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Abstract—Autonomous mobile robots need robust, flexible and 
accurate navigation algorithms. One approach consists in fusing 
as many information sources as possible, integrating measures 
from internal sensors with data obtained from external sensing 
entities. This work presents a solution for combined 
indoor/outdoor robot navigation, and analyzes some preliminary 
results in an outdoor environment using a Particle Filter for 
GPS/INS sensor fusion. Experiments are based in predesigned 
trajectories which have been simulated in first place and then 
reproduced using a robotic platform. As a concluding remark, 
some considerations about the use of Particle Filters and the 
differences between simulated and real data are presented. 

Keywords-component; particle filters, robot navigation, 
indoor/outdoor navigation 

I.  INTRODUCTION 
This work aims to introduce a simple and robust 

architecture for combined indoor/outdoor navigation through 
sensor fusion technology, where the information provided by 
on-board sensors is aligned with external references [1]. 
Several positioning technologies (including GPS, Ultra Wide 
Band sensors and external video-based trackers) will help to 
avoid the cumulative drifts caused by locally referenced 
information, so that the navigation is coherent with the rest of 
entities in the environment –fixed obstacles, other moving 
objects, etc. 

Due to the non-linear relation of the inertial sensors with 
absolute references, a Sampling Importance Resampling (SIR) 
Particle Filter (PF) [2] explored in previous simulated 
experiments is applied to estimate the navigation solution, The 
state to be estimated includes the location of the robot with 
respect to absolute references, its attitude and kinematics.  

After describing the proposal at high level, part of the 
system depicted to outdoor navigation will be implemented and 
tested using an Inertial Measure Unit (IMU) and a GPS device. 
The system capabilities will be tested through software 
simulation and validated using a real platform. This solution 
will be complemented with additional mechanisms to increase 
robustness, as detecting particle population degeneracy which 
can cause the filter to diverge. 

The available sensors are a MicroStrain® 3DM-GX2™ 
IMU and a Novatel® OEMV GPS card. The IMU integrates 
tri-axial accelerometer, gyroscope and magnetometer, as well 

as a temperature sensor. Novatel product provides differential 
GPS positioning compatible with Satellite Based Augmentation 
Systems (SBAS) as EGNOS. 

After detailing sensor specifications, its measurement 
model will be mathematically described. The obtained models 
will be implemented in a software simulation system based on 
MATLAB® Aerosim Aeronautical Simulation Block Set [3]. 
This will allow us to test the solution and evaluate its 
performance systematically with a set of representative 
scenarios, and propose modifications before integrating it in the 
hardware platform. The simulation analysis includes also the 
application of different metrics to evaluate the expected quality 
of the real navigation algorithm. After this simulated 
experimental section, real sensor data will be used to validate 
the solution and the applicability of the statistical models 
assumed. The robot, equipped with the sensors mentioned 
above, will be manually controlled in a number of controlled 
experiments to obtain sensor data in representative situations. 
The results of this part can also be used to approximate the 
optimal value for some configuration parameters. Finally, the 
extension of developed sensor fusion system with other 
available positioning tools such as indoor localization services 
can be considered as a future work to increase the navigation 
capabilities. 

I. PROPOSED SYSTEM 
The platform target is a single autonomous robot, so a 

centralized fusion algorithm is the best option for integrating 
all the available knowledge. In order to increase its robustness 
and boost the obtainable accuracy as far as possible, it has to be 
capable of incorporating different types of information from 
heterogeneous sources, even external entities. 

A. Particle Filter 
The most common filtering algorithms use Bayesian 

inference to estimate the state of a partially observed system. 
The uncertainty about the real state makes necessary to store 
the belief as a probability distribution, so that at each time the 
filter can estimate which is the most probable state according to 
the available information. 

This probability distribution changes with time. It can be 
adapted using a prediction model that describes system 
dynamics, and incorporating some occasional measurements 
providing information about the real state.  
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Some techniques, as the Kalman Filter (KF) or the 
Extended Kalman Filter (EKF) [4] assume that all uncertainties 
have Gaussian distribution, and store the state probability 
distribution as another Gaussian. Thanks to that, all the 
mentioned elements can be compactly described as a “mean 
value” vector and a covariance matrix. Thanks to that 
simplification, they obtain a matrix-based analytical solution 
that can be calculated fast (and is optimal if the assumptions 
are true). 

