
This document is published in:

2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop

on GNSS Signals and Signal Processing (NAVITEC 2010). Netherlands, 8-10 December

2010. IEEE, pp. 579-586. DOI: http://dx.doi.org/10.1109/NAVITEC.2010.5708060

© 2010 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29405268?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/NAVITEC.2010.5708060

Analysis of a sensor fusion hybrid solution for
indoor/outdoor robot navigation

E. Martí, J. García, J.M. Molina
Group of Applied Artificial Intelligence

Univ. Carlos III of Madrid
Colmenarejo, Spain

{emarti, jgherrer}@inf.uc3m.es, molina@ia.uc3m.es

Abstract—Autonomous mobile robots need robust, flexible and
accurate navigation algorithms. One approach consists in fusing
as many information sources as possible, integrating measures
from internal sensors with data obtained from external sensing
entities. This work presents a solution for combined
indoor/outdoor robot navigation, and analyzes some preliminary
results in an outdoor environment using a Particle Filter for
GPS/INS sensor fusion. Experiments are based in predesigned
trajectories which have been simulated in first place and then
reproduced using a robotic platform. As a concluding remark,
some considerations about the use of Particle Filters and the
differences between simulated and real data are presented.

Keywords-component; particle filters, robot navigation,
indoor/outdoor navigation

I. INTRODUCTION
This work aims to introduce a simple and robust

architecture for combined indoor/outdoor navigation through
sensor fusion technology, where the information provided by
on-board sensors is aligned with external references [1].
Several positioning technologies (including GPS, Ultra Wide
Band sensors and external video-based trackers) will help to
avoid the cumulative drifts caused by locally referenced
information, so that the navigation is coherent with the rest of
entities in the environment –fixed obstacles, other moving
objects, etc.

Due to the non-linear relation of the inertial sensors with
absolute references, a Sampling Importance Resampling (SIR)
Particle Filter (PF) [2] explored in previous simulated
experiments is applied to estimate the navigation solution, The
state to be estimated includes the location of the robot with
respect to absolute references, its attitude and kinematics.

After describing the proposal at high level, part of the
system depicted to outdoor navigation will be implemented and
tested using an Inertial Measure Unit (IMU) and a GPS device.
The system capabilities will be tested through software
simulation and validated using a real platform. This solution
will be complemented with additional mechanisms to increase
robustness, as detecting particle population degeneracy which
can cause the filter to diverge.

The available sensors are a MicroStrain® 3DM-GX2™
IMU and a Novatel® OEMV GPS card. The IMU integrates
tri-axial accelerometer, gyroscope and magnetometer, as well

as a temperature sensor. Novatel product provides differential
GPS positioning compatible with Satellite Based Augmentation
Systems (SBAS) as EGNOS.

After detailing sensor specifications, its measurement
model will be mathematically described. The obtained models
will be implemented in a software simulation system based on
MATLAB® Aerosim Aeronautical Simulation Block Set [3].
This will allow us to test the solution and evaluate its
performance systematically with a set of representative
scenarios, and propose modifications before integrating it in the
hardware platform. The simulation analysis includes also the
application of different metrics to evaluate the expected quality
of the real navigation algorithm. After this simulated
experimental section, real sensor data will be used to validate
the solution and the applicability of the statistical models
assumed. The robot, equipped with the sensors mentioned
above, will be manually controlled in a number of controlled
experiments to obtain sensor data in representative situations.
The results of this part can also be used to approximate the
optimal value for some configuration parameters. Finally, the
extension of developed sensor fusion system with other
available positioning tools such as indoor localization services
can be considered as a future work to increase the navigation
capabilities.

I. PROPOSED SYSTEM
The platform target is a single autonomous robot, so a

centralized fusion algorithm is the best option for integrating
all the available knowledge. In order to increase its robustness
and boost the obtainable accuracy as far as possible, it has to be
capable of incorporating different types of information from
heterogeneous sources, even external entities.

A. Particle Filter
The most common filtering algorithms use Bayesian

inference to estimate the state of a partially observed system.
The uncertainty about the real state makes necessary to store
the belief as a probability distribution, so that at each time the
filter can estimate which is the most probable state according to
the available information.

