
Universidad Carlos III de Madrid

TESIS DOCTORAL

A Comprehensive Framework for the
Rapid Prototyping of Ubiquitous

Interaction

Autor:
D. Andrea Bellucci

Directores:
Dr. D. Ignacio Aedo Cuevas

Dr. D. Alessio Malizia

Departamento de Informática
Doctorado en Ciencia y Tecnología Informática

Leganés, Octubre 2013

TESIS DOCTORAL

A COMPREHENSIVE FRAMEWORK FOR THE
RAPID PROTOTYPING OF UBIQUITOUS

INTERACTION

Autor: D. Andrea Bellucci
Directores: Dr. D. Ignacio Aedo Cuevas, Dr. D. Alessio Malizia

Firma del Tribunal Calificador:

Nombre y Apellidos Firma

Presidente: Prof. D. Antonio de Amescua Seco .

Vocal: Prof. D. Carmelo Antonio Ardito .

Secretario: Prof. D. Juan Manuel Dodero Beardo .

Calificación: .

Leganés, de . de 2013.

A mamma e papá.

Acknowledgments

It is hard to express with words what does it feel like to have reached the end of this
other phase in my life: getting a doctoral degree. It is often said that a picture is

worth of a thousand words. The figure in the next page condensates my experience of
pursuing a Ph.D. : the initial disorientation, the ordeal of getting stuck, the resolution
to carry on no matter what, having faith that someday I will be able to see the bigger
picture and, at the end, the feeling that I have done a good job or, at least, the very best
that I could do. I will then, let a picture talk for me, hoping that the reader, the one who
has already passed for the same path and the one who does not, can connect with my
feelings. I know that anyone who has dedicated an important part of his life-time in a
project will understand. Let me just quote one of my favorite authors, whose writing have
deeply influenced my perspective about life. Nietzsce once said that "what that does not
kill us makes us stronger". That is what this dissertation means to me. These last four
years have been blissfully hard. I please all the challenges that I have had to face: leaving
the eternal city, settling in a new country, learning a new language, acquiring a new
family, learning what does doing research means and how difficult is to find motivation
within myself more than seek for it outside. I please all these challenges that have been
instigating my intelligence all the time to find new ways to get rid of the obstacles. That
is what life is for, standing up against adversity and learn from them as well as from
pleasant moments. I feel stronger, now.

I would just like to add a few line to thank all the people that helped, directly
or indirectly, to have made this dissertation possible. First, I would like to thank the
supervisor of this thesis, Prof. Ignacio Aedo and the co-supervisor Prof. Alessio Malizia.
Both of them made it possible that I could move from Italy to Spain and start this
journey. From Nacho I have learnt the subtle art of diplomacy and how there are different
ways to express the same concept. From Alessio, I have learnt that "it’s important in life
not necessarily to be strong, but to feel strong". I would also like to thank Prof. Paloma
Díaz, head of the DEI research group at Universidad Carlos III de Madrid. I have found
in the DEI laboratory a place to nurture my research skills, discriminating what is the
difference between applied research and system development in Computer Science. With
the DEI research group I share the vision of digital technologies as a way to augment
human capabilities and interaction as a way of framing the relationship between people
and the objects designed for them.

The financial support from the Integra1 and TIPEx2 projects has been generous and
has allowed me to both enjoy life in Madrid, without any economic concerns, and do
research at the same time.

During my time as a Ph.D. student I have visited the Cardiff School of Art and
Design and the National Center for Product Design and Development Research (PDR)
at the Cardiff Metropolitan University in Cardiff, Wales, UK. I would like to thank Prof.
Steve Gill for have given me the opportunity of working in a motivating and inspirational
environment. Three months I have spent at Cardiff Metropolitan University and every day,
before start working at the thesis, I took some moments to read the quote on the wall of
my office at PDR — "The timid and the fainthearted, and the people that expect quick
results, are doomed to disappointment" — until the point I converted it into a personal
mantra. At Cardiff Metropolitan University I have had the possibility to experiment how
the synergy of different disciplines, engineering, computer science and product design, can
really benefit research. I would also like to thank Gareth Loudon to show me the bigger
picture: the Ph.D. is an extensive training on learning how to cope with problems with
my own forces and everything that I am learning now, I will use it in my life, someday. A
special thank goes to Prof. Alan Dix, who invited me to the Tiree island, in the north of
Scotland, to test some of the technologies I have been developing during the thesis. I
would have never had imagined that my research pushed me so far...literally.

I would like to thank all my family for their support at a distance and for being always
there anytime I needed to get back to my safe haven to recharge batteries. These years
far from home have been the best occasion to put in practice everything mum and dad
tried to transmit me.

I thank Juanma and Dani with whom I have shared the office and the joys and sorrows
of chasing a doctoral degree. We have had good times sympathizing with each other
about our dissertation. We also share the same taste for good movies...

One last, sincere and deep thank goes to my closest friends: Vanessa, Pedro, Marina,
Carlos, Nuria, David y Luz. They are family to me. Through them I have learnt that
transcendency is in everyday, habitual, little actions.

1CDTI, Spanish Ministry of Science and Innovation
2Spanish Ministry of Science and Innovation, TIN2010-19859-C03-01

Acknowledgments v

Abstract

In the interaction between humans and computational systems, many advances have
been made in terms of hardware (e.g., smart devices with embedded sensors and

multi-touch surfaces) and software (e.g., algorithms for the detection and tracking of
touches, gestures and full body movements). Now that we have the computational
power and devices to manage interactions between the physical and the digital world,
the question is—what should we do? For the Human-Computer Interaction research
community answering to this question means to materialize Mark Weiser’s vision of
Ubiquitous Computing.
In the desktop computing paradigm, the desktop metaphor is implemented by a graphical
user interface operated via mouse and keyboard. Users are accustomed to employing artifi-
cial control devices whose operation has to be learned and they interact in an environment
that inhibits their faculties. For example the mouse is a device that allows movements
in a two dimensional space, thus limiting the twenty three degrees of freedom of the
human’s hand. The Ubiquitous Computing is an evolution in the history of computation:
it aims at making the interface disappear and integrating the information processing into
everyday objects with computational capabilities. In this way humans would no more
be forced to adapt to machines but, instead, the technology will harmonize with the
surrounding environment. Conversely from the desktop case, ubiquitous systems make
use of heterogeneous Input/Output devices (e.g., motion sensors, cameras and touch
surfaces among others) and interaction techniques such as touchless, multi-touch, and
tangible. By reducing the physical constraints in interaction, ubiquitous technologies
can enable interfaces that endow more expressive power (e.g., free-hand gestures) and,
therefore, such technologies are expected to provide users with better tools to think,
create and communicate.
It appears clear that approaches based on classical user interfaces from the desktop
computing world do not fit with ubiquitous needs, for they were thought for a single user
who is interacting with a single computing systems, seated at his workstation and looking
at a vertical screen. To overcome the inadequacy of the existing paradigm, new models
started to be developed that enable users to employ their skills effortlessly and lower
the cognitive burden of interaction with computational machines. Ubiquitous interfaces
are pervasive and thus invisible to its users, or they become invisible with successive
interactions in which the users feel they are instantly and continuously successful.
All the benefits advocated by ubiquitous interaction, like the invisible interface and a more
natural interaction, come at a price: the design and development of interactive systems
raise new conceptual and practical challenges. Ubiquitous systems communicate with

Abstract vii

the real world by means of sensors, emitters and actuators. Sensors convert real world
inputs into digital data, while emitters and actuators are mostly used to provide digital or
physical feedback (e.g., a speaker emitting sounds). Employing such variety of hardware
devices in a real application can be difficult because their use requires knowledge of
underneath physics and many hours of programming work. Furthermore, data integration
can be cumbersome, for any device vendor uses different programming interfaces and
communication protocols. All these factors make the rapid prototyping of ubiquitous
systems a challenging task.
Prototyping is a pivoting activity to foster innovation and creativity through the ex-
ploration of a design space. Nevertheless, while there are many prototyping tools and
guidelines for traditional user interfaces, very few solutions have been developed for a
holistic prototyping of ubiquitous systems. The tremendous amount of different input de-
vices, interaction techniques and physical environments envisioned by researchers produces
a severe challenge from the point of view of general and comprehensive development
tools. All of this makes it difficult to work in a design and development space where
practitioners need to be familiar with different related subjects, involving software and
hardware. Moreover, the technological context is further complicated by the fact that
many of the ubiquitous technologies have recently grown from an embryonic stage and are
still in a process of maturation; thus they lack of stability, reliability and homogeneity. For
these reasons, it is compelling to develop tools support to the programming of ubiquitous
interaction. In this thesis work this particular topic is addressed.
The goal is to develop a general conceptual and software framework that makes use
of hardware abstraction to lighten the prototyping process in the design of ubiquitous
systems. The thesis is that, by abstracting from low-level details, it is possible to provide
unified, coherent and consistent access to interacting devices independently of their
implementation or communication protocols. In this dissertation the existing literature is
revised and is pointed out that there is a need in the art of frameworks that provide such
a comprehensive and integrate support. Moreover, the objectives and the methodology to
fulfill them, together with the major contributions of this work are described. Finally, the
design of the proposed framework, its development in the form of a set of software libraries,
its evaluation with real users and a use case are presented. Through the evaluation and
the use case it has been demonstrated that by encompassing heterogeneous devices into
a unique design it is possible to reduce user efforts to develop interaction in ubiquitous
environments

Resumen

En la interacción entre personas y sistemas de computación se han realizado muchos
adelantos por lo que concierne el hardware (p.ej., dispositivos inteligentes con senso-

res integrados y superficies táctiles) y el software (p.ej., algoritmos para el reconocimiento
y rastreo de puntos de contactos, gestos de manos y movimientos corporales). Ahora que
se dispone del poder computacional y de los dispositivos para proporcionar una interacción
entre el mundo fisico y el mundo digital, la pregunta es—que se debería hacer? Contestar
a esta pregunta, para la comunidad de investigación en la Interacción Persona-Ordenador,
significa hacer realidad la visión de Mark Weiser sobre la Computación Ubicua.
En el paradigma de computación de escritorio, la metáfora del escritorio se implementa
a través de la interfaz gráfica de usuario con la que se interactúa a través de teclado y
ratón. En este paradigma, los usuarios se adaptan a utilizar dispositivos artificiales, cuyas
operaciones deben ser aprendidas, y a interactuar en un entorno que inhibe sus capacida-
des. Por ejemplo, el ratón es un dispositivo que permite movimientos en dos dimensiones,
por tanto limita los veintitrés grados de libertad de una mano. La Computación Ubicua
se considera como una evolución en la historia de la computación: su objetivo es hacer
que la interfaz desaparezca e integrar el procesamiento de la información en los objetos
cotidianos, provistos de capacidad de computo. De esta forma, el usuario no se vería
forzado a adaptarse a la maquinas sino que la tecnología se integrarían directamente
con el entorno. A diferencia de los sistemas de sobremesa, los sistemas ubicuos utilizan
dispositivos de entrada/salida heterogéneos (p.ej., sensores de movimiento, cameras y
superficies táctiles entre otros) y técnicas de interacción como la interacción sin tocar,
multitáctil o tangible. Reduciendo las limitaciones físicas en la interacción, las tecnolo-
gías ubicuas permiten la creación de interfaces con un mayor poder de expresión (p.ej.,
gestos con las manos) y, por lo tanto, se espera que proporcionen a los usuarios mejores
herramientas para pensar, crear y comunicar.
Parece claro que las soluciones basadas en las interfaces clásicas no satisfacen las necesi-
dades de la interacción ubicua, porque están pensadas por un único usuario que interactúa
con un único sistema de computación, sentado a su mesa de trabajo y mirando una
pantalla vertical. Para superar las deficiencias del paradigma de escritorio, se empezaron
a desarrollar nuevos modelos de interacción que permitiesen a los usuarios emplear sin
esfuerzo sus capacidades innatas y adquiridas y reducir la carga cognitiva de las interfaces
clásicas. Las interfaces ubicuas son pervasivas y, por lo tanto, invisibles a sus usuarios, o
devienen invisibles a través de interacciones sucesivas en las que los usuarios siempre se
sienten que están teniendo éxito. Todos los beneficios propugnados por la interacción
ubicua, como la interfaz invisible o una interacción mas natural, tienen un coste: el diseño

Resumen ix

y el desarrollo de sistemas de interacción ubicua introducen nuevos retos conceptuales
y prácticos. Los sistemas ubicuos comunican con el mundo real a través de sensores y
emisores. Los sensores convierten las entradas del mundo real en datos digitales, mientras
que los emisores se utilizan principalmente para proporcionar una retroalimentación digital
o física (p.ej., unos altavoces que emiten un sonido). Emplear una gran variedad de
dispositivos hardware en una aplicación real puede ser difícil, porque su uso requiere
conocimiento de física y muchas horas de programación. Además, la integración de los
datos puede ser complicada, porque cada proveedor de dispositivos utiliza diferentes
interfaces de programación y protocolos de comunicación. Todos estos factores hacen
que el prototipado rápido de sistemas ubicuos sea una tarea que constituye un difícil reto
en la actualidad.
El prototipado es una actividad central para promover la innovación y la creatividad a
través de la exploración de un espacio de diseño. Sin embargo, a pesar de que existan
muchas herramientas y líneas guías para el prototipado de las interfaces de escritorio, a
día de hoy han sido desarrolladas muy pocas soluciones para un prototipado holístico de la
interacción ubicua. La enorme cantidad de dispositivos de entrada, técnicas de interacción
y entornos físicos concebidos por los investigadores supone un gran desafío desde el punto
de vista de un entorno general e integral. Todo esto hace que sea difícil trabajar en un
espacio de diseño y desarrollo en el que los profesionales necesitan tener conocimiento de
diferentes materias relacionadas con temas de software y hardware. Además, el contexto
tecnológico se complica por el hecho que muchas de estas tecnologías ubicuas acaban
de salir de un estadio embrionario y están todavía en un proceso de desarrollo; por lo
tanto faltan de estabilidad, fiabilidad y homogeneidad. Por estos motivos es fundamental
desarrollar herramientas que soporten el proceso de prototipado de la interacción ubicua.
Este trabajo de tesis doctoral se dedica a este problema.
El objetivo es desarrollar una arquitectura conceptual y software que utilice un nivel de
abstracción del hardware para hacer mas fácil el proceso de prototipado de sistemas de
interacción ubicua. La tesis es que, abstrayendo de los detalles de bajo nivel, es posible
proporcionar un acceso unificado, consistente y coherente a los dispositivos de interacción
independientemente de su implementación y de los protocolos de comunicación. En esta
tesis doctoral se revisa la literatura existente y se pone de manifiesto la necesidad de
herramientas y marcos que proporcionen dicho soporte global e integrado. Además, se
describen los objetivos propuestos, la metodología para alcanzarlos y las contribuciones
principales de este trabajo. Finalmente, se presentan el diseño del marco conceptual,
así como su desarrollo en forma de un conjunto de librerías software, su evaluación con
usuarios reales y un caso de uso. A través de la evaluación y del caso de uso se ha
demostrado que considerando dispositivos heterogéneos en un único diseño es posible
reducir los esfuerzos de los usuarios para desarrollar la interacción en entornos ubicuos.

Contents

Acknowledgments iii

Abstract vi

Resumen viii

1 Introduction 1
1.1 Interaction . 4
1.2 Scope . 6
1.3 Motivation . 8
1.4 Methodology . 10

1.4.1 Problem . 11
1.4.2 Objectives . 12
1.4.3 Designing and Developing the Artifact 13
1.4.4 Testing and Evaluating . 14
1.4.5 Communicating the Results . 15

1.5 Outline . 16

2 State of the Art 17
2.1 Device Ecologies . 18

2.1.1 Physical Computing . 20
2.2 Touchless/Remote Interaction Technologies 20

2.2.1 Implications for Interaction Design 26
2.3 Multi-touch Interaction Technologies 27

2.3.1 Implications for Interaction Design 31
2.4 Tangible Interactive Technologies . 32

2.4.1 Implications for Interaction Design 35

Contents xi

2.5 Libraries, Toolkits and Frameworks for Ubiquitous Interaction 35
2.5.1 Library, Toolkit and Framework 36
2.5.2 Touchless/Remote Interaction 37
2.5.3 Multi-Touch Interaction . 40
2.5.4 Tangible Interaction . 44
2.5.5 Physical Computing . 47

2.6 Rapid Prototyping . 51
2.6.1 The Role of Prototyping in HCI 52
2.6.2 Rapid Prototyping for Ubiquitous Interaction 53

2.7 Summary . 59

3 Open Issues 61

4 Exploration of the design space 64
4.1 Experiences from the Development of Real Systems 64

4.1.1 Remote Interactions for Screen Displays with the Wiimote 65
4.1.2 Multi-touch Interactions around a Table with the DiamondTouch 68
4.1.3 TESIS: Turn Every Surface Into an Interactive Surface 70

4.2 Requirements for a Framework Supporting Ubiquitous Interaction 74
4.2.1 Requirements Elicitation: Interviews 76
4.2.2 Defining Categories from Requirements 81
4.2.3 Requirements . 83

4.3 Summary . 91

5 Design and Implentation of the Framework 93
5.1 Interaction Model . 94
5.2 Architecture . 103

5.2.1 Hardware Abstraction . 105
5.2.2 Input Transformation . 111
5.2.3 Input Interpretation . 112
5.2.4 Application . 113
5.2.5 Event propagation . 114

xii Contents

5.2.6 Implementation . 114

5.3 Compliance with requirements . 116

5.4 Summary . 118

6 Evaluation 120

6.1 Evaluation Background . 120

6.1.1 The five themes . 122

6.2 Case study: digitally-augmented product shelf 124

6.2.1 Goals . 126

6.2.2 Discussion . 127

6.3 User test . 128

6.3.1 Goals . 128

6.3.2 Participants . 129

6.3.3 Design . 129

6.3.4 Results and Discussion . 136

6.4 Summary . 151

7 Conclusions 152

7.1 Contributions . 154

7.2 Potential for Future Research . 155

References 157

A Published Results 169

B Requirements Extraction 170

B.1 List of Initial Requirements . 170

B.2 Interviews . 172

B.3 Additional Requirements . 173

B.4 Categories . 173

B.5 Final Requirements Under Categories 174

Contents xiii

C User Evaluation 177
C.1 Documentation for the User Tasks . 177
C.2 Written Consent Form . 182
C.3 Pre-test questionnaire . 184
C.4 Post-test questionnaire . 188

List of Figures

1.1 The Nintendo Wii Remote Controller as part of the user interface. 2

1.2 A typical UbiComp environment for meeting rooms. 5

1.3 The context of the this research work. 7

1.4 The six-steps design and development research approach. 11

1.5 The modified six-steps design and development research approach. 11

2.1 A sketch of CodeSpace meeting environment. [Bragdon et al., 2011] . . 19

2.2 Put-That-There [Bolt, 1980]. 21

2.3 Minority Report: envisioning a touch-free interface. 22

2.4 Nintendo Wii Remote Controller. 23

2.5 SixthSense technology developed at Fluid Interfaces Group, MIT Media
Lab [Mistry and Maes, 2009]. 24

2.6 G-Speak interactive environment from Oblong Industries. 25

2.7 FTIR configuration for multi-touch displays. 28

2.8 Augmented Surfaces [Rekimoto and Saitoh, 1999]. 29

2.9 DiamondTouch interactive tabletop. 31

2.10 Bricks. Source [Fitzmaurice et al., 1995]. 33

2.11 metaDESK. Source [Ullmer and Ishii, 1997]. 33

2.12 Designers’ Outpost. 33

2.13 Tangible interface of the AudioPad system. 34

2.14 reacTable* tangible objects and topological interface. 34

2.15 OpenNI software architecture. 39

2.16 MT4j reference architecture. 43

2.17 The Papier Mache monitoring interface. Source [Klemmer et al., 2004]. . 45

2.18 reacTIVision framework diagram. 46

2.19 The libTISCH architecture. 47

List of Figures xv

2.20 Phidgets’ physical components. 49

2.21 d.tools authoring environment (left) and hardware components (right). . 49

2.22 Arduino Uno board. 50

2.23 Squidy visual programming workspace. 56

2.24 Core classes of the ROSS API. 57

4.1 Don’t Touch Me User Interface. 67

4.2 Visualization of the Widget for the civil protection role. 70

4.3 The TESIS system: a pico-projector, a depth-sensing camera and a laptop. 71

4.4 Visualization of the recognition algorithm. From left to right, top to down:
grayscale depth image, actual image after subtracting the background,
contours detection and blob detection. 72

4.5 A fixed version of the TESIS prototype at the rural center in Tiree,
Scotland, UK. 73

4.6 The process to define requirements for the framework. 75

4.7 Captures of student and lecture views of the ALF system. Source [Zarrao-
nandia et al., 2012] . 84

4.8 MT4j reference architecture. 88

4.9 TUI-VR reference architecture. 88

5.1 Main components of the framework in a real scenario. 94

5.2 MCRpd interaction model for Tangible Interaction. Source [Ullmer and
Ishii, 2000]. 95

5.3 Physical icons in metaDESK are coupled with digital information (e.g.,
the map of the MIT campus). 96

5.4 Physical objects and digital representations in the reacTable*. 97

5.5 The framework interaction model for device ecologies. Core classes
(Environment, PObject, TObject and DObject) and their interconnections
are depicted. 98

5.6 UML Class diagram for the proposed interaction model: TObject. 99

5.7 Schematic setup of Example 1: the motion sensing capabilities of an iPad
(accelerometer) are used to change the inclination of a physical board
(implemented with a Lego Mindstorms NXT 2.0 set) and a digital horizon
widget displayed on the screen of a laptop device. 100

xvi List of Figures

5.8 Schematic setup of Example 1. 101
5.9 Scenario for Example 2: touching the display of the iPad on the virtual

button will make the digital 3D box to change its color. 102
5.10 Schematic setup of Example 2. 102
5.11 The architecture of the framework. 104
5.12 The structure of the XML file corresponding to a TObject. 106
5.13 Client/Server architecture of TOBjects. 109
5.14 Input Transformation mechanisms in a TObject. 112
5.15 Part of the source code for the scenario. 115

6.1 The digitally-augmented product shelf use case in the framework architecture.125
6.2 Touch-enabled User Interface. 126
6.3 Excerpt of wrj4P5 API documentation. 134
6.4 An example of the template provided to the subjects. 135
6.5 Pre-test questionnaire, Q1: "Of the following programming language and

technologies, check those that you have personally used and are familiar
with". 136

6.6 Technical programming skills of the sample population. Q2, in dark
green: "Please rate your technical programming knowledge (programming
paradigms, data structures, frameworks, etc.)". Q3 in light green: "If
you know/use the Java programming language, what is your level of
proficiency with the language?". Box-plot on the left and distribution of
the answers on the right. 137

6.7 Q8: "Have you ever programmed interactive systems that make use of
the aforementioned (Q7) hardware?". 137

6.8 Q9: "Is your academic/professional background related to interaction
design, human-computer interaction or ubiquitous computing?". 137

6.9 Box plot of the overall rating for the two libraries (on the left and red,
Q2) and for the framework (on the right and blue, Q1). 138

6.10 Direct comparison of the overall rating for the two libraries (red, Q2) and
the framework (blue, Q1. 139

6.11 Q4: "How did the technical environment (Processing) make the program-
ming tasks?" Box plot on the left and histogram on the right. 140

6.12 Q5: "Would you use the framework to develop interactive systems for
ubiquitous environments?" Box plot on the left and histogram on the right.140

List of Figures xvii

6.13 Threshold and Ceiling factor (Q6 to Q14). 141
6.14 Predictability factor (Q17 to Q21). 142
6.15 Moving Target factor (Q23 and Q24). 143
6.16 Comparison of Q24 and Q25 that shows how changing the input device

(Wiimote and iPad) affected the development WITH (on the left and
blue, Q24) and WITHOUT (on the right and red, Q25) the framework. 1
meaning "Drastically" and 7 meaning "Not at all". 144

6.17 Summary of the post-test questionnaire results using the scores for the
three factors defined by Myers et al. [2000]: Threshold and Ceiling,
Predictability and Moving Target. A fourth factor, Overall measures the
overall acceptance of the framework. 145

6.18 Total time for each participants to accomplish the two tasks WITH (in
blue) or WITHOUT (in red) the framework. On the x-axis the participant
and on the y-axis the time are plotted. 146

6.19 Average times for each task and condition. Blue: Wiimote w/ framework.
Red: iPad w/ framework. Green: Wiimote w/o framework. Purple: iPad
w/o framework. 147

6.20 Frequency histogram of the two time series: WITH (in blue, on the left)
and WITHOUT (in red) the framework. 148

6.21 Q-Q plot for the two time series: WITH (in blue) and WITHOUT (in
red) the framework. 149

List of Tables

2.1 Examples of development kit and libraries for toucheless interaction. . . . 38
2.2 Examples of development kit and libraries for multi-touch interaction. . . 41
2.3 Examples of toolkits and frameworks for tangible interaction. 45
2.4 Examples of toolkits for physical computing. 48
2.5 Examples of frameworks and visual environments for ubiquitous interaction. 55

4.1 Main characteristic of the respondents population according to target users. 79

5.1 Attributes of the tobject tag. 105
5.2 Attributes of the connection tag. 107
5.3 Abstract data type hierarchy. The first column presents the abstract data

type, the second column an example of a multi-dimensional extension of
the data type and the third column an example of a device generating
such input. 110

5.4 Spatial relationships between two entities a and b. 113
5.5 Requirements compliance matrix. Green: fully addressed. Yellow: partially

addressed. Red: future works. 118

6.1 Combinations of the two factors Software Technology and Hardware
Technology. Fw: Framework with Wiimote, Fi: Framework with iPad, Lw:
Library (wrj4P5) with Wiimote, Li: Library (oscP5) with iPad. 130

6.2 The final runs of the experiments: combination of Software and Hardware
Technology with Interaction Component. The letters represent each run
of a 8x8 Latin Square. The development of the button was tested in Task
1 (T1) and the accelerometer in Task 2 (T2). 130

6.3 The 8x8 Latin Square for counterbalancing. 131

List of Abbreviations

AR Augmented Reality, page 7

DIY Do-It-Yourself, page 50

EUD End-User Development, page 50

FTIR Frustrated Total Internal Reflection, page 28

GUI Graphic User Interface, page 8

HCI Human-Computer Interaction, page 6

I/O Input/Output, page 1

IDE Integrated Development Environment, page 50

IR InfraRed, page 23

IxD Interaction Design, page 6

LED Light Emitting Diode, page 63

MEMS Micro-Electro-Mechanical Systems, page 3

NUI Natural User Interface, page 22

PCB Printed Circuit Board, page 48

PDA Portable Digital Assistant, page 27

RFID Radio Frequency IDentification, page 6

RGB Red Green Blue colorspace, page 25

RGBD RGB cameras plus Depth sensor, page 25

SDK Software Development Kit, page 37

TIR Total Internal Reflection, page 28

ToF Time-of-Flight, page 25

xx List of Tables

TUI Tangible User Interface, page 32

TUIO Tangibe User Interface Objects, page 12

UbiComp Ubiquitous Computing, page 2

UDP User Datagram Protocol, page 72

USB Universal Serial Bus, page 48

VR Virtual Reality, page 7

WIMP Windows, Icons, Menus and Pointer, page 23

Conventions

Throughout this thesis proposal the following conventions are used:

• Unidentified third persons are always described in male form. This is only done for
readability purposes.

• Links to websites of mentioned libraries, toolkits, frameworks, applications or
interactive artifacts are shown in a footnote at the bottom of the corresponding
page.

• The definition of Human-Computer Interaction (HCI) is a synonym for Human-
Machine Interaction (HMI) as well as Man-Machine Interaction (MMI).

• References follow the ACM Computing Surveys citation format.

• All Web resources URLs have been lastly checked on date 27th of June, 2013.

• The whole thesis proposal is written in American English, with the abstract both
in American English and Castilian Spanish (Castellano).

1
Introduction

Shall we begin like in David Copperfield?
I am born...

—Interview with the vampire
Louis, the vampire.

With the third wave in the history of computing, the perception and meaning of
user interaction is changing. In the same way desktop computers replaced bulky

mainframes, starting from the last decade of the past century we assisted to the rise
of Ubiquitous Computing [Weiser, 1991], which introduced new interaction techniques
and Input/Output (I/O) technologies from multi-touch [Buxton, 2009, 2010; Buxton
et al., 1985], to touchless or remote [de la Barré et al., 2009], to tangible [Fitzmaurice
et al., 1995; Ishii, 2008], to multimodal [Oviatt, 2003]. With the advent of Ubiquitous
Computing, digital information processing has come out from personal computers and it
has become more and more integrated into everyday objects and activities. Therefore, in
such environment pervaded by digital technologies, "we became part of the interface or
rather we bring the interface with us everywhere, we create practices around the interface",
as Christensen [2006, p. 76] pointed out. The concept of interface between humans
and computational machines embraces now physical devices or environmental elements
augmented with digital capabilities. This makes embodied interactions possible—to
exploit these new technologies, designers are currently trying to provide new ways for the
users to interact with the surroundings in order to avoid the intrinsic limitations of the
mouse and to promote a more natural approach [van Dam, 1997]. The Nintendo Wii
Remote1 controller (see Figure 1.1), the human fingers, the voice and even the whole
human body are part of the user interface, not only mice and keyboards we use to interact
with graphical elements visualized on a vertical display screen. This same vision has been
previously shared by Jørgensen and Myers [2008] who stated that present interactive
systems include "tangible artifacts and conceptual entities embedded in the everyday
world".

1http://wiibrew.org/wiki/Wiimote

2 1. Introduction

Figure 1.1: The Nintendo Wii Remote Controller as part of the user interface.

Ubiquitous Computing (also abbreviated UbiComp) is, therefore, a paradigm for
Human-Computer Interaction that is considered as an advancement of the desktop
computing model. A synthetic and neat definition of UbiComp has been given by York
and Pendharkar [2004]:

[...] machines that fit the human environments instead of forcing humans
to enter theirs.

The concept of computational devices merged into a real environment was firstly depicted
by Weiser [1991] with an early suggestion of the world as interface to computing, referred
to by him and his colleagues as embedded virtuality. In this context, UbiComp clearly
stimulates the development of an interaction that is beyond the desktop and where digital
bits are blended into objects of the physical world, as Weiser [1991] specifically pointed
out in his seminal work:

[...] Ubiquitous Computing names the third wave in computing, just now
beginning. First were mainframes, each shared by lots of people. Now we are
in the personal computing era, person and machine staring uneasily at each
other across the desktop. Next comes ubiquitous computing, or the age of
calm technology, when technology recedes into the background of our lives.

Weiser envisioned the real world to be pervaded by a wide range of computational devices
that harmonize with the surrounding environment in a way that it feels natural to the users

3

to interact with them, making therefore the interface become invisible. During normal
activities a user, who is interacting with an ubiquitous system, may employ different I/O
devices and artifacts at the same time and he may not necessarily be aware that he is
doing so. The objective is to make the interaction with computers seamless and easy:
less effort and cognitive burden reduces the sense of frustration and information overload
typical of the interaction with desktop computers [Norman, 1999]. To achieve his vision,
Weiser proposed a first taxonomy of UbiComp devices to be made of the three forms:

• Tabs, wearable devices with a centimeter-scale physical size. Belong to this
category devices such as smartphones (e.g., the Apple iPhone2).

• Pads, hand-held devices with a decimeter-scale physical size. In this category fall
examples of ultraportable or personal computers (e.g., the Apple’s iPad3).

• Boards, interactive display devices with a meter-scale physical size. Examples are
interactive tabletop surfaces such as the reacTable* [Jordà et al., 2007].

These three categories proposed all share some common aspects, such as being macro-
sized, having a planar form and incorporating displays for visual output. During the last
years, researchers have suggested to relax each one of these three attributes (the size,
the form and the output display) in order to explore and define further possibilities for
the computational devices to be actually merged into the real world. In particular, Poslad
[2009] proposed three additional forms for ubiquitous systems, which are:

• Dust, miniaturized devices that can be without visual output displays, ranging
from nanometres through micrometers to millimetres. These devices are commonly
known as MicroElectroMechanical Systems (MEMS). Examples are digital and
mechanical sensors that can detect variation in the surrounding environment and
can be wirelessly networked and distributed over some area to perform tasks [Kahn
et al., 1999].

• Skin, organic devices fabricated with light emitting and conductive polymers with
computational capabilities. They can be exploited to provide flexible non-flat
display surfaces. In this context MEMS devices can also be integrated into physical
surfaces so that real world structures can act as networked surfaces of MEMS.

• Clay, MEMS combined into physical artifacts with connection to the digital world.
Users can exploits such objects to interact with a computational system using real
world affordances. Tangible User Interfaces are examples of this category.

2http://www.apple.com/iphone/
3http://www.apple.com/ipad/

4 1. Introduction

The visionary contribution of Weiser [1991] opened the door to many inspirational research
works towards an interaction between the human and the surrounding physical/virtual
environment that would be less like the current desktop keyboard-mouse-display paradigm.
Interaction in ubiquitous systems is inherently multimodal and it provides a range of
techniques and tools to access, manage and share digital information. It is important to
highlight that ubiquitous technologies have been thought to be human centered: they
have to permeate the real world, helping people to achieve goals and fulfill their needs
with minimum effort by exploiting different input modalities. Aiming at enabling people
to interact in a less constrained way, new interaction techniques have been created that
try to exploit the possibilities offered by the combination of real world affordances with
their digital counterpart. These input modalities can be grouped in three main categories,
namely: touchless/remote, multi-touch and tangible interaction. In the next chapter
(Chapter 2), an overview of each category is given and a review of the literature is
presented focusing on the outputs (from both the academia and the industry) that best
express the potentials and limitations of each technology. By doing this, valuable insights
are derived on the wide range of I/O devices that researchers and designers have to deal
with in a UbiComp scenario.

1.1 Interaction

The Ubiquitous Computing is considered as an extension of the computational capabilities
of the physical environment, allowing the computational infrastructure to be present
everywhere in the form of small, inexpensive, robust networked processing devices,
distributed at all scales throughout everyday life and generally turned to distinctly
common-place ends. The design and placement of these devices have to be conceived
according to users tasks and the context of interaction, as happens for context-aware
applications where devices can both sense and react based on their environment [Dey et al.,
2001]. Therefore, computation cannot be localized in a single point (e.g., the desktop
terminal) but it is extended to different spots of the real world setting. Technologically-
enhanced spaces are a manifestation of this concept of ubiquitous environments. They
are physical spaces where the affordances of physical objects are augmented with digital
capabilities thus creating an ecology of heterogeneous networked devices—device ecology
is the keyword used in the literature to define such collection of different devices with
relationships among each other [Jung et al., 2008]. A typical UbiComp environment
for meeting rooms (see Figure 1.2), for example, would consist of a wall display screen
operated via remote devices and touch or touchless hand gestures. Such gestures might
be recognized by optical and electrical sensors placed in strategic points inside the room.
Other users can be seated at a table and interact with a digital horizontal surface via touch
gestures or using tangible input elements. At the same time, users could also take notes
with their personal tablet devices, perhaps using a digital pen or through touch gestures

1.1. Interaction 5

Figure 1.2: A typical UbiComp environment for meeting rooms.

with their fingers. These personal display devices can be connected with the shared
displays so that if a user wants to share documents with other attendants, he can simple
send the digital information from his device to the public display with the swipe of his
fingers. A real implementation of an ubiquitous workspace is the i-LAND project [Streitz
et al., 1999] from the Fraunhofer’s Integrated Publication and Information Systems
Institute (IPSI) in Darmstadt. In this project, different interactive devices coexist in the
same physical space to support collaborative human work: a wall-sized display screen
(the DynaWall), an interactive horizontal surface (the InteracTable) and two computer-
augmented chairs with pen-based computer display and laptop docking. The scenario
depicted by the previous example, like in the i-LAND project, establishes a socio-technical
system [Mumford, 2000]. That is, it involves both human- and technological-related
factors:

• From the point of view of humans, in the desktop computing paradigm, users
interact via a mouse and a keyboard with a display screen placed on a desk: the
interaction is limited and "sensory deprived"—using Negroponte’s words4. In Ubi-
Comp systems, users are free to interact with devices using different techniques,
such as touchless or remote, multi-touch or tangible interaction. These techniques
provide a higher expressive power and enable users to employ their skills effortlessly
and lower the cognitive burden of interaction with computational machines. Never-

4http://www.wired.com/wired/archive/4.08/negroponte.html

6 1. Introduction

theless, seamless and graceful interaction is not only a matter of the interaction
technique in use. Interaction is natural only when supported by an interface that
"makes learning enjoyable and eliminates the druggery that distracts from skilled
practice" [Wigdor and Wixon, 2011]. Moreover, people use digitally augmented
devices in their everyday life to perform personal and collaborative activities and it
is therefore important to understand how to best design such device ecologies in
order to support users personal needs and social interactions.

