
This is an Author's Accepted Manuscript of an article published in:

Cybernetics and Systems: An International Journal, 2011, vol. 42 (8), 636-658. ISSN:
1087-6553.

DOI: http://dx.doi.org/10.1080/01969722.2011.634681

© 2011 Taylor & Francis Group, LLC

This work has been supported by the CAM Project S2009/DPI-1559/ROBOCITY2030
II, and “A New Approach to Social Robotics” (AROS), of MICINN (Ministry of Science
and Innovation), developed by the research team RoboticsLab at the University Carlos
III of Madrid.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29405456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Learning to avoid risky actions

María Malfaz and Miguel A. Salichs

RoboticsLab, Carlos III University of Madrid
28911, Leganés, Madrid, Spain

mmalfaz@ing.uc3m.es ; salichs@ing.uc3m.es

Abstract

When a reinforcement learning agent executes actions that can cause fre-
quently damages to itself, it can learn, by using Q-learning, that these ac-
tions must not be executed again. However, there are other actions that do
not cause damage frecuently, only once in a while: risky actions, such as
parachuting. These actions may imply a big punishment to the agent and,
depending on its personality, it would be better to avoid. Nevertheless, using
the standard Q-learning algorithm the agent is not able to learn to avoid them,
since the result of these actions can be positive in average. In this paper, an
additional mechanism to Q-learning, inspired by the emotion of fear, is in-
troduced in order to deal with those risky actions by considering the worst
results of them. Moreover, there is a daring factor for adjusting the consid-
eration of the risk. This mechanism is implemented on an autonomous agent
living in a virtual environment. The results present the performance of the
agent with different daring degrees.

2

1 Introduction

In this research, it is considered that a risky action is one that, in average, can
produce positive results but, once in a while, generates very bad results for the
agent.

Let us show an example of an action that can become risky. It can happen that
one likes mushrooms: they taste good and satisfy hunger. But if on some occasion
one suffers an intoxication due to these mushrooms, one will not probably eat
them again, although that happened just one time. Therefore, the action of eating
mushrooms becomes risky.

When an action executed by the agent has bad results frequently, the agent, by
using Q-learning [Watkins, 1989], learns not to select it. This is due to the very
low value of the action as a consequence of the negative reinforcement received
when it is executed. A different situation occurs when the action is risky. In this
case, the agent can learn that the long term value of this action is high, although
it receives very negative reinforcements with a small probability. This is because
this learning algorithm does not take into account the worst experiences when the
agent executed this kind of action, just the average value.

In this paper, we present a model-free method in order to f nd out the opti-
mal policy in the described situation. A model-free method implies that the agent
knows neither the state transition probability function nor the reinforcement func-
tion [Kaelbling et al., 1996]. We have developed an additional mechanism to the
standard Q-learning algorithm in order to consider not only the average value of
the actions but also their worst results. In this mechanism, a daring factor β will
adjust the importance that the agent gives to both contributions.

In order to test this mechanism, it is implemented in an autonomous agent liv-
ing in a virtual environment. In this approach, it is considered that the agent is mo-
tivationally autonomous. According to Gadanho [Gadanho, 1999] and Cañamero
[Cañamero, 2003], an autonomous agent has goals and motivations and it has some
ways to evaluate its behaviours in terms of the environment and its own motiva-
tions. Its motivations are desires or preferences that can lead to the generation and
adoption of objectives. The f nal goals of the agent, or its motivations, must be
oriented to maintain its internal equilibrium.

In this research, the agent lives in a virtual world surrounded by objects that
it needs in order to satisfy its necessities (e.g., food for satisfying hunger). The
agent knows the properties of every object, that is, it knows which actions can be
executed with each object (affordances). What the agent does not know is which
action is more appropriate in each situation. It must learn a policy of behaviour in
order to maintain all its needs within acceptable ranges. The policy establishes a
normative about what to do in each situation. This means that the agent must learn
the proper relation between states and actions by evaluating the long term value of
executing an action in a certain state for every action-state pair.

In this paper, the performance of an autonomous agent considering the worst
effects of its actions is studied. Since the value of the daring factor β is an important
parameter for the f nal design of the agent, its performance using several values of
this factor is presented.

The paper is organized as follows. First, section 2 introduces the proposed
mechanism to complete the Q-learning algorithm in order to deal with risky ac-

3

tions. Next, in section 3, a brief review of some related works is given. Section
4 shows the experimental procedure used in this work. First, the environment, the
virtual world where the agent lives, is brief y described. Then, a general view of
how the agent is modeled as well as a description of its learning process are given.
Moreover, the adaptation of the proposed mechanism to the current application is
presented. The results obtained varying the daring factor of the agent are presented
in section 5. Finally, the main conclusions of this paper are summarized in section
6.

