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Abstract

Over many years conjoint analysis has become the favourite tool among marketing practition-

ers and scholars for learning consumer preferences towards new products or services. Its wide

acceptance is substantiated by the high validity of conjoint results in numerous successful im-

plementations among a variety of industries and applications. Additionally, this experimental

method elicits respondents’ preference information in a natural and effective way.

One of the main challenges in conjoint analysis is to efficiently estimate consumer preferences

towards more and more complex products from a relatively small sample of observations because

respondent’s wear-out contaminates the data quality. Therefore the choice of sample products to

be evaluated by the respondent (the design) is as much as relevant as the efficient estimation.

This thesis contributes to both research areas, focusing on the optimal design of experiments

(essay one and two) and the estimation of random consideration sets (essay three).

Each of the essays addresses relevant research gaps and can be of interest to both marketing

managers as well as academicians. The main contributions of this thesis can be summarized as

follows:

• The first essay proposes a general flexible approach to build optimal designs for linear

conjoint models. We do not compute good designs, but the best ones according to the size

(trace or determinant) of the information matrix of the associated estimators. Additionally,

we propose the solution to the problem of repeated stimuli in optimal designs obtained

by numerical methods. In most of comparative examples our approach is faster than the

existing software for Conjoint Analysis, while achieving the same efficiency of designs.

This is an important quality for the applications in an online context. This approach is

also more flexible than traditional design methodology: it handles continuous, discrete and

mixed attribute types. We demonstrate the suitability of this approach for conjoint analysis

with rank data and ratings (a case of an individual respondent and a panel). Under certain

assumptions this approach can also be applied in the context of discrete choice experiments.

• In the essay 2 we propose a novel method to construct robust efficient designs for conjoint
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experiments, where design optimization is more problematic, because the covariance ma-

trix depends on the unknown parameter. In fact this occurs in many nonlinear models

commonly considered in conjoint analysis literature, including the preferred choice-based

conjoint analysis. In such cases the researcher is forced to make strong assumptions about

unknown parameters and to implement an experimental design not knowing its true effi-

ciency. We propose a solution to this puzzle, which is robust even if we do not have a good

prior guess about consumer preferences. We demonstrate that benchmark designs perform

well only if the assumed parameter is close to true values, which is rarely the case, oth-

erwise there is no need to implement the experiment. On the other hand, our worst-case

designs perform well under a variety of scenarios and are more robust to misspecification

of parameters.

• Essay 3 contributes with a method to estimate consideration sets which are endogenous

to respondent preferences. Consideration sets arise when consumers use decision rules

to simplify difficult choices, for example when evaluating a wide assortment of complex

products. This happens because rationally bounded respondents often skip potentially in-

teresting options, for example due to lack of information (brand unawareness), perceptual

limitations (low attention or low salience), or halo effect. Research in consumer behaviour

established that consumers choose in two stages: first they screen off products whose at-

tributes do not satisfy certain criteria, and then select the best alternative according to

their preference order (over the considered options). Traditional CA focuses on the second

step, but more recently methods incorporating both steps were developed. However, they

are always considered to be independent, while the halo effect clearly leads to endogeneity.

If the cognitive process is influenced by the overall affective impression of the product, we

cannot assume that the screening-off is independent from the evaluative step. To test this

behavior we conduct an online experiment of lunch menu entrees using Amazon MTurk

sample.
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Resumen

A lo largo de los años, el “Análisis Conjunto” se ha convertido en una de las herramientas más ex-

tendidas entre los profesionales y académicos de marketing. Se trata de un método experimental

para estudiar la función de utilidad que representa las preferencias de los consumidores sobre

productos o servicios definidos mediante diversos atributos. Su enorme popularidad se basa en

la validez y utilidad de los resultados obtenidos en multitud de estudios aplicados a todo tipo

de industrias. Se utiliza regularmente para problemas tales como diseño de nuevos productos,

análisis de segmentación, predicción de cuotas de mercado, o fijación de precios.

En el análisis conjunto, se mide la utilidad que uno o varios consumidores asocian a diversos

productos, y se estima un modelo paramétrico de la función de utilidad a partir de dichos datos

usando métodos de regresión en sus diversas variantes. Uno de los principales retos del análisis

conjunto es estimar eficientemente los parámetros de la función de utilidad del consumidor hacia

productos cada vez más complejos, y hacerlo a partir de una muestra relativamente pequeña de

observaciones debido a que en experimentos prolongados la fatiga de los encuestados contamina

la calidad de los datos. La eficiencia de los estimadores es esencial para ello, y dicha eficiencia

depende de los productos evaluados. Por tanto, la elección de los productos de la muestra que

serán evaluados por el encuestado (el diseño) es clave para el éxito del estudio. La primera parte

de esta tesis contribuye al diseño óptimo de experimentos (ensayos uno y dos, que se centran

respectivamente en modelos lineales en parámetros, y modelos no lineales). Pero la función de

utilidad puede presentar discontinuidades. A menudo el consumidor simplifica la decisión apli-

cando reglas heurísticas, que de facto introducen una discontinuidad. Estas reglas se denominan

conjuntos de consideración: los productos que cumplen la regla son evaluados con la función de

utilidad usual, el resto son descartados o evaluados con una utilidad diferente (especialmente

baja) que tiende a descartarlos. La literatura ha estudiado la estimación de este tipo de mode-

los suponiendo que la decisión de consideración está dada exógenamente. Pero sin embargo, las

reglas heurísticas pueden ser endógenas. Hay sesgos de percepción que relacionan utilidad y la

forma en se perciben los atributos. El tercer estudio de esta tesis considera modelos con conjuntos
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de consideración endógenos.

Cada uno de los ensayos cubre problemas de investigación relevantes y puede resultar de

interés tanto para managers de marketing como para académicos. Las principales aportaciones

de esta tesis pueden resumirse en lo siguiente:

• El primer ensayo presenta una metodología general y flexible para generar diseños exper-

imentales óptimos exactos para modelos lineales, con aplicación a multitud de variantes

dentro del análisis conjunto. Se presentan algoritmos para calcular los diseños óptimos

mediante métodos de Newton, minimizando el tamaño (traza o determinante) de la matriz

de covarianzas de los estimadores asociados. En la mayoría de los ejemplos comparativos

nuestro enfoque resulta más rápido que los softwares existentes para Análisis Conjunto,

al tiempo que alcanza la misma eficiencia de los diseños. Nuestro enfoque es también

más flexible que la metodología de diseño tradicional: maneja tipos de atributos continuos,

discretos y mixtos. Demostramos la validez de este enfoque para el análisis conjunto con

datos de rango de preferencias y valoraciones (un caso de un encuestado individual y un

panel). Bajo ciertos supuestos, este enfoque puede también ser aplicado en el contexto de

experimentos de elección discreta.

• En el segundo ensayo nos centramos en modelos de preferencia cuyos estimadores tienen

matrices de covarianzas no pivotales (dependientes del parámetro a estimar). Esto sucede

por ejemplo en modelos de preferencia no lineales en parámetros, así como modelos de

elección como el popular Logit Multinomial. En tal caso la minimización de la matriz de

covarianzas no es posible. La literatura ha considerado algunas soluciones como suponer

una hipótesis acerca de este valor a fin de poder minimizar en el diseño la traza o determi-

nante de la matriz de covarianzas. Pero estos diseños de referencia funcionan bien solo si

el parámetro asumido es cercano a los valores reales (esto raramente sucede en la práctica,

o de lo contrario no hay necesidad de implementar el experimento). En este ensayo pro-

ponemos un método para construir diseños robustos basados en algoritmos minimax, y los

comparamos con los que normalmente se aplican en una gran variedad de escenarios. Nue-
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stros diseños funcionan son más robustos a errores de los parámetros, reduciendo el riesgo

de estimadores altamente ineficientes (que en cambio está presente en los otros métodos).

• El ensayo 3 aporta un método para estimar conjuntos de consideración que son endógenos

a las preferencias de los encuestados. Conjuntos de consideración surgen cuando los con-

sumidores usan reglas de decisión para simplificar la dificultad de las elecciones, lo cual

requiere una significativa búsqueda de información y esfuerzos cognitivos (por ejemplo,

evaluar una amplia variedad de productos complejos). Esto ocurre porque racionalmente

limitados consumidores a menudo pasan por alto opciones potencialmente interesantes, por

ejemplo, debido a una falta de información (desconocimiento de la marca), limitaciones de

percepción (baja atención o prominencia), o efecto de halo. La investigación en el compor-

tamiento de los consumidores establece que los consumidores eligen en dos fases: primero

eliminan productos que no satisfacen ciertos criterios y luego seleccionan las mejores alter-

nativas de acuerdo a su orden de preferencia (de acuerdo a las opciones consideradas). El

Análisis Conjunto convencional, se centra en el segundo paso, pero recientemente, se han

desarrollado métodos incorporando ambos pasos. Sin embargo, son siempre considerados

independientes, mientras que el efecto de halo claramente lleva a la endogeneidad del pro-

ceso de consideración. Si el proceso cognitivo está influenciado por una impresión general

afectiva del producto, no podemos asumir que la eliminación sea independiente del proceso

evaluativo. Para probar este comportamiento llevamos a cabo un experimento online sobre

entrantes en menús de comida usando una muestra desde Amazon MTurk.
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Chapter 1

Introduction

1.1 Conjoint Analysis

Individual tastes and preferences are the starting point of customers’ decision making and pur-

chasing choices of products or services. It has become essential for consumer-oriented firms to

understand how potential buyers value different product features and how they perceive the

overall product offerings on the market. Decision makers need to listen in to the voice of the em-

powered consumers, while planning strategic marketing actions such as design of new products,

repositioning, pricing or targeted advertising. However, in practice individuals are not capa-

ble of providing reliable information about their preferences when evaluating or assessing the

importance of separate product characteristics.

A variety of methods embraced under the umbrella name “conjoint analysis” provide mar-

keting practitioners with a reliable tool to elicit consumer preferences towards multi-attribute

products and/or services. The work of Luce (1966) in psychometrics is traditionally viewed as the

origin of conjoint analysis, while this method also has roots in multiattribute utility theory (De-

breu 1960; Lancaster 1971). Its diffusion in marketing began with the seminal paper of Green

and Rao (1971), followed by the work of Johnson (1974) and Louviere and Woodworth (1983) on

discrete-choice experiments.

In a typical conjoint study, a product is perceived as a bundle of attributes and the researcher

1



varies these features creating a number of unique product concepts (combinations of features).

Respondents are then asked to evaluate each stimulus, which forces them to make difficult trade-

offs between attributes, since all features are considered jointly. It is a decompositional approach:

the contribution of each attribute in the overall product utility is inferred from evaluation of

entire product concepts. This is an efficient way to learn about respondents’ true preferences and

the validity of this approach has been proven by many successful commercial applications (for a

review see Wittink et al. 1982; Wittink and Cattin 1989; Wittink et al. 1994).

A variety of topics and problems addressed in real-life conjoint analysis studies is impressive,

answering questions of strategic importance to marketing decision makers. Below I briefly list

some a few examples of interesting CA applications in different areas of marketing mix:

• Product. Design of new products is the most straightforward CA application (Green et al.

1981; Hoeffler 2003; Drezè and Zufryden 1998; Kohli and Krishnamurti 1987; Wind et al.

1989), including product redesign and prediction of consumers’ upgrading decisions (Kim

2000; Kim and Srinivasan 2006). The method can be applied to the problem of optimal com-

position of product lines (McBride and Zufryden 1988; Kohli and Sukumar 1990; Belloni

et al. 2008; Chen and Hausman 2000), product bundles (Farquhar and Rao 1976; Chung

and Rao 2003), as well as category assortment optimization (Bradlow and Rao 2000). Fi-

nally, there are implications for product positioning decisions (Green and Krieger 1993;

Wind et al. 1989; Green and Krieger 1992) and benefit-based segmentation (Kamakura

1988; Green and Krieger 1991; Desarbo et al. 1995; Vriens et al. 1996).

• Price. The applications in the area of pricing are not limited to the study of price-demand

relationship (Mahajan et al. 1982), or evaluation of willingness to pay for a product or ser-

vice (Jain et al. 1999; Roe et al. 2001; Telser and Zweifel 2002). Other interesting topics

include the estimation of reservation prices (Kohli and Mahajan 1991; Jedidi and Zhang

2002), construction of the pricing systems accounting for needs of different segments (Cur-

rim et al. 1981; Desarbo et al. 1995; Green and Krieger 1990), optimal construction of

nonlinear pricing schemes (Iyengar et al. 2008), pricing of product bundles (Chung and
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Rao 2003), game-theoretical models of price competition (Blattberg and Wisniewski 1989),

or estimating price effects related to the budget constraint and the role of price as a signal

of quality (Rao and Sattler 2007).

• Distribution. The research in this area studied the consumer choice of the shopping cen-

ter (Oppewal et al. 1994), the tendency to combine shopping purposes and destinations

(Dellaert et al. 1998), the choice of a vendor and supplier Wuyts et al. (2004), and purchase

location influences respondents’ preferences and willingness to pay (Martínez et al. 2006).

• Advertising. Some of the developments with implications to advertising include the opti-

mal incentive scheme for sales force (Darmon 1979), formulating optimal push strategies

(Levy et al. 1983), and relationship between advertising intensity and preferences (D’Souza

and Rao 1995).

The critical milestone to the diffusion of the method was the development of a dedicated,

easy-to-use software for conjoint analysis in 1980s. Bretton Clark’s Conjoint Designer (Herman

1988) was the first tool for the implementation of the whole conjoint study from the design, data

collection and estimation of preferences, and was also equipped in the simple market simula-

tors. It was considered an “industry standard” for traditional conjoint analysis experiments and

benchmark for validity of new methods Carroll and Green (1995). Another breakthrough was

the Adaptive Conjoint Analysis (ACA) introduced by Johnson (1987) of Sawtooth Software - the

first package for computer-assisted questionnaires (substituting the traditional pen-and-pencil

methods). In ACA’s adaptive questionnaire design the respondent is asked in detail only about

attributes of the greatest importance to him. This way, ACA can study up to 30 attributes, each

with up to 15 attribute levels (Sawtooth Software 2007).

Nowadays, conjoint analysis packages are available in many state-of-the art programs for

data analysis such as SPSS or SAS. The field continues to flourish enriched by methodological

contributions from many areas such as statistics, econometrics, and operations research (Toubia

et al. 2003, 2004; Evgeniou et al. 2005; Yee et al. 2007).
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1.2 Conjoint Analysis Process

The implementation of a typical conjoint analysis involves several steps and a process of subse-

quent, interdependent decisions on the researcher’s part. Green and Srinivasan (1978) describe

several experimental phases, emphasizing the interconnectedness of choices made throughout

the conjoint experiment: the definition of product attributes and of the preference model, the

choice of data collection method, stimuli assignment to respondents (experimental design), pre-

sentation of product concepts, selection of data collection method, choice of measurement scale,

estimation and market simulation. Gustafsson et al. (2007) provide an updated flow diagram of

conjoint analysis. The main focus of this thesis are the methodological issues in conjoint analysis:

the experimental design and the estimation, which are discussed in depth in Chapters 2–4. How-

ever, the reader not acquainted with conjoint analysis may benefit at this point from a general

overview of the process.

Model definition

The first modeling decision involves the definition of product attributes and the preference model.

Traditionally, the researcher identifies relevant product features from the experimental pretests,

focus groups or relies on managers’ expertise (Green and Srinivasan 1978), but more recently

there has been interest in text-mining techniques for extraction of attributes (and preference

estimation) from user-generated content such as online forums or customer reviews (Decker and

Trusov 2010; Lee and Bradlow 2011; Netzer et al. 2012). Part-worth preference model is the most

flexible specification of utility function commonly used in conjoint analysis, which assumes that

the total benefit towards the product is the sum of partial benefits related to product attributes

and/or attribute levels, u(x) =
∑K

j=1β j f j(x j) (Green and Rao 1971; Green and Srinivasan 1978).

Ideal-vector and ideal-point specifications are special cases of the part-worth model, and are also

used in conjoint modeling (comparison of different functional forms can be found in Krishna-

murthi and Wittink 1991).
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Stimuli presentation

Another decision in the process is how to present stimuli to the respondent. Ideally we would like

to show full profiles, meaning products whose all attributes are described (Green and Rao 1971).

However the respondents’ task becomes difficult when evaluating complex products, therefore a

variety of procedures have been proposed to handle a large number of attributes: 1) compari-

son of pairs of products (Thurstone 1927; Bemmaor and Wagner 2000); 2) comparison of pairs of

attributes: trade-off procedure of Johnson (1974); 3) evaluation of products defined over a sub-

set of attributes: partial profile method mentioned by Green (1974), and later improved by Alba

and Cooke (2004); Bradlow et al. (2004); Rubin (2004); or 4) evaluation of single attributes: the

self-explicated approach (Leigh et al. 1984; Srinivasan 1988; van der Lans and Heiser 1992).

Although the latter is essentially a compositional approach, therefore does predict consumer

trade-offs as well as full-profile conjoint, it performs well when the number of attributes is large

(Srinivasan and Park 1997). Additionally, some of the hybrid procedures for preference elici-

tation are constructed as a combination of above approaches (Sawtooth Software 2007; Netzer

and Srinivasan 2011). Various studies provide empirical evidence that ACA outperforms full-

profile approach, specifically when the number of attributes is bigger than 5 and in the absence

of a substantial warm-up task (Huber et al. 1991; van der Lans et al. 1992; Huber et al. 1993).

On the other hand, Hauser and Toubia (2005) show that ACA’s adaptive questionnaire lead to

endogeneity and biased partworth estimates.

Experimental design

The experimental design determines which product profiles will be evaluated by every respon-

dent and is critical to assure the quality of CA results. In conjoint analysis the design is con-

structed by varying features to create hypothetical products. The implementation of the complete

design would require that each subject evaluates all possible product profiles, which is feasible

only for simple products with very few attributes. Therefore, why is the experimental design

relevant? A good design assures the reliable estimates of preferences from a small sample of
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stimuli and knowing the preference structure for different features the researcher can extrapo-

late the results to other product offerings on the market (not evaluated by the respondents). The

number of alternative products to be evaluated by the individual is relevant because there are

measurement errors due to respondent wear-out leading to poor data quality.

There are two big approaches for experimental design in the statistics literature: the Design

of Experiments (DoE) theory and the optimal design approach. In marketing research, includ-

ing conjoint analysis, researchers often use fractional factorial designs from DoE, because they

possess desirable properties such as orthogonality. Fractional factorial are created by system-

atically reducing the complete design so that the attributes are kept independent (orthogonal).

Such designs (and others) are available in ready-to-use experimental tables for specific, sym-

metric or asymmetric problems. The classic experimental design considers “good” designs for

well-structured and well-defined problems. For a detailed review see e.g. Francis G. Giesbrecht

(2004); Montgomery (2005), and the classic textbook of Cochran and Cox (1957).

The more flexible Optimal Design approach aims at finding the best possible design for a

given research problem. An optimal design maximizes the information about the preferences

(precision of estimates) given a certain sample size, or alternatively minimizes the covariance

of parameters. This implies that suboptimal designs require a larger sample size to estimate

the parameters with the same precision as the optimal design, increasing the market research

cost and rating contamination caused by respondent’s fatigue. An optimal design is obtained by

minimizing the size of covariance matrix. The general theory was proposed by Kiefer (1959) and

the most popular design criteria are: D-optimality - minimizing the determinant of covariance

matrix; and A-optimality - minimizing the trace of covariance matrix. However, optimal design

approach cannot be directly applied in CA, as it usually leads to experiments with repeated

product profiles.

The design of experiments is a fundamental problem in marketing research. Green (1974)

and Green and Srinivasan (1978) advocate the use of fractional factorial designs in conjoint

analysis; Louviere (1988a) proposed a design construction method for conjoint analysis based

on stated choices; Sándor and Wedel (2001, 2002, 2005) developed several utility-balanced choice
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designs for the logit and mixed logit model. A review and comparison of orthogonal and optimal

designs can be found in Lazari and Anderson (1994); Kuhfeld et al. (1994).

A large part of this dissertation is devoted to the optimal design of conjoint experiments.

In Section 1.3 I formally introduce the conjoint preference model and discuss the experimental

design problem. Further contributions to this research area are made in Chapter 2, devoted to

the optimal design for linear models, and Chapter 3, which presents the robust worst-case design

for nonlinear models. Additional relevant developments and research gaps are discussed in both

articles.

Profile presentation

As far as the presentation of incentives is concerned, they are frequently verbal or paragraph de-

scriptions, often supplemented with graphical product representations (Green and Srinivasan

1978; Cattin and Wittink 1982; Wittink et al. 1994). Subject to the available experimental

budget, respondents may test and evaluate actual experimentally designed product prototypes

(Green et al. 2001). On the other hand, online administration of questionnaires facilitates the

use of multimedia and less expensive virtual prototypes in form of images or video clips, see for

example Dahan and Srinivasan (2000) and Intille et al. (2002). However, these methods seem to

be specific to a given application. Finally, in a conjoint study about packaged apple snacks Jaeger

et al. (2001) compared two forms of stimuli presentation (physical prototype vs. realistic pictorial

representation) and did not find any significant differences in choice decisions.

Data collection

Conjoint analysis questionnaires can be administered using traditional survey channels such

as personal interviews, mail surveys, and over the Internet. Initially, some CA tasks were also

administered on the telephone (Cattin and Wittink 1982), however this method is suitable only

for very simple studies. Until the 1980s conjoint analysis was almost exclusively done by paper

and pencil in the laboratory or via mail (Wittink and Cattin 1989; Wittink et al. 1994), but the

development of ACA (Johnson 1987) shifted the balance towards computerized questionnaires
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(CAPI - computer assisted personal interviews). The end of the century marked the start of

prevalence of Internet surveys (Witt 1997; Orme and King 1998): for example Foytik (1999) gives

a list of “dos and don’ts” for online CA, and Melles et al. (2000) compares online CA with CAPI

finding that both methods are equivalent in terms of reliability and predictive validity. Melles

et al. (2000) also points out that data obtained from Internet CA needs more screening and

cleaning, because the questionnaire is self-administered and respondent’s cognitive abilities are

low. With longer studies the subjects become quickly disinterested, which may heavily distort the

results and lead to incorrect managerial decisions. There are methodologies specifically designed

to obtain more data from the respondents in an online context: capturing behavior on the website

(Drezè and Zufryden 1998), creating adaptive questionnaires in real time based on subjects’

responses (Dahan et al. 2002; Netzer and Srinivasan 2011), or eliciting preferences from people’s

Internet behavior (De Bruyn et al. 2008). Finally, Ding et al. (2005) show that conjoint results

can be improved if the study is conducted in the realistic setting, and the topic of the study is

aligned with a prize for completing it.

Preference measurement scale

The next important decision for the conjoint process is to choose the preference measurement

scale. Typically, the respondent is asked to evaluate the presented product profiles by: (1) rank-

ing them top-to-bottom according to their preference; (2) rating them using a continuous or a

Likert scale; (3) choosing one alternative from a set of available options.

The rating scale conveys more information than rankings, because apart from the preference

order it also expresses the intensity. Therefore the rating data can be transformed into rankings

but not the other way round. Additionally, the ratings are traditionally considered a metric scale

(assuming approximately ordinal scale properties) therefore can be estimated by standard tools

such as OLS, while the rankings require non-metric algorithms which will be discussed in the

next section. There is mixed evidence which of the two scales performs better in terms of pre-

dictive validity: Carmone et al. (1978) provides the evidence that ratings have higher predictive

validity, the results of Scott and Keiser’s 1984 favor the rankings, while Green and Srinivasan
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(1978) posits that both methods are equivalent.

However, transforming the ranking and rating data into choices is problematic. DeSarbo and

Green (1984) point out that predictions of consumer’s choice based on ranking or rating conjoint

may not be accurate, because: (1) product profiles are never equal to real products, (2) the model

usually estimates only main effects and maybe a few two-way interaction effects, and finally

(3) conjoint analysis assumes equal effects of marketing variables across different suppliers. In

conjoint analysis based on consumer choice (CBC) the respondents task is more similar to the

way people behave in the marketplace, because the alternatives are presented in a competitive

context.

Carroll and Green (1995) discuss several advantages and disadvantages of CBC over tra-

ditional conjoint. On the one hand, the choice tasks are more natural than ranking or rating

and prediction of market shares does not require any deterministic rules. Moreover, the theory

underlying the logit model is well-grounded (McFadden 1974) and choice probabilities can be

directly and efficiently estimated. On the other hand, the estimation of choice models requires

larger amount of data and only recently the usage of Bayesian methods permitted the estima-

tion of individual-level parameters (see e.g. Cattin et al. 1983; Allenby et al. 2005; Toubia et al.

2007). Additionally, choice models provide little information about the non-chosen alternatives

and IIA property of multinomial logit can be a serious limitation in marketing applications (see

Kamakura and Srivastava 1984).

Finally, Elrod et al. (1992) provide an empirical comparison of different conjoint approaches

(traditional and choice-based). Their results suggest that neither of approaches can be favored

solely by their predictive ability, because on average they predict equally well. The choice of the

method should depend rather on the purposes of conjoint study. If market share prediction is the

central interest, choice-based approach may be more appropriate.

Estimation

The statistical analysis will depend on the preference model and the utility measurement scale

for respondents. Initially, ordinal measurement was common (ranking of profiles), and to that
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end non-metric algorithms were developed. Estimation techniques for this kind of data include

MONANOVA, a dedicated technique developed for CA by Kruskal (1965) that finds a monotone

transformation of the data to achieve the highest possible percentage of variance accounted for

by main effects; PREFMAP (Carroll 1972) – a mathematical programming model, which finds the

respondent’s ideal point from their preference rankings; LINMAP – a linear programming model

to determine the attribute weights and the coordinates of consumer’s ideal point (Srinivasan

and Shocker 1973a, b); Johnson’s non-metric trade-off procedure (Johnson 1974). In the classic,

“metric” CA (rating of profiles) the coefficients are often estimated with OLS procedures, which

with dummy variables is basically equivalent to the analysis of variance. On the other hand,

choice-based CA models are usually estimated with Maximum Likelihood methods (we obtain

the Multinomial Logit model assuming that yt is a latent variable and εt has a type I extreme

value distribution). Choice-based CA is nowadays widely applied, but from the econometric point

of view the hypotheses about the distribution of εt are stronger than in the classic CA which

is more robust to specification errors. For a literature review and description of the methods

applications, see Gustafsson et al. (2007).

Market simulators

One of the important implications of CA is the forecasting of market shares for new products.

There are three main deterministic rules to transform estimated utilities into consumer choice

decisions: maximum utility (first-choice) rule, Bradley-Terry-Luce (BTL) model, and the logit

model. In case of CBC it is not necessary to apply those rules because the choice probabilities are

directly estimated from the model. All of above methods are incorporated in popular software

packages for conjoint analysis, such as SPSS, SAS or Sawtooth Software.

The first choice rule assumes that each subject will buy the product of the highest utility

to them (with certainty), and market shares are obtained by averaging the probabilities across

subjects. Unlike the first-choice rule the BLT and logit method do not assign the whole probabil-

ity mass to one product. The choice probabilities are rather a continuous function of predicted

utilities. In case of BLT this is a linear function, and the probability is the ratio of a profile’s
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utility to that for all simulation profiles, averaged across all respondents. The logit rule assumes

a exponential function of predicted utilities and divides the exponentiated predicted utilities by

the sum of exponentiated utilities (for every respondent).

The empirical evidence about predictive validity of those methods is mixed. DeSarbo and

Green (1984) and Louviere (1988b) pointed out that application of maximum utility rule is prob-

lematic because a deterministic rule is applied to predict a probabilistic phenomenon. Further

problems arise due to (1) intertemporal instability of tastes and beliefs of consumers, (2) an arti-

ficial assumption of perfect information about their attributes, and (3) assumption that there are

no income, time or other constraints, which may influence individual’s choice. On the other hand

Green and Krieger (1988) and Finkbeiner (1988) demonstrated that first-choice rule is suitable

for surveys about high-involvement products.

1.3 Benchmark Model in Conjoint Analysis

Let us turn to the formal specification of the preference model and to the methodological issues

in conjoint analysis which arise from the choice of the design and measurement scale. The base

model is the case of an individual respondent, however it is straightforward to extend the ap-

proaches developed in Chapter 2 and Chapter 3 to homogeneous consumer segments. Moreover,

in Chapter 2.5 we discuss the case of consumer segments with heterogeneous intercept, while

the method presented in Chapter 3 is robust to deviations of assumptions about consumer pref-

erences.

Let’s assume a multi-attribute product, x, defined by k continuous and L discrete attributes,

each taking J = [J1, . . . , JL]′ levels. A product profile shown to the respondent is represented by

the
(
k+

∑L
i=1 Ji

)
×1 vector xt of deterministic regressors in a compact set χ of an Euclidean space

defining the attributes (discrete dummy and/or continuous variables). Individual’s overall prefer-

ences for a product are described by a utility function parametric model
{
U

(
x,β0

)
:β0 ∈Θ⊂Rp

}
.

The vector β0 is a p× 1 vector of unknown parameters. Note that we allow p 6=
(
k+

∑L
i=1 Ji

)
,

because consumer preference function may contain an intercept, depend on interactions between
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attributes (or other variable transformations such as squared regressors), and for estimation

purposes we have to omit a level in each categorical variable to eliminate multicollinearity. The

experimental sample, {xt}T
t=1, is composed of T profiles shown to the respondent and T ≥ p. The

responses, yt, represent respondent’s utility of each product profile, evaluated at the attitudinal

scale (typically based on ratings, rankings or choice). Measures are affected by an error shock εt

yt =U
(
xt,β

0)
+εt, t = 1, ....,T,

where εt are regarded as mutually independent random shocks, satisfying E[εt] = 0 and E[ε2
t ] =

σ2. Stacking the data in matrices the model is y = U
(
X ,β0

)
+ ε, where y, ε are T ×1 vectors,

X = ( f (x1), ..., f (xT ))′ ∈ χT is a full rank design matrix, whose row t contains f (xt)′. f (·) is a known

continuous mapping from χ to Rp whose coordinates are linearly independent and may include

an intercept, discrete interactions (products of dummies), or product of continuous regressors (to

define multivariate polynomials similarly to surface response models). The function f could also

have a known local maximum (self-explicated ideal point). The goal of CA is the estimation of

the parameters β0 from experimental data and as result to predict preferences towards different

products versions.

This dissertation will focus generally on the methodological and statistical aspects of conjoint

analysis: the design, the choice of measurement scale and the estimation. These linked decisions

are essential for assuring the quality of conjoint results and we emphasize the rigorous approach

towards the estimation issues. Therefore, what are the dependencies between these steps of the

experiment and why is it relevant to consider them?

Different preference measurement scales and distributional assumptions can be considered,

and based on this decision a variety of econometric methods can be used to estimate β0, including

ordinary or non linear least squares, several types of maximum likelihood estimators, least ab-

solute deviations, etc. For example in the classic (metric) CA the coefficients are often estimated

with OLS procedures, but choice-based models are usually estimated with Maximum Likelihood

methods (we obtain the Multinomial Logit model assuming that yt is a latent variable and εt
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has a type I extreme value distribution). Other estimators may include generalized or non-linear

least squares, other types of maximum likelihood estimators, least absolute deviations, etc.

Under regularity conditions, the appropriate estimators are consistent and when T grows

the re-scaled sequence V−1/2
T

(
β̂−β0

)
converges in distribution to a standard normal distribution

N (0, I) where VT is a positive definite matrix converging in probability to a limit asymptotic

covariance matrix V . The distribution of the error
(
β̂−β0

)
is generally unknown, and the main

tool to justify inferences for a medium-to-large size T is the asymptotic distribution of the scaled

error. Both covariance matrices, VT and the limit V , depend on the design matrix X (or sequence,

if we focus on V ) with the product profiles {x1, ..., xT } shown in the experiment.

The efficiency of experimental estimators conveyed in the covariance matrices VT , depends

heavily on the product profiles evaluated by the respondents. Optimal experimental design max-

imizes the information elicited from the respondent, or equivalently minimizes the size of the

covariance matrix. Exact optimal designs try to minimize φ (VT ) in the design matrix X , whilst

approximated optimal designs try to minimize φ (V ) in the limit frequencies w (which can be

used to generate a T× p matrix X ). The second approach was developed by Kiefer (1959) and his

school.

Here φ (·) denotes such a measure of the matrix “size” which is: (1) positively homogeneous:

φ (δA) = δφ (A) for δ > 0 to ensure independence from scale factors; (2) non-increasing: φ (A) ≤

φ (B) when (A−B) is non negative definite; and (3) convex to ensure that φ satisfies the condition

that information cannot be increased through interpolation. The typical measures are the trace

(A-optimality criterion), and the determinant (D-optimality criterion), therefore we will focus on

these two methods. Other matrix size criteria have been considered, but they usually render

equivalent solutions. This result was established by the Kiefer-Wolfowitz equivalence theorem

for linear models and later extended to nonlinear models by White (1973).

Good designs use a matrix X that generates a small covariance matrix, V , meaning that the

appropriate estimations will be reasonably accurate even if T is not very large, which reduces

the burden on respondents. What are the consequences of using designs, which generate esti-

mators with larger covariance matrices? Implementing suboptimal designs requires a larger T
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to estimate the parameters with the same precision as an optimal design, which increases the

market research cost and rating contamination caused by respondent’s fatigue. Consequently,

the design of conjoint experiments is a fundamental problem in marketing research.