• From the point of view of machines, heterogeneous devices coexists in the same
environments. These devices ranges from (a) interactive surfaces such as digital
whiteboards, large projected vertical surfaces and interactive tabletops, (b) personal
devices such as smartphones or tablet with private display screens and, (c) I/O
devices like physical objects enhanced with digital capabilities, touch sensors or
motion tracking cameras. To make devices communicate among each other,
interoperability is a paramount issue. For instance, the integration of dat from
heterogeneous devices can be cumbersome in real applications, for any device
vendor uses different interfaces and protocols. In order to exchange information
they have to agree on common communication protocols and network architectures.
Moreover, being operated with different interaction styles, they also need to share
a common definition of the type of data they can process and transmit.

1.2 Scope

The particular research area addressed by this dissertation is Ubiquitous Interaction:
interactions that take place in technologically-enhanced spaces as described in the
previous Section. More formally, Ubiquitous Interaction has been defined as "interaction in
pervasive, ubiquitous, tangible, or ambient computing - including interaction with multiple,
dynamic, and distributed interfaces" [Klokmose, 2009]. Even if Ubiquitous Interaction
is characterized by both human and technological factors, this work focuses on the
technological aspects of interaction and it specifically copes with the issues of developing
the infrastructure to support human collaborations through device ecologies. Figure
1.3 shows how this research embraces several aspects that pertain to the intersection
of the three broader fields of Ubiquitous Computing (UbiComp), Human-Computer
Interaction (HCI) and Interaction Design (IxD). From the perspective of UbiComp and
HCI, the notion of Ubiquitous Interaction constitutes a new paradigm to develop interfaces
that bridge the gap between the physical and the digital world and make it possible to
enhance everyday objects with digital information processing [Ishii and Ullmer, 1997]. The
development of new technologies (e.g., Radio Frequency IDentification or RFID, touch-
enabled surfaces) and interaction techniques (e.g., multi-touch or touchless) has allowed to
bring computing into the ’real world’ and outside the screen-based interaction of traditional

1.2. Scope 7

Figure 1.3: The context of the this research work.

desktop or Virtual Reality (VR) environments, which were considered as alienating
technologies. In this sense, Ubiquitous Interaction is an umbrella term that comprises
various research and design approaches to interaction such as Augmented Reality (AR)
and Multi-touch, Touchless/Remote and Tangible Interaction Technologies. In Chapter
2 main characteristics and peculiarities of each interaction technology are discussed in
details as well as common intersections and their implications in the development of
interactive environments. Considering Interaction Design, the technological development
presents new challenges and opportunities, being new interactive products more and
more embedded with electronic circuits and sensors. The combination of physical
and digital elements in design has been fostered by the widespread development of
Physical Computing. According to Hornecker [2009], "[Physical Computing] involves
fast prototyping with electronics, and often reuses and scavenges existing technology
(tinkering). It is defined as the design of interactive objects, which are controlled by
software, and that people interact with via sensors and actuators". Interaction Design
also influenced and has been influenced by Tangible Input Technologies. For example,
while at the beginning tangible objects have been mainly used as alternative input devices,
IxD researchers have started to devise that digital I/O behaviors can be strongly coupled

8 1. Introduction

with physical artifacts in such a way to provide rich interactions with digital systems. For
instance, novel tangible interfaces allows the user manipulate the physical object in a way
that changes in its physical characteristics produce a direct input to the digital system.
As an example, Beyond [Lee and Ishii, 2010] is a collapsible tangible device, in the form
of a stylus, for direct 3D manipulations. When pressed against the surface, the device
collapse in the physical world and it extends into the digital, so that the user can have
the illusion that they are inserting the tool into the virtual space.

1.3 Motivation

New interactive technologies and techniques are able to empower users with an higher
degree of expressiveness. Computational devices are integrated in our living environment
and, therefore, there is a need of an interaction that allows to seamlessly bridge between
the physical and the digital world. One example is the vision of Tangible Bits as exposed
by Ishii [2008], in which physical objects are integrated with interactive surfaces and
coupled with digital information. Notwhitstanding the rhetoric on the invisible interface
and devices that harmonize with the environment, Oulasvirta [2008] describes how, in
reality, UbiComp is facing a big divide: due to the heterogeneity of its technologies,
practical applications and interfaces are pluggable and interchangeable only to a very
limited extent. In particular, he reported that:

present-day IT infrastructure, “the real ubicomp,” is a massive noncen-
tralized agglomeration of the devices, connectivity and electricity means,
applications, services, and interfaces, as well as material objects such as
cables and meeting rooms and support surfaces that have emerged almost
anarchistically, without a recognized set of guiding principles. This infrastruc-
ture is not homogenous or seamless, but fragmented into several techniques
that the user has to study and use.

Developers of ubiquitous interaction systems are experiencing the same difficulties that
Graphic User Interface (GUI) designers encountered more than twenty years ago. At the
beginning of the nineties did not exist any toolkit that supported the development of
graphical interfaces for desktop computers and a lot of effort was dedicated to the coding
of the user interface. Precisely, Myers and Rosson [1992] found that approximatively the
48% of the code was committed to the programming of the user interface. That was the
case before the development of programming toolkits. For example, Myers and Rosson
[1992] demonstrated that GUI development kits, such as MacApp, could reduce the
development time by at least a factor of four. In fact, thanks to GUI toolkits, developers
need less code for the user interface that, therefore, can be generated more quickly.
This assists the rapid prototyping, which is a pivotal activity to achieve high quality

1.3. Motivation 9

interactive products through iterative design [Lim et al., 2008]. Following the same
rationale, toolkits for ubiquitous interaction might help designers in the development of
novel systems, especially in a context where not only the software interface matters, but
also the hardware component is important. To this regard, Myers et al. [2000, p.18]
pointed out that:

An important consideration for the new devices is unlike desktop machines
that all have the same input and output capabilities (mouse, keyboard, and
color screen), there will be a great variety of shapes, sizes, and input-output
designs. Much of the user interface will be in built into the hardware itself,
such as the physical buttons and switches. Therefore, the designer will have
to take into account not only the software, but also the physical properties
of the devices and their capabilities.

Prototypes have a fundamental role in HCI and design: they can be used to evaluate a
design in its early stages, but also to foster innovation and creativity, by enabling the
exploration of a design space [Lim et al., 2008]. Nevertheless, while prototyping tools
are common for classical interaction with GUIs, prototyping interaction for ubiquitous
systems is still an issue [Wu et al., 2012]. The tremendous amount of different input
devices, interaction techniques and physical environments envisioned by researchers makes
it difficult to work in this technological context and, at present time, only a few tools
support this type of development. Moreover the design and development space is further
complicated by the fact that "many of the sensing and display technologies used by
ubiquitous interfaces are still in the process of evolution and maturation, and have not
yet reached the state of stability and robustness" [Wu et al., 2011]. The need in the art
to have better prototyping tools motivates this dissertation. Tools that support the rapid
setup of ubiquitous environments reduce the effort in arranging the technological medium
and, as a result, allow researchers to focus on social aspects and identify patterns and
emergent trends in collaborative work with heterogeneous devices. For example, "little
is known about how best to design or evaluate such ‘device ecologies’; in particular,
how best to combine devices to achieve a desired type of collaborative user experience"
[Coughlan et al., 2012]. Collaborative activities among people with different backgrounds
and areas of expertise are crucial in our times and, in order for interactive technologies to
support them, not only new models of interaction in ubiquitous environments are needed,
but also effective tools to prototype device ecologies, having the potential to provide time
on task by lowering prerequisite knowledge and by automating ’low-level’ programming
skills [Shneiderman, 2007]. This dissertation directly addresses the problems related to
the development of prototyping tools for interactions between heterogeneous devices.

10 1. Introduction

1.4 Methodology

After twenty years of original Weiser’s vision, even if ubiquitous interfaces are in a
continuous evolution, fundamental enabling technologies and interaction paradigms have
been established and there are the basis to apply a more design-oriented approach to
the research area of Ubiquitous Interaction. In this research work, the Design and
Development Research approach has been followed, defined by Hasan [2003, p. 7] as a
"disciplined investigation conducted in the context of the development of a product or
program for the purpose of improving either the thing being developed or the developer".
First of all, since part of this work is about the development of a conceptual framework
and its manifestation as a software library, it is compelling to highlight the differences
between ’Design and Development Research’ and ’product development’. According to
Ellis and Levy [2010], in order to be considered research, the development of an artifact
has to:

1. Address a problem recognized by the research community. In general,
problems in design and development research are complex and multidimensional
and the development of the artifact has to potentially allow to address such problems
through a form of human creativity or interaction. By contrary, the development
of a product is often driven by direct, straightforward and unidimensional problems
that usually do not motivate research.

2. Rely upon existing literature. To make a successful contribution it is important
to start from the existing corpus of knowledge, placing the research in the context
of the state of the art.

3. Make an original contribution to the corpus of knowledge. An original
contribution in the case of design and development research can present different
characteristics. First of all, according to Hevner et al. [2004], it has to be useful; a
target group of users has to be able to employ the artifact to address the problems
at issue. Contributions also take the form of: (a) systematic documentation of the
process that includes a discussion of design choices made, options considered, and
rationale for the alternative selected [van den Akker, 2000], (b) empirical testing of
the artifact developed [Hevner et al., 2004] and, (c) communication of the results
of the process [Hevner et al., 2004].

Due to the literature in Design Science in Information Systems research [Ellis and Levy,
2010; Hevner et al., 2004] and in particular to Peffers et al. [2007], it is possible to
define a six-phase conceptual framework that guides Design and Development Research.
Figure 1.4 shows the six phases, which are: (a) identify the problem motivating the
research; (b) describe the objectives; (c) design and develop the artifact; (d) subject
the artifact to testing; (e) evaluate the results of testing; and (f) communicate those

1.4. Methodology 11

Figure 1.4: The six-steps design and development research approach.

results. In this work, the original linear model has been adapted to an iterative process,
as shown in Figure 1.5, in which the output of each step may also serve to refine or
redefine the outcomes of previous steps. In the next Sections details are given about the
activities performed for each stage of the proposed model. For the sake of simplicity and
understanding, the activities for the two stages d and e have been grouped into a single
Section.

Figure 1.5: The modified six-steps design and development research approach.

1.4.1 Problem

The identification of the problem motivating the dissertation has been conducted through
the careful inspection of the existing literature in the HCI, UbiComp and IxD. Personal
knowledge has also been exploited, gathered during the development of multi-touch,
tangible and touchless interactive systems [Bellucci et al., 2011, 2010]. Focusing on
the technological side, it has been found that the current infrastructure for Ubiquitous
Interaction is not homogeneous or seamless, but it is fragmented into individual devices,
software and interaction techniques that the user has to understand and learn how to
use. There are devices for augmented reality, for the recognition of full body movement,

12 1. Introduction

microcontrollers for physical computing, software libraries for the recognition and tracking
of touch input, protocols such as Tangible User Interface Objects (TUIO) [Kaltenbrunner
et al., 2005] for the definition of touch messages, libraries that implements computer
vision algorithms, tags for tangible objects, touchless interfaces and so on. Employing
such variety of hardware devices and software environments in a real application can be
difficult because their use requires specific knowledge of the hardware components and
many hours of programming work. Furthermore, data integration can be cumbersome,
for any device vendor uses different software interfaces and communication protocols. All
of this results in a messiness that makes the development of Ubiquitous Interaction a
challenging task.
The main problems that have been identified, which will be exposed in details in the
Chapter 3 are: (1) the lack of holistic tools and (2) the consequent elevated temporal and
technical requirements for the prototyping of physical artifacts with digital behaviors. Refer
to Section 2.6 for a discussion on the role of prototyping in Ubiquitous Interaction. As
Hevner et al. [2004] stated, "Design and Development research would not be appropriate
if the development of some form of artifact does not present any potential for addressing
the problem". In this case, the design and development of a comprehensive framework is
motivated by the lack in the literature of unified approaches and it specifically addresses
the needs of developers and programmers to ease the prototyping of ubiquitous interaction.
Having an agile tool to rapidly setup technologically-enhanced spaces, in turn, allows to
focus research efforts on the human side: how the interaction with these devices affect
human activities and collaboration? For the sake of clarity, human-related challenges are
not addressed by this dissertation, which aims at developing the technological support
for the rapid setup of device ecologies.

1.4.2 Objectives

The main objective of this work is to define a conceptual model and a reference
architecture that provide users with a comprehensive framework for managing
interactions between heterogeneous networked devices to support the rapid
prototyping of ubiquitous interactive systems. The hypothesis that is demonstrated
in this dissertation is that by encompassing heterogeneous devices into a unique
design it is possible to reduce user efforts to develop for interactions in ubiq-
uitous environments. The goal is to allow the development of ubiquitous interactive
systems within the structure of a single, unified and holistic reference architecture. The
framework offers a general architecture that define communication protocols to describe
interactions between and with ubiquitous devices. The materialization of the framework
led to the definition of a set of software libraries that can be directly used by developers
in their projects. The framework, therefore, is aimed at fostering rapid prototyping by
explicitly addressing the two research issues summarized in the Section 1.4.1.

1.4. Methodology 13

1.4.2.1 Contributions

On the road to fulfill the goals proposed by this work, the following contributions have
been produced:

1. The definition of a set of requirements for the framework. The first step of
an engineering project is the specification of the requirements with respect to the
demands of its various stakeholders. In this case, the requirements of a framework
that will be used to develop prototypes for ubiquitous interactive systems have
been highlighted.

2. The development of a general and modular hierarchy, based on primitive
data types, where the top-level components allow for flexible and generic access to
device features. Abstraction has been pursued from the low-level details of specific
devices. In this way it is possible to provide unified access to devices, independently
of their implementation or communication protocols. To this end, a data types
structure has been defined for communication between devices in an ubiquitous
environment. Abstracting from heterogeneous devices implementations requires
the definition of a high-level data types structure that can describe raw data from
hardware devices in a unified manner.

3. The development of a software library for ubiquitous interaction that em-
ploys hardware abstraction to ease the prototyping process. Providing access to
devices, sensors and emitters by means of a unified, high-level API results in the
support of the rapid prototyping of interactive systems and the reuse of software
components in different applications so to reduce their development time and make
it possible for developers to quickly explore numerous designs.

4. A case study of an interactive system that demonstrate how the software frame-
work can be used to implement actual applications.

5. The demonstration, through a user study, that a unifying framework that make
use of hardware abstraction positively affects the efficiency in the prototyping of
interaction with device ecologies.

1.4.3 Designing and Developing the Artifact

At this stage, the waterfall development method [Pressman, 2001] has been followed,
taking especially into account three main factors: (1) the definition a conceptual frame-
work, (2) the design of the system architecture, and finally, (3) the development of a
prototype for testing and evaluation.

14 1. Introduction

The first factor corresponds to the definition of a set of requirements as highlighted
in the first contribution of the thesis (see Section 1.4.2). The definition of requirements
is crucial because they connect the software artifact being developed with the problem
driving the development. In this particular case, such requirements will connect the lack
of a general framework that integrates support to heterogeneous devices with the actual
conceptual architecture. They have been extracted from the review of the literature,
from the experience of developers and researchers familiar with ubiquitous technologies
(both from the academia and the industry) and, eventually, from my personal experience.
With respect to the second factor, the decisions made to design the architecture of the
framework are described in this document, discussing the rationale behind the choices
and the alternatives taken into account. In particular, the semantic of virtual devices by
Wallace [1976] has been explored and exploited, in a similar way as for the Squidy library
[König et al., 2009], to establish a general data types hierarchy for ubiquitous systems.
Finally, the software framework has been developed, which exposes a software library to
interface with a limited set of devices, sensors and actuators. This prototype has been
used during the next stage of testing and evaluation.

1.4.4 Testing and Evaluating

In this last phase, the proposed approach has been evaluated within the conceptual
scheme for user interface development defined by Myers et al. [2000]. The evaluation
focused on the five themes they established, namely:

• The parts of the user interface that are addressed: The tools that succeeded
helped (just) where they were needed.

• Threshold and Ceiling: The “threshold” is how difficult it is to learn how to use
the system, and the “ceiling” is how much can be done using the system. The
most successful current systems seem to be either low-threshold and low-ceiling, or
high threshold and high ceiling. However, it remains an important challenge to find
ways to achieve the highly desirable outcome of systems with both a low threshold
and a high ceiling at the same time.

• Path of Least Resistance: Tools influence the kinds of user interfaces that can
be created. Successful tools use this to their advantage, leading implementers
towards doing the right things, and away from doing the wrong things.

• Predictability: Tools which use automatic techniques that are sometimes unpre-
dictable have been poorly received by programmers.

• Moving Targets: It is difficult to build tools without having significant experience
with, and understanding of, the tasks they support. However, the rapid development

1.4. Methodology 15

of new interface technology, and new interface techniques, can make it difficult
for tools to keep pace. By the time a new user interface implementation task is
understood well enough to produce good tools, the task may have become less
important, or even obsolete.

The following evaluation scheme with respect to the five themes has been used:

• Evaluation task 1. An approach based on use cases has been employed, through
which it has been possible to demonstrate that the proposed framework is powerful
enough to model and implement real ubiquitous systems. As testbed it has been
used a multimodal application developed in the DEI Laboratory at Universidad
Carlos III de Madrid using the proposed software framework. The evaluation gives
answers to the following questions:

– The parts of the user interface that are addressed : does the framework
succeed in implementing the application? What kind of real applications can
be developed with the framework?

– Path of Least Resistance: is it possible to create proper interaction for different
kind of input devices without changing the underlying infrastructure?

– Moving Targets: how does changing the input device affects the development?

• Evaluation task 2. An empirical evaluation of the software libraries has been
conducted with a group of users with programming knowledge. The group of users
has been be carefully selected considering the profile of the target population of
the framework. The main objective of the test was to collect quantitative and
qualitative data to evaluate the usability of the solution. With this evaluation it
has been possible to find out wether the framework is able to adhere to:

– Threshold and Ceiling : how difficult was to learn how to use the APIs? Which
kind of interaction can be developed using the APIs?

– Predictability : does the API behave as aspected by the developers?
– Moving Targets: how does changing the input device affects the development?

1.4.5 Communicating the Results

The results of the evaluation, in addition to the document for this thesis dissertation,
will be distributed in contributions to workshops and conferences, such as the Physicality
Workshop5 or the Conference on Human Factors in Computing Systems6 (CHI). Appendix
A lists the scientific contributions resulted from this research that have been already
published or accepted.

5http://www.physicality.org/Physicality.org.html
6http://chi2013.acm.org/

16 1. Introduction

1.5 Outline

In Chapter 2 this thesis work is placed in the context of the state of the art of libraries,
toolkits and frameworks that make it possible the prototyping of ubiquitous interaction.
In Chapter 3 the research issues addressed by this dissertation are presented. These
issues have been defined from the state of the art, interviews with developers and HCI
researches and my personal experience (as a developer and researcher). In Chapter 4,
the design space of a framework for Ubiquitous Interaction is framed, reporting on the
experience and the lessons learnt from the development of ubiquitous systems. In this
same chapter, the requirements for the framework, together with details on the process
for their elicitation, are discussed . In Chapter 5 the development of the conceptual and
software framework is presented, highlighting on the interaction model it follows and
its peculiarity with respect to other solutions in the state of the art. Implementation
and technical details on the software library and the communication protocol are also
addressed. Testing and evaluation are the subject of Chapter 6: the use case and the
user study are described here. In particular this Chapter reports on the details of the
testing setup, to what extent the use case proved to fulfill the objective and the analysis
of experimental data from the user study. Conclusions are drawn in Chapter 7 and also
potential for future research is presented.

2
State of the Art

And if everything have already existed, what think
you, dwarf, of This Moment? Must not this gateway
also - have already existed? And are not all things
closely bound together in such wise that This
Moment draws all coming things after it?
consequently - itself also?

—Thus spoke Zarathustra
Friedrich Nietzsche, German Philosopher

In this chapter the state of art of the UbiComp paradigm is framed under the perspective
of Human-Computer Interaction, from which the definition of Ubiquitous Interaction

(see Section 1.2) is derived. The chapter offers an overview of the concept of device
ecologies and its manifestation in terms of technologically-enhanced spaces and then, it
focuses on different technologies and techniques that enable interaction in these kind
of physical environments enhanced with computational capabilities. Major interaction
technologies in UbiComp are presented, such as: touchless/remote, multi-touch and
tangible. The discussion of interaction technologies is completed by introducing the
state of the art of software libraries, toolkits and frameworks support to the development
of technologically-enhanced spaces. Since the framework proposed in this dissertation
encourages the exploration of the design space of Ubiquitous Interaction, the concept of
rapid prototyping in HCI is also discussed here, with a particular emphasis on the rapid
prototyping of ubiquitous systems. Interaction in such systems requires hardware and
software components: for this reason, in the art, there are software toolkits that ease the
development of hardware components, such as Phidgets [Greenberg and Fitchett, 2001]
or Arduino [Mellis et al., 2007] and software libraries that builds on existing hardware,
such as Mt4j [Laufs et al., 2010], Papier-Mache [Klemmer et al., 2004] and ROSS [Wu
et al., 2012]. The proposed solution focus on the software side, aiming at creating a
software infrastructure that ease the development of interaction with a large variety of
different devices.

18 2. State of the Art

2.1 Device Ecologies

An important issue in UbiComp is to explore novel forms of interaction not just between
a person and a single device, but also (a) between heterogeneous devices of different
form factors and capabilities, (b) between an individual, his personal devices and the
devices that harmonizes with the surrounding environment and (c) between different
persons through the use of different devices and interaction techniques. As also discussed
in Section 1.1, the UbiComp scenario presents socio-technical issues when it comes
to interaction— this work focuses on the technical aspect of device ecologies and, in
particular, it addresses the point (a) and (b) by providing a common architecture that
allows communications between heterogeneous devices and user interactions with devices
of the surrounding environments in a comprehensive framework. Weiser [1991] argued
that the real power of ubiquitous computing "comes not form any one of these device—it
merges from the interaction of all of them". With the widespread adoption of new
technologies that allow computation to go beyond the traditional desktop settings, the
vision of Weiser is approaching to its materialization, even if the user experience is still
disordered, as Oulasvirta [2008] (see Section 1.3 for details) and other researchers such
as Rogers [2006] and [Dourish and Bell, 2011] pointed out. This lack of organization
is due, in part, to the fact that devices are designed in a relatively isolated way and
then put in the same environment with other devices, without considering "how to
configure the varied properties of devices into holistically-designed system, with desirable
characteristics in terms of the assemblage of people, artifacts and technologies, and the
transitions that occur between them" [Coughlan et al., 2012]. To cope with the messiness
that characterized current ubiquitous environments it is important to understand how
heterogeneous technologies can be organized into an ecology, with different interface,
devices, tangible objects, physical and digital data and interconnections between artifacts
and people. A device ecology has been defined by Loke and Ling [2004] as—"collections
of devices interacting synergistically with one another, with users, and with the Internet".
As exposed in Section 1.1, a practical materialization of this concept are technologically-
enhanced spaces where various touchless, multi-touch and tangible input devices of
different form factors coexist in the same environment (e.g., a meeting room or a
command & control room) as a support to collaborative activities between people. In
general, the typical setting envisages the presence of large to medium-sized public display
screens and private devices [Streitz et al., 1999]: how to best combine shared and personal
devices is a principal research topic. Apart from the i-LAND project, mentioned in Section
1.1, other examples of technologically-enhanced spaces, where shared display coexists
with personal devices and a variety of interaction techniques are adopted, are WeSpace
[Wigdor et al., 2009] and CodeSpace [Bragdon et al., 2011]. WeSpace was designed for
collaborative scientific discussion, with a shared tabletop interface controlling a large
vertical display. It also allowed the scientists to integrate their laptops and share their
own data on the large display. It was found that individual users contributed equally,

2.1. Device Ecologies 19

suggesting this form of design is suited to equitable access and interaction. CodeSpace

Figure 2.1: A sketch of CodeSpace meeting environment. [Bragdon et al., 2011]

(see Figure 2.1) uses a combination of a shared multi-touch screen, mobile touch devices,
and Microsoft Kinect sensors to support meetings of a small group of developers. They
implemented cross-device interactions via different techniques such as in-air pointing for
social disclosure of commands, targeting and mode setting, and multi-touch for command
execution and precise gestures. The CodeSpace project is therefore a clear example of
the diversity of components that constitutes a device ecology: interactions seamlessly
span modalities and devices, forming a cross-device architecture where everyone can
interact with the shared display, from anywhere in the meeting space, with any device
they bring. A potential problem of device ecologies is that the users might feel frustrated
by the wide variety of interactive options offered by different input devices. Cross-device
and multi-user interfaces, for example, involve a whole new set of cues about objects to
which users direct their actions or intentions. Indeed, it has been found that sometimes
people cannot keep track of what is going on and will ask their partners to ‘wait’ or ‘slow
down’ [Harris et al., 2009]. A key challenge, therefore, is determining how to exploit the
characteristics of individual devices and how these can be combined to best effect to
support various collaborative activities.

20 2. State of the Art

2.1.1 Physical Computing

The term Physical Computing [Igoe and O’Sullivan, 2004] is used to describe human-
computer interaction that occurs using a physical medium. A physical computing system
is composed by software and hardware that can sense the surroundings and respond to
physical stimuli with both digital and physical outputs. To fulfill this goal, a physical
computing system communicates with the real world by means of sensors and emitters.
Sensors convert real world inputs into digital data, while emitters are mostly used to
provide digital or physical feedback. In general, these are embedded systems that use
very simple computers called microcontrollers that read sensors input and convert into
data to be processed. Physical Computing can be viewed as a conceptual framework
to understand ubiquitous interaction because it primarily deals with physical interaction
with everyday objects enhanced with computational capabilities. In practice, the term is
widely adopted to describe design or DIY projects that use sensors and microcontrollers
to translate analog input to a software system, and/or control electro-mechanical devices
such as motors, servos, lighting or other hardware. Physical computing activities are
widely present in the interaction design domain, where design practices are supported
by the use of embedded systems to create rapid prototypes of physical/digital artifacts
that can be used as cost-efficient concepts throughout the design process. Examples of
physical computing practices can be found among well-known product design firms such
as IDEO1 and Teague2.

2.2 Touchless/Remote Interaction Technologies

As an interaction technique, touchless or remote refers to an input that is originated
without any physical contact with a surface, in contrast with touch interactions that
suggests the presence of an input device that hits the surface, like for example a stylus or
users’ hands. By allowing users to employ hand gestures, touchless input removes the
burden related to physical contact and promote natural interaction with digital information
made tangible through large display surfaces [de la Barré et al., 2009]. After many decades
of research, the ability to interact with technology through remote hand gestures and
body movements is becoming an everyday reality. The emergence of cheap technologies
based on sensing cameras and computer-vision approaches, such as Microsoft Kinect3

among a host of other related technologies, has had a profound effect on the collective
imagination, inspiring and creating new interactions that go beyond traditional input
mechanisms [O’Hara et al., 2012]. First examples of touchless interaction can be found
in the work of Bolt [1980], Krueger et al. [1985] and Baudel and Beaudouin-Lafon [1993].

1http://www.ideo.com
2http://www.teague.com
3http://www.microsoft.com/en-us/kinectforwindows/

2.2. Touchless/Remote Interaction Technologies 21

Figure 2.2: Put-That-There [Bolt, 1980].

In 1980, Richard A. Bolt from MIT presented Put-That-There (Figure 2.2), a multimodal
interface for managing spatial information displayed on a large-screen display surface.
It makes use of a sign and speech paradigm in which users execute specific commands
via hand-gestures and voice. The touchless interaction style, combined in a multimodal
interface [Oviatt, 2003], allows the system to support multiple users interacting at the
same time: no single person blocks the screen or has absolute control of the system via
a mouse and keyboard interface. Conversely from Bolt, Krueger et al. [1985] developed
VIDEOPLACE, a VR environments that was not based on the mapping between physical
gestures and digital actions. They used, instead, direct free-hand gestures to manipulate
projected images: the user interacts with a virtual world using the same gestures they are
used to employ in the real world. After nearly a decade, Baudel and Beaudouin-Lafon
[1993] presented CHARADE, another touchless gesture-based system which (a) defines
active zones on the display surfaces to distinguish between gestures used to execute a
command from other gestures and recognizes dynamic gestures. The analysis of these
three systems reveals some of the main issues of early hand-gesture interaction, which
still have implications on the design of touchless interaction nowadays:

• The dichotomy between natural and artificial gestures. In Put-that-there and
CHARADE users are forced to learn a gesture or speech vocabulary defined a
priori and, for this reason, Baudel and Beaudouin-Lafon [1993] recommended that
“gestural commands should be simple, natural, and consistent”. By contrary, in

22 2. State of the Art

VIDEOPLACE’s gestures mimic real world actions.

• At that time, gloves or other physical sensing devices worn by the user and linked to
the computer were needed to send gestural input to the system. As Fukumoto et al.
[1992] foresaw, capturing gestures by using external cameras or optical sensors and
computer vision techniques would have overcome the problem.

• These kinds of systems are really sensitives to user’s hand motion. As a consequence,
they interpret every gesture whether or not it was directed to the system. Therefore,
while interacting with such systems, the user cannot communicate simultaneously
with other devices or people.

Gestures based interactions gained renewed interest during the last ten years in
the Natural User Interface (NUI) community and reach the maturity to establish as a
common input technique, especially when interacting with large screens [de la Barré
et al., 2009]. Remember the movie Minority Report4 and the touchless interface Tom
Cruise was working with for managing visual objects on a semitransparent curved screen
surface (see Figure 2.3). At the time you saw the movie, you probably considered this

Figure 2.3: Minority Report: envisioning a touch-free interface.

kind of interaction only belong to science fiction and that we would never have seen
it in the real world. Nevertheless, due to advances in technologies and HCI research,
many prototypes of Minority Report-style interfaces have been proposed, in the hope
that they will be affordable and widespread in the years to come. Several research

4http://www.imdb.com/title/tt0181689/

2.2. Touchless/Remote Interaction Technologies 23

efforts have been recently focused in enabling human-display motion-based interactions
(e.g., detection of natural body movement). Most of the emergent devices comes from
the entertainment industry, such as: Nintendo’s Wii Remote Controller (also known as
Wiimote) or Microsoft Kinect. Besides of providing a more intuitive game playing, not
only based on button pushing [Vaughan-Nichols, 2009], these devices also stimulate the
development of touchless interfaces that go beyond classical Windows, Icons, Menus and
Pointer (WIMP) interaction styles. The Nintendo Wiimote (Figure 2.4) is one of the

Figure 2.4: Nintendo Wii Remote Controller.

most popular remote input devices. It was also one of the most sophisticated when it first
appeared, providing a variety of multimodal I/O functionalities. The Wiimote is mostly
advertised for its motion-sensing capabilities: users can interact with a computer system
via gesture recognition or pointing by exploiting the built-in accelerometer and the InfraRed
(IR) camera tracker. The most interesting part of the controller is its IR camera, which
provides an image-processing engine that can track up to four moving objects and send
their coordinates to a host, giving users fast and high-precision tracking at a very low cost.
The Wiimote arrival was a first step towards the widespread availability of gesture-based
interfaces. It provides a cheap and effective solution to develop touchless applications at
home or in the laboratory without requiring much more than employing adequate APIs,
building small LED-based devices and basic programming skills [Bellucci et al., 2010].
Integrating the Wiimote with the surrounding environment is thus straightforward and can

24 2. State of the Art

promote the use of ubiquitous applications even when engineering and economic factors
are an issue. In fact, it is possible to develop a solution such as a low-cost multipoint
interactive whiteboard using the Wiimote with a relatively small budget, compared to
off-the-shelf solutions [Lee, 2008].

Figure 2.5: SixthSense technology developed at Fluid Interfaces Group, MIT Media Lab [Mistry
and Maes, 2009].

The use of hand gestures to interact with digital information displayed in the real
world (see Figure 2.5) has been demonstrated by the SixthSense hardware [Mistry and
Maes, 2009], a wearable gestural interface that is composed, at its core, by a pocket
projector, a mirror, and a camera. The projector turns tangible surfaces—such as walls
and physical objects—into screen displays by projecting visual information. A software
processes the camera’s data and tracks colored markers on the tips of the user’s fingers
using naive computer vision techniques. The G-speak spatial operating environment
(developed by Oblong Industries)5 is one example of a more sophisticated Minority
Report-like environment (Figure 2.6). It is a touch-independent interactive environment
that allows user to interact with projected screens and tabletop surfaces by using freehand
gestural inputs. Due to its precise accuracy in recognizing the gestural input it shows
the potentiality of using these techniques in a pervasive environment, where users are
surrounded by display surfaces of different kind.

5http://oblong.com

2.2. Touchless/Remote Interaction Technologies 25

Figure 2.6: G-Speak interactive environment from Oblong Industries.

The idea of body-as-sensor is the main feature of Microsoft Kinect. It was born as
a “controller-free gaming and entertainment experience” for the Xbox 360 video game
platform and now it has been converted into a leading technology to enable touchless
interfaces by letting users interact through full body movements. The device features a
Red Gree Blue (RGB) camera, a depth sensor, a multi-array microphone and a custom
processor running proprietary software to provide full-body 3D motion capture, facial
recognition, and voice recognition capabilities. Affordable RGBD cameras (a system made
of a normal RGB camera plus a depth sensor), with real-time synchronized color and dense
depth like the one provided by the Microsoft Kinect, are improving and fundamentally
change the way computers can perceive a real world scene. In fact, thanks to computer
vision algorithms, users do not need to wear special gloves or hold input devices in order
for the system to recognize their movements. These new hardware and software solutions
are therefore giving tremendous chances to implement interactive systems that are more
invisible and integrated with the environment, thus providing improvements in the road
to the materialization of a real ubiquitous interaction. Optical solutions for touch free
interaction existed long before PrimeSense6 developed the sensor behind the Kinect
success. The real advantages of the Kinect are:

• the development environment, which provide programmers with integrated tools to
make sense of the data retrieved from the camera (e.g., middlewares for gestures
recognition and tracking) and,

• the low price. In fact, if compared with early Time-of-Flight (ToF) cameras, which
is a different technique to generate distance matrix of the environment, the cost
of the Kinect is up to 10 times lower. While in general terms cameras based on

6http://www.primesense.org

26 2. State of the Art

ToF technique has a better cover range and speed (up to 60m and 100fps against
the 10m and 30fps of the Kinect), this level of precision is not needed for enabling
touchless interaction, which makes it possible to drop the price. The result has
been that, on the wake of the Kinect hardware, novel and affordable ToF cameras
has been produced with a specific orientation to human-computer interaction, such
as the PMD Camboard Nano7.