2 The proposed method to deal with risky actions

As previously stated, the agent learns how to behave in every possible situation
by using the Q-learning algorithm [Watkins, 1989]. The goal of this algorithm is
to estimate the Q(s, a) values. These values are the expected reward for executing
the action a in the state s and then following the optimal policy from there. Every
Q(s, a) value is updated according to

Q(s, a) = (1− α) ·Q(s, a) + α · (r + γV (s′)) (1)

where

V (s′) = max
a∈A

(

Q(s′, a)
)

(2)

is the value of the new state s′ and is the best reward the agent can expect from this
state. A is the set of actions, r is the reinforcement, γ is the discount factor, and α

is the learning rate.
Once the optimal function Q, is obtained, then it is easy to calculate the optimal

policy, by observing every possible action in a certain state and selecting the one
that:

maximizes (Q(s, a)) (3)

The proposed method is inspired in the emotion of fear. When one is afraid of
executing an action, it is because, one knows that this action can have a noxious
effect. This effect constitutes a negative reinforcement. As already stated, by using
Q-learning, the agent learns the average values of its actions. Therefore, if an
action is frequently noxious, the agent learns to avoid it. But when the action
causes negative effects only occasionally, then another mechanism is needed in
order to learn to deal with those risks. The agent must learn what to do with these
risky actions.

It is important to note that these kind of actions are executed by the agent and
the next state reached by it is a consequence of its action. Therefore, this must not
be confused with rare events, since according to Frank et al [Frank et al., 2008],
those events occur independently from the actions of the agent.

The idea of these risky actions is that, in general, they have a positive effect, but
once in a while they cause a very negative reward. Therefore, in order to consider
these very negative effects on the agent, the worst results experimented by it, and
for every state-action pair, are stored in a variable calledQworst(s, a). This variable
is updated after the execution of the action.

4

Qworst(s, a) = min(Qworst(s, a), r + γ · Vworst(s
′)) (4)

where

Vworst(s
′) = max

a∈A
(Qworst(s

′, a)) (5)

is the worst value of the new state s′ and it is considered as the best the agent can
do with the worst Q values.

Let us def ne a new Q value, Qfear(s, a), that includes the average Q value,
calculated using Q-learning by (1) and (2), as well as the worst Q value, calculated
by (4) and (5):

Qfear(s, a) =







β ·Q(s, a) + (1− β) ·Qworst(s, a) If Qworst(s, a) ≤ Lm

Q(s, a) In other cases
(6)

where Lm is a user specif ed threshold. According to (6), only when the worst
value of the action a executed in the state s is lower than the limit Lm, then the
agent takes into account the worst Q value as well as the optimal Q value.

In this research, in order to deal with risky and non-risky actions, the agent
chooses the action that:

maximizes (Qfear(s, a)) (7)

Parameter β, denominated the daring factor, being 0 ≤ β ≤ 1, measures the
daring degree of the agent. It can be noticed that, when β = 1, the agent uses the
Q values calculated by the standard Q-learning. In fact, if β is near 1, the agent is
very daring, or risk-seeking, since it barely takes into account the worst result of
the action; on the contrary, for a risk-adverse agent that tries to minimize the risk,
β will be near 0.

This daring factor depends, in the case of humans, on the personality. In real
life, there are some activities that could be considered as risky, such as climbing,
parachuting, bungee jumping, and so on. Nevertheless, there are many people who
like those activities very much without considering the possible risks and their
fatal consequences that may lead to death. On the other hand, many other people
consider that the rush of adrenaline caused by those activities do not compensate
the risk.

3 Related work

The algorithm proposed in this paper can be seen as a new approach to risk-
adverse reinforcement learning. One of the most popular proposals was presented
by Heger [Heger, 1994]. He proposed a new algorithm called Q̂-learning to f nd
out the policy that minimizes the worst-case total discounted costs. The Q̂ value is
updated as follows:

Q̂(s, a) = max

(

Q̂(s, a), c + γ ·min
b∈A

Q̂(s, b)

)

(8)

5

where c is the immediate cost. The objective is to learn optimal actions so as to

minimize

(

max

(

c+ γ ·min
b∈A

Q̂(s, b)

))

(9)

As can be easily observed, our Qworst value is calculated by using (4) and (5)
in a very similar way to this Q̂ value. In fact, both algorithms are the same when the
daring factor β is equal to 0. Note that in our case, we try to maximize the minimum
reward, while Heger tries to minimize the maximum cost. Moreover, the algorithm
proposed by Heger only cares about avoiding the risk, while the one proposed in
this paper offers the possibility of selecting how the risk affects the decision making
process. Depending on the value of the daring factor, the agent can be risk-adverse
or not. These kind of algorithms are denominated risk-sensitive.

There are several risk-sensitive approaches, such as the ones introduced by
Howard and Matheson [Howard and Matheson, 1972] and Coraluppi and Marcus
[Coraluppi and Marcus, 1999]. Both proposals make use of exponential utility
functions. The idea is to transform the cumulative returns by exponential utility
functions and seek optimal policies with respect to this utility measure. The risk-
sensitive objective is given by:

minimize
1

δ
logE

[

e
δ·
∑

k

ck
]

(10)

Again, c represents the immediate cost. Besides, there is a risk-aversion coef-
f cient δ. When it is small, the value to be minimized in (10) takes the form:

E

[

∑

k

ck

]

+
δ

2
V ar

[

∑

k

ck

]

(11)

Therefore, for δ > 0 the variability in the cost is penalized, so the agent is
risk-adverse. The expected value-minus-variance-criterion proposed by Heger has
a similar effect to the expected-utility one:

E(R)− kV ar(R) (12)

where k is called the risk-adverse factor and R is the reward, see [Heger, 1994].
In these cases, the agent needs the transition and reinforcement probabilities of

the environment, in contrast with our approach, that is model free.
Mihatsch and Neuneier [Mihatsch and Neuneier, 2002] also proposed a risk-

sensitive reinforcement learning algorithm based on a very different philosophy.
Instead of transforming the cumulative return of the process as in the utility the-
ory, they transform the temporal differences (so-called TD-errors) which play an
important role during the procedure of learning the value. Moreover, they are able
to formulate risk-sensitive versions of Q-learning and TD-learning. The transfor-
mation function is def ned as follows:

χk : x 7→

{

(1− k)x if x > 0
(1 + k)x otherwise

(13)

where k ǫ (−1, 1).