1.4 Thesis Structure

Each of the chapters of this dissertation addresses relevant research questions for Conjoint Anal-

ysis practitioners and modelers. Chapters 2 and 3 are methodological in nature and are focused

on the optimal design of CA experiments. Chapter 4 is devoted to the estimation of endogenous

consideration sets and the endogeneity issue is tested with the data collected online using the

Amazon’s Mechanical Turk sample. Below I outline the scope of this dissertation by presenting

the contents of every essay in more detail.

Chapter 2: Optimal experimental design with linear conjoint models.

In the first essay we develop a general approach for building exact optimal designs suitable for

conjoint analysis using state-of-the-art optimization tools. We do not compute good designs, but

the best ones according to the size of the information matrix of the associated estimators - trace and

determinant. Such designs can be implemented by practitioners in various types of linear conjoint

models: using product ranking data, rating-based, and under certain assumptions in discrete-

choice experiments. Unlike previous methodologies, this approach flexibly handles continuous,

discrete and mixed types of attributes. The essay also proposes a solution to the problem of repeated

stimuli in optimal designs.

Classic CA considers that yt is a utility ranking or a rating (measured either on a 0 to 100

attitude scale, a purchase probability scale, a strongly disagree to strongly agree scale, or some

similar scale). The coefficients β0 are estimated from an experimental setting, and the OLS

estimator β̂= (X ′X )−1X ′y is unbiased, with non-singular variance

V ar
(
β̂
)
=σ2 (

X ′X
)−1 ,
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where X is the design matrix, whose rows define the product profiles shown to the respondent.

The experiments considered in CA are based on the classic statistical literature about optimal

experimental designs. There are two big approaches: approximate optimal designs proposed

by Kiefer (1959), and exact optimal designs. The former focuses on minimizing the size of the

asymptotic covariance matrix, however it is not appropriate for CA, because it assumes that

the optimal design consists of several stimuli replicated with optimal weights, while the same

respondent should not be questioned several times about the same product.

Traditionally, the design of conjoint experiments is based on exact optimal designs. These

designs minimize the size of the actual covariance matrix with the finite sample by solving the

problem minX∈χφ
((

X ′X
)−1

)
, where φ(·) is a measure of matrix size: trace in case of A-optimality,

and the determinant for D-optimality. However, also in the context of exact designs Box (1970)

noticed that optimal designs may consist of a small number of duplicated profiles, which is not

appropriate for CA.

Several procedures for computing exact designs have been proposed in the literature. These

are mainly exchange algorithms, which sequentially add and delete one (Mitchell and Miller Jr

1970; Wynn 1972) or more (Mitchell 1974) profiles (rows in the matrix X ) to improve the determi-

nant of the information matrix. More advanced algorithms (Fedorov 1972; Cook and Nachtsheim

1980) at each iteration add an observation associated with the maximal improvement in the

determinant. More recently, Meyer and Nachtsheim (1995) proposed the coordinate exchange

algorithm, which instead of an entire product profile iteratively swaps attribute levels to ensure

efficiency gains. A detailed comparison and evaluation of their computational performance can be

found in Cook and Nachtsheim (1980). In general, none of these methods exploits satisfactorily

the available numerical optimization tools.

The suitability of our approach for conjoint analysis is evaluated in a variety of of simulated

scenarios. We compute optimal designs for experiments with continuous, discrete and mixed

attributes, including the interactions between variables, the case of a single respondent and a

panel of respondents exhibiting heterogenous intercepts. We additionally compare this method

with the available conjoint software in the typical conjoint setting (a single respondent and dis-
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crete attributes only). In 3 out of 4 comparative examples our approach is faster, while achieving

the same design efficiency as the available software for conjoint analysis. Moreover, this method

is more flexible than traditional design procedures, which is implicit in the wide range of dis-

cussed applications and extensions.

Chapter 3: Robust designs for nonlinear conjoint analysis

In the second essay we generalize the problem presented in Essay 1 to optimal experimental design

with nonlinear specifications, where the covariance matrix depends on unknown parameters. To

this end, we use efficient computational methods profiting from the robustness property of worst-

case optimization. The focus is on discrete choice experiments and compared with the benchmarks,

the worst-case choice designs are more robust against misspecifications of unknown parameters

and in majority of simulated scenarios are also more efficient. Therefore, such designs can be

implemented when the risk-averse modeler does not have a good initial guess about consumer

preferences.

Conjoint analysis literature has considered a variety of models which are nonlinear in param-

eters, for example choice-based CA, but also non-compensatory models, models with unknown

ideal point, and others. In such cases the selection of optimal design is challenging because the

covariance matrix VT =V
(
X ,β0

)
depends both on the deterministic regressors and the unknown

parameters β0 in a nonlinear way. To guarantee an efficient estimation of β0 we need to compute

an efficient experimental design X∗ solving

min
X∈χ

φ
(
V

(
X ,β0))

,

where the objective function is the size of covariance matrix for the usual estimators: maximum

likelihood, nonlinear least squares, the generalized method of moments, and other related tech-

niques.

In order to find an efficient design we need to know the value of β0, which is unknown at the

time the design is constructed - we want to estimate it from the experimental data! Therefore the
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design cannot be optimized without some assumptions about parameters and the data generating

process. Since the size of covariance matrix is intrinsically linked to the unknown parameters,

design efficiency is known only if the assumptions made on parameters are correct.

The experimental design and CA literature approached this puzzle in two distinct ways: 1)

assuming a specific value (vector) for the unknown parameter β0, predominantly under the “all-

zero” parameters hypothesis, and 2) assuming a probability measure on the parametric space

Θ⊂ RK and weighting all possible values in β ∈Θ. We refer to the former as the local approach,

and the latter as the Average-Optimum (AO) approach.

Perhaps the most common solution to the presented puzzle is the local approach suggested by

Chernoff (1953), which is based on adopting a guess for the unknown parameters. This decision

may be arbitrary, based on an inefficient pilot study, or using human prior beliefs about the

preferences. With β0 =β, the local approach looks for a design X+ defined as the solution to

min
X∈χ

φ
(
V

(
X ,β

))
,

where β ∈Θ is the assumed parameter vector. As the solution X+ is specific to β0 = β, the resul-

tant designs are locally optimal and are not optimal for values different from β. Unfortunately,

the efficiency of the locally optimal design, X+, may be sensitive to even small perturbations in β,

and this initial guess is rarely close to the true β0 (for if we had a good estimation, there would be

no reason to run the experiment). In general we do not have any prior control over the efficiency

of the design X+ under the true β0.

In CA context the local approach under null-hypothesis of β = 0 has been used by Kuhfeld

et al. (1994) for finding D-optimal choice designs for large conjoint applications through comput-

erized search, and for discrete-choice experiments Kanninen (2002) suggested a procedure that

leads to maximizing |X ′X | with continuous regressors. Huber and Zwerina (1996) have studied

the effects of incorporating manager’s prior beliefs into the optimal design, showing that under

β 6= 0 utility balance of choice sets remains an important property of efficient choice designs.

The Average-Optimum approach attempts to reduce the influence of β, and considers an
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average of many values instead of the local design. This method involves a probability measure

µ defined over the parametric space Θ, optimizing the weighted average of design efficiencies

min
X∈χ

∫

Θ

φ
(
V

(
X ,β

))
µ

(
dβ

)
.

The solution X++ is not optimal under each scenario but hedged against the risk associated with

all scenarios. The solution is quite sensitive to the choice of the weighting probability distribution

µ (and its parameters). Unless µ is strongly concentrated near the true unknown β0, little can

we say about the true efficiency of the design, φ
(
V

(
X++,β0

))
.

This approach has been used in CA to build exact optimal designs for choice models by Sán-

dor and Wedel (2001) in the context of a single respondent, setting µ as a normal distribution

representing managers’ prior beliefs about product market shares. The Averaged Approach has

also been applied in the Mixed Logit model (Arora and Huber 2001; Sándor and Wedel 2002).

Sándor and Wedel (2005) extended the idea to panels of heterogeneous customers generating a

different design for each customer.

Overall, the assumptions about unknown parameters β0 are specific to a given application.

Little is known about empirical validity or optimality claims of implemented designs when these

assumptions are violated (Louviere et al. 2011). In Chapter 3 we propose a worst-case method to

build efficient designs in CA experiments, where the covariance matrix depends on the unknown

parameter. We solve this problem using efficient methods for robust optimization, and provide

numerical examples for discrete-choice experiments, and other common nonlinear utility func-

tions. This method is robust to misspecification of parameters, yields fewer designs with outlying

(large) covariance, and is also more efficient in most of the scenarios considered.

Chapter 4: Estimation of endogenous consideration sets

The third essay is dedicated to the estimation of endogenous consideration sets. Consideration sets

arise because rationally bounded consumers often skip potentially interesting options, for example

due to perceptual limitations, lack of information, or halo effect. Therefore individuals choose in

two stages: first they screen off products whose attributes do not satisfy certain criteria, and then
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select the best alternative according to their preferences. Traditional CA methods focus on the

second step, and more recent consideration set models assume that those steps are independent.

However with halo effect present, we cannot assume that screening off stage is independent from

evaluative step. We test this endogeneity with the data from an online experiment using Amazon

MTurks.

Actual consumers’ choices are not always consistent with their preferences because rationally

bounded individuals often skip potentially attractive products, for example due to the lack of

information, or perceptual limitations or halo effect. Research in consumer behavior established

that consumers choose in two stages: 1) they use heuristic rules to screen off products whose

attributes do not satisfy certain criteria, often focusing on some key attributes (Bettman 1974;

Montgomery and Svenson 1976; Payne 1976; Payne and Ragsdale 1978; Payne et al. 1993); 2)

they select the best alternative from the considered options according to their preferences. If

consideration rules are not taken into account the purchase decision might seem contradictory

with preferences.

Whether or not consumers select a product depends on a screening-off consideration rule,

and overall preferences are conditioned by this decision. The process can be described with a

switching-preference model

yt =






f (xt)′β+ε1t xt ∈ A
(
γ,ut

)

α+ε2t xt ∉ A
(
γ,ut

)

where for each multiattribute product xt, we observe individual preference ratings, yt, and

(ε1t,ε2t) are i.i.d. jointly distributed with E(εi) = 0 and E(εiε
′
i
) = σ2

i
. The consideration set

A
(
γ,ut

)
depends on unknown parameter vector γ, and some random vector ut. In marketing,

the most common specifications of A
(
γ,ut

)
are: disjunctive, conjunctive, compensatory, and lex-

icographic heuristic (see e.g. Gilbride and Allenby 2004, 2006; Jedidi and Kohli 2005). Note

that if Pr(ut = 0) = 1, the set is deterministic. However, the stochastic approach is more fruit-

ful because situational factors, excitement, and attention can affect the consideration of a given
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product. Bettman and Zins (1977) finds out evidence that consumers build their consideration

rules on-the-spot using memory fragments and situational elements.

Recently the marketing literature started to look at the heuristic consideration rules, building

two-step models (Gensch 1987; Gilbride and Allenby 2004, 2006; Jedidi and Kohli 2005; Kohli

and Jedidi 2007), where first the consideration set is specified, and then the utility function is

analyzed conditionally over the considered options, assuming independence of those two steps.

However, the halo effect is a clear reason for consideration sets to be endogenous with respect to

the overall preferences (Beckwith and Lehmann 1975): if the cognitive process is influenced by

the overall affective impression of the product, we cannot assume that the screening-off stage is

independent from the evaluative step.

If we define a dummy consideration variable Ct = I
(
xt ∈ A

(
γ,ut

))
, where I (·) denotes the

indicator function (equal to 1 when xt ∈ A
(
γ,ut

)
and zero otherwise), then the above model can

be written as a regression equation

yt = Ct f (xt)
′β+ (1−Ct) α+ηt

ηt = Ct ε1t + (1−Ct) ε2t.

If ut is independent of (ε1t,ε2t) then

E
[
ηt|xt

]
= E [Ct|xt]×E [ε1t]+E [(1−Ct) |xt]×E [ε2t]= 0,

with E [Ct|xt] = Pr(Ct = 1|xt) and E [(1−Ct) |xt] = (1−Pr(Ct = 1|xt)) and the model can be esti-

mated using classical econometric tools for exogenous switching regression. The problem is much

more difficult to handle if the consideration set A
(
γ,u

)
is endogenously selected, and we cannot

assume that ut is statistically independent of (ε1t,ε2t). Now, the shock of the regression model

satisfies

E
[
ηt|xt

]
=Pr(Ct = 1|xt) ·E [ε1t|xt,Ct = 1]+ (1−Pr(Ct = 1|xt)) ·E [ε2t|xt,Ct = 0],
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which is in general different from zero. Ignoring this type of endogeneity will lead to inconsistent

estimations, and a biased perspective on consumer preference formulations. Further difficulties

arise when self-explicated information about consideration set is not observed (Ct is not avail-

able).

In the essay we illustrate the endogeneity of consideration sets with the conjoint experiment

to evaluate customer preferences towards lunch entrées, which was conducted online on a sample

of Amazon’s Mechanical Turks. The empirical application involves a compensatory consideration

set, the case when Ct is observed and the normal distribution of the shocks. A two-step procedure

proposed by Heckman (1979) accounts for endogeneity in the consideration set and provides

consistent, and asymptotically efficient estimates for all parameters.
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Chapter 2

Reconsidering Optimal Experimental

Design for Conjoint Analysis

2.1 Introduction

Since the seminar paper of Green and Rao (1971), Conjoint Analysis (CA) has become a widespread

marketing research tool for marketing scholars and practitioners (see e.g. Cattin and Wittink

1982; Wittink and Cattin 1989). CA encompasses a variety of techniques designed to analyze

consumer preferences over multi-attributed products, estimating preference trade-offs between

attributes from experimental data. Respondents are presented with a series of stimuli (prod-

uct/service descriptions, illustrations, samples, prototypes etc.), and are asked to rank or rate

them (metric or “classic” CA), or to choose one from each subset of profiles shown to them (choice-

based CA). The underlying preference model, regardless of the response measurement scale, is

yt = f (xt)
′β+εt, t = 1, ...,T,

with a compensatory, linear-in-parameters utility function U(xt) = f (xt)′β, where yt represents

the consumer utility. Product profile xt is a k×1 vector of deterministic regressors in a compact set

χ in an Euclidean space representing attributes (discrete dummy and/or continuous variables),
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and sometimes other contextual block variables. f is a known continuous mapping from χ to Rp

whose coordinates are linearly independent and may include an intercept, discrete interactions

(products of dummies), or product of continuous regressors (to define multivariate polynomials

similarly to surface response models). The function f could also have a known local maximum

(self-explicated ideal point). We also allow p < k, if f (xt) is a projection of xt on a linear space

of a smaller dimension. The vector β is a p×1 vector of unknown parameters. The errors εt

are regarded as mutually independent random shocks, satisfying E [εt] = 0, E
[
ε2

t

]
= σ2. The

experiment considers T ≥ p independent observations. In a matrix notation the model can be

written as y = Xβ+ ε, where y and ε are T ×1 vectors, X = [ f (x1)′, . . . , f (xT )′]′ is a T × p design

matrix, with row t containing f (xt)′, and x = [x′1, . . . , x′
T

]′.

The statistical analysis will depend on the preference measure scale for respondents. For

example in the classic CA the coefficients are often estimated with OLS procedures, but choice-

based CA models are usually estimated with Maximum Likelihood methods (we obtain the Multi-

nomial Logit model assuming that yt is a latent variable and εt has a type I extreme value distri-

bution). Choice-based CA is nowadays widely applied, but from the econometric point of view the

hypotheses about the distribution of εt are stronger than in the classic CA which is more robust

to specification errors. For a literature review and description of the methods and common CA

applications, see Gustafsson et al. (2007). For a discussion of some problem areas in current CA

methods, see Bradlow (2005) and Netzer et al. (2008).

In all cases, under regularity conditions the probability distribution of
p

T
(
β̂−β

)
can be ap-

proximated by a N (0,V ) , where the variance V depends on the design matrix X . Good designs

use a matrix X that generates a small covariance matrix V , meaning that the estimations will be

reasonably accurate even if T is not very large, which reduces the burden on respondents and the

study costs. The design of conjoint experiments is a fundamental problem in marketing research.

The available methods are designed to provide (nearly) optimal efficiency (see e.g. Kuhfeld et al.

1994). In this essay we review existing algorithms for computing optimal experimental designs,

and discuss their limitations and drawbacks. As we discuss later, these methods tend to choose

designs with repeated product profiles, which is inconvenient in the CA context as we cannot
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show the same profile several times to a respondent. Also, available algorithms do not manage

efficiently the models with continuous and discrete regressors. We propose a general approach to

compute exact optimal designs for CA experiments with both continuous and discrete variables,

furthermore we eliminate the problem of profile repetitions.

The structure of the essay is as follows. We begin with a discussion of the state of the art

tools for the design of optimal experiments, and their limitations, particularly for the classic CA.

Next we present a new approach to the design of experiments, and justify the use of appropriate

constraints, which prohibit profile repetitions for the same respondent, ensuring its suitability

for CA. We also present an integer and mixed version of the problem, followed by the case of

a panel of consumers. For pedagogical reasons, we start with the discussion of CA based on

ratings for individuals and panels. Then we discuss the estimation and optimal design for rank

data under invariance to monotonous transformations. We conclude with the case of CA based on

consumer choices. We also present some extensions such as the use of partial profiles for complex

products with many attributes.

2.2 Literature Review on Optimal Experimental Design for Lin-

ear Models

In this section we review the tools available for the design of optimal experiments in linear

regression models, and the drawbacks for their application to CA experiments. In classic exper-

imental design yt is an observable variable, and it is assumed that E(ε) = 0, E(εε′) = σ2IT and

rank(X ) = p. In particular, classic CA considers yt is a utility ranking or a rating (measured

either on a 0 to 100 attitude scale, a purchase probability scale, a strongly disagree to strongly

agree scale, or some similar scale). The coefficients β are estimated from an experimental setting,

and the OLS estimator β̂= (X ′X )−1X ′y is unbiased, with non-singular variance

V ar
(
β̂
)
=σ2 (

X ′X
)−1 .
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Often, there are linear identities across the attributes which cause the
(
X ′X

)
matrices to

be singular. For example, for continuous regressors this occurs when we consider compositional

data (proportions of several ingredients) and an intercept (the sum of the proportions is identical

to the intercept variable), and also when we have discrete dummies with an intercept. In these

cases, the model is usually reformulated (e.g., omitting a regressor). We will assume that the

necessary operations to eliminate collinearities have been already implemented in the considered

formulation.

If the ratings were normally distributed we could perform inference analysis with a small

T. But generally, this is not the case. If the deterministic matrix QT =
(
X ′X /T

)
converges to

a positive definite matrix Q, then under regular conditions
p

T
(
β̂−β

)
converges in distribution

to N
(
0,σ2Q−1

)
. When ratings are not normally distributed, which is a common situation, the

asymptotic approximation is the only way to justify inferences for medium-size to large T. The

smaller the matrix Q−1
T

, (respectively Q−1) the more (asymptotically) efficient is the OLS esti-

mator. Classic experiments (Cochran and Cox 1957; Cox 1958) usually assume normality and

discrete attributes, and for a small T statisticians try to make X ′X diagonal (i.e. X is an orthog-

onal matrix), albeit orthogonal designs are neither always possible (e.g., in models with squared

regressors, which is common in polynomial specifications) nor optimal. Allowing for a small cor-

relation between estimators we might obtain estimators with smaller variances.

An experiment X∗ is (approximately) optimal if Q−1
T

(respectively Q−1) is the smallest possi-

ble covariance matrix according to some appropriate criteria measuring the size of this matrix.

Suboptimal designs require a larger T to estimate the parameters with the same precision as

X∗, increasing the market research cost and rating contamination caused by respondent’s fa-

tigue. Notice that for models linear in parameters, optimal designs are not adaptive. In other

words, even if data is collected and processed sequentially, we do not use what we learn to change

the experimental setting. The reason is that neither the matrix Q−1
T

nor Q−1 are affected by col-

lected information about the previous ratings, {y1, . . . , yt−1}.

The experiments considered in CA are based on the classic statistical literature about optimal

experimental designs. Broadly speaking there are two big approaches: approximate optimal de-
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signs proposed by Kiefer (1959) , and exact optimal designs. The Kiefer’s approach, seeks designs

where the asymptotic covariance σ2Q−1 of the estimators is as small as possible, minimizing

some function φ
(
σ2Q−1

)
measuring the size of the matrix. By contrast, the second approach is

focused on the actual covariance matrix with finite sample T, minimizing a measure φ
(
σ2Q−1

T

)
.

In general, approximate optimal designs are not appropriate for CA, as often the method leads

to repetition of the product profiles. Therefore, we will not discuss this approach in detail. Nev-

ertheless, it is useful to understand approximated designs in order to obtain full perspective of

the problem. In the Appendix A we provide an overview, and present some results that will be

mentioned later in the essay.

The design of conjoint experiments has traditionally focused on exact optimal designs. These

designs minimize some function of σ2Q−1
T

, solving the problem minX∈χφ
((

X ′X
)−1

)
, where φ(·) is

a measure of matrix size: trace in case of A-optimality, and the determinant for D-optimality. In

the first case the sum of variances of the estimators is minimized; in the second, researchers also

pursue uncorrelated estimators in the vector β̂. Exact optimal designs have several advantages

in CA. First, they minimize the actual covariance of the estimators instead of an approximation.

Besides, for optimal exact designs we can consider not only such constraints as x ∈ χT , but we can

also include transversal constraints, linking characteristics of product profiles (levels of categor-

ical variables, or simply values of continuous variables). For example we can consider the prices

for every attribute, or level, and include them in a budget constraint over the whole experiment
∑T

t=1 c′xt ≤ m, where c is a k×1 vector of attribute prices, and m is the total budget. Without loss

of generality we can impose that the stimulus belongs to the space χ′ =
{
x ∈ χT : g (x)≤ 0

}
. Once

an exact optimal design QT has been computed, any design used in practice should be compared

to this benchmark.

Several procedures have been considered in the literature. Dykstra (1971) suggested the it-

erative inclusion of additional profiles, using the recursive expressions for partitioned matrix

|QT+1| = |QT |
(
1+ f (xT+1)′Q−1

T
f (xT+1)

)
. The algorithm sequentially selects one observation to

improve the determinant, therefore at each iteration the profile xT+1 is chosen to maximize

f (xT+1)′Q−1
T

f (xT+1). If χ is finite (with factorial designs), this is done by swapping alternative
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profiles and evaluating the change in the determinant. Johnson and Nachtsheim (1983) consider

some other alternatives. The exchange algorithm can be also applied for trace minimization,

using the Woodbury matrix inversion identity tr
(
Q−1

T+1

)
= tr

(
Q−1

T

)
− tr

(
Q−1

T
xT+1x′

T+1Q−1
T

1+x′
T+1QT xT+1

)
. Besides,

some procedures initially developed for Kiefer’s approximated optimal designs can be applied

also in this context, such as the Fedorov method (Fedorov 1972).

Table 2.1: Exchange algorithms for computing exact designs

Algorithm Description

Simple exchange
algorithm (Mitchell and
Miller Jr 1970; Wynn
1972)

Starts with an random n-point design. At each iteration one
observation is added which maximizes the determinant, and then
another observation deleted to maximize the efficiency gain.

DETMAX
(Mitchell 1974)

Starts with an random n-point design. At each iteration the algorithm
makes “excursions” from a n-point design: it is permitted to add/delete
more than 1 observation until the determinant is improved.

Fedorov (1972) Starts with an n-point nonsingular design. At each iteration the
algorithm simultaneously adds one observation and deletes another so
that the increase in determinant is maximal.

Modified Fedorov (Cook
and Nachtsheim 1980)

Starts with an n-point nonsingular design. At each iteration the
algorithm evaluates all pairs of design and candidate points, and selects
the best candidate to switch with each design observation. Makes every
swap that increases efficiency.

Coordinate exchange
(Meyer and
Nachtsheim 1995)

Does not use the candidate set. At each iteration, the initial design is
improved by exchanging each point coordinate (attribute level) with
every other possible coordinate. Exchanges which increase efficiency
are maintained.

Table 2.1 presents a comparative summary of the commonly applied exchange algorithms. A

detailed comparison and evaluation of their computational performance can be found in Cook and

Nachtsheim (1980). In general, none of these methods exploits satisfactorily the available numer-

ical optimization tools. But there is a more relevant drawback. After the optimal design is com-

puted, we typically observe that a few rows (product profiles) are repeated several times, which
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is a major problem for its application in CA. This is not a surprising result, since the arguments

of Lemma 1 in the Appendix A also apply to the set QT =
{
Q = X ′X : X = [ f (x1)′, . . . , f (xT )′]′

}
.

Therefore, with exact optimal designs we end up with repeated vertex questions with certain

frequencies, not very differently from Kiefer’s approximate designs. The problem of replications

was initially recognized by Box (1970), who noticed that in many situations optimal designs con-

sist of replications of a small number of distinct experimental profiles. This poses a problem in

the context of individual based CA, where the same respondent should not be questioned several

times for the same product.

2.3 A Direct Method for Optimal Exact Designs in Classic CA

In this section we propose an efficient approach for computing exact optimal designs without

repeated stimuli, providing the basis for usability of this approach in CA. First, we analyze the

properties of optimal exact design problems, and discuss the approach to solve this optimization

problem efficiently with Newton-based methods. Next, we demonstrate how to create designs

without duplicated treatments, which often appear in optimal designs. We also present some

initial numerical results.

2.3.1 Using Newton-Based Algorithms

The general setup for computing exact optimal designs is the following optimization problem

min
x

φ
((

X ′X
)−1

)
(2.1)

s.t. X = [ f (x1)′ . . . f (xT )′]′

x ∈ χT ,

where φ is a measure of the size of a matrix, trace or determinant. It is a convex problem, since

the objective function φ is convex, and we assume that the feasible set of experimental attributes
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is a nonempty, compact and convex set. The solution, x∗, is the exact optimal design matrix.

Note that the optimal design x∗ is not unique, as any permutation of the rows in x∗ (reordering

the questions or product profiles) renders the same matrix QT = X ′X . All of these solutions are

equivalent. Lower and upper bounds on x represent the set of feasible attributes, χT . Different

types of constraints can be considered to handle flexibly a variety of marketing scenarios and

managerial problems: linear and nonlinear equality, or inequality constraints.

Table 2.2: First and second order derivatives of the benchmark problems

D-optimality A-optimality

Objective min |
(
X ′X

)−1 | mintr
(
X ′X

)−1

Gradient −2
∣∣∣
(
X ′X

)−1
∣∣∣ vec X

(
X ′X

)−1 −2 vec X
(
X ′X

)−2

Hessiana 4
∣∣∣
(
X ′X

)−1
∣∣∣
((

X ′X
)−1 ⊗ X

(
X ′X

)−1
X ′

)
+ 4

((
X ′X

)−1 ⊗ X
(
X ′X

)−2
X ′

)
+

2
∣∣∣
(
X ′X

)−1
∣∣∣K

(
X (X ′X )−1 ⊗ (X ′X )−1X ′)+ 4

((
X ′X

)−2 ⊗ X
(
X ′X

)−1
X ′

)
−

2
∣∣∣
(
X ′X

)−1
∣∣∣K

(
(X ′X )−1X ′⊗ X (X ′X )−1

)
− 2

((
X ′X

)−2 ⊗ I
)

2
∣∣∣
(
X ′X

)−1
∣∣∣
((

X ′X
)−1 ⊗ I

)

a K is the commutation matrix, which transforms vec X into vec X ′.

There are several Newton-based algorithms for constrained convex programming, which posses

good theoretical properties. To solve Problem (2.1) with a Newton’s method, we first calculated

the first- and second-order derivatives. Unless stated otherwise, numerical examples considered

here assume that f (xt) = xt, and the design matrix x = X . Objective functions, gradients and

Hessians for minimization of A- and D-optimality criteria for this benchmark case are presented

in Table 2.2. In case of discrete attributes we also include intercept and consider transformation

of variables to eliminate dummy collinearities. The proof for a more general expression can be

found in the Appendix B, and can be easily adapted for other specifications of f .

We have solved several numerical examples and observed that exact optimal designs in fact

have repeated profiles, as expected from applying Lemma 1 to the set QT =
{
Q = X ′X : X = [x′1 . . . x′

T
]′
}
.

Below we discuss how to overcome this problem.
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2.3.2 Avoiding Repeated Questions

The issue of duplicated product profiles can be resolved by imposing simple quadratic constraints

on Problem (2.1), which prohibit profile repetitions in the matrix x. Define a T ×T similarity

matrix S = xx′, whose elements are Si, j = x′
i
x j, where xi, x j are product profiles i, j. Notice that

the Euclidean distance between them, di, j =
√(

xi − x j

)′ (
xi − x j

)
, satisfies d2

i, j
= Si,i +S j, j −2Si, j,

and the matrix D = [d2
i j

] can be expressed as

D = diag (S) 1′
T +1T diag (S)′−2S,

where diag (S) is a vector of main diagonal elements in S, and 1T is a T ×1 vector of ones. Both

S and D are symmetric matrices, and the diagonal elements in D are zero. We consider a lower

bound over the Euclidean distance between stimulus i and stimulus j, for all pairs of different

questions shown to the same respondent: L(D) ≥ d. The linear operator L (·) : RT×T → R
T(T−1)/2

selects the lower triangle elements of a square matrix (excluding the diagonal elements equal to

0, and the symmetric upper triangle terms), and stacks them in a column vector; d is a T (T −1)/2

vector of positive distance tolerances, and the inequality is applied pointwise. Notice that L (D)=

H ·vec (D), where vec (·) :RT×T →R
T2

is the operator that stacks the columns of a matrix, and H

is a T (T −1)/2×T2 sparse matrix

H =





0(T−1)×1 IT−1 . . . . . . . . . . . . . . . . . . . . .

. . . . . . 0(T−2)×2 IT−2 . . . . . . . . . . . . . . .

. . . . . . . . . . . . 0(T−3)×3 IT−3 . . . . . . . . . 0T×T

. . . . . . . . . . . . . . . . . .
. . . . . . . . .

01×1 01×(T−1) 01×2 01×(T−2) 01×3 01×(T−3) . . . 01×(T−1) I1





where Ir is the r× r identity matrix, and blank spaces are adequately sized blocks of zeros (as

shown in the last row). For example for T = 3,
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L





d11 d12 d13

d21 d22 d23

d31 d32 d33




=





0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0









d11

d21

d31

d12

d22

d32

d13

d23

d33





=





d21

d31

d32





The matrix H can be obtained from the identity matrix IT2 , by eliminating rows that correspond

to diagonal and upper-triangle elements (for example, with T = 3 these are the rows 1,4,5,6,7,8).

We begin with the benchmark case of continuous attributes. Formally, our approach to com-

pute exact designs without stimuli repetitions is to solve the following optimization problem

min
x

φ
((

X ′X
)−1

)
(2.2)

s.t. X = x = [x′1 . . . x′T ]′

L
(
diag (xx′) 1′

t +1t diag (xx′′−2xx′
)
≥ d

lb ≤ x ≤ ub.

We have computed several examples for two versions of this problem: (1) the case of A-optimality,

where we minimize the trace of the covariance matrix, φ(·) = tr (·); and (2) the case of D-

optimality, where we minimize its determinant, φ(·)= |· |. We add T(T−1)/2 distance constraints

discussed above, and lower (lb) and upper bounds (ub) on values of continuous attributes, which

represent the set of feasible attributes, χT . Below, we discuss in detail the computational per-

formance of this approach, as well as the comparative behavior of the trace and determinant

algorithm. The case of categorical variables is presented in the next Section.
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2.3.3 Numerical Results for Some Benchmark Problems

We performed a series of simulations to test the performance of the algorithm and to compare the

behavior of both criteria, the trace and the determinant. The algorithm was implemented using

MATLAB 6.5 on Mobile Workstation, Intel CoreTM2 Duo 2.20 GHz, with machine precision 10e-

16. Both problems have been solved using the MATLAB subroutine “fmincon” with the option

“interior-point” algorithm, included in the Optimization toolbox.

Since the 1980s interior point methods have become popular for solving nonlinear constrained

problems (also large-scale). They are very efficient, both in terms of theoretical worst-case com-

plexity and practical performance. The interior-point approach to constrained minimization is to

solve a sequence of minimization problems perturbed by some parameter. As this parameter de-

creases to zero, the minimum of perturbed minimization problem should approach the minimum

of original minimization problem (for details see e.g. Byrd et al. 1999). To solve the perturbed

problem, we consider a Newton framework using a line search. Solving the Karush-Kuhn-Tucker

equations, we first compute the Newton search direction, pk =−H−1
k

g, where H is the exact Hes-

sian ∇2φ(x), and g is the gradient ∇φ(x). To guarantee global convergence, we then compute a

step size that determines the adjustment of the Newton direction, ensuring sufficient decrease

and uniform progress towards a solution (Nocedal and Wright 2006).