Nonetheless, if system dynamics obey a highly non-linear 
model or uncertainties are far from being Gaussian, then these 
techniques deliver poor performance. A PF is a Monte Carlo 
algorithm capable of dealing with such non-linear non-gaussian 
scenarios (see section III, Particle filter definition). 
Implementation simplicity is another great value of Particle 
Filters: it is sufficient to provide mathematical formulations for 
(a) system dynamics, (b) sensor models, and (c) process and 
measure noises. The specifications of (c) must support the 
generation of random samples identically distributed to them. 

B. Loosely-coupled, centralized Sensor Fusion 
There are many important concepts in the search of 

robustness. Amongst them, we can enumerate redundancy, 
failure tolerance and adaptability. For these and other reasons, 
a central loosely-coupled Particle Filter has been selected as 
fusion system.  

Loose coupling enables the possibility of not having hard 
dependencies on individual sensors, or on combinations of 
such devices. This is of the uttermost importance when sensors 
have limited availability, such are the cases of GPS in mixed 
indoor/outdoor environments and fixed external sensors when 
the robot is in constant movement. 

The centralized approach is convenient to the initial system 
purposes. Its implementation is simpler than in the case of 
distributed systems, and its accuracy either similar or superior 
[5]. Pure centralized fusion systems have the disadvantage of a 
communication bottleneck around central node. This is not our 
case, since the scale of the target system maintains the number 
of involved elements inside reasonable bounds. 

Figure 1.  Fusion system is event driven; it acts when new sensor readings 
arrive. An independent software agent is in charge of discovering and 

managing external sensors, making the process transparent to the central 
fusion system. 

Figure 2.  A multi-agent approach can be used to create a collaborative, 
intelligent environment. A software agent in the robotic platform manage all 
communication tasks. The final target is to all the issues not directly related 

with sensor measures transparent to central fusion system. 

Combining the reviewed elements, we have what is shown 
in Figure 1. The sensor fusion system (i.e., the PF) integrates 
the information coming from different devices as it is received. 
To accomplish this task, the fusion system must see all sensors 
as sources of observations about the state vector.  

C. Interaction with the environment 
The proposed navigation system can be extended to include 

external sensors. We define external sensors as entities not 
belonging to the robotic platform that can provide some 
services useful for navigation, such as absolute positioning. 
This project aims to integrate at least UltraWide Band (UWB) 
and video-based tracking. 

The availability of external devices is not guaranteed: for 
instance, the robot can modify its position leaving some 
sensors out of reach. Or the external sensors, as independent 
entities, can halt their activity without notice. 

At this point we have two inconveniences: the availability, 
and the requirement of a homogeneous view of all sensors. To 
deal with this problem the environment will be modeled as a 
Multi-Agent System. A software agent in the robotic platform 
will work managing external sensors (discovery, 
communication, out-of-service deletion), and adapting the 
obtained data to the needs of the sensor fusion node. External 
sensors will also be software agents that respond to information 
requests.  

All together configures a collaborative multi agent system 
where the information sources are passive, and the sinks (i.e. 
the robotic platform) act following an opportunistic strategy. 
Apart from satisfying the criteria of the proposed system, the 
multi-agent architecture does not restrict external sensors to 
help in robot navigation system; they can perform other tasks 
simultaneously.  

II. ROBOTIC PLATFORM

Our test platform is a GUARDIAN rover from Robotnik 
corporation. It features a wide range of sensors, including but 
not limited to odometry, laser ranging, inertial navigation and a 
video camera. The unit is equipped with an embedded 
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computer for high-demanding computing tasks and integrating 
its hardware control through the Player/Stage architecture [6]. 

A. Sensors used in this work 
The experiments of this work are based in an Inertial 

Measure Unit and a GPS device. The first one is a InertiaLink 
3DM-GX2 unit containing triaxial accelerometer, gyroscope 
and magnetometer (see TABLE I. ). Its hardware implements a 
Complementary Filter [7] for stabilizing the noisy sensor 
readings and obtaining a better estimate of real magnitudes. 

The unit was mounted near electronic components. This 
introduces a sustained magnetic interference affecting the 
magnetometer, and so the Complementary Filter stabilized 
estimation for acceleration and angular rate. 

TABLE I. IMU TECHNICAL DETAILS 

Range Bias stability Nonlinearity 

Accelerometer 10 g 0.01 g 0.2 % 

Gyroscope 300 deg/sec 0.2 deg/sec 0.2 % 

Magnetometer 1.2 Gauss 0.01 Gauss 0.4 % 

For the global positioning, a Novatel® OEMV-1G 
differential GPS will be used. It is compatible with Satellite 
Based Augmentation Systems as EGNOS. 