6

The risk-sensitive Q-learning algorithm proposed updates the Q values as fol-
lows:

Q(s, a) = Q(s, a) + α · χk

(

r + γmaxQ(s′, a)−Q(s, a)
a

)

(14)

The only difference from traditional Q-learning is in the transformation χk that
weights positive and negative temporal differences appropriately. Setting k = 0,
we recover the original Q-learning algorithm. If k is set to be positive, then the
negative temporal differences are overweigh with respect to positive ones. Loosely
speaking, they overweigh transitions to successor states where the immediate re-
turn r happened to be smaller than in the average. On the other hand, they under-
weigh transitions to states that promise a higher return than in the average. In other
words, the objective function is risk-avoiding if k > 0 and risk-seeking if k < 0.

Again, the optimal action is the one that, for every state:

maximizes (Q(s, a)) (15)

In this case, the main difference with respect to our algorithm is that after the
learning process is f nished, the learntQ values are dependent on the selected value
of k. Using our approach, the optimal Q values and the Qworst values are calcu-
lated. Therefore, if we want to calculate the Qfear values using a different risk-
sensitive factor or daring factor β, we do not need to launch the learning process
again. Moreover, our proposal allows the possibility of varying the daring factor
during the life of the agent.

On the other hand, there is another different approach by Geibel [Geibel, 2001]
[Geibel and Wysotzki, 2005] that def nes the risk as the probability of entering a
fatal state. They consider the problem of f nding out optimal policies with bounded
risk, that is, the risk is smaller than some user-specif ed threshold ω. Finally, they
propose a learning algorithm in such a way that if the agent is in a state s, then it
selects an action a that

maximizes (λQ(s, a)− σ(s, a)) (16)

where Q(s, a) are the values obtained using the Q-learning algorithm and σ(s, a)
is the probability that the agent ends in a fatal state. Parameter λ can be used to
increase or decrease the inf uence of the Q values compared to the σ values.

The idea is to start the learning process with λ = 0 and to increase its value
until the number of ω-safe states for the current policy decreases. This proposal
is very interesting, although, as said before, the risk is related to a very different
concept: entering a pre-def ned set of fatal states. In our approach, as in many
others, the risk is related to the execution of certain actions that may lead to bad
rewards. Moreover, there is no pre-def ned information about the states.

4 Experimental test-bed

As previously said, the proposed mechanism for dealing with risky actions is
tested on virtual autonomous agents who are living in a virtual environment. This
experimental platform has been already used to test a decision making system for

7

an autonomous agent based on drives, motivations and emotions [Malfaz and Salichs, 2006]
[Malfaz and Salichs, 2010][Salichs and Malfaz, 2011]. The main difference of the
presented work with the previously refereed ones is that in this new implementa-
tion, some risky actions are included, so the proposed mechanism is needed. In
this section, a brief description of both, the virtual environment and the description
of the drives and motivations of the agents, are presented. Moreover, the imple-
mentation of the proposed additional mechanism to the learning process is also
described.

4.1 The virtual environment

In order to create the environment, we use a role playing game based on text,
available on the net and called CoffeMud [Zimmerman, 2007]. In this environ-
ment, formed by corridors and rooms, see f gure 1, the player can f nd different
objects: food, water, medicine, elixir, and world.

Figure 1: Virtual environment

The food, the water, the medicine, and the elixir are distributed in rooms in
such a way that there is a room with food, another with medicine, another with
water, and f nally another with elixir. The amount of objects present in those
rooms is huge and therefore, it is considered that the agent has unlimited resources.
The agent, at the beginning of its life, does not know where to f nd those objects.
Throughout its life time, it f nds the objects and remembers their position. There-
fore, if the agent needs an object, it will know where to f nd it. This virtual world is
grid-based, as can be observed in f gure 1, and the agent moves around by sending
‘north’, ‘south’, east’, and ’west’ commands.

4.2 Drives and motivations of the agent

As stated in section 1, it is considered that an autonomous agent has certain
needs (drives) and motivations. The goal of the agent will be to learn to select the
right action in every state in order to maintain those needs within an acceptable
range.

8

4.2.1 Drives

The considered drives and motivations are the following:

• Hunger

• Thirst

• Weakness

The Hunger and the Thirst drives are obviously related to the lack of resources
and their values increase as the agent spends time without consuming food or water.
The Weakness drive, on the other hand, is related to the need of recovery of the
agent.

The values of the Hunger and the Thirst drives increase a certain amount at
every step simulation. These drives do not grow at the same rate. Physiological
studies determine that in most human beings the necessity of water (thirst) ap-
pears before the necessity of food (hunger). In [Gautier and Boeree, 2005], it is
presented how Maslow discovered that certain needs prevail over others. For ex-
ample, if one is hungry and thirsty, one will tend to relieve thirst before hunger. As
a conclusion, the Thirst is a stronger drive than the Hunger.