We have solved Problem (2.2) for conjoint experiments of different sizes: small, medium, and

large, with varying parameters for the number of stimuli (T) and product attributes (k). We have

chosen sufficiently large T to ensure sufficient number of degrees of freedom for estimation of

integer cases and interactions, which is the subject of the next Section. We have also checked

that with small values of d, we overcome the problem of stimuli repetitions. The parameter

values used in the simulation are shown in Table 2.3.

Similarly to other local algorithms, the performance of this approach may be sensitive to

initial points, and the algorithm may be trapped in a local minimum. To inspect this problem we

have re-run the procedure 100 times for each of the scenarios, solving Problem (2.2) with random

initial points. In general the simulation results for both trace and determinant optimization are
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Table 2.3: Parameter values for simulation of benchmark problems

Problem size Small Medium Large

# profiles (T) 10 16 25
# attributes (k) 3 5 8
# model parameters (p) 3 5 8

Lower bound (lb) 1 1 1
Upper bound (ub) 10 10 10
Distance (d) 5 5 5

consistent and the local solutions lie close. Therefore, the sensitivity to initial points does not

pose a big threat to our approach.

In each of the scenarios we have chosen the best of the 100 simulated results, that is the

design which leads to the smallest covariance matrix (for both trace and determinant criteria).

We evaluated them in terms of the quality of the attained solution and the computational cost.

For the former we report the objective function value, the rank of the optimal design matrix, and

the conditioning of the information matrix. To allow for comparability of A- and D-optimality

measures we calculate φ1(Xd)= tr (X∗′

d
X∗

d
)−1, where X∗

d
is the solution to the determinant prob-

lem, and φ2(Xa) = |(X∗′
a X∗

a )−1|, with Xa - solution to the trace problem. The evaluation of the

algorithm’s computational cost is based on the number of iterations, function evaluations and

time needed for convergence. The comparative summary is outlined in Table 2.4.

For both trace and determinant criteria the convergence of algorithms takes a few seconds,

and for the majority of scenarios the solution was found in less than a second. The determinant

criterion converges faster than the trace in all cases, however its performance is suspicious. We

can observe that for medium-to-large scenarios the solution obtained with the trace algorithm

yields better determinant values than the solution to the determinant problem (compare the

determinant values in the left and right panel). This suggests that the determinant algorithm

gets easily stuck in a local minimum.

As the dimension of X grows, the function |(X ′X )−1| rapidly approaches 0, so that the objec-

tive function value becomes smaller than the “machine epsilon” (the upper bound on the relative
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Table 2.4: Simulation results for trace and determinant problems

Objective function min tr
(
X ′X

)−1 min |
(
X ′X

)−1 |
Problem size Small Medium Large Small Medium Large

Tracea 0.0090 0.0109 0.0128 0.0153 0.0337 0.0478
Determinanta 1.60e-8 1.80e-14 9.41e-24 4.64e-8 1.24e-12 4.05e-20

# iterations 25 22 27 11 0 0
# function evaluations 26 23 29 12 1 1
Time (s) 0.14 0.37 2.96 0.07 0.01 0.08

Rank 3 5 8 3 5 8
Condition 4.08 7.79 13.46 8.28 39.09 80.21
a Underlined values are objective function values.

error due to rounding in arithmetic operations). It means that for any sufficiently large matrix

X , the determinant of the inverse of the information matrix will be essentially zero (rounding off

at the 16th decimal place). The algorithm does not iterate because any initial point leads to func-

tion value equal to 0, and is therefore identified as the solution. These results imply that direct

optimization of D-optimality criterion often does not work well in practice. To moderate these

problems, one could consider a logarithmic transformation of the objective function. However, in

this case numerical optimization could be troublesome as well since the gradient

∂

∂x
ln

∣∣∣
(
X ′X

)−1
∣∣∣=

−1

|(X ′X )|
∂

∂x

∣∣(X ′X )
∣∣

is ill-conditioned as |X ′X | approaches 0. Therefore, the trace criteria usually works better.

We have also analyzed the optimal designs qualitatively. In case of trace algorithm, indeed

the values of elements in X are close to lower and upper bounds. In the determinant case which

was stuck in a local minimum, the solutions were included in the sampling interval further from

the boundaries (see Table 2.5 for the designs computed in the “Medium” Scenario). Therefore, for

the trace, the optimal solution lies relatively close to the bounds of the problem, confirming the

intuition that evaluating extreme stimuli yield the most information. The optimal design matrix

is of full rank in both cases, however the solution to trace problem has better conditioning than
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the solution to determinant problem.

Table 2.5: Design matrices computed in “Medium” scenario

min tr
(
X ′X

)−1 min |
(
X ′X

)−1 |
Profile A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

1 1.00 10.00 10.00 1.00 10.00 5.25 2.30 8.78 5.92 3.79
2 1.00 10.00 10.00 10.00 1.00 2.73 7.15 3.51 8.03 8.49
3 1.00 1.00 10.00 10.00 10.00 7.57 5.38 3.77 6.74 2.52
4 1.00 1.00 10.00 10.00 1.00 2.86 9.73 1.06 9.27 1.41
5 10.00 10.00 10.00 1.00 1.00 6.79 8.09 5.58 6.28 9.92
6 10.00 10.00 1.00 1.00 10.00 5.69 8.33 5.48 8.96 2.18
7 1.00 1.00 10.00 1.00 10.00 8.99 7.70 9.11 1.32 8.05
8 1.00 1.00 1.00 10.00 10.00 8.83 2.03 1.09 4.41 9.07
9 1.00 10.00 1.00 10.00 10.00 1.06 7.41 7.54 8.46 5.33

10 10.00 1.00 10.00 1.00 1.00 8.62 8.51 1.43 1.03 5.51
11 10.00 10.00 1.00 10.00 1.00 8.78 1.92 5.39 9.70 2.72
12 10.00 1.00 10.00 1.00 10.00 3.99 2.25 8.04 8.60 3.61
13 10.00 1.00 10.00 10.00 1.00 5.99 1.47 8.83 5.01 6.86
14 1.00 10.00 10.00 1.00 1.00 3.45 9.44 4.45 3.54 7.88
15 10.00 1.00 1.00 1.00 10.00 3.62 9.46 7.75 3.34 4.94
16 10.00 1.00 1.00 10.00 1.00 9.65 2.97 2.13 4.71 6.66

Summarizing, the optimization of trace criterion is a more reliable approach, because its per-

formance is not significantly affected by the increase in the problem dimension: the number of

iterations and function evaluations remains relatively stable across scenarios, and the solutions

obtained with different initial points are close. The convergence is fast and even for the largest

problems it does not take longer than 3 seconds. Given the high chances of converging to a

suboptimal local minimum, the stability of trace criterion becomes a useful advantage, outper-

forming the determinant in practice. Therefore, we will focus on the trace in the remainder of

this chapter.

2.4 The Case of Discrete and Mixed Attributes

In CA we often find discrete attributes. For example, whether a certain material is used or not,

or a component has been selected from a given catalogue. Continuous variables, like prices, are

also often represented by a small number of meaningful levels and treated as discrete variables.
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Typically, CA models have several categorical and perhaps also some continuous attributes. In

an experimental context, the discrete attribute is known as a factor, and the alternative values

that it can take are known as levels of the factor. The standard formulation in a model with

i = 1, ....,L integer attributes, each of them having Ji levels is

yt =α+
L∑

i=1

Ji∑

j=1
γi j dti j +β′Zt +εt, (2.3)

where Zt represents the set of p continuous regressors. The design matrix x = [D1, . . . ,DL, Z] is

partitioned in a way that every discrete attribute is represented by a matrix of indicator vari-

ables, D i = [dti j], taking values 0 or 1 to indicate the absence or presence of a level in the profile.

Linear regression models with discrete dummies, like the one defined in equation (2.3), are af-

fected by collinearities as
∑Ji

j=1 dti j = 1, ∀ i, t. We consider the standard methods to eliminate

multicollinearity from the model: (1) omission of one level in every factor, and (2) including

dummy differences with respect to one factor. Depending on the selected method, the OLS esti-

mators will be different as well as their covariance matrix, and we will obtain different optimal

designs x∗.

(D1) The first approach involves substituting the regressor identity in the model. For example

with dtiJi
= 1−

∑Ji−1
j=1 dti j we can express

yt = α+
L∑

i=1

(
Ji−1∑

j=1
γi j dti j +

L∑

i=1
γiJi

(

1−
Ji−1∑

j=1
dti j

))

+β′Zt +εt

=
(

α+
L∑

i=1
γiJi

)

+
L∑

i=1

Ji−1∑

j=1

(
γi j −γiJi

)
dti j +β′Zt +εt,

which is equivalent to level omission, and the interpretation of coefficients is relative to

the parameter of a missing level. In a model with more factors, transformation by level

omission can be conveniently written in a matrix form, f̃ (x)= xA. The matrix A can be ob-

tained from the identity matrix of the size
(∑L

i=1 Ji +k
)

by eliminating columns associated
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to the omitted levels. This method is sometimes called binary coding.

(D2) In the second approach additional constraints are included, usually that
∑Ji

j=1γi j = 0 (the

dummy coefficients sum up zero). Substituting γiJi
=−

∑Ji−1
j=1 γi j in the model leads to

yt =α+
L∑

i=1

Ji−1∑

j=1
γ j

(
dt j −dtiJi

)
+β′Zt +εt,

where new regressors are defined as dummy differences, d′
ti j

=
(
dti j −dtiJi

)
∈ {−1,0,1}.

Let f̃ (x)= x(I−B)A represent the transformation of dummy variables, which creates dummy

differences with respect to the last level in each factor. In particular, I is an identity matrix

of the size
(∑L

i=1 Ji +k
)
, A is defined above, and B is a square sparse matrix with value 1 at

columns associated with the omitted levels and zero otherwise. This method is sometimes

called effects coding.

In our examples, the design matrix will be partitioned as X = f (x) = [1, f̃ (x)], where the first

column corresponds to the intercept, and f̃ represents the dummy coding method (D1 and D2).

Note that when the number of factors, L, is very small (one or two), and there are no contin-

uous attributes, the number of different stimulus profiles that can be included in the experiment

is small, and the experimental design problem is not relevant. All possible combinations of factor

levels can be included in the experiment. Moreover, since replications are not allowed in CA, the

inference analysis should be based on small sample analysis (typically under normality assump-

tions). But when the number of factors is large we may have larger size T, because the number

of alternative stimuli increases multiplicatively, as
∏L

i=1 Ji, whereas the number of parameters

increases additively. In this case, the experimental design does become important, as well as for

the mixed CA (with both discrete and continuous attributes).

The selected procedure (D1) or (D2) affects the interpretation of the model parameters, but it

does not essentially affect the efficiency (we can directly recover the exact OLS estimations from

one method to other). We obtain the optimal design by minimizing the trace or the determinant of
(
X ′X

)−1. The determinant is a more popular criterion, but it has limitations, which we discussed
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in the previous section. When there are no continuous attributes, the approach (D1) renders

orthogonal designs, as the observation vectors for different dummies are naturally orthogonal.

In the second approach, the columns in X often sum up to zero, rendering a balanced design (all

attributes appear with the same frequency at each level). Nevertheless the trace/determinant

values of the optimal matrix
(
X ′X

)−1 might be quite different for both approaches. In any case,

the relative efficiency of optimal solutions from each coding approach should not be directly com-

pared as each procedure estimates different parameters.

To handle discrete attributes, we consider a branch-and-bound algorithm searching a tree,

whose nodes correspond to continuous nonlinearly constrained optimization problems. The solvers

have been compiled in both a sparse and a dense version, and they are commercially available

with TOMLAB (http://tomopt.com/tomlab/) - a software package in MATLAB for practical solu-

tion of optimization problems. TOMLAB includes several solvers for the solution of all types

of applied optimization problems. In particular we consider MINLP solver developed by Roger

Fletcher and Sven Leyffer at the University of Dundee. MINLP implements a branch-and-bound

algorithm and a sequential quadratic programming (SQP) trust region algorithm, using a re-

cently developed filter technique to promote global convergence (Leyffer 2001).

Formally, the optimal design problem in the mixed-integer conjoint context is

min
x

tr
(
X ′X

)−1 (2.4)

s.t X = f (x)= [1, f̃ (x)]

x = [D1, . . . ,DL, Z]

Ji∑

j=1
dti j = 1, ∀ i, t

L
(
diag

(
xx′

)
1′+1diag

(
xx′

)′−2xx′
)
≥ d (2.5)

lb ≤ Z ≤ ub

dti j ∈ {0,1} are integer,
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where we choose optimally the value of continuous attributes, as well as the factor level to be

shown in each stimulus. We include the intercept, as well as transformation to eliminate perfect

collinearity in the dummy variables, f̃ (x). The third constraint requires that within each factor

exactly one level is shown in a product profile, and is a simple linear equality constraint. We

also impose the similarity constraint to avoid repetitions (equation (2.5)). Additionally lower and

upper bounds on variables can be considered, which for dummy variables are naturally 0 and 1.

To obtain subroutine inputs: the gradient and Hessian, we can apply directly the formula derived

in the Appendix B. Note that the respective transformation matrices A,B are constant, therefore

these expressions are further simplified.

We performed a series of simulations for one integer and two mixed examples for both trace

and determinant approaches. However, we only report the results for the trace, because it is a

more reliable and stable criterion. Table 2.6 summarizes parameter values for different scenar-

ios.

Table 2.6: Parameter values for simulation of discrete scenarios
Scenario 1 Scenario 2 Scenario 3

Type integer mixed mixed

# profiles (T) 10 16 25
# continuous attributes (k) 0 2 5
# integer attributes (L) 3 3 3
# attribute levels (Ji) [3,3,3] [3,3,3] [3,3,3]
# model parameters (p) 7 9 12

Lower bounda (lb) - 1 1
Upper bounda (ub) - 10 10
Distance (d) 1 1 1
a Lower and upper bounds considered on the set of continuous attributes, Z.

As in the previous Section, for each of the scenarios and collinearity methods (D1 and D2) we

first re-run the algorithm a few times to make sure it does not attain a local solution, and then we

choose the design associated with the smallest size of the covariance matrix. Some characteris-

tics of these designs are summarized in Table 2.7. Recall that the covariances of the two methods
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to eliminate collinearity in the dummies cannot be directly compared in terms of efficiency, as

they estimate different parameters. As far as the quality of the solution is concerned, in all sce-

narios the transformed design matrix X = f (x) is of full rank, and for Scenario 1 the collinearity

problem is eliminated. The optimal design matrix obtained with “dummy differences” algorithm

has in general better conditioning, than the one obtained when omitting one level. In terms of

computational cost, the performance of both approaches is similar.

Some of the conclusions drawn from the continuous conjoint problem are confirmed here. As

expected, including additional profiles, attributes and factor levels increases the optimization

costs: more time and function evaluations are needed to converge to the optimum. The conver-

gence for the pure integer scenario takes seconds. The mixed-integer problem is more complex

and computationally challenging. It takes from above 1 minute to 6 minutes for the algorithm to

converge, while the number of function evaluations remains quite stable in both scenarios.

Table 2.7: Simulation results for mixed and integer designs

Objective function min tr
(
X ′X

)−1

Scenario 1 Scenario 2 Scenario 3

Approach to collinearitya D1 D2 D1 D2 D1 D2

Traceb 4.0625 1.3333 2.6204 0.8998 1.6600 0.5938
Determinant 0.0023 3.18e-6 3.54 e-9 5.84e-12 2.58e-18 7.14e-21

# iterations 2 2 1 1 1 1
# function evaluations 103 70 68 92 131 141
Time (s) 6.88 9.77 81.49 75.71 362.01 342.920

Rank 7 7 9 9 12 12
Condition 16 4 439.94 123.87 1549.60 287.81
a D1 - level omission; D2 - including dummy differences.
b Underlined values are objective function values.

2.4.1 Model with Interactions: Fractional Factorial Designs

Consider a CA model with several factors (discrete attributes), where each factor may take differ-

ent levels. A full factorial model considers all possible interactions for each dummy in the model
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(factors and levels).

yt = γ+
J1∑

j1=1
....

JL∑

jL=1
β j1, j2,..., jK

×
(
dt j1 dt j2 · · ·dt jK

)
+εt.

The number of parameters increases multiplicatively with J1 × ...JL. The model can also in-

clude continuous attributes. Then we can have also interaction between the dummies and the

continuous attribute.

In any case, the effort required to estimate a full factorial model is cost-prohibitive and te-

dious for the respondent. In practice researchers generally use fractional-factorial designs, con-

taining just interactions of a few factors (e.g. products of pairs, or threesomes of dummies), and

evaluating fewer product profiles. For an introduction see Addelman (1962), Green (1974), or

Kuhfeld et al. (1994).

Our approach can also handle fractional factorial designs. To estimate the model we first

have to eliminate multicollinearity, with either of the methods discussed in the previous section.

Additionally, we need to assure sufficient number of degrees of freedom, meaning that the model

with interactions requires more product profiles to be evaluated by the respondents (at least 1

observation per each interaction term). Then the optimal design for the model with two-way

interactions is the solution to the following optimization problem

min
x

tr
(
X ′X

)−1 (2.6)

s.t X = [1, f̃ (x),W(x)],

x = [D1, . . . ,DL, Z],

where W(x) is a matrix block representing all possible interaction elements between 2 variables,

and the remaining constraints, dummy blocks, and functions are specified as in Problem (2.4).

Note that the interaction terms are specified as a function of the design matrix, x. Mathematical

details are given in the Appendix B.
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We provide some examples to illustrate the behavior of the method, including Scenario 2

from the previous section, and omitting a factor level to eliminate multicollinearity (approach

D1). The examples consider a model with two-way interactions between: 2 continuous attributes

(“Continuous” case), a continuous and a categorical variable (“Mixed” case), and 2 categorical

variables (“Integer” case). Table 2.8 summarizes the characteristics of the optimal design for the

model with interactions.

The performance of the approach for the “Continuous” and “Mixed” case is very good. In-

cluding interactions does not result in the increase in computational cost, in comparison to the

model without interactions. As far as the quality of the solution is concerned the optimal design

matrix is of full rank. However, “the curse of dimensionality” affects the performance of the pro-

posed approach as the standard Branch-and-Bound algorithm is considered. Other alternative

algorithms can be considered to tackle this issue (Lawler and Wood 1966).

Table 2.8: Simulation results for a model with interactions

Objective function min tr
(
X ′X

)−1

Type of interaction Continuous Mixed Integer

Tracea 2.6754 2.6921 14.2166
Determinant 6.70e-12 6.77e-12 2.41e-7

# iterations 1 1 60
# function evaluations 50 31 1394
Time (s) 116.78 52.45 2457.00

Rank 10 11 13
Condition 3441.00 1758.80 5244.60
a Underlined values are objective function values.

2.4.2 A Comparison with Commonly Used Software

We have compared the performance of our approach with the software which is commonly used

by practitioners in traditional conjoint experiments: Conjoint Value Analysis (CVA) by Sawtooth

Software and %MktEx by SAS. Both programs allow only categorical attributes and rely on ex-

change algorithms (see Table 2.1) to optimize the determinant of the covariance matrix. Contin-
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uous attributes like prices are not explicitly permitted. Instead, they are usually discretized and

represented by a few meaningful levels.

The setting is as follows. To ensure comparability of results with Sawtooth Software and SAS,

we focus exclusively on the experiments with discrete attributes and begin with determinant

minimization. The design matrix X has an intercept, and categorical variables are orthogonally

coded, which is a common practice in CA (for details see Kuhfeld 2010). The values of orthogonal

codes of dummy variables with 2 and 3 levels are presented in Table 2.9.

Table 2.9: Orthogonal coding of dummy variables

2-level dummy 3-level dummy
Original Orthogonal Original Orthogonal

1 0 1.0000 1 0 0 1.3660 -0.3660
0 1 -1.0000 0 1 0 -0.3660 1.3660

0 0 1 -1.0000 -1.0000

We have created 4 hypothetical conjoint experiments, with a varying number of product pro-

files (T), categorical product attributes (L), and attribute levels (J) (see the upper panel in Table

2.10). As far as the profile repetitions are concerned, the designs obtained with our approach will

never have duplicated observations, for SAS we have activated the “no duplicates” options , and

Sawtooth Software’s CVA does not take this issue into account. To achieve additional efficiency

gains in the performance of our algorithms we used sparse versions of the constraints and their

derivatives, taking into account patterns of non-zero elements in the corresponding matrices. For

each of the scenarios, we have run 10 times our “determinant” algorithm, and chosen the design

with the smallest objective function value.

If orthogonality is imposed in the design (meaning X ′X is diagonal), then the trace and deter-

minant are closely related. Denote by vi the sample variances of each regressor. For orthogonal

regressors, the A-optimality criterion minimizes
∑p

i=1 (1/vi), and the D-optimality criterion mini-

mizes
∏p

i=1 (1/vi). By the inequality of arithmetic and geometric means, we obtain that

tr
(
Q−1

T

)
=

p∑

i=1

1

vi

≤ p

(
p∏

i=1

1

vi

)1/p

≤ p
∣∣Q−1

T

∣∣1/p
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holds with equality if and only if all variances are identical. In particular this occurs for pure

factorial designs (discrete attributes only) with binary coding of dummies. Notice that for bi-

nary regressors the variance vi = pi (1− pi) /T where pi is the frequency of level 1. Then 1/vi

is minimized when pi = 0.5, i.e. when the same number of 0s and 1s is included for all regres-

sors, and therefore both criteria are equal. This happens only at the minimum of both criteria.

Nevertheless we have found that trace minimization renders better numerical results. When

optimizing the determinant, we again encounter the problem of ill-conditioning of the informa-

tion matrix. For larger conjoint experiments the determinant of the covariance matrix is smaller

than machine epsilon, and therefore the round-off objective function value is 0. This prevents the

algorithm from iterating towards a better solution. Minimizing the trace we search implicitly for

the same optimum, but the problem has a much better numerical behavior.

The lower panel of Table 2.10 summarizes optimization results and design characteristics

obtained with SAS, Sawtooth Software and our both approaches: minimizing the determinant

and trace. In all cases we report two efficiency measures: determinant and trace of the optimal

design. Recall, that the optimal design in SAS, Sawtooth Software, and “determinant” version of

our approach is computed by minimizing the determinant. Finally, we also present the results

from our approach based on trace minimization. When available, we provide a few measures of

algorithm’s computational cost: time to converge, number of iterations, function evaluations, and

for SAS number of operations needed to find the design1.

For small conjoint experiments (COMP1 and COMP2) our “determinant” approach achieves

the same design efficiency as SAS and Sawtooth Software at a lower computational cost. For

larger conjoint experiments numerical optimization of the determinant is problematic, and the al-

gorithm gets stuck in a local minimum, which is a problem also for Sawtooth Software (COMP4).

On the other hand, when minimizing the trace, which is a more stable criterion, in all scenarios

we achieve the same design efficiency as SAS: the traces and determinants of covariance matri-

ces calculated with SAS and our approach are equal. Moreover, our “trace” algorithm performs

1Number of operations is calculated as the sum of the following positions in SAS output: # algorithm searches, #
design searches, # design refinements.
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Table 2.10: Comparison with other software

Scenario COMP1 COMP2 COMP3 COMP4

Parameters
# profiles (T) 8 10 16 18
# attributes (L) 4 3 4 5
# levels (J) [2, 2, 2, 2] [3, 3, 3] [3, 3, 3, 3] [3, 3, 3, 3, 3]

SAS

Determinant 3.05e-5 1.18e-7 1.91e-11 1.56e-14
Tracea 0.6250 0.7292 0.5972 0.6111
Time (s) 2.60 3.84 4.00 3.25
# Operations 1 82 61 1

Sawtooth Software

Determinant 3.05e-5 1.18e-7 1.91e-11 1.75e-14
Tracea 0.6250 0.7292 0.5972 0.6250
Time (s) 1 1 4 15

Our approach minimizing determinant

Determinant 3.05e-5 1.18e-7 3.19e-11 1.19e-13
Tracea 0.6250 0.7292 0.6729 0.9395
Time (s) 0.12 0.61 0.31 0.50
# Iterations 1 3 1 1
# Function evaluations 4 40 4 4

Our approach minimizing trace

Trace 0.6250 0.7292 0.5972 0.6111
Determinantb 3.05e-5 1.18e-7 1.91e-11 1.56e-14
Time (s) 0.27 0.33 2.04 3.95
# Iterations 1 1 1 1
# Function evaluations 12 10 42 28

a Trace of the covariance matrix of the D-optimal design.
b Determinant of the covariance matrix of the A-optimal design.
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faster than SAS in 3 out of 4 cases. Table 2.11 presents the optimal designs in COMP2 example

obtained with SAS, Sawtooth Software, and our “determinant” and “trace” approach.

Table 2.11: Optimal designs computed in “Comparison 2”

SAS Sawtooth Software “Det” approach “Trace” approach
Attribute A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

Profile
1 1 3 1 1 2 1 2 2 1 1 2 1
2 3 3 2 1 3 2 1 2 2 3 1 1
3 2 2 1 3 3 3 1 1 2 2 1 1
4 3 2 3 1 1 3 3 3 1 1 3 3
5 2 1 2 2 2 3 3 2 3 1 1 2
6 1 2 3 2 1 2 1 3 3 2 3 2
7 3 1 1 3 2 2 2 3 2 3 1 3
8 1 1 3 2 3 1 2 1 1 2 2 3
9 2 3 3 3 1 1 3 2 1 3 2 2
10 1 2 2 1 3 3 2 1 3 3 3 1

Level balance
Level 1 4 3 3 4 3 3 3 3 4 3 4 4
Level 2 3 4 3 3 3 3 4 4 3 3 3 3

Level 3 3 3 4 3 4 4 3 3 3 4 3 3

In this section we presented only a part of functionality of our approach. To ensure compa-

rability with available CA software, we have limited the scope of comparative examples to the

experiments where the treatments are only categorical variables. Our “trace” approach achieves

the same efficiency as SAS, and is faster in most of the examples considered. Despite the prob-

lems with numerical optimization of the determinant function, our “determinant” algorithm still

matched %MktEx macro in terms of design efficiency in two of the scenarios, outperforming it

in terms of the computational cost. Furthermore, our approach is far more flexible and provides

functionalities which are not available either in SAS or Sawtooth Software. We can optimize the

trace or determinant, and handle continuous and/or discrete variables. Additionally, we can solve

problems by imposing quite general linear and nonlinear constraints, for example experimental

budget restrictions. Our approach combines the flexibility and computational efficiency, which

gives it an overall advantage compared to the existing software. Next we discuss extensions of
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the method to many other contexts, and we focus on the trace.

2.5 Optimal Designs: Extension to Customer Panels

There are many practical benefits of using consumer panels in conjoint studies. With a relatively

homogeneous sample of respondents the experiment requires a few profile evaluations per re-

spondent, reducing fatigue and learning effects. Homogeneous respondents may have identical

preferences, but they might report their utility ratings with a random origin of coordinates. In

other words, the response measure is an interval scale rather than a ratio scale in the taxonomy

of Stevens (1951). CA researchers can handle this problem introducing heterogeneous intercepts.

However, if we take a small number of measures for each individual, we cannot estimate the spe-

cific value of the intercept for each one. Alternatively, we can handle the problem using a random

effects model. For i = 1, ..., N respondents, and Ti questions per individual, we consider the model

yit = ηi + f (xit)
′β+εti, (2.7)

where ηi are exogenous random variables with mean 0 and variance σ2
η. If we include this

effect in an overall shock uit = ηi + εit, then the autocovariance matrix for each respondent is

E(uiu
′
i
) =Ω =

(
σ2
η11′+σ2

ε IT

)
has a special structure with σ2

η+σ2
ε as diagonal elements, and σ2

η

otherwise. Finally, the panel is balanced if Ti = T for each respondent (we assume this to simplify

notation).

Consider the matrix notation X =
(
f (x11)′, . . . , f (x1T )′, . . . , f (xN1)′, . . . , f (xNT )′

)′ ∈ RNT×p, the

vector of responses Y = (y11, . . . , y1T , . . . , yN1, . . . , yNT ) ∈ RNT×1 and u ∈ RNT×1 analogously to Y .

Then we can estimate consistently by OLS using β̂ =
(
X ′X

)−1
X ′Y . But this estimation is quite

inefficient, as V ar [u]= (IN ⊗Ω). The method is not even consistent if ηi is correlated with some

regressor (e.g. a socio-demographic block factor). In this Section we apply our approach to build

exact optimal designs in the context of conjoint panels. We consider two of the most popular ways

to estimate panels, which are consistent even when endogenous random effects are intrinsically

eliminated. With a panel of consumers question repetitions are a concern only for an individual
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respondent. We can avoid them by introducing a lower bound on distances between product

profiles for every individual. However, we do not forbid question repetitions across individuals.

2.5.1 Within-Groups (WG) Estimation

One commonly used way to eliminate the individual-specific effects, ηi, is to subtract time aver-

ages from the original panel model (2.7), leading to the within-groups (WG) model

ÿit = f̈ (xit)
′β+ ε̈it

where ÿit = yit− ȳi, f̈ (xit)= f (xitk)− f (xik), and ε̈it = εit−ε̄i. Stacking the observations for all indi-

viduals, such that Y =
(
y′1t

, y′2t
, . . . , y′

Nt

)′ , X =
(
f (x1t)′, f (x2t)′, . . . , f (xNt)′

)′, and ε=
(
ε′1t

,ε′2t
, . . . ,ε′

Nt

)′

the equivalent compact form model is

MY = MXβ+Mε

with M = INT −
(
IN ⊗ 1

T
1T1′

T

)
= INT − P. Both M and P are idempotent matrices, and pre-

multiplication by the matrix M creates deviation from the mean. We obtain mean centered

data and the individual effect ηi disappears (because η̄i = ηi). Then OLS estimator is β̂OLS =
(
X ′MX

)−1
X ′MY , with the variance

V ar
(
β̂OLS

)
=σ2

ε

(
X ′MX

)−1 .

Assuming vector preferences the design matrix is X = f (x) = x, and with a symmetric, constant

matrix M we can directly apply the results of Proposition 3. Table 2.12 presents the analytical

derivatives for the WG problem.

2.5.2 Estimation Based on Differences

Another way to eliminate the individual effect ηi is to take increments, so that
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Table 2.12: Analytical derivatives for the WG problem

Objective minX tr
(
X ′MX

)−1

Gradient −2 vec MX
(
X ′MX

)−2

Hessian 4
[(

X ′MX
)−1 ⊗MX

(
X ′MX

)−2
X ′M

]
+

4
[(

X ′MX
)−2 ⊗MX

(
X ′MX

)−1
X ′M

]
−

2
[(

X ′MX
)−2 ⊗M

]

∆yit =∆X ′
itβ+∆εit,

where ∆yit = yit − yi(t−1) , ∆X it = ∆ f (xit) = f (xit)− f
(
xi(t−1)

)
, and ∆εit = εit − εi(t−1). Define the

matrices

∆T =





−1 1 0 . . . 0

0 −1 1 . . . 0

. . .

0 . . . 0 −1 1





(T−1)×T

, H =





2 −1 . . . 0 0

−1 2 . . . 0 0
...

...
. . .

. . .
...

0 0
. . . 2 −1

0 0 . . . −1 2





(T−1)×(T−1)

.

Now, let’s stack the observations for N individuals in a column to obtain a compact form of the

transformed model

DY = DXβ+Dε,

with a differentiation matrix D = (IN ⊗∆T ). To estimate the resulting model efficiently we have

to apply GLS since {∆εit} follows a non invertible MA(1), which implies that E
[
∆εi∆ε

′
i

]
= σ2

εH.

The GLS estimator with N customers and T questions for each one is
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β̂=
(

N∑

i=1

T∑

t=2
∆X itH

−1
∆X ′

it

)−1
N∑

i=1

T∑

t=2
∆X itH

−1
∆yit =

(
X ′D′H−1DX

)−1
X ′D′H−1DY ,

where H= (IN ⊗H) is analogous to H but with dimension N (T −1). Notice that β̂ is an unbiased

estimator with non singular variance

V ar
(
β̂
)
=σ2

ε

(
N∑

i=1

T∑

t=2
∆X itH

−1
∆X ′

it

)−1

=σ2
ε

(
X ′D′H−1DX

)−1
,

An exact optimal design for this method should minimize φ
[(

X ′D′H−1DX
)−1

]
.

The analytical derivatives to minimize the trace in the GLS problem are explicitly given in

Proposition 3, because Z = D′H−1D is a constant matrix. Table 2.13 presents the solution to the

classic conjoint model with vector preferences.

Table 2.13: Analytical derivatives for the GLS estimator in a differenced model

Objective minX tr
(
X ′D′H−1DX

)−1

Gradient −2 vec D′H−1DX
(
X ′D′H−1DX

)−2

Hessian 4
[(

X ′D′H−1DX
)−1 ⊗D′H−1DX

(
X ′D′H−1DX

)−2
X ′D′H−1D

]
+

4
[(

X ′D′H−1DX
)−2 ⊗D′H−1DX

(
X ′D′H−1DX

)−1
X ′D′H−1D

]
−

2
[(

X ′H−1X
)−2 ⊗D′H−1D

]

2.5.3 Numerical Results

We report some simulations for panels, analogous to the case where we considered a single con-

sumer. Here we simulate a panel with N = 10 consumers, each of whom is shown 5 stimuli

profiles (T). The remaining simulation parameters can be found in Table 2.3.