2.2.1 Implications for Interaction Design

Touchless input introduced in the HCI research the narrative of natural interaction as a
way to communicate with a computational system by adopting the same gestures humans
would use in real-life tasks. Some authors suggest that a natural design implies a direct
matching between "the behaviour of the system to the gesture humans might actually
do to enable that behaviour" [Saffer, 2008]. This same vision of natural interaction
also includes multi-touch, tangible and natural language input technologies. However
some major concerns has been raised with respect to the equivalence of ’natural’ and
’intuitive’: many researchers [O’Hara et al., 2012; Wigdor and Wixon, 2011] argue
that allowing people to use common gestures of everyday life not necessarily results
in an optimal interface design. For example, Norman [2010] critiqued the naturalness
of gestural interfaces in terms of their claimed intuitiveness, usability, learnability and
ergonomics, Wigdor and Wixon [2011] pointed out that naturalness is a design goal that
makes interaction an enjoyable, effortless and graceful experience and, just to cite a last
one, O’Hara et al. [2012] argued that current works focus on naturalness only in term of
interface but, in order to deeply understand opportunities and constraints we need to be
"less focused on the in situ and embodied aspects of interaction with such technologies".

On the other hand, the touchless input devices presented above demonstrated how
the technology has reached a sufficient level of maturity to allow the development of
ubiquitous environments that make use of remote interaction. With current technology
it is possible to develop prototypes for including touchless gestures in the interaction
with distant screen displays, thus allowing researchers to evaluate the use of such input
modalities in a collaborative context. It is crucial to understand the role of touchless
input in human activities and how the task might influence the choice of the input device.
There is no input technique that best suits for every task and, therefore, the issue is
to understand whether hand-free input can be a good solution for certain tasks, or the
use of a physical device can be a better option. Moreover, there can be cases where
there is no difference in employing or not a physical prop. For example, Freeman et al.
[2012] demonstrated that there are no significant changes in using free-hand, a stick
(low fidelity) or a paddle (high fidelity) controller in a tennis table video game. This
example highlights how there is a need for tools that allow rapid prototyping of touchless

7https://www.cayim.com/index

2.3. Multi-touch Interaction Technologies 27

interaction, making it possible to study several remote input devices even at early stages
of design to gain a better understanding of how we experience the world in new ways,
accordingly to the technology in use [O’Hara et al., 2012].

2.3 Multi-touch Interaction Technologies

The term multi-touch refers to a technology that allows users to interact with more than
one finger touch at time, taking into account finger movements as well as hand gestures.
Devices that are capable of detecting touch are often classified colloquially as either
touch or multi-touch, but there are distinctions that help to define the terminology of
touch-based interaction. Single-touch devices, such as traditional resistive touch screens,
are adequate for discrete input or for emulating a mouse [Potter et al., 1988]. Single-touch
means that the detection and control of touch events is made over a single contact point:
that is, single-touch systems respond to the movements of only one finger or stylus, like
for instance the first Portable Digital Assistants (PDA). In multi-touch, two or more touch
events can be detected at the same time and movements of contact points are tracked
individually. The number of contacts points they can handle is an important feature of
multi-touch devices. Two-touch systems are able to recognize and track two contact
points and they enable gesturing (e.g., two fingers pinch-to-zoom on the Apple iPhone).
Multiple contacts (more than two) are required for users to perform multi-touch gestures
such as multi-fingered grabbing [Moscovich and Hughes, 2006]. Still more contacts must
be tracked to enable multiple users to preform multi-touch gestures at once, as desired
for collaborative tabletop interfaces [Dietz and Leigh, 2001]. In general in a multi-touch
environment, the term gesture does not relate to the expressive gestures used in human
face-to-face communication but instead to familiar and conventional hand movements
used in some particular task (turning the hand with some fingers pressed on the surface
can be interpreted as a gesture for rotation). A description of a multi-touch gesture
includes attributes such as position, motion velocity and acceleration of each contact
point that the software will use to recognize the gesture and activate the associated
interface action: for example, the de facto standard, two fingers pinch-to-zoom gesture
or five fingers pinch (grab) to exit an application on the iPad.

Since our world is shaped by the presence of physical surfaces, the use of multi-touch
interactive screen displays has gained interest in ubiquitous interaction for a wide range
of everyday life settings. As Rekimoto and Matsushita [1997] pointed out—“It is difficult
to imagine offices, museums or homes without walls. Thus it should be worthwhile to
research how computer augmented walls will support our daily activities”. Walls are just
an example: a wide variety of horizontal surfaces like tables, desktops, floors and even
the surfaces that shape common objects coexist together with such large vertical areas.
The raising interests in digitally support human interactions with surfaces motivated
the need to augment their physical affordances with computational power. Since the

28 2. State of the Art

very beginning, the cost and technological complexity for designing and developing such
systems, where the physical meets the digital, have represented a barrier to the diffusion
of interactive surfaces. Nevertheless, recent hardware developments have caused the
widespread proliferation of interactive display technologies, together with novel human-
display interaction possibilities, such as multi-touch input. For example, we can think
about the famous demonstration at TED 8 by Jeff Han, who exploited the Frustrated Total
Internal Reflection (FTIR) optical phenomenon to build a low cost interactive tabletop
[Han, 2005]. This technology is based on the optical phenomenon of Total Internal
Reflection (TIR) . The light incident on the space of boundary (the interface) between
two materials, with different refractive indices, is transmitted to the second medium and
partially reflected back to the first medium. Total Internal Reflection takes place when
the angle of incidence of the ray of light exceeds a critical angle θ = arcsin(n1

n2
), with n2

the refractive index of the less optically dense medium, and n1 the refractive index of the
more optically dense medium . Han’s method uses this optical effect to trap infrared light
within a piece of acrylic. When the user’s finger comes into contact with the surface, the
light rays are said to be frustrated, since they can now pass through into the contact
material (skin): the reflection is no longer total at that point and the light is scattered
outside the acrylic (Figure 2.7).

Figure 2.7: FTIR configuration for multi-touch displays.

From the industry, the use of capacitive sensing screens resulted in the adoption
of touch-enabled displays for mobile devices like smartphones and tablets: well-known
examples are the iPhone and the iPad, which removed physical buttons in favor of a full
display interface operated with touch gestures. In order to integrate multi-touch and

8http://goo.gl/xlOCv

2.3. Multi-touch Interaction Technologies 29

tangible sensing in ubiquitous environments, the growth of hardware solutions has come
along with the development and use of software libraries that made easier to program
interaction. As happened for the hardware, Application Programming Interfaces (APIs)
are intended to lower the complexity of building touch-enabled interactive systems: they
aim at relieving developers from low-level implementation details, thus making it possible
to focus their creative efforts on interaction.

Research in (multi-)touch interaction is about 25 years old [Buxton, 2010]. In 1987,
Apple produced a video presenting the Knowledge Navigator9 concept prototype, as
described by Sculley [1987] in his book Odyssey. Knowledge Navigator was essentially a
device that can access a large networked database of hypertext information, and use soft-
ware agents to assist searching for information. The device had a tablet form factor with
a two-page book layout. The user interacted with the system via a multimodal interface,
by touching the display or simply by using natural language commands. Although this
vision represented an unrealistic depiction of the capacities of any software agent, even
in a distant future, Knowledge Navigator concept was the precursor of multitouch inter-
faces for portable devices, proposing a touch-based interface looking like the multitouch
interface later used on the Apple’s iPhone10. Augmented Surfaces [Rekimoto and Saitoh,
1999] was the first project to integrate touch input in an environment where users can
exchange digital information by employing laptop computers, tabletops, wall projected
displays and physical objects (Figure 2.8).

Figure 2.8: Augmented Surfaces [Rekimoto and Saitoh, 1999].

The system was designed following ubiquitous computing principles: users can
9http://youtu.be/QRH8eimU_20

10http://www.apple.com/iphone/

30 2. State of the Art

exchange digital information by employing laptop computers, tabletops, wall projected
displays and physical objects. Therefore, Augmented Surfaces aim at the integration of
mobile devices in a digitally augmented collaborative space, consisting of an interactive
table and wall, where participants use their laptop computer to interact. A video camera
mounted above the table recognizes the device by means of an attached visual marker:
as a result of the recognition, the table surface becomes an extended workplace for
each laptop computer. For example, Augmented Surfaces implements a technique called
hyperdragging that allows users to seamlessly drag an object across the boundaries of
the computer display. When the cursor moves on the table surface, a line is projected
to show a connection between the cursor and the laptop. Users can also move data
from the table to the wall surface using a laser pointer. Tagged physical objects are
exploited to create bindings between the real and the virtual world: for instance, users
can drag digital pictures to a physical booklet placed on the surface. In this way, the
booklet becomes a real storage for virtual images, which can be retrieved in subsequent
interactions. Developing for multi-touch interaction means to manage heterogeneous
devices, which differ in many hardware and software aspects. From a hardware point
of view, it is possible to consider touch-enabled devices according to their form factor.
By adopting the original taxonomy proposed by Weiser [1991], we can recognize that
modern smartphones are the materialization of tab-sized devices. They feature small
touch-screens that are both the place where the interface is visualized and also the
input device used to operate the system. These devices are personal and portable, can
interact with others devices and with the Cloud to allow users to store and retrieve
personal data. They also embed a wide range of sensors that can be used to sense the
physical environment, allowing reality-based interactions, location- and context-awareness.
Examples are iPhones, Blackberries, Windows Mobile devices and in general all type of
modern smartphones. Interaction techniques on mobile devices enable the user to move
the content up or down by a touch-drag motion of the finger. For example, zooming in and
out of web pages and photos is done by placing two fingers on the screen and spreading
them farther apart or bringing them closer together, a gesture known as pinching. Other
user-centered interactive effects include horizontally sliding sub-selection, the vertically
sliding keyboard and bookmarks menu, and widgets that turn around to allow settings to
be configured on the other side. "The next step up in size is the pad, something of a
cross between a sheet of paper and current laptop and palmtop computers”, as the same
Weiser [1991] reported. Pads are a cross between personal computers and smartphones:
they offer the same ubiquitous capabilities of a smartphone, but with a large touch screen
and a higher computational power. Examples are all kinds of tablets devices, like the iPad
or Microsoft Surface Tablet. The last form-factor is board : these devices feature medium
to large interactive display screens, they are fixed and several people mostly use them
in a shared space at the same time. An example of such devices is the DiamondTouch
[Dietz and Leigh, 2001], amongst a wide variety of interactive tabletop devices [Kunz
and Fjeld, 2010]. DiamondTouch (Figure 2.9) supports small group collaboration by

2.3. Multi-touch Interaction Technologies 31

Figure 2.9: DiamondTouch interactive tabletop.

providing a display interface that allows users to maintain eye contact while interacting
with the display simultaneously. It was first created in 2001 as an experimental multi-user
interface device. It employs front-projection and uses an array of antennas embedded in
the touch surface. Each antenna transmits a unique signal. Each user has a separate
receiver, connected to the user capacitively through the user’s chair. When a user touches
the surface, antennas near the touch point couple an extremely small amount of signal
through the user’s body and to the receiver. This unique touch technology supports
multiple touches by a single user (e.g., two handed touch gestures) and distinguishes
between simultaneous inputs from multiple users. Board devices often support input
from tangible objects, which can be recognized and tracked using electrical- (e.g., Radio
Frequency IDentification) or computer vision-based techniques (e.g., fiducial markers).
Examples are multi-touch horizontal surfaces such as the reacTable* [Jordà et al., 2007].

2.3.1 Implications for Interaction Design

In ubiquitous scenarios, multi-touch devices having different form factor coexist and
communicate: considering the ubiquitous meeting room scenario exposed in Section
1.1, an ecosystem is created by the presence of interactive shared video walls and
tabletops and personal tablets or smartphones. In such a context the challenges are
technical and conceptual. First of all it is compelling to define a common communication
protocol in order to achieve close integration of devices. From a conceptual point of

32 2. State of the Art

view, the research question is "how best to combine devices to achieve a desired type of
collaborative user experience" [Coughlan et al., 2012]. Multi-touch surfaces are integrated
with the environment and, therefore, the surrounding space can be sensed in order to
enable interactions above, behind and around the surface. Microsoft SideSight [Butler
et al., 2008] is an interesting project that aims at augmenting touching capabilities of
small devices with a proximity sensor. In this way, users can experience multi-touch
interactions pinching, sliding and tapping on a paper, tabletop or even the air that’s
next to the device. The idea of taking advantage of the appropriated surfaces when
interacting with small digital devices has been later developed by Harrison [2010]. He
envisioned that devices with small (or even without) digital displays, can be made easier
to use if we steal surface area from the environment. In his work he surveyed three
techniques and related prototypes developed at Carnagie Mellon University’s Human-
Computer Interaction Institute: scratch input [Harrison and Hudson, 2008], with devices
detect gesture by listening to acoustics changes a fingernail produces by passing on a
surface, minput, incorporating optical tracking sensors to capturing motions and device
gestures and, skinput, providing “touch-screen-like experience in the body” by means of
a pico-projector.

From a software perspective, protocols are needed to support the recognition of touch
input and combine touch points into complex gestures. Different devices run different
Operating Systems (OS), like iOS, Android and Windows Mobile. Each OS provides its
own protocols and methods to handle touch events: the only cross-platform alternative up
to date is the TUIO protocol [Kaltenbrunner et al., 2005], which has been developed to
provide an abstraction of underlying input events and therefore promote interoperability
between interactive display devices. The TUIO protocol was firstly designed within the
reacTIVision project for “encoding the state of tangible objects and multi-touch events
from an interactive table surface”, as the authors write in the project website 11.

2.4 Tangible Interactive Technologies

With Bricks, Fitzmaurice et al. [1995] introduced the concept of Graspable User Interfaces,
later formalized in Tangible User Interfaces (TUIs) by Ishii and Ullmer [1997]. The main
idea of TUI lays on physical objects of the real world used as input devices to interact
with a computational system. In particular, the Bricks system allows users to direct
control virtual objects through physical artifacts, which act as handles for control (Figure
2.10). The innovation is that, while these artifacts belong to the physical world and do
not really have digital properties, they can be strictly connected to virtual objects for
manipulation or for expressing action (e.g., to set parameters or to initiate a process)
and, therefore, they can be considered as new input devices. Moreover, the physical state

11http://reactivision.sourceforge.net

2.4. Tangible Interactive Technologies 33

Figure 2.10: Bricks. Source [Fitzmaurice et al., 1995].

of the tangibles can also be used to reflect the digital state of the system, making them
able to provide output feedbacks by means of a physical/digital coupling.

Figure 2.11: metaDESK. Source [Ullmer and
Ishii, 1997]. Figure 2.12: Designers’ Outpost.

MetaDESK [Ullmer and Ishii, 1997] and Designers’ Outpost [Klemmer et al., 2000]
represent two cardinal instances of the TUI concept. The metaDESK (Figure 2.11) is the
first prototype developed by the Tangible Media Group at MIT for exploring the design
space defined by coupling the physical with the digital world. It integrates multiple 2D
and 3D graphic displays with an assortment of physical objects and instruments, sensed by
an array of optical, mechanical, and electromagnetic field sensors. The system has been
developed with the objective of studying issues such as: (a) the physical embodiment of
graphical widgets such as icons, handles, and windows and, (b) the coupling of everyday
physical objects with the digital information that pertains to them. The Designers’
Outpost (Figure 2.12) was developed to support users during the design of multimedia
websites. Users can collaborative authoring the content and structure of the website

34 2. State of the Art

by interacting with a touch sensitive whiteboard (SMART technology12) using physical
elements such as Post-it notes and annotating information by means of electronic pens.
The collaborative space was augmented with a computer vision technique, employing a
rear-mounted video camera for capturing movement and a front-mounted high-resolution
camera for capturing ink.

Figure 2.13: Tangible interface of the AudioPad
system. Figure 2.14: reacTable* tangible objects and

topological interface.

Systems like AudioPad [Patten et al., 2002] and reacTable* [Kaltenbrunner and
Bencina, 2007] are two other examples of tangible interfaces on a multi-touch enabled
tabletop. In particular these two systems, which were developed as devices for musical
performances, share the same rationale: they use physical tokens having physical and
virtual affordances, to direct control digital objects and interact with a tabletop surface.
The main differences between the two approaches are in the kind of token they employ,
the tracking system and their interactive capabilities. AudioPad uses radio frequency tags
and calculate the tags resonance with specially shaped antennas so to obtain very stable
2D position data. reacTable* uses a computer vision approach, employing fiducial markers
physically attached to the tokens and an opensource tracking software (reacTIVision)
that recognize cartesian and rotational placement of the fiducials on the tabletop surface.
Each reacTable* object represents a modular synthesizer component with a dedicated
function for the generation, modification or control of sound. One of the most interesting
interactive features of the reacTable* is that the resulting sonic topologies are represented
on the table surface so to provide a permanent visual feedback. Auras around the physical
objects bring information about their behavior, their parameters values and configuration
states, while the lines that draw the connections between the objects, convey the real
waveforms of the sound flow being produced or modified at each node. Interactions with
tangible elements in a multitouch tabletop environment are not only limited to the music
world; the same reacTable, for example, has been used for the design and authoring of
Role Play Games (RPGs) adventures, using real objects mixed with virtual world. Jordà

12http://smarttech.com/

2.5. Libraries, Toolkits and Frameworks for Ubiquitous Interaction 35

et al. [2010], after having developed the reacTable* prototype, are now focusing their
research on tabletop and tangible interaction. They are studying how these type of
interfaces can favor multi-dimensional and continuous real-time interaction, exploration
and multi-user collaboration and also the potential of surface computing in areas such as
edutainment, children, elder people and special education. Mazalek et al. [2008] also
study the possibility of employ tangible tabletops interfaces for gaming. They developed
the TViews Table Role-Playing Game (TTRPG), a digital tabletop role-playing game
that runs on the TViews table [Mazalek et al., 2006] allowing to play Massive Multiplayer
Online RPGs (MMORPGs) by means of multi-touch inputs and managing tangible real
elements.

2.4.1 Implications for Interaction Design

As the development of tangible and physical interaction demonstrates, the focus has
moved over the years from the concept of using physical object as input devices to the
need of providing a physical embodiment of digital data and embeddedness in real spaces
and contexts. TUI are often used in combination with touch-enabled surfaces, creating
an environment where the boundaries between the physical and the digital are blurred.
This, again, is one of the objective of ubiquitous computing. Nevertheless, as in the
case with touchless interaction, it is still not clear how tangible interfaces improve the
user experience and what are the real benefits of tangible input/output in interaction.
As Hornecker [2012] pointed out—"Their naturalness and intuitiveness was one of the
‘selling points’ for TUIs when this interface approach was first introduced. But slowly we
are starting to realize how much effort is needed to fulfill this promise, and that a different
approach may be needed at times. This is because computer systems by their nature are
not like the real world, and because systems need to go beyond real-world behavior to
be powerful". She, therefore, suggests that researchers should ponder on the difficulties
and limitations of tangible interaction in ubiquitous settings. Inquiry the design space in
search of a solution imply to generate several prototypes of hybrid systems that can be
used to test and evaluate design ideas. This issue primarily motivates this research work,
especially in such context where design guidelines have not yet been established and there
is a real need to evaluate physical affordances when combined with digital information.

2.5 Libraries, Toolkits and Frameworks for Ubiquitous
Interaction

To build an ubiquitous interaction in technogically-enhanced space, novel frameworks
and toolkits are needed that support the design and development process [Greenberg,
2007; Marquardt et al., 2011]. By enabling developers and researchers to quickly create

36 2. State of the Art

touchless, multi-touch and tangible applications, these tools allow to explore the design
space for ubiquitous interaction in order to discover, define and refine design issues and
opportunities. Such tools should expose UI functionalities via a well-defined API that
would be able to separate basic mechanisms from application specific functionalities.

The state of the art of libraries, toolkits and frameworks is reviewed in this Section
according to the interaction techniques that characterize ubiquitous scenarios: touchless,
multi-touch, tangible interaction and physical computing. Related surveys on the state
of the art of software support to ubiquitous input can be found in the works of:

• Endres et al. [2005], for a survey of 29 software infrastructures and frameworks
for the development of UbiComp applications, with a special focus on augmented
reality, intelligent environment and distributed mobile systems.

• Figueroa et al. [2005], for a survey of 16 toolkits for virtual reality.

• NUI [2009], the NUI community book on multi-touch hardware and software
technologies.

• Klemmer and Landay [2009], where they characterized requirements for physical
input by selecting 24 applications and "categorizing them by four traits: input
technology, input form factor, output form factor, and how tangible input and
electronic output are coordinated".

Before presenting the critical revision of existing technologies, it is essential to highlight
characteristics and differences between the concepts of library, toolkit and framework. In
the literature they are often used as synonyms, while each one presents a precise shade
of meaning.

2.5.1 Library, Toolkit and Framework

In terms of Object-Oriented software reuse, a library is a set of implemented independent
functions, which can be called by any software application that is using the library.
An example is the java.lang.Math library in the Java OO language: Math is a class
that includes several methods for mathematical operations. Therefore, a library is a
collection of functionalities, which can be organized into an API, that developers can
call in their applications. A framework not only provides functionalities but also define
a conceptual and software architecture. Although there is no accepted definition for a
software framework, in this work the following from Johnson [1997] will be used: "a
framework is a reusable design of all or part of a system that is represented by a set of
abstract classes and the way their instances interact". The purpose of a framework is to
ease the development of applications and improving the quality, reliability and robustness

2.5. Libraries, Toolkits and Frameworks for Ubiquitous Interaction 37

of new software. The only substantial difference between a software library and a software
framework is the concept of inversion of control. When a developer is using a library he
makes calls to library code and he is in control of the instantiation and invocation of the
methods implemented by the library. Therefore the developer needs to know the objects
to instantiate and the methods to call to achieve his goal. In a framework the control is
inverted: the flow of control for the application is defined by the framework, and there
is just a group of predefined white spots that the developer can fill out with his code.
The developer implements the objects and methods that are custom to the application
and that are instantiated and invoked by the framework. A common way to customize
framework behavior is to override framework-implemented features. There is neither a
unique definition for the term toolkit. The word kit suggests modularity and therefore a
toolkit is composed by a set of independent libraries. Nevertheless, while these libraries
are independent, they are also integrated within the toolkit. This guarantees that the
libraries will work well together. In general, the scope of a framework and a toolkit is
of a higher level with respect to a library. The software implementation represents the
practical manifestation of design ideas expressed by the model of framework or toolkit
via its API language. The conceptual level of a framework offers a medium to consider
design under a specific point of view and its language influences and shape the way
designers approach to a particular problem, opening up to new perspectives and thus
promoting creative thinking [Greenberg, 2007]. It is foreseeable that different applications
can be developed using frameworks that offer different architectures to address the same
problem [Wu et al., 2012].

Having defined the boundaries for the definitions of library, toolkit and framework, the
software support for ubiquitous interaction according to the three interaction technologies
described in the previous Section 2.2, 2.3 and 2.4 is discussed right after.

2.5.2 Touchless/Remote Interaction

Touchless/Remote interaction with screen displays requires a sensor-based and multimodal
approach. At present time, there are no accepted standards, paradigms or design principles
for remote interaction with large, pervasive displays. Nevertheless, the interest of both
industry and academia in the emergent use of such interfaces is clearly encouraging the
growth of communities of human-display interaction researchers [Bellucci et al., 2010].
Table 2.1 lists emerging software support to remote interaction with screen displays.

Microsoft Touchless. Microsoft Touchless13 is an open source Office Labs Grassroots
library prototype that can create a tochless environment. The Touchless Software
Development Kit (SDK) lets developers create touchless-based applications using a

13http://touchless.codeplex.com/

38 2. State of the Art

Hardware Name Languages Features Type
Webcams Microsoft

Touchless
C# Objects tracking using color markers Library

Wiimote,
Kinect

GlovePIE Scripting Supports basic interactions with Nin-
tendo’s Wii Remote and Kinect

Library

OpenNI com-
pliant hardware
(e.g., Kinect and
Wavi Xtion)

OpenNI C++,
Java

Raw data from RGBD cameras
Full body interaction with skeletal
and hand recognition and tracking

Framework

Kinect Kinect SDK C++,
C#

Raw data from RGBD cameras
Full body interaction with skeletal
recognition and tracking

Library

Table 2.1: Examples of development kit and libraries for toucheless interaction.

webcam and visual tracking fiducial markers. This SDK is free and open-source so that
everyone can contribute or adapt it to his own needs. The development environment
lets the user configure different markers to be tracked by recognizing the unique color
assigned to them. It has been coded in the C++ language and it comes with some demo
applications, which helps the developer to understand the logic of the library. The main
disadvantage of this library is that it only works with color-coded markers: the usage of
the library is therefore limited with respect to real applications, but it is still valid for
exploratory purposes, as demonstrated by the prototypes developed by the programmer
community14.

GlovePie. GlovePie15 stands for Glove Programmable Input Emulator. It was developed
to emulate classical computer input hardware. Although it was originally intended for
virtual reality data gloves, the library now supports a wide range of input hardware for
touch less interaction, including the Wiimote controller and the Kinect. The library
features a specific scripting language and a development environment. The environment
provides a window where the developer can directly write the code and execute it.
Using the scripting language is easy even for non-technical users and therefore is quite
straightforward to use a wide range of input devices supported by GlovePIE to interact
with different desktop applications. The library also offers a collection of existing scripts,
that can be used as starting point to develop more complex interactions. The main
limitation of this library is that it can only offers support to the emulation of input devices
of the desktop computing paradigm, such as mouse and keyboard. Therefore it does not

14http://touchless.codeplex.com/wikipage?title=Community&referringTitle=Home
15http://glovepie.org

2.5. Libraries, Toolkits and Frameworks for Ubiquitous Interaction 39

really support the prototyping of ubiquitous interaction systems because it allows only to
create hybrid systems that translate touchless input into GUI behaviors.

OpenNI. OpenNI16 is an open-source software framework that provides an API for
developing natural interaction applications using RGBD cameras and audio capture hard-
ware (a microphone array). It has been developed by a non-profit industrial organization
leaded by PrimeSense17: the company that produced the core sensor of the Microsoft
Kinect technology. The same sensor is also featured by the Asus Wavi Xtion 18 platform
for natural interaction. It supports C++, C# and Java programming languages and Linux
or Windows Operating Systems. The software architecture (Figure 2.15) is conceptually
arranged around two main API modules that allow communications with: (a) low-level
hardware devices such as RGB camera, IR camera, 3D camera and audio sensors and (b)
high-level middlewares for video and audio processing.

Figure 2.15: OpenNI software architecture.

Therefore, the API provided by OpenNI works at two different levels: at the hardware
level it has to be implemented by sensor devices, while, at a processing software level, it has
to be implemented by middleware components that supplies high level functionalities for
data management. This architecture grants OpenNI portability: sensors and middleware
are independent and, therefore, the same middleware software can work on different
platforms and receive data with different devices’ implementations with no additional

16http://openni.org
17http://www.primesense.com
18http://event.asus.com/wavi/product/WAVI_Xtion.aspx

40 2. State of the Art

coding effort. Algorithms can be written independently of the data source, thanks to the
hardware abstraction architecture. Of course, the hardware has to be compliant with the
OpenNI specifications. There are two main drawbacks with the framework:

• It supports only a specific class of input devices.

• It can be used only by experienced programmers. Although the API are well
documented and there are several examples available on the OpenNI website, the
technical expertise required to use the framework is high. For example, the API
does not provide an abstraction in terms of data types and if a developer wants to
use depth data he has to know how to manage depth map representations in form
of bit arrays.

Microsoft Kinect SDK. The Microsoft Kinect SDK19 is a software library that provides
support to the development of touchless systems exploiting the RGBD camera and the
microphone array of the Kinect device. The purpose of this library is the same as the
OpenNI framework, but being a library it does not provide any software architecture or
rationale and, moreover, it is only limited to the Kinect sensor. It works in Windows 7
under the .NET environment and supports the C++, VB and C# languages. The library
gives access raw data streams generated by the depth camera, the RGB camera, and the
microphone array. Like the OpenNI middleware specification, it also offers the capability
to track the skeleton 3D model of one or two people within the Kinect’s depth sensor
range of detection. Unlike OpenNI, it does not support hand recognition algorithms and
therefore it is possible to track only the entire body and recognize body movements but
not hand gestures. Lastly, the library provides advanced audio processing features such as
acoustic noise suppression and echo cancellation, beam formation to identify the current
sound source and the integration with the Windows speech recognition API. The main
limitation of Kinect SDK are:

• It supports only one input device: the Microsoft Kinect.

• It does not offer capabilities for hand gestures recognition.

• Like OpenNI, its use requires a high programming expertise. In any case it has to
be said that the toolkit offers an extensive support to the developer, with a wide
range of reusable components, libraries, tools, and code samples.

2.5.3 Multi-Touch Interaction

A first attempt to the classification of tools for multi-touch development has been
made by Kammer et al. [2010]. The main contribution of their work was to present

19http://www.microsoft.com/en-us/kinectforwindows

2.5. Libraries, Toolkits and Frameworks for Ubiquitous Interaction 41

several criteria to create a taxonomy and evaluate current software support. A review
of multi-touch technologies is presented here following the rationale of Kammer et al.
[2010] research and focusing on the hardware solution supported, the implementation
of the API provided with the SDK (programming languages), the support to tangible
objects and implementation of the Tangible User Interfaces Objects (TUIO) protocol.
The TUIO protocol, as Kaltenbrunner et al. [2005] stated, "is an attempt to provide
a general and versatile communication interface between tangible tabletop controller
interfaces and underlying application layers. It was designed to meet the needs of tabletop
interactive multi-touch surfaces, where the user is able to manipulate a set of objects and
draw gestures onto the table surface with the finger tips". Since its publication for the
public domain, many research communities (like for example the NUI group community20)
started adopting the protocol in the development of different tangible and touch-based
projects. Support to TUIO is important for it is the first attempt to develop a standard
protocol for communicating the position, size, and relative velocity of blobs.

Name Languages Features TUI/TUIO Type
TouchLib C++ Blob detection and tracking.

Fiducial markers recognition.
It only runs on Windows.

YES/YES Library

Community Core
Vision (CCV)

C++ Blob detection and tracking.
Fiducial markers recognition.
It runs on Windows, OSX and
Linux.

YES/ YES Library

libavg C++, with bind-
ings for Python

XML-based layout language. NO/ YES Library

MT4J Java (Processing) Abstraction layer.
Predefined gestures.

NO/YES Framework

Multi-Touch
Vista

C# Input management layer. NO/YES Library

Table 2.2: Examples of development kit and libraries for multi-touch interaction.

Touchlib. Touchlib21 is a C++ software library for developing multi-touch application on
Frustrated Total Internal Reflection (FTIR), Diffuse Illuminaton (DI) and Diffuse Surface
Illumination (DSI) horizontal surfaces. For a detailed description of these techniques,
which is outside the scope of this work, please refer to the [Schöning et al., 2008].

20http://nuigroup.com
21http://nuigroup.com/touchlib/

42 2. State of the Art

Touchlib also supports tangible interaction, by providing basic features for recognizing
and tracking physical objects identified by fiducial markers. It essentially captures images
from various video sources and processes raw video data by employing some well-known
libraries like OpenCV22 to perform luminescent objects (blobs) detection and tracking.
It also supports the TUIO protocol used by the reacTIVision library. In this way, it can
interface with several other toolkits and programming environments that support this
protocol such as Adobe Flash23, vvvv24 and Processing25. Touchlib can only run on
Windows operating system, but an opensource cross-platform version of the library exists,
called Community Core Vision (CCV)26. CCV is based on OpenFrameworks27, a software
development library which provides platform independent functionality for multi-media
development in C++ including support for image capture from video cameras. CCV
provides a C++ interface which can be implemented by a class to handle multi-touch
input events. It is compatible with the Windows, Mac OS X and Linux platforms but it
uses three separate and redundant sets of source code. CCV is one of the most complete
and versatile software environments for developing multi-touch interaction; since its last
versions it also support tangible interaction via fiducial markers. Nevertheless, it requires
high programming skills to be efficiently used and it is difficult to customize. The same
occurs with openFrameworks, an open source C++ toolkit for creative coding. It was
designed as a general-purpose environment to assist creativity in interacting with digital
media. As part of its libraries it also offers support to multi-touch surfaces and tangible
interfaces.

libavg. libavg28 is a versatile library for input, processing, and output of audio, video,
and image data. It includes support for image capture from video cameras via multiple
interfaces for different hardware subsystems. Furthermore, it comes with a large set
of image filters including some with GPU support, and contains blob detection and
tracking functions. libavg also includes support for scripting using Python. Since it is a
library for software development, libavg does not provide ready-to-use functionality for
multi-touch systems but only functions to build such systems. A user can use the provided
functionality for image capture, image processing and graphical output to develop a
multi-touch input system. He needs skills in a programming language or the Python
scripting language to solve this task.

22http://opencv.willowgarage.com/wiki/
23http://www.adobe.com/products/flashruntimes.html
24http://vvvv.org
25http://www.processing.org/
26http://ccv.nuigroup.com/
27http://www.openframeworks.cc
28https://www.libavg.de/

2.5. Libraries, Toolkits and Frameworks for Ubiquitous Interaction 43

MultiTouch for Java. MultiTouch for Java (MT4j)29 [Laufs et al., 2010] is an open
source Java framework, which aims at support different input devices, focusing on enabling
multi-touch sensing. It supports the TUIO protocol and therefore it can be used for
the detection and tracking of tangibles as well. By relying on Java’s virtual machine it
features an abstraction layer that allows the development of cross-platform applications.

Figure 2.16: MT4j reference architecture.

MT4j defines a reference architecture, shown in Figure 2.16, that is based on the idea
of hardware abstraction. On the Input Hardware layer, custom drivers for different input
devices can be implemented: this feature allows to support, for instance, Windows 7 touch
features natively and all the compliant multi-touch hardware and Apple’s multi-touch
mice and trackpads. The Input Hardware Abstraction layer, then, converts the different
raw input data into unified input events. In this way it unifies heterogenous input and
make it ready to be managed by the Input Processing layer. At this stage, gestures
listeners are defined that capture the input event and accordingly modify the behavior of
target UI components. One peculiar characteristic is the introduction of global gestures:
gestures that are congruent throughout the application and may take precedence over
component based gestures. Hardware abstraction is a crucial factor to take into account
to develop interactive device ecologies. With hardware abstraction, in fact, it is possible

29www.mt4j.org

44 2. State of the Art

to design the behavior of the user interface independently of the underlying device that
generate the input event.