On the other hand, these drives, after being satisf ed (their values become zero),
do not start to increase their values immediately but after a certain time, which we
call “satisfaction time”. This happens in the same way as after eating, since one is
not hungry again until some hours later. In the next equation, the satisfaction times
corresponding to these drives are shown:

Tthirst = 50 steps

Thunger = 100 steps
(17)

According to these values, the Thirst drive is the most urgent one, since it
takes less time to increase its value again. As already explained, one is thirsty
more frequently than hungry. Once the satisfaction time passes, the drives grow as
follows:

Dk+1

thirst = Dk
thirst + 0.1

Dk+1

hunger = Dk
hunger + 0.08

(18)

As shown, the growing rate of the Thirst drive is higher than that of the Hunger
drive.

On the other hand, the variation of the Weakness drive depends on the move-
ment of the agent. Therefore, if the agent stands still, this drive does not suffer any
variation, but if the agent moves, the value of the drive increases at every step, as
shown next:

Dk+1

weakness = Dk
weakness + 0.05 (19)

As shown, the growing rate of the Weakness drive is lower than the ones of the
Hunger and Thirst drives. Moreover, this drive does not need satisfaction time.

9

4.2.2 Motivations of the agent

The motivational states represent tendencies to behave in particular ways as a
consequence of internal (drives) and external (incentive stimuli) factors [Ávila García and Cañamero, 2004].
In other words, the motivational state is a tendency to correct the error, that is, the
drive, through the execution of behaviours.

In this approach, in order to model the motivations of the agent, we use Lorentz’s
hydraulic model of motivation as an inspiration [Lorenz and Leyhausen, 1973].
Therefore:

If Di < Ld thenMi = 0
If Di ≥ Ld thenMi = Di + wi

(20)

whereMi are the motivations, Di are the related drives, wi are the related external
stimuli, and Ld is called the activation level.

These external or motivational stimuli, wi, are the different objects that the
agent can f nd in the world during its life, so:

If the stimuli are present, then wi = 1
If the stimuli are not present, then wi = 0

(21)

Table 1 shows the motivations/drives and their related motivational stimuli.

Table 1: Motivations, Drives, and Motivational stimuli

Motivation/Drive Motivational stimuli

Hunger Food & elixir
Thirst Water & elixir
Weakness Medicine & elixir

The activation level Ld, used in (20) for calculating the value of the intensity
of motivations, is set as follows:

Ld = 2 (22)

These values of the external stimuli and the activation level have been selected
based on previous experiments where several values were tested.

4.3 Implementation of the learning algorithmwith the additional mech-
anism for dealing with risky actions

4.3.1 Reinforcement function

In this research, the wellbeing of the agent is def ned as the degree of needs
satisfaction and is calculated as follows:

Wb = Wbideal − (α1Dhunger + α2Dthirst + α3Dweakness) (23)

whereWbideal = 100 is the ideal value of the wellbeing of the agent and, αi are the
ponder factors that measure the importance of each drive on the wellbeing of the

10

agent. In the experiments, all the drives will have the same importance. Therefore,
all the ponder factors are equal to one another:

αi = 1 (24)

The wellbeing is def ned this way since, logically, as the needs of the agent
increase, its wellbeing must decrease. Therefore, when all the drives of the agent
are satisf ed, their values are zero and the wellbeing is at its maximum. It can
happen that the value of the wellbeing of the agent is negative.

Since the goal of the agent is to learn behave in order to satisfy its needs, it can
be also said that the f nal goal is to learn to select the right action in every state in
order to maximize the wellbeing of the agent. Therefore, as a f rst idea, it seemed
logical to think of using the wellbeing of the agent as the reinforcement function,
since it gives information about the effect of an executed action on the agent. In
fact, Gadanho [Gadanho and Custodio, 2002] def nes a wellbeing signal generated
in a similar way and it was used as the reinforcement function in a reinforcement
learning frame. Nevertheless, for our research, it seems to be more appropriate
to use the variation of the wellbeing as the reinforcement function. In fact, this
variation gives a clearer idea about how an action affects the wellbeing of the agent.

This variation of the wellebing (△Wb) is calculated as the current value of the
wellbeing minus its value in the previous step, as shown in the next equation:

∆Wbk+1 = Wbk+1 −Wbk (25)

The biggest positive variation of the wellbeing will be produced when the drive
with the highest intensity is satisf ed.

4.3.2 State of the agent

In this system, the state of the agent is def ned as the combination of its inner
state, Sinner, and its external state, Sexternal, as shown in (26). The inner state of
the agent is related to its internal needs (e.g., the agent is hungry) and the external
state is the state of the agent in relation to all the objects present in the environment
(e.g., the agent has food and water):

S = Sinner × Sexternal (26)

The inner state is determined by the motivation with the highest intensity, that
is, the dominant motivation, as shown in (27). According to (20), if none of the
drives is high enough, then all Mi = 0, and there is not any dominant motivation.
In this case it can be considered that the agent has no needs, it is “OK”.