According to the technical specification, horizontal position 
can be measured with an accuracy of 1.5 m (RMS) when 
operating on single point L1 mode. 

III. PARTICLE FILTER DEFINITION

The selected filtering algorithm is a Sampling Importance 
Resampling Particle Filter. Given a set of measures up to 
present time (1), it tries to estimate the probability distribution 
of the state x (2), also called “posterior probability distribution” 
or just “posterior”. 

Yt = {y1, y2, …, yt} (1) 

P (xt|Yt) (2)

Particle filters describe the above probability distribution 
using a population of N individual samples also called 
particles, where each one is assigned an importance or 
“weight” (w) measuring how likely it represents the true state 
(3), so that an estimate of this state can be obtained by an 
weighted average of particle population (4). 

P (xt|Yt) ~ {xt
i, wt

i}i=1:N  (3) 

E(xt) = Σi xt
i·wt

i (4) 

Filtering is performed in two different steps: prediction and 
update. Prediction applies a mathematical model about state 
dynamics to the particles, to represent the evolution of the 
system in time. The prediction step can include some 
information about how the dynamic model has to be applied; 
this data is often known as control input (5). An example of 

control inputs are the readings of an IMU, which provide 
information about dynamics that cannot be inferred from 
previous state or the prediction model. 

xt+1 = f( xt, ut ) (5) 

The uncertainty about real state before predicting is 
augmented proportionally to the uncertainty associated to 
prediction model and control inputs. This means that prediction 
phase increase the variance of the particles in the state space. 

The second step is known as update, and is applied when a 
new observation of system state is available. During the update 
phase, a measure yt and its uncertainty model is used to 
estimate the quality of each particle, and modify their weights: 

wt+1 = wt · p(yt | h(xt)) (6)

Where h(xt) is the measure model: a mathematical function 
that express how to calculate the measure of the selected sensor 
from a given state. 

Update reduces uncertainty thanks to the newly acquired 
information.  

Using and infinite number of particles we obtain a perfect 
representation of the state probability distribution, but we only 
have a finite number of them. The problem with this approach 
is, thus, that almost all particles will eventually be far from real 
state and their weights will be infinitesimal. The estimation of 
the filter is in these cases based on a few samples, reducing its 
overall quality. 

To avoid this situation, each several update steps the filter 
goes through a resampling stage. This process consists in 
deleting particles with too low weights and multiplying the 
more promising ones in a number proportional to their weight. 
As a result, the filter represents real state probability 
distribution more compactly, and with more particles –i.e. 
more detail– in zones with a high probability. 

Using a PF, the navigation problem is reduced to defining a 
state vector, as many prediction models as types of control 
inputs available, and an update model for each kind of 
measure. Next, the specification for the INS/GPS combination 
is described. 

A. State vector 
The state vector for this problem has to represent at least 

bidimensional position, speed and orientation. The final 
configuration has 5 dimensions: 

x = [px; py; vx; vy; α]T (7)

Variables px, py represent position in Cartesian 
coordinates. The model uses the flat world assumption because 
it makes easier to enable the mixed indoor/outdoor navigation, 
and is enough in outdoor environments given the reduced reach 
of the robot.  

Although the robot is supposed to move only along its 
longitudinal axis we include in the model two degrees of 
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freedom for speed. This is translated in the global speed 
variables vx, vy.  

Finally, the attitude of the robot is expressed as a single 
yaw angle α. The tests take place in flat environments, so the 
possibility of including pitch and roll angles in the state is left 
for future work. 

B. Prediction model 
Our model performs Euler-like time integration using 

inertial measures as control input. The position, speed and 
body orientation are calculated using the inertial prediction 
model :  

 xt+Δt = [px, py, vx, vy, α]T = fIMU( xt, [ax, ay, ω]) (8) 

p(t+ Δt) = p(t) + v(t)·Δt + ½·a(t)· Δt2 (9) 

v(t+ Δt) = v(t) + a(t) · Cb2n · Δt (10) 

α(t+ Δt) = α(t) + ω (t) (11) 

Where p is position, v is speed, α is the orientation angle, 
a/ω are the accelerometer/gyro inputs, and Cb2n in (10) is the 
body-to-navigation rotation matrix created from α(t) value. 