This probability distribution changes with time. It can be
adapted using a prediction model that describes system
dynamics, and incorporating some occasional measurements
providing information about the real state.

1

Some techniques, as the Kalman Filter (KF) or the
Extended Kalman Filter (EKF) [4] assume that all uncertainties
have Gaussian distribution, and store the state probability
distribution as another Gaussian. Thanks to that, all the
mentioned elements can be compactly described as a “mean
value” vector and a covariance matrix. Thanks to that
simplification, they obtain a matrix-based analytical solution
that can be calculated fast (and is optimal if the assumptions
are true).

Nonetheless, if system dynamics obey a highly non-linear
model or uncertainties are far from being Gaussian, then these
techniques deliver poor performance. A PF is a Monte Carlo
algorithm capable of dealing with such non-linear non-gaussian
scenarios (see section III, Particle filter definition).
Implementation simplicity is another great value of Particle
Filters: it is sufficient to provide mathematical formulations for
(a) system dynamics, (b) sensor models, and (c) process and
measure noises. The specifications of (c) must support the
generation of random samples identically distributed to them.

B. Loosely-coupled, centralized Sensor Fusion
There are many important concepts in the search of

robustness. Amongst them, we can enumerate redundancy,
failure tolerance and adaptability. For these and other reasons,
a central loosely-coupled Particle Filter has been selected as
fusion system.

Loose coupling enables the possibility of not having hard
dependencies on individual sensors, or on combinations of
such devices. This is of the uttermost importance when sensors
have limited availability, such are the cases of GPS in mixed
indoor/outdoor environments and fixed external sensors when
the robot is in constant movement.

The centralized approach is convenient to the initial system
purposes. Its implementation is simpler than in the case of
distributed systems, and its accuracy either similar or superior
[5]. Pure centralized fusion systems have the disadvantage of a
communication bottleneck around central node. This is not our
case, since the scale of the target system maintains the number
of involved elements inside reasonable bounds.

Figure 1. Fusion system is event driven; it acts when new sensor readings
arrive. An independent software agent is in charge of discovering and

managing external sensors, making the process transparent to the central
fusion system.

Figure 2. A multi-agent approach can be used to create a collaborative,
intelligent environment. A software agent in the robotic platform manage all
communication tasks. The final target is to all the issues not directly related

with sensor measures transparent to central fusion system.

Combining the reviewed elements, we have what is shown
in Figure 1. The sensor fusion system (i.e., the PF) integrates
the information coming from different devices as it is received.
To accomplish this task, the fusion system must see all sensors
as sources of observations about the state vector.

C. Interaction with the environment
The proposed navigation system can be extended to include

external sensors. We define external sensors as entities not
belonging to the robotic platform that can provide some
services useful for navigation, such as absolute positioning.
This project aims to integrate at least UltraWide Band (UWB)
and video-based tracking.

The availability of external devices is not guaranteed: for
instance, the robot can modify its position leaving some
sensors out of reach. Or the external sensors, as independent
entities, can halt their activity without notice.

At this point we have two inconveniences: the availability,
and the requirement of a homogeneous view of all sensors. To
deal with this problem the environment will be modeled as a
Multi-Agent System. A software agent in the robotic platform
will work managing external sensors (discovery,
communication, out-of-service deletion), and adapting the
obtained data to the needs of the sensor fusion node. External
sensors will also be software agents that respond to information
requests.

All together configures a collaborative multi agent system
where the information sources are passive, and the sinks (i.e.
the robotic platform) act following an opportunistic strategy.
Apart from satisfying the criteria of the proposed system, the
multi-agent architecture does not restrict external sensors to
help in robot navigation system; they can perform other tasks
simultaneously.

II. ROBOTIC PLATFORM

Our test platform is a GUARDIAN rover from Robotnik
corporation. It features a wide range of sensors, including but
not limited to odometry, laser ranging, inertial navigation and a
video camera. The unit is equipped with an embedded

1

2

Request

Pos = (1.53; -2.38)

2

computer for high-demanding computing tasks and integrating
its hardware control through the Player/Stage architecture [6].