Sinner =

{

argmaxiMi If maxiMi 6= 0
OK In other cases

(27)

According to the considered motivations, the inner state of the agent is def ned
as follows:

Sinner = {Hungry, Thirsty, Weak, OK} (28)

11

On the other hand, the external state, as we have just said, is the state of the
agent in relation to all the objects:

Sexternal = Sobj1 × Sobj2 ... (29)

In previous works [Malfaz and Salichs, 2006] [Malfaz and Salichs, 2009], it
was explained that, in order to reduce the complexity of the learning process, the
states related to the objects are considered as independent from one another. There-
fore, the agent learns how to behave in relation to every object separately. Then,
for example, the agent learns what to do with food independently from learning
what to do with water. This implies that the Q values are now calculated for each
object in every inner state. From now on, the nomenclature for the Q values will
be Qobji(s, a). The super-index obji specif es the object that the agent is dealing
with, a ∈ Aobji , where Aobji is the set of actions related to the object i, and s is the
total state of the agent in relation to object i and is def ned as follows:

s ǫ Sinner × Sobji ∀i (30)

Therefore, the agent will learn, for example, what to do with food when it is
hungry, with food when it is thirsty, with water when it is hungry, and so on.

The state related to every object, except for the world object, is the combination
of three binary variables:

Sobj = Being_in_posession_of×Being_next_to×Knowing_where_to_find
(31)

The state of the agent in relation to the world object is unique: the agent is
always in the world.

Sworld = Being_at (Always True) (32)

4.3.3 Actions of the agent

The sets of actions that the agent can execute, depending on its state in relation
to the objects, are the following:

Afood = {Eat, Get, Go to} (33)

Awater = {Drink water, Get, Go to} (34)

Amedicine = {Drink medicine, Get, Go to} (35)

Aelixir = {Drink elixir, Get, Go to} (36)

Aworld = {Stand still, Explore} (37)

12

The “explore” and “go to name of the room” actions are sequences of move-
ment commands. The “explore” action tries to reach every room of the environ-
ment and the “go to” action gives the sequence of movement commands to reach
the target room following the shortest path.

Among all these behaviours, there are some of them that cause an increase or
decrease of some drives, as shown in table 2, leading to a variation in the wellbeing
of the agent.

Table 2: Effects of the actions on drives

Action Drive Effect

Eat Hunger Reduce to zero (drive satisfaction)

Drink water Thirst Reduce to zero (drive satisfaction)

Drink medicine Weakness Reduce to zero (drive satisfaction)

Hunger
95% of times: Reduce to zero (drive satisfaction)Drink elixir Thirsty

Weakness 5% of times: Increase 4 units

Explore/ go to Weakness Increase 0.05 per each step

As can be observed, the actions related to the consumption of food, water, and
medicine always satisfy drives and so, they will produce a positive reward. On
the other hand, the consumption of the elixir produces, most times, a big positive
effect on the wellbeing of the agent, satisfying Hunger, Thirst, and Weakness. Nev-
ertheless, the elixir occasionally works as a “poison” that leads to an increment of
Hunger, Thirst, and Weakness. Those increments of 4 units, compared with the
amounts increased at every simulation step, see (18) and (19), are very high. This
implies that the wellbeing of the agent suffers a decrement of 12 units of magnitude
and so, it is a big punishment.

Therefore, according to the def nition given in section 1 and considering the
effects of the actions shown in table 2, we can conclude that there is only a risky
action: to drink elixir. The rest of actions have always the same effect, although
in the case of the ones related to the consumption of objects, we cannot say that
they have the same positive reward, since it will depend on the current value of the
satisf ed drive.

4.3.4 Learning to take into account the risky actions

Considering the assumptions made in relation to the external state, the pro-
posed method for dealing with risky actions is modif ed. First, the worst results

13

experimented by the agent during its life, for every state-action pair, are stored in
the next variable:

Q
obji
worst(sobji , a) = min(Qobji

worst(sobji , a), r + γ · V obji
worst(s

′

obji
)) (38)

where

V
obji
worst(s

′

obji
) = max

a∈Aobji

(Qobji
worst(s

′

obji
, a)) (39)

is the worst value of object i in the new state s′ and it is considered as the best
the agent can do with the worst Q values. This worst value is calculated for every
object separately.

These values are calculated for every object of the environment, not for every
inner state and object. This is because they do not depend on the inner state of the
agent. The idea is the following: if one is hungry and eats a mushroom that causes
him a stomachache, one will try to avoid mushrooms always, not just when hungry.

Now, the proposed method inspired by the emotion of fear def ned by (6) is
also modif ed as follows:

Q
obji
fear(s, a) =







β ·Qobji(s, a) + (1− β) ·Qobji
worst(sobji , a) If Q

obji
worst(sobji , a) ≤ Lm

Qobji(s, a) In other cases
(40)

where Lm is the same threshold introduced in (6). According to (40), only when
the worst effect of the action a related to object i and executed in the state sobji
is lower than the limit Lm, then the agent takes into account the worst Q value as
well as the average Q value. It must be said that, in our experiments, there is not
any action that always causes negative affects. Therefore, we have two kinds of
actions: those that always cause positive effects (non-risky actions) and those that,
in average, cause positive effects but occasionally produce very negative rewards
(risky actions). As a consequence, when the worst effect of an action is lower than
Lm, it will be considered that this action is a risky one.