Multi-Touch Vista. Multi-Touch Vista30 is a .NET input management layer that
operates on pre-processed multi-touch input data such as 2D coordinates of a finger
contact. It provides an abstraction layer for multiple input data sources and transmits
the input data to an application using .NET specific communication mechanisms. It also
includes input interpretation logic and and a set of user interface controls for use with
Windows Presentation Foundation (WPF), a Windows graphical subsystem for rendering
user interfaces, and a driver to provide input to Windows 7. Multi-Touch Vista installs
its core module as a Windows service which can be configured through a configuration
interface by a dedicated application. The library is well designed and flexible. It makes
use of multiple technologies (WPF, contracts, unmanaged code, native Windows API,
Windows services, etc.), design patterns (e.g., dependency injection), and consists of
several separate modules which are barely documented. Thus for programmers with few
experience it is hard to understand the internals of the framework. However, it is very
easy to use as an application programmer because (a) it integrates into Microsoft Visual
Studio, (b) it can be configured using XAML31, a declarative markup language that is
used for initializing structured values and objects, and (c) it can be controlled using few
lines of source code. The main limitation is that the library does not provide a logic to
implement multitouch system but it only allows the management of multi-touch input
from different sources.

2.5.4 Tangible Interaction

In the last years also a number of toolkits and frameworks (see Table 2.3) to ease the
prototype of tangible interaction has been developed. These projects, basically, aim at
increasing the capabilities of multi-touch systems by supporting interactions with tangible
objects.

Papier-Mâché. The Papier-Mâché32 [Klemmer et al., 2004] toolkit supports interaction
with physical objects (Phobs) using both barcodes and RFID tags. In Figure 2.17 the
GUI of the monitoring application is showing. Papier-Mâché has been the first toolkit to
integrate both vision- and the electrical-based approaches in the recognition and tracking
of objects. Although it has been principally thought for the interaction with objects, it also
allows to capture image streams from videocameras. The main objective of the toolkit is

30http://multitouchvista.codeplex.com/
31http://msdn.microsoft.com/en-us/library/ms752059.aspx
32http://hci.stanford.edu/research/papier-mache/

2.5. Libraries, Toolkits and Frameworks for Ubiquitous Interaction 45

Name Languages Features TUIO Type
Papier-Mâché Java Optical- and electrical-based

recognition.
NO Toolkit

reacTIVision C++ Tangible and multi-touch
interaction.

YES Framework

libTISH C++ with bindings for
C#, Java, Python

Cross-platform.
Cross-device.

YES Framework

Table 2.3: Examples of toolkits and frameworks for tangible interaction.

to abstract underlying physical hardware so to shield developer from having to deal with
low-level implementations details of cameras or RFID readers. In fact, Papier-Mâché
implements a high-level and robust abstraction mechanism that allows to acquire input
from different Phobs sources and mapping the data into digital behavior via associations.
A Classifier takes charge of the possible associations, which can be Nouns representing
content or Actions. The vision-based object recognition is implemented using standard
computer vision techniques, such as background subtraction and edge detection. This
same techniques are the building blocks of vision-based multi-touch systems. Therefore,
with very few modifications, Papier-Mâché can also be used to prototype systems that
are operated via multi-touch input.

Figure 2.17: The Papier Mache monitoring interface. Source [Klemmer et al., 2004].

reacTIVision. reacTIVision33 [Kaltenbrunner and Bencina, 2007] is one of the most
influential technology that boosted the research and the widespread use of tangible

33http://reactivision.sourceforge.net/

46 2. State of the Art

systems. It is a computer-vision opensource framework (see Figure ?? for an operational
diagram) the for the development of multi-touch and tangible enabled interactive tabletop,
based on the Diffuse Illumination hardware approach. It was designed and developed
within the reacTable* project [Jordà et al., 2007], a tangible and multi-touch round
tabletop for musical performances. For being developed especially for this project, the
library supports DI solutions and can be partially employed on FTIR platform (in this case
only touch input are recognized). reacTIVision is a combination of different elements: its
main component is a software library that allows quick and reliable tracking of fiducial
markers, by processing the raw data received from a video stream. The library employs
a specialized computer-vision algorithm for topological markers, firstly introduced by
Costanza and Robinson [2003] for the d-touch system Costanza et al. [2003]. Basing on
the evaluation of d-touch fiducials, Bencina and Kaltenbrunner [2005] implemented an
upgraded version of the fiducial recognizer to be used in the reacTIVision library. Their
implementation allowed the scalable use of markers in the reacTable* system, which
sizes may vary depending on the number of tangibles required. Together with the main
detection and tracking component, the toolkit also provides additional tools like the
TUIOSimulator, which allows tabletop applications to be tested on a normal desktop
computer during development. reacTIVision is also the first implementation of the TUIO
protocol.

Figure 2.18: reacTIVision framework diagram.

libTISCH The libTISCH34 framework [Echtler and Klinker, 2008] supports multiple
types of input devices and includes input interpretation and presentation. Figure 2.19
shows the architectural layers, which scheme has been adopted in the framework proposed
in this dissertation. libTISCH has a strict separation of layers that are implemented
as separate processes connected by sockets using proprietary, compact, and text-based
communication protocols. An application can connect to one or in between two layers
and process input data by parsing or generating commands using the communication

34http://tisch.sourceforge.net/

2.5. Libraries, Toolkits and Frameworks for Ubiquitous Interaction 47

protocols of libTISCH. The hardware abstraction layer manages and unifies hardware and
includes image processing, blob recognition, and tracking. It outputs 2D coordinate data
to the transformation layer which applies surface calibration transformations to the data.
The interpretation layer detects gestures on the transformed data and signals them to
the widget layer. The latter one is designated for integration in a user application and
comes with two example widgets which use OpenGL for presentation.

Figure 2.19: The libTISCH architecture.

2.5.5 Physical Computing

As claimed by Gill et al. [2008a], a prototyping toolkits (see Table 2.4) for embedded
systems should allow designer to produce a low fidelity prototype within one and two

48 2. State of the Art

hours to be accepted by the industry. Therefore, such hardware/software technologies
should lower the technological barrier and require low, if none, electronics or programming
knowledge on the part of the designer. They should strive for simplicity and ease of use
and implement well-know hardware/software design patterns [Greenberg, 2007].

Name Languages Features Type
Phidgets Several, including

C/C++, C#, Cocoa,
Delphi, Flash AS3, Flex
AS3, Java, LabVIEW,
MATLAB

Abstraction of electronic knowledge. Hardware Toolkit

d.tools Adobe Flash Comprehensive environment. Hardware/Software
Toolkit

Arduino Wiring Flexible and easy-to-use hardware
and software.

Hardware/Software
Toolkit

Table 2.4: Examples of toolkits for physical computing.

Phidgets. Phidgets35 [Greenberg and Fitchett, 2001], short for physical widgets, is
an electronic prototyping platform that has been developed to ease the integration of
hardware and software components during the prototyping process. It has beed expressly
designed for software developers, thus its target user need to have programming expertise.
The toolkit physically implements an extensive range of input devices, like buttons, sliders,
dials and also sensors such as touch, force and proximity (see Figure 2.20). Phidgets
also makes available physical and digital output devices servo motors, relays and small
LCD display screen. Each I/O device is mounted on a Printed Circuit Board (PCB) and
attached to a a central micro controller board which in turn connects to a computer
via USB. Phidgets most notable characteristic is the wide variety of sensors that are
supported by the platform and the abstraction of electronic knowledge needed to connect
components. It also provide interfaces for the most common programming languages and
environments such as C/C++, C#, Cocoa, Delphi, Flash AS3, Flex AS3, Java, LabVIEW,
MATLAB, Max/MSP, MRS, Python, REALBasic, Visual Basic.NET, Visual Basic 6.0,
Visual Basic for Applications, Visual Basic Script, and Visual C/C++/Borland.NET. One
of its main drawbacks is in the physical dimension of the hardware: each component is
quite large and this makes challenging for designers to use the components in prototypes
for small portable devices.

35http://www.phidgets.com/

2.5. Libraries, Toolkits and Frameworks for Ubiquitous Interaction 49

Figure 2.20: Phidgets’ physical components.

d.tools. d.tools36 [Hartmann et al., 2005] is one of the most complete toolkits for
physical computing. It does not only provide users with a set of physical component
they can use with almost no electronics knowledge, but it has been developed to cover
the entire development process, from the creation to testing to analysis of the physical
interactive prototype. To this end, together with a wide range of both analogue and
digital I/O devices, it includes a dedicated software tool that allows user to author UI
software simulations.

Figure 2.21: d.tools authoring environment (left) and hardware components (right).

This tool uses a state transition diagram metaphor approach, similar to DENIM [Lin
et al., 2000]. The software tool also supports analysis by capturing and logging the input
on the physical device and its correspondence with the UI. The physical devices provided
by the tool are compact, if compared with the other toolkits like Phidgets or Switcheroo.
This make it possible to prototype to the desired scale, which as be pointed out by Gill
et al. [2008b] to be an important aspect to consider in order to get useful insights from
prototyping. d.tools suffers from two major drawbacks. First of all, studies conducted by

36http://hci.stanford.edu/research/dtools/

50 2. State of the Art

the authors demonstrated that designers did not feel comfortable with the interface of
the software authoring tool. In second stance, in order to embed the components and
wires, the prototype need to be hollowed, as it happens for Phidgets.

Arduino. To help designers and HCI researches to rapidly give life to physical-digital
interaction prototypes, several projects have been created, following the End-User De-
velopment (EUD) and Do-It-Yourself (DIY) philosophy. Arduino37 [Mellis et al., 2007]
is a clear example: an open-source electronics prototyping platform based on flexible,
easy-to-use hardware and software. It is particularly intended for "artists, designers,
hobbyists and anyone interested in building interactive objects or environments" 38. The
toolkit consists of two main elements: an hardware microcontroller board (see Figure
2.22) and a software Integrated Development Environment (IDE).

Figure 2.22: Arduino Uno board.

The programming language for Arduino is Wiring39, especially designed to facilitate
the creation of sophisticated physical interactive artifacts. Wiring is built on the top of
Processing40, an open source programming language and environment for people who
want to create images, animations, and interactions. Today many users exploit Processing
for designing, prototyping, and production. Giving the fact that the Arduino platform is
open-source, different design for the microcontroller has been developed, each of them
addressing different needs (e.g., physical dimensions or computational power). The micro
controller can be connected to a wide range of I/O devices and sensors, receive raw data
from them and process such data according to a programmed software. Thanks to its
high flexibility and also the support of an active community of programmers, the Arduino
platform is very powerful. Nevertheless, it requires knowledge of electronics and also

37http://www.arduino.cc
38http://arduino.cc
39http://wiring.cc
40http://processing.cc

2.6. Rapid Prototyping 51

programming skills to be used. Integration of sensors into a prototype via the Arduino
platform, in fact, requires to build the electronic circuit in a PCB, which connects the
sensors with the Arduino micro controller, and also to program the software executed on
the microcontroller in order to make sense of the data received by the sensors.

2.6 Rapid Prototyping

Prototyping is an extremely important activity for effective design. Prototyping is about
rapidly creating an approximation of a design idea so that a designer can promptly get
feedbacks about his work. For this reason, prototyping is a central activity that foster
creativity and innovation in design. It allows designers to validate ideas and also to explore
a design space, thus promoting serendipity. Through a reflective activity of exploration,
by trying things out and learning, one can be able to test and refine hypothesis and also
gain useful insights that otherwise it would impossible to have. Human beings are not
good at estimating all possible outcomes, especially in the case of very complex systems.
We tend to consider only very few options that are the most likely to occur and most of
the time this prediction is biased by our particular background. In design, as well as in
other domains, the interaction of all the different variables in play makes it really difficult
to predict a result and, consequently, our intuiting on the behavior of a system, or of a
user interaction with a system, is often wrong. "Prototyping is a strategy for efficiently
dealing with things that are hard to predict" [Klemmer, 2012]. Such things can be of
two types:

1. Things that you know a priori. In this case the pro type is built specially to reflect
and to shed a light on them.

2. Things that designers don’t know or consider before and that, actually, come out
when interacting with the prototype.

Prototyping allows designers to think in term of goals and arguing on what they what
to achieve with a design idea. As [Buxton, 2007] pointed out, a prototype supports the
exploration of the design space throughout the whole design process and helps designers
to effectively reflect on the different goals at every stage of the process. Such goals and
needs change according to the stage of the process. For example, at the very early phases,
designer can be more interested in exploring a wide range of possibilities (e.g., will the
product be a desktop service or a mobile service?). When approaching the final product
at the end of the design process, they want to narrow down and take into account small
variation (e.g., small changes in the layout of the UI). That being said, according to
Klemmer [2012], it is possible to define three main characteristics of a prototype in the
design process:

52 2. State of the Art

• it should not require to be complete,

• it should be easy to modify or change,

• it can be cast aside when no necessary.

A prototype should be generated only to give insights on those aspects we are
interested in. For example, if we want to design the user interface for the tactile screen
of a digital camera, the prototype does not need to implement all the functionalities of a
camera like taking pictures, which requires the presence of photographic elements like
lenses and shutters. It should be easy to change because, as said, a prototype is just an
artifact that is used as a command ground to discuss idea with different stakeholders.
Therefore, as it directly renders design ideas, it is important that it is easy to change or
modify with little effort. During the different stages of the design process designers may
be interested in achieving different goals, thus a prototype made at early stages could not
suit their needs. This is also one of the considerations that should influence the time and
effort to build the prototype, depending on the stage of the design process. For example,
at the beginning you can be interested in maximizing the amount of learning (insights
that you may get) and minimizing the time.

Prototypes are not only used to give insights on system functionalities. In general,
according to Houde and Hill [1997], they can express:

• The appearance (look and feel), or how does the product look like?

• The functionalities (implementation), or how does the product work like?

• The experience (role), or what is the user experience interacting with the product?

2.6.1 The Role of Prototyping in HCI

It is important to remember that the output of prototyping activities is not the artifact
itself, but the feedbacks that can be obtained from the whole process. The designer
builds a prototype to explore an idea, he learns something both building and trying the
prototype and, then, he uses what he had learned in the next design. During the years,
the role of prototyping has evolved, in the field of HCI, from a tool for the evaluation of
a design idea [Jones et al., 2007] to a process that enables designer to reflect on and
communicate their experiences during the exploration of a design space [Lim et al., 2008].
This aspect has been also supported by Buxton [2007], who promotes the concept of
sketching, along with prototyping, as fundamental activities that drives innovation. It
appears clear, therefore, that prototypes are not only viewed as a valid test-bed that can
be used to identify and validate requirements, but most of all as design-thinking enablers
that allow to discover, define and refine possibilities in a design space. Several different

2.6. Rapid Prototyping 53

prototyping techniques have been proposed by HCI researchers and practitioners. One of
the first aspects of prototyping that has been taken into account regards fidelity, because
it is strictly related to cost, both in term of time and resources. The benefit of using
low-cost fidelity techniques has been reported by many studies. Low-fidelity prototypes are
generally limited function, limited interaction prototyping efforts. They are constructed
to depict concepts, design alternatives, and screen layouts, rather than to model the user
interaction with a system. In this category falls techniques like: paper-based prototypes
for desktop applications, mobile devices and web sites [Snyder, 2003], rapid prototyping
for ubiquitous interaction using augmented reality [MacIntyre et al., 2004; Nam and
Lee, 2003] and also prototyping for physical interaction [Lee et al., 2004]. Although it
has been demonstrated that in many cases a low-fidelity prototype can provide as much
insights as a high-level one [Gill et al., 2008b], a low-fidelity approach is not always the
best choice, for example in case of in situ tests. That is because the prototype lacks of
functionalities or is not similar to the final product [Reichl et al., 2007].
Sketching [Buxton, 2007] is a widely used technique in the design of interactive products.
Sketches are particularly useful as a mean to visually externalize design ideas or concepts
in the early stages of the design process. Through sketches, for example, it is possible
to create storyboards of the interaction between the user and a product. In this way,
designers can focus on the tasks the user interface is going to support. Due to the low
investment they are an extremely powerful tool to explore possible options at the start
and this is directly related to the timeliness, cost and disposability of a sketch. Physical
prototypes are less disposable and it takes longer to produce them. Therefore, at the early
stage of the design, when there are many different concepts and ideas to explore and,
in particular, users tasks and interactions are still uncertain, paper-based sketches are
mostly used. Sketch-based prototyping is a popular research area in Interaction Design as
demonstrated by the amount of tools to digitally support sketching activities that have
been developed over the year. Examples of such tools are SILK [Landay, 1996], DENIM
[Lin et al., 2000] and DEMAIS [Bailey et al., 2001].
Participatory design is another popular technique in design, in which the user is an active
participant in the design process [Greenbaum and Kyng, 1991; Muller and Kuhn, 1993].
The user is not a professional designer and, thus, prototypes are used to help him in
creating and exploring ideas. Examples of prototyping techniques for participatory design
are CARD [Muller, 2001] and game-based design [Brandt and Messeter, 2004].

2.6.2 Rapid Prototyping for Ubiquitous Interaction

In ubiquitous systems, the constraints of the classical desktop environment are relaxed
and new variables like mobility and physicality are introduced. In Ubiquitous Interaction
users are not longer forced to operate the computing system at a desktop but they are free
to move in the environment because the terminal evolved into portable, always connected
and aware of the context devices (mobility). Physicality of interactive devices also

54 2. State of the Art

becomes an important aspect to consider, not only for it defines their physical properties
but also because physical affordances influence the way people interact with and rely
on those properties. Whereas the Graphical User Interface (GUI) is operated via mouse
and keyboard, the Natural User Interface (NUI) makes use of heterogeneous I/O devices
(motion sensors, cameras, touch surfaces, etc.) and interaction techniques (touchless,
multi-touch, and tangible). In traditional desktop systems, we are accustomed to interact
in an environment that inhibits our capabilities. Ubiquitous systems allow more expressive
power (by reducing constraints in interaction) and therefore they are expected to provide
users with better tools to think, create and communicate. However the design and
development of new interactive systems raise both conceptual and practical challenges.
In particular, researchers who deal with new technologies need to know different related
subjects involving both software and hardware technologies. For example, they should
have programming skills, know some basic electronics and also be familiar with hardware
drivers, signal processing and communication protocols in order to develop prototypes for
tangible and physical interaction. As pointed out by interviews with industrial designers,
current support to rapid prototyping of interactive product is not suitable. This is also
demonstrated by research efforts on the development of tools that try to ease the rapid
prototyping of interaction in systems with different input devices and modalities.

While prototyping tools are common for classical GUIs, as described in Section 1.3,
prototyping interaction for ubiquitous systems is still an issue [Wu et al., 2012]. Many
frameworks and visual environments have been built in recent years, all of them trying to
ease the rapid prototyping of interaction in environment with different input devices and
modalities (see Table 2.5).

OpenInterface. OpenInterface41 [Serrano et al., 2008] aims at providing a visual
platform and programming language for multi-modal input processing and interaction.
It has been build by a consortium of multiple academic, research, and commercial
organizations as a framework to "handle a rich and extensible set of modalities, enable
a focus on new modalities or forms of multimodality, support dynamic selection and
combination of modalities to fit the ongoing context of use, and enable iterative user-
centered design". It is based on a Pipes and Filters architecture, which is very common
for this kind of visual environments (e.g., vvvv and Squidy [König et al., 2009]). It
consists of any number of components (Filters) that transform or filter data, before
passing it on via connectors (Pipes) to other components. The architecture is often
used as a simple sequence, but it may also be used for very complex structures. In
its last version (last updated in 2010) it supports more than 20 devices and protocols
which are also available from an online repository. The components are “reusable and
independent software units with exported and imported input/output interfaces.” and
can be developed using a variety of languages such as C, C++, Java, MATLAB, or C#.

41http://www.openinterface.org/home/

2.6. Rapid Prototyping 55

Name Languages Features Visual Environment Type
OpenInterface C++,

Java,
MATLAB,
.NET

Reusable and indepen-
dent component.

Pipes and Filters Framework

Squidy Java Automatic data types
management.

Pipes and Filter Framework

vvvv C# Extensibility.
Support to different inter-
action modalities.

Dataflow Software
Toolkit

Proximity
Toolkit

C#,
WPF

Plugin architecture.
Distributed data model.

Monitoring Tool Toolkit

ROSS Java Cross-platform.
Nested architecture.

No Framework

VRPN C Cross-platform.
Device abstraction.

No Library

Table 2.5: Examples of frameworks and visual environments for ubiquitous interaction.

The visual programming environment provided by OpenInterface are OIDE and SKEMMI.
Unfortunately, they are not available anymore for download, therefore it has not been
possible to test them directly and we can only rely on their description from Serrano
et al. [2008]—"Users will be able to run and quickly modify the multimodal interaction
by using the OpenInterface Interaction Development Environment (OIDE) or Sketch
Multimodal Interactions (Skemmi) a design-time graphical front-end".

Squidy. The Squidy Interaction Library42 [König et al., 2009] is another input framework
and visual environment for the rapid prototyping of multimodal interaction, which is
implemented in Java and, therefore, is platform independent. Its architecture is made
of three component: the Squidy Manager, the Squidy Designer and the Squidy Client.
The Manager follows the rationale of a Pipes and Filter architecture, like OpenInterface.
It allows to define Nodes (this is how Filters are called in the Squidy environment)
that process the data and Pipes that allow the communication of data to other Nodes.
Conversely from OpenInterface, Squidy provides only a pair of I/O port per node
and it includes automatic data type management. The Squidy Designer provides the
implementation of the visual programming language. Squidy has been thought to be
used by designers with low programming expertise; nevertheless, it also addresses the

42http://hci.uni-konstanz.de/index.php?a=research&b=projects&c=16386645

56 2. State of the Art

need of expert programmers via a semantic zoom over the nodes. The zoom allows the
user to directly manage and change the source code of every Node, thus giving a high
degree of freedom during the prototyping process to both the novice and the expert user.
A library of predefined Nodes is also available, to drag and drop the desired component
directly into the Squidy workspace (see Figure 2.23). Clients are the external applications
that are executed on a client device and provide input information to the Manager.

Figure 2.23: Squidy visual programming workspace.

Proximity Toolkit. The Proximity Toolkit [Marquardt et al., 2011] offers developers
easy access proxemic information from sensors. The term proxemics was coined by
anthropologist Hall and Hall [1969] to identify the culturally dependent ways in which
people use interpersonal distance to understand and mediate their interactions with
other people. The theory has been adapted by Marquardt et al. [2011], who used the
concept of zones of engagement, which characterize how people interpret interpersonal
distance (intimate, personal, social, public) to implement different type of interaction
between people and the surrounding computational environment. Computational devices
react differently according to the distance of the user: ? describe several projects that
make use of proxemic information, such as a social surface, a proxemic present and a
proxemic media player. The Proximity Toolkit simplifies the exploration of ubiquitous
interaction techniques by supplying fine-grained proximity information between people,
portable devices, large interactive surfaces, and other non-digital objects in a room-
sized environment. The toolkit supports rapid prototyping of proximity-aware systems
by supplying developers with the orientation, distance, motion, identity, and location
information between entities. It includes various tools, such as a visual monitoring tool,
that allows developers to visually observe, record and explore proxemic relationships in
3D space. Its flexible architecture separates sensing hardware from the proxemic data

2.6. Rapid Prototyping 57

model derived from these sensors, which means that a variety of sensing technologies can
be substituted or combined to derive proxemic information. The APIs are offered via an
object-oriented C# .NET development library. It has been designed to be easy to learn
and use (1) by taking care of and hiding low-level infrastructure details and (2) by using
a conventional object-oriented and event-driven programming pattern. Essentially, the
APIs let a developer programmatically access the proxemic data previously observed in
the monitoring tool. From the point of view of a rapid prototyping toolkit, the Proximity
Toolkit, together with the ROSS API, is the most complete example of holistic approach
to ubiquitous interaction.

ROSS. Responsive Objects, Surfaces, and Spaces (ROSS) [Wu et al., 2012] is one
of the main research efforts aiming at providing a comprehensive environment for the
development of cross-platform ubiquitous interactive systems. It is a toolkit that exposes
a software API to allow developers, researchers and designers to create applications in
which heterogenous devices communicates through a network. The main rationale of
ROSS focuses on a nested architecture in which physical entities are defined in term of
spaces, surfaces and objects (see Figure 2.24).

Figure 2.24: Core classes of the ROSS API.

58 2. State of the Art

A ROSS-Space (RSpace, e.g., a room) can contains RObjects, physical objects with
digital capabilities (e.g., a mobile phone) and RSurfaces, which are interactive surfaces
(e.g., the surface of an interactive tabletop). A RObject can nest a RSurface, which in
turn can only have nested RObjects. A fourth element, RControl, represents a physical
control, such as a button or a knob, and can be attached to RObjects. The nested
representation of a ubiquitous environment is defined through an XML configuration file
and also the communication between peers is done via the exchange of XML information
through the Open Sound Control (OSC)43 protocol. The main benefit of the ROSS
infrastructure is its novel perspective. In fact, while "most APIs are designed to support
specific functions and do not interact with other levels in the software architecture",
ROSS APIs explicitly defines the interactive spaces through relationships between the
elements that coexist in that space. In this way it offers a completely new approach to
the design of ubiquitous applications. The main limitations are that it only provides a
limited abstraction level and that the rationale of the toolkit also limiting the kind of
applications that can be developed. From the use case they present [Wu et al., 2012],
it seems that the main focus is on applications with screen devices. Moreover, they
do not include any mechanism to directly coupling tangible elements with their virtual
representations as, for example, proposed by Israel et al. [2011].

VRPN. The Virtual-Reality Peripheral Network (VRPN)44 [Taylor et al., 2001] is a
software library that has been specifically designed and developed to supply unified access
to devices in a VR environment. The authors found that in such systems "different devices
may have radically different interfaces, yet perform essentially the same function; some
require specialized connections (PC joysticks) or have drivers only for certain operating
systems". Therefore, they developed a library that might offer access to a wide range of
VR input devices through a general and extensible interface. The approach of VRPN is
to provide interfaces to a set of functions, instead of drivers for specific devices. In this
way they can implement interfaces and semantics that are consistent among devices that
provide a specific function.

vvvv. vvvv45 is a hybrid graphical/textual programming environment which aim is
to ease the prototyping and development of complex media environment and physical
interfaces. It uses the Pipes and Filters approach and, conversely from Squidy, every
Filter node has a number of I/O pins to other nodes. vvvv programs are called Patches
and every patch can be used as a node and combined in another Patch to create complex
systems. Unlike OpenInterface and Squidy, the GUI is minimal and seems to not respect

43Open Sound Control (OSC) is a protocol for communication among computers, sound synthesizers,
and other multimedia devices that is optimized for modern networking technology.

44http://www.cs.unc.edu/Research/vrpn/
45http://vvvv.org/

2.7. Summary 59

established guidelines for GUI design, so that it can be difficult at the beginning to
interact with the system and learn how it works. vvvv focuses in visual effects for digital
arts, but over the years has been extended to manage input from video sources and image
processing algorithm. It can also be used to build multi-touch and tangible interfaces as it
supports fiducial marker tracking using the reacTIVision library (see Section 2.5.4). vvvv
also offers a wide range of possibilities for extension. For programmers vvvv implement a
plugin-based interface which allows nodes to be developed in different languages, like
C#, Delphi or C++.

2.7 Summary

The main concepts of interaction in ubiquitous environments, such as technologically-
enhanced spaces, have been presented in this chapter. Sections 2.2, 2.3, 2.4 presents an
overview of the input technologies that can be used to build device ecologies: in each case
example of input devices have been given. The review shows that ubiquitous interaction
is characterized by ecologies of networked device that, by communicating one to another
make it possible for people to carry out collaborative activities in technologically-enhanced
environments. Nevertheless, it makes clear that the heterogeneity of the hardware devices
represents a major issue for the development of the ideal scenario in which the interface
disappears [Weiser, 1991]. The software solutions presented in the Sections 2.5.2, 2.5.3
and 2.5.4, related to specific input technologies (touchless, multi-touch and tangible) are
not suitable for the rapid prototyping of ubiquitous interaction because of the following
problems:

• They address one particular device or a class of devices with the same input
capabilities.

• They address one specific interaction technique, except for tangible interaction
tools that combine tangible objects with multi-touch sensing.

• They target highly skilled programmers.

• They do not take into account interactions between different devices.

• They offer very limited (when provided) abstraction of input devices.

The examination of the software technologies highlights that the development of
ubiquitous interaction is scattered among many different tools, programming languages
and techniques that the user has to learn and use; at present time only a few software
solutions try to manage the intrinsic variety of ubiquitous environments in a unified
solution (e.g., the Proximity Toolkit [Marquardt et al., 2011] or the ROSS APIs [Wu

60 2. State of the Art

et al., 2011]). Therefore, in the case of tools for the rapid prototyping of ubiquitous
interaction (Section 2.6.2), it seems that an important step has been made towards the
development of holistic approaches. Nevertheless, it appears clear that two issues are still
affecting the smooth development of ubiquitous interactive systems, which are described
in details in the next chapter (Chapter 3): the integration of heterogenous devices and
the technical expertise barrier.

3
Open Issues

I’ll finish what I started, once.
I’ll find my holy grail.

—The Script for My Requiem
Blind Guardian, Epic Metal Band

This work addresses the concerns raised by Oulasvirta [2008] (see Section 1.3), which
are repeated here the sake of convenience and clarity of understanding:

present-day IT infrastructure, “the real ubicomp,” is a massive noncen-
tralized agglomeration of the devices, connectivity and electricity means,
applications, services, and interfaces, as well as material objects such as
cables and meeting rooms and support surfaces that have emerged almost
anarchistically, without a recognized set of guiding principles. This infrastruc-
ture is not homogenous or seamless, but fragmented into several techniques
that the user has to study and use.

In particular, this dissertation focuses on two open issues regarding the development
of ubiquitous systems:

• Issue 1. Integration of heterogenous devices. The lack of a comprehensive
framework that provides users with an environment for programming interactions
between heterogeneous devices in the same physical space.

• Issue 2. Lowering the technical expertise for the rapid prototyping of
Ubiquitous Interaction. Prototyping and developing ubiquitous interaction re-
quires to handle low-level details such as information on the position of devices
and users in the interactive space and network connections and communications
between devices. These tasks require a substantial amount of time and technical
expertise, which make the prototyping of ubiquitous interactive systems challenging.

62 3. Open Issues

From the literature review, and also from my personal experience as a researcher
and developer of interactive appliances, it appears clear that these new challenges are
due to the heterogeneous nature of ubiquitous environments, which are characterized
by a tremendous variety of input devices, interaction techniques and the fact that these
systems are thought to be integrated in a pervasive and collaborative context.

Issue 1. Many frameworks and platforms to ease the design and development of
ubiquitous interaction have been built in recent years, as it has been showed in the chapter
dedicated to the critical literature review (Chapter 2). Nevertheless, there are very few
examples frameworks or toolkits that are based on an holistic approach and integrate all
of the different aspects of the ubiquitous paradigm into a comprehensive solution. In fact,
even if original vision [Weiser, 1991] conceived a world in with heterogeneous devices
(tabs, pads and boards) could communicate seamlessly, all of the actual toolkits focus on
a particular aspect of ubiquitous environments, like for example TUIs [Kaltenbrunner and
Bencina, 2007; Klemmer et al., 2004] (e.g., Papier-Mâché or reacTIVision) or multi-touch
interaction for horizontal surfaces (e.g., MT4J [Laufs et al., 2010]) or physical computing
(e.g., d.tools [Hartmann et al., 2005]). Since these approaches give support to a limited
range of input devices or interaction techniques, for example tangible input via physical
objects with fiducial markers or motion recognition through camera-based software, they
do not provide the designer with a unique and integrated environment to seamlessly
explore all the possibilities offered by ubiquitous technologies. The only two exceptions in
the literature are the ROSS toolkit [Wu et al., 2012] and the Proximity Toolkit [Marquardt
et al., 2011]. From the perspective of a unified environment, ROSS still suffer from one
drawback: it does not integrate a mechanism to handle the communication between
tangible objects and virtual elements. It has been demonstrated by various researchers
[Israel et al., 2011; Lifton and Paradiso, 2010] that this is a crucial factor to take into
account in an context where physical objects are enriched with digital properties. The
possibility to manage virtual representations of tangible objects offers "the potential
to enrich functional and interactive properties of interactive applications" [Israel et al.,
2011]. As Coughlan et al. [2012] pointed out, interacting in environments characterized
by a combination of different devices and interaction techniques includes benefits such as
"enhanced learning, problem-solving and creative decision-making — especially where
groups of people work together in complex activities". To make these benefits happen,
"we need to better understand how people perceive the relationships between multiple
heterogeneous devices". For these reasons it is important to build better tools that helps
in the design, development and evaluation of device ecologies to support collaborative
human activities.

Issue 2. Programming environments such as Processing and Wiring, libraries such
as CCV and MT4J and software frameworks such as OpenNI or libTISH are intended
to facilitate the development of interactive artifacts by providing an API for handling
visual and conceptual structures as well as the communication with physical components.

63

However, although they provide a good level of abstraction, they do not provide general
software libraries to communicate with different sensors. You can interface with sensors
and get data from sensors, but they only provide raw data that you have to analyze to
get some results. Ubiquitous systems make use of sensors and emitters to communicate
with the real world. Sensors convert real world inputs into digital data, while emitters are
mostly used to provide digital or physical feedback (e.g., a speaker emitting sounds or a
blinking Light Emitting Diode—LED). Employing such a variety of hardware devices in a
real application can be difficult because their use requires knowledge of underneath physics
and many hours of programming work. For example, a digital 3-axis accelerometer is a
sensor that gives you acceleration on the three dimensions. Once you get these data, you
should interpret them in order to extract some meanings. It is not so straightforward to
get the rotation along the y-axis (pitch) from the raw gravity data provided. Furthermore,
integrating data from different devices can be cumbersome because any device vendor
uses different programming interfaces and communication protocols. This is true also for
the same device from different vendors. Imagine that you spent many hours programming
the behavior of the accelerometer of a Nintendo Wiimote Controller and want to use the
same routines in a new project with the accelerometer of an Apple’s iPad. That is almost
impossible, due to the incongruous interfaces and protocols used by each sensor. In this
case, programming libraries written by expert users can be exploited to interface with
these sensors: for example, currently, there is a Processing library for interfacing with
the Kinect RGB and Depth cameras and there are also many code samples for getting
data from specific sensors. Nevertheless these only represent examples of isolated efforts
for providing final users with some libraries for managing sensors data. These attempts
do not follow the rationale of a reference architecture or framework and, for this reason,
they cannot be structured in a functional API that provides designer with a different
perspective to explore the UbiComp design space.

4
Exploration of the design space

I hear and I forgot.
I see and I remember.
I do and I learn.

Confucious, Chinese Philosopher

The main objective of this dissertation is to ease the rapid prototyping of Ubiquitous
Interaction. Physical objects, augmented with digital computational elements,

are more and more present into our living environments, offering the possibility to
blur the boundaries between the real and the virtual world. Nevertheless, developing
physical/digital interactions is complicated by the heterogeneity of pervasive technologies.
In this work, a framework is proposed that can manage the kinds of interactions that
take place in ubiquitous environments (e.g., technology-enhanced rooms as discussed
in Chapter 2) focusing on the interoperability between heterogeneous devices and data
exchange protocols. The framework also considers the space in which users are interacting
and the interaction technique in use. Since there is no general acceptance in the literature
on the definition and the focus of a framework for interactions in ubiquitous settings
[Ni, 2011], the design space is explored in this chapter through the development of real
systems. This exploration, together with the analysis of the state of the art (Chapter 2)
and interviews with stakeholders, has led to the definition of a set of requirements for
the framework.