A. Sensors used in this work
The experiments of this work are based in an Inertial

Measure Unit and a GPS device. The first one is a InertiaLink
3DM-GX2 unit containing triaxial accelerometer, gyroscope
and magnetometer (see TABLE I.). Its hardware implements a
Complementary Filter [7] for stabilizing the noisy sensor
readings and obtaining a better estimate of real magnitudes.

The unit was mounted near electronic components. This
introduces a sustained magnetic interference affecting the
magnetometer, and so the Complementary Filter stabilized
estimation for acceleration and angular rate.

TABLE I. IMU TECHNICAL DETAILS

Range Bias stability Nonlinearity

Accelerometer 10 g 0.01 g 0.2 %

Gyroscope 300 deg/sec 0.2 deg/sec 0.2 %

Magnetometer 1.2 Gauss 0.01 Gauss 0.4 %

For the global positioning, a Novatel® OEMV-1G
differential GPS will be used. It is compatible with Satellite
Based Augmentation Systems as EGNOS.

According to the technical specification, horizontal position
can be measured with an accuracy of 1.5 m (RMS) when
operating on single point L1 mode.

III. PARTICLE FILTER DEFINITION

The selected filtering algorithm is a Sampling Importance
Resampling Particle Filter. Given a set of measures up to
present time (1), it tries to estimate the probability distribution
of the state x (2), also called “posterior probability distribution”
or just “posterior”.

Yt = {y1, y2, …, yt} (1)

P (xt|Yt) (2)

Particle filters describe the above probability distribution
using a population of N individual samples also called
particles, where each one is assigned an importance or
“weight” (w) measuring how likely it represents the true state
(3), so that an estimate of this state can be obtained by an
weighted average of particle population (4).

P (xt|Yt) ~ {xt
i, wt

i}i=1:N (3)

E(xt) = Σi xt
i·wt

i (4)

Filtering is performed in two different steps: prediction and
update. Prediction applies a mathematical model about state
dynamics to the particles, to represent the evolution of the
system in time. The prediction step can include some
information about how the dynamic model has to be applied;
this data is often known as control input (5). An example of

control inputs are the readings of an IMU, which provide
information about dynamics that cannot be inferred from
previous state or the prediction model.

xt+1 = f(xt, ut) (5)

The uncertainty about real state before predicting is
augmented proportionally to the uncertainty associated to
prediction model and control inputs. This means that prediction
phase increase the variance of the particles in the state space.

The second step is known as update, and is applied when a
new observation of system state is available. During the update
phase, a measure yt and its uncertainty model is used to
estimate the quality of each particle, and modify their weights:

wt+1 = wt · p(yt | h(xt)) (6)

Where h(xt) is the measure model: a mathematical function
that express how to calculate the measure of the selected sensor
from a given state.

Update reduces uncertainty thanks to the newly acquired
information.

Using and infinite number of particles we obtain a perfect
representation of the state probability distribution, but we only
have a finite number of them. The problem with this approach
is, thus, that almost all particles will eventually be far from real
state and their weights will be infinitesimal. The estimation of
the filter is in these cases based on a few samples, reducing its
overall quality.

To avoid this situation, each several update steps the filter
goes through a resampling stage. This process consists in
deleting particles with too low weights and multiplying the
more promising ones in a number proportional to their weight.
As a result, the filter represents real state probability
distribution more compactly, and with more particles –i.e.
more detail– in zones with a high probability.

Using a PF, the navigation problem is reduced to defining a
state vector, as many prediction models as types of control
inputs available, and an update model for each kind of
measure. Next, the specification for the INS/GPS combination
is described.

A. State vector
The state vector for this problem has to represent at least

bidimensional position, speed and orientation. The final
configuration has 5 dimensions:

x = [px; py; vx; vy; α]T (7)

Variables px, py represent position in Cartesian
coordinates. The model uses the flat world assumption because
it makes easier to enable the mixed indoor/outdoor navigation,
and is enough in outdoor environments given the reduced reach
of the robot.

Although the robot is supposed to move only along its
longitudinal axis we include in the model two degrees of

3

freedom for speed. This is translated in the global speed
variables vx, vy.

Finally, the attitude of the robot is expressed as a single
yaw angle α. The tests take place in flat environments, so the
possibility of including pitch and roll angles in the state is left
for future work.