As stated in section 2, the agent chooses the action that maximizesQobji
fear(s, a).

Using this approach, if the action is considered as risky, the expected result of the
action is considered at the same time as the least favorable one.

5 Experimental results

In this section, the procedure followed in this experiment is shown. The life of
the agent consists of two phases: the learning phase and the steady phase.

• During the learning phase, the agent, by using Q-learning, learns the long
term value of every action in every state Qobji(s, a) by exploring all the
state-action pairs. The agent starts with all the initial Q values equal to zero.
Through its experience in the world, it learns and updates its Q values. It
tries out actions probabilistically based on the Q values using a Boltzmann
distribution [Watkins, 1989]. In this distribution, there is a parameter called

14

temperature that can be tuned. At the beginning of this phase the temperature
is high in order to favor the exploration of every action. Along this phase
this temperature decreases gradually for the exploitation of the most suitable
actions. Moreover, the value of the learning rate α also decreases gradually
from the value 0, 3 till 0. The value of the discount factor γ is set to 0, 8
during the entire phase.
At the same time, in order to implement the mechanism described in section
4.3.4, the agent stores the worst experienced results for each state-action pair
Q

obji
worst(sobji , a).

• During the steady phase, the agent lives using the values learnt in the learn-
ing phase by selecting the actions that maximize the Qobji

fear(s, a) def ned in
(40). It is important to note that the agent will select among all the available
actions related to every object. Therefore, at one time the agent can inter-
act with food and in the next step with water, for instance. It will select the
action with the highest Qobji

fear(s, a) value. In relation to the learning param-
eters, the value of the learning rate α is set to 0 and the discount factor γ is
set to 0, 8.
During this phase, the daring factor β varies in order to observe the perfor-
mance of the agent with different degrees of courage. This daring factor, de-
f ned in section 4.3.4, ponders the worst value of the action, Qobji

worst(sobji , a),
and its average value, Qobji(s, a).

The results presented in this section corresponds to one trial since it is better
to analyze the performance of the agent in more detail, in order to understand the
algorithm proposed.

In this experiment, the limit Lm used in (40) has been f xed, after several ex-
periments, to a value equal to the negative reinforcement that the agent receives
when the elixir works as a poison: Lm = −12

In f gure 2, the evolution of the wellbeing of the agent during both phases is
shown. The learning phase goes from the beginning of its life till 45000 simulation
steps and the steady phase from 45000 till 75000.

As can be observed, during the learning phase the wellbeing of the agent
presents important drops. These decrements are mostly due to the times that the
agent drank the elixir when it was a poison, causing the picks in the Hunger, Weak-
ness, and Thirst drives, see f gure 3. It must be said that, although in this experiment
the agent cannot die, the negative reinforcement received due to the poisoning is
signif cantly high. Therefore, in order to analyse the results, we must consider the
number of poisonings during the steady phase.

In this experiment, the steady phase has been divided into different zones with
different values of the daring factor β. As shown in f gure 4, during the steady
phase the wellbeing varies as the daring factor decreases. This variation has a
forward relationship with the number of times that the agent drank the elixir and
disagreed with it. In fact, it can be observed that as the daring factor decreases, the
drops in the wellbeing due to the poisoning disappear.

In table 3, the values of the daring factor β and the number of times that the
agent drank the elixir are shown, as well as the number of poisonings (number of
drops). The shown values conf rm that as the daring factor decreases, the agent

15

0 1 2 3 4 5 6 7
x 104

0

10

20

30

40

50

60

70

80

90

100
W

el
lb

ei
ng

Simulation steps

Learning phase Steady phase

Figure 2: Wellbeing of the agent

0 1 2 3 4 5 6 7
x 104

0

10

20

30

H
un

ge
r

Simulation steps

0 1 2 3 4 5 6 7
x 104

0

10

20

30

W
ea

kn
es

s

Simulation steps

0 1 2 3 4 5 6 7
x 104

0

10

20

30

Th
irs

t

Simulation steps

Figure 3: Drives of the agent

stops drinking the elixir, since it becomes risk-adverse. This means that it is more
concerned about the possibility of being poisoned and the number of drops in the
wellbeing disappears.

Let us analyze someQobji
fear(s, a) values in order to understand the results better.

First, the worst Qobji
worst(sobji , a) values of the actions related to the elixir are shown

in f gure 5. As was expected, these values are all lower than the limit introduced in
(5). On the other hand, the worst registered values for the actions related to food,
water, and medicine are higher than the limit Lm given by (5). This is because
nothing bad happens when the agent executes actions with those objects.

