com/press-releases/google-citi-mastercard-first-data-and-sprint-team-up-to-make-your-phone-your-wallet/
http://newsroom.mastercard.com/press-releases/google-citi-mastercard-first-data-and-sprint-team-up-to-make-your-phone-your-wallet/
http://www.nfcworld.com/nfc-phones-list/
http://www.nearfieldcommunication.org/bluetooth.html

BIBLIOGRAPHY

[19] Nokia, Philips And Sony Establish The Near Field Communication (NFC)
Forum [Last access: mar. 2013]:

http://www.nfc-forum.org/news/pr/view?item_key=

d8968a33b4812e2509e5b74247d1366dc8ef91d8

[20] Google unveils first Android NFC phone [Last access: mar. 2013]:

http://www.nfcworld.com/2010/12/07/35385/google-unveils-first-

android-nfc-phone-but-nexus-s-is-limited-to-tag-reading-only-

for-now/

[21] Nick Pelly and Jeff Hamilton. How to NFC [Last access: jun. 2013]:

http://www.google.com/events/io/2011/sessions/how-to-nfc.html

[22] MasterCard Certifies Two BlackBerrys to Run PayPass on SIMs [Last access:
mar. 2013]:

http://nfctimes.com/news/mastercard-certifies-two-blackberrys-

run-paypass-payment-sims

[23] Launching Google Wallet on Sprint and working with Visa, American Express
and Discover [Last access: mar. 2013]:

http://googleblog.blogspot.com.es/2011/09/launching-google-

wallet-on-sprint-and.html

[24] Sony’s SmartTags could change phone habits [Last access: mar. 2013]:

http://news.cnet.com/8301-17938_105-57359901-1/sonys-smarttags-

could-change-phone-habits/

[25] Proximity for Windows Phone 8 [Last access: mar. 2013]:

http://msdn.microsoft.com/en-us/library/windowsphone/develop/

jj207060(v=vs.105).aspx

[26] NFC Forum Launches Special Interest Groups to Support NFC Market Im-
plementations [Last access: mar. 2013]:

http://www.nfc-forum.org/news/pr/view?item_key=

31fbda01baded31092b2835e952ccc6b6ee9c47d

[27] NFC Specification Download [Last access: mar. 2013]:

http://www.nfc-forum.org/specs/spec_license

[28] NFC Data Exchange Format (NDEF) Technical Specification NFC ForumTM

NDEF 1.0.

157

http://www.nfc-forum.org/news/pr/view?item_key=d8968a33b4812e2509e5b74247d1366dc8ef91d8
http://www.nfc-forum.org/news/pr/view?item_key=d8968a33b4812e2509e5b74247d1366dc8ef91d8
http://www.nfcworld.com/2010/12/07/35385/google-unveils-first-android-nfc-phone-but-nexus-s-is-limited-to-tag-reading-only-for-now/
http://www.nfcworld.com/2010/12/07/35385/google-unveils-first-android-nfc-phone-but-nexus-s-is-limited-to-tag-reading-only-for-now/
http://www.nfcworld.com/2010/12/07/35385/google-unveils-first-android-nfc-phone-but-nexus-s-is-limited-to-tag-reading-only-for-now/
http://www.google.com/events/io/2011/sessions/how-to-nfc.html
http://nfctimes.com/news/mastercard-certifies-two-blackberrys-run-paypass-payment-sims
http://nfctimes.com/news/mastercard-certifies-two-blackberrys-run-paypass-payment-sims
http://googleblog.blogspot.com.es/2011/09/launching-google-wallet-on-sprint-and.html
http://googleblog.blogspot.com.es/2011/09/launching-google-wallet-on-sprint-and.html
http://news.cnet.com/8301-17938_105-57359901-1/sonys-smarttags-could-change-phone-habits/
http://news.cnet.com/8301-17938_105-57359901-1/sonys-smarttags-could-change-phone-habits/
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj207060(v=vs.105).aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/jj207060(v=vs.105).aspx
http://www.nfc-forum.org/news/pr/view?item_key=31fbda01baded31092b2835e952ccc6b6ee9c47d
http://www.nfc-forum.org/news/pr/view?item_key=31fbda01baded31092b2835e952ccc6b6ee9c47d
http://www.nfc-forum.org/specs/spec_license

BIBLIOGRAPHY

[29] NFC Specification List [Last access: jun. 2013]:

http://www.nfc-forum.org/specs/spec_list/

[30] Ernst Haselsteiner and Klemens Breitfuss. Security in near Field communica-
tion (NFC), Philips Semiconductors. In Workshop on RFID Security RFIDSec
06, jul 2006.

[31] Gauthier Van Damme and Karel Wouters. Practical Experiences with NFC
Security on mobile Phones, Katholieke Universiteit Leuven Dept. Electrical
Engineering, jun 2009.