Table 2.14 presents the results of a simulation for the conjoint panel estimated with WG and

a GLS-in-differences approach. We run the algorithm 100 times with random initial points, and

select the most efficient design. Comparing the results with the case of the individual respondent

(Table 2.4), we observe that using a panel of consumers leads to significant efficiency gains at a

relatively small optimization cost. The algorithm converges in seconds in all cases, and the con-
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Table 2.14: Simulation results for conjoint panels

WG model GLS in differences model

Objective function min tr
(
X ′MX

)−1 min tr
(
X ′D′H−1DX

)−1

Problem size Small Medium Large Small Medium Large

Tracea 0.00309 0.00516 0.00829 0.00028 0.00076 0.00187
Determinant 1.09e-9 1.16e-15 1.29e-24 6.28e-13 5.04e-20 3.73e-30

# iterations 15 16 20 44 63 184
# function evaluations 16 17 21 45 68 190
Time (s) 0.34 0.80 2.70 0.96 3.21 24.36

Rank 3 5 8 3 5 8
Condition 1.03 1.18 1.32 2.78 3.45 4.36
a Underlined values are objective function values.

ditioning of the full-rank design matrix is good. The performance of WG and GLS-in-differences

approaches is similar. The within-groups optimal design is faster to compute, but as expected

the objective function is worse. The problem for GLS in a differenced model is slower, but the

solution is more stable - the minima lie very close.

2.6 Designing CA Studies with Invariance to Monotonous Trans-

formations

Conceptually, a monotonous transformation of a utility function does not change the associated

preorder of preferences. A drawback of regression models is that conditional means are not

invariant to monotonous transformations of the response variable. Assume that E [y|x]= f (x)′β,

then given a monotonous transformation h, in general

E [h (y) |x] 6= h (E [y|x])= h
(
f (x)′β

)
.

The lack of invariance to monotonous transformation is generally a nuisance, although for

rating-based CA analysis it can accepted and OLS estimators are commonly considered in this

context. But if the analysis is based on preference ordering, albeit OLS is a valid method to
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estimate E [y|x], it is quite hard to accept the lack of invariance in the estimated utility function.

In this section we consider the question: is there any general method to build CA models,

which is invariant to monotonous transformations of the response variable? The answer is pos-

itive: the conditional median or 0.5 conditional quantile. Note that the α-quantile of the condi-

tional distribution of y|x is

F−1
y|x (α)= inf {t : Pr(y≤ t|x)≥α} .

Assuming that the conditional median is linear in parameters, F−1
y|x (0.5) = f (xt)′γ (it happens

under normality, but also for other distributions), we can consider the 0.5-quantile regression

yt = f (xt)
′γ+ǫt, t = 1, ...,T,

where {ǫt} are i.i.d. quantile innovations and ǫ|x has a conditional density function g (·|x) with

zero median. Notice that quantiles are invariant to monotonous transformations, so that

F−1
h(y)|x (0.5)= h

(
F−1

y|x (0.5)
)
= h

(
f (x)′γ

)
.

Another advantage of quantile regression is that the quantiles are identifiable under censure.

For example, in CA using a positive ratio scale of preferences we would censure all products

with disutility (negative ratings), as we only observe yc = max {0, y}. The quantile regression

here is F−1
yc|x (0.5) = max

{
0,F−1

y|x (0.5)
}
= max

{
0,h

(
f (x)′γ

)}
. By contrast, the conditional mean of

censured variables is only identifiable with additional distributional assumptions (e.g., a Tobit

model). How can we estimate the conditional median? The classic econometric solution is the

Least Absolute Deviation (LAD) estimator γ̂ minimizing

T∑

t=1

∣∣yt − f (xt)
′γ

∣∣ .

This procedure is older than OLS and under regularity conditions it is a consistent estimator of

γ. If the conditional distribution of y|x is symmetric, i.e. g (·|x) is symmetric in 0 for all x, then
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the 0.5 quantile regression model is equivalent of the standard linear regression, and OLS and

LAD are two alternative estimators for the same parameters. OLS is more efficient, but less

robust to outliers in yt. However, if the conditional distribution of y is asymmetric (for example

due to the choice of preference measurement scale in the questionnaire), the differences can

be substantial. Then a conjoint modeler should use LAD instead of OLS. LAD estimators are

traditionally computed solving the linear programing problem,

min
{γ,u1,...,uT}

T∑

t=1
ut

s.t. ut ≤ yt − f (xt)
′γ, t = 1, . . . ,T

ut ≤−
(
yt − f (xt)

′γ
)
, t = 1, . . . ,T

which is easy to solve even with popular computational spreadsheets such as Microsoft Office

Excel. The constraints force ut = |ǫ̂t| in the optimum.

Our experimental design method can be adapted to conditional quantile estimators. The

asymptotic normality of LAD estimators and quantile regressions has been studied by Koenker

and Bassett (1978) and Pollard (1991). In particular, the asymptotic covariance matrix of LAD

estimators can be consistently estimated by

VT =
1

4

(
T∑

t=1
g (0|xt) f (xt) f (xt)

′
)−1 (

X ′X
)
(

T∑

t=1
g (0|xt) f (xt) f (xt)

′
)−1

.

We will consider the optimal design minimizing the trace of this matrix. In the CA setup the

conditional density g (0|x)= g (0) is independent of x and we obtain that

VT =
1

4g (0)2

(
T∑

t=1
f (xt) f (xt)

′
)−1

=
1

4g (0)2
Q−1

T .

Therefore, in order to minimize φ (VT ) we can use the same optimal designs minimizing φ
(
Q−1

T

)
,

which we have proposed for Least-Squares estimators. In other words, the optimal designs and

algorithms developed in this chapter can be directly implemented for LAD estimators.
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2.7 Experimental Design for Choice-Based CA

The choice-based CA model is based on McFadden’s (1974) work. Assume J alternatives in a

choice set and each alternative is characterized by the attributes
{
x j

}J

j=1. If the latent utility

of the alternative j is u j = x′
j
β+ ε j, and ε j has a type I extreme value distribution, then the

probability that a consumer selects the alternative j from the set {x1, ..., xJ} is

π j

(
x,β

)
=

exp
(
x′

j
β
)

exp
(∑J

l=1 x′
l
β
) .

With t = 1,2, ..,T sets we codify choices yt = (yt1, ..., ytJ)′ into a vector of dummies so that yt j is

equal to 1 if alternative j is selected and zero otherwise. Then the model can be estimated by

Maximum Likelihood, maximizing

L
(
X ,β

)
=

T∑

t=1

J∑

j=1
yt j lnπ j

(
xt,β

)
=

T∑

t=1

J∑

j=1
yt j

(

x′t jβ− ln

(
J∑

l=1
exp

(
x′tlβ

)
))

.

The gradient and the information matrix are given by

∂L
(
X ,β

)

∂β
=

T∑

t=1

J∑

j=1

(
yt j −π j

(
xt,β

))
xt j,

I
(
X ,β

)
= E

[
∂L

(
X ,β

)

∂β

∂L
(
X ,β

)

∂β

′]

=
T∑

t=1

J∑

j=1

J∑

l=1
E

[(
yt j −π j

(
xt,β

))(
ytl −πl

(
xt,β

))]
xt jx

′
tl

=
T∑

t=1

J∑

j=1
π j

(
xt,β

)(
1−π j

(
xt,β

))
xt jx

′
t j −

J∑

j 6=l

π j

(
xt,β

)
πl

(
xt,β

)
xt jx

′
tl

where we have used cov
(
yt j, ytl

)
= π j

(
xt,β

)(
1−π j

(
xt,β

))
for l = j, and −π j

(
xt,β

)
πl

(
xt,β

)
for

l 6= j.

The asymptotic covariance matrix of the maximum likelihood estimator can be estimated by

the inverse of the Hessian, and it is upper-bounded since

I
(
X ,β

)
≤

T∑

t=1

J∑

j=1
π j

(
xt,β

)
xt jx

′
tl ≤ X ′X ,
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using
∑J

j=1
∑J

l=1π j

(
xt,β

)
πl

(
xt,β

)
xt jx

′
tl

is non negative definite. Therefore,

φ
(
V ar

(
β̂
))
=φ

(
I
(
X ,β

)−1
)
≥φ

((
X ′X

)−1
)
.

A commonly used procedure consists of minimizing the lower bound for the covariance matrix

φ
((

X ′X
)−1

)
. In particular Kanninen (2002) maximizes

∣∣X ′X
∣∣, finding that the optimal design

places the attributes at the extreme points of the domain χ. This is also the approach considered

by Kuhfeld et al. (1994), based on the Fedorov algorithm. The presented algorithm can be used

in this context. However, this is not a reliable solution, as φ
(
V ar

(
β̂
))

could be much higher than

φ
((

X ′X
)−1

)
.

Another commonly used approach is to replace π j

(
xt,β

)
by a known function, setting a value

β0 arbitrarily or based on prior information (Huber and Zwerina 1996). Then we can apply

the presented algorithm to minimize φ

((
∂ lnL(X ,β0)

∂β∂β′

)−1
)

(updating the derivatives in the Newton

algorithm). However, this procedure does not guarantee a small covariance matrix when the

true parameter is distant from the considered value β0. So far, neither the statistical nor the

marketing literature has produced a robust solution to this problem.

2.8 Designing CA Experiments with Discretized Preference Scales

Standard CA models assume that the respondent’s preferences over products are continuous,

and given by the latent model ut = x′tβ
0+ε, where εt are independent shocks with zero mean and

cumulative distribution F (·/σ). However, in practice marketing researchers typically use discrete

measurement scales, such as Likert scales, rankings, etc. Therefore, what we actually observe is

not the continuous varying ut, but a censored version of the true underlying preferences. Ordered

regression models, introduced by McKelvey and Zavoina (1975) and popularized by McCullagh

(1980), can be used to capture the influence of the nonlinear censuring transformation imposed

by ordered discrete measurement scales.

If T alternatives are evaluated on a discrete scale with multiple ordered response categories

{ck}m
k=1 , we can study the relationship between these discrete measures and the continuous un-
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derlying model, using the ordered regression method. Assuming that the respondent allocates

rating yt = ck when the latent utility ut falls in the scale interval (ck−1, ck] , where c0 =−∞ and

cm+1 =+∞. Then the log likelihood of the CA model is given by

L
(
X ,β,σ

)
=

T∑

t=1

m+1∑

k=0
ytk ln

(
F

(
ck − x′tβ

σ

)
−F

(
ck−1 − x′tβ

σ

))
,

where we set F
((

c0 − x′tβ
)
/σ

)
= 0 and F

((
cm+1 − x′tβ

)
/σ

)
= 1 for all t. Normality is often assumed,

relying on the aggregation of innumerable small influences and the effect of the central limit

theorem, but other distributions can be considered (such as the Logistic distribution) as well.

Whenever F (·/σ) is continuously differentiable,

∂L
(
X ,β,σ

)

∂β
=

T∑

t=1




m+1∑

k=0
ytk

(
f
(

ck−x′tβ

σ

)
− f

(
ck−1−x′tβ

σ

))

F
(

ck−x′tβ

σ

)
−F

(
ck−1−x′tβ

σ

)



xt.

Notice that E
[
ytk yt j

]
= E

[
y2

tk

]
× I (k = j)= E [ytk]× I (k = j) , so that

I
(
X ,β,σ

)
= E

[
∂L

(
X ,β,σ

)

∂β

∂L
(
X ,β,σ

)

∂β

′]

=
T∑

t=1

m+1∑

k=0

(
f
(

ck−x′tβ

σ

)
− f

(
ck−1−x′tβ

σ

))2

F
(

ck−x′tβ

σ

)
−F

(
ck−1−x′tβ

σ

) xt jx
′
tl .

Setting β= 0 the covariance function can be expressed as
(
X ′BX

)−1 for weights B that depend on

the distribution F (·/σ) and the discrete measurement scale thresholds, therefore the algorithm,

that we have presented, can be applied to compute optimal designs. But, similarly as in the case

of choice-based CA the efficiency of the design will be good only if the true parameter is near the

considered value.

2.9 Conclusions

Current methods to compute optimal experimental designs are typically inappropriate in CA,

because they reduce treatments to a few, often repeated product profiles. Moreover, the most

informative treatments (extreme vertices) are often dangerous to use or expensive. In these
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cases, the optimal design is not implemented, but it should be computed to be used as a reference

to measure the efficiency of the implemented designs.

This essay proposes a general approach to compute the optimal matrix X∗ with Newton type

methods, avoiding repeated product profiles. Implementation results confirm the suitability of

our approach to CA. We discuss cases with continuous and categorical product attributes, models

for a single respondent and a panel of respondents, rating and choice preference measurement

as well as studies with invariance to monotonous transformations.

The proposed procedure has the following advantages: (1) it is flexible to construct discrete-

continuous designs; (2) it is easily implemented to the case of partial profiles in high dimensions;

(3) the approach can handle easily other alternative linear regression estimators such as Stein’s

Shrinkage or ridge regression. Below we briefly review each of these issues.

2.9.1 The Discretization of Continuous Attributes

In many CA models, we often find continuous attributes reformulated as discrete ones. For

example, prices are sometimes formulated as a continuous variable, but often just a few price

levels are included in the model. What is the rationale for this type of specifications? In this

section we introduce some remarks about this approach.

Discrete attributes are often introduced by the applied researchers as a way to approximate

a nonlinear function effect of a continuous attribute. Assume that

yt =β0 +β1 f1 (z1t)+ ...+ βk fk (zK t)+ǫt,

where zt are continuous attributes and some of the functions in f (·) are unknown. If f i (zi) is un-

known we can absorb the coefficients βi in this functions, and apply a semiparametric procedure

for additively separable models.

One of the most elementary procedures is as follows. First, build a partition
{
A i j

}ki

j=1 of the

range of variation of zi, then we can approximate f i (zi) by a simple function,
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f i (zi)≃
ki∑

j=1
αi j di j,

where di j = I
(
zi ∈ A i j

)
is a dummy variable, and I is the indicator function (equal to 1 if the

event occurs, and 0 otherwise). The CA model can be written as

yt =β0 +
K∑

i=1

ki∑

j=1
βi jdi jt +εt

where βi j =βiαi j. If we have a single attribute, and we omit the intercept to avoid multicollinear-

ity, the OLS estimator β̂i j is just the mean of all the data yt for which zit ∈ A j. This way to specify

and estimate a nonlinear regression model is known as a regressogram. It is the regression equiv-

alent to the histogram for a density function - the most basic nonparametric regression estimator.

To ensure consistency the partition must be thinner when the sample size increases at an appro-

priate rate (all ki must growth with T, but slowly). The general case with several attributes is

a standard semiparametric model for linear in components specifications. Notice that we might

apply the same logic to an unknown general utility function f (z1t, ..., zK t), then the nonparamet-

ric approximation would be given by the full factorial model, it can be see as a nonparametric

estimator subject to the curse of dimensionality (the required sample size growths exponentially

with K). This problem is not found in the semiparametric additively separable model.

Continuous attribute discretization are commonly used in CA but from a more primitive

perspective: as a parametric model specification, which is sometimes problematic. Note that, if

the number of levels ki is too low we have an over-smoothing, and if it is too high - an over-fitting

problem. The impact of the number of levels over CA estimations was pointed out by Currim

et al. (1981) and Wittink et al. (1982). This is a well known problem in both, nonparametrics and

semiparametrics, and it can be avoided using their fundamental principles.

From an econometric perspective, there are other approaches that can render better results

than partitions. We recommend the use of semiparametric analysis (with the advantage that,

for these models, there are much better tools for selecting the optimal level of smoothing than

in the regressogram partitions), but even from a classic model perspective it is often better than
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discretization. For example, consider a simple case with regressors in [0,1] and a Chebyshev

Polynomials Basis
{
φ j (z)= cos( j arccos z)

}
, if we specify f i (zi)=

∑ki

j=1αi j φ j (zi) (in the semipara-

metric approach we take ki as an increasing function of T). Then we can express

yt =β0 +
k1∑

j=1
β1 j φ j (zi)+ ...+

kK∑

j=1
βK j φ j (zK t)+ǫt,

and the optimal experimental design for the OLS estimators of this model can be computed with

the methodology presented in this essay.

2.9.2 Partial Profiles in High Dimensions

Standard CA models assume that all the stimuli attributes affecting utility ratings are included

in the model. But the product complexity has increased over time, and consumer preference

models often have to analyze categories described by a massive number of attributes and levels.

It is unfeasible to study all of them. Some researchers use partial profiles, where each profile

contains an experimentally designed subset of the attributes, as discussed by Bradlow (2005).

Sometimes adaptive questionnaires are used to select a few important attributes.

However, the omission of other significant regressors generates biased estimations. Let us

assume that the actual CA model is

yt = f (xt)
′β+Ut +εt,

where Ut = γ′ f (zt) is the utility associated to the omitted attributes zt. If we omit the attributes

f (Z), estimating the model yt = f (xt)′β+ εt by OLS, some issues must be taken into account.

First, notice that question repetitions in X can be accepted provided that omitted attributes are

changing (the product profiles are actually different). The second and more crucial issue, is that

OLS estimator β̂=
(
X ′X

)−1
X ′Y of the model with omitted variables is in general biased, with

E
[
β̂
]
=β+Q−1

T X ′U .
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with U = (U1, ...,UT )′ .

The presented algorithm we can used to generate optimal designs such that β̂ is unbiased. We

just need to generate joint profiles {(xt, zt)}, including the additional constraint that X ′ f (Z) = 0.

This constraints ensures that X ′U is zero, avoiding the bias problem, and the covariance matrix

of β̂ will be determined by
(
X ′X

)−1 under the standard assumptions.

2.9.3 Alternative Linear Regression Estimators

The Gauss-Markov Theorem ensures that OLS are the best linear unbiased estimators [BLUE],

conditionally on the design matrix X . However, not all the design matrices render equally ef-

ficient estimators. We have focused on optimal experimental designs for OLS estimators, but

the same method can be adapted to other increasingly popular estimators, such as Bayesian

estimators for Gaussian Linear Regression. The classic model assumes that Y ∼ N
(
X ′β,σ2I

)

with conjugate prior β|σ2 ∼ N
(
µ,Σ

)
and 1/σ2 distributed as a Gamma. In this case, β has a pos-

terior distribution normal with E
(
β|Y ,σ2

)
=

(
Σ
−1 + X ′X

)−1 (
Σ
−1µ+ X ′Y

)
and covariance matrix

V ar
(
β|Y ,σ2

)
=σ2

(
Σ
−1 + X ′X

)−1
. The trace (or determinant) of

(
Σ
−1 + X ′X

)−1
can be minimized

similarly to the trace (determinant) of
(
X ′X

)−1 in OLS, subject to the required constraints pre-

venting profile repetitions. In any case, the choice between OLS and the Classic Bayesian method

is irrelevant with large T, as the distance between E
(
β|Y ,σ2

)
and the OLS estimator converges

faster than
p

T. Even if the researcher considers another prior distribution and non gaussian

likelihood for ε= Y − X ′β (computing numerically the posterior), the Bernstein-von Mises Theo-

rem ensures that the Bayes distribution a posteriori behaves asymptotically like the Maximum

Likelihood estimator, under appropriate regularity conditions. With a normal likelihood function

this estimator is precisely OLS. Therefore, the choice between Bayes or OLS matters essentially

for relatively small T, which is precisely where the prior assumption has more impact.

The method can be also adapted to handle Stein’s Shrinkage estimators that can have a

smaller Mean Squared Error than OLS, reducing the variance in exchange for a small bias sac-

rifice. For example, a Ridge regression estimator β̂ =
(
X ′X +γI

)−1
X ′Y minimizes

∥∥Y − X ′β
∥∥2

2 +

γ
∥∥β

∥∥2
2, where γ is set as a minimizer of the MSE trace or determinant conditionally on the data.
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Essentially the method penalizes complex models, and has a Bayesian interpretation. The algo-

rithms considered in this paper can be readily adapted to these estimators, minimizing the trace

or determinant of the appropriate covariance matrix.
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Appendix A: Approximate Optimal Designs

In this section we review the tools available for the design of approximate optimal experiments,

and the drawbacks for their application to CA experiments.

What can we say about the matrix Q? We first consider the case with a finite number of

explanatory variables (or treatments), χ = {x1, ..., xr}, meaning that the attributes are described

by dummy variables. With T > r some of the treatments are replicated, and let T j denote the

number of replications of treatment x j. Then we can write QT =
∑r

j=1

(
T j/T

)
f
(
x j

)
f
(
x j

)′, with

T =
∑r

j=1 T j, and the limit matrix must be of the form

Q =Qω =
r∑

j=1
ω j f

(
x j

)
f
(
x j

)′ ,

where
{
ω j

}
are limit relative frequencies that sum up one. Notice that the optimal ω j are

the continuous approach to treatments’ relative frequencies T j/T. An exact design for a given

sample size T puts emphasis on setting T j, and an approximate design on setting ω j in the

continuous limit (either generating T random profiles based on these probabilities so that and

Q = Eω

[
f (x) f (x)′

]
, or setting an exact integer number T j such that T j/T is close to ω j).

The theory of approximate designs was developed by Jack Carl Kiefer and his school (Kiefer

1959). They proposed to select optimally ω j, minimizing some convex function measuring the

size of Q−1
ω . The most common procedures minimize:

1. generalized variance:
∣∣Q−1

∣∣ =
∏k

r=1λr

(
Q−1

)
=

∏k
r=1 1/λr (Q) where λr (Q) , r = 1, ...,k the

eigenvalues of Q. Equivalently, the logarithm can be considered. D-optimality criterion

minimizes the volume of the confidence ellipsoid of the model parameters. It is probably

the most popular method;

2. average variance: tr
(
Q−1

)
=

∑k
r=1λr

(
Q−1

)
=

∑k
r=1 1/λr (Q). A-optimality criterion (average-

variance optimality) minimizes the mean of the variances of the estimates; and

3. worst possible prediction error: d
(
Q−1

)
= maxx∈χ

{
xQ−1x

}
. This is sometimes denoted G-

optimality. The celebrated Kiefer-Wolfowitz equivalence theorem proved that G-optimal
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and D-optimal designs are exactly the same.

4. the largest eigenvalue: maxr

{
λr

(
Q−1

)
=

}
= maxr {1/λr (Q)}, called E-optimality or eigen-

value optimality.

More generally, we can minimize any non-negative function φ
(
Q−1

)
, provided that it is (1)

positively homogeneous: φ (δA)= δφ (A) for δ> 0 to ensure that the factor σ2/T is common to all

designs; (2) non-increasing: φ (A) ≤ φ (B) when (A−B) is non negative definite; and (3) convex

(to ensure that φ satisfies the condition that information cannot be increased through interpola-

tion). This approach was developed by Kiefer (1959) inspired by the suggestion of Wald (1943)

to compare designs using D-optimality, see also Kiefer and Wolfowitz (1960). Sometimes we are

just interested in a subset or a combination of insightful coefficients, say Cβ with a non singular

matrix C. Then the optimal design minimizes the size of the corresponding covariance φ
(
CQC′)

(Hausman 1982; Toubia and Hauser 2007). In particular, the L-optimality criteria minimizes

tr
(
CQ−1

)
for an appropriate matrix C.

Following the Kiefer approach, we can randomly generate the designs with optimal probabil-

ities ω∗, by minimizing a convex function φ

min
ω

φ
(
Q−1

ω

)
=min

ω
φ

([
r∑

j=1
ω j f

(
x j

)
f
(
x j

)′
]−1)

(2.8)

subject to the constraint that ω is in the Rr
+ simplex. We can add other convex constraints, e.g.

a bound on the expected experiment cost T · c′ω≤ m where m is the available budget, and c is a

r×1 vector, whose elements are costs associated with each treatment in χ, so that the expected

cost of a single profile is c′ω.

Instead of generating random designs with distribution ω∗, we can consider appropriate in-

teger numbers T j of repetitions, such that the optimal ω∗
j

is approximated by T j/T (Pukelsheim

and Rieder 1992). Approximate designs are convenient from a theoretical and computational

perspective, but in practice the results must be rounded off leading to the loss of design effi-

ciency. Alternatively, we can try to optimize φ (QT ) in
{
T j

}
directly (exact designs). Notice that

in randomized experiments where individuals are allocated to a unique treatment (e.g. testing

79



medical drugs), the individuals can be allocated based on the optimal probabilities ω∗.

For continuous treatments, we can generate treatments randomly from a probability distri-

bution w, and consider a limit information matrix

Q (w)=
∫

f (x) f (x)′ w (dx) ∈Rp×p

where w is a probability distribution on χ. We need to select the optimal probability function.

In practice this problem becomes similar to the case with finite number of treatments, focusing

on a few extreme cases. This makes sense, as the extreme conditions in experiments usually

render more information for inference decisions. The following result provides a theoretical basis

for this and some more general statements. Let us denote by vech the lower half-vectorization

mapping (i.e., vech (Q) is the column vector obtained by vectorizing only the lower triangular

part of a symmetric matrix Q).

Lemma 1 If χ is a convex compact set and the continuous f preserves convexity, then any feasible

Q can be expressed as
∑

x j∈χe ω j f
(
x j

)
f
(
x j

)′
where ω j are discrete probabilities and χe ⊂ χ are the

profiles associated with the set of extreme points of
{
vech

(
f (x) f (x)′

)
: x ∈ χ

}
.

Proof. The set Q =
{
Q =Q (w) : w ≥ 0,

∫
dw = 1

}
is isomorphic to a non empty convex and

compact set in R
p(p+1)/2 using the lower half-vectorization mapping. The classic Krein–Milman

Theorem ensures that if Q is a compact convex set of Rp(p+1)/2, then any Q ∈ Q can be expressed

as
∑

x j∈χe ω j f
(
x j

)
f
(
x j

)′ where
∑

j ω j = 1 with ω j ≥ 0, and χe are the profiles associated with the

set of extreme points of
{
vech

(
f (x) f (x)′

)
: x ∈ χ

}
.

The literature has often considered an informal (and wrong) proof of this Lemma based on

the Carathéodory’s Theorem2, suggesting also that the number r of elements in χe satisfies that

r ≤ 1+ p (p+1)/2. But notice that the subset of extreme points representing any specific element

in the convex hull may change with the considered element, and as a result we cannot ensure

that any point can be represented as a convex linear combination from elements of a finite set

2The Carathéodory’s theorem states that if y ∈ Rd lies in the convex hull of a set P, there is a subset P ′ ⊂ P

consisting of no more than d+1 points such that y lies in the convex hull of P ′.
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with less than 1+ p (p+1)/2 points.

Therefore, the search for optimal designs may be restricted to designs with a finite support.

If the set
{
vech

(
f (x) f (x)′

)
: x ∈ χ

}
is a convex polytope in R

p(p+1)/2 the first step is to compute

the vertices, the second consists of solving a problem similar to (2.8), considering a frequency of

repetitions for each vertex. Obviously, mixed models with continuous and discrete variables can

be handled alike. These results can be directly adapted to experiments with heteroskedasticity,

where E(εε′) = diag
(
σ2 (xt)

)
, considering information matrices Q (w) =

∫
σ2 (x) f (x) f (x)′ w (dx),

and Q =
∑r

j=1ω jσ
2
(
x j

)
f
(
x j

)
f
(
x j

)′. But in practice this cannot be applied unless we know σ2 (x).

To that end we can build a preliminary experiment to estimate this function but this is rarely

considered.

In order to compute the approximate optimal designs solving (2.8), Kiefer’s school has consid-

ered several algorithms. One of the most popular is the classic algorithm proposed by Fedorov-

Wynn for D-optimality (Fedorov 1972; Wynn 1970), for the review see St. John and Draper (1975)

and the references in Atwood (1973, 1976). These methods are variants from the steepest descent

method algorithm, and they can be adapted for other criteria φ (·) (Whittle 1973). However, the

steepest descent methods converge very slowly. Atwood (1976) considers faster Newton direc-

tions. But the performance of these methods is not always good, and the search for optimal

designs often restricts to low-dimensional models. As López Fidalgo (2009) states: “One may

think the people working on optimal design must be good in optimization. They are not bad, but

they are not experts in the topic. At the same time, people in optimization are sometimes far

from statistics and even more from experimental designs. Therefore, there is a need of more co-

operation between them.” Several contemporary constrained optimization numerical algorithms

can be implemented for a faster computation of ω∗, including classic sequential quadratic opti-

mization algorithms, or the more recent interior point algorithms (see e.g. Vandenberghe et al.

1998; Boyd and Vandenberghe 2004, Ch.7). Solving the dual problem is a good strategy that

often renders faster results.

Unfortunately, this approach is not adequate for CA. If the researchers use Kiefer’s approx-

imate design for a single customer, ω j (respectively T j) can be interpreted as the probability
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(absolute frequency) of times stimulus j is repeated. This is an entirely undesirable situation: if

implemented, the repeated questions should be interspersed and presented separately over time

to ensure that the respondent forgets the previous answers. Even then, the procedure could eas-

ily be cost-prohibitive and tedious for the respondent, leading to biased estimations3. Therefore,

approximate optimal designs should not be implemented in CA in general.

Appendix B: Matrix Derivatives

This section presents the main results about matrix derivatives. First we introduce some con-

cepts about functions of matrices and their derivatives. Let Z denote a n× q real matrix. We can

consider a m× p real matrix valued function Φ (Z) (notice that scalar valued and vector valued

functions are a particular case). We define the Jacobian of Φ (Z) as the mp×nq matrix

DΦ (Z)=
∂vec (Φ (Z))
∂ (vec (Z))′

.

Using this definition, the properties of classic gradients and Jacobians are preserved. The differ-

ential of Φ (Z) will be given by d Φ (Z)=Φ (Z) d vec Z =Φ (Z) vec (dZ). Hessians, can be defined

analogously as follows,

HΦ (Z)= D (DΦ (Z))′ =
∂

∂ (vec (Z))′
vec

(
∂vec (Φ (Z))
∂ (vec (Z))′

)′
.

The classic case where Φ is vector or scalar valued, is a particular case under this notation. For

a detailed introduction to matrix derivatives see Magnus and Neudecker (1999).

Main derivatives

Consider a T ×k design matrix, X = f (x), where f (·) is a twice differentiable function. Let

3We can apply directly the Kiefer method for a homogeneous consumer sample, were we ask just one question
to each different respondent. Then the optimal frequencies ω∗ can be used for randomization, allocating different
respondents to an specific question.
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A =
∂vec ( f (x))
∂ (vec (x))′

B =
∂

∂ (vec (x))′
vec

(
∂vec ( f (x))
∂ (vec (x))′

)′
.

the Jacobian and Hessian of f , and let Z be a constant positive definite weight matrix. We assume

that Z is symmetric to simplify the notation, otherwise the derivatives become more involved. For

example for the classic experimental regression model, with vector utility preferences f (x) = x,

A = I, B = 0, and Z = I. Finally, let’s define a commutation matrix K , such that vec X ′ = K vec X .

Proposition 2 Consider the objective function

min
∣∣∣
(
X ′ZX

)−1
∣∣∣ .

The gradient and Hessian are respectively, in a vec form,

Dφ(X )=−2
∣∣∣
(
X ′ZX

)−1
∣∣∣ vec AZX

(
X ′ZX

)−1 ,

Hφ(X )= 4
∣∣∣
(
X ′ZX

)−1
∣∣∣K

(
AZX (X ′ZX )−1 ⊗ (X ′ZX )−1X ′ZA′)+

4
∣∣∣
(
X ′ZX

)−1
∣∣∣
((

X ′ZX
)−1 ⊗ AZX

(
X ′ZX

)−1
X ′ZA′

)
−

2
∣∣∣
(
X ′ZX

)−1
∣∣∣
((

X ′ZX
)−1 ⊗ AZA′

)
−

∣∣∣
(
X ′ZX

)−1
∣∣∣
(
ZX

(
X ′ZX

)−1 ⊗B+
(
X ′ZX

)−1
X ′Z⊗B′

)
.

Proof. Note that the general first order derivative of |X | is d|X | = |X |tr X−1dX , and the

general first order derivative of the inverse is X−1 =−X−1(dX )X−1. Now recall main properties

of trace: is invariant under cyclic permutations, the traces of a matrix and its transpose are

equal, and additivity. The differential of
∣∣∣
(
X ′ZX

)−1
∣∣∣ is
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d
∣∣∣
(
X ′ZX

)−1
∣∣∣ =

∣∣∣
(
X ′ZX

)−1
∣∣∣ tr

(
X ′ZX

)
d

(
X ′ZX

)−1 =

= −
∣∣∣
(
X ′ZX

)−1
∣∣∣ tr

(
X ′ZX

)−1
d

(
X ′ZX

)
=

= −2
∣∣∣
(
X ′ZX

)−1
∣∣∣ tr

(
X ′ZX

)−1
X ′ZdX =

= −2
∣∣∣
(
X ′ZX

)−1
∣∣∣ tr

(
X ′ZX

)−1
X ′ZA′dx.

Then the first order derivative is

Dφ(X )=−2
∣∣∣
(
X ′ZX

)−1
∣∣∣ AZX

(
X ′ZX

)−1 .

According to the first identification table (Magnus and Neudecker 1999, p. 176), the gradient in

vec form is −2
∣∣∣
(
X ′ZX

)−1
∣∣∣ vec AZX

(
X ′ZX

)−1.