B. Prediction model
Our model performs Euler-like time integration using

inertial measures as control input. The position, speed and
body orientation are calculated using the inertial prediction
model :

 xt+Δt = [px, py, vx, vy, α]T = fIMU(xt, [ax, ay, ω]) (8)

p(t+ Δt) = p(t) + v(t)·Δt + ½·a(t)· Δt2 (9)

v(t+ Δt) = v(t) + a(t) · Cb2n · Δt (10)

α(t+ Δt) = α(t) + ω (t) (11)

Where p is position, v is speed, α is the orientation angle,
a/ω are the accelerometer/gyro inputs, and Cb2n in (10) is the
body-to-navigation rotation matrix created from α(t) value.

In spite of its simplicity, this model has proved to be
accurate enough for the small time steps to integrate and the
smooth dynamics of selected trajectories.

C. Update model
The last step in the PF creation is to define the error model

of the positioning sensor. For these experiments the GPS is
assumed to give 3D measures in Cartesian coordinates, with an
independent error component in each axis following a Gaussian
distribution (standard deviation 0.7 meters). Only two
coordinates will be used for updating the weights.

When receiving a GPS measure yt = [px; py], the so called
measure model has to be applied to each particle (12). Then,
the likelihood of the actual measure can be checked against
every sample to update their weight.

yt
i = h(xt

i) = [px
i; py

i]T (12)

wt+1
i = wt

i · p(yt|yt
i) (13)

D. Improvements
In spite of being just a proof of concept, the implemented

PF includes some additional techniques to improve its behavior
and making it usable in real conditions. This section is depicted
to justify and describe them.

1) Divergence detection + reinitialization
Every robust navigation system should avoid scenarios of

uncontrolled performance degradation. Part of this preventive
behavior consists in monitoring its (estimated) performance, so
that it can act accordingly to the situation.

Reference [8] suggests reinitializing particle filters when
the population is too far the real posterior. Their reasoning is
that recovering normal function by heavily increasing plant

noise can lead to “oscillations” of the prediction around the real
state, or may even not have any effect and result in a total
divergence of the filter.

If the likelihood of the received GPS measures compared
with PF estate estimation is consistently low for a few
consecutive cycles, then the filter is considered to be diverged.
Current particle population is discarded, and a new one is
created using the two last direct observations of the state.

2) Adaptive noise
The noise applied during resampling stage is modified by a

factor Mt which depends on estimation quality. The concept
has been taken and adapted from [9], where it is applied to
video surveillance.

A similarity measure ϕt has to be calculated between
predicted state and the last received measure at each update
step. This similarity is defined as the likelihood of the measure
with respect to filter prediction.

In the concrete case of using a GPS sensor, we have that the
measure likelihood follows a multivariate Gaussian distribution
with covariance matrix Σgps. The similarity of state x and
measure z involves computing a Mahalanobis distance using
the aforementioned covariance:

z’ = h(x) (14)

ϕt = exp(0.5 · [(z’–z)T · Σgps
-1 · (z’–z)]) (15)

The result is a factor that will be used to scale the original
noise. This factor is upper-bounded to avoid the side effects of
introducing an excessive perturbation to particles:

Mt = min(√(1/ϕt), Mmax) (16)

The final value multiplies the original covariance matrix for
plant noise (w) used in our system:

Σw(t) = Mt · Σw(0) (17)

3) Particle repropagation on resampling
Resampling stage involves multiplying the most well fitted

particles and dropping the worst from the population. After
that, a random sample drawn from plant noise is added to each
new particle with the purpose of covering better the posterior
state space.

The problem with this approach is that, in the true posterior,
some dimensions of the state are influenced by others and are
thus correlated (in our case, position is affected by speed, and
speed is influenced by previous attitude because it affects how
acceleration is applied). Adding samples of pure random noise
have the problem of creating particles that are bad candidates
for representing the true state.

Particle resampling quality can be improved by using a
simple algorithm: particle repropagation. With this scheme,
particles are selected for resampling as usual, but instead of
reproducing the actual particles we will used a snapshot of
them in a past time step.