[32] Gerhard Hancke. A Practical Relay Attack on ISO 14443 Proximity Cards,
University of Cambridge, Computer Laboratory.

[33] Koichi Tagawa, NFC Forum Chairman (SONY). NFC: The Evolution Con-
tinues [Last access: mar. 2013]:

http://www.nfc-forum.org/resources/presentations/NFC_The_

Evolution_Continues_WIMA_2011.pdf

[34] Token Based Authentication - Implementation Demonstration [Last access:
sep. 2013]:

http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/

token_based_authentication/

[35] Inside Secure, Open NFC [Last access: sep. 2013]:

http://open-nfc.org/wp/

[36] The Oxford English Dictionary (OED), Second Edition.

[37] Software Testing, Wikipedia [Last access: sep. 2013]:

http://en.wikipedia.org/wiki/Software_testing#Testing_levels

[38] REST Console [Last access: sep. 2013]:

http://restconsole.com

[39] Android Asset Studio [Last access: oct. 2013]:

http://android-ui-utils.googlecode.com/hg/asset-studio/dist/

index.html

[40] Gamma, Erich and Helm, Richard and Johnson, Ralph and Vlissides, John.
Design patterns: elements of reusable object-oriented software, 1995 Addison-
Wesley Longman Publishing Co., Inc.

158

http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/resources/presentations/NFC_The_Evolution_Continues_WIMA_2011.pdf
http://www.nfc-forum.org/resources/presentations/NFC_The_Evolution_Continues_WIMA_2011.pdf
http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/token_based_authentication/
http://www.w3.org/2001/sw/Europe/events/foaf-galway/papers/fp/token_based_authentication/
http://open-nfc.org/wp/
http://en.wikipedia.org/wiki/Software_testing#Testing_levels
http://restconsole.com
http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html
http://android-ui-utils.googlecode.com/hg/asset-studio/dist/index.html

BIBLIOGRAPHY

[41] Lauren Darcey, Shane conder. Programación Android 4, 2012 Ediciones Anaya
Multimedia S.A.

[42] Android Developers, Location Strategies [Last access: apr. 2013]:

http://developer.android.com/guide/topics/location/strategies.

html

[43] Android Developers, NFC Basis [Last access: aug. 2013]:

http://developer.android.com/guide/topics/connectivity/nfc/nfc.

html

[44] Android Developers, Signing Your Applications [Last access: sep. 2013]:

http://developer.android.com/tools/publishing/app-signing.html

[45] Android Fragmentation 2013, Open Signal, jul. 2013 [Last access: oct. 2013]:

http://opensignal.com/reports/fragmentation-2013/fragmentation-

2013.pdf

159

http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/location/strategies.html
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://developer.android.com/tools/publishing/app-signing.html
http://opensignal.com/reports/fragmentation-2013/fragmentation-2013.pdf
http://opensignal.com/reports/fragmentation-2013/fragmentation-2013.pdf

	Abstract
	Resumen
	Contents
	List of Figures
	List of Tables
	Notations
	INTRODUCTION AND GOALS
	Introduction
	Goals
	To Explore and Understand NFC
	To Dive Into the Android Ecosystem
	To Study the Main Concepts of Cloud and REST API
	To Develop a Long-Term Project
	To Demonstrate and Improve Problem Solving Skills
	To Add Value to the NFC Environment

	Development Stages
	1st Stage: NFC Technological Study
	2nd Stage: Android Base Application Development
	3rd Stage: Web Service Development
	4th Stage: Final Platform Integration
	5th Stage: Documentation

	Resources
	Hardware
	Software
	Web Services
	Others

	Thesis Structure
	Chapter 1: Introduction and Goals
	Chapter 2: State of the Art
	Chapter 3: System Analysis and Design
	Chapter 4: Implementation
	Chapter 5: Testing and Further Development
	Chapter 6: Problems encountered
	Chapter 7: Planning and Budget
	Chapter 8: Conclusions
	Appendix A: Compatible Devices
	Appendix B: User Manual
	Appendix C: Application Code

	STATE OF THE ART
	NFC Technology
	Description
	Operating Modes
	Reader-Writer
	Peer to Peer
	Card Emulation

	Use Cases
	Commercial Applications
	NFC-Enabled Mobile Phones
	Symbian Phones
	Android Phones
	Blackberry OS Phones
	Windows 8 Phones

	Comparison with other Technologies

	History and Evolution
	Origins
	RFID
	Milestones

	NFC Forum
	What is it?
	Mission and Goals
	Members
	N-Mark

	Technical Specifications
	NFC Architecture
	NFC Forum Protocols
	NFC Analog Technical Specification
	NFC Digital Protocol
	NFC Activity Technical Specification
	LLCP
	SNEP
	Tag Operation Specification
	NCI Technical Specification