4.1 Experiences from the Development of Real Sys-
tems

In this section are documented the experiences gathered during the last three years
designing, developing and deploying interactive systems in the DEI Laboratory1 at

1http://dei.inf.uc3m.es

4.1. Experiences from the Development of Real Systems 65

Universidad Carlos III de Madrid2 supported in part by the national spanish research
project Integra3 and Tipex4. The report focuses on three prototypes:

1. A touchless system to interact with digital maps projected on video walls [Bellucci
et al., 2010].

2. A multi-touch application, running on a tabletop environment, that supports team
collaboration for the definition of evacuation routes in case of emergencies [Peralta,
2012].

3. A portable multi-touch system that turn any un-instrumented surface into an
interactive surface [Bellucci et al., 2011].

4.1.1 Remote Interactions for Screen Displays with the Wiimote

The Wiimote clearly stimulates the development of touchless post-WIMP (Windows,
Icons, Menus and Pointing devices) interactions by exploiting new styles such as gestural
input in augmented reality environments. On the basis of its interaction capabilities and
low cost, the Wiimote has gained significant attention within the homebrew5 software
developer and DIY communities, boosting the creation of several projects involving
multimodal interaction techniques. These projects are usually shared over the Internet
(via www.youtube.com or DIY websites such as www.instructables.com) so others can
reproduce and extend them. As MIT professor Eric Klopfer said—"The advantage of
the Wiimote is that it’s a human centric device". There are many input devices that
“map well onto the computer’s interface, but not to the person’s". By contrast, “the
Wiimote fits the user [...] People know intuitively what to do with it when they pick it
up because we use it like devices we are familiar with.” In fact, post-WIMP interfaces
are about Minority Report–style interactions6, and the Wiimote provides a cheap and
effective solution to develop such applications at home or in the laboratory without
requiring much more than adequate APIs, small LED-based devices and programming.
Therefore, integrating the Wiimote with the surrounding environment can promote the
use of pervasive post-WIMP applications even when economic and engineering factors are
an issue. In fact, users can develop a solution such as a low-cost multipoint interactive
whiteboard with a relatively small budget compared to off-the-shelf systems. Researchers
and developers such as Johnny Chung Lee7 demonstrated how to develop applications
that exploit the Wiimote to perform 3D headtracking, touchless interactions and providing

2http://uc3m.es
3(CDTI, Spanish Ministry of Science and Innovation
4TIN2010-19859-C03-01 Spanish Ministry of Science and Innovation
5Homebrew is the term used to define software or hardware produced by consumers
6For an excerpt from the movie see www.youtube.com/watch?v=NwVBzx0LMNQ
7http://www.johnnylee.net/projects/wii

66 4. Exploration of the design space

haptic feedback. The Wiimote can remotely interact with objects with digital properties
on large display surfaces. The GlovePIE library has been employed in this project to map
Wiimote inputs to mouse and keyboard outputs. Writing scripts in GlovePIE doesn’t
require any particular programming experience: Java and C programmers can easily master
the language syntax in a short time. In order to explore the feasibility of the Nintendo’s
Wiimote and GlovePIE for the rapid prototyping of touchless-enabled interfaces, a system
has been developed ("Don’t Touch Me" [Bellucci et al., 2010]) providing the users
with the possibility to collaboratively generate and place multimodal annotation on a
digital map. The prototype has been designed to be integrated in C4ISR systems to
improve user’s interaction. C4ISR are the military functions to enable the coordination
of operations designated by C4 (command, control, communications and computers), I
(military intelligence) and SR (surveillance and reconnaissance). It explicitly addresses
the needs of operators of a Command and Control center, who have to examine digital
maps on large pervasive displays, manage geo-referenced information and collaboratively
develop plans and procedures. The system prototype has been developed on top of Google
Maps APIs for cartographic support. The Nintendo Wiimote has been exploited as a
primary interaction device and GlovePIE as software library to manage its I/O capabilities.
The Wiimote, by means of its accelerometer and infrared tracker, makes it possible to
navigate the map via simple hand gestures. Pronate and supinate the wrist while pressing
the A button makes the map to displace east or west, while pointing up or down makes
the map to displace north or south. You can combine the movement to have the map to
displace in all directions. The A button must be pressed all the time in order to avoid
unintended movements. Other interactions take place following a point-and-click style,
by using Wiimote buttons. Don’t Touch Me is collaborative in the sense that it supports
more than one user (equipped with his own Wiimote) interacting simultaneously. It is
possible to identify different roles so to enable/disable users to perform specific actions.
In this prototype, two default basic roles are provided: the editor and the viewer. The
editor can generate multimedia annotations. He can select geospatial regions by drawing
geometrical shapes and assign a color code to each area. Color has the semantic users
want to assign to them, in this case: red means emergency, yellow for alarm and green
for a normal situation (see Figure 4.1). It is possible to associate interactive events
to these sensible areas, by exploiting Wiimote vibratory motor (haptic feedback) and
Wiimote speakers (audio feedback). Editors can also record voice annotations (by means
of an external audio capturing source, e.g, a microphone) for other users to listen for
(through headsets or external speakers). A pop-up pie menu has been used for displaying
interactive choices depending on the context. Pie menus (circular contextual menus)
are proven to supply a smooth, reliable gestural style interface for users as the circular
menu slices are large in size and near the pointer for fast interaction. The viewer can
only navigate the map and interact with sensible areas (by selecting or simply passing
over them with the pointer) for receiving feedbacks. For example, an editor can associate
a vibratory feedback to a red sensible area, causing the Wiimote of a viewer to rumble

4.1. Experiences from the Development of Real Systems 67

when passing over such area.

Figure 4.1: Don’t Touch Me User Interface.

4.1.1.1 Lessons Learned

From a technical point of view, the development of this application highlighted that,
while the GlovePIE works very well for the definition of basic mappings between WIMP
actions and Wiimote behavior but it does not offer an high degree of freedom to handle
more complex interactions. With the experience of this project, acceleration sensing was
intended to be used to built different devices to study how the physical shape of the device
affected interaction. Nevertheless this was not possible because the GlovePIE library only
recognizes the Wiimote controller as a single, atomic device. There is no abstraction
of its components (e.g., accelerometer, gyroscope, speakers, etc.) and therefore, to use
accelerometer from other devices, such as Android terminals, the developer is forced to
change the programming platform and starting from scratch, with the consequent loss
of the code developed. Informal testing sessions with 5 graduate students at University
Carlos III de Madrid and 4 attendees at the ACM International Conference on Advance
Visual Interfaces (AVI 2010) highlighted that, while hand-free gestural interaction is
said to be natural, physical controller provide auditory, physical and visual feedback
channels that have been demonstrated to be of great help. Overall participants valued the
system very positively: for example, they saw the value in using the vibratory feedback
to be aware of important areas on the map and then listen to audio annotations left
by other users. They liked that they was able to interact with the projected map at a

68 4. Exploration of the design space

distance—some compared the system with the Minority Report interface. Users found
the interface useful when a group of people needs to work at the same time because the
remote interaction does not require the user to be near the surface, thus occluding the
vision to others. Some users felt confident with the physical device, although most of
them was forgetting to press the A button to start to navigate the map. Others reported
on the fact that, while the system demonstrates the potentiality of an interaction which is
a step forward the classical keyboard-mouse-display setting, the interface is still bounded
to WIMP rules. Therefore, the result is a hybrid environment where novel interaction
techniques are applied to an old paradigm. The Don’t Touch Me use case highlights
the need to better understand the role of physical devices in shaping interactions for
ubiquitous scenarios and design better interfaces that allow to achieve a desired type of
user experience in these environments.

4.1.2 Multi-touch Interactions around a Table with the Dia-
mondTouch

In this project a team of the DEI Laboratory developed a proof-of-concept widget to
investigate the use of technology in a real collaborative scenario. The domain was
emergency management [McLoughlin, 1985] and, in particular, the widget aimed at
supporting collaborative actions that take place during the definition of evacuation plans.
We live in a world where disasters (natural or man-made) and accidents are becoming
more frequent, causing crises to be solved. Each of these situations must be resolved
differently. The proper way to cope and manage crisis and emergency is a challenge for
which it is essential to be well prepared and, therefore, only proper planning can achieve
a favorable outcome. Depending on the scenario being treated, the way to deal with
a crisis situation changes. However, each emergency scenario is characterized by the
presence of entities with different roles that must work together to carry out their tasks
in a coordinated and efficient way. In our use case we considered the preparation of
an evacuation plan (preparedness phase [McLoughlin, 1985]) to face a risk of natural
disasters that can affect a large area (such as an urban area) populated by large numbers
of people. Since we were dealing with a large area (not a building or a small campus),
the number of users involved in the evacuation process increase and a number of different
and well-defined roles had to intervene in their basic tasks action. We designed the
widget to be used by the following four roles:

• Civil protection, responsible of coordinating the various roles in the evacuation
process.

• Local police, in charge of safeguarding the integrity of citizens, identifying and
clearing out those areas where the risk of danger is much greater than the rest.

4.1. Experiences from the Development of Real Systems 69

• Rescue and fire fighting (firefighter), in charge of safeguarding the integrity
of citizens and proceeding to the rescue of property or persons in danger of serious
harm.

• Civil guard, responsible for locating resources needed to transport injured citizens.

According to the groups of actors (roles) involved in the evacuation process, the definition
of an evacuation plan envisages cooperation of such users who typically gather around
a table and use a map as support for planning. With the map it is possible to identify
damaged buildings, display sensitive areas and define escape routes. To digitally support
such collaborative activities, the proof-of-concept application exploits ubiquitous devices;
in particular the system was implemented through a multi-touch interactive table (the
DiamondTouch interactive table [Dietz and Leigh, 2001]), which allows various roles
to interact with a digital map. To this end, we have defined a widget, common to all
roles, through which they can perform various actions. Through a single widget, visible
for all the roles in the system, different functionalities are be available (e.g., checking for
free beds in a hospital, checking the stability of a given bridge, etc.). Functionalities can
be global, like zooming or they can depend on the role that makes use of the widget.
The definition of the functionality of the widget is based on the possibility, provided by
the DiamondTouch, to recognize which user is interacting with the table, giving it an
univocal identification throughout the session. The DiamondTouch hardware, in fact,
is based on capacitive coupling [Baxter, 1997] through the human body and a chair
connected to the table to close an electronic circuit. In this way it is possible to detect
that a touch is coming from the user seated on a particular chair. This feature makes
the DiamondTouch a platform to develop tabletop applications for Computer Supported
Cooperative Work (CSCW) scenarios that require simultaneous input from different users’
role [Esenther et al., 2002]. The development of the widget, thus, provides a new level
of management, coordination and collaboration among roles, since they do not rely on
a single user responsible for all the tasks but everyone can collaborate in real time to
achieve a common goal. As an example, Figure 4.2 shows the functionalities peculiar to
the civil protection role such as place an ambulance or mark a building as an hospital.

4.1.2.1 Lessons Learned

This project, in the same way it happened with the Don’t touch me system, gave me
the possibility to experience the limitations of developing an application that targets a
specific platform, in an environment where different device coexists and communicates. In
this case, the widget has been deployed on the DiamondTouch table, therefore using the
specific APIs for the C++ language provided with the platform. As part of an ongoing
project at Universidad Carlos III de Madrid, the same widget wanted to be deployed to a
vertical surface, so to explore the synergy of horizontal and vertical interactive surface

70 4. Exploration of the design space

Figure 4.2: Visualization of the Widget for the civil protection role.

in the same environment. Because of inherent differences of the platform it was not
possible to port the widget to the new display device. For this reason an abstraction
mechanism has been developed, which is part of the implementation of the framework
described in this dissertation. The abstraction allowed to separate the view and the
behavior of the widget, using a protocol which is common to any device. Different
interfaces have been developed to handle messages from different platforms: these
messages, such as TUIO [Kaltenbrunner et al., 2005] or Windows Touch8 events, are
captured, processed and transformed into common events for the application. Support
portability and interoperability between heterogeneous display devices has been the
fundamental motivation to develop the framework for Ubiquitous Interaction described in
this dissertation.

4.1.3 TESIS: Turn Every Surface Into an Interactive Surface

TESIS, acronym for Turn Every Surface Into an Interactive Surface, is a portable device
for converting any surface into an interactive surface. This platform has been developed
to overcome the limitations of current interactive tabletops: high monetary cost, lack of

8http://goo.gl/tzY3A

4.1. Experiences from the Development of Real Systems 71

portability and ad-hoc, flat surface displays. A pico projector and a depth-sensing camera
are mounted, on a dedicated stand, above (or in front of) the surface (Figure 4.3).

Figure 4.3: The TESIS system: a pico-projector, a depth-sensing camera and a laptop.

To build the first prototype of the system the Microsoft Kinect sensor has been
exploited. The projector is connected to a computing device (e.g., a mobile phone or
laptop) to display the user interface. TESIS’ depth-sensing algorithm first generates a
model of the touch surface and then computes touch inputs depending on the distance
from this surface, basing on the algorithm proposed by Wilson [2010] at ITS2010
conference. The touch detection algorithm exploits a naive approach, still achieving
good performances for the objective of the project (for a report on the performances of
the Kinect depth camera as a touch sensor refer to the research of Dippon and Klinker
[2011]). At the first stage a fixed model of the surface is computed over one hundred
frames, calculating the depth histogram at each pixel. Then, two threshold are applied
to extract touch points as in Wilson [2010]: dmax > dx ,y > dmin.

Using two threshold is necessary (1) to eliminate pixels belonging to user’s harm
(dmax) and (2) to balance the noise of the depth sensor when computing the surface
model (dmin). Contact points are then calculated by subtracting the static model from
the actual frame, applying the threshold and processing the resulting image with standard
computer vision techniques to extract the final blobs. The result of this process is shown
in Figure 4.4.

The goal of this project was to demonstrate that it is possible to use depth-sensing
cameras to build novel portable devices that allow digital interaction on every surface

72 4. Exploration of the design space

Figure 4.4: Visualization of the recognition algorithm. From left to right, top to down: grayscale
depth image, actual image after subtracting the background, contours detection and blob detection.

in the real world. This kind of cheap and ubiquitous devices can therefore support the
quick creation of interactive environments where various other devices and interaction
techniques coexist. For example, the Kinect sensor provides a RGB camera together with
the depth sensor. By exploiting the RGB camera it was possible to integrate mechanisms
for tangible interaction, such as the recognition of fiducial markers as provided by the
reacTIVision framework. The system implements the TUIO protocol, that is: the tracker
application capture touch inputs in form of contact points with the surface and the
position and shape of tangible objects and sends TUIO message through UDP packets.
In this way it is possible to implement client applications that are independent of the
platform and of the programming language—they only have to receive the TUIO messages
and interpret them in order to enable multi-touch and tangible interaction. Different
proof-of-concept applications have been created for the TESIS platform, from a simple
application for the manipulation of images to an augmented product counter (see Chapter
6). Moreover, a fixed version of TESIS, with the projector placed on the ceiling and a
displaying surface of nearly 60 inches, has been installed on the island of Tiree (Scotland,
UK), with the goal of providing a platform to build multi-touch applications for the local
rural center and bringing cutting edge technology to the edge of Scotland9.

9http://alandix.com/blog/2012/08/20/tiree-touchtable-the-photos/

4.1. Experiences from the Development of Real Systems 73

Figure 4.5: A fixed version of the TESIS prototype at the rural center in Tiree, Scotland, UK.

4.1.3.1 Lessons Learned

Classical interactive surfaces need to be instrumented, making the setup bulky and fixed
(e.g., classic tabletop systems are not portable). As reported above, the motivation
behind TESIS development has been to build a solution for interactive surfaces that
could be portable. In this sense, current technology demonstrated to be adequate for
this goal, even if the precision of the recognition points are lower than classical systems
(both electrical- or optical-based). At the beginning, difficulties arose in choosing the
development platform because there are many libraries available, all of them covering
basic needs for the development with the Kinect. The OpenNI framework was chosen
because it is well documented, there is a big community of developer and it follows the
rationale of a reference architecture. Moreover, it offers support to different sensors, not
only the Microsoft Kinect. This is an important feature thinking on the portability of
the code; the scene of available devices for ubiquitous interaction changes rapidly and
having a framework that support a wide range of devices is certainly a great benefit for
developers who do not need to change their code every time they change hardware. The
only requirement is that each vendor makes the device compliant with the framework
by implementing its API. The framework, like any other library for the Kinect, has been
thought to offer support to skeletal recognition and tracking. In TESIS case, where the
depth sensor is placed quite close to a surface (between 80 to 120 cm) there is only
low-level support and it was needed to code all the functionalities for touch recognition
by interpreting the depth data produced by the sensor. This limits the rapid prototyping,
especially if you are not an experienced programmer. On the other hand, for tracking,
I was able to use functionalities from the OpenFrameworks libraries which eased the
development and highlighted the importance of software tools that provide ready-to-use
functionalities for the development of interactive systems. The TUIO protocol pointed
out the benefits of interoperability between platforms and devices. Using the protocol
I was able to design the system as a TUIO tracker, thus turning it into a development
platform for multi-touch, portable applications instead of a simple multi-touch interactive

74 4. Exploration of the design space

surface. As reported above, it has been possible to build applications exploiting different
environments and programming languages, from C++, to Flash, to Processing. TESIS
has been also used in a project developed as part of a Master thesis [Bazoli, 2012],
demonstrating how the system supports the rapid prototyping of ubiquitous interactive
appliances that combine tangible and digital elements.

4.2 Requirements for a Framework Supporting Ubiq-
uitous Interaction

In his research on the role of software frameworks and toolkit on the development of
groupware applications, Greenberg [2007] claimed that:

Interface toolkits in ordinary application areas let average programmers
rapidly develop software resembling other standard applications. In contrast,
toolkits for novel and perhaps unfamiliar application areas enhance the
creativity of these programmers. By removing low-level implementation
burdens and supplying appropriate building blocks, toolkits give people a
‘language’ to think about these new interfaces, which in turn allows them to
concentrate on creative designs.

It is interesting for my work to note that Greenberg [2007] identified one of the cause of
the failure of development and dissemination of groupware systems to the lack of proper
frameworks that support their development. Particularly, he reported that:

• Most programmers eschew groupware development because it is too hard to do.

• Those who do decide to develop groupware place most of their creative efforts into
low-level implementation concerns.

• Resulting designs are often fairly minimal ones, with little attention paid to necessary
design nuances (even ones well known in the CSCW literature) simply because so
called ‘advanced features’ are too hard to implement.

In this work it is argued that the implementation of ubiquitous interactive systems
might suffer from the same problems. As exposed in Section 1.3, the development of a
framework for Ubiquitous Interaction has been motivated by the fact that, although there
are many software libraries, toolkits and frameworks for post-WIMP human-machine
interaction, they do not take into account, in a comprehensive and holistic way, the
relationship between the tangible and virtual sides of interactive systems. To this end, once
explored the design space through direct participation in the development of ubiquitous

4.2. Requirements for a Framework Supporting Ubiquitous Interaction 75

systems, the next step has been to define general requirements for the framework with
respect to its various stakeholders [Pressman, 2001, p.255]. A requirement is "[...]
something the product must do or a quality that the product must have" [Robertson and
Robertson, 2012]. The requirements have been collected as a set of precise statements
that describe the issues to be addressed by the framework in order to meet the needs
of its potential users. In the next Section the group of possible users is described in
details. In any case, the requirements do not represent a solution, but have been used
through this research work as guidelines that clarify the issues to be addressed by the
proposed solution. In general terms, an input framework has to deal with the management
and control of hardware input devices. In the WIMP world the input devices are the
mouse and the keyboard, while an ubiquitous setting is characterized by an ecosystem
of different devices such as interactive surfaces, cameras, sensors and mobile terminals.
The framework is also responsible for the abstraction of input data and its processing.
This is particularly important in a scenario where heterogenous devices coexist because
it is crucial to handle data fusion and fission [Dumas et al., 2008; Israel et al., 2011].
Therefore, the framework must be able to manage and provide real-time data, using a
consistent protocol and data format. The abstraction capability is also pivotal to achieve
independence from a particular technology, programming language, driver and API. Figure
4.6 depicts the process used to define the set of requirements for the framework.

Figure 4.6: The process to define requirements for the framework.

76 4. Exploration of the design space

Initial requirements have been extracted from the review of the literature and my
personal experience. The state of the art has been analyzed in Chapter 1 and lessons learnt
from my personal experience has been presented in the previous Sections of this chapter.
User-generated requirements has been also elicited from the experience of developers,
interaction designers and researchers familiar with ubiquitous technologies (both from the
academia and the industry) through interview sessions. Then, the card sorting technique
[Nielsen, 1995] has been exploited to identify categories for the requirements and produce
a set of final requirements according to such categories. Card sorting has been described
as a quick, inexpensive and reliable categorization method for finding patterns in how
users would expect to find content or functionality by sorting cards depicting various
concepts into several categories. To follow, in the next section, is provided a description
of: (a) the procedure to extract requirements from real users, (b) the card sorting
exercise, (c) the categories and, (d) requirements with respect to framework expected
functionalities.

4.2.1 Requirements Elicitation: Interviews

Among all the different elicitation techniques with users, such as brainstorming, interviews
and focus groups, it was chased to conduct semi-structured interviews [Benyon et al.,
2005] to get a specification of the principal requirements for the framework. The rationale
behind the choice of an interviewing technique was that it was wanted to extract both
high- and low-level requirements, which might cover different domains such as Software
Engineering or Interaction Design and which take into account the different perspectives
of the users involved, according to their expertise in the field. Therefore, interviews suit
best than focus groups, where participants have an homogeneous knowledge—in this
case requirements focus only on a particular aspect and a consensus is to be sought.
Moreover, at this stage of the design, I needed to be the most open-ended as possible. I
wanted to investigate new possibilities for helping people in the development of ubiquitous
systems and I started with the assumption, strengthen by the analysis of the state of the
art, that current tools do not offer the necessary support. With the interviews I wanted
to gain a better understanding of users practices that can guide to the definition and
implementation of a framework for ubiquitous interaction. Interviewing is an invaluable
technique widely used in HCI and in Software Engineering to elicit requirements by
asking users for their direct experiences, especially at early stages of the design process.
As Benyon et al. [2005, p.215] pointed out, "incorporating input from users in the
requirements process helps to ensure that the eventual technologies have a good fit with
the people, activities and contexts they are designed to support". Ubiquitous interaction
is human-centered, for it involves the use of technology in every aspect of our daily life.
Thus, it is important to include the input from users of the interactive technology in
the definition of requirements. This makes it possible to focus on human characteristics
and activities during the design. I used the term elicitation because, in this case, the

4.2. Requirements for a Framework Supporting Ubiquitous Interaction 77

definition of the requirements set is the result of a process of user-researcher interactions.

4.2.1.1 Goal of the Interview

The first step in setting up an interview process is to decide the goal of the interviews
and then to find users that are representative of the target population of the system. To
this end, I focused on three questions:

1. Who is going to use the software framework?

2. What kind of interactions they are interested in prototyping?

3. What kind of problems they face off in their practices?

During my Ph.D. research I have been working in a Spanish project aiming at introducing
ubiquitous interaction in Command and Control Rooms (project Integra10, funded by
CDTI, Spanish Ministry of Science and Innovation), which are typically operated within
the Desktop computing paradigm, and therefore follow the WIMP framework. As I
reported in this chapter, I developed several prototypes, including free-hand gestural
interfaces and collaborative interfaces for touch-enabled surfaces, that helped me to
gain significant knowledge on the benefits and drawbacks of post-WIMP interaction
paradigms. I also actively participated in meetings with professionals from the Research
and Development (R&D) department of a Spanish company (Amper Sistemas11) that was
promoting the paradigm shift from the WIMP world to ubiquitous computation. Thanks
to discussions with these professionals, my personal experience, the review of the state
of the art and feedbacks from HCI researchers in the Computer Engineering department
at Universidad Carlos III de Madrid, I was able to develop a clear understanding of major
problems in ubiquitous environments (e.g., lack of a unique infrastructure). For this
reason, I did not need to use techniques such as brainstorming to produce preliminary ideas.
I instead needed to define the boundaries of a framework for ubiquitous interaction by
taking digging deeper into the direct experience of users and know their needs, concerns,
practices, preferences and attitudes.

4.2.1.2 Respondents and Users Roles

Table 4.1 summarizes the sample of respondents to the interview according to the three
categories of actual users of ubiquitous technologies and potential users of the framework.

10http://dei.inf.uc3m.es/dei_web/dei_web/index.php?page=projects&id=8&name=Integra
11http://www.amper.es/section.cfm?id=13&side=139&lang=sp

78 4. Exploration of the design space

In DEI research group there are some Ph.D. and Master students involved in projects
which outcome is the design and development of tangible interaction appliances, aug-
mented reality systems and collaborative applications for interactive tabletop surfaces.
They represent the user role of Interaction Developers: a users that are proficient with
programming languages and have a deep knowledge of low-level operations of devices.
When using a software framework, the interaction developer needs most of the flexibility
and power of the underlying programming language.

During a visiting period at the Cardiff Metropolitan University12 and the National
Center for Product Design and Development Research (PDR)13 in Cardiff, Wales, UK, I
had the possibility to get in contact with interaction designers with programming skills
(e.g., Flash and Wiring) and with an extensive background in physical computing, in
particular in the use of Processing and Arduino/Wiring environments. The role of an
interaction designer is characterized by casual usage of Interaction Design (IxD) toolkits.
They need to produce several prototypes of their ideas rapidly, within an iterative process,
and thus an IxD tool should be “easy to use” and easy to learn. They have knowledge of
interactive prototyping environments such as Macromedia Flash and can write lines of
code if needed but prefer to use visual environments.

Researchers in Interaction Design (IxD) has also be considered as possible users; they
are experts of the domain but not necessarily have high technical skills. These users
do not want to be aware of the underlying design environment or even the preliminary
development efforts. They will use diverse input devices and output devices to frequently
interact with their analogue or digital counterparts. Furthermore, excessive learning
efforts regarding a specific device can signify its off and if it is the only input device it can
lead to an unusable application. Even if they might not have the sufficient programming
skill, their insights about goals and barriers in the design of interactive products can be
valuable to frame the requirements space for such an architecture. Eventually, in the
sample of representative population, a broader set of users has been included, which can
be for example interaction designers with no or few experience in programming but that
need to develop interactive physical systems. The assumption is that their insights might
be useful to highlight possible enhancements of a software framework to be used by non
tech-savvy users.

I, therefore, interviewed a total of 10 users, properly selected among the three classes
defined above: developers, product designers with programming skills and end-users (e.g.,
IxD researchers).

At this stage of the design process it was difficult to get access to professional
developers and software engineers that were directly working on the development of
ubiquitous systems. Therefore, the best approximation was to interview PhD. and MsC.
students from the Computer Engineering department. They all have, at least, a four

12Cardiff School of Art and Design, http://cardiff-school-of-art-and-design.org
13http://pdronline.co.uk

4.2. Requirements for a Framework Supporting Ubiquitous Interaction 79

Role Interviewee Profile Programming
expertise

Findings

Interaction Develop-
ers

5 PhD. and MsC.
students

High Functional
requirements

Interaction Designers 2 Professionals Medium Functional and
Non functional
requirements

IxD Researcher or
End-Users

3 University lecturers
and professors

Low Broad view,
non functional
requirements,
design guide-
lines, future
enhancements

Table 4.1: Main characteristic of the respondents population according to target users.

years experience with one programming language (e.g., Java, C++ or PHP) and they
all have attended and approved undergraduate courses (or graduate courses in the case
of PhD. students) on software engineering, object-oriented programming and design of
interactive systems. In any case, their profile still match with the needs of a framework
that ease the development of tangible interaction, because during their research they
might need to rapidly build prototypes to gain a better understanding of a design space
or to evaluate their theories.

4.2.1.3 Procedure

As stated in the previous Section, semi-structured interview style was used. A checklist
of topics to cover has been previously prepared (included in Appendix B.2), depending
on the profile of the user to be interviewed. This provided a protocol to follow but
also the flexibility to change the protocol if I wanted more details about a specific
aspect of interest. I first conducted a pilot-testing interview with one users in order
to refine questions and make an idea on the potential length of the interview. The
interview sessions lasted a mean of 53 minutes (72 minutes maximum and 32 minutes
minimum). Before the interview, respondents were briefly informed on the goals of
the research (5 minutes) and then they were asked to sign a consent form in order
to give me the permission to record the interview and use direct quotations from the
transcription of the interview in this dissertation or in other academic publications. Only
one of the respondents did not give the permission to use direct quotations. I used the
AudioMemos14 software for iOS to record the audio of the interview and then I manually
transcribed it. During the interview notes have been taken. Throughout the interview I
sometimes acted as if I was not fully understanding what the person was saying and asked

14http://itunes.apple.com/us/app/audio-memos-voice-recorder/id338550388?mt=8

80 4. Exploration of the design space

him to explain more: there is evidence that this approach usually puts the person at ease,
encourages him to provide more details, and avoids making assumptions [Jonathan Lazar,
2010]. In general, I conducted the interview starting with broad and high level questions,
for example questions about the background of the respondents (e.g., HCI researcher,
computer scientist, product designer) and then probing at greater level of details on
those aspects of interest for the requirements gathering (e.g., problems encountered
developing multimodal applications, particular needs for the prototyping of interactive
products, etc.). I asked respondents to specifically recall real situations rather then asking
questions about hypothetical scenarios. This approach, especially with more technical
profiles, gave me valuable insights on what are the major issues in the development of
ubiquitous systems. For the sake of information, I report here on the case of one product
designer, who related on his work in real projects where he had to use rapid prototyping
techniques to design and develop interactive systems for medical applications (I cannot
disclose further details about the projects due to a non-disclosure agreement). His stories
helped me in identifying specific circumstances where the framework could positively
impact the work practices of industrial designers. In particular, he showed me how he used
paper prototyping at the beginning of the design process and how he complained that,
as he said "it provides very low interactivity". At the time of introducing interactivity, he
made extensive use of Flash/Actionscript for the graphical interface and Arduino for the
physical interface. He told me that he has a background in product design and that he
learned to program interactivity during his Ph.D. by following a learn-by-doing approach.
He particularly pointed out that he can use other people’s code without any problem,
by copying and pasting into his project, but he knows he does not have the knowledge
to fully understand how the code works, especially in the case of the implementation
of actions that exploit physics laws. With his direct experience in these projects he
realized that "programming equals flexibility", but it was also aware that only a deep
understanding of the code might offer a high level of code reuse in different projects. At
the end of each session, a few minutes have been dedicated to give respondents further
details about the goals of the research and useful comments that came out from the
interview [Kvale, 2007].

4.2.1.4 Analysis

Responses in the transcripts have been breaking down into single thought and ideas, one
per line into a text document [Jonathan Lazar, 2010]. Requirements elicited by users
have been compared with the initial requirements gathered from the state of the art
and the personal developing experience in order to filter out duplicated entries. Overall,
requirements from the interviews were resonant with the list of initial requirements and,
at the end of the process, 9 new requirements have been added to the initial set of 50.
The lists of initial and additional requirements is reported in Appendix B.1 and B.3.

4.2. Requirements for a Framework Supporting Ubiquitous Interaction 81

4.2.2 Defining Categories from Requirements

As reported in Section 1.1, interactions in ubiquitous environments depict a socio-technical
systems, which are the systematic integration of two sets of design requirements: (a) social
components (people) and (b) technical components (hardware devices and software). This
work focuses on technical requirements that make it possible to develop an infrastructure
to support social interactions in digital augmented spaces. Social components, such
as human-to-human communication and interaction mediated by technology, are not
addressed by this dissertation. When ubiquitous interaction is examined from a technical
point of view, the focus converges on devices that coexist in the same environment thus
creating an ecology of interconnected and heterogeneous entities [Coughlan et al., 2012].
Requirements from the state of the art (see the analysis in Chapter 2 for the research
works evaluated) and my personal experience have then been extracted following this
perspective, resulting in a list of 50 initial requirements, that are reported in Appendix B.1.
Each requirement has been backed up with at least one published research contribution.
From the analysis of the interviews (Section 4.2.1.4) 9 new requirements have been
added, resulting on a set of 59 requirements. The next step was to perform a card sorting
exercise [Nielsen, 1995]. The exercise was conducted with 4 experts in Human Computer
Interaction and Interaction Design and 2 developers of multimedia interactive systems
at Universidad Carlos III de Madrid. Paul [2008] assured that 6 to 12 participants are
enough for a card sorting study involving expert users. Participants were provided with
an online application for card sorting15 in which the 59 requirements (from the state of
the art and user-generated) were listed, each one with a short description. The list of
requirements was randomly ordered by the system for each new session. Participants
were asked to group related requirements, to sort them into categories and to provide
category headings for these groups. The results from the card sorting sessions was then
analyzed using the Average Linkage Cluster Analysis algorithm [Sokal, 1958] provided by
the system, deriving a classification in the following 6 different categories:

• Input/Output Hardware. Ubiquitous systems rely on different devices to receive
input, from touch surfaces to physical objects enhanced with digital capabilities to
the whole human body. These same devices are also responsible for the Output, in
form of visual representation on screen displays or any form of physical feedback
(e.g., haptic). In this category are clustered the different I/O hardware devices the
framework needs to support in order to develop interactive spaces.

• Interaction Modalities. As in the case of different input devices, the framework
must support different interaction modalities in the same scenario. In Human-
Computer Interaction, a modality is defined as:

15The URL of the card sort exercise is: http://websort.net/s/9D5019/

82 4. Exploration of the design space

– a sense through which the human can receive the output of the computer
(for instance, touch) and,

– a sensing device through which the computer can receive the input from the
human (for instance, a depth camera).

In less formal terms, a modality is a path of communication between the human
and the computer.

• Interactive Space. Ubiquitous interactions take place within a defined space.
The framework must be aware of people and devices in such space thus determining
position and orientation over time, including mobile devices such as tablets and
smartphones and fixed devices such as digital tabletops and wall-sized displays.
Awareness of the physical space makes possible to generate virtual representations
of the real world and any kind of interaction that requires spatio/temporal data
(e.g., proxemic interactions [Marquardt et al., 2011]).

• Architectural Traits. The framework is expected to provide a modular, flexible,
and easily extensible software design. Similarly to software architecture like Mt4j
[Laufs et al., 2010], VRPN [Taylor et al., 2001] or OpenNI, it needs to provide
abstraction of hardware devices and support the possibility to connected different
middleware for the processing of input data, independently of their implementation.
The separation of concerns is therefore compelling, separating how input is acquired
form how it is processed. Having different devices requires the need to manage
multiple type of data. For example the framework needs to support planar and
spatial coordinates as well as motion and acceleration data of objects, supplementary
data of multi-touch events such as covered area and pressure, images from video
and photo cameras among others. Moreover, this data come from different sources
at the same time and therefore mechanisms for the fusion/fission [Dumas et al.,
2008] must be implemented.

• Developing/Coding. The manifestation of the conceptual framework take the
form of a software libraries that helps developers to program an interactive space.
The framework, therefore, must expose an API that is concise, easy to use and to
learn. The source code needs to be carefully written and to follow clear conventions.
It has to make simple things possible with few lines of code and, at the same
time, the development of complex things might also be supported within the same
rationale. It is particularly important to avoid the Turing tar-pit: that is, an API
that allows for flexibility in function but is difficult to learn and use because it offers
little or no support for common tasks. As Perlis [1982] wrote in his Epigrapms on
programming :

54. Beware of the Turing tar-pit in which everything is possible but
nothing of interest is easy.

4.2. Requirements for a Framework Supporting Ubiquitous Interaction 83

Moreover, the framework should also provide tools for users without technical skills
to easily develop interactive installations. This can be achieved through visual
languages or configuration files.