Recall, one of the trace properties: (tr U)(tr V )= tr U⊗V , where U and V are square matrices.

Then consider the Hessian

d2
∣∣∣
(
X ′X

)−1
∣∣∣= d

[
−2

∣∣∣
(
X ′ZX

)−1
∣∣∣ tr

(
X ′ZX

)−1
X ′ZA′dx

]
=

=−2 d
∣∣∣
(
X ′ZX

)−1
∣∣∣ · tr

(
X ′ZX

)−1
X ′ZA′dx

−2
∣∣∣
(
X ′ZX

)−1
∣∣∣ tr d

(
X ′ZX

)−1
X ′ZA′dx

−2
∣∣∣
(
X ′ZX

)−1
∣∣∣ tr

(
X ′ZX

)−1 (dX )′ZA′dx

−2
∣∣∣
(
X ′ZX

)−1
∣∣∣ tr

(
X ′ZX

)−1
X ′Z(dA)′dx =

= 4
∣∣∣
(
X ′ZX

)−1
∣∣∣
[

tr
(
X ′ZX

)−1
X ′ZA′dx

][
tr

(
X ′ZX

)−1
X ′ZA′dx

]

+2
∣∣∣
(
X ′ZX

)−1
∣∣∣tr

(
X ′ZX

)−1
d

(
X ′ZX

)(
X ′ZX

)−1
X ′ZA′dx

−2
∣∣∣
(
X ′ZX

)−1
∣∣∣tr

(
X ′ZX

)−1 (dx)′AZA′dx

−2
∣∣∣
(
X ′ZX

)−1
∣∣∣ tr

(
X ′ZX

)−1
X ′Zdx′Bdx =

= 4
∣∣∣
(
X ′ZX

)−1
∣∣∣ tr

(
X ′ZX

)−1
X ′ZA′dx 1⊗

(
X ′ZX

)−1
X ′ZA′dx
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+4
∣∣∣
(
X ′ZX

)−1
∣∣∣tr

(
X ′ZX

)−1
(dx)′ AZX

(
X ′ZX

)−1
X ′ZA′dx

−2
∣∣∣
(
X ′ZX

)−1
∣∣∣tr

(
X ′ZX

)−1 (dx)′AZA′dx

−2
∣∣∣
(
X ′ZX

)−1
∣∣∣ tr

(
X ′ZX

)−1
X ′Zdx′Bdx.

Using the Kronecker property α⊗ A =αA, the Hessian is:

Hφ(X )= 4
∣∣∣
(
X ′ZX

)−1
∣∣∣K

(
AZX (X ′ZX )−1 ⊗ (X ′ZX )−1X ′ZA′)+

4
∣∣∣
(
X ′ZX

)−1
∣∣∣
((

X ′ZX
)−1 ⊗ AZX

(
X ′ZX

)−1
X ′ZA′

)
−

2
∣∣∣
(
X ′ZX

)−1
∣∣∣
((

X ′ZX
)−1 ⊗ AZA′

)
−

∣∣∣
(
X ′ZX

)−1
∣∣∣
(
ZX

(
X ′ZX

)−1 ⊗B+
(
X ′ZX

)−1
X ′Z⊗B′

)
.

Proposition 3 Consider the following objective function

min tr
(
X ′ZX

)−1 .

The gradient and Hessian are respectively in vec form

Dφ(X )=−2 vec AZX
(
X ′ZX

)−2

Hφ(X )= 4
((

X ′ZX
)−1 ⊗ AZX

(
X ′ZX

)−2
X ′ZA′

)
+

4
((

X ′ZX
)−2 ⊗ AZX

(
X ′ZX

)−1
X ′ZA′

)
−

2
((

X ′ZX
)−2 ⊗ AZA′

)
−

(
ZX

(
X ′ZX

)−2 ⊗B+
(
X ′ZX

)−2
X ′Z⊗B′

)
.

Proof. Using the main properties of the trace, the differential of tr
(
X ′ZX

)−1 is

85



d tr
(
X ′ZX

)−1 =− tr
(
X ′ZX

)−2
d

(
X ′ZX

)
=−2 tr

(
X ′ZX

)−2
X ′ZA′dx.

Following the identification table the first order derivative is

Dφ(X )=−2AZX
(
X ′ZX

)−2 .

and the gradient is simply the vec form of Dφ(X ).

For the Hessian, consider the second-order differential

d2 tr
(
X ′ZX

)−1 = d
(
−2 tr

(
X ′ZX

)−2
X ′ZA′dx

)
=

=−2 tr d
(
X ′ZX

)−2
X ′ZA′dx

−2 tr
(
X ′ZX

)−2 (dX )′ZA′dx

−2 tr
(
X ′ZX

)−2
X ′Z(dA)′dx =

= 2 tr
(
X ′ZX

)−1
d

(
X ′ZX

)(
X ′ZX

)−2
X ′ZA′dx

+2 tr
(
X ′ZX

)−2
d

(
X ′ZX

)(
X ′ZX

)−1
X ′ZA′dx

−2 tr
(
X ′ZX

)−2 (dx)′AZA′dx

−2 tr
(
X ′ZX

)−2
X ′Zdx′Bdx =

= 4 tr
(
X ′ZX

)−1 (dx)′AZX
(
X ′ZX

)−2
X ′ZA′dx

+4 tr
(
X ′ZX

)−2 (dx)′AZX
(
X ′ZX

)−1
X ′ZA′dx

−2 tr
(
X ′ZX

)−2 (dx)′AZA′dx

−2 tr
(
X ′ZX

)−2
X ′Zdx′Bdx.

Then according to the second identification table the Hessian is
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Hφ(x)= 4
((

X ′ZX
)−1 ⊗ AZX

(
X ′ZX

)−2
X ′ZA′

)
+

4
((

X ′ZX
)−2 ⊗ AZX

(
X ′ZX

)−1
X ′ZA′

)
−

2
((

X ′ZX
)−2 ⊗ AZA′

)
−

(
ZX

(
X ′ZX

)−2 ⊗B+
(
X ′ZX

)−2
X ′Z⊗B′

)
.

Distance constraints

Proposition 4 Consider the following distance constraints applied pointwise

(1T×T − IT )ε−diag
(
X X ′)1′−1diag

(
X X ′)′+2X X ′ ≤ 0

The gradient of the constraints in a matrix form is

dC =−2
(
IT2 +KT2

)
[(1T×1 ⊗ IT ) A− (X ⊗ IT )]

where A i. =
(
vec e i e

′
i X

)′ .

Proof. The constraint can be written as

(1T×T − IT )ε−F −F ′+2S ≤ 0

where S = X X ′, and F = diag(S)1′. In the constraint F,F ′ and S depend on X .

First, let’s calculate the derivative of F. Note the the special structure of F (identical columns):
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F =





s11 . . . s11

s22 . . . s22

. . . . . . . . .

stt . . . stt





T×T

=





e′1X X ′e1 . . . e′1X X ′e1

e′2X X ′e2 . . . e′2X X ′e2

. . . . . . . . .

e′tX X ′e t . . . e′
T

X X ′eT





T×T

=
T∑

i=1

T∑

j=1
e′i X X ′e iE i j

where e i is a unit vector containing 1 in the i-th element, and zeros otherwise. E i j is an elemen-

tary matrix, containing 1 in the (i,j)-th element and zeros otherwise.

According to the first identification table (Magnus and Neudecker, p. 176), taking derivatives

of a T×T matrix function F(X ) with respect to a T×k matrix X requires vectorizing both matrices

d vec F = A d vec X ⇒ DF(X )= AT2×Tk.

Every row of a differential matrix A contains partial derivatives of each element of the vector-

ized F, taken with respect to vectorized X . Conveniently, in our case all columns are identical,

therefore

vec F = (1T×1 ⊗ IT )F.1

is a column vector obtained by stacking T times first column of F. Each element of F.1 is a scalar

function of X , such that Fi1 = e′
i
X X ′e i, and its derivative is

d φ(X )= d
(
e′i X X ′e i

)
= e′i(dX )X ′e i + e′i X (dX )′e i = 2 tr X ′e i e

′
idX

⇔ Dφ(X )= 2
(
vec e i e

′
i X

)′ .

Using the result from first identification table

φ(X ) : dφ= tr A′dX = (vec A)′ d vec X ⇒ Dφ(X )= (vec A)′ ,
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we obtain following derivative of F:

DF = (1T×1 ⊗ IT )F.1 = 2(1T×1 ⊗ IT ) A

where A =





(
vec e1e′1X

)′

(
vec e2e′2X

)′

. . .
(
vec eT e′

T
X

)′





.

It is straightforward to obtain the derivative of the second element, F ′, using the properties of

vec operator

vec F ′ = KT2 vec F,

where K is a square commutation matrix. Then

d vec F ′ = KT2 d vec F ⇒ DF ′ = KT2 DF.

The last element in the constraint is S = X X ′. If S(X )= X X ′, then

dS(X )= (dX )X ′+ X (dX )′

and

d vec S(X )= (X ⊗ IT ) d vec X + (IT ⊗ X ) d vec X ′

= (X ⊗ IT ) d vec X + (IT ⊗ X )KTk d vec X

= (X ⊗ IT ) d vec X +KT2 (X ⊗ IT ) d vec X

=
(
IT2 +KT2

)
(X ⊗ IT ) d vec X .
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Therefore

DS(X )=
(
IT2 +KT2

)
(X ⊗ IT ) .

Finally, combining all three results, the derivative of constraint on the distance matrix is

DC =−DF −KT2 DF +2DS =

=−
(
IT2 +KT2

)
DF +2DS

=−2
(
IT2 +KT2

)
[(1T×1 ⊗ IT ) A− (X ⊗ IT )] .

Interactions

In Problem (2.6) we have introduced a mixed-integer conjoint model with interactions. First,

recall that in an experiment with L integer and k continuous variables, the design matrix x =

[D1, . . . ,DL, Z] is partitioned in such a way that each integer variable is represented by a dummy

block Dl , and every continuous variable is represented by a column in a matrix Z. Next, we make

the necessary operations to eliminate multicollinearity from the dummies, and that we add an

intercept. We denote this transformation by f1(x) = xA +B, where A is a sparse matrix, which

eliminates the multicollinearity from the model (method D1 or D2 from a discussion of the case

of integer attributes) and adds a column of zeros as a first column, and B is a sparse matrix with

ones in the first column, and zeros otherwise. Let D̃l represent a transformed dummy variable

from which we eliminated multicollinearity.

Consider a model with interactions between two variables, r and s, where (1) both of them

can be integer, (2) both of them can be continuous, and (3) one can be integer and the other

continuous. The interaction block containing all possible interaction elements between r and s

can be expressed in terms of the design matrix x
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W(x)=
T∑

t=1
e t (Rt(x)⊗St(x)),

where e t is a unit vector with 1 in the position t and zeros otherwise, R and S are partitions of

the design matrix x, representing variables r, s, and Rt,St is their tth row. Depending on the type

of interaction: (1) R = D̃r and S = D̃s are corresponding dummy blocks; (2) R = Zr and S = Zs

are corresponding columns from Z; (3) R = D̃r is a dummy block, and S = Zs is a column from Z.

Hence, every row in W(x) is calculated as the Kronecker product of either (1) two row vectors, (2)

two scalars, or a (3) a row vector and a scalar, respectively.

More specifically, Rt(x)= e′t f1(x)CR , and St(x)= e′t f1(x)CS, where CR ,CS are sparse matrices

of dimensions equal to R and S respectively. Each column of CR ,CS is a unit vector with a 1 in the

position corresponding to a column in the design matrix x, so that R = f1(x)CR and S = f1(x)CS.

Then X = [1, f̃ (x),W(x)] is

X = f2( f1(x))= f1(x)D1 +WD2 = xAD1 +BD1 +WD2

D1,D2 being constant sparse matrices which add block of zeros to the back and front of the

matrix, and W is defined above. Applying the result of Proposition 3, we get

d tr
(
X ′X

)−1 =−2 tr
(
X ′X

)−2
X ′dX =−2 tr

(
X ′X

)−2
X ′d (xAD1 +BD1 +WD2)=

=−2 tr AD1
(
X ′X

)−2
X ′dx−2 tr D2

(
X ′X

)−2
X ′dW .

The first element does not require any further calculations, so let’s concentrate on the second

element:

tr D2
(
X ′X

)−2
X ′dW = tr D2

(
X ′X

)−2
X ′d

(
T∑

t=1
e t

(
e′t f1(x)CR ⊗ e′t f1(x)CS

)
)
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=
T∑

t=1
tr D2

(
X ′X

)−2
X ′e t d

(
e′t f1(x)CR ⊗ e′t f1(x)CS

)
.

Note that D2
(
X ′X

)−2
X ′e t is a column vector and the elements in Kroneker product are row

vectors (for continuous variables they are scalars), therefore the Kronecker expression is also a

row vector. This simplifies the algebra needed to compute the gradient:

T∑

t=1
e′tX

(
X ′X

)−2
D′

2 d
(
e′t f1(x)CR ⊗ e′t f1(x)CS

)′ (2.9)

=
T∑

t=1
e′tX

(
X ′X

)−2
D′

2 d
(
C′

R A′x′e t ⊗C′
S A′x′e t

)
(2.10)

=
T∑

t=1
e′tX

(
X ′X

)−2
D′

2 d vec C′
S A′x′e te

′
txACR (2.11)

=
T∑

t=1
e′tX

(
X ′X

)−2
D′

2 vec
(
C′

S A′(dx)′e te
′
txACR +C′

S A′x′e te
′
t(dx)ACR

)
(2.12)

=
T∑

t=1
e′tX

(
X ′X

)−2
D′

2

[(
C′

R A′x′e te
′
t ⊗C′

S A′)d vec x′+
(
C′

R A′⊗C′
S A′x′e te

′
t

)
d vec x

]
(2.13)

=
T∑

t=1
e′tX

(
X ′X

)−2
D′

2

[(
C′

R A′x′e te
′
t ⊗C′

S A′)KT×nucol +
(
C′

R A′⊗C′
S A′x′e te

′
t

)]
d vec x (2.14)

In (2.9) we use the trace property for column vectors a,b that tr ab′ = a′b. In (2.10) we apply

f (x)= xA+B, and Kronecker property (A⊗B)′ = (A′⊗B′). In (2.11), we use the Kronecker property

for column vectors: vec ab′ = b ⊗ a. In (2.12) we take the derivative of a product d(x′Ax) =

(dx)′Ax+x′A(dx). In (2.13) apply vec ABC = (C′⊗A) vec B. Finally in (2.14) we use commutation

matrix to get vec x′ = K vec x. Then the gradient for the problem which includes interactions is

Dφ(x)=−2(vec X
(
X ′X

)−2
D′

1 A′)′

−2
T∑

t=1
e′tX

(
X ′X

)−2
D′

2

[(
C′

R A′x′e te
′
t ⊗C′

S A′)KT×nucol +
(
C′

R A′⊗C′
S A′x′e te

′
t

)]
.

The Hessian of the problem has been computed numerically.
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Chapter 3

Optimal Experimental Designs for

Nonlinear Conjoint Analysis

3.1 Introduction

It has been 40 years since Green and Rao (1971) published their seminal paper on Conjoint Anal-

ysis (CA), but it still remains an active research area with enormous impact on practitioners (see

Wittink and Cattin 1989; Wittink et al. 1994; Green et al. 2001; Gustafsson et al. 2007). Nowa-

days the expression CA encompasses a variety of techniques for modeling consumer preferences

over multi-attributed stimuli, using experimental data to estimate the parameters of the spec-

ified utility function. Managerial contributions of CA are manifold and validated by thousands

of commercial applications each year: from optimal design of products, through predicting mar-

ket shares of brand offerings, to understanding how consumers make trade-offs between product

features (and many more).

In CA experiments individual respondents are presented with a series of stimuli (product/service

descriptions, illustrations, samples, prototypes, etc.), and are asked to rank or rate them, or to

choose one from a set of alternatives. Let the vector x denote a multi-attribute product profile,

and
{
U

(
x,β

)
:β ∈Θ⊂Rp

}
be a utility function parametric model. The profiles xt are determinis-

tic regressors in a compact set χ in an Euclidean space representing attributes (discrete dummy
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and/or continuous variables) and they form the sample {xt}T
t=1, with T ≥ p. The responses, yt,

are evaluations of each product profile and are measured on the attitudinal scale (typically based

on ratings, rankings or choice). Measures are affected by an error shock εt with zero mean and

variance σ2, satisfying

yt =U
(
xt,β

0)
+εt, t = 1, ....,T.

The first goal in CA is the estimation of the parameters β0 in the utility model from experimental

data. Stacking the data in matrices the model is y =U
(
X ,β0

)
+ε, where y, ε are T ×1 vectors,

X =
(
x′1, ..., x′

T

)′ ∈ χT is a full rank design matrix with all product profiles.

Different preference measurement scales and distributional assumptions can be considered,

and based on this decision a variety of econometric methods can be used to estimate β0, including

ordinary or non linear least squares, several types of maximum likelihood estimators, least abso-

lute deviations, etc. Under regularity conditions, the appropriate estimators are consistent and

when T grows the re-scaled sequence V−1/2
T

(
β̂−β0

)
converges in distribution to a standard nor-

mal distribution N (0, I) where VT is a positive definite matrix converging in probability to a limit

asymptotic covariance matrix V . The distribution of the error
(
β̂−β0

)
is generally unknown, and

the main tool to justify inferences for a medium-to-large size T is the asymptotic distribution of

the scaled error. Both covariance matrices, VT and the limit V , depend on the design matrix X

(or sequence, if we focus on V ) with the product profiles {x1, x2, ...} shown in the experiment.

The efficiency of experimental estimators conveyed in the covariance matrices VT , depends

heavily on the product profiles evaluated by the respondents. Optimal experimental design max-

imizes the information elicited from the respondent, or equivalently minimizes the size of the

covariance matrix. The goal of the researcher is usually to produce a good design matrix (or a se-

quence of profiles) so that φ (VT ) or the limit φ (V ) respectively, are as small as possible. Here φ (·)

denotes such a measure of the matrix “size” which is: (1) positively homogeneous: φ (δA)= δφ (A)

for δ> 0 to ensure independence from scale factors; (2) non-increasing: φ (A)≤φ (B) when (A−B)

is non negative definite; and (3) convex to ensure that φ satisfies the condition that informa-
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tion cannot be increased through interpolation. The typical measures are the trace (A-optimality

criterion), and the determinant (D-optimality criterion), therefore we will focus on these two

methods. Other matrix size criteria have been considered, but they usually render equivalent

solutions. This result was established by the Kiefer-Wolfowitz equivalence theorem for linear

models (Kiefer and Wolfowitz 1960) and later extended to nonlinear models by White (1973).

What are the consequences of using designs, which generate estimators with larger covariance

matrices? Implementing suboptimal designs requires a larger T to estimate the parameters with

the same precision as an optimal design, which increases the market research cost and rating

contamination caused by respondent’s fatigue.

If the utility function is linear and classical regression model assumptions hold, typically

VT = V (X ) and optimal experimental designs minimizing φ (V (X )) can be easily computed, for

a literature overview with new results see Chapter 2. But the CA literature has considered

a variety of models which are nonlinear in parameters, such as CA based on discrete choice,

non-compensatory models, models with unknown ideal point, etc. In such cases the selection of

optimal design is even more challenging because the covariance matrix VT = V
(
X ,β0

)
depends

both on the deterministic regressors and the unknown parameters β0 in a nonlinear way. To

guarantee an efficient estimation of β0 we need to compute an efficient experimental design X∗

solving

min
X∈χ

φ
(
V

(
X ,β0))

,

where the objective function is the size of covariance matrix for the usual estimators: maximum

likelihood, nonlinear least squares, the generalized method of moments, and other related tech-

niques.

In order to find an efficient design we need to know the value of β0, which is unknown at

the time the design is constructed - we want to estimate it from the experimental data! There-

fore the design cannot be optimized without some assumptions about parameters and the data

generating process. Since the size of covariance matrix is intrinsically linked to the unknown
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parameters, design efficiency is known only if the assumptions made on parameters are correct.

The marketing research and the statistical experimental literature have made several attempts

to solve this conundrum, for a literature review see the next section. So far a general solution

has remained elusive.

In this essay we propose a novel general approach to construct designs for models in which the

covariance matrix depends on unknown parameters. Although primarily we focus on discrete-

choice CA, we also discuss how the method extends to other non-linear models considered in

CA literature. This approach is generally more robust when the parameters deviate from the

assumed values and is appropriate when there is no prior information about the unknown pa-

rameters.

3.2 Literature Review

Most of the literature about optimal experimental design is focused on linear models, but some

of these ideas have been extended to deal with nonlinear specifications. In this section we con-

sider the main approaches and their limitations. Consider a CA experiment, and a parametric

estimator β̂ such that V−1/2
T

(
β̂−β0

)
converges in distribution to a standard normal distribution

N (0, I) , where VT (and its limit V ) depends on the design matrix (or sequence, if we focus on V )

with the product profiles {x1, x2, ...xT } shown in the experiment. Typically, the covariance matrix

can be expressed as a positive definite matrix

VT =VT

(
X ,β0)

=
(

T−1
T∑

t=1
v
(
xt,β

0)
v
(
xt,β

0)′
)−1

, (3.1)

for some appropriate function v
(
x,β0

)
, which holds for common estimators such as Maximum

Likelihood or Nonlinear Least Squares. If yt|xt are independent for different t with a regular

conditional distribution f
(
xt,β0

)
, the MLE has an empirical covariance matrix

V
(
X ,β0)

= T−1
T∑

t=1

∂ ln f
(
xt,β0

)

∂β

∂ ln f
(
xt,β0

)

∂β

′

= IT

(
X ,β0)−1

,
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i.e. the inverse of the information matrix. If we estimate the CA model using NLS estimator with

independent errors, then

V
(
X ,β0)

=σ2
ε

(

T−1
T∑

t=1

∂u
(
xt,β0

)

∂β

∂u
(
xt,β0

)

∂β

′)−1

.

Under the standard regularity conditions, the limit variance of VT = VT

(
X ,β0

)
in (3.1) is given

by a positive definite matrix

V =
(∫

χ
v
(
x,β0)

v
(
x,β0)′

w (dx)
)−1

(3.2)

where w is a probability measure obtained as the limit frequencies of using different profiles. If

χ is finite (the typical case with discrete attributes), the integral can be written as an average

V =V
(
w,β0)

=
(

r∑

j=1
w j v

(
x j,β

0)
v
(
x j,β

0)′
)−1

(3.3)

where the weights
{
w j

}
are non negative and sum up to one, and can be interpreted as limit fre-

quencies with which r designs are replicated. For continuous regressors it is not so obvious, but

if χ is a convex compact set we can obtain a similar representation applying the Krein–Milman

Theorem as the inverse of a finite summation,where the r profiles
{
x j

}r

j=1 are determined1 by χ

and v
(
x,β0

)
, and the weights

{
w j

}
are limit frequencies of these profiles.

Exact optimal designs try to minimize φ
(
VT

(
X ,β0

))
in the design matrix X , whilst approxi-

mated optimal designs try to minimize φ
(
V

(
w,β0

))
in the limit frequencies w (which can be used

to generate a T ×K matrix X ). The second approach was developed by Kiefer (1959) and his

school. These two methodologies work only if VT and V do not depend on unknown parameters

β0, which is the case for classical linear models but not for the models currently preferred by CA

practitioners and researchers.

Some CA analysts use classical designs for linear models in the hope that Some CA analysts

use classical designs for linear models in the hope that they will work well in a nonlinear con-

1The r points are the profiles associated to the set of extreme points of the set
{
vech

(
f
(
x,β0)

f
(
x,β0)′)

: x ∈ χ
}

,

where vech is the lower half-vectorization mapping.
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text, but this is generally a wrong assumption. Optimal experimental designs are not robust to

changes in the statistical model, as the structure of the covariance function changes dramatically.

For example, Louviere and Woodworth (1983) considered a CA choice experiment suggesting that

orthogonal and fractional-factorial linear designs are reasonably efficient for discrete-choice ex-

periments. Street et al. (2005) consider a variety of ad hoc designs for choice CA.

The experimental design and CA literature approached this puzzle in two distinct ways: 1)

assuming a specific value (vector) for the unknown parameter β0, predominantly under the “all-

zero” parameters hypothesis, and 2) assuming a probability measure on the parametric space

Θ ⊂ R
K and weighting all possible values in β ∈ Θ. Hereafter we will refer to the former as

the Local approach, and the latter as Average-Optimum (AO) approach. Below we discuss both

methods in more detail.

3.2.1 Local Approach

Perhaps the most common solution to the presented puzzle is the local approach suggested by

Chernoff (1953), which is based on adopting a guess for the unknown parameters. This decision

may be arbitrary, based on an inefficient pilot study, or using human prior beliefs about the

preferences. With β0 =β, the local approach looks for a design X+ defined as the solution to

min
X∈χ

φ
(
V

(
X ,β

))
, (3.4)

where β ∈Θ is the assumed parameter vector. As the solution X+ is specific to β0 =β , the resul-

tant designs are locally optimal and are not optimal for values different from β. Unfortunately,

the efficiency of the locally optimal design, X+, may be sensitive to even small perturbations in β,

and this initial guess is rarely close to the true β0 (for if we had a good estimation, there would be

no reason to run the experiment). In general we do not have any prior control over the efficiency

of the design X+ under the true β0.

For example, for Maximum Likelihood estimation the local optimal design is computed by

minimizing minX∈χφ

(
IT

(
X ,β

)−1
)

for a specific β, where IT (·) is the information matrix. The
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statistical literature on surface response experiments has considered the local approach in a

nonlinear regression context by minimizing

φ








T∑

t=1

∂u
(
xt,β

)

∂β

∂u
(
xt,β

)

∂β

′



−1

 .

This is actually an old idea in the statistical literature. Chernoff (1953) linearized the nonlinear

regression model using the first order Taylor expansion about a preliminary value, β, applying

the maximum trace criterion to obtain locally optimal designs for this linearized model. Box and

Lucas (1959) also linearized the model applying the maximum determinant criterion. Abdelbasit

and Plackett (1983) as well as Minkin (1987) used similar strategies in experiments with binary

response. Similarly, Kiefer (1959) proposed a local version of approximate optimal designs by

solving the problem

min
w

φ
(
V

(
w,β

))

in w for a given β ∈Θ, where V
(
w,β

)
is matrix (3.3) considered for the nonlinear least squares

estimator.

In CA context the local approach under null-hypothesis of β = 0 has been used by Kuhfeld

et al. (1994) for finding D-optimal choice designs for large conjoint applications through com-

puterized search, and for discrete-choice experiments Kanninen (2002) suggested a procedure

that leads to maximizing |X ′X | with continuous regressors. Notice that in the context of choice

models, the assumption β = 0 implies that all alternatives in the choice set have the same util-

ity and probability to be selected from the set (all sets have perfect utility-balance). Huber and

Zwerina (1996) have studied the effects of incorporating manager’s prior beliefs into the optimal

design, showing that under β 6= 0 utility balance of choice sets remains an important property

of efficient choice designs. Street et al. (2005) compared various strategies based on linearized

designs to construct choice designs of pairs and triplets for experiments with a different number

of attributes, levels and choice sets. The Local Approach has also been used by Marley and Lou-
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viere (2005) to elicit additional information about the ranking of alternatives within sets from

the respondent’s best-worst choices. This design was later extended in the experiment measuring

attribute-level best-worst choices Marley et al. (2008). Bunch et al. (1996) developed a heuris-

tic cycling procedure initiated with an orthogonal fractional factorial design treated as a list of

one-element choice sets. However this approach is not robust to perturbations in parameters.

3.2.2 Average-Optimum Approach

In an attempt to reduce the influence of β, some authors considered an average of many val-

ues instead of the local design. This method involves a probability measure µ defined over the

parametric space Θ, optimizing the weighted average of design efficiencies

min
X∈χ

∫

Θ

φ
(
V

(
X ,β

))
µ

(
dβ

)
. (3.5)

The solution X++ is not optimal under each scenario but hedged against the risk associated with

all scenarios. In general this method is unrelated to the Bayesian inference method, but some

authors call it “the Bayesian approach”, since both of them share the use of a prior belief µ.

The solution is quite sensitive to the choice of the weighting probability distribution µ (and its

parameters). Unless µ is strongly concentrated near the true unknown β0, little can we say about

the true efficiency of the design, φ
(
V

(
X++,β0

))
.

The statistical literature developed this method several decades ago. It was introduced by

Pronzato and Walter (1985), and a detailed analysis can be found in Pronzato and Pázman (2013,

Ch.8). This approach has been used in CA to build exact optimal designs for choice models by

Sándor and Wedel (2001) in the context of a single respondent, setting µ as a normal distribution

representing managers’ prior beliefs about product market shares. The Averaged Approach has

also been applied in the Mixed Logit model (Arora and Huber 2001; Sándor and Wedel 2002).

Sándor and Wedel (2005) extended the idea to panels of heterogeneous customers generating a

different design for each customer. The Averaged Approach can also be applied in the Kiefer

context, minimizing
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min
w

∫

Θ

φ
(
V

(
w,β

))
µ

(
dβ

)

in the relative frequencies
{
w j

}
defined over a given set of alternative profiles

{
x j

}r

j=1.

In both, the local and the averaged approaches, the numerical optimization is generally not

based on state-of-art algorithms developed in the operations research literature. The designs are

often computed using either a Modified Fedorov algorithm, or the cycling procedure of Bunch

et al. (1996). To improve the utility balance and design efficiency some authors additionally in-

clude a swapping and relabeling step: the former involves switching levels of alternatives within

each set to improve their balance; the latter reassigns labels of levels in the design. Ferrini and

Scarpa (2007) provide a review of the Logit CA experimental design literature and the algorithms

implemented.

Overall, the assumptions about unknown parameters β0 are specific to a given application.

Little is known about empirical validity or optimality claims of implemented designs when these

assumptions are violated (Louviere et al. 2011). There have been few studies, which tested the

robustness of the approach with misspecified β0. In this essay we propose a method to build the

experimental designs that ensure robustness. We also provide simple comparative graphics to

demonstrate the strength of this approach.

3.3 The Worst-Case (WC) Approach

In this section we present a general approach for optimal designs in problems where the co-

variance matrix depends on an unknown parameter. The underlying idea of this method is the

robustness property of the worst case prevention: the optimal WC design is the one whose worst

outcome is at least as good as the worst outcome of any other designs. In other words, the WC

design is the best among any other designs under the worst-case scenario.

We define a WC design as the matrix of product profiles X wc solving the problem
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min
X∈χ

max
β∈Θ

φ
(
V

(
X ,β

))
, (3.6)

with χ representing the set of feasible deterministic regressors, where we can introduce different

types of constraints: bounds on continuous attributes, discrete regressors (for dummy attributes),

or distance constraints to avoid repetition of profiles shown to the same respondent (see Chapter

2). Θ corresponds to the range of the unknown parameters. When χ and Θ are compact sets,

and V
(
X ,β

)
is a continuous function in χ×Θ, the existence of a solution is guaranteed by a

standard application of the Weierstrass Theorem and the Maximum Theorem. The strategy

behind minmax designs is to minimize the maximum size of variance-covariance matrix, where

the maximum (maxima) is found over a specified range of the unknown parameters. Define B (X )

as the correspondence allocating to each matrix X ∈ χ all maxima associated with it, ie. solutions

to maxβ∈Θ φ
(
V

(
X ,β

))
, then WC designs solve minX∈χ

{
φ

(
V

(
X ,β

))
:β ∈B (X )

}
.

The statistics literature has previously considered minimax design optimization for some

specific nonlinear models. For example, Sitter (1992) considered minimax designs in the con-

text of a binary choice model. However most literature considers Kiefer’s approximate designs

(Melas 1978; Fedorov 1980; Müller and Pázman 1998). The method is not fully developed and

the strategies for their construction are somewhat ad hoc, (some examples are included in Wong

1992; Haines 1995; Imhof 2001). In this chapter, we do not apply the Kiefer’s approach because

design replications are not suitable in conjoint analysis, and we also consider general algorithms

that allow the application of this idea to any suitable specification.

Why should risk averse CA modelers consider WC experimental designs? Although the true

size of variance-covariance matrix is not identified when the parameters are unknown (or we do

not have a preliminary estimator of β0), WC designs guarantee that the size of the true covari-

ance matrix φ
(
V

(
X wc,β0

))
is bounded by a known quantity,

φ
(
V

(
X wc,β0))

≤max
β∈Θ

φ
(
V

(
X wc,β

))
=min

X∈χ
max
β∈Θ

φ
(
V

(
X ,β

))
.

In other words, the minmax problem defined in (3.6) implicitly establishes an upper bound on

104



the size of the true variance-covariance matrix V
(
X wc,β0

)
. Therefore for any β0 ∈Θ, the design

efficiency associated with the WC design X wc will be at least as good as the worst-case value, but

it will never be worse. The local and average-optimum procedures do not guarantee any upper

bound over the true variance of the design.

The optimal design in the local approach, X+, obtained as a solution to the problem (3.4),

does not guarantee small variances under the true β0. On the contrary, φ
(
V

(
X+,β0

))
can be

arbitrarily large and the fitted model becomes unreliable. In contrast, WC designs guarantee

an improvement of the true variance regardless of the value of β0. This robustness is a key

characteristic of WC methods. A practical advantage of this approach is that the researcher is

only required to specify an appropriate range for the unknown parameters, instead of a specific

value.