In spite of its simplicity, this model has proved to be 
accurate enough for the small time steps to integrate and the 
smooth dynamics of selected trajectories. 

C. Update model 
The last step in the PF creation is to define the error model 

of the positioning sensor. For these experiments the GPS is 
assumed to give 3D measures in Cartesian coordinates, with an 
independent error component in each axis following a Gaussian 
distribution (standard deviation 0.7 meters). Only two 
coordinates will be used for updating the weights. 

When receiving a GPS measure yt = [px; py], the so called 
measure model has to be applied to each particle (12). Then, 
the likelihood of the actual measure can be checked against 
every sample to update their weight. 

yt
i = h(xt

i) = [px
i; py

i]T (12) 

wt+1
i = wt

i · p(yt|yt
i) (13)

D. Improvements 
In spite of being just a proof of concept, the implemented 

PF includes some additional techniques to improve its behavior 
and making it usable in real conditions. This section is depicted 
to justify and describe them. 

1) Divergence detection + reinitialization
Every robust navigation system should avoid scenarios of 

uncontrolled performance degradation. Part of this preventive 
behavior consists in monitoring its (estimated) performance, so 
that it can act accordingly to the situation. 

Reference [8] suggests reinitializing particle filters when 
the population is too far the real posterior. Their reasoning is 
that recovering normal function by heavily increasing plant 

noise can lead to “oscillations” of the prediction around the real 
state, or may even not have any effect and result in a total 
divergence of the filter. 

If the likelihood of the received GPS measures compared 
with PF estate estimation is consistently low for a few 
consecutive cycles, then the filter is considered to be diverged. 
Current particle population is discarded, and a new one is 
created using the two last direct observations of the state. 

2) Adaptive noise
The noise applied during resampling stage is modified by a 

factor Mt which depends on estimation quality. The concept 
has been taken and adapted from [9], where it is applied to 
video surveillance.  

A similarity measure ϕt has to be calculated between 
predicted state and the last received measure at each update 
step. This similarity is defined as the likelihood of the measure 
with respect to filter prediction.  

In the concrete case of using a GPS sensor, we have that the 
measure likelihood follows a multivariate Gaussian distribution 
with covariance matrix Σgps. The similarity of state x and 
measure z involves computing a Mahalanobis distance using 
the aforementioned covariance: 

z’ = h(x) (14) 

ϕt = exp(0.5 · [(z’–z)T · Σgps
-1 · (z’–z)]) (15) 

The result is a factor that will be used to scale the original 
noise. This factor is upper-bounded to avoid the side effects of 
introducing an excessive perturbation to particles: 

Mt =  min( √(1/ϕt), Mmax ) (16) 

The final value multiplies the original covariance matrix for 
plant noise (w) used in our system:  

Σw(t) = Mt · Σw(0) (17)

3) Particle repropagation on resampling
Resampling stage involves multiplying the most well fitted 

particles and dropping the worst from the population. After 
that, a random sample drawn from plant noise is added to each 
new particle with the purpose of covering better the posterior 
state space.  

The problem with this approach is that, in the true posterior, 
some dimensions of the state are influenced by others and are 
thus correlated (in our case, position is affected by speed, and 
speed is influenced by previous attitude because it affects how 
acceleration is applied). Adding samples of pure random noise 
have the problem of creating particles that are bad candidates 
for representing the true state. 

Particle resampling quality can be improved by using a 
simple algorithm: particle repropagation. With this scheme, 
particles are selected for resampling as usual, but instead of 
reproducing the actual particles we will used a snapshot of 
them in a past time step.  
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The “particles in the past” are perturbed with noise 
affecting just first-order dimensions, this is, those variables that 
are not affected by others in the state vector. The resulting 
population is carried to the present using the in-between control 
inputs and prediction model. 

Repropagation reduces the number of particles required to 
filter a trajectory, and can boost slightly the maximum 
accuracy obtainable by the filter. 

IV. SELECTED TRAJECTORY DATASET

Three trajectories were designed for the first test of the 
platform. They have been created to be simple, yet allowing to 
test all the features of the system. 

As the robot was operated on manual control and proximity 
sensors were not included in the specification, the trajectories 
do not involve obstacle avoidance. 

A. Straight line 
A 24 meter long straight line. The robot starts at one end, 

and after a few seconds stopped it travels the whole path at 
non-constant speed. 