• Application/User Interface. At a last stance, the framework needs to support
the development of the User Interface in real applications. Elements in the interface
might be the virtual representation of physical objects, thus responding to physical
stimuli with changes in the status of the interfaces or can be virtual devices, such for
example buttons on a touch-enabled surface, that can provide the input themselves.
Due to the presence of different display surfaces in the same environment so the
User Interface needs to be distributed.

At the end of the card-sorting exercise, requirements under each category have been
further analyzed and grouped into high-level requirements. The process led to the
definition of a set of 20 final requirements, listed in Appendix B.5.

4.2.3 Requirements

In this Section the list of main requirements extracted at the end of the process is reported,
with an overall description of their scope and how, if applicable, each requirement
influenced the development of the framework.

4.2.3.1 Input/Output Hardware

Heterogeneous Input/Output Hardware. As demonstrated by the state of the art
and the three applications presented in this chapter, a comprehensive framework for
ubiquitous interaction needs an infrastructure that support different I/O technologies
that make it possible seamless interaction between the user and the environment. Input
devices range from traditional devices from the desktop computing world (e.g., mouse,
keyboards, trackpads) to devices peculiar of ubiquitous environments, such as: (a)
multi-touch surfaces of different form factors and orientation (e.g., vertical, horizontal
or tilted), (b) devices for touch-less or remote input like the Nintendo Wiimote (which
features motion sensors like an accelerometer and gyroscope) or camera sensors to capture
hand and full body movements (e.g., Microsoft Kinect) and, (c) devices that allows
tangible input through the manipulation of physical objects (an example is the Arduino
platform). Two of the respondents of the interviews also reported to make extensive use
of input from visual markers to enable augmented reality applications. For example, one
respondent from Universidad Carlos III de Madrid described the development of the ALF
system [Zarraonandia et al., 2012], which aims to improve the communication between
participants in a lecture through augmented reality feedbacks. In this system a mobile
phone is used by students to send feedback to the lecturer according to the content of

84 4. Exploration of the design space

different stages of the presentation. The lecturer can then visualize additional information
(e.g., the level of understanding of the explanation) superimposed to each student by
wearing augmented reality glasses16. In this first implementation, each student is identified
by the recognition of a visual marker as depicted in Figure 4.7. Lastly, since the landscape

Figure 4.7: Captures of student and lecture views of the ALF system. Source [Zarraonandia et al.,
2012]

of available hardware for ubiquitous interaction is constantly evolving, the framework
should support novel devices. This issue is addressed by hardware abstraction (as reported
in the the Device Abstraction requirement under Architectural Treats category on page
86) and the rapid configuration of I/O devices (see Easy Configuration of Input/Output
Devices under Application/ User Interface category on page 90)).

4.2.3.2 Interaction modalities

Heterogeneous Interaction Modalities. Ubiquitous systems go beyond the classical
WIMP paradigm and empower users to interact with the surrounding computational
environment exploiting the higher communication bandwidth offered by novel interaction
modalities. As heterogeneous devices coexists, so do different interaction modalities. A
framework for ubiquitous interaction, therefore, needs to support different possibilities for
the user to interact with the system, from multi-touch, to touchless, to tangible. These
three main modalities have been extensively described in the state of the art (Chapter
2). Ubiquitous environments inherently make use of manifold interaction methods, as
demonstrated in Section 2.1: the Code Space project present many examples, from
the use of personal devices as remote pointers to cross-device techniques (e.g., touch
plus air gestures). All of the interviewees reported on their use of input modalities: for

16The Vuzix Star1200 AR glasses have been used. http://www.vuzix.com/augmented-
reality/products_star1200xl.html

4.2. Requirements for a Framework Supporting Ubiquitous Interaction 85

instance, one developed distributed applications for co-design activities with children in a
multitouch tabletop and multitouch portable devices, another one made use of proximity
sensors to develop a sound-based guide for blind people and a last one developed virtual
motion sensors for the rapid prototyping of physical artifacts with digital properties. All
of the presented methods must be integrated into a single architecture so to offer the
possibility of controlling interface widgets using different alternatives for input. To this
end, a common data model (Common I/O Data Model requirement under Architectural
Treats category on page 86) needs to be developed that makes it possible to define a
common behavior of widgets with respect to different input methods [Echtler and Butz,
2012]. Different modalities can also be used simultaneously and combined together as
in multimodal interfaces, where the user can interact, for example, with speech and
gestures [Bolt, 1980; Tse et al., 2006]. To enable multimodal interaction, multiple data
stream must be managed at the same time and synchronized to implement fusion and
fission mechanisms [Dumas et al., 2008]. Proxemic interactions is a recent development
in ubiquitous interaction [Marquardt et al., 2011], where spatial relationships of the
user’s body with respect to other elements in the interactive space (e.g., distance and
orientation) are used as input. To support this kind of interactions, an awareness of the
physical space is needed, which includes information on the position of users and devices
in the space (Spatial Awareness requirement in the Interactive Space category in the
next section).

4.2.3.3 Interactive Space

Spatial Awareness. An ubiquitous system must be aware of people and devices in the
room. Spatial awareness is the ability to determine position and orientation over time
– including mobile devices such as tablets and smartphones and fixed devices such as
digital tabletops and wall-sized displays. The position of fixed devices within the room as
well the layout of the room should be specified through a configuration file, which can be
generated through a dedicated graphical user interface. The location of mobile devices
can be tracked using camera sensors, such as the Microsoft Kinect ,while orientation data
can be captured from the gyroscopes already built into many mobile devices. This data
can be transmitted back to the system and integrated with the fixed position data to
support spatial interactions. For example, when a user attempts to use a pointing gesture
[Kray et al., 2010] to send an item from a mobile device to a tabletop, the system would
use spatial information to select the destination device that the user intended. Spatial
tracking allows a system to track the position of people, devices, and other items in the
interactive space. Coupled with a model of the interactive space, this information can
be used to support a variety of proxemic interactions [Marquardt et al., 2011]. Spatial
awareness is also required to enable a matching between the real and the virtual world,
for example for gaming or interactive simulations [Izadi et al., 2011].

86 4. Exploration of the design space

Multi-Surface Environment. The framework needs to take into account that mul-
tiple interactive surfaces of different dimensions and orientations coexist in the same
environment. Knowing the spatial position of each surface in the interactive space make
it possible to implement interaction between surfaces, for example to transfer content
from one surface to another via gestural input. Moreover, it is necessary to determine
relative position of objects in each surface, for instance in the case of tangible interaction
on a tabletop [Jordà et al., 2007]). In this way it is possible to exploit objects in one
surface as input for another surface, as happens in Augmented Surfaces [Rekimoto and
Saitoh, 1999] where a physical object, placed on an horizontal surface, representing a
virtual camera is used to change the 3D view on a vertical screen.

4.2.3.4 Architectural Treats

Distributed Architecture. In order to work in different interconnected devices, the
framework need to implement a distributed architecture. The framework aims at relieving
users from the burden of managing low-level details, as in this case, the communications
between heterogeneous entities. Therefore, it must provide an abstraction layer for
connections and communications that presents a common external interface for all the
device. Users should only be aware of the content of the messages and not the way
they are sent or received, neither how connections are established and managed over
different communication channels (e.g., TCP, UDP or Bluetooth). Devices discovery
should be automatically handled by the architecture, again with the objective to ease
the programming of the ubiquitous system by making low-level communication details
transparent to the user. Communication channels must be full-duplex: they are used to
interchange messages to handle to network configuration between devices in the ecology
but also to carry feedback information from one device to another. For example, the
Don’t Touch Me presents a scenario in which an input device is used to provide haptic
feedback through a vibro-motor when a cursor passes over a sensible area of a display
device. Having a full-duplex connection between devices makes it possible to implement
this kind of events, where an action on a device can activate feedback on another one.

Common Communication Protocol. A comprehensive framework needs to establish
a common protocol that supports communication of all required information between the
hardware layer and interaction layer of a ubiquitous interactive system. This provides
interoperability between different devices. The protocol must address the need of
ubiquitous environments: it has to be flexible, extensible, it must support data generated
by all the hardware devices in the Input/Output Hardware category and it has to facilitate
the implementation of different interaction modalities (see Interaction Modalities category
on page 84). TUIO [Kaltenbrunner and Bencina, 2007] is an example of such a protocol,
developed for multi-touch and tangible interaction. Six respondents to the interviews

4.2. Requirements for a Framework Supporting Ubiquitous Interaction 87

identified the need of a communication protocol as a fundamental aspect to take into
account for a framework to ease the prototyping of ubiquitous interaction.

Expandible/Extensible Architecture. The architecture must follow the design prin-
ciple of separation of concerns. It needs to be separated into distinct layers, such that
each layer addresses a separate concern. The value of separation of concerns is simplifying
development and maintenance of computer programs. When concerns are well separated,
individual sections can be developed and updated independently. This enable seamless
extensibility of the framework. Two examples of this approach in the case of ubiquitous
interaction are Mt4j [Laufs et al., 2010] (see Figure 4.8) and the TUI-VR framework
[Israel et al., 2011] (see Figure 4.9). The two frameworks clearly presents separation
of concerns, having a layer that handles physical connections with devices by means of
dedicated drivers, a layer for the abstraction of physical devices, a layer where the input is
processed (Input Processing Layer in Mt4j and TUI-object abstraction layer in TUI-VR)
and an presentation layer (TUI Application in TUI-VR). An ubiquitous environment is
made of loosely-coupled components [Krafzig et al., 2005]—that is, the devices that
compose the ecosystem have, or makes use of, little or no knowledge of the definitions of
other separate components. The interface between loosely-coupled independent devices
should not include any component-specific behavior or state. It can include the data
model of the information exchanged between the components, and the role played by each
component. The data model is the only invariant (if any) in a loosely coupled system and
should be primary, because it allows to implement device abstraction (Device Abstraction
requirement in this section) and to support third-party middlewares (Agnosticism of
Legacy Systems/Middleware requirement in this section). An event-driven architecture
(EDA, [Philip, 1998]) is a common way to implement data-oriented concepts. In an EDA,
loosely coupled components in a well distributed layered architecture process their data
in an asynchronous way. By installing conditional triggers, events are generated to signal
certain state changes. All components associated with a certain trigger are notified by
routing events through specific gateways based on their destination addresses. At the
destination the asynchronous events are stored in a FIFO-queue and then processed.

Device Abstraction. Several works highlights the need for hardware abstraction and
high-level interfaces to support the development of ubiquitous interactive systems [Israel
et al., 2011; Laufs et al., 2010; Taylor et al., 2001]. Device abstraction is the first
step toward the integration of heterogeneous devices. By providing an abstraction
layer, the different raw input data are converted into unified input events, following a
common data model. In this way the input will be handled by the other layers in the
architecture independently from the device that generated it. Abstraction also allows
seamless integration of new devices by providing abstract super classes of all the input
sources to be extended by adding the functionality specific to the new type of input. The

88 4. Exploration of the design space

Figure 4.8: MT4j reference architecture. Figure 4.9: TUI-VR reference architecture.

importance of device abstraction has been highlighted during the development of the
Don’t Touch Me system. As exposed in Section 4.1.1.1, changing the input device meant
to rewrite the implementation from scratch, even if the same sensor (the accelerometer)
was used. One of the interviewees (a developer at the Electrical Engineering department
at Universidad Carlos III de Madrid with an MsC in Electrical Engineering and several
years of experience developing embedded systems) reported on the same problem. He
was developing applications for augmented reality glasses and he complained that when
he needed to switch from the Arduino platform to IOIO17, in order to support Android
devices, he needed to completely change the implementation.

Different Data Streams. The architecture needs to manage data streams produced
by the different devices. Fusion techniques handle the synchronization of coreferenced
input events in multimodal systems. This consists of collecting and integrating data
from multiple complementary input streams into an accurate interpretation of the user‘s
intention. A simple example is Put that there [Bolt, 1980] in which the vocal command
put must be linked to two pointing events in the correct order to achieve the desired
representation. Fusion is one of the core properties of interaction in virtual environments,
as all input events must be interpreted with reference to the location of the user, the
interaction device, or both. Fission techniques handle the selection of appropriate output
channels for feedback and the construction and synchronization of output into a coherent
message for the user. Fission techniques are essential to ubiquitous applications that

17https://github.com/ytai/ioio/wiki

4.2. Requirements for a Framework Supporting Ubiquitous Interaction 89

output feedback to users via many different modalities, such as environments that employ
ambient media to display selected information to a user or devices such as the Nintendo
Wiimote with haptic feedback (vibro-motor). Data Fusion/Fission can be handled by
implementing timestamps in each I/O message as suggested by Taylor et al. [2001].

Agnosticism of Legacy Middleware. Middleware provides services to software appli-
cations beyond those available from the framework. Two of the interviewees explicitly
reported that they found crucial to allow third-party developers to implement their
solutions for input handling to be included as pluggable elements in the system’s archi-
tecture without changing the infrastructure. Middleware receives data (according to the
common I/O data model) from the abstraction layer and computes it independently of
the hardware. For example, a middleware for 3D hand tracking will receive depth data in
the same format from any depth camera supported by the framework. This will increase
the modularity of the system.

4.2.3.5 Developing/Coding

Common Programming Language. The framework must use the same programming
language for all its components and layers of the architecture in order to lower the technical
knowledge needed to program in a heterogenous environment, foster the integration of
different devices and allow the definition of a concise and unique API.

Familiar Development Platform. APIs should be embedded within a familiar platform
and language in common use so that people can leverage their existing knowledge and
skills [Greenberg, 2007]. The framework implementation has been developed in Java,
using the Processing platform, which is widespread adopted open source tool for creative
programming.

Low Viscosity of the Code. The infrastructure should facilitate iteration and exper-
imentation at both design-time and run-time— that is, to have low viscosity [Wilde,
1996]. At design-time, it is important to be able to test alternative solutions quickly for
rapid prototyping. At run-time, it is important to be able to accommodate unexpected
situations so that users are not hindered by the capabilities of the environment. Low
viscosity is characterized by flexibility, expressive leverage and expressive match.The
framework should make simple things achievable in a few lines of code, but also complex
things possible by adding design-preserving code to a system.

Hide Low-Level Coding Details. Compiling low-level information, such as the posi-
tion and information of a device into meaningful high-level information — for example,

90 4. Exploration of the design space

out of several possibilities, which device is a user trying to interact with — is a com-
plicated task. These tasks require a significant amount of mathematical knowledge
and programming time. To ease the development and support the rapid prototyping of
ubiquitous systems, the framework must hide low-level coding details by provide high-
level functionalities through its API. This includes also the way the framework manages
connections with the underlying hardware. One of the interviewees reported that:

there are various interfaces that can handle communication with hardware,
such as Arduino, that have standard libraries of doing this and thus helping
the procedure significantly. If not that lucky though and need to implement
the solution around a custom controller then it is quite time consuming to
get accustomed of programming the controller according to your needs. In
solutions where simple systems involve, like keyboard or mouse controllers,
then the difficulty gets substantially decreased

Greenberg [2007] suggests to "encapsulate successful design concepts known by the
research community into programmable objects so they can be included with little
implementation effort."

Programming Alternatives. An API is the main manifestation of the conceptual
framework and developers will use its specification to code the application. For this
reason it should be concise, easy to learn and provide a full and clear documentation,
including code snippets and examples. However, alternatives should be provided, such
as programming via hard coding, using a configuration file — for instance to define
components of an input device — and support user scripting. Visual programming tools
are recommended, to support users with low programming knowledge [König et al., 2009].

4.2.3.6 Application/User Interface

Real (e.g., haptic)/Digital(e.g., visual) User Feedback. The framework must
provide different feedback channels, taking into account that in an ubiquitous environment
the real and virtual world are intertwined. Bidirectional (duplex) interaction between the
physical domain and the digital model is a key factor in ubiquitous interaction, especially
when tangible user interfaces are employed. Where other framework concepts often
require collection of relevant data from different sources and transmission of feedback
data to various actuators, ubiquitous frameworks should encapsulate input and output
in a single software object in order to make it easy for the developer to implement a
physical/digital behavior.

4.3. Summary 91

Cross-Device UI. The user interface needs to be distributed in different devices that
form the ecology in a way to achieve seamless user experience across devices. A separate
language would be introduced to describe UI components; this language would then
be interpreted during run-time by the app taking into consideration what the device is
capable of and generating the required code. Typically a language of that kind is a XML
dialect, but there’s also a possibility to use for example JSON18. The whole purpose
of it would be to hide the specific implementations from the developer, so he could
concentrate on the actual UI building.

Storage and Replay of Interactive Sessions. The framework should therefore pro-
vide a log file mechanism, by which all messages in the session can be stored to file, and
then the session replayed or analyzed. Researchers might be interested in having a log
of the interactive session to study different aspects of social interactions in ubiquitous
settings [Coughlan et al., 2012] such as:

• Record user motion during human-factors studies.

• Store interactions between collaborating users to enable comparisons between
different sharing strategies.

• Capture a series of user motions and gestures to enable debugging of new interaction
techniques.

Easy Configuration of Input/Output Devices. The framework should provide meth-
ods to easily configure devices that form the ecology. A graphical user interface can
generate a configuration file with all the necessary information on the devices, hiding
low-level details to the user.

UI Widgets. Widgets must expose a common behavior to different input methods.The
application layer of the framework should provide predefined widgets as build blocks for
the user interface; they should be easy to customize or extend in order to implement
complex behavior. The users should also be able to implement their own widgets from
scratch.

4.3 Summary

In this chapter, the design space of ubiquitous interactive systems has been explored and
lessons learnt from the development of real applications have been reported. With these

18http://json.org

92 4. Exploration of the design space

experiences in mind and also grounding on the analysis of the state of the art, a set of
requirements has been defined for the development of a framework for ubiquitous systems,
which takes into account interaction between interconnected devices. The requirements
have been contrasted with the experience and needs of the possible stakeholders of the
framework and the original set of requirements have been refined according the analysis
of the interview with 10 participants, employing user-centered design techniques. The
final set of requirements reveals that a framework for ubiquitous interaction needs to
support a wide range of I/O hardware devices, which are also rapidly changing over the
time, as well as different interaction modalities. Support to heterogeneous devices implies
device abstraction mechanisms that allow to receive input from different sensors and send
output to actuators independently of the actual implementation. Device abstraction also
allows to define interaction modalities that are agnostic with respect of the underlying
input technology. The physical space is augmented with computational capabilities and
entities in the interactive space are expected to respond to spatial stimuli, thus they need
to be aware of the surrounding environment. Moreover, computation is not yet confined
in one single terminal, but it is distributed among the devices that constitute the ecology.
The definition and implementation of a distributed architecture is therefore mandatory.
The architecture is expected to feature a common communication protocol to guarantee
device interoperability and it needs to manage different data streams from all devices’
sensors. In order to ease the programming of ubiquitous systems, the framework needs
to expose a functional API that abstract from low-level details. Moreover, programming
alternatives such as configuration files or visual tools should be provided as well. From
the point of view of the application, the framework should provide mechanisms for
the easy configuration of input device and linking the behavior of devices to digital
elements. Predefined widgets and behaviors should be provided as well as the possibility
to seamlessly customize or extend existing functionalities. Different feedback mechanisms
need to be supported: ubiquitous environments create a bridge between the real and the
virtual world, thus bidirectional communications between physical and digital entities are
necessary that allow to generate both real (e.g., haptic) and virtual (e.g., visual) output.
Lastly, the framework should also provide storing facilities, because researchers might be
interested in having a log of the interactive session to study different aspects of social
interactions in ubiquitous settings.

5
Design and Implentation of the

Framework

Tat Tvam Asi.
— Chandogya Upanishad 6.8.7

In this chapter details about the architecture of the framework, its design and im-
plementation are given. The framework builds on the prior work of VRPN (see

description on Section 2.6.2), bridging the connection between the virtual and real world
by offering abstraction of input devices and a homogeneous data type hierarchy to define
the information exchanged by different devices. The same approach is also shared with
the Proximity Toolkit (Section 2.6.2). The Squidy Framework, OpenInterface and vvvv
(all of them described in Section 2.6.2) highlight the need to provide support to different
input devices, nevertheless they are based on implementations tailored on specific devices,
while the framework proposed in this dissertation adopts an abstraction of atomic com-
ponents, which also allows the definition of custom devices. The framework shares with
the ROSS API (Section 2.6.2) the configuration of the environment through XML files
and the use of OSC protocol to exchange data between different modules. In this stage
of the framework, spatial integrity of objects (in other words, the spatial interconnection
among objects, such as their absolute position in the environment or relative position
with respect other objects) it is only supported to a very limited extent, while it is a main
characteristic of Proximity Toolkit and ROSS. Full support to the spatial dimension will
be implemented in future works. The framework also builds on the reference architecture
of MT4j (Section 2.5.3) for the idea of unified input events and OpenNI (Section 2.5.2)
for the capability of managing data at a middleware level, independently of the underlying
implementation of input sensors . In the following sections of this chapter, the underlying
interaction model involving physical and digital elements is presented together with the
architecture of the framework. For each layer of the architecture, the contribution of the
framework with respect to the state of the art is highlighted and details of the current

94 5. Design and Implentation of the Framework

implementation are provided. Finally, a table is presented that resumes the compliance
level with the requirements specified in Chapter 4.

5.1 Interaction Model

In Chapter 2.1 the scenario of a device ecology was introduced, being characterized
by the presence of "collections of devices interacting synergistically with one another,
with users, and with the Internet". It was explained how technologically-enhanced
spaces present socio-technical features and it was pointed out that this dissertation
only addresses the technical part, which is needed to implement the rest of socio-
technical implications. In particular, it focuses on managing interactions among devices,
as for example communications and spatial relationships between them and also the
I/O capabilities they offer to the user. To this end, several input modalities — touch,
touchless and tangible — have been taken into account in order to enable different input
modalities. On the other hand, the framework does not cover how users interact with the
ecosystem by employing different interaction techniques, neither the technology-mediated
human-to-human interactions that belong to the social dimension. Figure 5.1 shows the
main components of the framework that are used to model interaction in ubiquitous
spaces.

Figure 5.1: Main components of the framework in a real scenario.

The first element is the Environment class that represents the 3D space where all the
interactions between devices in the ecology take place. Central in the proposed model is
the distinction between physical objects (PObject) and tangible objects (TObject).

5.1. Interaction Model 95

A PObject is everything inside the Environment that shows only physical affordances,
for example a normal table, a pen or user’s hands or body. They are not input devices
but they have physical properties such as dimensions or position that can be exploited
to enable interaction inside the Environment. A PObject is passive and its interaction
within the ecology is enabled by TObject sensing mechanisms.

A TObject is an object with physical affordances enhanced with computational
capabilities that can be used as an I/O device, for example a multi-touch interactive
table, a Wiimote, an iPad or a Kinect.

The digital counterpart of PObject and TObject is an object of the digital world
(DObject), which can be a digital representation of the physical object, thus tightly
coupling the physical and the digital worlds, or a digital element with its own properties
that can be managed exploiting the input capabilities of a TObject. An example of the
latter type of DObject is a digital image that can be moved, rotated or resized using
a touch-enabled display screen. The model proposed by the framework represents a
multi-device, ubiquitous extension of the MCRpd framework from Ullmer and Ishii [2000]
(Model, Control, Reprentation-physica and Representation-digital), which in turn is the
adaptation to TUI of the Model-View-Controller model (MVC) for standard GUI. In

Figure 5.2: MCRpd interaction model for Tangible Interaction. Source [Ullmer and Ishii, 2000].

MCRpd (Figure 5.2):

1. Physical representations (rep-p) are computationally coupled to underlying digital
information (Model). The central characteristic of tangible interfaces is the coupling
of physical representations to underlying digital information and computational
models. A range of digital couplings is possible, such as the coupling of data,
operations, and property modifiers. For instance, the metaDESK [Ullmer and

96 5. Design and Implentation of the Framework

Figure 5.3: Physical icons in metaDESK are coupled with digital information (e.g., the map of the
MIT campus).

Ishii, 1997] tabletop system uses a physical icon representing the dome of the MIT
university to display the map of the campus (Figure 5.3).

2. Physical representations embody mechanisms for interactive control (Control).
The physical representations of TUIs serve simultaneously as interactive physical
controls. Tangibles may be physically inert, moving only as directly manipulated by
a user’s hands. For instance, in the activeDesk [Fitzmaurice et al., 1995] small cubic
objects (electronically connected with the system with cables) were employed as
controls in a drawing application. In this way, users could control virtual objects not
only by fingers, but also through physical elements that acted as handles. Tangibles
may also be physically actuated, whether through motor-driven force feedback
approaches or by induced approaches. An example of motor-driven approacher
are the Height-Adjustable Widgets [Mi and Sugimoto, 2011], that are capable of
change their shape according to digital inputs.

3. Physical representations are perceptually coupled to actively mediated digital
representations (rep-d). Tangible interfaces rely on a balance between physical
and digital representations. Although embodied physical elements play a central,
defining role in the representation and control of TUIs, digital representations often
mediate much of the dynamic information provided by the underlying computational
system. For instance, in the reacTable* [Jorda et al., 2005], while the semantics of
physical objects define audio synth objects (e.g., metronomes, filters, modulators,
etc.), the topology resulting from the interaction of such physical objects is displayed
on the multi-touch tabletop surface (Figure 5.4). Users can interact directly with
the digital representation and modify attributes of the physical objects and thus
changing their digital behavior.

5.1. Interaction Model 97

Figure 5.4: Physical objects and digital representations in the reacTable*.

Based on the MCRpd concept, a similar model for device ecologies has been developed
to organize the core Environment, PObject, TObject and DObject classes, in a single
abstraction. In the original MRCpd model, physical representation is strongly coupled with
the digital representation of the system and the tangible objects themselves represent and
control the state of the system. Ullmer and Ishii [2000] stated that "even if the mediating
computers, cameras, and projectors [...] are turned off, many aspects of the state of
the system are still concretely expressed by the configuration of its physical elements".
This condition has been relaxed, in the proposed design, because the objective is to
model any kind of object in the environment that does not necessarily represent a state
of the system. Moreover, MRCpd has been developed only for tangible systems. Even if
tangibility of devices and their relationships with the digital world are an important aspect
of the framework, tangible interaction only constitutes one of the possible interaction
modalities of a technologically-enhanced space. Therefore the framework must be able
to model a broader spectrum of configurations in which, for example, tangible objects do
represent directly the state of the system, but also scenarios in which they are simply
used as I/O devices — imagine the case in which the touch screen of an iPad is used to
control a slide presentation projected on a large vertical screen.

Figure 5.5 represents the framework interaction model for device ecologies and in
Figure 5.6 on page 99 a portion of the UML class diagram for the model itself is shown.

As introduced above, all the interactions take place inside a space, modeled by
the Environment class. This class defines the boundaries of the 3D interactive space
and provides mechanisms for the tracking of objects (including users) and their spatial
relationships in order to enable interactions based on spatial information (e.g., proxemic
interactions [Marquardt et al., 2011]). A TObject bridges the gap between the real and
the digital world: it provides means to get input from the real world such as sensors and
physical controls (TInput) and produces output of different kind: audio, video or physical

98 5. Design and Implentation of the Framework

Figure 5.5: The framework interaction model for device ecologies. Core classes (Environment,
PObject, TObject and DObject) and their interconnections are depicted.

through actuators (TOutput). Associated to the TObject can also be digital input
controls (DInput) such as, for instance, virtual buttons, virtual sliders or virtual knobs.
DInput represents the digital equivalent of the physical controls implemented by TInput.
Users can directly manipulate a digital object (DObject) by means of physical controls
and, moreover, the framework allows for another level of input exploiting the graphical
elements of the user interface. The DInput is independent of the input modality, so that a
user can interact with a digital knob by pressing and rotate the finger on a touch-sensitive
surface or performing the in-air gesture of rotating the wrist. The TObject could also
provide a physical knob and have the three different implementations to produce the same
action: for instance modulate the frequency of an audio track. Model (Figure 5.5, as in
MRCpd, is the digital information of the system, but in this case it is distributed over
the different devices of the ecology. Devices are interconnected one to the other through
a network and, therefore, they can exchange information to generate interactions that
are triggered both by their physical state and the state of their digital representations
(DObject). A PObject, which is passive, is tracked by environmental sensors or by the
sensors on a TObject. For example a user’s hand can be tracked by a depth camera
placed in a room thus enabling touchless interaction with display screens and, at the same
time, this hand can be used to originate touch input on the screen of a tabletop device.
In this way, objects in the environment are not only coupled with digital information in

5.1. Interaction Model 99

Fi
gu

re
5.
6:

UM
L
Cl
as
s
di
ag
ra
m

fo
rt

he
pr
op

os
ed

in
te
ra
ct
io
n
m
od

el:
TO

bj
ec
t.

I , . , -.:i I

r-

¡-

.
~ i '1
~ ¡¡ • l.
I ... ~~., .. ~~

.ulhh

r----, , , , , , , , · , ;, i L __ _
e'
li.' .' · ' · , ,

I<---~ , ,
L __ _ ir ." •• • •

100 5. Design and Implentation of the Framework

one single spot, but the same physical or digital action can activate physical or digital
behavior of other TObject in the environment (in Figure 5.5 it is represented by the right
side of the diagram). A TObject, as well as a PObject, can also have a surface (see
TSurface in Figure 5.6). The difference is that the surface of a TObject can have digital
capabilities, for instance it can be touch-enabled like in tabletop devices or tablets, while
the surface of a PObject has only physical properties. A TSurface is a 2D version of
the Environment and generate a nested coordinate space with respect to its father. For
instance, a physical puck on the surface of a multi-touch tabletop will have 3D spatial
coordinates with respect to the Environment and 2D coordinates with respect to the
tabletop.

Two examples are now introduced to further clarify the interaction model.

Example 1. Let’s consider the scenario depicted in Figure 5.7 and its schematic
representation in Figure 5.8.

Figure 5.7: Schematic setup of Example 1: the motion sensing capabilities of an iPad (accelerometer)
are used to change the inclination of a physical board (implemented with a Lego Mindstorms NXT
2.0 set) and a digital horizon widget displayed on the screen of a laptop device.

The TObject A, an iPad is employed to change both the inclination of a physical
surface — implemented by the TObject C using a Lego Mindstorms NXT 2.0 set1 — and
a digital horizon widget (DObject D), which is displayed in the TObject B, a laptop. The
iPad (TObject A) features a motion sensor input, an accelerometer (Accelerometer:TInput

1http://mindstorms.lego.com/en-us/default.aspx

5.1. Interaction Model 101

Figure 5.8: Schematic setup of Example 1.

in Figure 5.8). The information of the sensor is processed to get the acceleration of the
device along the x-axis and then it is sent to both the laptop (TObject B) and Lego
Mindstorms board (TObject C), which are interconnected with the iPad. On the laptop
the digital horizon widget (DObject D) is displayed, which is coupled with the iPad. The
data received from the accelerometer of the iPad will cause the digital horizon to change
its inclination. On the other side, the Lego board is also coupled with the iPad: the
acceleration data will cause the motor (Motor:TOutput) to move back or forth according
to the acceleration force and, therefore, change the inclination of the physical surface.

Example 2. Let’s now consider the scenario in Figure 5.9 and its schematic represen-
tation in Figure 5.10. When the user touches with his finger the screen of the iPad
(TObject A) over the virtual button (Dinput B) this causes the color of the 3D virtual
box (DObject C) to change from red to green. The 3D box is displayed on the vertical
display screen of a desktop computer (TObject D). This example shows how virtual
controls can be used to change the behavior or properties of digital objects displayed on
different devices. In another scenario in which, for instance, the 3D box would have been
displayed directly on the iPad screen, we would have not needed the virtual button and
have the color to change by directly touching the box graphical representation.

102 5. Design and Implentation of the Framework

Figure 5.9: Scenario for Example 2: touching the display of the iPad on the virtual button will
make the digital 3D box to change its color.

Figure 5.10: Schematic setup of Example 2.

5.2. Architecture 103

5.2 Architecture

In this section the architecture of the framework is presented, as showed in Figure 5.11,
in the next page. The architecture is based on a four layer structure, following the
rationale of the architectures proposed by Echtler and Klinker [2008] and Laufs et al.
[2010]. Figure 5.11 highlights:

• In dark blue, the original contributions of the framework with respect to each
layer of the architecture. Each module has been implemented in the prototype.
The evaluation is reported in Chapter 6.

• In light green, main objects of the model within the rationale of the architecture.

• In gray, existing modules form the literature that have been included as is in the
implementation of the architecture to demonstrate its feasibility.

Hardware Abstraction Layer. This layer allows to abstract from the underlying
hardware I/O devices. At this level the TObjects that constitute the ecology are defined
in terms of their I/O capabilities and raw input data are abstracted according to the data
types defined by the framework. Abstract data types are described in details in Section
5.2.1.

Input Transformation Layer. This layer implements mechanisms for the fusion of
input and it provides unified data to be processed. Analyzing and interpreting user input
are very important for a framework focused on input from different possible sources. In
order to have data to be coherent a transformation has to be performed on the low-level
data, which is still in device coordinates. For instance, depending on the type of sensor
used, a simple scaling or a perspective transformation may be necessary. Moreover, it is
important at this level to provide uniform input by fusioning data from the same device.

Input Interpretation Layer. In this layer, data is interpreted in order to produce
events for the Application layer. Framework events include spatial relationships between
TObjects and PObjects and TObjects direct input. In this layer, the term gesture is used
in the widest possible definition as any kind of physical action that activates an input to
the system. For instance, shaking a handheld device can be a gesture but also touching
the screen of a multi-touch table or pressing a physical button on the Wiimote. Different
middlewares that are compliant to the data types and protocol defined by the framework
can be implemented at this stage thus providing the required input interpretation.

104 5. Design and Implentation of the Framework

Figure 5.11: The architecture of the framework.

Application EJ [DoruEeT 1

ltNPUT EVENT

Input Interpretation

Gesture Interpreter

Spatial
Relationships

Input Transformation

Filtering

~------,

Fusion
Engine

Hardware Abstraction

VO Hardware

o UNIFIED U INPUT DATA

Abstraet
Data Types

TOBJECT

o
e
--1
"ti
e
--1

5.2. Architecture 105

Application Layer. At the application level the user interface is rendered on the devices
of the ecology and the input is collected to activate the desired behavior. The input
can generate a change in the properties of the digital representations of TObjects, for
instance a box of a virtual world to change its color or position, but also activate digital
controls (the digital counterpart of TControl in Figure 5.6), such as virtual buttons.

5.2.1 Hardware Abstraction

Sensors and actuators are viewed as a bridge between the real and the digital world, and
the framework abstracts from the low-level details of specific components. In this way
it can provide unified access to the hardware, independently of its implementation or
communication protocols. The framework aim at giving access to sensors and actuators
by means of a unified, high-level library that supports the rapid prototyping of interactive
systems and the reuse of software components in different applications. Conversely
from existing solutions (e.g., [König et al., 2009; Laufs et al., 2010; Wu et al., 2012]),
abstraction is provided at atomic level, considering sensors and actuators as elemental
components. A TObject is therefore a composition of sensors and actuators (as showed
in Figure 5.6), which provides the means to generate input (sensors) and produce output
in the real world (actuators). For instance, an iPad is a TObject that features:

• Input, a 197x148mm touch surface, a 3-axis accelerometer, a microphone, one
physical button and three physical switches

• Output, two speakers (left and right) and a 197x148mm display surface.