Due to similar reasons, designs obtained with the averaged approach are not robust when the

assumptions about parameters are violated. The optimality of the design X++, which minimizes

the average size of variance-covariance matrix, is highly sensitive to the choice of µ. Unless this

distribution is concentrated near the true unknown β0, the design X++ can render estimators

with quite large variances. Again, a cautious modeler should consider a conservative distribu-

tion:

min
X∈χ

max
µ∈M

∫

Θ

φ
(
V

(
X ,β

))
µ

(
dβ

)
, (3.7)

where M is the class of probability measures on Θ. Proposition 1 states that WC design is the

solutions to the above problem.

Proposition 5 Assume that φ
(
V

(
X ,β

))
is non negative, then

min
X∈χ

max
µ∈M

∫

Θ

φ
(
V

(
X ,β

))
µ

(
dβ

)
=min

X∈χ
max
β∈Θ

φ
(
V

(
X ,β

))
. (3.8)

Proof. For all X ∈ χ and µ ∈M ,
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∫
φ

(
V

(
X ,β

))
µ

(
dβ

)
≤max

β∈Θ
φ

(
V

(
X ,β

))∫
µ (dy)=max

β∈Θ
φ

(
V

(
X ,β

))
.

Furthermore, for any X ∈ χ, it is satisfied that

max
µ∈M

∫

Θ

φ
(
V

(
X ,β

))
µ

(
dβ

)
≥

∫

Θ

φ
(
V

(
X ,β

))
µwc

(
dβ

)
=max

β∈Θ
φ

(
V

(
X ,β

))
,

where µwc is any measure of probability with all its mass in

β (X )=
{
β ∈Θ :φ

(
V

(
X ,β

))
=max

θ∈Θ
φ (V (X ,θ))

}
,

and the result follows.

The worst case approach is based on a general principle of the parametric robustness. The

method is appropriate for standard parametric estimators, such as the nonlinear least squares

or Maximum Likelihood (ML) estimators. We will not pay specific attention to the Bayes estima-

tion methods, as the optimal designs computed for ML are also valid for Bayesian estimations.

Notice that under regularity conditions, and regardless of the prior distribution, the Bernstein-

von-Mises Theorem ensures that the posterior distribution of parameters has an asymptotically

normal conditional mean with the same covariance matrix as the ML estimator. Therefore the

optimal designs for Bayesian estimators are the same as the ones computed for maximum likeli-

hood.

3.3.1 Computation of the Solution

To obtain WC designs, we face the issue of solving a minimax problem. The function φ
(
V

(
X ,β

))

is typically continuous in β ∈Θ, but not necessarily in χ. With continuous regressors it is usually

differentiable in X ∈ χ, but we often have discrete dummy regressors and then χ is a finite set.

Can we characterize the solution? Let us start discussing the case of continuous regressors.

Even if φ
(
V

(
X ,β

))
is continuously differentiable, the function maxβ∈Θφ

(
V

(
X ,β

))
is not differen-

tiable in X and standard optimization tools cannot be applied to compute the minimax solution
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X wc. However, if Θ =
{
β ∈Rp : h (θ)≤ 0

}
where h is a continuously differentiable vector valued

mapping and χ is a nonempty compact set, then there exists necessary conditions for the solu-

tion of a minimax problem (more involved than the classical Karush-Kuhn-Tucker), see Shimizu

and Aiyoshi (1980, Theorem 1), or Demỳanov and Malozemov (1974), and there are also sufficient

conditions for a point satisfying the necessary conditions to be a minimax optimum (Bector and

Bhatia 1985, see, e.g.). But, in practice, appropriate numerical methods are typically required to

compute the worst-case solution. With discrete regressors X the analytical necessary conditions

do not hold, and we need to use numerical methods in general.

The rest of this section deals with minimax computational tools to compute worst case de-

signs. Essentially the steps of the algorithm are analogous for both continuous and discrete

regressors but in the latter case the implementation is based on integer programming methods.

Minimax optimization problems can be handled using algorithms for semi-infinite programming,

because any continuous minimax problem such as (3.6) can be expressed as

min
X∈χ, ρ∈R

{
ρ : max

β∈Θ
φ

(
V

(
X ,β

))
≤ ρ

}
,

which is equivalent to the semi-infinite problem:

min
X∈χ, ρ∈R

ρ (3.9)

s.t. φ
(
V

(
X ,β

))
≤ ρ, for all β ∈Θ.

To compute the WC design we implement a global optimization algorithm for minimax optimiza-

tion proposed by Shimizu and Aiyoshi (1980) and later developed by Zakovic and Rustem (2003).

It uses a global optimization approach with respect to β ∈ Θ and cutting planes to reduce the

feasible region when constraint violation is encountered. Descriptively, each iteration consists

of interchangeably solving the “min” and “max” problems: (i) solving the “min” problem with re-

spect to X , subject to semi-infinite constraints associated with all global maxima with respect to
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β, as in Problem (3.9); (ii) solving the global “max” problem with respect to β with X obtained in

(i). Formally, the l-th iteration of this algorithm solves the problem:

min
X l+1∈χ
ρl+1∈R

ρl+1

s.t. φ
(
V

(
X l+1,βi

))
≤ ρl+1, i = 1, ...,kl ,

where
{
βi

}kl

i=1 ⊂B
(
X l

)
, and B

(
X l

)
contains all global maxima computed with respect to β ∈Θ at

the previous iteration. Next we solve

max
β∈Θ

φ
(
V

(
X l+1,β

))

computing all global maxima
{
βi

}kl+1
i=1 ⊂ B

(
X l+1

)
, and check if the solution is feasible up to an

arbitrary positive tolerance ε. If

max
β∈Θ

φ
(
V

(
X l+1,β

))
> ρl+1 +ε,

we iterate further, otherwise the algorithm terminates and X wc = X l+1 is the solution to the

minimax problem. This algorithm converges in a finite number of iterations, on each one of them

it is required to solve standard “min” and “max” problems. The global optimization approach

is essential to guarantee the robustness of the solution of minimax problems because one of

the crucial steps in solving the Problem (3.9) is to find a number of semi-infinite constraints by

computing the global maximizers in the program maxβ∈Θ φ
(
V

(
X l ,β

))
. In global optimization

algorithms, all candidates for local maximizers must usually be bracketed by a comparison of

function values maxβ∈Θ φ
(
V

(
X l ,β

))
on a sufficiently dense finite subset of Θ. To reduce the

cost of computing global optima the domains χ and Θ should be restricted as much as possible

given the information available. The monograph of Rustem and Howe (2002) is focused on the

computation of minimax problems.

We have implemented the algorithm for WC-optimal designs in MATLAB 6.5 on a computer

with Intel Core 2 Duo processor and machine precision 10−16, programming directly the Zakovic
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and Rustem algorithm 2003 and applying standard optimization routines for solving the subprob-

lems of the original algorithm (for both continuous and integer problems). To find the global max-

imizers subproblem we used the algorithm DIRECT for constrained mixed-integer global opti-

mization (Jones 2001), which is available commercially with TOMLAB toolbox (http://tomopt.com/tomlab/).

To handle discrete regressors in χ we consider MINLP solver developed by Roger Fletcher and

Sven Leyffer (Leyffer 2001) also implemented in TOMLAB. Notice that purely continuous prob-

lems can be solved with a flexible “fmincon” routine from Optimization toolbox in MATLAB.

Additionally, MATLAB offers some specific routines to solve continuous minmax problems,

such as the “fseminf” function from the Optimization toolbox. This is a dedicated subroutine for

solving semi-infinitely constrained multivariate and nonlinear optimization problems, as the one

defined in (3.9). The routine “fseminf” first estimates peak values in the semi-infinite constraints,

which are later submitted as constraints in the minimization problem. The main disadvantage

of this approach is the computational cost. Instead of searching for global maximizers over Θ, it

requires that the intervals for β be discretized into a finite grid of values. Then the whole grid

is submitted to the routine as the semi-infinite constraints and evaluated at each iteration. The

number of the constraints depends on several factors: (1) number of product attributes, (2) size

of Θ, and (3) how “fine” the grid is (the grid’s step size). In practice, using this routine we could

solve only very small conjoint scenarios in reasonable time. Another drawback is that “fseminf”

solves only continuous problems.

3.4 A Paradigmatic Example of WC Designs: Multinomial Logit

Model

Over the last few years CA experiments have been increasingly based on respondents’ choices

from a subset of alternatives. McFadden’s 1974 Multinomial Logit model is the most widely

accepted model of choice-based CA. Assume J alternatives in a choice set and each alternative is

characterized by the attributes
{
x j

}J

j=1. If the latent utility of the alternative j is u j = x′
j
β+ε j,

and ε j has a type I extreme value distribution, then the probability that a consumer selects the
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alternative j from the set {x1, ..., xJ } is

π j

(
x,β

)
=

exp
(
x′

j
β
)

exp
(∑J

l=1 x′
l
β
) .

With t = 1,2, ..,T sets we codify choices yt = (yt1, ..., ytJ)′ into a vector of dummies so that yt j is

equal to 1 if alternative j is selected and zero otherwise. Then the model can be estimated by

Maximum Likelihood, maximizing

L
(
X ,β

)
=

T∑

t=1

J∑

j=1
yt j lnπ j

(
xt,β

)
=

T∑

t=1

J∑

j=1
yt j

(

x′t jβ− ln

(
J∑

l=1
exp

(
x′tlβ

)
))

.

The gradient and the information matrix are given by

∂L
(
X ,β

)

∂β
=

T∑

t=1

J∑

j=1

(
yt j −π j

(
xt,β

))
xt j,

I
(
X ,β

)
= E

[
∂L

(
X ,β

)

∂β

∂L
(
X ,β

)

∂β

′]

=
T∑

t=1

J∑

j=1

J∑

l=1
E

[(
yt j −π j

(
xt,β

))(
ytl −πl

(
xt,β

))]
xt jx

′
tl

=
T∑

t=1

J∑

j=1
π j

(
xt,β

)(
1−π j

(
xt,β

))
xt jx

′
t j −

J∑

j 6=l

π j

(
xt,β

)
πl

(
xt,β

)
xt jx

′
tl

where we have used that cov
(
yt j, ytl

)
=π j

(
xt,β

)(
1−π j

(
xt,β

))
for l = j, and −π j

(
xt,β

)
πl

(
xt,β

)
for

l 6= j. The asymptotic covariance matrix of the maximum likelihood estimator can be estimated

by the inverse of the Hessian, and it is upper-bounded since

I
(
X ,β

)
≤

T∑

t=1

J∑

j=1
π j

(
xt,β

)
xt jx

′
tl ≤ X ′X ,

using that
∑J

j=1
∑J

l=1π j

(
xt,β

)
πl

(
xt,β

)
xt jx

′
tl

is non negative definite. Therefore,

φ
(
V ar

(
β̂
))
=φ

(
I
(
X ,β

)−1
)
≥φ

((
X ′X

)−1
)
.

A commonly used procedure consists of minimizing the lower bound for the covariance matrix

φ
((

X ′X
)−1

)
. In particular Kanninen (2002) maximizes

∣∣X ′X
∣∣, finding that the optimal design

110



places the attributes at the extreme points of the domain χ. This is also the approach con-

sidered by Kuhfeld et al. (1994), based on the Fedorov algorithm. The presented algorithm

can be used in this context. However, this is not a reliable solution, as φ
(
I
(
X ,β0

)−1
)

could

be much higher than φ
((

X ′X
)−1

)
. By contrast, in this essay we consider a design X wc solving

minX∈χmaxβ∈Θφ
(
I
(
X ,β

)−1
)

which provides a robust solution with a bounded variance.

3.4.1 Comparison of Local, Average and WC Approach – a Simulated Example

This section provides an informal comparison of the approaches that have been proposed in CA

literature to deal with uncertainty of designs in discrete-choice experiments. This uncertainty

results from the fact, that the objective function (size of the covariance matrix) depends not

only on the deterministic regressors, but also on unknown model parameters. Therefore, the

researcher has to select an experimental design not knowing its true efficiency.

Conjoint literature has approached this problem by (1) assuming a specific value for β; or

(2) postulating a probability distribution for unknown parameters. From the optimization point

of view, the local approach (1) is a deterministic problem, because uncertainty is eliminated

by assuming only a single scenario associated with the fixed parameter values. The design is

optimal only for the assumed scenario, and we are not able to evaluate its efficiency if parameters

are different from the assumed values. This is a naive approach, because if we knew real values

we would not have to make an experiment in the first place. In the average-optimum approach

(2) we optimize the expected design efficiency. Here unknown parameters are treated as random

variables, and are described through a probability function. This approach suffers from the curse

of dimensionality.

The proposed approach is based on robust optimization, and the objective is to minimize

the worst case value of design efficiency. In this framework uncertainty related to unknown

parameters is modeled in a deterministic way, based on bounded and convex sets. This approach

has several advantages: we do not need to know the probability distribution for uncertainty, and

it does not suffer from the curse of dimensionality. Its main limitation is that it is a conservative

approach, because we look for the best efficiency under the worst-case scenario.
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We have compared the performance of the WC approach with the local and average-optimum

approach in a simple discrete-choice example. For clarity purposes we show the robustness of

WC designs in a univariate setting, but the same idea applies to models with more parameters.

The comparison setting is as follows. First, we solve Problem (3.4), Problem (3.5) and Problem

(3.9) with the same initial point to obtain the local, AO and WC designs. Next, we calculate the

efficiency of each of the designs, and plot it as a function of true parameter value. In this section

we focus on the trace of covariance matrix as a measure of efficiency for these simulated designs

(A-optimality criterion). In the next section we will demonstrate the robustness of WC approach

using the determinant criterion.

Table 3.1: Parameters in simulated examples
Local approach AO approach WC approach

# choice sets 4 4 4
# alternatives/set 4 4 4
# attributes 1 1 1

Assumptions about β
Local approach β̄= 0 —— β ∈ [−1,1]

Average-optimum approach —— βi ∼ N(0,σ2
i
) β ∈ [−2σ2

i
,2σ2

i
]

σ2
i
= {1,2,3}

Table 3.1 summarizes the parameter values used for the simulation of comparative figures.

In all examples we find designs for conjoint experiment with 1 continuous attribute, and 4 choice

sets, each having 4 alternatives (1/4/4 design). For the local approach we compute the design

assuming β = 0; for the AO approach we simulate β from normal probability distribution with

mean 0 and different values of standard deviations: (1,2,3).

Figure 3-1 compares the efficiency of optimal designs obtained with the worst case approach

and the local approach. For comparability, we solve both optimization problems with the same

initial point. The horizontal axis represents different values of the true parameter, β0; the true

efficiency of the design (measured as the trace of the covariance matrix) is shown on the vertical

axis. The efficiency of the optimal design obtained with the local approach is represented by the

solid line, and the WC design - by a dashed line.
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Figure 3-1: Efficiency comparison of the local and WC design. Simulated univariate case.
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Figure 3-1 illustrates clearly the intuition behind WC design. The local approach performs

better, when true parameters are close to the assumed values. The further the true parameters

are from the assumed values, the bigger is the advantage of the robust WC approach. Vertical

dashed lines indicate small intervals where the local approach dominates. The local design has

been computed under the assumption that β = 0, and indeed the trace values of the covariance

matrix are lower when the true parameter is close to 0 (values between -0.5 and 0.6). It is easy

to see that the local approach is not robust, when the true parameter deviates even to the small

degree from the assumed values. Worst-case design dominates even when the true values are

outside of the assumed interval.

We have also compared the robust WC approach to the average-optimum approach. For the

latter we optimize the expected design efficiency, assuming that parameters have a normal prob-

ability distribution with mean 0 and different values of standard deviation. The WC design has

been computed assuming that the parameters lie in the interval within 2 standard deviations

from the mean. As before, we start the optimization routines with the same initial point.

Similarly to the local approach, we observe that if the true parameter values are close to

the assumed mean of the normal distribution then average-optimum approach performs better,

but for the values far from 0, the WC approach is more robust. Dotted vertical lines indicate

the interval where the AO approach performs better than the WC approach. Interestingly, the
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Figure 3-2: Efficiency comparison of the AO and WC design. Simulated univariate case.
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researcher can improve the robustness of average-optimum designs by postulating the model,

which accounts for more uncertainty of parameters, ie. increasing the assumed standard de-

viation of the normal distribution. The design shown in the right panel of Figure 3-2 is more

robust than the designs shown in the left and center panels. However, it is more computationally

intensive and one still has to make sure that the assumed mean is close to the true parameter

value.

3.4.2 Solved Designs and Comparison with Literature Benchmarks

In this section we present a couple of computed worst-case designs and we compare the robust-

ness of such designs with their local and average-optimum counterparts proposed in conjoint

literature. The scenarios include both continuous and discrete attributes and the optimization

problem formulation for both types of regressors is essentially analogous. With continuous at-

tributes the levels per se do not exist, and the algorithm looks for the solution throughout the

whole attribute space without restriction. With discrete attributes the levels are recoded into

0-1 values, representing whether the level is respectively absent or present in the shown product

profile. From the optimization point of view, we need to impose two restrictions on the solution

to obtain a valid design matrix of discrete attributes: 1) the WC-optimal design matrix contains

only zeros and ones; and 2) within each attribute exactly one level is shown. Apart from the
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Table 3.2: Overview of the computed designs and references
Name Typea Sizeb βWC Benchmark Benchmark β

SCN1 C 2/2/6 βwc ∈ [0,1] Kanninen (2002) β= 0
SCN2 C 4/4/12 βwc ∈ [0,1] Kanninen (2002) β= 0
SCN3 C 8/8/24 βwc ∈ [0,1] Kanninen (2002) β= 0
SCN4 D 33/3/9 βwc ∈ [0,1] Huber and Zwerina (1996) for each attribute:

βHZ = [−1,0,1]′

SCN5 D 34/2/15 βwc ∈ [0,1] Huber and Zwerina (1996) as above
Sándor and Wedel (2001) β∼ N(βHZ ,Σ0)

a C - continuous regressors, D - discrete regressors
b The notation represents: # attributes (or levels & attributes) / # alternatives per choice set/ # choice sets.

additional requirements about the solution, the formulation of the continuous and integer op-

timization problems is equivalent, although the implementation requires different optimization

algorithms, which were described in Section 3.3.1.

For comparability purposes we compute designs for specific problems that have been solved

using the local and AO approach in the standard McFadden’s 1974 framework. Table 3.2 sum-

marizes the scenarios addressed here, reporting the size parameters, corresponding literature

benchmarks and the assumptions made about β in the local, AO and WC approach. The interval

for parameter values relates to the literature benchmarks and is constant across different WC

scenarios. Our comparison strategy consists of simulating the true unknown parameter values

(vectors) and for each of them we compute the efficiency of the WC and the benchmark design,

calculating the determinant of the covariance matrix
∣∣V

(
X ,β0

)∣∣. To inspect the robustness to

misspecification of parameters and propensity to outliers, we plot the true design efficiency with

respect to the distance between the true and the assumed parameter value. We also compare

the pairs of designs individually, counting the number of cases when the WC design is more effi-

cient than the corresponding benchmark, which is summarized in the Table 3.6 at the end of this

section.

The first three scenarios involve WC design with purely continuous attributes. We use the

designs reported by Kanninen (2002) in Table 1 (page 218) as the local approach benchmarks, as

they are computed under the assumption that all parameters are zero. Hereinafter, we will refer
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to these designs as KAN1, KAN2 and KAN3. These benchmarks have the same number of choice

sets as the number of continuous variables, N∗ = k, and the implemented design is constructed by

replication. Therefore, following Kanninen (2002) approach, KAN1-KAN3 have repeated choice

sets, while our WC designs have unique choice sets. All continuous examples involve a binary

choice setting, with 2, 4 and 8 continuous attributes (our scenarios SCN1, SCN2, and SCN3

respectively). To compute the WC designs, we set the lower and upper bounds of the attribute

values to 1 and 5, and the assumed β lies between 0 and 1.

Table 3.3 presents the WC designs computed for the SCN1 and SCN2 examples, and their lo-

cal counterparts (KAN1 and KAN2). The first apparent difference is the fact that our worst-case

approach searches for the optimal design over the whole continuous attribute space without re-

strictions. It is expected that the solution to the nonlinear problem lies inside the feasible region,

contrary to the linear problems whose solutions lie at the boundary of the feasible region. The

approach proposed by Kanninen (2002) exhibits the properties of the linear design: all attributes

except one lie on the boundary, while the first continuous attribute is used to scale response prob-

abilities. Finally, an important issue is the duplication of choice sets: our WC approach can be

implemented with the single respondent, while in Kanninen’s approach each respondent replies

only to a fraction N∗/N of choice questions.

We have also compared the behavior of WC approach and the local approach in terms of the

robustness to misspecifications in the assumptions about the true parameters, β0. Figure 3-3

shows the relation between the design efficiency and the distance to the true parameter value for

continuous WC designs (SCN1-SCN3) and the local designs (KAN1-KAN3). To obtain the vectors

of true parameters, β0, we construct all possible vectors containing values (−1,−0.5,0,0.5,1).

Then, we compute the distance between the assumed parameter value and the simulated true

parameters, ||β0 −β||. Red stars correspond to WC design efficiency, |V (XWC,β0)|, while black

crosses represent the efficiency of KAN designs, |V (XK AN ,β0)|.
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Table 3.3: Computed worst-case designs in SCN1 and SCN2 and their benchmarks
Set KAN A SCN1 Set KAN B SCN2
1/1 1.54 5.00 5.00 1.00 1/1 1.04 5.00 5.00 5.00 1.77 3.81 2.25 2.50
1/2 0 1.00 1.00 5.00 1/2 0 1.00 1.00 1.00 4.27 1.62 3.15 4.11

2/1 1.54 1.00 5.00 2.30 2/1 1.04 5.00 1.00 1.00 3.12 4.76 3.19 1.00
2/2 0 5.00 1.00 4.68 2/2 0 1.00 5.00 5.00 4.36 1.69 2.39 5.00

3/1 1.54 5.00 5.00 1.00 3/1 1.04 1.00 5.00 1.00 4.76 4.98 1.00 4.99
3/2 0 1.00 1.00 5.00 3/2 0 5.00 1.00 5.00 1.16 1.22 5.00 1.05

4/1 1.54 1.00 3.62 3.54 4/1 1.04 1.00 1.00 5.00 1.00 4.77 3.15 4.37
4/2 0 5.00 2.29 2.46 4/2 0 5.00 5.00 1.00 3.47 1.43 1.48 3.41

5/1 1.54 5.00 2.36 2.44 5/1 1.04 5.00 5.00 5.00 3.95 1.00 5.00 4.56
5/2 0 1.00 3.64 3.56 5/2 0 1.00 1.00 1.00 1.94 4.96 1.00 1.37

6/1 1.54 1.00 2.18 5.00 6/1 1.04 5.00 1.00 1.00 3.12 4.54 3.51 2.89
6/2 0 5.00 4.57 1.00 6/2 0 1.00 5.00 5.00 4.94 1.37 3.21 2.78

7/1 1.04 1.00 5.00 1.00 4.92 3.25 5.00 1.00
7/2 0 5.00 1.00 5.00 1.08 3.78 1.00 5.00

8/1 1.04 1.00 1.00 5.00 1.37 1.32 5.00 4.79
8/2 0 5.00 5.00 1.00 2.71 4.02 1.00 1.00

9/1 1.04 5.00 5.00 5.00 1.49 1.49 4.18 3.94
9/2 0 1.00 1.00 1.00 3.41 4.52 1.27 2.95

10/1 1.04 5.00 1.00 1.00 4.18 4.60 1.00 1.00
10/2 0 1.00 5.00 5.00 2.30 2.20 4.76 5.00

11/1 1.04 1.00 5.00 1.00 1.00 5.00 5.00 3.42
11/2 0 5.00 1.00 5.00 5.00 1.00 1.00 3.41

12/1 1.04 1.00 1.00 5.00 4.26 2.90 5.00 1.00
12/2 0 5.00 5.00 1.00 1.49 2.11 1.00 4.87
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Figure 3-3: Efficiency comparison of the local and worst-case designs: “KAN” scenarios .
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Clearly, the worst-case approach is more robust to the misspecification of parameters: if the

assumed parameter is far from the true value, Kanninen’s approach yields inefficient designs.

The comparison of the three scenarios shows that for larger conjoint applications the risk of the

local design being inefficient or even having infinite variance is severe (notice the number of

outliers with huge variance in KAN3). The worst-case designs maintain robustness property in

all scenarios considered regardless of the problem size.

The remainder of this section is devoted to conjoint designs, where the attributes are only

categorical variables. In scenarios “SCN4” and “SCN5” we compute two discrete WC designs and

compare them with the local benchmarks of Huber and Zwerina (1996), who propose a strategy

to compute designs incorporating prior information about the parameters. Specifically, they con-

sider a product whose all attributes take on 3 levels, and the parameters associated with those

levels are assumed to be βHZ = [−1 0 1]′ (for all attributes). The right panel in Table 3.4 presents

the WC design obtained in “SCN4” scenario and left panel - the literature benchmark (Table 1

on page 310 Huber and Zwerina 1996). Table 3.5 presents our worst-case solution to the “SCN5”

example. For the benchmark we refer the reader to the Table 3 on page 313 in the original article

(Huber and Zwerina 1996). Hereinafter, we will refer to the benchmarks as HZ1 and HZ2.
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Table 3.4: Computed worst-case design in SCN4 and the benchmark
Original HZ design WC design

Attributes Attributes
Set/Alt. 1 2 3 Set/Alt. 1 2 3
1/1 3 1 3 1/1 1 2 3
1/2 2 2 2 1/2 3 3 2
1/3 1 3 1 1/3 2 1 1

2/1 3 1 2 2/1 3 1 3
2/2 2 3 1 2/2 2 3 1
2/3 1 2 3 2/3 1 3 2

3/1 3 2 1 3/1 3 1 1
3/2 2 1 3 3/2 2 3 2
3/3 1 3 2 3/3 1 2 3

4/1 3 1 1 4/1 3 1 3
4/2 1 3 3 4/2 2 3 1
4/3 2 2 2 4/3 1 2 2

5/1 2 1 3 5/1 3 2 1
5/2 3 3 1 5/2 2 3 3
5/3 1 2 2 5/3 1 1 2

6/1 2 3 1 6/1 1 3 3
6/2 3 2 2 6/2 2 2 3
6/3 1 1 3 6/3 1 1 1

7/1 1 3 2 7/1 3 2 2
7/2 3 1 1 7/2 2 3 3
7/3 2 2 3 7/3 1 1 1

8/1 2 3 2 8/1 3 3 3
8/2 3 2 1 8/2 1 2 1
8/3 1 1 3 8/3 2 1 2

9/1 1 2 3 9/1 2 2 1
9/2 3 1 2 9/2 1 1 2
9/3 2 3 1 9/3 3 3 1
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Table 3.5: Computed worst-case design in SCN5
Attributes

Set/Alt. 1 2 3 4
1/1 1 2 1 2
1/2 3 1 3 3

2/1 2 1 2 1
2/2 3 2 1 3

3/1 3 3 2 1
3/2 1 1 1 3

4/1 3 2 3 2
4/2 1 3 2 1

5/1 3 2 3 1
5/2 2 1 1 2

6/1 1 3 3 2
6/2 3 2 2 3

7/1 1 3 1 3
7/2 2 1 3 2

8/1 3 3 2 3
8/2 1 1 1 1

9/1 2 3 3 2
9/2 3 1 1 1

10/1 3 1 2 2
10/2 2 3 1 3

11/1 2 1 1 2
11/2 1 2 3 1

12/1 2 2 1 1
12/2 1 1 3 3

13/1 1 2 2 2
13/2 2 3 1 1

14/1 3 3 3 1
14/2 2 2 2 3

15/1 2 2 3 1
15/2 3 3 1 2



Figure 3-4: Efficiency comparison of the local and worst-case designs: “HZ” scenarios.
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Figure 3-4 compares the efficiency of the WC designs, SCN4 and SCN5, with the local bench-

marks, HZ1 and HZ2 (Tables 3.4 and 3.5). The left panel represents the efficiency of designs

considered in the “SCN4” and the right panel - “SCN5”. We follow the same procedure as for con-

tinuous attributes case, first creating all possible vectors for β0 with the values (−1,−0.5,0,0.5,1),

and then calculating |V (XWC,β0)| and |V (XHZ ,β0)| represented by red stars and black crosses

respectively. Then we plot the design efficiencies against the distances to the parameter values

assumed by the benchmark, ||β0 −βHZ ||. Again, the performance of WC designs is very good:

the WC approach has much fewer outlying designs with large variance than the corresponding

benchmarks, and the designs are efficient both when the true parameters are far and close to the

assumed values. This result demonstrates how the assumed interval for β0 influences the effi-

ciency of WC design. A small interval means less uncertainty about the parameters, yielding as

good designs as the benchmarks, which are optimal under the assumed parameter values. When

setting a larger interval we account for more uncertainty in the model, therefore the design will

be more robust to the misspecification of β0 and will have good efficiency when the true values

are far from the assumed values, but it can yield larger variances than local design when the
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Figure 3-5: Efficiency comparison of the average-optimum and worst-case designs: “SW” scenar-
ios.
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true values are close to the ones assumed in the local approach.

We can compare the robustness the WC design presented in Table 3.5 (SCN5) and the AO

approach benchmarks of Sándor and Wedel (2001, p.435), who consider the same 34/2/15 choice

experiment, reporting three Bayesian designs computed using relabeling, swapping and cycling

strategies. The benchmarks, hereinafter called SW1-SW3, are constructed under the assumption

that the true parameters have a normal probability distribution, with the mean fixed at βHZ ,

and the square root of covariance matrix Σ
1/2
0 is an identity matrix. Figure 3-5 shows that the

WC approach performs very well in comparison to all of three benchmark Bayesian designs.

WC approach is very robust to the misspecification of parameters, yielding designs with small

variance for different values of the true parameter. The Bayesian benchmarks are not robust and

yield many outliers when the true parameter value is far from the assumed one.

We conclude this section with an additional comparison of the WC and the benchmark de-

signs. For each of the compared pair we have simulated all possible vectors of β0 with values

(−1,−0.5,0,0.5,1), mimicking the true parameter values. Then for each of these vectors we have
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Table 3.6: Robustness of the worst-case and the benchmark designs
WC design Benchmark WC design advantage (%)a

SCN1 KAN1 72.00%
SCN2 KAN2 92.16%
SCN3 KAN3 98.86%
SCN4 HZ1 69.55%
SCN5 HZ2 66.68%
SCN5 SW1 64.80%
SCN5 SW2 80.91%
SCN5 SW3 92.60%
a (%) simulated parameter values for which the WC design is more efficient than the benchmark.

calculated the efficiency of the WC and the benchmark designs, counting the number of cases

when the WC design was more efficient, ie. |V (XWC,βi|) < |V (XBENCH ,βi)|. The results shown

in Table 3.6 confirm the advantage of the WC approach. For every compared pair, the WC design

was better than the benchmark at least in 64.80% of the cases. The performance of our designs

is very good especially in comparison to all KAN designs, and the “swapped” and “cycled” SW de-

signs. Together with the figures presented in this section, these results confirm our expectations

about the robustness of WC approach. It is not always better than the benchmark design, but it

performs better in case of misspecified parameters, yielding variance within reasonable bounds,

while the benchmarks often produce designs associated with very large variance.

3.5 Concluding Remarks

This chapter presents a general approach to compute efficient exact designs for models in which

the covariance matrix depends on unknown parameters. We have focused on conjoint exper-

iments based on discrete-choice models, but the worst-case approach can be applied to many

other contexts of interest for CA researchers. There is a variety of problems addressed in CA

studies, that require specific estimators with a different covariance matrix. In many cases esti-

mator covariance depends on the unknown parameters and the worst-case methods are capable

to approach this type of problems in a robust way. In the concluding section we will mention a

few interesting CA problems where WC strategy can be implemented to produce robust designs.
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These topics actually open new lines of future work for CA users.

3.5.1 Example I: Classical Model with an Unknown Ideal Point

Additive models with an unknown ideal point are popular examples of nonlinear in parameter

utility models, for example the model u
(
x,β

)
= α−

∑k
j=1δ j

(
x−γ j

)2 , where β0 =
(
α,δ′,γ′

)′ is a

vector of unknown parameters. The model can be estimated by Nonlinear Least Squares. Unfor-

tunately, in this case the asymptotic covariance

V
(
X ,β0)

=
[

1

T

T∑

t=1

∂u
(
xt,β0

)
u

∂β

∂u
(
xt,β0

)

∂β

′]−1

,

depends on the unknown β0. The worst-case approach can handle this problem.

3.5.2 Example II: Continuous Positive Scale

Consider a CA experiment, where the consumer has a latent utility function y∗t = f (xt)′β+ εt,

with εt Gaussian shocks. The respondents are asked to evaluate product profiles on a contin-

uous positive scale [0,∞) , therefore we observe yt = max
{
y∗t ,0

}
. Due to the non-negativeness

truncation, this is a Tobit model, with log-likelihood function

lnL
(
β1,σ1

)
= log(σ1)

T∑

t=1
I (yt > 0)+

T∑

t=1

(
yt − f (xt)′β1

)2

2σ2
1

+
T∑

t=1
lnΦ

(
f (xt)′β1

σ1

)
.