	Reader-Writer Protocol Stack
	Peer to Peer Protocol Stack
	Card Emulation Protocol Stack
	Hardware
	NFC in Mobile Phones

	NFC Data Exchange Format (NDEF)
	RTD (NFC Record Type Definition)

	Tags
	NFC Forum Type 1 Tag
	NFC Forum Type 2 Tag
	NFC Forum Type 3 Tag
	NFC Forum Type 4 Tag
	Comparison

	Security
	Attacks
	Eavesdropping
	Data modification
	Man-in-the-middle
	Lost property
	Walk-off

	NFC Software Development
	APIs
	Earliest APIs
	Android
	Windows Phone 8
	Blackberry OS
	Other Open Source APIs

	Near Future Foresight
	Market Acceptance
	Future Research

	SYSTEM ANALYSIS AND DESIGN
	Naming and Logo
	Name
	Logo

	Scenarios
	Fairs and Events
	Tourism
	Augmented Reality Games
	Marketing and Publicity Campaigns

	Use Cases
	Use Cases Definition
	View NFC Points in Map
	Filter NFC Points by Type
	View a History of Visited NFC Points
	View a History of Registered NFC Points
	Register a New NFC Point
	Scan an NFC Point
	Connect with Facebook
	Add New Friend
	View a List of Friends
	View Friend Information
	Edit User Data
	View Walls
	Rate NFC Point
	Comment on NFC Point Wall
	Administrate Wall
	Share Information
	Receive Notifications of Nearby NFC Points
	Obtain Application Usage Feedback

	Diagram

	Architecture
	Android
	Hardware permissions
	Code Structure
	Libraries and SDKs
	Background Processing
	Threads
	Asynctasks
	Comparison

	Cloud Architecture
	Back-end
	Pattern: Model-View-Controller (MVC)
	Principle: REST
	Data Format: JSON
	Development Framework: Django
	Hosting: Heroku

	Other Services
	Topoos
	Google Maps
	Facebook
	Google Analytics

	Application Flow
	Launch Flow
	Settings, Report Bug and Sharing Flow
	MapFragment Flow
	SocialFragment Flow
	NFCPointsFragment Flow
	ServeActivity flow
	WallActivity Flow

	IMPLEMENTATION
	User Interface
	Look and Feel
	Tools
	Styling
	Interface Navigation
	ActionBar
	Menu
	Tabs

	ListViews Creation
	Single Element Layout
	Single Element Class
	ListViewAdapter

	Map
	Camera
	Markers

	Dialogs and Toasts

	Location
	LocationManager and LocationListener Setup

	NFC Block
	NFC Setup
	Manifest
	NFC IntentFilters

	Interacting with NFC Points: Tag Reading
	Catching the Intent
	Foreground Dispatch
	Parse Tag Content

	Adding Friends: Android Beam

	NFC Points
	POI topoos
	Registering New NFC Point
	Checking in NFC Point

	RESTFUL Web Development
	Implementing MVC with Django
	Model
	Controller
	View

	Django Administration
	Deploying to the Cloud with Heroku
	Communication with Android Application

	Users Management
	Authentication
	Login and Registration
	Logout

	User Data
	Restoring User Data
	Saving User Data
	Profile Picture

	Facebook Integration
	Setting-up Facebook Application
	Creating Facebook Application
	Importing Facebook SDK
	Adding Facebook Lifecycle

	Connecting Account
	Adding Friends
	Publishing on Wall with Hashtags

	Adding Language Support
	Strings in Android
	Resources Folders
	Summary: How to Add a New Language

	Notifications
	Launching Service
	Service
	Notification Creation

	Google Analytics
	Setting-up Account
	Adding Analytics to the Android Life-cycle
	Statistics

	Publishing on Google Play
	Versioning

	TESTING AND FURTHER DEVELOPMENT
	Testing
	Debugging the Android Application
	REST API Testing
	System Testing
	Feedback

	Further Development
	Optimizing for Other Screen Dimensions and Densities
	Adding More Language Support
	Better Instructions in the Application
	Optimizing Image Loading and Cache
	Code Cleaning and Maintenance

	PROBLEMS ENCOUNTERED
	Testing Hardware Related Functionalities
	Android Fragmentation
	NFC Android Beam
	Topoos Incomplete API
	Web Development Inexperience

	PLANNING AND BUDGET
	Gantt Chart
	Project Budget

	CONCLUSIONS
	General Conclusions
	Personal Conclusions

	Compatible Devices
	User Manual
	Installation and Launch
	Login
	Main Screen
	Map Screen
	NFC Points Screen
	Social Screen
	Wall Screen
	NFC Points Reader
	Notifications
	Settings

	Application Code
	UniteNFC Client-side Android Code
	UniteNFC Back-End Code

	Bibliography