Each TObject is defined by an XML file in which a list of sensors and actuators is
provided, together with the communication capabilities of the object (e.g., bluetooth or
network). Instances of TObjects are generated automatically from the XML though, in
the current implementation they can be generated programmatically from the code. In
Figure 5.12 the structure of the XML file corresponding to each TObject is showed.

The main tag is tobject and it represents the root of the XML document: its attributes
are presented in Table 5.1.

Attribute Type Description
name String The name of the TObject.

id String A unique identifier for the TObject used by the framework.

Table 5.1: Attributes of the tobject tag.

106 5. Design and Implentation of the Framework

Figure 5.12: The structure of the XML file corresponding to a TObject.

5.2. Architecture 107

The connection tag is used to abstract object connection channels. In this way
developers do not need to care how devices communicates. At present time two methods
are implemented, bluetooth and network. This tag can be used inside the main tobject
tag, but also each component of the TObject can present its own connection interface.
This functionality of the framework has been implemented to provide a tool for the
rapid setup of devices with sensors and actuators from different sources. For instance,
a designer might want to create a setup with different interconnected tablet devices,
such as an iPad. They also want to extend iPad interactive capabilities with an ambient
display let’s say, in this simple scenario, a LED — the simplest actuator to provide visual
output. They can build their LED actuator with the Arduino platform, for instance, and
provide the component with a bluetooth interface. The main TObject, which in this
case is made by the combination of all the iPad sensors and actuators plus the new LED
component, will expose the wifi network connection from the iPad to the outside, in
order to communicate (send and receive events) with other devices in the ecology and
use the bluetooth connection of the LED component for internal communications. From
the outside, for instance another device in the ecology, access to single components of
the TObject is mediated by the TObject itself that receive the event that activate, in
this case, the LED actuator. The other devices do not need to be aware of internal
communication channels. Moreover, by defining internal connections in the XML file
allows developer to access any component of the TObject using the same interface,
regardless of the implementation. TObjects handle internal connection automatically and
developers do not need to instantiate them. In Table 5.2 attributes of the tag connection.

Attribute Type Description
type String The connection type. Implemented types are network or

bluetooth.

address String The address of the connection (bluetooth or IP).

port Int The port of the connection. Only for network connection.

Table 5.2: Attributes of the connection tag.

Each TObject has a position (tag position), specified in terms of x, y and z coordinates
of the Environment and may optionally has a location (tag location), which is identified by
the x and y coordinates of a TObject with respect to a surface in the environment. The
dimension tag represents the 3D bounding box that contains the TObject. Optionally, the
TObject can also have a surface that can be used as a spatial reference frame for nested
objects. In this implementation only planar surfaces are supported and no references have
been implemented regarding its spatial position inside the TObject. As showed in Figure
5.12, inputs and outputs are defined in terms of:

108 5. Design and Implentation of the Framework

• TInputs, which can be sensors or physical controls.

• TOuputs, which can be different type of actuators providing visual, auditory or
physical feedback.

Both tinputs and touputs components, as reported above, may present a connection
tag, that indicates the type of connection for internal communications between com-
ponents of the same TObject. At this stage of framework development the following
components have been implemented:

• Sensors: depth and RGB camera of the Kinect, 3-axis accelerometer of the iPad,
Wiimote and Arduino, touch screen of the iPad.

• Controls: Physical buttons of the Wiimote

• Actuators: LED for the Wiimote and Arduino, Wiimote speaker, Wiimote and
Lego MindStorm servo motor.

Finally, each TObject has a list of pairs (tag pairs) that indicates the other devices in
the ecology that are connected with it and are able to detect spatial relationships. The
XML file that describe a PObject in the environment is limited to the physical tags of
position, location and dimension, since PObjects have no digital interactive capabilities
and are used only to establish spatial relationships in the environment.

Client/Server architecture. Each TObject is modeled according to a Client/Server
architecture (Figure 5.13). Once connections between TObjects are established, according
to the XML configuration file, a TObject can register to listen for events produced by
other TOBjects in its list of pairings. This mechanism implements the event-driven
pattern of the framework (see Section 5.2.5). Each TObject in the environment is
connected to the environment server that maintain the list of all the interactive and
static objects tracked in the space and manage the establishment of connection between
them and initialize handlers to monitor relationships between objects.

Abstract Data Types. As mentioned in Chapter 1 in order to unify heterogenous I/O
devices in a unique framework and define middlewares for agnostic input management, a
common language is needed to allow data exchange among components independently
of their implementation. The foundation of such unification has been given, in this work,
by the generalization of input devices from Wallace [1976], which as also been used
for the same purpose in other projects such as the Squidy library [König et al., 2009].
Wallace [1976] tried to specify "a set of virtual devices which appear to be complete and
“machine independent”, and to simultaneously allow reasonable preservation of device
and program power, efficiency, and flexibility". In particular he identified a five distinct
virtual devices:

5.2. Architecture 109

Figure 5.13: Client/Server architecture of TOBjects.

• Valuator. It is a one-dimensional value within the real vector space. For exam-
ple, rotating a potentiometer sends discrete values whereas the vector increases
when rotating clockwise and decreases when rotating counter-clockwise. A linear
prototype would be a linear slider component.

• Locator. It provides position and orientation in a vector space. This can be a two
dimensional vector in its primitive representation (e.g. a location of a touch point
on a planar display). Furthermore, multi-dimensional values are possible such as
a 6DOF vector including x-, y-, and z-axis value plus the three rotational values
pitch, yaw, and roll around the 3d location.

• Button. It represents boolean states and the like. Values such as true/false, 0/1,
and on/off are potential values of a button device . The most popular device
equipped with button devices is the computer mouse. Several mouse buttons
response to user input such as “press” or “release”.

• Keyboard. A keyboard device is a sequence of ASCII characters. Each sequence
can be terminated by a particular character sequence such as the zero-byte in a
null-terminated string. The prototype of a keyboard device is the keyboard as input
device.

• Pick. It was developed in response to users’ need to point at displayed objects
created during execution. A sampling of a pick produces a reference to a graphic
object currently being pointed at. The prototype pick is the stylus IR pen.

110 5. Design and Implentation of the Framework

As a consequence of the work of Wallace [1976] it is possible to exploit the semantics of
virtual devices to unify heterogeneous devices, toolkits and frameworks into a generaliza-
tion of various kinds of input and output data to a hierarchy of well-defined data types.
The major benefit of abstract data types is that a unique definition of devices input and
output data allows the implementation of input agnostic middleware as reported in Input
Interpretation section. The data types offer a high-level encapsulation of atomic data
types defined by particular programming languages and thus provide semantically bundled
data container that make easier for the developer the routing of low-level data, which
can be error-prone. Moreover, it offer the building block for the cration of a data-flow
visual programming language, as reported in future works (see Chapter 7). The data
hierarchy of the framework is based on the previously introduced primitive graphic devices
and the hierarchy proposed by König et al. [2009]. The original contribution of Wallace
[1976] has been adapted and extended in order to model the type of data produced by
actual ubiquitous devices and, hopefully, to be powerful enough to model future device
implementations. The data model is reported in Table 5.3. The Value data type, which

Abstract Data Type Dimensions Prototype Device

Value
1D Potentiometer
3D 3-axis accelerometer

Location
2D Touch surface
3D 3D pointer
6D Wiimote

Choice Button

String
1D RGB camera
2D RGB + Depth cameracamera

Pick Mouse pointer

Table 5.3: Abstract data type hierarchy. The first column presents the abstract data type, the
second column an example of a multi-dimensional extension of the data type and the third column
an example of a device generating such input.

originally was used to model only one-dimensional discrete data, has been extended to
multiple dimensions in order to, for instance, model 3D values such as the input provided
by a 3-axis accelerometer. Location is mainly used to represent the location of objects
(both TObjects and PObjects in the environment space. Through Location data spatial
relationships are computed as showed in Section 5.2.3. Original Button device takes
the form of Choice data in the framework, to model binary input. Keyboard has been
replaced by String data type. A string is a sequence of characters or any kind of data and,
therefore, is exploited in the framework to model any input device that generates an input
stream of any kind. It can be, for instance, a RGB camera producing a stream of bytes
representing an image or a RGB plus Depth camera, such as the one provided by the
Microsoft Kinect, which generates a 2D stream of RGB data plus the depth information
associated to any element of the RGB stream. The Pick data is implemented as a

5.2. Architecture 111

reference to an object being selected. Pick is not directly used in current implementation
but it can be useful in a variety of future situations. For example, "the item picked is
automatically visually reinforced, as by brightening or flashing" Wallace [1976], thus it
can be useful to implement visual feedbacks of a selection. Although Pick data type
can be implemented using Location data, we believe it is useful to have reference data
to be logically separated from location data. In the same way, the framework provides
digital controls, along with physical ones, and digital objects (DObject), the same data
type hierarchy is also used for the information generated by such virtual elements. For
instance, a virtual button will generate date of the same Choice type of a physical button.
Real and virtual input is therefore unified into a common data model and architecture.

Communication Protocol. TObjects events, such as the input produced by sensors
and controls, are reported via the TUIO v2.0 protocol. TUIO CTL messages are used to
this end since, as described by the specifications2: "The CTL message can be used to
transmit additional control dimensions that can be associated to an existing component
instance, such as a token with an incorporated pressure sensor or for example. The
variable length list of floating-point values, encodes each individual control dimension
in the normalized range from -1.0f ... 1.0f. An embedded three-axis accelerometer for
example can be encoded using a CTL message with three control dimensions, providing
three floating-point attributes after the associated session ID". The use of the protocol is
completely transparent to the developer, who only needs to specify the sensor or control
id in the XML descriptor. Also TUIO DAT messages are used to send input events in
case of more complex data, as for example the fusion of different sensor input for the
same TObject.

5.2.2 Input Transformation

In this layer, data from the underlying hardware is processed before it reaches the client
side of other TObjects that are connected. Here, data processor can be implemented
as proposed by Israel et al. [2011]. In the current implementation of the framework, for
instance, a Kalmann filter [Welch and Bishop, 1995] has been implemented to perform
smoothing of data. The fusion engine is an important module of any multimodal system
for it is in charge of managing input from different source in a unique frame. For
instance, time synchronicity among input modalities is particularly problematic since the
interpretation might vary depending on the time at which modalities are used. We do not
directly address the problem of input fusion in this dissertation, which is object of active
research in multimodal human-computer interaction. Only a simple time synchronization
mechanism has been implemented based on the timestamp of the event generated by each
sensor of a TObject. Figure 5.14 depicts the actual implementation. Depending on the

2http://www.tuio.org/?tuio20

112 5. Design and Implentation of the Framework

Figure 5.14: Input Transformation mechanisms in a TObject.

needs of the Input Interpretation level, input can be grouped into a set of heterogenous
data, depending on their timestamp, or used alone. For instance, imagine to have a
TObject that features an accelerometer. If at the Application level we are interested in
getting the accelerometer information to have a digital object changing its inclination on
the X axis (pitch), we can directly process accelerometer data alone. Fusion mechanisms
at Application level, for data from different TObjects have not been fully implemented.
Again, a fixed time synchronization mechanism is used based on a window of 25 frame
per second. In this way it is possible to capture events such as: change the pitch of the
DObject A if and only if the TObject B is at less than 1m away from the PObject C,
using the input from its embedded accelerometer. Distance information can be captured
from an environmental sensor and the spatial relationship event is computed as reported
in the next section.

5.2.3 Input Interpretation

In this level generic input from TObjects is interpreted in order to generate more complex
input that include spatial relations between objects in the environment and gestural
commands. Spatial relationships allow to implement proxemic interactions as depicted by
Marquardt et al. [2011]. In the current implementation of the framework, the spatial
relationships supported are reported in Table 5.4, grouped in the three categories of
Topological, Directional and Distance according to Freeman [1975]. Such relationships
are computed by using both information from the environmental sensors and the sensor
on each TObject. For instance, two Wiimote have been used to track objects in a 3D
space. Objects were equipped with two LED to enable tracking. People have been
tracked using a Microsoft Kinect as well as in the case of hand movements.

5.2. Architecture 113

Category Relation Description

Topological
contains(a,b) a ∩ b = b
within(a,b) a ∪ b = a
touches(a,b) a is touching a, that is distance(a, b) ∼ 0

Directional left(a,b), right, onThe-
Back, inFront, super, sub

Specify where the object a is located outside of
the reference objects b.

pointsToward(a,b) True if a is pointing in the direction of b, that is
if the infinite pointing ray from a intersects b.

Distance distance(a,b) = dis-
tance(b,a)

Distance between a and b

Table 5.4: Spatial relationships between two entities a and b.

Interpretation of gesture from input data has not been implemented in the framework,
but the architecture allows for different middlewares to be used at this level to generate
gestural interaction event. The objective of the gesture interpretation module in this layer
is to allow the creation of device agnostic interaction, that is the input event is generated
independently of the underlying hardware. The implementation of such middlewares that
leverage on the abstract data type model has been left for future work.

5.2.4 Application

At the Application level different digital entities have been implemented that represent
the virtual complement of physical objects. The main Environment class is implemented
through the DSpace class, that is virtual 2D or 3D space where digital objects exist. For
example in a tabletop device a 2D DSpace can be defined that represents the digital
surface of the table and elements of the interface are displayed. Two classes of digital
entities that populate the digital world are provided by the framework, which have already
been described in this chapter:

• Digital Objects (DObject) are 2D or 3D objects of the user interface. They
can be directly linked to aTObject so that any physical input can correspond
to a digital behavior of the DObject. At the current stage basic objects have
been implemented such as primitive 2D and 3D shapes. Moreover, in the case of
2D visualization, a number of multimedia objects are supported, such as images,
videos or interactive maps. Such as real objects, digital objects can react to
spatial relationships. The same rationale proposed for spatial relationships between
TObjects has been reproduced for DObjects in the virtual world. Just as these
spatial relationships among TObjects produce input events that affect the behavior
of other TObjects (e.g., using actuators) or their digital representation, spatial
relationships among DObjects can cause output both in the digital and real world.

114 5. Design and Implentation of the Framework

• Digital Inputs (DInput). Just like real world input devices (sensors and controls),
virtual input devices have been implemented that take the form of DControls that
is a subclass of DInput. A DControl is the virtual representation of a physical
control device, such as a button or a slider. A DControl is activated by the input
from a TObject and, as explained in the previous section, allows to build hardware
agnostic input mechanisms. Example 2 in Section 5.1 presents a scenario that
illustrates how virtual input is implemented and used for interaction.

5.2.5 Event propagation

The framework provides four levels of events:

• The events produced by sensors and controls of a TObject. These events are
generated at the Input Transformation layer.

• The events produced by Spatial Relationships or Gesture Interpretation modules in
the Input Interpretation layer.

• The events produced by digital controls (DControl). Such events are fired by input
events of the two previous types.

• The events produced by spatial relationships between DObjects. These events can
be fired by any of the three previous types.

5.2.6 Implementation

The framework has been implemented in form of a development API offered via an
object-oriented Processing and Processing.js library. The programming language used is,
therefore, Java and in case of iOS devices, Javascript. Processing sketches run on any
TObject that needs to display the user interface and process the input from connected
TObjects. Essentially, the API allows developer to define the entities that constitute the
ubiquitous space and their relationships. In the next sections the implementation at each
level of the architecture is presented in details and examples are provided to show how
the API is used to program desired behaviors.

In order to clarify the implementation of the framework, a working example is now
introduced.

A sample scenario. Andrea wants to use the framework API to develop the following
interactive scenario: he wants to use the motion sensing capabilities (accelerometer) of
an iPad (TObject A) to rotate a virtual cube displayed on a vertical digital screen surface

5.2. Architecture 115

on the wall (TObject B) and he wants this happens only when the Wiimote is at less
then 1 meter from the surface. In this case the cube is colored in green and reacts to
Wiimote input, otherwise it will be colored red and do not receive any input command.
In Figure 5.15 parts of the Processing source code to is showed that runs on the machine
connected to the digital screen display (the TObject B).

Figure 5.15: Part of the source code for the scenario.

Let’s assume that the environment server is running, the XML description of all the
involved entities — the two TObjects A and B — has been loaded and the connection
with A and the server has been already established. B extends the TObject class. The
init() method initialize B’s client and server modules (line 1). Andrea will then write the
code to connect B to the server (line 2-3): in this way the server will also start to track B
position in the physical space. Then, with lines 4-5, the connection with the iPad will be
made. Line 6 creates the object to define a spatial relationship between entities, in this
case TObject A and TObject B. In lines 7-8 the handler to manage event message are
established: the first one (line 7) will manage distance events while the second one (line
8) will manage accelerometer events fired by TObject A, which has been instantiated
in line 4. Lines 9-21 define the callbacks for the event handlers: lines 9-15 describe the
behavior of TObject B when receives distance event and lines 16-21 acceleration event.
For instance line 10 checks if the distance is less then 1 meter (1000 millimeters) and
then triggers the associated behavior as described in this scenario. The same happens
for the acceleration events callbacks: first it checks the source of the event (line 17)

116 5. Design and Implentation of the Framework

because the same TObject could have registered for the same event type from different
sources. In line 18 the data from the sensor is got according to the abstract data type
(an accelerometer returns Value3D data objects).

5.3 Compliance with requirements

In Table 5.5 requirements for the framework, identified in the previous chapter are
reported together with a description of how they have been addressed in the design of
the framework and its implementation or if their inclusion has been left for future works.
The following color code has been used for compliance levels: (a) green means fully
addressed, (b) yellow: partially addressed and, (c) red: left for future works.

Category Requirement Level Description
Input/Output
Hardware

Support Het-
erogeneous
Input/Output
Hardware

Though the framework has been designed to support
multi-touch, tangible, touchless and traditional de-
vices, including sensors and input from visual markers,
current implementation is limited to a small set of
sensors and devices, as reported in Section 5.2.1. The
modular architecture and the abstraction provided by
the Hardware Abstraction Layer and the data type
hierarchy are thought to allow the implementation of
any current device.

Interaction
Modalities

Support Heteroge-
neous Interaction
Modalities

The support of different interaction modalities has not
yet been fully implemented though the architecture
allow for the seamless integration of middleware to
manage input from heterogeneous devices. Multi-
touch interaction is supported only to basic touch
inputs and gestures are not allowed in the current
implementation.

Interactive
Space

Spatial Awareness Entities (devices and users) are identified and tracked
in order to fully support spatially-based interaction.
Entities are aware of their location and the location
of others.

Multi-Surface En-
vironment

Ubiquitous environments are characterized by the
presence of multiple surfaces that span across dif-
ferent objects and devices. Surfaces can therefore
provide digital behavior or not. Both cases are sup-
ported by the framework: in the case of interactive
surfaces they can be used to visualize digital content
and also as a means for input through touch or tan-
gible interaction. Physical surfaces are exploited in
order to enable proxemic interaction.

Architectural
Treats

Distributed Archi-
tecture

The framework provide a distributed architecture
that allows for full-duplex communication between
connected devices.

5.3. Compliance with requirements 117

Common Commu-
nication Protocol

Device interoperability is achieved by exploiting the
TUIO protocol for exchanging messages between en-
tities.

Expandible / Ex-
tensible Architec-
ture

The abstract data model allows to implement new
composite devices. The event driven architecture has
been developed to allow users to define specialized
input event that extend predefined classes.

Device Abstrac-
tion

Device Abstraction is achieved in the Hardware Ab-
straction layer by means of the mechanisms to define
interactive objects as a composition of I/O compo-
nents and the abstract data type hierarchy.

Manage Different
Data Streams

Data streams from different sensors are managed from
the perspective of single devices and from the whole
ecology. Timestamps are associated to I/O data and
a simple fusion mechanism has been implemented.
Nevertheless, better approach to multimodal data
fusion need to be explored.

Agnosticism of
Legacy Middle-
wares

The framework provides a layer that allows for mid-
dleware from third party to interpret input event
independently of the underlying hardware. However
only a simple example that allows touch input from
the data produced by a depth sensor has been imple-
mented.

Developing /
Coding

Common Pro-
gramming Lan-
guage

The framework has been implemented using Java
and Javascript.

Familiar Develop-
ment Platform

The framework has been implemented in the Process-
ing environment, which is widespread extended in the
community of multimedia designers and coders.

Low Viscosity of
the code

Users can easily change interactive devices implemen-
tation without need to make substantial changes to
the source code. Figure 5.15 illustrates how with a
few lines of code an interaction between two objects
in the environment can be easly setup.

Hide Low-Level
Coding Details

Interactive objects are automatically instantiated by
parsing the XML configuration file. Moreover users
do not need to take care of the connection between
objects.

Provide Program-
ming Alternatives

The framework allows the programming via API, hard-
coding and configuration file. Visual programming
tools are not supported in current implementation
but one of the objective for future works is to provide
users with visual tools that ease the development
process.

Application /
User Interface

Real (e.g., hap-
tic)/Digital(e.g.,
visual) User
Feedback

The framework provides mechanisms to generate out-
put according to different channels, such as physical
haptic feedback via actuators on tangible objects or
digital feedback by means of virtual objects.

118 5. Design and Implentation of the Framework

Cross-Device UI The framework, through its distributed event-driven
architecture, allows the user interface to be divided
amongst different devices.

Storage and Re-
play of Interactive
Sessions

No mechanisms to store interaction information has
been designed.

Easy configu-
ration of Input
Devices

The configuration of devices as tangible objects is
made via a XML configuration file that describe the
interactive properties of the object.

UI Widgets Digital objects have been implemented that can act
as digital controller, such as virtual buttons or sliders.
However more element of the graphical interface need
to be added.

Table 5.5: Requirements compliance matrix. Green: fully addressed. Yellow: partially addressed.
Red: future works.

5.4 Summary

In this chapter the design and implementation of the framework have been presented,
focusing on the interaction model, the four layer architecture and implementation details.
The interaction model provides a scheme for interactions between objects in a responsive
environment. A distinction between physical and tangible objects has been made, being
the latter enhanced with digital capabilities. Entities of the environment — including the
users — form an ecology where each entity affects the behavior of others. Input events
can be physical (e.g., pressing a button) or digital (e.g., two virtual objects become
closer) as well as the output: an example of physical output can be a motor making
an object vibrating while digital output interests any digital property of a virtual object
(e.g., shape, color, location in the virtual space, etc.). Examples have been presented
throughout the chapter that show how the interaction model works in real situations.
The architecture has been defined following the rationale of previous proposal in the
state of the art, in particular focusing on the work of Laufs et al. [2010] and Echtler
and Klinker [2008]. The four layers of the architecture — Hardware Abstraction, Input
Transformation, Input Interpretation and Application — have been described that allow
to implement the interaction model according to the requirements from Chapter 4. The
framework has been designed addressing the conditions expressed by each requirement;
nevertheless, many requirements have not been fully targeted and one of them — Storage
and Replay of Interactive Sessions — has not been included in current implementation,
which leaves room for further work. Neither visual tools have been implemented that
have been demonstrated to be effective for rapid prototyping [Klemmer et al., 2004;
König et al., 2009; Marquardt et al., 2011]. The development of a unique, comprehensive

5.4. Summary 119

framework for interaction in ubiquitous system turned out to be an ambitious task and,
at this stage, the efforts converged on the definition of the model, architecture and
the specification of functional APIs that relieve developer from the burden of deal with
low-level details. In the next chapter, a user evaluation is presented to demonstrate that
the proposed solution make easy the development process in terms of programming time.

6
Evaluation

That what does not kill us, makes us stronger.

Frederich Nietzsche, German Philosopher

In this chapter the evaluation of the framework is presented, within the conceptual
scheme for user interface evaluation defined by Myers et al. [2000]. The evaluation

has been carried out using: (a) a use case and, (b) a user test. Firstly, the methodology
from Myers et al. [2000] is described, focusing on the dimensions established and how
they apply to the framework. Then, the use case of a digitally-augmented product shelf
is presented to demonstrate that through the software libraries it is possible to develop
ubiquitous interaction systems. Lastly, the user study sheds light to the usability of
the APIs to develop rich experiences, in a fast and simple way, by integrating different
input devices within a comprehensive architecture. In particular it demonstrates that the
framework positively affects the development time of ubiquitous interactive systems.

6.1 Evaluation Background

Myers et al. [2000] asserted that software toolkits assist developers in the design and
implementation of the user interface. For instance, at the beginning of the nineties there
was no toolkit support and 48% of the programming effort was dedicated to the coding
of the user interfaces [Myers and Rosson, 1992]. The advent of software toolkits has
surely had a tremendous impact on development—programmers needed less code for
the user interface that, therefore, could be developed more quickly and with less errors.
In particular, Myers and Rosson [1992] demonstrated that user interface development
kits could reduce the development time by at least a factor of four. During the last
twenty years, the research on software tools has allowed to build more and more refined
development environments and, nowadays, it can be said that any application is built
using a Software Development Kit (SDK) or an Integrated Development Environment

6.1. Evaluation Background 121

(IDE) or some sort of toolkit that exposes API functionalities or a palette of components
for the rapid generation of the graphical user interface. Reducing the time to create the
user interface directly means to be able to produce more prototypes and, therefore, more
design iterations, which is crucial to achieve high-quality interactive systems [Nielsen
and Hackos, 1993]. Given the importance of software tools in the development of user
interfaces, Myers et al. [2000] reviewed the literature of past user interface tools and,
by analyzing cases of success and failure, they were able to extract a set of dimensions
that frame the space for past and future tools. They reported that their dimensions can
be used as a lesson—they are a guide for developers of future tools that may help to
avoid pitfalls and build a successful tool. They also pointed out that framing toolkit
research with a set of dimensions is particularly important in present days in which we
are experimenting rapid technological changes that are affecting the way users perceive
and interact with computers. Following Weiser [1991]’s vision, they also pictured a
future in which the desktop box will be opened and an "increasing diversity of user
interfaces on an increasing diversity of computerized devices" will be created. Myers
et al. [2000] wrote their article more than ten years ago when we were just witnessed
the dawn of the ubiquitous computing era and now that technological enhancements are
materializing Weiser’s ideas, software support is even more essential in order to face the
demands of novel interactive environments. For instance, the new ubiquitous interactive
scenario is made of devices with different form factors, display dimensions, input methods
and context-awareness capabilities. This might lead to the study of techniques for the
specification of device-independent interaction: the system should be able to choose
appropriate interaction techniques, by taking into account the I/O capabilities of the
device, the users’ preferences and the needs of the application. Myers et al. [2000] stated
that "it is especially important to explicitly consider the effects our tools will have on
what we can and will build, and to create new tools that have the properties needed
to meet a new generation of demands. There are many examples that show that tools
have significant impact on the styles of interfaces that are created. For example, in the
World-Wide Web, it is actually easier to use pictures as buttons rather than to use “real”
button widgets. Therefore, designers created elaborate, animated user interfaces with rich
visual design and high production values". The same vision is shared by Greenberg [2007]
who advocated a toolkit culture to promote creativity amongst developers. Toolkits are
considered as a common language—they allow designers to place themselves atop the
babel of programming languages, input devices and interaction modalities thus focusing
on the design of the interactive system. Furthermore, toolkits are not just a mean to
reduce the complexity of user interface and implementation, they are not just a way
to do the same things but quickly. Rather, they change developers perception and
understanding of the interactive environment and give the possibility to build novel and
meaningful configurations.

122 6. Evaluation

6.1.1 The five themes

The five dimensions for the evaluation of successful toolkits for the development of user
interfaces are reported here, as depicted by [Myers et al., 2000]:

• The parts of the user interface that are addressed:"The tools that succeeded
helped (just) where they were needed". They observed that most successful tools
do not follow the swiss army knife model to provide a large variety of general
purpose functionalities but instead they focus on one or a very restricted set of
issues of the user interface, which they address comprehensively. In the case of the
the proposed framework, it attempts to cope with the interoperability challenge
by provide device abstraction and a common data type for the communication
between different devices.

• Threshold and Ceiling:"The “threshold” is how difficult it is to learn how to use
the system, and the “ceiling” is how much can be done using the system. The
most successful current systems seem to be either low-threshold and low-ceiling, or
high threshold and high ceiling. However, it remains an important challenge to find
ways to achieve the highly desirable outcome of systems with both a low threshold
and a high ceiling at the same time". A deep-rooted challenge for software tools is
to address the dichotomy between the learning curve and the power of the system,
that is the complexity of the tasks that users can accomplish with the system. For
instance, a very powerful tool (high-ceiling) may not have been adopted because of
its high-ceiling. How to build tools with high-ceiling and low-threshold is therefore
an important research question, especially for ubiquitous interaction, which demands
for powerful tools that can manage the intrinsic complexity of the environment.
By abstracting hardware device at an atomic level (sensors) the framework aims at
providing an easy entry for developers. For instance, it provides the same interface
and functionalities for the same class of sensors (e.g., accelerometer, gyroscope
and the like) independently of their specific implementation. In this way developers
are relieved of the burden to learn how to program different implementations of
the same hardware, which in many cases requires knowledge of different operating
systems and programming languages—this feature aims at supporting the rapid
prototyping of heterogeneous interactive environments.

• Path of Least Resistance: "Tools influence the kinds of user interfaces that can
be created. Successful tools use this to their advantage, leading implementers
towards doing the right things, and away from doing the wrong things". Myers
et al. [2000] and Greenberg [2007] affirmed that toolkits affect the way we find
solutions to problems; it is therefore important that such software tools guide the
developers or designers towards doing the right thing avoiding them to take a
wrong path. The structure and organization of the code have to reflect in the kind

6.1. Evaluation Background 123

of interfaces that can be created, having developers the feeling that the succeed
in creating exactly what they wanted in a seamless way. The framework supports
the development of multi-device environment by providing an infrastructure for
uniform inter-device communication. In this case, developers should be able to
create proper interaction for different kind of input devices without changing the
underlying infrastructure.

• Predictability: "Tools which use automatic techniques that are sometimes unpre-
dictable have been poorly received by programmers". It is important, in the case
of software libraries, that the exposed APIs are clear to the developers, who feel
confident on the results of using particular methods, types or structures. Research
efforts in this direction focused on the evaluation of APIs usability using, for
instance, the cognitive dimensions framework [Green et al., 1996]. The objective of
cognitive dimensions is to evaluate, by means of twelve factors, the way developers
expect an API to work and what an API actually offers. Related to the role of
predictability for software toolkits are the Role expressiveness and Consistency
factors:

– Role expressiveness measures "how apparent the relationship is between each
component exposed by an API and the program as a whole"

– Consistency deals with "how much of the rest of an API can be inferred once
part of it is learned".

Clarke [2004] suggested that, in order to evaluate API usability, a scenario-based
approach can be used. The same approach has been employed in the user test
presented in Section 6.3. This kind of approach requires the user to accomplish
some programming tasks, in a specified context, using the API. After each task, or
at the end of the experiment, user are asked to answer some questions related to
each one of the cognitive dimensions: in this way it is possible to review the API
and find failure or success patterns that can guide to the redesign of the API itself.
Clarke [2004] provides some sample questions for the role expressiveness category,
which are: (a) "When reading code that uses the API, is it easy to tell what each
section of code does? Why?", (b) "Are there some parts that are particularly
difficult to interpret? Which ones?" and, (c) "When using the API, is it easy to
know what classes and methods of the API to use when writing code?".

• Moving Targets:"It is difficult to build tools without having significant experience
with, and understanding of, the tasks they support. However, the rapid development
of new interface technology, and new interface techniques, can make it difficult
for tools to keep pace. By the time a new user interface implementation task
is understood well enough to produce good tools, the task may have become
less important, or even obsolete". This is another important issue to take into

124 6. Evaluation

account for a software tool that targets the development of ubiquitous systems.
Experimentation with new input devices, modalities and techniques has increased in
the last years and therefore tools are needed that both support the requirements of
ubiquitous environments and provide a certain degree of longevity, for example by
demonstrating their modularity or extensibility. The proposed framework, through
primitive data types and device abstraction, aims at providing a platform to model
future device and interactions.

6.2 Case study: digitally-augmented product shelf

The framework has been used to develop the case study of a digitally-augmented product
shelf. The idea was to convert any physical surface and object into interactive surfaces
that merges digital data with the real space. This system enables customers to conduct
searches in store, learn about product features and talk to a virtual expert to get advices.
The product shelf is based on the TESIS technology (see the description in Section 4.1.3),
that can transform any standard shelf into an interactive surface, enabling customers to
experience the combination of live product interactions enriched with the vast amount of
information available on the web in an engaging and interactive way, exploiting augmented
reality technology. Figure 6.1 shows how the development of the use case followed the
framework reference architecture. TESIS has been modeled as a TObject, while the
user’s fingers and the objects of the product shelf as PObjects. The framework APIs
allows to get two dimensional data from RGB and depth cameras (Hardware Abstraction
layer). The original touch recognition algorithm from TESIS has been implemented as a
software middleware for the framework, exploiting the hardware abstraction mechanism
and the common data model to enable touch input (Input Interpretation layer). Then,
touch-responsive widgets has been developed using the functionalities of Application
layer. The digital user interface is projected on the touch-enabled physical surface by
means of a pico-projector. Figure 6.2 shows the software interface of the augmented
shelf. It provides the following functionalities to customers:

• Get detailed information on a specific product.

• Compare pricing.

• Access the Web to read unbiased reviews.

• Watch video presentations of a specific product.

• Call for assistance.

Main interaction is touch-based: customers touch on a specific virtual button displayed on
the surface to activate desired content. The Microsoft Kinect has been used to recognize

6.2. Case study: digitally-augmented product shelf 125

Figure 6.1: The digitally-augmented product shelf use case in the framework architecture.