We compute the Hessian, and then for the estimation of the information matrix we replace
∑T

t=1 I (yt > 0) by T ·E [I (yt > 0)] , where E [I (yt > 0)] = 1−Φ
(
f (xt)′β1

/
σ1

)
. The Tobit ML esti-

mator maximizes the likelihood function. Amemiya (1973) proved its consistency as well as the

asymptotic normality, and the covariance matrix depends on the vector of unknown parameters

(β′,σ2)′. Worst-case methods can be also applied to this context.

3.5.3 Example III: Interval Regression for Likert-Scale Ratings

Even in the classical additive utility context, non linearity arises when we use discretized ratings

instead of measuring preferences on a continuous scale. Standard CA models assume that the re-
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spondent’s preferences over products are continuous, and given by the latent model ut = x′tβ
0+ε,

where εt are independent shocks with zero mean and cumulative distribution F (·/σ). However,

in practice marketing researchers typically use discrete measurement scales, such as Likert

scales, rankings, etc. Therefore, what we actually observe is not the continuous varying ut, but

a censored version of the true underlying preferences. Ordered regression models, introduced by

McKelvey and Zavoina (1975) and popularized by McCullagh (1980), can be used to capture the

influence of the nonlinear censuring transformation imposed by ordered discrete measurement

scales.

If T alternatives are evaluated on a discrete scale with multiple ordered response categories

{ck}m
k=1, we can study the relationship between these discrete measures and the continuous un-

derlying model, using the ordered regression method. Assuming that the respondent allocates a

rating yt = ck, the log likelihood of the CA model is given by

L
(
X ,β,σ

)
=

T∑

t=1

m+1∑

k=0
ytk ln

(
F

(
ck − x′tβ

σ

)
−F

(
ck−1 − x′tβ

σ

))
,

where the latent utility ut falls in the scale interval (ck−1, ck], with c0 = −∞ and cm+1 = +∞.

Additionally, we set F
((

c0 − x′tβ
)
/σ

)
= 0 and F

((
cm+1 − x′tβ

)
/σ

)
= 1 for all t. Normality is often

assumed, relying on the aggregation of innumerable small influences and the effect of the central

limit theorem, but other distributions can be considered (such as the Logistic distribution) as

well. Whenever F (·/σ) is continuously differentiable,

∂L
(
X ,β,σ

)

∂β
=

T∑

t=1




m+1∑

k=0
ytk

(
f
(

ck−x′tβ

σ

)
− f

(
ck−1−x′tβ

σ

))

F
(

ck−x′tβ

σ

)
−F

(
ck−1−x′tβ

σ

)



xt.

Notice that E
[
ytk yt j

]
= E

[
y2

tk

]
× I (k = j)= E [ytk]× I (k = j) , so that

I
(
X ,β

)
= E

[
∂L

(
X ,β,σ

)

∂β

∂L
(
X ,β,σ

)

∂β

′]

=
T∑

t=1

m+1∑

k=0

(
f
(

ck−x′tβ

σ

)
− f

(
ck−1−x′tβ

σ

))2

F
(

ck−x′tβ

σ

)
−F

(
ck−1−x′tβ

σ

) xt jx
′
tl .

The asymptotic variance-covariance depends on β0, and we can consider a robust design
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based on the worst-case method.

3.5.4 Example IV: Correlated Measurements

The presented approach is particularly useful in the context of nonlinear models, but there are

some linear utility functions where the structure of the covariances impedes the computation of

an optimal design. In such context WC designs may prove to be a sensible approach.

An important situation occurs when ratings are correlated, and the correlation between

shocks is driven by the distance between the considered attributes. Consider the model yt =

f (xt)′β+εt, where the systematic components εt are correlated for products with attributes per-

ceived as similar. In particular, let us assume that

ε(T) = ρ W ε(T) +η(T)

with
∣∣ρ

∣∣ < 1, and E
[
η(T)

]
= 0, V ar

[
η(T)

]
= σ2I and where the subindex means that we con-

sider a vector of dimension T. The matrix W depends on the distance between product profiles,

meaning that products with similar attributes have correlated measurements. The coefficients

Wt,s in the matrix W are coded in the form of standardized weights matrices W , with a zero

diagonal, and the off-diagonal non-zero elements often scaled to sum to unity in each row, with

typical elements:

Wt,s =
d (xt, xs)

∑T
l=1 d (xt, xl)

for some discrepancy criteria d, symmetric and satisfying d (x, x) = 0. In particular, if d is

the square of the Euclidean distance between attributes we will take into account that similar

products tend to have correlated utilities measurements. But we can consider other phenomena.

We set Wt,s = wts

/∑T
l=1 wtl where wts = 1 if t, s are consecutive and wts = 0 otherwise. The

Generalized Least Squares (GLS) estimator is based on a two stage procedure: first estimate β
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by OLS, then estimate ρ with the residuals. In the second step, β̂ is re-estimated by

β̂=
(
X ′

[(
I − ρ̂Wx

)′ (
I − ρ̂Wx

)]−1
X

)−1

X ′
[(

I − ρ̂Wx

)′ (
I − ρ̂Wx

)]−1
y,

where X = f (x). The estimation of the variance of β̂ is given by σ2
(
X ′

[(
I − ρ̂Wx

)′ (
I − ρ̂Wx

)]−1
X

)−1

.

If we do not have a good preliminary estimation of
∣∣ρ

∣∣ < 1, in this case we also should minimize

the worst-case design:

min
x

max
|ρ|<1

φ

{(
X ′

[(
I −ρWx

)′ (
I −ρWx

)]−1
X

)−1}

where φ denotes the trace or determinant.

There are also other situations where this method can be useful, even in classical CA compen-

satory models. For example, consider a panel where individuals are heterogeneous in the error

variance. The model is estimated by pooling the data and using GLS method and the covariance

matrix of the estimator will depend on the unknown variance. Therefore worst-case methods can

be used to design the experiment.
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Chapter 4

Conjoint Analysis with Endogenous

Consideration Sets

4.1 Introduction

Conjoint analysis is one of the most widespread tools to study consumers’ preferences over multi-

attribute products and services, implemented through experiments where respondents are asked

to rank, rate, or chose certain collections of alternative products to estimate a utility function –

usually a compensatory (additive) model. Marketing managers rely on conjoint analysis for rel-

evant processes such as new product development, packaging design, or pricing decisions. But

actual consumers’ choices are not always consistent with their preferences. They often take quick

decisions evaluating a large number of alternative products in categories with large-dimensional

multiattribute specifications, which requires significant information search and cognitive efforts.

Rationally bounded consumers often skip potentially interesting options, due to the lack of

information (brand unawareness), or perceptual limitations. For example limited attention or

low salience, which results from the fact that beliefs have different prominence in individual

cognition, may lead to overlooking of unnoticed alternatives. Even more relevant is the halo effect

which prompts the consumers to skip alternatives because their emotions distort the perception

of attributes (e.g. consumers might reject attributes from products that they do not like). But it
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can play a positive role. The halo effect has been exploited by the automotive industry, where an

iconic vehicle is used to promote sales of the whole range of vehicles under the same brand (for

example the Volkswagen Beetle, the Hummer H1, the Ford GT – inspired by Ford’s GT40 racing

cars from the 1960s, or the SRT Viper – formerly Dodge Viper). Due to these biases, consumers

do not perceive all available options as relevant to their decision problem, and as a result not

all of them are evaluated in the same way as considered products. The final decision might

seem contradictory with actual preferences if consideration rules are not taken into account. For

example, a car attribute can be important in the utility function, but for a particular type of

models it can have poor determinance on the decision due to lack of consideration.

Research in consumer behavior established that rationally bounded consumers often use

heuristic rules to screen off products for future evaluative consideration, choosing in two stages.

In the first step they use consideration set heuristic rules to screen off products whose attributes

do not satisfy certain tolerance criteria, often focusing on some key attributes (Bettman 1974;

Montgomery and Svenson 1976; Payne 1976; Payne and Ragsdale 1978; Payne et al. 1988, 1993).

In the second one they select the best alternative according to their preference order over the con-

sidered options. Bettman and Park (1980) suggest that consideration sets are based on specific

attributes even though the final selection is holistic. More recently the idea has been adopted in

the economic literature, see e.g. Manzini and Mariotti (2013).

Most of the Conjoint Analysis literature focused on the second stage (the estimation of utility

functions over considered options). But forecasting consideration sets is a managerially impor-

tant issue. In the real marketplace consumers do not consider all available options (bear in

mind categories with numerous close substitutes like personal care category), but rather focus

on handful of alternative offerings (Hauser and Wernerfelt 1990; Urban and Hauser 2004), and

for managers it is crucial to forecast if a given offering will pass the consideration threshold.

More recently the literature started to look at the heuristic consideration rules, building two-

step models (Gensch 1987; Gilbride and Allenby 2004; Jedidi and Kohli 2005; Kohli and Jedidi

2007). However, the literature always considered them as two independent steps: first consider-

ation set is specified, and then the utility function is analyzed conditionally over the considered
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options. By contrast, in this essay we argue that it is to restrictive to assume such a clear direc-

tionality. The halo effect is a clear reason for consideration sets to be endogenous with respect to

the overall preferences. If the cognitive process is influenced by the overall affective impression

of the product, we cannot assume that the screening-off stage is independent from the evaluative

step. Rationally bounded consumers might choose in two-stages, but they are mutually linked.

The main contribution of this chapter is the joint estimation of consideration sets and preferences

allowing for endogeneity between preferences and consideration sets.

4.2 Modeling Preferences with Consideration Thresholds

Consider a multiattribute product characterized by attributes vector x (either continuous, dis-

crete, or both) varying in a compact subset χ ⊂ R
k, and let yt be the evaluative response to xt.

In classical experiments yt is an observable variable (ratings or rankings), whereas in choice ex-

periments y is a latent variable and we simply observe the product with higher utility among a

small set of alternatives. By pedagogical reasons we will discuss choice models later, and in the

first part of the essay we will assume that yt is observed.

Whether or not consumers select a product depends on a screening-off consideration rule,

traditionally considered as a primitive of the decision procedure, and overall preferences are

conditioned by this decision. Therefore, we postulate a switching-preference model where for

each xt ∈ χ we observe individual preference ratings yt satisfying

yt =






f (xt)′β+ε1t xt ∈ A
(
γ,ut

)

α+ε2t xt ∉ A
(
γ,ut

) (4.1)

where {(ε1t,ε2t)} are i.i.d. jointly distributed with zero mean and finite variances. Typically

ε2t has low variability and α is a small parameter. We can actually replace f (xt)′β by a more

general nonlinear and twice continuously differentiable function f
(
xt,β

)
. The consideration set

A
(
γ,ut

)
⊂ χ depends on unknown parameter vector γ, and some random vector ut. Notice that

if Pr(ut = 0) = 1, we obtain a deterministic consideration set but this is a quite restrictive as-
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sumption. Consideration rules can be formulated as deterministic, but a stochastic approach is

generally more fruitful. There are situational factors that can affect the final consideration de-

cision of a given product. Bettman and Zins (1977) find out evidence that consumers build their

consideration rules on-the-spot using memory fragments and situational elements. Excitement

and attention might also affect consideration.

The marketing literature has considered a variety of consideration rules A
(
γ,ut

)
, see e.g.

Gilbride and Allenby (2004, 2006), Jedidi and Kohli (2005); Montgomery and Svenson (1976);

Ordóñez et al. (1999); Payne et al. (1988); Olshavsky and Acito (1980); Bröder (2000); Yee et al.

(2007) and Hauser et al. (2009). The most common specifications are:

• Disjunctive rule requiring that at least one attribute is above a threshold level. Typically it

can be expressed as A
(
γ,u

)
=

⋃k
j=1

{
x ∈ χ : x j ≥ γ j +u j

}
. But we can consider lower or upper

bounds independently for every attribute.

• Conjunctive rule, assuming that all attributes of a considered profile exceed minimum

threshold levels, so that A
(
γ,u

)
=

⋂k
j=1

{
x ∈ χ : x j ≥ γ j +u j

}
. Subset conjunctive rule is a

variation where a profile must have r ≤ j attributes above a threshold. In practice con-

sumers can implement conjunctive rules sequentially (eliminating profiles using a given

feature, and then moving to another attribute, this is known as the Elimination-by-Aspects

process).

• Compensatory or additive partworth rule, where a combination of different attributes is

above a threshold level, so that we can express A
(
γ,u

)
=

{
x ∈ χ : x′γ1 ≥ γ0 +u

}
. It can be

applied when consumers screen-off products with holistic utility below some threshold. In

this case the consideration function should be A
(
γ,ε

)
=

{
x ∈ χ : f (xt)′β+ε1 ≥ γ0

}
which is

endogenous with respect to the preference shocks (ε1,ε2), and the parameters in γ include

β. We will argue later that there are additional reasons for endogeneity.

• Lexicographic rule. In a lexicographic consideration set, a profile is eligible if it satisfies a

threshold level for the most important attribute
{
x1 ≥ γ1 +u1

}
, and if it doesn’t, it should

136



satisfy a similar threshold for the second attribute, and so on. This rule can be expressed as

A
(
γ,u

)
=

⋃k
j=1

{{
x j ≥ γ j +u j

}⋂ j−1
l=1

{
xl < γl +ul

}}
, where the order given to the attributes is

essential to define the rule. This concept is more workable than lexicographic preferences1,

but still is relatively complex (Jedidi and Kohli 2005; Kohli and Jedidi 2007). A related

method, combining unions and intersections, is a disjunction of conjunctions where one or

more conjunctions are satisfied.

• Single feature rule. Sometimes the consideration set can be simpler, for example consider-

ing a single attribute A
(
γ,u

)
=

{
xl ≤ γl +u

}
. A relevant case is to consider the price, then

such consideration set essentially imposes a reservation price.

The evaluative function f (xt)′β can depend on different set of attributes from those included

in the consideration rule. In theory, γ can have elements in common with β, and also α= 0. We

will include all final parameters in a vector θ ∈ Θ, a compact set in the Euclidean space. Typi-

cally, to ensure identification of the parameters in the consideration set we need to assume that

V ar (u) = 1 and E [u] = 0 (or any other pre-fixed value, otherwise we can re-scale the considera-

tion rule using an affine transformation).

More involved situations can also be explained within the proposed framework. For example,

we can substitute α+ ε2t with a more complex model. A typical example is the conjoint model

with a reference price r when the effect of losses is larger than that of gains, meaning that

yt =






f (xt)′β−γgain · |pt − r|+ε1t, pt ≤ r

f (xt)′β−γloss · |pt − r|+ε2t, pt > r

(4.2)

where γgain < γloss. In this case, {pt ≤ r} is not exactly a consideration set, but it would have a

similar interpretation if γloss is large. The model can be analyzed applying the methods discussed

below, although we do not emphasize this specific case in our empirical analysis.

1If χ is uncountable, lexicographic preferences cannot be represented by a utility function.
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4.2.1 Consideration Frequency

The presented model implies that overall preferences work in two steps, which can be character-

ized using conditional probabilities. Define a dummy consideration variable

Ct = I
(
xt ∈ A

(
γ,ut

))
,

where I (·) denotes the indicator function (equal to 1 when xt ∈ A
(
γ,ut

)
and zero otherwise). In

general we assume that the shocks ut are i.i.d. with marginal density function fu (u). Then the

probability of a product xt being considered is precisely

Pr(Ct = 1|xt)=Pr
(
xt ∈ A

(
γ,ut

)
|xt

)
=

∫

Axt (γ)
fu (u)du,

where Ax

(
γ
)

is the set with all possible realizations of u for which x is considered

Ax

(
γ
)
=

{
u : xt ∈ A

(
γ,u

)}
.

When u belongs to the complementary set Ax

(
γ
)c =

{
u : xt ∉ A

(
γ,u

)}
the product x is discarded.

For example, if A
(
γ,ut

)
=

{
x ∈ χ : x′γ≥ u

}
then Ax

(
γ
)
=

(
−∞, x′γ

]
. If A

(
γ,u

)
=

{
(x1, x2) : x′1γ1 ≥ u1,

x2 ≤ γ2 +u2
}

then Ax

(
γ
)
=

(
−∞, x′1γ1

]
×

[
x2 −γ2,∞

)
. Notice that in all the examples of considera-

tion sets, the associated set Ax

(
γ
)

is either a finite Cartesian product of semi-intervals (conjunc-

tive rules), or a finite union of several of such sets (disjunctive rules). In the last case, we can

decompose Ax

(
γ
)

in non-overlapping rectangles, and integrate separately one each one of them.

Notice that for the compensatory-consideration example, depending on the specification for f (u)

we can obtain different standard models such as Probits or Logits. For example, Ben-Akiva and

Boccara (1995) specify a logit model for the consideration set probability with self-explicated

consideration data Ct = 1. If the consideration set and the density function are more involved,

we can use Monte Carlo simulations to compute these probabilities. Kau and Hill (1972) and

Bettman (1974) already emphasized the importance of consideration probabilities Pr(Ct = 1|xt).

Now we can examine the probabilistic structure of the problem. If we assume that εit are i.i.d
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with marginal distribution f i (·) , for i = 1,2 then we can derive the joint density function for the

evaluations and considerations as

f y,C (yt,Ct|xt) =
(
f1

(
yt − f (xt)

′β
)
×Pr(Ct = 1|yt, xt)

)Ct

+ ( f2 (yt −α)× (1−Pr(Ct = 1|yt, xt)))
1−Ct , (4.3)

If the evaluative shocks (ε1t,ε2t) are independent from the consideration shocks ut, then

Pr(Ct = 1|yt, xt)=Pr(Ct = 1|xt) . (4.4)

It is important to mention that when ut is statistically dependent with respect to (ε1t,ε2t) the

problem is much more difficult to handle. The consideration set literature traditionally considers

exogenous consideration, α = 0 and that fε2 (·) is concentrated in this value, so that the density

f y,C (yt,Ct|xt) collapses to

f y (yt|xt)= f1
(
yt − f (xt)

′β
)
×Pr(Ct = 1|xt)

Then, if Ct is known, we can estimate the model by Maximum Likelihood, or a Bayesian method.

There is another way to write model (4.1), namely as a regression equation

yt = Ct f (xt)
′β+ (1−Ct) α+ηt (4.5)

ηt = Ct ε1t + (1−Ct) ε2t,

where Ct = I
(
xt ∈ A

(
γ,ut

))
can be observed or not. If ut is independent of (ε1t,ε2t) then

E
[
ηt|xt

]
= E [Ct|xt]×E [ε1t]+E [(1−Ct) |xt]×E [ε2t]= 0,

with E [Ct|xt] = Pr(Ct = 1|xt) and E [(1−Ct) |xt] = (1−Pr(Ct = 1|xt)) and the model can be esti-

mated using classical econometric tools for exogenous switching regression based on the ideas in
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(4.3) and (4.4). But if ut is statistically dependent with respect to (ε1t,ε2t) we need a different

approach.

Practitioners can face additional difficulties, as Ct is not always available. Jedidi et al. (1996)

and Roberts and Lattin (1991) use respondent “self-explicated” survey measures about consid-

eration of alternatives (we observe Ct = 1). But notice that the consideration decisions can be

conscious or unconscious. In the last case, respondents would not be able to declare whether

Ct = 1 or Ct = 0, and when asked directly they would be likely to make mistakes. For exam-

ple, if a considered product receives low evaluation, respondents could mistakenly declare it as

unconsidered. In such case consideration statements should be regarded as a noisy signal of

consideration. Hauser et al. (2009, p.15) provide a thorough discussion about the limitations of

Self-Explicated consideration variables. There are other contexts where one can find noisy sig-

nals of consideration. For example, researchers might estimate consideration using noisy signals

such as previous brand purchase, or previous purchases of brands in promotion (see Fader and

McAlister 1990).

If we consider Ct as an unobservable latent variable, and we consider some signals St related

to consideration, but not entirely correct , the relationship between signals and consideration can

be modeled using a matrix of parameters represented in Table 4.1, where πi j =Pr(St = i|Ct = j) ,

for j, i = 0,1, and sum one by rows (π11 +π10 =π01 +π00 = 1).

Table 4.1: Relationship between signals and consideration
St = 1 St = 0

Ct = 1 π11 π10 = 1−π11

Ct = 0 π01 π00 = 1−π01

If we assume that the errors are independent from the specific attributes, then we can com-

pute

Pr(St = 1|xt) = Pr(St = 1|Ct = 1)×Pr(Ct = 1|xt)+Pr(St = 1|Ct = 0)× (1−Pr(Ct = 1|xt))

= π11 ×Pr(Ct = 1|xt)+π01 × (1−Pr(Ct = 1|xt))

Pr(St = 0|xt) = (1−π11)×Pr(Ct = 1|xt)+ (1−π01)× (1−Pr(Ct = 1|xt)) (4.6)
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Lee and Porter (1984) considered related ideas in another context.

Appendix A provides the expressions for the Likelihood function for the different cases dis-

cussed above: observed Ct, observed signals St, and the case where nothing is observed. But any

of these techniques require exogeneity of the consideration set.

4.3 Endogenous Consideration Sets

In practice it is difficult to accept that consideration sets are exogenous. One of the main reasons

is the halo effect which may interfere with the perception of attributes. In particular we dis-

tinguish between the reverse-halo, with consumers either biasing or ignoring information about

alternatives contradicting their affective attitude, and the direct-halo where consumers consider

products with unacceptable attributes due to affective reasons. The phenomenon has a long

history in marketing. Beckwith and Lehmann (1975, 1976) found the evidence of halo effect in

multiattribute attitude models. Johansson et al. (1976) and Beckwith et al. (1978) discuss the

phenomenon.

If the consideration set A
(
γ,u

)
is endogenously selected, then we cannot assume that ut

is statistically independent of (ε1t,ε2t) , meaning that Ct = I
(
x ∈ A

(
γ,ut

))
is endogenous with

respect to these shocks. The classical methods render inconsistent estimations in models with

endogenous consideration sets. Now, the shock of the regression model (4.5) satisfies

E
[
ηt|xt

]
=Pr(Ct = 1|xt) ·E [ε1t|xt,Ct = 1]+ (1−Pr(Ct = 1|xt)) ·E [ε2t|xt,Ct = 0],

which is in general different from zero. Ignoring this type of endogeneity will lead to inconsistent

estimations, and a biased perspective on consumer preference formulations. We can actually

quantify the bias component E [εit|xt,Ct = i] for i = 1,2. If we denote by fu the marginal density

function of u,

E [ε1t|xt,Ct = 1]= E
[
E [εt1|xt,ut] |xt ∈ A

(
γ,ut

)]
=

∫

Ax(γ)
E (εt1|u)

fu (u)

PrF

{
Ax

(
γ
)}du
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and similarly for E [ε2t|xt,Ct = 0] replacing Ax

(
γ
)

by its complement Ax

(
γ
)c .

To provide a clearer insight, let us consider a relatively standard example. If (εt1,εt2,ut) are

normally distributed with zero mean and covariance matrix Σ=
{
σi j

}
, then for i = 1,2

εi|u ∼ N

(

0+
σiu

σ2
u

(u−0),σ2
2 −

σ2
2u

σ2
u

)

E (εi|u) =
σiu

σ2
u

u

where σ2
iu

= E [εtiut] , meaning that E (εi|u) = σiu

σ2
u

u. To compute the expected value of εit condi-

tionally on Ct = 1 we now need to consider only the type of screening-off rule.

4.3.1 Compensatory Consideration Setting

Consider A
(
γ,u

)
=

{
x : x′γ−u > 0

}
, with endogenous normal shocks, and we normalize σ2

u =

E
[
u2

t

]
= 1 to ensure that the regime parameters are identified. From the distribution of the

shocks (εt1,εt2,ut) using the expressions that we computed for E (εt1|u) ,E (εt2|u) , we obtain that

E
[
εt1|xt,ut ≤ x′tγ

]
=

∫x′tγ

−∞
E (εt1|u)

φ (u)

Φ
(
x′tγ

)du =σ1u

∫x′tγ

−∞
u

φ (u)

Φ
(
x′tγ

)du

E
[
εt2|xt,ut > x′tγ

]
=

∫∞

x′tγ
E (εt2|u)

φ (u)

1−Φ
(
x′tγ

)du =σ2u

∫∞

x′tγ
u

φ (u)

1−Φ
(
x′tγ

)du

We will use also that for a standard normal density φ (·) with cumulative distribution Φ (·) ,

1

Φ (z)

∫z

−∞
uφ (u)du =

−φ (z)
Φ (z)

=−λ (z)

1

1−Φ (z)

∫∞

z
uφ (u)du =

φ (z)
1−Φ (z)

=
φ (z)
Φ (−z)

=λ (−z)

where λ (z)=φ (z) /Φ (z) is known as the inverse Mills ratio or Heckman’s lambda. Therefore,

E
[
εt1|xt,ut ≤ x′tγ

]
= −σ1u

φ
(
x′tγ

)

Φ
(
x′tγ

) =−σ1u λ
(
x′tγ

)

E
[
εt2|xt,ut > x′tγ

]
= σ2u

φ
(
x′tγ

)

1−Φ
(
x′tγ

) =σ2u λ
(
−x′tγ

)
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Clearly, the conditional expectation of the observed utility is given by

E [yt |xt,Ct = 1] = f (xt)
′β−σ1u λ

(
x′tγ

)
, (4.7)

E [yt |xt,Ct = 0] = α+σ2u λ
(
−x′tγ

)
, (4.8)

Actually, if we know γ the preference parameters for each regime can be estimated consistently

using these regression equations.

Pr(Ct = 1|xt)=
∫

Ax(γ)
fu (u)du =Φ

(
−x′tγ

)
. (4.9)

If Ct is known, for this specific switching-regression problem, Heckman (1979) proposed a two-

step procedure, estimating γ from the probit (4.9), and in a second step estimate the remain-

der parameters applying OLS in the regression models (4.7) and (4.8) for each regime, using

λ̂t1 = λ
(
x′tγ̂

)
and λ̂t2 = λ

(
−x′tγ̂

)
as regressors. Naturally, such estimation is less efficient than

Maximum Likelihood.

For other types of consideration heuristic rules, endogeneity can generate even more complex

biases. Notice that the expressions (4.7), (4.8) and (4.9), can be extended to consideration sets

with several inequalities by considering a vector ut, replacing the σiu,σ2
u parameters by matrices,

and taking multiple integrals instead of a simple integral. The situation can be far more complex

when we do not know Ct, and we can also have intermediate situations where we observe some

signal St (such as past brand purchase) positively dependent with respect to the unobserved Ct.

The next section presents a simple empirical application based on the classical ideas by Heckman

(1979), and the last part of this chapter is focused on the general model.

4.4 Empirical Application

We have conducted an experiment to test the endogeneity of consideration sets using an online

survey with Amazon.com’s Mechanical Turks (MTurks). This is a conjoint study of consumer

preferences towards lunch dishes, providing a realistic setting where people screen off numerous
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available options and proceed with a choice from the reduced set of alternatives. At this stage we

consider a model of compensatory additive consideration set that can be framed in the Heckman

(1979) approach explained in Section 3.1. To this end we build a Heckman two-step estimator,

and use it as a starting point for a Newton algorithm in a full maximum likelihood estimator.

4.4.1 Data Description

Conjoint data were collected online via Amazon’s MTurk website, which allows cheap and fast

recruitment of workers from a diverse subject pool. Berinsky et al. (2012) compare MTurks

to other Internet and traditional samples, showing that in terms of representativeness and data

quality they exceed the standards of published research. To recruit the subjects we have posted a

job task (a so called HIT - Human Intelligence Task) with the survey link paying each respondent

95 cents for the completed 10-minute survey. We required that the MTurk workers have a history

of at least 100 approved HITs and a 95% approval rate from all requesters. The survey was

active for 4 weeks and a total of 3008 conjoint observations were collected from a sample of 188

respondents.

Table 4.2: Lunch entrée attributes and levels
Attributes Levels
Type of meat beef, chicken, fish, vegetarian
Price $ 7.99, $ 11.99, $ 15.99
Preparation grilled, fried, broiled
Sides fries, rice, vegetables, salad
Gluten-free yes, no
Organic yes, no

The conjoint task included in the survey was designed to estimate respondents’ preferences

for lunch entrée features. The identified product were: type of meat, price, type of preparation,

included sides, gluten-free and organic claims (see Table 4.2). Each subject was asked to evaluate

the appeal of 16 different lunch options on a scale from 1 to 10, and the presented alternatives

constituted an orthogonal fractional factorial design. We have also included self-explicated ques-

tions about respondent’s choice and consideration set, asking directly which menu items they

would order and were considering to order. Additionally, we collected the information about de-
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mographics, dietary issues, eating-out habits and fitness activity. Summarizing, the data set

contains four types of variables: (1) lunch entrée characteristics (the experimental design de-

scribed in Table 4.2), (2) demographic variables, (3) eating/fitness habits and food allergies, and

(4) meat category ranking (ranking of the levels in the first attribute). Except for age, height,

weight and BMI all variables are dummies.

Table 4.3: Overall evaluation of presented alternatives
ID and Description Utilities Choice Set

(mean) (#) (#)
1. Pan fried beef stripes with rice at $15.99. Oa 5.58 6 33
2. Tenderloin beef roast with salad at $ 11.99. GF,O 6.67 10 54
3. Grilled steak with vegetables at $ 7.99. GF 7.20 31 74
4. Tenderloin beef roast with fries at $ 11.99. 6.47 19 38
5. Grilled chicken breast with fries at $ 11.99. O 6.97 24 74
6. Boneless buffalo chicken wings with rice at $ 7.99 6.00 11 41
7. Herb crusted fried chicken with salad at $ 11.99. GF 6.92 19 51
8. Boneless buffalo chicken wings with vegetables at $ 15.99. GF,O 5.60 6 21
9. Oven-baked grouper with salad at $ 7.99. 5.11 2 25
10. Grilled salmon with rice at $ 15.99. GF 5.44 17 46
11. Oven-baked grouper with fries at $ 15.99. GF,O 4.56 5 13
12. Fried shrimps platter with vegetables at $ 11.99. O 5.52 12 40
13. Fried vegetarian burger with fries at $ 7.99. GF 4.73 6 29
14. Vegetarian lasagna with vegetables at $ 15.99 5.45 8 34
15. Seasonal grilled veggies platter with salad at $ 15.99. O 5.34 5 26
16. Vegetarian lasagna with rice at $ 11.99. GF,O 5.18 7 27

Total: 5.80 188 626
a O – organic meal, GF – gluten-free meal

The presented lunch options are listed in Table 4.3, together with their corresponding mean

utilities, the number of respondents who chose them, and the number of respondents who consid-

ered ordering the dish for lunch. The first look at the data suggests that in general the respon-

dents are consistent in reporting their utilities, choices and consideration sets. Options 3, 5 and

7 are the top three lunch entrées in terms of all criteria: average appeal (utility score), number of

choices, and number of considerations. Additionally, option 2 was also among the mostly consid-

ered dishes. On average, each respondent reported 3.33 dishes in their self-explicated consider-

ation set, the average utility score of alternatives included in the consideration set is 8.5 (across
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alternatives and respondents), and it is 5.1 for unconsidered options. This informal empirical

evidence suggests that indeed respondents evaluate differently the considered and unconsidered

dishes and points to the possibility of a certain screening heuristic.

Additionally, we collected background information about respondents’ dietary issues, eating

out frequency and spending, as well as fitness activity habits. Interestingly, almost 30% of the

respondents reported some diet restrictions, of which most frequent are low calorie diet (14 re-

spondents), vegetarian diet (11), gluten allergy (7) and lactose allergy (6). These issues may

have a significant impact on individual’s preferences for the lunch entrée. Over 65% of the re-

spondents eat out at least once per week, which indicates that the sample is adequate for the

study. In terms of the average lunch spending the majority of subjects are concentrated in two

categories: 56% of respondents pays for lunch an amount between $5.00 and $9.99, and 37% –

between $10.00 to $14.99.

A number of questions allow us to assess the physical condition and fitness level of the respon-

dents. Table 4.4 presents descriptive statistics for demographic variables in our data, including

height age, gender, height, weight, and BMI2. The distribution of BMI values presented in Ta-

ble 4.4 shows clearly that more than the half of the respondents are above the healthy weight

threshold, including around 25% of respondents who are obese. In comparison, the prevalence

of obesity in adult American population was 35.7% in 2012 (Ogden et al. 2012). Fitness activity

level of respondents is rather low: 44% of them admitted to exercising less than once a week;

around 33% of respondents exercises moderately (2-3 times per week), and only around 23%

exercises at least 4 times weekly.