At the end of the path, the platform is stopped for 
approximately 3 seconds, performs and stationary turn and 
goes back to the starting point. Then it turns again and goes to 
the ending mark. The whole process takes 80-90 seconds. 

It is intended to be an easy scenario, though the stops and 
stationary turns can cause problems to those filters that have 
not obtained accurate speed estimations. 

B. Stadium 
The second trajectory, shown in Figure 3. , is travelled at 

constant speed in near 40 seconds. It includes two turns with 
the shape of a semicircle, so that the angular rate is constant 
through them. 

This trajectory is used to test the average performance of 
our solution in normal conditions, as it has a number of 
features in common with usual trajectories both indoor and 
outdoor. 

C. Circumference 
The last trajectory has circular shape, and is traveled 

several times. The robot takes 10-15 seconds for covering a 
lap, and just a single GPS reading is provided for each 
complete round (period of about 10 seconds). This experiment 
is intended to test the quality of pure inertial navigation under 
different conditions, as using regular or bias-corrected 
measures, or applying enlarged/reduced inertial noises (in 
simulations). 

Figure 3.  Stadium trajectory 

V. SIMULATION 
The robotic platform is simulated as a rigid body with three 

degrees of freedom (3DoF in advance): two degrees for 
translation (horizontal movement), and one for rotation. 

We have developed a basic simulation process based on 
MATLABTM. This framework provides a complete set of tools 
for rapid development of detailed 6DoF nonlinear models, 
though it can also generate 3DoF trajectories by properly 
defining the forces and angular moments in the body frame of 
the vehicle.  

The simulator generates the calculated values for position, 
speed, orientation, acceleration and angular rates. These 
reference values are used to generate simulated measures for 
the selected sensors. The next paragraphs present an overview 
of the measure simulation process for GPS and inertial sensors. 

A. GPS sensor model 
Our simulation uses a flat-earth model. Taking as input the 

reference 2D position, each coordinate is independently altered 
by adding a random sample drawn from a zero-mean Gaussian 
distribution. 

B. IMU sensors model 
In the selected IMU, both accelerometer and gyroscope are 

triaxial: each measure is a 3D vector with the value of the 
measured magnitude in the orthogonal axes of the device local 
coordinate system (uses North-East-Down convention). 

Our simulation of IMU raw measurements considers two 
types of errors: random noise with Gaussian distribution and a 
constant bias for each axis.  

Typical biases are short-term stable but can drift under 
temperature changes; 3DM-GX2 model is temperature 
compensated. The only noticeable effect is a sudden bias 
change between runs, in spite that those values are stable along 
each single simulation. Figure 4. illustrates the generated 
accelerometer magnitudes corresponding to a simulated 
stadium trajectory. 

The model was initially prepared to introduce a cross-
coupling effect caused by sensor axes misalignment, but the 
real device lacks this problem thanks to vendor initial 
calibration.  

Comparing Figure 4. and Figure 5. , we can see how the 
noise in accelerometer measures is larger than expected in the 
real experiment. This is caused by a poor mounting that do not 
absorb motion vibrations, and will be direct cause of most of 
the problems found in experimentation.  

As an additional note, the dynamic margin of biases in the 
performed experiments is superior to that stated in the technical 
datasheet, reaching 0.25 m/s2 in the case of the accelerometer –
that is, 0.025 g– and 0.5 deg/sec in the gyroscope. 
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Figure 4.  Fragment of simulated accelerometer reading for the stadium 
trajectory. Ideal values appear as dotted lines, to show bias magnitude 

Figure 5.  Fragment of real accelerometer readings for the stadium trajectory. 
Noise during robot motion is an order of magnitude above that shown when 

stopped 

VI. RESULTS

This section presents the results of executing the proposed 
experiments with simulated and real trajectories. Special 
attention will be put in unexpected behaviors and other unusual 
effects, to help refining the system for future developments.  

A. Straight line 
This scenario is very simple, so it has been tested using a 

lower frequency for GPS measures (period of approximately 5 
seconds) to make it harder. A PF can obtain good estimates for 
positions and speeds during the first run, but the total stop 
followed by a static turn is difficult to filter properly. Figure 6. 
shows a run over a real-data trajectory where the plant noise 
has been set to the IMU specifications. Real noise is several 
times superior during movement (see Figure 7. ), but this does 
not affect the PF until the static turn at the end of the path. 