4

The “particles in the past” are perturbed with noise
affecting just first-order dimensions, this is, those variables that
are not affected by others in the state vector. The resulting
population is carried to the present using the in-between control
inputs and prediction model.

Repropagation reduces the number of particles required to
filter a trajectory, and can boost slightly the maximum
accuracy obtainable by the filter.

IV. SELECTED TRAJECTORY DATASET

Three trajectories were designed for the first test of the
platform. They have been created to be simple, yet allowing to
test all the features of the system.

As the robot was operated on manual control and proximity
sensors were not included in the specification, the trajectories
do not involve obstacle avoidance.

A. Straight line
A 24 meter long straight line. The robot starts at one end,

and after a few seconds stopped it travels the whole path at
non-constant speed.

At the end of the path, the platform is stopped for
approximately 3 seconds, performs and stationary turn and
goes back to the starting point. Then it turns again and goes to
the ending mark. The whole process takes 80-90 seconds.

It is intended to be an easy scenario, though the stops and
stationary turns can cause problems to those filters that have
not obtained accurate speed estimations.

B. Stadium
The second trajectory, shown in Figure 3. , is travelled at

constant speed in near 40 seconds. It includes two turns with
the shape of a semicircle, so that the angular rate is constant
through them.

This trajectory is used to test the average performance of
our solution in normal conditions, as it has a number of
features in common with usual trajectories both indoor and
outdoor.

C. Circumference
The last trajectory has circular shape, and is traveled

several times. The robot takes 10-15 seconds for covering a
lap, and just a single GPS reading is provided for each
complete round (period of about 10 seconds). This experiment
is intended to test the quality of pure inertial navigation under
different conditions, as using regular or bias-corrected
measures, or applying enlarged/reduced inertial noises (in
simulations).

Figure 3. Stadium trajectory

V. SIMULATION
The robotic platform is simulated as a rigid body with three

degrees of freedom (3DoF in advance): two degrees for
translation (horizontal movement), and one for rotation.

We have developed a basic simulation process based on
MATLABTM. This framework provides a complete set of tools
for rapid development of detailed 6DoF nonlinear models,
though it can also generate 3DoF trajectories by properly
defining the forces and angular moments in the body frame of
the vehicle.

The simulator generates the calculated values for position,
speed, orientation, acceleration and angular rates. These
reference values are used to generate simulated measures for
the selected sensors. The next paragraphs present an overview
of the measure simulation process for GPS and inertial sensors.

A. GPS sensor model
Our simulation uses a flat-earth model. Taking as input the

reference 2D position, each coordinate is independently altered
by adding a random sample drawn from a zero-mean Gaussian
distribution.

B. IMU sensors model
In the selected IMU, both accelerometer and gyroscope are

triaxial: each measure is a 3D vector with the value of the
measured magnitude in the orthogonal axes of the device local
coordinate system (uses North-East-Down convention).

Our simulation of IMU raw measurements considers two
types of errors: random noise with Gaussian distribution and a
constant bias for each axis.

Typical biases are short-term stable but can drift under
temperature changes; 3DM-GX2 model is temperature
compensated. The only noticeable effect is a sudden bias
change between runs, in spite that those values are stable along
each single simulation. Figure 4. illustrates the generated
accelerometer magnitudes corresponding to a simulated
stadium trajectory.

The model was initially prepared to introduce a cross-
coupling effect caused by sensor axes misalignment, but the
real device lacks this problem thanks to vendor initial
calibration.

Comparing Figure 4. and Figure 5. , we can see how the
noise in accelerometer measures is larger than expected in the
real experiment. This is caused by a poor mounting that do not
absorb motion vibrations, and will be direct cause of most of
the problems found in experimentation.

As an additional note, the dynamic margin of biases in the
performed experiments is superior to that stated in the technical
datasheet, reaching 0.25 m/s2 in the case of the accelerometer –
that is, 0.025 g– and 0.5 deg/sec in the gyroscope.

5

Figure 4. Fragment of simulated accelerometer reading for the stadium
trajectory. Ideal values appear as dotted lines, to show bias magnitude

Figure 5. Fragment of real accelerometer readings for the stadium trajectory.
Noise during robot motion is an order of magnitude above that shown when

stopped

VI. RESULTS

This section presents the results of executing the proposed
experiments with simulated and real trajectories. Special
attention will be put in unexpected behaviors and other unusual
effects, to help refining the system for future developments.