For the analysis, we use dummy coding of design variables, omitting one level within each at-

tribute to eliminate multicollinearity: vegetarian for the meat-type attribute, $5.99 in the price

attribute, fried for the preparation attribute, and rice for the side attribute. As a result, the

estimated coefficients (part-worths) are interpreted relative to the omitted variable. The rest

of categorical variables are recoded into the variables “excerciseY”/“eatoutY”, indicating whether

2The Body Mass Index (BMI) is calculated as weight(kg)/height2(m2) ≈ 703×weight(lb)/height2(in2), and is com-
monly used for weight assessment in adults, indicating: underweight (BMI< 18.5), healthy weight (18.5<BMI< 24.9),
overweight (25.0<BMI< 29.9), obesity (BMI> 30).
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Table 4.4: Demographic variables overview
Variable Mean SD Min Max Q1 Q2 Q3

Height (in) 66.88 4.78 59 86 64 66 69
Weight (lbs) 172.84 46.27 90 350 144 160 195
BMI 27.29 7.20 16.82 56.64 22.04 25.74 30.85
Age 37.52 11.62 20 71 29 35 44
Gender: female 60%

the respondent exercises/eats out at least once per week, and “AvgPrice9.99” representing the av-

erage lunch spending up to $9.99. “Onlineorder” indicates whether or not the respondent ordered

food online before, and “catrnk2” takes the value 1 if the lunch option belongs to respondents’ two

favourite dish categories (and 0 otherwise).

4.4.2 Model Estimation

We have estimated the endogenous consideration set with compensatory selection rule described

in Section 3.1 using Heckman two-step estimator implemented in Stata subroutine “heckman”,

which provides consistent, asymptotically efficient estimates for all the parameters in the model.

Note that the variables defining the consideration set and the utility need not be the same,

otherwise it is implicitly assumed that there is no specific phenomenon determining whether or

not an observation is considered.

In order to define the model, we considered a variety of alternative specifications with dif-

ferent types of variables and interactions for the consideration set and the utility equation. We

performed diagnostic analysis of estimated models and tested the individual and overall signif-

icance of coefficients, obtaining the following specification. In the compensatory consideration

set we included the design variables, “catrnk2”variable, and two meat-price interaction effects:

“beef-$11.99”and “chicken-$11.99”. These interaction effects correspond to two most frequently

considered lunch options on our menu. The utility evaluation equation is defined by the design

and individual-specific variables: demographic variables, BMI, frequency of eating out and exer-

cising, average lunch spending, and diet restrictions. In summary, the probability that a dish is

included in the consideration set depends only on dish attributes and not on respondent-specific
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variables, but the way people evaluate lunch options depends on both respondent-specific effects

and food characteristics.

Table 4.5 summarizes the results of the Heckman two-step procedure, where in the first

stage we estimate the probability that a dish is considered by the respondent (probit), and in

the second stage we estimate the utility of considered and unconsidered lunch options including

the inverse Mills ratio variables to account for endogeneity (see equations 4.7 and 4.8). Each of

the resulting regressions is globally statistically significant at the .000 level. Additionally, the

standard residual errors in the “Utility” equation exhibit low variability: σ̂ = 1.332 in the first

regime, and σ̂= 2.557 in the second regime.

The results from the probit model are summarized in the left panel of Table 4.5, demonstrat-

ing that the majority of the estimates is significant at .01 level, and the insignificant coefficients

are attributed to the smallest effects. The interaction elements between meat category and the

second price level have the largest positive effect of a dish being considered, and are responsible

for the increase in z-score3 by 1.716 (chicken-$11.99 interaction term) and 1.505 (beef-$11.99 in-

teraction term), relative to the omitted vegetarian category. Interestingly, they are larger than

the main effects (see negative coefficients for prices, chicken, and beef), which suggests that re-

spondents are more likely to consider both of the features simultaneously rather than separately.

Furthermore a considerable positive estimate of a category ranking indicates that respondents

more often consider dishes, which belong to one of the two of their favourite meat categories.

Also, preparation of food on grill, and organic claims are factors which increase the probability

of consideration. Finally, second and third price level decreases the probability that a dish will

be included in the consideration set (relative to the lowest price), as well as the accompanying

sides – salad and fries (relative to rice). The negative coefficients on beef and chicken dishes

are relative to the omitted vegetarian category and represent an isolated main effect, separated

from the influence of interaction terms and category rankings. The center and right panel of 4.5

present the results of the utility estimation of considered (regime 1) and unconsidered dishes

(regime 2), receptively. Among design variables, beef dishes and two price levels contribute to

3Omitted in the output for space purposes.
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Table 4.5: Heckman’s two step estimation results
Consideration Utility Utility

probability Regime 1 Regime 2
β j SE β j SE β j SE

beef -.774c .195 .447b .179
chicken -1.017c .199 .201 .181
fish -.258c .09 -.051 .181
price $11.99 -.933c .303 .3a .175
price $15.99 -.725c .15 .32a .17
grilled .254c .094 -.134 .164
broiled -.162 .1 -.051 .14
salad -.714c .184 .121 .166
vegetables .076 .082 .001 .157
fries -.825c .19 -.133 .178
glutenY .017 .059 .103 .116
organic .214a .12 -.386c .136

catrnk2 .94c .067 - -

beef-$11.99 1.505c .423 - -
chicken-$11.99 1.716c .426 - -

female .172 .113
BMI -.013a .007
age .03c .005
onlineorder -.028 .109
eatoutY .048 .117
excerciseY -.128 .117
AvgPr9.99 -.239b .118
AllGluten -.973c .343
AllLactose -.637a .375
AllFish .827 1.279
LowCalDiet -.152 .349
LowSodDiet -.512 .334
VegeDiet .004 .388
AllDiet0 -.31 .32
AllDietOther .255 .295

Mills ratio -.654c .196 3.551c .269
Intercept -.400a .222 8.776c .559 3.929c .101
ρ̂ -0.491
σ 1.332 2.557
a p < .1, b p < .05, c p < .01
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the increase in the utility score of a dish, while the organic claims reduce it. The majority of sig-

nificant individual-specific estimates are negative, showing that respondents who are allergic to

gluten and lactose evaluate the presented menu options less favourably than individuals who do

not suffer from above allergies. The influence of age and BMI on appeal evaluation is small but

significant. Finally, the disparity of intercept values for the utility equations in two regimes pro-

vides empirical evidence that individuals indeed evaluate the considered and overlooked lunch

options in a different way.

A convenient advantage of the consideration set model is the ability to separate the effects

on consideration probability and utility evaluation, because certain dish attributes may be im-

portant for the consideration step but not for the evaluative step (and vice versa). Observe an

interesting behaviour of price variables: the two highest price levels have large, negative and

significant estimates in the consideration probability equation, but a positive effect on utility

evaluation of considered lunch options. Additionally, the negative estimate of AvgPrice9.99 sug-

gests that a respondent, who on average spends above $9.99 on lunch, gives higher scores to the

presented menu options than a price-conscious respondent. This suggests that individuals are

more price sensitive in their decisions to include the dish in the consideration set, than in their

utility evaluations. In other words, high price may exclude a dish from the consideration set, but

concurrently it can have a positive impact on the utility evaluation (for example when price is a

signal of quality).

There are several indicators that endogeneity exists between the consideration and evalua-

tive step in respondents’ decision making about menu entrées. Recall, that Heckman two-step

estimator includes the Mills inverse ratio as a regressor in the utility model to correct for the

endogeneity. The coefficient estimates of this variable represent effects of considerable size and

are significant at the .001 level for both utility regimes. Additionally, the estimated correlation

between the residuals from the selection step and evaluation step is -.491, confirming again that

endogeneity is strong and persistent.

In this section we provided empirical evidence that people assess differently the considered

and unconsidered lunch options and that this evaluation process is indeed endogenous to the
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formation of consideration sets. We focused on the compensatory consideration set, estimated

with Heckman two-step estimator. Additionally, in Appendix C this specification is compared to

the traditional conjoint analysis model, showing that the latter performs quite poorly because it

does not account for existence of consideration sets. This simple supplementary analysis shows

that Heckman two-step estimator correctly captures the compensatory formation of consideration

set and corrects for the existing endogeneity between evaluation and consideration.

4.5 Conclusions and Future Research

Rationally bounded consumers often apply heuristic rules to screen-off products which are not

considered. But this decision has a random component, and there is interference between the

consideration and the evaluative step which can generate endogeneity. Given these arguments,

researches should not force exogeneity, but to allow for statistical dependence between the shocks

of utility functions and consideration sets.

The application described in Section 4.4.2 is based on two-step estimator proposed by Heck-

man (1979), which allows for consistent estimation of preference parameters in case of endogene-

ity between product evaluations and a compensatory consideration set, under the assumption

of normality and perfect sample separation. Below we open the discussion of future research

agenda, providing a theoretical framework towards a general solution for more versatile consid-

eration sets, latent consideration variables Ct, and signals of considerations. We also discuss the

case of modeling endogenous consideration sets in conjoint analysis based on choice data.

4.5.1 The General Consideration Model

Consider a random consideration set A
(
γ,u

)
, where the heuristic rules are dependent with the

random shocks on the utility, i.e. ut is statistically dependent of (ε1t,ε2t) . Let us denote by

f1,2,u (ε1,ε2,u) the joint density function, with marginal densities

f iu (εi,u) =
∫

f1,2,u (ε1,ε2,u)dε j, j 6= i
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f i (εi) =
∫

f1,2,u (ε1,ε2,u)dε jdu, j 6= i

fu (u) =
∫

f1,2,u (ε1,ε2,u)dε1dε2.

Then, each regime of the evaluation model has a density f1u

(
yt − f (xt)′β,u

)
and f2u (yt −α,u)

respectively. Typically we specify these models using a factorization

f1u

(
yt − f (xt)

′β,u
)

= f1
(
yt − f (xt)

′β
)
× fu|1

(
u|yt − f (xt)

′β
)
,

f2u (yt −α,u) = f2 (yt −α)× fu|2 (u|yt −α) .

Working with these expressions, we can build the Likelihood function. The idea is to marginalize

integrating over the unobserved variables u in the appropriate event.

These densities are easily derived in the context of a joint normal distribution, for example.

Now we can consider estimation of the model parameters θ = vec
(
β,α,γ,σ2

1u
,σ2

2u
,σ2

1,σ2
2

)
. We can

consider several situations and methods.

Case 1) Self-explicated consideration. If we have a known sample separation (we observe

Ct), then

f1,2,u|c (ε1,ε2,u|c)=
{∫

Axt (γ)
f1u (ε1,u)du

}Ct
{∫

Axt (γ)
c

f2u (ε2,u)du

}(1−Ct)

and the full-information Likelihood function is given by

LT (θ)=
T∏

t=1

{∫

Axt (γ)
f1u

(
yt − f (xt)

′β,u
)
du

}Ct
{∫

Axt (γ)
c

f2u (yt −α,u)du

}(1−Ct)

,

and using the conditional densities, the logarithm can be written as

lnLT (θ) =
T∑

t=1
Ct

{

ln f1
(
yt − f (xt)

′β
)
+ ln

∫

Axt (γ)
fu|1

(
u|yt − f (xt)

′β
)
du

}

+ (1−Ct)

{

ln f2 (yt −α)+ ln
∫

Axt (γ)
c

fu|2 (u|yt −α)du

}

.
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Under differentiability assumptions this model can be estimated applying the Newton-Raphson

method.

Case 2) Inferred consideration. If the consideration regime is not observed, then

f1,2 (ε1,ε2)=
∫

Axt (γ)
f1u (ε1,u)du+

∫

Axt (γ)
c

f2u (ε2,u)du

and the likelihood function Likelihood function is given by

LT (θ)=
T∏

t=1

{∫

Axt (γ)
f1u

(
yt − f (xt)

′β,u
)
du+

∫

Axt (γ)
c

f2u (yt −α,u)du

}

=
T∏

t=1

{

f1
(
yt − f (xt)

′β
)∫

Axt (γ)
fu|1

(
u|yt − f (xt)

′β
)
du+ f2 (yt −α)

∫

Axt (γ)
c

fu|2 (u|yt −α)du

}

.

Note that the log-likelihood function is relatively involved, as the logarithm is applied to the

whole term in brackets.

Case 1 and case 2 are opposite extremes: either the sample separation (consideration) is

completely known or unknown.

Case 3) Consideration Signals. If we have a signal St related to Ct as described in Table

1, then from (4.6), we conclude that

f1,2,S (ε1,ε2,S) =
(

π11 ×
∫

Axt (γ)
f1u

(
yt − f (xt)

′β,u
)
du+π01 ×

∫

Axt (γ)
c

f2u (ε2,u)du

)St

×
(

(1−π11)×
∫

Axt (γ)
f1u (ε1,u)du+ (1−π01)×

∫

Axt (γ)
c

f2u (ε2,u)du

)1−St

and we the conditional Likelihood function is given by

LT (θ) =
T∏

t=1

{

π11 ×
∫

Axt (γ)
f1u (ε1,u)du+π01 ×

∫

Axt (γ)
f2u

(
yt − f (xt)

′β,u
)
du

}St

×
{

(1−π11)×
∫

Axt (γ)
f1u (ε1,u)du+ (1−π01)×

∫

Axt (γ)
f2u

(
yt − f (xt)

′β,u
)
du

}(1−St)
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Based on the Likelihood function, researchers can either compute the Maximum Likelihood

estimator (usually applying numerical methods), or the Bayes estimator (i.e. posterior mean

from an arbitrary prior, generally applying numerical integration methods such as Monte Carlo

approximations or quadrature formulas). Under regularity conditions, both types of estimators

are consistent and have the same asymptotic distribution (by the Bernstein-von Mises Theorem),

therefore we do not delve on this issue. In any case, the conditions required to ensure a good

performance of Bayes estimators are usually stricter than for Maximum Likelihood, thus we will

compute our estimators maximizing the log-likelihood.

The estimators based on self-explicated data (case 1) are typically more efficient, as they use

more information than the estimators that do not use this data. However, such estimators will

be inconsistent if the quality of self-explicated information is low. If researchers are doubtful, the

validity can be tested using a Hausman-Wu test comparing both estimators.

If we do not have (or decide not to use) the consideration variables Ct, we must maximize the

Likelihood function described in case 2, which is usually a harder task. There is an alternative

trick that can be used to tackle this problem. We can consider an EM algorithm, taking arbitrary

initial values for Ct (e.g. the half sample with larger values yt), and following case 1) to estimate

the parameters. Next, we update the consideration variables using the optimal forecast Ĉt =

I (Pr(Ct = 1|yt, xt)> 0.5) with

Pr(Ct = 1|yt, xt)=
∫

Axt (γ)
fu|1

(
u|yt − f (xt)

′β
)
du,

iterating until the parameters converge or at least do not vary too much. The EM usually in-

creases the true likelihood, but it is difficult to establish formal convergence to the maximum. On

the other hand, the stopping values of the EM algorithm (even if we do not rigorously converge)

should be closer to the maximum and can be used to initialize a Newton-Raphson algorithm for

the true Likelihood (described in case 2).

In each of the considered scenarios, Maximum Likelihood estimates are consistent and asymp-

totically efficient, but the optimization can be cumbersome as often there are several local max-
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ima. A variety of robust optimization algorithms can be used to solve this problem. If a locally

convergent method is used (such as Newton-Raphson), it is convenient to initiate it at some pre-

liminary consistent but inefficient estimator. For example, assuming normal distributions and

observed Ct in the compensatory-consideration model, we can use the two-steps Heckman pro-

cedure to obtain an initial value (this actually the procedure applied in Section 4.4). For other

consideration rules we can adapt the two step method of Heckman to the specific set Ax

(
γ
)
, and

the resulting estimator for γ would be used to estimate the other parameters in the second step.

The computation of the gradients and Hessians is required for the Newton-Raphson method,

and to estimate the asymptotic variance. In the Appendix B, we discuss the computation of

these derivatives, these procedures should be applied to handle any of the discussed Maximum

Likelihood methods.

4.5.2 Extension to Choice Models

We can also contemplate the existence of endogenous consideration sets in conjoint analysis

based on choice. In the last decade, the experiments increasingly require respondents to choose

for t = 1, ..,T times from a small group of J alternative products at each time (the product ratings

y1t, ..., yJt are conceptualized as unobserved latent variables, and researchers record a group of

dummy dependent variables
{
Y jt

}T

j=1 related to the latent variable as Y jt = I
(
yjt =max {y1t, ..., yJt}

)

where I denotes the indicator function). In particular, if we assumed normality, we can combine

the Probit multinomial model with the endogenous likelihood. Notice that in choice models, we

only observe choices and we do not even ask about consideration or not, nor use any signal.

Assume Jt alternatives are considered in a choice task t, and each alternative is defined by

the attributes
{
x jt

}Jt

j=1 and latent utility of the alternative ( j, t) is yjt. The final choice is taken

over the considered alternatives. First, we will assume that for x jt ∉ A
(
γ,u jt

)
the evaluation is

equal to 0 with probability one, so that we only need to compare considered options:

Pr
(
Y jt = 1| {xtl}

Jt

l=1

)
= Pr

(
yjt − ylt ≥ 0, l 6= j|xt, {Clt = 1}Jt

l=1

)

= Pr
(
ε jt ≤ εlt +

(
f
(
x jt

)
− f (xlt)

)′
β, l 6= j|xt, {Clt = 1}Jt

l=1

)
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=
∫∫

Axlt (γ)

{
∏

l 6= j

Fε j ,u j

(
εlt +

(
f
(
x jt

)
− f (xlt)

)′
β,u j|Clt = 1

)}

f
(
ε,u j

)
dεdu j

with conditional distributions Fε j ,u j |Cl=1

(
εlt +

(
f
(
x jt

)
− f (xlt)

)′
β,u j|Clt = 1

)
determined by its den-

sity

fε j ,u j |Cl

(
ε j,u j|Cl = 1

)
=

∫
Axlt (γ)

fε j ,u j ,ul

(
ε j,u j,ul)

)
du

∫+∞
−∞

∫
Axlt (γ)

fε j ,u j ,ul

(
ε j,u j,ul)

)
dεdu

,

so that

Fε j ,u j

(
e,u j|Cl = 1

)
=

∫e

−∞

∫
Axlt (γ)

fε j ,u j ,ul

(
ε j,u j,ul)

)
du

∫+∞
−∞

∫
Axlt (γ)

fε j ,u j ,ul

(
ε j,u j,ul)

)
dεdu

dε j.

Usually this distribution is computable, e.g. under jointly normal shocks.

The problem becomes complex if we allow some chance to the unconsidered options. If we

consider that a discarded option xlt is (surprisingly) chosen in the evaluation step, then we should

consider events

Pr
(
ε jt ≤ εlt + f

(
x jt

)′
β−αβ|xt,Clt = 0

)

using Fε j ,u j |Cl=1

(
εlt + f

(
x jt

)′
β−α,u j|Clt = 0

)
. Howver, in most applications it would not have

much sense.

Finally, the full-information Likelihood function is given by

LT

(
β,α,γ

)
=

T∏

i=1

Jt∏

j=1
Pr

(
Y jt = 1|xt

)Y jt .

The computation of the Likelihood integral, and its derivatives might require numerical compu-

tation.

If a customers’ Panel is used, we might include refinements, such as including a mixture

integrating the parameters of the model to include unobserved heterogeneity. But the model is

complex enough and we believe that it is better to include observable variables about customers

in the evaluative and consideration equations. The introduction of unobservable parametric

heterogeneity using mixtures often enhances overparametrization (i.e., overfitting).
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Appendix A: Likelihood Functions in the Case of Exogeneity

For the microeconomic context it is also useful to discuss the likelihood functions for models

imposing exogeneity (for a variety of examples see Maddala 1984, 1986). For each xt we consider

that there is an unobserved exogenous random variable ut, usually a normal variable with zero

mean and variance σ2
u independent from (ε1t,ε2t). Below we derive the likelihood functions for

the parameters θ = vec
(
β′,α,γ,σ1,σ2

)
, depending on the type of the available information.

Case a) “Self-explicated”consideration data. When respondents are able to declare Ct,

we can build the likelihood function

LT (θ) =
T∏

t=1

{
f1

(
yt − f (xt)

′β
)
×Pr(Ct = 1|xt)

}Ct
{

f2 (yt −α)× (1−Pr(Ct = 1|xt))
}1−Ct

=
T∏

t=1

{[
Ct f1

(
yt − f (xt)

′β
)
+ (1−Ct) f2 (yt −α)

]
×Pr(Ct = 1|xt)

Ct (1−Pr(Ct = 1|xt))
1−Ct

}
.

Note that in practice we maximize

lnLT

(
β,α,γ

)
=

T∑

t=1

[
Ct ln f1

(
yt − f (xt)

′β
)
+ (1−Ct) ln f2 (yt −α)

]

+
T∑

t=1

[
Ct lnPr(Ct = 1|xt)+ (1−Ct) ln(1−Pr(Ct = 1|xt))

]
.

which requires the use of numerical optimization algorithms. Under differentiability assump-

tions we can apply the Newton-Raphson method. If there are not traversal constraints, the

estimation of β and γ can be addressed independently.

Case b) Inferred consideration. If we ignore whether or not a product profile belongs to

the consideration set, we need to consider the Likelihood function

LT (θ)=
T∏

t=1

{
f1

(
yt − f (xt)

′β
)
×Pr(Ct = 1|xt)+ f2 (yt −α)× (1−Pr(Ct = 1|xt))

}
.

Once the parameters in the model have been estimated, we can compute the probability of an

observation being considered. In practice it is not too different from the previous case. For exam-
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ple, with the compensatory consideration model we have Pr(Ct = 1|xt) = Φ
(
x′tγ1 −γ0

)
, therefore

with a standard normal shock u, and for independent Gaussian random shocks ε1,ε2

lnLT (θ)=
T∑

t=1
ln

{
σ1φ

(
yt − f (xt)′β

σ1

)
Pr(Ct = 1|xt)+σ2φ

(
yt −α

σ2

)
(1−Pr(Ct = 1|xt))

}
,

with θ = vec
(
β′,α,σ1,σ2

)
. This can be solved using the Newton-Raphson method, but the prob-

lem is numerically difficult. Alternatively, some authors use the EM algorithm considered by

Hartley (1977, 1978) and Kiefer (1980).

Case c) Signals of consideration. If we use signals St of consideration as described in

Table 1, then

f1,2,S (ε1,ε2,S) =
[

f1 (ε1)×π11 ×Pr(Ct = 1|xt)+ f2 (ε2)×π01 × (1−Pr(Ct = 1|xt))
]St

×
[

f1 (ε1)× (1−π11)×Pr(Ct = 1|xt)+ f2 (ε2)× (1−π01)× (1−Pr(Ct = 1|xt))
]1−St

,

and the conditional Likelihood function is given by

LT (θ) =
T∏

t=1

{
f1

(
yt − f (xt)

′β
)
π11 Pr(Ct = 1|xt)+ f2 (yt −α)π01 (1−Pr(Ct = 1|xt))

}St

×
{
f1

(
yt − f (xt)

′β
)
(1−π11)Pr(Ct = 1|xt)+ f2 (yt −α) (1−π01) (1−Pr(Ct = 1|xt))

}(1−St) .

It can be also written as

LT (θ) =
T∏

t=1

{
St

[
f1

(
yt − f (xt)

′β
)
π11 Pr(Ct = 1|xt)+ f2 (yt −α)π01 (1−Pr(Ct = 1|xt))

]

+ (1−St)
[

f1
(
yt − f (xt)

′β
)
(1−π11)Pr(Ct = 1|xt)+ f2 (yt −α) (1−π01) (1−Pr(Ct = 1|xt))

]}
.

Finally, notice that exogeneity of consideration tests can be tested comparing the Maximum

Likelihood estimators computed with and without endogeneity with a Haussman-Wu test.
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Appendix B: Derivatives of the Likelihood Function

The computation of the probabilities in the Likelihood function depends on the particular distri-

bution assumed for the different shocks of the model. A classical approach is to assume Normal-

ity.

Example 6 Compensatory consideration. If A
(
γ,u

)
=

{
x : x′γ−u > 0

}
, we assume that σ2

u = 1

to ensure identification (as γ is estimable only up to a scalar factor), and shocks have a joint

normal distribution. Then, Ax

(
γ
)
=

(
−∞, x′tγ

]
,

ut|εit ∼ N

(

0+
σiu

σ2
i

(εit −0),σ2
u

(
1−ρ2

ui

)
)

with ρ2
ui

= σ2
iu

σ2
i
σ2

u

, and the required integrals can be expressed as

∫x′tγ

−∞
fu|1

(
u|yt − f (xt)

′β
)
du =

1
√

σ2
u

(
1−ρ2

ui

)

∫x′γ

−∞
φ





(
u− σiu

σ2
i

(
yt − f (xt)′β

))

√
σ2

u

(
1−ρ2

ui

)



du

=
1

√
σ2

u

(
1−ρ2

ui

)

φ





(
x′tγ−

σiu

σ2
i

(yt− f (xt)′β)
)

√
σ2

u(1−ρ2
ui)





Φ





(
x′tγ−

σiu

σ2
i

(yt− f (xt)′β)
)

√
σ2

u(1−ρ2
ui)





.

and similarly

∫∞

x′tγ
fu|2 (u|yt −α)du =

1
√

σ2
u

(
1−ρ2

ui

)

φ





(
x′tγ−

σiu

σ2
i

(yt−α)
)

√
σ2

u(1−ρ2
ui)





1−Φ





(
x′tγ−

σiu

σ2
i

(yt−α)
)

√
σ2

u(1−ρ2
ui)





.

In practice, the main problem is not the computation of the Likelihood function, but the

computation of the derivatives of the Likelihood function. In case of compensatory preferences,

this is relatively simple because the integrals have a closed form. But the problem is more

difficult for other types of consideration sets, and other distributional assumptions. This section
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is devoted to the analysis of the derivatives in a general context.

In order to compute the Likelihood function we need to take derivatives of the border of an

integral. The likelihood functions contain expressions such as

∫

Ax(θ)
f (θ, x,u) du

where θ is a general vector containing all the parameters in the model and f an integrable

function in u. The goal of this section is the computation of gradients and Hessians for this type

of integrals. Following condition is assumed.

Condition 7 For each x ∈X , the support of the regressors, we assume that Ax

(
γ
)

is a Cartesian

product of rectangles (intervals or semi-intervals). In general we assume that θ belongs to a

compact interval θ0 ≤ θ ≤ θ1, and

Ax (θ)= {u : a (θ, x)≤ u ≤ b (θ, x)} ,

where the inequalities θ0 ≤ θ ≤ θ1, and a (θ, x) ≤ u ≤ b (θ, x) must be considered in a pointwise

coordinate sense. We also assume that given any fixed x ∈ X , the density f (θ, x,u) satisfies that

both f (θ, x,u) and and its partial derivative ∂
∂θ

f (θ, x,u) are continuous in some region of the

(θ,u)-plane including the set

{(θ,u) : a (θ, x)≤ u ≤ b (θ, x) ,θ0 ≤ θ ≤ θ1} . (4.10)

and the functions a (θ, x) and b (θ, x) are both continuous and both have continuous derivatives for

θ0 ≤ θ ≤ θ1.

Then, the following version of the Leibniz rule holds: for any θ0 ≤ θ ≤ θ1,

d

dθ

(∫

Ax(θ)
f (θ, x,u)du

)
= f (x,θ,b (x,θ))

∂

∂θ
b (θ, x)− f (x,θ,a (x,θ))

∂

∂θ
a (θ, x)

+
∫b(θ,x)

a(θ,x)

∂

∂θ
f (θ, x,u) du
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This formula can be readily derived using the fundamental theorem of calculus. The idea can be

extended to second derivatives.

Condition 8 In addition, assume ∂2

∂θ∂θ′ f (θ, x,u) is continuous in region (4.10), and a (θ, x) and

b (θ, x) have continuous second derivatives in this region.

Then, applying the same argument we obtain that for any θ0 ≤ θ ≤ θ1,

d2

dθdθ′

(∫

Ax(θ)
f (θ, x,u) du

)
=

∂

∂θ
f (θ, x,b (θ, x))

∂

∂θ
b (θ)+ f (θ, x,b (θ, x))

∂2

∂θ∂θ′
b (θ, x)

−
(
∂

∂θ
f (θ, x,a (θ, x))

∂

∂θ
a (θ, x)+ f (θ, x,a (θ, x))

∂2

∂θ∂θ′
a (θ, x)

)

+
∂

∂θ
f (θ, x,b (θ, x))

∂

∂θ
b (θ, x)−

∂

∂θ
f (θ, x,a (θ, x))

∂

∂θ
a (θ, x)

+
∫b(θ,x)

a(θ,x)

d2

dθdθ′
f (θ, x,u) du.

The Leibniz integral rule can be extended to multidimensional integrals in more abstract

sets Ax (θ), using tools from differential geometry. Without loss of generality we can take a

limit for some of the integration boundaries in a (θ, x) ,b (θ, x) where the boundary of an upper or

lower bound moves to infinite. These are the required tools to compute gradient and Hessians in

Newton formulas. In practice, the computation of derivatives involves the computation of

∫b(θ,x)

a(θ,x)

∂

∂θ
f (θ, x,u) du

∫b(θ,x)

a(θ,x)

d2

dθdθ′
f (θ, x,u)du.

If these integrals are analytically intractable, they can be numerically computed, e.g. using

Quadrature formulas, or a Monte Carlo uniform sample on the set Ax (θ) . Importance sampling

can actually work better. In this case, it is convenient to keep the seed in the underlying pseudo-

random sequence constant along all the iterations of the Newton-Raphson algorithm to avoid

numerical instabilities.
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Appendix C: Supplementary Empirical Analysis

As an additional empirical exercise, we report the estimation results for the traditional conjoint

model, where it is assumed that no screening-off occurs, therefore all presented alternatives are

included in the consideration set. With linear compensatory utility function and under standard

assumptions this model can be estimated with OLS. Specifically, we include the same set of

variables used for the Heckman two-step procedure in Section 4.4.

Table 4.6 summarizes the regression results estimating with OLS. The model explains around

21% of the variance in the data, which is not bad, and with the value of F(30,2687) = 24.58 is

globally statistically significant at .000 level. The log-likelihood is equal to -6347.80 (around 3

times lower than the value attained by the Heckman two-step estimator). Most of the variables

are significant, with the largest positive effects related to food allergies, indicating that people

who suffer from fish, lactose and gluten allergy or are on the low-calorie diet tend to evaluate

our menu more favourably than respondents who are not on these special diets. The estimate of

age is also positive and significant but its influence is small. Among design variables (product

features), “catrnk2” has the strongest influence on the utility score, meaning that respondents

tend to evaluate the dishes from two of their preferred categories 1.9 point higher than dishes

from other categories. Additionally, vegetarian and grilled dishes contribute to the increase in the

overall dish utility, and the interaction effect representing chicken dishes at $11.99 has a strong

and positive estimate, which is bigger (to the absolute value) than the associated main effects.

On the other hand, vegetarians tend to give lower utility scores, as well as women, heavier people

and respondents, who exercise at least once per week. Among design variables, chicken, fish, and

second price level decrease the utility score of a dish. Note however, that a big part of the utility

contribution of chicken and $11.99 is explained by significant and positive estimates of “catrnk2”

and the interaction effect “chicken-$11.99”.

Let’s compare the average predicted utilities from the OLS estimation and a model with

endogenous compensatory consideration set specified in Section 4.4. We see that globally OLS

predicts the average utilities slightly better than Heckman two-step estimator: the fitted mean
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Table 4.6: OLS estimation results
Utilities β j SE
beef .063 .323
chicken -.583a .325
fish -.398c .137
price $11.99 .004 .510
price $15.99 -.290 .249
grilled .646c .158
broiled .173 .158
salad -.070 .305
veggies .352b .137
fries -.485 .305
glutenY -.010 .096
organic -.185 .208
female -.363c .105
BMI -.018b .007
age .017c .005
onlineorder .091 .102
eatoutY -.107 .108
excerciseY -.263b .108
AvgPr9.99 -.331c .109
AllGluten .645b .326
AllLactose .893b .402
AllFish 1.916c .735
LowCalDiet .673b .337
LowSodDiet .533 .330
VegeDiet -1.625c .360
AllDiet0 .399 .323
AllDietOther .297 .303
catrnk2 1.933c .106
beef-$11.99 .659 .713
chicken-$11.99 1.278a .713
Intercept 4.904c .558
R2 0.2153
Adj. R2 0.2065
LL -6347.80
a p < .1, b p < .05, c p < .01
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utilities are very close to the sample mean (see the Column “Total” in Table 4.7). However, the

OLS model does not account well for existence of consideration sets: it overestimates the utility of

unconsidered options (column Ct = 0), but more importantly the mean utilities for the considered

options are significantly underestimated (column Ct = 1). On the other hand, the model with

endogenous compensatory consideration is able to capture the consideration set formation much

better that OLS, predicting the average utility equally well for considered and unconsidered

lunch alternatives (the last row in Table 4.7).

Table 4.7: Mean utilities: data and fitted values
Ct = 0a Ct = 1b Total

Sample 5.09 8.50 5.80
OLS 5.56 6.44 5.74
Heckman two-step 5.05 9.34 5.92
a Unconsidered options
b Considered options

Bibliography

Hartley, M. J. (1977). On the estimation of a general switching regression model via maximum

likelihood methods. Discussion Paper 415, Department of Economics, State University of New

York.

Hartley, M. J. (1978). Comment. Journal of the American Statistical Association, 73(364):738–

741.

Kiefer, N. M. (1980). A note on switching regressions and logistic discrimination. Econometrica:

Journal of the Econometric Society, 48(4):1065–1069.

Maddala, G. S. (1984). Estimation of the disequilibrium model with noisy indicators. Technical

report, University of Florida.

Maddala, G. S. (1986). Disequilibrium, self-selection, and switching models. In Griliches, Z. and

Intriligator, M., editors, Handbook of Econometrics, volume 3, pages 1633–1688. Elsevier.

168