β ββ βββ

β

β

Qobji(s, a)

17

0 2 4 6 8
x 104

−20

−15

−10

−5

0

Q
worst
elixir (I am not next to elixir and I do not have elixir)

Simulation steps

Go to

0 2 4 6 8
x 104

−25

−20

−15

−10

−5

0

Q
worst
elixir (I am next to elixir and I do not have elixir)

Simulation steps

Get

0 2 4 6 8
x 104

−25

−20

−15

−10

−5

0
Q

worst
elixir (I am not next to elixir and I have elixir)

Simulation steps

Drink elixir
Go to

0 2 4 6 8
x 104

−30

−20

−10

0
Q

worst
elixir (I am next to elixir and I have elixir)

Simulation steps

Drink elixir

Figure 5: The Qobji
worst(sobji , a) values of the actions related to the elixir

0 2 4 6 8
x 104

−2

0

2

4

6

8
Qelixir(I am not next to elixir and I do not have elixir)

Simulation steps

0 2 4 6 8
x 104

−5

0

5

10

15
Qelixir(I am next to elixir and I do not have elixir)

Simulation steps

0 2 4 6 8
x 104

−5

0

5

10

15

20
Qelixir(I am not next to elixir and I have elixir)

Simulation steps

0 2 4 6 8
x 104

0

5

10

15

20
Qelixir(I am next to elixir and I have elixir)

Simulation steps

Go to

Get

Drink elixir
Go to

Drink elixir

Figure 6: Qobji(s, a) values of the actions related to the elixir when the dominant
motivation is the Hunger

Next, the analysis of the Qobji
fear(s, a) values of the actions related to the food

and the elixir when the agent is hungry is going to be presented. Figure 7 shows
the Qobji

fear(s, a) values of the actions related to the food (left part of the graph) and
the elixir (right part of the graph). In every sub-graph, the steady phase is divided
into different zones with the previously selected values of the daring factor β. As
shown, theQobji

fear(s, a) values of the actions related to the food do not change as the
daring factor decreases, since the Qobji

worst(sobji , a) values are higher than the limit

Q
obji
fear(s, a) = Qobji(s, a)

Q
obji
fear(s, a)

Qobji(s, a)

Q
obji
fear(s, a)

ββ
β

β ββ
β

β
β

β β

β

Q
obji
fear(s, a)

Q
obji
fear(s, a)

β = 1

β

β = 0.8
Q

obji
fear(s, a)

0.8

19

elixir.
Nevertheless, table 3 shows that the number of times that the agent drinks the

elixir when β = 0.8 is 21. This is because the Q
obji
fear(s, a) values analyzed are

those obtained when the agent is hungry. In the case that the agent is thirsty, the
Q

obji
fear(s, a) values of water and elixir are very similar and may cause that, in some

occasions, it keeps preferring the elixir.
On the other hand, different behaviours are obtained in this experiment for

other inner states. When the agent has the Weakness as the dominant motivation,
theQobji

fear(s, a) values related to the elixir are now lower than the ones related to the
medicine. As a result of this fact, the agent, when weak, always drinks medicine
instead of elixir, no matter what the value of the daring factor is. Moreover, when
the agent has no dominant motivation, the Qobji(s, a) values related to the rest of
the objects, including the elixir, are lower than the ones related to the medicine.
Therefore, when the agent is “ok”, for all the values of the daring factor the agent
prefers to drink medicine again.

In summary, in this experiment, when the agent does not consider the worst
effect of the risky action, to be when the daring factor is β = 1, it prefers to drink
the elixir when it is hungry or thirsty, since this action has a very high Qobji(s, a)

value and, as a consequence, a high Q
obji
fear(s, a) value. Nevertheless, when the

agent is weak or when there is no dominant motivation, it prefers to drink medicine.
On the other hand, when the agent is risk-adverse, then the policy of behaviour

changes. Depending on the value of the daring factor β, there will be a moment
when the agent will not choose to drink the elixir again, since its Qobji

fear(s, a) value
is very low. It is very interesting that the agent not only decides not to drink the
elixir, but will not select any other action that leads to that situation. This is be-
cause, as shown in f gure 5, the values of “go for the elixir” and “take the elixir”
are also lower than the limit Lm.

6 Conclusions

In this paper, the usefulness of the mechanism inspired by fear in order to learn
to deal with risky actions is shown. The risk is related to negative rewards with a
very low probability. In order to test this algorithm, it has been implemented on
an autonomous agent. The agent lives in an environment where a dangerous object
exists, the elixir, and the action of drinking it is considered risky according to our
def nition.

The algorithm presented can be viewed as a risk-sensitive reinforcement learn-
ing algorithm. Using it, the agent tries to maximize a new Qfear value that com-
bines the optimal Q values given by Q-learning and the Qworst values, when these
last ones are lower than a certain limit. The daring factor β ponders the importance
of the worst results and the optimal Q values. Therefore, this parameter def nes the
risk-aversion of the agent.

As shown, the capacity of selecting the risk-aversion of the agent is the main
difference with the worst-case criterion proposed by Heger [Heger, 1994]. In rela-
tion to other risk-sensitive approaches, such as the ones that use exponential util-
ity functions [Howard and Matheson, 1972] [Coraluppi and Marcus, 1999] and ex-
pected value-minus-variance-criterion [Heger, 1994], we do not need the transition

20

probabilities, since we use a model-free approach. Moreover, we are also able to
vary the daring factor during the life of the agent, since the learnt Q values do
not depend on this factor. This fact makes the difference between our approach
and the risk-sensitive reinforcement learning algorithm proposed by Mihatsch and
Neuneier [Mihatsch and Neuneier, 2002].

Varying the value of the daring factor the results show that, when the agent
is risk-seeking (β ≈ 1), it learns to drink the elixir, despite its possible negative
effects. Therefore, most of the time the agent is able to satisfy several drives at the
same time. As a result, the average value of its wellbeing is very high, although
there are some occasional drops due to poisoning. On the other hand, when the
agent becomes risk-adverse (low values of β), it disregards the elixir and follows
a “safe” policy of behaviour. This causes that the agent is not poisoned any more,
with no drops in its wellbeing, improving its quality of life.