When the plant noise is set to mimic the real running 
conditions, the filtering becomes less accurate because the state 
variance is greater, but its behavior is more robust. We can 
expect a mean positioning error of about 60 cm for 1 m 
precision GPS measures. More elaborate schemes and better 
techniques as Rao-Blackwellized Kalman Filter [10] or 
Unscented Particle Filter [11] are known to be more effective 

than plain PF, but the obtained performance is enough for these 
first tests.  

B. Stadium 
The stadium provides a general view of the overall filter 

performance, thanks to its combination of turns, accelerations 
and straight fragments. Receiving GPS measures at 1 Hz, the 
PF can easily obtain an average 40% improvement over bare 
observations, as shown in Figure 8.   

Further tests with no bias correction (Figure 9. ) show that 
an artificially increased plant noise makes possible to obtain 
similar position accuracy thanks to the high GPS update rate. 

Figure 6.  Using a reduced plant noise it is possible to obtiain a great 
prediction accuracy, but some maneuvers can lead to a population divergence 

(the filter has to be restarted) 

Figure 7.  Increasing plant noise offers lower accuracy in positioning, but 
makes the filter more robust against unusual measures 

Figure 8.  Using bias-corrected inputs, the PF improves GPS accuracy an 
average 40% (from meter-precision to 0.6 m). 

Figure 9.  When the biases are not corrected speed estimation is severely 
affected, though positions have a reasonable accuracy –still better than bare 

GPS measures. 
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When using low-frequency GPS measures, biases inside the 
expected dynamic margin of the IMU will cause the filter to 
diverge. 

C. Circumference 
The last test has brought several interesting conclusions 

about using low-accuracy positioning in reduced spaces. 
Figure 10. describes the result of filtering the circumference 
trajectory (10 turns) using exclusively inertial information. It 
describes a smooth trajectory with variable accuracy –not 
always decreasing–. The uncertainty of the filter grows with 
time but the mean of the particles remains stable. 

Figure 10.  Inertial based filtering. The predicted trajectory describes quasi-
circles of changing size. This effect is caused by the large noise of inertial 

measures incorporated to the particles 

Figure 11.  A residual bias in measured accelerations can be catastrophic, even 
with values as low as a tenth of the expected dynamic stability. The problem 

has the same magnitude under gyroscope bias. 

When GPS measures are provided with a frequency below 
1Hz, the errors are always larger. The problem is related with 
the trajectory being contained in a reduced space: the mere 
positions are not useful by itself since they are very uncertain, 
and particles representing very different states can end in 
similar positions after a whole lap. It is interesting to see that 
the filtering results on this trajectory are equally bad for 
unbiased and biased inertial measures. 

VII. CONCLUSIONS AND FUTURE WORK

The obtained results validate the selected model for general 
navigation and the proposed architecture for outdoor use. The 
system can keep track of the robotic platform using as few as 
two different types of sensors (with only one for updating the 
Particle Filter).  

The combination GPS/INS can be used to achieve 
reasonable accuracy in flat outdoors. In spite of the reduced 
dimensionality of state vector, low speeds and reduced spaces 
can be a problem if inertial biases are not corrected or 
positioning sensors are not accurate.  Under these conditions, 
measures can be not well suited for rewarding particles 
adequately. 

Using real data for the experiments have demonstrated that 
simulations are not suitable as a standalone benchmarking tool. 
Differences between technical specification and real device 
performance make the last phase mandatory. In order to 
guarantee stability of the PF under the harrowing conditions of 
real data, positioning measures must have a period close to one 
measure per second when biases have been not corrected, and 
inferior to 3-4 seconds under normal conditions. Nonetheless, 
the performance can be improved by using more types of 
sensor or by solving some hardware issues as the magnetic 
isolation and vibration suppression for IMU.  

The general recommendation is to integrate other sensors to 
provide direct observations for different dimensions of the state 
vector. Magnetometer and odometers are perfect examples, as 
their measures complement the information provided by a 
GPS. They have been combined successfully in other works 
[12] to achieve exceptional accuracy levels. 

Simulated and real data yield comparable results in most of 
the cases. The problem of increased noise can be mitigated by 
raising the number of particles, which is never required to be 
over a few hundred samples.  

The plain Particle Filter used in this first working version is 
not capable of estimating IMU biases properly. We have found 
that they can be corrected using simpler techniques when the 
robot is stopped for brief time lapses, although moving to more 
advanced techniques such as [13] or [14] is recommendable. 
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