A. Straight line
This scenario is very simple, so it has been tested using a

lower frequency for GPS measures (period of approximately 5
seconds) to make it harder. A PF can obtain good estimates for
positions and speeds during the first run, but the total stop
followed by a static turn is difficult to filter properly. Figure 6.
shows a run over a real-data trajectory where the plant noise
has been set to the IMU specifications. Real noise is several
times superior during movement (see Figure 7.), but this does
not affect the PF until the static turn at the end of the path.

When the plant noise is set to mimic the real running
conditions, the filtering becomes less accurate because the state
variance is greater, but its behavior is more robust. We can
expect a mean positioning error of about 60 cm for 1 m
precision GPS measures. More elaborate schemes and better
techniques as Rao-Blackwellized Kalman Filter [10] or
Unscented Particle Filter [11] are known to be more effective

than plain PF, but the obtained performance is enough for these
first tests.

B. Stadium
The stadium provides a general view of the overall filter

performance, thanks to its combination of turns, accelerations
and straight fragments. Receiving GPS measures at 1 Hz, the
PF can easily obtain an average 40% improvement over bare
observations, as shown in Figure 8.

Further tests with no bias correction (Figure 9.) show that
an artificially increased plant noise makes possible to obtain
similar position accuracy thanks to the high GPS update rate.

Figure 6. Using a reduced plant noise it is possible to obtiain a great
prediction accuracy, but some maneuvers can lead to a population divergence

(the filter has to be restarted)

Figure 7. Increasing plant noise offers lower accuracy in positioning, but
makes the filter more robust against unusual measures

Figure 8. Using bias-corrected inputs, the PF improves GPS accuracy an
average 40% (from meter-precision to 0.6 m).

Figure 9. When the biases are not corrected speed estimation is severely
affected, though positions have a reasonable accuracy –still better than bare

GPS measures.

5 10 15 20 25
-1

-0.5

0

0.5

1
Simulated accelerometer vs. ideal trajectory values

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

acc X

acc Y

5 10 15 20 25
-1

-0.5

0

0.5

1
Accelerometer readings during real experiment

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

10 15 20 25
-2

-1

0

Filtering performance in straight trajectory

0 5 10 15 20 25

-1

0

1

Filtering performance in straight trajectory

-4 -2 0 2 4 6 8 10 12

-1

0

1

2

3

4

5

6

-4 -2 0 2 4 6 8 10

-3

-2

-1

0

1

2

3

4

5

6

6

When using low-frequency GPS measures, biases inside the
expected dynamic margin of the IMU will cause the filter to
diverge.

C. Circumference
The last test has brought several interesting conclusions

about using low-accuracy positioning in reduced spaces.
Figure 10. describes the result of filtering the circumference
trajectory (10 turns) using exclusively inertial information. It
describes a smooth trajectory with variable accuracy –not
always decreasing–. The uncertainty of the filter grows with
time but the mean of the particles remains stable.

Figure 10. Inertial based filtering. The predicted trajectory describes quasi-
circles of changing size. This effect is caused by the large noise of inertial

measures incorporated to the particles

Figure 11. A residual bias in measured accelerations can be catastrophic, even
with values as low as a tenth of the expected dynamic stability. The problem

has the same magnitude under gyroscope bias.

When GPS measures are provided with a frequency below
1Hz, the errors are always larger. The problem is related with
the trajectory being contained in a reduced space: the mere
positions are not useful by itself since they are very uncertain,
and particles representing very different states can end in
similar positions after a whole lap. It is interesting to see that
the filtering results on this trajectory are equally bad for
unbiased and biased inertial measures.

VII. CONCLUSIONS AND FUTURE WORK

The obtained results validate the selected model for general
navigation and the proposed architecture for outdoor use. The
system can keep track of the robotic platform using as few as
two different types of sensors (with only one for updating the
Particle Filter).

The combination GPS/INS can be used to achieve
reasonable accuracy in flat outdoors. In spite of the reduced
dimensionality of state vector, low speeds and reduced spaces
can be a problem if inertial biases are not corrected or
positioning sensors are not accurate. Under these conditions,
measures can be not well suited for rewarding particles
adequately.