The mechanism proposed in this paper is essential for autonomous agents liv-
ing in a complex environment, since some behaviours could compromise their in-
tegrity. Particularly, all superior animal has this kind of mechanism that helps them
to avoid actions that could lead to death. In many cases, the learning process is as-
sociated to phylogenetics and therefore, it is not linked to the experiences of the
individual animal. In our tests, the agent learns everything by trial and error. Nev-
ertheless, it could be also possible to use the proposed mechanism to design agents
initially programmed with the knowledge of other agents.

Acknowledgements

The authors gratefully acknowledge the funds provided by the Spanish Govern-
ment through the project called “A New Approach to Social Robotics” (AROS), of
MICINN (Ministry of Science and Innovation) and through the RoboCity2030-II-
CM project (S2009/DPI-1559), funded by Programas de Actividades I+D en la
Comunidad de Madrid and cofunded by Structural Funds of the EU.

References

[Cañamero, 2003] Cañamero, L. (2003). Emotions in Humans and Artifacts, chap-
ter Designing emotions for activity selection in autonomous agents. MIT Press.

[Coraluppi and Marcus, 1999] Coraluppi, S. P. and Marcus, S. I. (1999). Risk-
sensitive and minimax control of discrete-time, f nite-state markov decision pro-
cesses. Automatica, 35:301–309.

[Frank et al., 2008] Frank, J., Mannor, S., and Precup, D. (2008). Reinforcement
learning in the presence of rare events. In The 25th International Conference on
Machine Learning, Helsinki, Finland, 2008.

[Gadanho, 1999] Gadanho, S. (1999). Reinforcement Learning in Autonomous
Robots: An Empirical Investigation of the Role of Emotions. PhD thesis, Uni-
versity of Edinburgh.

[Gadanho and Custodio, 2002] Gadanho, S. and Custodio, L. (2002). Asyn-
chronous learning by emotions and cognition. In From Animals to Animats VII,

21

Proceedings of the Seventh International Conference on Simulation of Adaptive
Behavior (SAB’02), Edinburgh, UK.

[Gautier and Boeree, 2005] Gautier, R. and Boeree, G. (2005). Teorías de la per-
sonalidad: una selección de los mejores autores del S. XX. Ed. UNIBE.

[Geibel, 2001] Geibel, P. (2001). Reinforcement learning with bounded risk. In
Brodley, C. E. and Danyluk, A. P., editors, Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML01), pages 162–169. Morgan
Kaufmann Publishers, San Francisco,CA.

[Geibel and Wysotzki, 2005] Geibel, P. and Wysotzki, F. (2005). Risk-sensitive
reinforcement learning applied to control under constraints. Journal of Artif cial
Intelligence Research, 24:81–108.

[Heger, 1994] Heger, M. (1994). Consideration of risk in reinforcement learning.
In Proceedings of the Eleventh International Conference on Machine Learning,
pages 105–111.

[Howard and Matheson, 1972] Howard, R. A. and Matheson, J. E. (1972). Risk-
sensitive markov decision processes. Management Science, 18(7):356–369.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement learning: A survey. Journal of Artif cial Intelligence Research,
4:237–285.

[Lorenz and Leyhausen, 1973] Lorenz, K. and Leyhausen, P. (1973). Motivation
of human and animal behaviour; an ethological view, volume XIX. New York:
Van Nostrand-Reinhold.

[Malfaz and Salichs, 2006] Malfaz, M. and Salichs, M. (2006). Learning
behaviour-selection algorithms for autonomous social agents living in a role-
playing game. In Proccedings of theAISB’06: Adaptation in Artif cial and Bio-
logical Systems. University of Bristol, Bristol, England.

[Malfaz and Salichs, 2009] Malfaz, M. and Salichs, M. (2009). Learning to deal
with objects. In Proccedings of the 8th International Conference on Develop-
ment and Learning (ICDL 2009).

[Malfaz and Salichs, 2010] Malfaz, M. and Salichs, M. (2010). Using muds as an
experimental platform for testing a decision making system for self-motivated
autonomous agents. Artif cial Intelligence and Simulation of Behaviour Journal
(AISBJ), 2(1):21–44.

[Mihatsch and Neuneier, 2002] Mihatsch, O. and Neuneier, R. (2002). Risk-
sensitive reinforcement learning. Machine Learning, 49(2-3):267 – 290.

[Salichs and Malfaz, 2011] Salichs, M. and Malfaz, M. (2011). A new approach
to modeling emotions and their use on a decision making system for artif cial
agents. IEEE Transactions on Affective Computing, In Press.

[Watkins, 1989] Watkins, C. J. (1989). Models of Delayed Reinforcement Learn-
ing. PhD thesis, Cambridge University, Cambridge, UK.

22

[Zimmerman, 2007] Zimmerman, B. (2007). http://www.coffeemud.org.

[Ávila García and Cañamero, 2004] Ávila García, O. and Cañamero, L. (2004).
Using hormonal feedback to modulate action selection in a competitive sce-
nario. In Procceding of the 8th International Conference on Simulation of Adap-
tive Behavior (SAB’04).