Using real data for the experiments have demonstrated that
simulations are not suitable as a standalone benchmarking tool.
Differences between technical specification and real device
performance make the last phase mandatory. In order to
guarantee stability of the PF under the harrowing conditions of
real data, positioning measures must have a period close to one
measure per second when biases have been not corrected, and
inferior to 3-4 seconds under normal conditions. Nonetheless,
the performance can be improved by using more types of
sensor or by solving some hardware issues as the magnetic
isolation and vibration suppression for IMU.

The general recommendation is to integrate other sensors to
provide direct observations for different dimensions of the state
vector. Magnetometer and odometers are perfect examples, as
their measures complement the information provided by a
GPS. They have been combined successfully in other works
[12] to achieve exceptional accuracy levels.

Simulated and real data yield comparable results in most of
the cases. The problem of increased noise can be mitigated by
raising the number of particles, which is never required to be
over a few hundred samples.

The plain Particle Filter used in this first working version is
not capable of estimating IMU biases properly. We have found
that they can be corrected using simpler techniques when the
robot is stopped for brief time lapses, although moving to more
advanced techniques such as [13] or [14] is recommendable.

ACKNOWLEDGMENT
This work was supported in part by Projects ATLANTIDA,

CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-
06732-C02-02/TEC, SINPROB, CAM MADRINET S-
0505/TIC/0255 DPS2008-07029-C02-02.

REFERENCES
[1] M.E. Cannon, R. Nayak, G. Lachapelle, O.S. Salychev, and V.V.

Voronov, “Low-Cost INS/GPS Integration: Concepts and Testing,” The
Journal of Navigation, vol. 54, Jan. 2001, pp. 119-134.

[2] N.J. Gordon, D.J. Salmond, and A.F.M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” Radar and Signal
Processing, IEE Proceedings F, vol. 140, 1993, pp. 107-113.

[3] “User’s Guide (Aerospace Blockset™).”
[4] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” 1995.
[5] R. Olfati-saber, “Distributed Kalman filtering and sensor fusion in

sensor networks,” 2006, pp. 157-167.

-5 -4 -3 -2 -1 0 1 2

-1

0

1

2

3

Inertial navigation with accel.bias = 0.01 m/s2

7

[6] B.P. Gerkey, R.T. Vaughan, and A. Howard, “The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems,” 2003, pp. 317-
323.

[7] M. Zimmerman and W. Sulzer, “High bandwidth orientation
measurement and control ased on complementary filtering,”
Proceedings of Symposium on Robotics and Control, SYROCO, Viena:
1991, pp. 525-530.

[8] B. Turgut and R.P. Martin, “Restarting Particle Filters: An Approach to
Improve the Performance of Dynamic Indoor Localization,”
GLOBECOM 2009 - 2009 IEEE Global Telecommunications
Conference, Ieee, 2009, pp. 1-7.

[9] X. Xu and B. Li, “Rao-Blackwellised Particle Filter with Adaptive
System Noise and its Evaluation for Tracking in Surveillance.”

[10] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R.
Karlsson, and P.-J. Nordlund, “Particle filters for positioning,

navigation, and tracking,” IEEE Transactions on Signal Processing, vol.
50, 2002, pp. 425-437.

[11] R.V.D. Merwe, N. de Freitas, A. Doucet, and E. Wan, “The Unscented
Particle Filter.”

[12] Y. Cheng and J.L. Crassidis, “Particle Filtering for Attitude Estimation
Using a Minimal Local-Error Representation,” Journal of guidance,
control, and dynamics, vol. 33, pp. 1305-1310.

[13] X. Yang, K. Shi, and T. Huang, “Combined Parameter and State
Estimation in Particle Filtering,” 2007 IEEE International Conference
on Control and Automation, vol. 00, May. 2007, pp. 1036-1039.

[14] J.H. Gove and D.Y. Hollinger, “Application of a dual unscented Kalman
filter for simultaneous state and parameter estimation in problems of
surface-atmosphere exchange,” Journal of Geophysical Research, vol.
111, Apr. 2006.

8