VPANEL VBUTTON

Input Interpretation
~~~~--~-----L~--__ 
Gesture Interpreter 

Input Transformation 

Hardware Abstraction 

VO Hardware 

Deplh lo Touch 

Inpul 
TimeStamps 

TESIS 

P¡oo-Pmjecto, [ AG. came,. ) DepI" Came,. 

VBUTTON 

FIDUCIAL MARKER 

MAGICMOUSE 
(FIDUCIAL 
MARKER) 

USER FINGER 



126 6. Evaluation

Figure 6.2: Touch-enabled User Interface.

touches by means of depth imaging, thus allowing users to interact with digital elements
blended with the real world in the same interactive space. Physical objects (the products)
are recognized by means of visual markers, such as the code used in the reacTIVision
library [Kaltenbrunner and Bencina, 2007]. The same visual codes are also exploited for
user identification: for instance a user can display the code in his mobile phone which is
scanned by the Kinect RGB camera, thus allowing to recognize the user identity. In this
way the system can provide personalized information, such as recommendation of related
articles, gathered directly from the Web. The system has been implemented using the
Java APIs of the framework and the Processing IDE.

6.2.1 Goals

This use case has been exploited to answer the following questions with respect to three
of the five categories from Myers et al. [2000]:

• The parts of the user interface that are addressed: does the framework
succeed in implementing the application? which kind of real applications can be
developed with the framework?



6.2. Case study: digitally-augmented product shelf 127

• Path of Least Resistance: is it possible to create proper interaction for different
kind of input devices without changing the underlying infrastructure?

• Moving Targets: how does changing the input device affects the development?

Threshold and Ceiling and Predictability are addressed in the user evaluation, reported
in the next Section 6.3, in which further insights are be also provided for the Moving
Targets dimensions.

6.2.2 Discussion

Findings from the development of the use case with respect to the three dimension to
test are reported here.

• The parts of the user interface that are addressed: The use case demon-
strated that is perfectly feasible to build a real application that makes use of
heterogeneous devices and interaction techniques using the framework.

• Path of Least Resistance: By providing a comprehensive infrastructure that
abstracts from devices, it has been possible to program the whole system without
changing the programming rationale, which also demonstrates the low viscosity
of the APIs. The low viscosity is one of the requirements, as described in Section
4.2.3.5. Moreover, the definition of a common model for the data also helps to
follow specific strategies in the development, avoiding to take wrong paths.

• Moving Targets: Changing the input device did not require to install any third
party library or start working with the rationale of a different APIs within the same
project. The framework integrates both the touch input and the recognition of visual
markers, thus facilitating the development of an integrated solution. Moreover,
custom devices can be defined by means of XML configuration file. In this case,
for instance, depth data for touches and RGB data for the visual markers have
been retrieved from the Kinect. TheTESIS TObject also features a pico-projector
for visualizing the interface on a physical surface. If in future the system would
be enhanced, for instance, with motion sensing capabilities, data from sensors
such as accelerometers embedded in smartphones can be easily captured by the
framework and integrated in the same scenario. Again, there would be no need to
look to an external solution. As the user study demonstrates, the consistency of a
comprehensive architecture saves development time together if compared with the
combination of different, unrelated libraries.



128 6. Evaluation

6.3 User test

In the context of ubiquitous interaction, the trend is to extend the number of different
input devices the user is capable to interact with; they can be either traditional ones
such as mouse and keyboard, or exploit new types of sensors like tactile surfaces,
accelerometers, RGB and infrared cameras. The proposed framework serves as an
abstraction layer for different devices, facilitating the rapid prototyping of interfaces that
use the aforementioned hardware. The goal was to develop a richer interaction experience,
in a fast and simple way, by integrating different input device within a comprehensive
architecture. This experiment aimed at collecting parametric data produced during the
programming of a prototype (e.g., task completion time) as well as quantitative and
qualitative data to determine the veracity of the hypothesis below. In particular, the
objective was to verify performances of the software framework in situations where it is
necessary to program the behavior of different interaction devices in the same scenario.
To this end, a scenario-based approach [Carroll, 2000] has been used, as suggested
by Clarke [2004] for the evaluation of API usability. To carry out this experiment,
subjects with a unique profile specified later in this document have been selected. These
individuals must build a physical/digital prototype using currently available software
libraries or the proposed framework. In the rest of this section, the scenario package is
described, including: (a) the goals of the experiment and the metrics for the evaluation,
(b) participants, (c) an overview of the scenario, tasks breakdown and supporting material
such as pre- and post-test questionnaires.

6.3.1 Goals

The experiment has been designed to test whether the framework facilitates the im-
plementation of interaction mechanisms with heterogeneous devices using a specific
programming environment. These concepts can be expressed through the following null
hypothesis:

Hn1: The framework does not affect positively the efficiency (development
time) in the development of prototypes that make an integrated use of
different devices for ubiquitous interaction.

The alternative hypothesis is:

Ha1: The framework positively affects the efficiency (development time)
in the development of prototypes that make an integrated use of different
devices for ubiquitous interaction.



6.3. User test 129

6.3.2 Participants

16 subjects (15 male and 1 female) performed the experiment: 5 undergraduate students,
10 post-graduate students and 1 researcher of the Computer Engineering Department
at Universidad Carlos III de Madrid. Graduate students are from the Computer Science
degree. Post-graduate students are enrolled in a Master course in Computer Science (5
subjects), focusing on HCI research, or enrolled in a Ph.D. program in HCI (5 subjects).
In terms of target population, due to their technical background and skills, the subjects
can be considered as developers who want to use the framework for the programming
of ubiquitous environments. Information on the profile of the subjects will be gathered
through a pre-test questionnaire (in Appendix C).

6.3.3 Design

For the evaluation of the hypothesis, two tasks have been designed. These tasks consist
in developing a proof of concept that makes use of an accelerometer, a touch sensor
and buttons using the framework and without using it, but instead specific APIs. The
rationale behind this choice is to stress on the benefit of using a unified approach when
programming interactive behaviors of different devices. In the tasks, the user is asked to
program the behavior of an accelerometer and buttons (real or virtual) embedded in two
existing devices (Nintendo Wii Remote Controller and Apple iPad) using three different
software libraries (wrj4P51, oscP52 and the proposed framework). The programming
environment used for the tasks is the Processing platform. wrj4P5 and oscP5 was
the only available choices to program the interaction with Wiimote and iPad in the
Processing environment. The experiment follows a 2 x 3 x 3 fractional factorial design
[Jonathan Lazar, 2010] with the following variables:

• Independent variables (these are the three factors)

– Software Technology, with three levels: wrj4P5 library, oscP5 library or the
proposed framework.

– Hardware Technology, with two levels: Wiimote or iPad.
– Interaction Component, with three levels: real button (the physical button of

the Wiimote), virtual button (a button widget on the iPad) or accelerometer.

• Dependent variable

– Task completion time.
1http://wrj4p5.sourceforge.jp/
2http://www.sojamo.de/libraries/oscP5/



130 6. Evaluation

In a factorial design, not all the elements combination might be valid and, in this case,
two of the six combinations resulting from software and hardware technologies (Table
6.1) do not exist because the oscP5 is used only for the iPad and wrj4P5 only for the
Wiimote.

Framework wrj4P5 oscP5
Wiimote Fw Lw –

iPad Fi – Li

Table 6.1: Combinations of the two factors Software Technology and Hardware Technology.
Fw: Framework with Wiimote, Fi: Framework with iPad, Lw: Library (wrj4P5) with Wiimote, Li:
Library (oscP5) with iPad.

Therefore, the original 2x3 part of the design has been condensed in a 2x2 design,
resulting in the 4 levels presented in Table 6.1, which are Fw, Fi, Lw and Li. In this
experiment, the objective was not to test the way different components affect user
interaction, a physical button in the Wiimote or a virtual button activated through
a touch screen. Rather, it focuses on the performances of the framework for the
development of interactive appliances. Therefore, the implementation of the button
for the two hardware platforms (Wiimote and iPad) has been abstracted to its logical
function: this allowed to merge the two levels real button and virtual button of the
Interaction Component factor into one single generic level button, independently of the
implementation. This design decision has been taken because it would not been possible
to test the two levels for the different platforms, since the Wiimote does not offer a
touch screen to implement button widgets. Moreover, in this way I could highlight the
behavior of a comprehensive solution that abstracts hardware implementations through
the notion of primitives data types and make a direct comparison with two separate
libraries used in the same project. Due to this simplification, rather than the 12 runs that
would have been required for the 4x3 part of the experiment (4 levels from the Software
plus Hardware Technology factor and 3 from the Interactive Component factor), this
experiment required only 8 (4x2) runs, as shown in Table 6.2. A within subject design

Fw Fi Lw Li
Button (T1) A B C D

Accelerometer (T2) E F G H

Table 6.2: The final runs of the experiments: combination of Software and Hardware Technology
with Interaction Component. The letters represent each run of a 8x8 Latin Square. The development
of the button was tested in Task 1 (T1) and the accelerometer in Task 2 (T2).

has been used for this experiment for all the factors. According to MacKenzie [2002]
there are at least two reasons to prefer a within subject design when possible: "first,



6.3. User test 131

fewer participants are needed in a within-subjects design since each participant is tested
on all levels of a factor. Although more testing is required for each participant, there is
an advantage in having fewer participants overall, since recruiting, scheduling, briefing,
demonstrating, practicing, and so on, are easier if there are fewer participants". In this
experiment there is no interference effect, which is experimented when conflicting skills
to operate one or another device are involved. In this case the skill required to operate
one device tends to inhibit, block, or otherwise interfere with, the skill required for the
other device. In this experiment the skills to operate the Wiimote or the iPad do not
affect the development. The use of the software APIs for each library could interfere but
this effect is mitigated in the experiment by the training that was given to all testing
subjects. During the training they learnt the basics of the Processing IDE, accelerometers
and the expected result of the task. In addition they were also given fifteen minutes to
explore the APIs of the library being used during the experiment. The order of the tasks
was balanced to account for any learning effects. Participants were randomly assigned
to conditions for each task, following a 8x8 balanced Latin Square3 [Cochran and Cox,
1950], given the fact that a full-random approach would have required the impractical
amount of 8! = 40320 users. The 16 participants have been divided into eight groups
of two, and each group has been assigned to one of the rows in the Latin Square as
shown in Table 6.3. Compensating the bias introduced by the order of presentation of the
tasks [MacKenzie, 2002] also allow to test the learnability of the framework API, under
the threshold and ceiling dimension, independently of task-specific conditions. Large
deviations due to the learning effect or asymmetric skill transfer [Poulton and Freeman,
1966] are not expected because of the great differences between the three libraries.

Group 1 A B C D E F G H
Group 2 B A D C F E H G
Group 3 C D A B G H E F
Group 4 D C B A H G F E
Group 5 E F G H A B C D
Group 6 F E H G B A D C
Group 7 G H E F C D A B
Group 8 H G F E D C B A

Table 6.3: The 8x8 Latin Square for counterbalancing.

The particular design of the tasks allows to frame the hypothesis, in the case of the
development time, in the following way: given A the time4 for Wiimote without the
framework, B the time for iPad without the framework and C the time with the framework
(in this case we assume that the hardware technology is non influential, because of the
hardware abstraction), therefore A+B � 2C , with A ∼= C and B ∼= C . We can assume

3http://goo.gl/BcLbP
4the time the subject needs to program the requested behavior



132 6. Evaluation

that, without any prior knowledge of the software libraries for the two devices and the
framework, the programming time is more or less the same (A ∼= C and B ∼= C ) but using
two different technologies (A+B) in the same project will increase the programming time
if compared to the case of using one single library (2C ). The experiment was organized in
individual sessions in a controlled setting. Subjects used a Mac OS X machine in the DEI
Laboratory at Universidad Carlos III de Madrid. The “Think Aloud” protocol was used
and each session was supervised by an investigator who interacted with the subjects to
introduce the experiment, the task and to answer questions or doubts during the session.
However, in no case the investigator helped the subject in the development of the task.
The same investigator interacted in each session, to avoid possible biases introduced
by the change of experimenter (e.g., different language and non verbal communication
channels). The investigator took note of the time during the task (e.g., beginning and
end of the task) and subject’s comments. The sessions was audio and video recorded with
the previous consent of the participants (see the consent form in Appendix C). The task
and previous training lasted around 90 minutes [Nielsen, 2005]. The time was divided as
follows:

1. five (5) minutes for a short introduction of the experiment,

2. five (5) minutes for the subject to fill out the pre-test questionnaire,

3. ten (10) minutes for the training,

4. fifteen (15) minutes for the subject to read the scenario and study the provided
API,

5. sixty (60) minutes for the programming tasks (T1 and T2),

6. five (5) minutes for the post-test questionnaire.

Further explanations on the objectives of the evaluation and the overall research were
given at the end of the evaluation.

6.3.3.1 Pre-test questionnaire and training.

In the first twenty minutes before the development tasks, the investigator asked the
subject to fill the pre-test questionnaire (see Appendix C) and then the subject was given
a brief tutorial on the usage of the Processing platform. The pre-test questionnaire has
been designed to gather information on the background of the users, especially with
respect to their programming skills and their knowledge of I/O devices for ubiquitous
interaction. The tutorial consisted of the following steps:



6.3. User test 133

• An introduction to the Processing platform: the language, the API, the concept of
a Sketch, how to import libraries in Processing and how to use the graphical IDE.

• Practice: the subject programmed his first “Hello World” sketch. Also an in-
troduction to what is an accelerometer and the underlying physics concepts was
given.

6.3.3.2 Scenario and APIs

The scenario proposed to the subjects is reported in Appendix C. After reading the
scenario, up to fifteen minutes has been dedicated to the study of the API of the provided
libraries: the library to program in processing with an iPad (oscP5), the Wiimote (wrj4p5)
and the framework. This step stopped when the subject thought he has gathered enough
knowledge to start programming the prototype. In no case it can last more then fifteen
minutes. The documentation provided for the API has been standard javadoc for the
framework and oscP5 and a javadoc-like list of classes and methods for the wrj4P5 library
(Figure 6.3). For the task we used a subset of the real APIs of the framework, which
were only related to the tasks at hand. For this reason, in order to account for possible
biases introduced by the different extensions of the API, participants were instructed on
the classes to use in the case of wrj4P5 and oscP5. For instance, the wrj4P5 library
allows to interface with several Nintendo Wii peripherals such as the Balance Board or
the Guitar in addition to the Wiimote. However, participants were told that only the
main class (Wrj4P5) to instantiate the connection with the Wiimote and the class for
the Wiimote object (WiiRimokon) would have been needed in the experiment.

6.3.3.3 Tasks

In the programming tasks, participants were asked to program a software application
that makes use of an accelerometer, touch screen (iPad) and buttons (Wiimote). The
input sensors are used in the application to interact with a virtual 3D box. Two different
cases was proposed to the subject for both devices (Wiimote and iPad): (1) using the
framework that provides integration of devices within a unique solution and, (2) using
the two different libraries in the same Processing sketch. As previously reported, the
objective was to test wether an integrated solution affect positively the efficiency, in
terms of time, in the development of prototypes that make use of different devices for
ubiquitous interaction. A detailed description of the tasks proposed for the experiment is
reported in Appendix C, as presented in the documentation given to the subjects. Before
starting, participants were allowed to interact with the devices and see the results of the
two tasks (T1 and T2).



134 6. Evaluation

Figure 6.3: Excerpt of wrj4P5 API documentation.

• In T1 participants were asked to program the following: press the A button on the
Wiimote or touch the screen of the iPad to change the color of a 3D box from red
to green and,

• In T2 participants were asked to program the following: move the device (ac-
celerometer data) to rotate the 3D box.

For the programming tasks the subjects did not have to write the entire code from
scratch, which realistically would have taken too much time for an experimental session.
A template was provided (see Figure 6.4), presenting the classes to use for the task. The
template was designed to require the subject to type portions of code in specific places
in order to implement, for each of the libraries:

• how to interface with the device,

• how to get relevant data from the appropriate sensor and,



6.3. User test 135

• how to use the virtual or physical button data to change the color of cube or the
acceleration data to rotate the cube.

Figure 6.4: An example of the template provided to the subjects.

For example each library has a function to return acceleration data, but this value is not
homogeneous between these functions, which can occur in possible errors when using
different libraries in the same scenario. Again, each library proceeds in different ways in
order to have an instance of a device object from which it is possible to access to the device
functionalities. This affects the way subjects might behave during the development and
therefore the time to complete the task. For example, the framework always instantiates
an accelerometer object in the same way, independently of the underlying hardware and
by using a configuration file. By contrary, the libraries for the Wiimote and the iPad
implement different rationales to access to an instance of the hardware device.

6.3.3.4 Post-test and debriefing

Before ending each session, the subject was given a post-test questionnaire and then an
informal talk took place, where the experimenter explained the real objective of the study
and the subject could provide any idea, comment or suggestion. The informal chat was
recorded as well. The post-test questionnaire (see Appendix C) was designed to include
questions that make it possible to gather data according to the general usability of the
proposed API and three of the five dimensions of the conceptual scheme from Myers
et al. [2000]: Threshold and Ceiling, Predictability and Moving Targets.



136 6. Evaluation

6.3.4 Results and Discussion

In this section, the results of the experiment questionnaires (pre- and post-test) and the
empirical analysis are presented. In the case of Likert [Likert, 1932] scale for responses
to pre- and post-test questionnaires, histograms and box plots are employed to present
data. Histograms give an overview of the distribution density of the samples. Box plots
visualize the dispersion and skewness of samples. In particular, box plots have been made
following the approach proposed by Montgomery [2008]: the middle bar in the box is
the median. the lower quartile is the 25% percentile and the upper quartile is the 75%
percentile. The upper tail is the highest value of the sample and the lower tail is the
lowest value. Tails represent the theoretical bound within which it is likely to find all
data points if the distribution is normal.

6.3.4.1 Pre-test Questionnaire

With the pre-test questionnaire, information on the participant profile has been gathered.
Question 1 (Q1, "Of the following programming language and technologies, check
those that you have personally used and are familiar with", in Figure 6.5) assures that
participants all know the Java programming language (the framework implementation
being evaluated is written in Java).

Figure 6.5: Pre-test questionnaire, Q1: "Of the following programming language and technologies,
check those that you have personally used and are familiar with".



6.3. User test 137

Q2, "Please rate your technical programming knowledge (programming paradigms,
data structures, frameworks, etc.)", and Q3, "If you know/use the Java programming
language, what is your level of proficiency with the language?", define the technical
programming knowledge of participants. As shown in Figure 6.6, in this evaluation only
participants with high programming skills have been selected.

Figure 6.6: Technical programming skills of the sample population. Q2, in dark green: "Please
rate your technical programming knowledge (programming paradigms, data structures, frameworks,
etc.)". Q3 in light green: "If you know/use the Java programming language, what is your level of
proficiency with the language?". Box-plot on the left and distribution of the answers on the right.

63% of the participants have never programmed applications using interactive devices
in general (Q8, Figure 6.7), while 62% did have an academic or professional background
related to interaction design, human-computer interaction or ubiquitous computing (Q9,
Figure 6.8)

Figure 6.7: Q8: "Have you ever programmed
interactive systems that make use of the afore-
mentioned (Q7) hardware?".

Figure 6.8: Q9: "Is your academic/professional
background related to interaction design,
human-computer interaction or ubiquitous com-
puting?".



138 6. Evaluation

6.3.4.2 Post-test Questionnaire

All the participants completed the tasks. The post-test questionnaire is divided into four
categories: Overall, Threshold and Ceiling , Predictability and Moving Targets. Questions
are Likert-type scale (7 values, from 1 minimum to 7 maximum) and, for Threshold and
Ceiling, Predictability and Moving Targets, there is a open question at the end of each
section, to collect any personal comment of the participants. Question 1, "How would
you define your experience of programming the interaction of the prototype WITH the
framework?" (Q1: µQ1=6, σQ1=0.26) and Question 2, "How would you define your
experience of programming the interaction of the prototype WITHOUT the framework
(with wrj4P5 and oscP5)?" (Q2: µQ2=3.20, σQ2=0.32), summarized in Figure 6.9 and
Figure 6.10, give a comparison of the overall rating of the framework and the two libraries
(wrj4P5 and oscP5) with respect to the two tasks (T1 and T2, reported in 6.3.3.3).
Analyzing the mean score for Q1 and Q2, the participant general perception of the
framework is consistently better, compared with the combination of the two libraries, in
all the single subquestions. One of the participants summarized her experience at the

Figure 6.9: Box plot of the overall rating for the two libraries (on the left and red, Q2) and for the
framework (on the right and blue, Q1).

end of the evaluation saying:

It was a nightmare programming with two different libraries in the same



6.3. User test 139

Figure 6.10: Direct comparison of the overall rating for the two libraries (red, Q2) and the framework
(blue, Q1.

project! With the framework, on the other side, even if I found difficult to get
used to it at the beginning, then it made the development straight-forward.

According to Q3, "When reading code that uses framework’s Application Programming
Interface (API), was it easy to tell what each section of code does? Why?", participants
found easy to understand the API provided by the framework. For instance one of the
participants reported that:

The documentation is clear and follows java standards.

Another one accounted that:

The names of properties and methods was intuitive enough so as to know
what they do.

Q4, "How did the technical environment (Processing) make the programming tasks?"
(µQ4=5.05, σQ4=1.29) concerned the influence of the programming environment (Pro-
cessing) on the tasks: according to responses (Figure 6.11) it did not have negatively
influenced the experiment.



140 6. Evaluation

Figure 6.11: Q4: "How did the technical environment (Processing) make the programming tasks?"
Box plot on the left and histogram on the right.

Participants agreed to use the framework for the development of ubiquitous systems,
as shown by Q5, "Would you use the framework to develop interactive systems for
ubiquitous environments?"(µQ5=6.18, σQ5=0.70), summarized in Figure 6.12. Q1 and
Q5 indeed show that participants have been overall satisfied with the framework in the
programming tasks.

Figure 6.12: Q5: "Would you use the framework to develop interactive systems for ubiquitous
environments?" Box plot on the left and histogram on the right.

Next, the discussion of the three factors — Threshold and Ceiling, Predictability and
Moving Target — is reported, according to the items in the questionnaire used to extract
the score for each factor.

Q6 to Q14 define the Threshold and Ceiling factor (µth_and_ce=5.80, σth_and_ce=0.72),
which is shown in Figure 6.13. Participants found easy to learn how to use the framework
(Q6, "Learning how to use the framework was" : µQ6=6.53, σQ6=0.63). Analyzing Q12,
"The ease of programming with the framework depends on the level of experience"



6.3. User test 141

Figure 6.13: Threshold and Ceiling factor (Q6 to Q14).

(µQ12=4.24, σQ12=1.31), it appears that participants have divergent opinions on the
level of programming experience required to use the framework, even if they all have high
programming skills. The simplicity of the programming tasks did not allow to test to
what extent the framework supports the development of complex interactions. Anyhow,
according to open answers to Q16, "Please write your comments about how difficult
is to learn how to use the framework and how much can be done using the framework
here", it seems participants perceive the framework is powerful enough to support the
programming needs of ubiquitous systems. They reported:

I think is quite easy to learn given the functionalities it provides. I
think this framework would allow developers to program a wide range of
applications for these kind of devices in a short time

and,

Apparently there are a lot of thing that can be done using the framework,
which I could not have experimented in the evaluation.

and also,



142 6. Evaluation

Great! It is not necessary to learn how different APIs work in order to
perform the same task with different devices.

Participants considered that they needed to write a fair amount of code to accomplish
the tasks with the framework (Q15, "How did the amount of code required for the
framework for each subtask in this scenario seem to you?": µQ15=3.48, σQ15=0.73),
maybe slightly too little. Some participants, for example, complained that connection
details are enclosed in the constructor of the class for the accelerometer or the button,
while they would have preferred an explicit connect() method.

Q17 to Q21 define the Predictability factor (µpredictability=5.69, σpredictability=0.62),
which is shown in Figure 6.14.

Figure 6.14: Predictability factor (Q17 to Q21).

Participants appreciated that the name of objects, methods and variables were clear
(Q17, "The names used for the framework’s objects, methods and variables were":
µQ17=5.40, σQ17=1.45) and they found the framework to behave as expected (Q19, "Did
the APIs of the framework behave as expected?" : µQ19=6.07, σQ19=1.11). One of the
participants reported that (Q22, "Please write your comments about the predictability of
the framework here"):

[...] names of methods were clear, so it was easy to predict what each
function does.



6.3. User test 143

81.25% found the framework reliable (Q21, "The framework is reliable": µQ21=6.20,
σQ21=0.73). 28.75% of the participants felt that the evaluation session did not give
them enough experience with the framework to judge its reliability, thus they did not
answered the question. Participants found the framework to be consistent (Q18, "Were
the names of objects, methods and variables of the framework consistent" : µQ18=6.15,
σQ18=0.66), especially when changing from one task to the other. For instance, most of
them complained that the wrj4P5 library does not treat accelerometer actualizations as
events, while it does so with Wiimote buttons. On the contrary, oscP5 always receives
messages that are processed according to the Java event handling system. This difference
in managing data from different devices negatively affected the time to complete the
tasks with the two libraries, as demonstrated in the empirical analysis in the next section.
With respect to the framework, participant praised that the comprehensive rationale
endorses consistency:

It was very easy to code the same behaviour into both of the devices.
Only is needed to know which button of which device has been pressed. Once
it is known, the behaviour is programmed in the same way (same code).

Figure 6.15: Moving Target factor (Q23 and Q24).

Q23, "With the framework it was possible to create proper interaction for different
kind of input devices without changing the underlying infrastructure", and Q24, "Changing
the input device (Wiimote and iPad) affected the development WITH the framework",
define the Moving Targets factor (µmoving_t=6.40, σmoving_t=0.37), which is shown in
Figure 6.15.

Participants considered that the framework allows to program proper interaction
without changing the underline infrastructure (Q23 : µQ23=6.67, σQ23=0.48), because



144 6. Evaluation

of the hardware abstraction the XML configuration file. They also reported that changing
the input device did not negatively affect the development with the framework (Q24:
µQ24=6.14, σQ24=0.75). On the contrary, it did negatively affect the development with
the two different libraries, according to Q25, "Changing the input device (Wiimote and
iPad) affected the development WITHOUT the framework" (µQ25=1.45, σQ25=0.63).
The comparison between Q24 and Q25 is shown in Figure 6.16. In this case the meaning
of the Likert scale is inverted, meaning 1 "Drastically" and 7 meaning "Not at all".

Figure 6.16: Comparison of Q24 and Q25 that shows how changing the input device (Wiimote and
iPad) affected the development WITH (on the left and blue, Q24) and WITHOUT (on the right
and red, Q25) the framework. 1 meaning "Drastically" and 7 meaning "Not at all".

Figure 6.17 shows the overall comparison of the three factors of the post-test
questionnaire, plus the Overall factor that measures the overall acceptance of the
framework (Q1 and Q5). From participants answers, the proposed framework seems to
accomplish with the requisites defined by Myers et al. [2000] for successful toolkits for
the three dimensions considered in this evaluation.

6.3.4.3 Empirical Analysis

For the empirical analysis, the time to complete the task has been considered. The
primary result was that programmers were dramatically and significantly faster — between



6.3. User test 145

Figure 6.17: Summary of the post-test questionnaire results using the scores for the three factors
defined by Myers et al. [2000]: Threshold and Ceiling, Predictability and Moving Target. A fourth
factor, Overall measures the overall acceptance of the framework.

2.4 and 11.2 times faster — at using the framework than combining different libraries for
the two tasks (2.75 mean value). See Figure 6.18 for total times for the two tasks both
with or without the framework.

The total time to complete the two tasks with the framework has been µfr=12m 00s,
σfr=5m 32s. Using the two libraries participants accomplished the two tasks in µlib=33m
55s, σlib=8m 11s. In the first task (T1, described at page 133), which consisted of
changing the color of the 3D cube, participants spent an average of µT1fr=5m 55s,
x̃T1fr=5m 34s and σT1fr=4m 35s programming the behavior of physical and virtual
buttons with the framework, compared with the µT1lib=12m 16s, x̃T1lib=14m 15s and
σT1lib=8m 56s with the two libraries. The second task (T2, at page 133), which asked to
rotate the 3D cube, shows similar results: µT2fr=4m 55s, x̃T2fr=3m 49s and σT2fr=4m
02s compared with µT2lib=16m 45s, x̃T2lib=18m 13s and σT2lib=11m 06s. All the
participants completed the two tasks with the four combinations of software libraries
(with or without the framework) and input device (Wiimote or iPad). In Figure 6.19,
average time for each subtasks is reported, showing that the framework performed better



146 6. Evaluation

Figure 6.18: Total time for each participants to accomplish the two tasks WITH (in blue) or
WITHOUT (in red) the framework. On the x-axis the participant and on the y-axis the time are
plotted.

under each condition.
T1 and T2 with the framework have similar completion time; this suggests that the

framework does succeed in providing an abstraction level that allows programmers to
work independently of the underlying hardware device. This is also demonstrated by
programmers strategies with the framework: it was observed that 12 out of 16 participants
(75%) preferred to program the two devices in parallel rather than sequentially. Even if
they were instructed to start with one of the two, once instantiated the object for the
first device, they immediately instantiate a second one for the other because they realized
that:

Just by changing the names and id in the constructor, one changes the
input device.

On the other side, with the two libraries they always programmed sequentially starting and
ending the task with one library before passing to the other one. Worst average completion



6.3. User test 147

Figure 6.19: Average times for each task and condition. Blue: Wiimote w/ framework. Red: iPad
w/ framework. Green: Wiimote w/o framework. Purple: iPad w/o framework.

time has been experimented in T2 both with the Wiimote and iPad. In the case of the
Wiimote it can be explained by the fact that the poor and non-standard documentation
of the API did not help users in understanding that accelerometer updates were stored
in a class variable. Most of participants (13 out of 16, 81.25%) expected to have an
event for the accelerometer, since they are used to handle event message according to
the Java rationale. One user did not find this behavior particularly problematic, though
he reported that the real problem was in the lack of consistency between libraries:

I don’t mind if the accelerometer does not fire events. What I do care
is that these sensors must be managed always in the same way even with
different libraries. It puzzled me to have to change the logic between wrj4P5
and oscP5.

The problem with oscP5 could have been that users found it difficult to understand
how OSC message are constructed and parsed. Most of the time spent for both
T1 and T2 with oscP5 has been devoted in understanding how to recognize from
which component the message came from, because of the poor name of methods and
variables. It was difficult for them to find out that the variable addrPattern contained
the id of the component and that there was a method that allowed for comparisons,



148 6. Evaluation

boolean:checkAddrPattern(theAddrPattern:String). T2 had an additional challenge, if
compared with T1, which justify the difference in time. In T1 participants had only
to check if the particular widget button was pressed, which is accomplished by simply
checking the addrPattern of the button. In T2, they also had to extract the actual
acceleration on the y axis. To do so, they had to find the OscArgument:get(theIndex:int)
method, which grant access to values in the OSC message. Locating this method in the
API was not easy. A Shapiro-Wilk normality test [Shapiro and Wilk, 1965] on time series
for the total time with or without the framework does not reject the hypothesis that the
distribution is normal (there is no evidence of a no normality distribution). With the
framework w=0.93, without the framework w=0.92. For a 0.01 confidence interval, the
threshold value is ρ-value=0.84, for 0.05 ρ-value=0.89 and for 0.10 ρ-value=0.91.

Figure 6.20: Frequency histogram of the two time series: WITH (in blue, on the left) and
WITHOUT (in red) the framework.

Frequency histogram (Figure 6.20) and Q-Q plot normality test (Figure 6.21) highlight
that the timing distributions are not normal and, therefore, a non-parametric test for
statistical significance must be used — the Wilcoxon Rank Sum for Large Samples
method was chosen [Wilcoxon and Wilcox, 1964]. Moreover, the timing data exhibited
both ceiling and floor effects [Vogt and Johnson, 2011]. Ceiling effects arise when test
problems are insufficiently challenging. Floor effects floor are just like ceiling effects but
they are found at the opposite end of the performance scale. As Stylos and Myers [2008]
suggested, in this case the Wilcoxon Rank Sum non-parametric test can be used. The Z
score (Z = 5.48) is greater that the Z critical (Zcrit=1.96). Therefore it is possible to
affirm, for a confidence interval of 95% that the null hypothesis concerning applications
development time (Hn1) is rejected, thus demonstrating that the framework positively
affects the programming of interaction when heterogeneous devices coexist in the same
environment. The statistical power is 90% and the initial assumption on time is that the
framework reduces the development time by a 40%, extracted from a pilot study with



6.3. User test 149

Figure 6.21: Q-Q plot for the two time series: WITH (in blue) and WITHOUT (in red) the
framework.

12 participants. According to the formula for calculating the sample size from [Noether,
1987], 16 samples per group (with and without the framework) is enough to assure the
statistical validity of the claim. Moreover, any statistically significant effect of task order
or individual participant programming experience on task completion times has been
found, showing that there has been sufficient counterbalancing.

6.3.4.4 Threats to validity

To evaluate the validity of the results, threats that may affect the experiment [Wohlin
et al., 2012], according to Cook et al. [1979] are discussed.

Construct validity. It concerns the generalization of results to a theory and, in general,
construct validity threats are mitigated by the experiment design. Indeed, mono-operation
and mono-method biases have been avoided by the adoption of two tasks and four
combination of software libraries and devices (Table 6.2). Mono-operation bias pertains
to the independent variables: if a single version of a program is used in a single place at a
single point in time, the full breadth of the concept of the program might not be captured.
Construct validity can also be threatened when using a single method to measure a
given construct (irrespective of whether the construct is acting as the dependent or
independent variable). This is because the method used may introduce bias, changing
the scores on the independent or dependent variable. This is known as mono-method
bias.The Inadequate preoperational explication of constructs threat [?]p71]wohlin2012 —
in other words, the construct is not well defined (operationally) — has been avoided by
comparing the framework with the combination of the two other libraries in terms of the
objective measure of task completion time.



150 6. Evaluation

Internal validity. In this case, it needs to make sure that there is a causal relation
between the treatment and the outcome. All the subject were volunteers and, therefore,
it can be expected that they are equally motivated, thus reducing the impact of users
reaction with respect the passing of time during the experiment (maturation threat).
The history threat has been addressed by performing the sixteen evaluations under the
same circumstances, during normal working days, in a two weeks time span, from tuesday
to thursday, from 10:30 to 18:30. The programming environment, Processing, does not
affect negatively the experiment (instrumentation threat) as demonstrated by Q4 of the
post-test questionnaire, which shows that the perception of the material provided (the
Processing programming environment) was positive (Figure 6.11). The instrumentation
validity is further assured by the fact that both pre-test and post-test questionnaires has
been designed following the scheme proposed by Myers et al. [2000], questions proposed
by Clarke [2004] to study API usability and also question from well-know usability and
user experience questionnaires such as Purdue Usability Testing Questionnaire (PUTQ)
[Lin et al., 1997] and Technology Acceptance Model (TAM) [Davis, 1985].

External validity. This aspect addresses the ability to generalize results from the
experiment. The participants in our study were all Computer Engineering Ph.D., MsC, or
BsC students (plus one HCI researcher). However because the programming and API
exploration strategies manifested by the subjects matched those observed in previous
studies with different participants [Clarke, 2004; Stylos and Myers, 2008], results can be
generalized at least to programmers in general who exhibit pragmatic and opportunistic
programming strategies[Stylos and Myers, 2008]. During the study programmers worked in
a realistic manner to get accurate timing information and to gain insight into programmers’
thoughts and assumptions while they worked. The think-aloud protocol was used, which
likely affected their times. However, since the same protocol was used in both conditions,
the relative time comparisons between the two conditions are still valid. In the experiment,
participants used real versions of the two libraries (wrj4P5 and oscP5) and an ad-hoc
version of the framework API. They therefore were free to navigate the internet to find
examples, a common strategy when learning a new API [Stylos and Myers, 2008], or
simply exploring the API without accessing any sample code. The three tasks in our study
were smaller than most realistic programming tasks, so that we could test more tasks
and to avoid extraneous task complications. Nevertheless, because of the similarities
in work strategies we saw across our tasks, and because programmers often approach
larger programming tasks by focusing on smaller subtasks, we feel that our results will
generalize to different and larger tasks.

Conclusion validity. A statistical relationship between the treatment and the outcome
is needed. Assumptions on the statistical methods used for the analysis have been
respected (violated assumptions of statistical tests threat) and the test with the highest



6.4. Summary 151

power as possible as been chosen (low statistical power threat). Measures can be
considered reliable (reliability of measures threat) since I took the time needed to
complete the tasks under each level. However, also objective measures have been taken
into account, which have been extracted from the questionnaires.

6.4 Summary

In this chapter the evaluation of the framework has been reported. It has been carried
out following two different processes:

• A use case. The augmented product shelf use case allowed to demonstrate that
the framework is powerful enough to actually model and implement a real scenario
and it also allowed to exemplify how each layer of the architecture cooperates in
the whole implementation. With respect to the dimension defined Myers et al.
[2000] it also demonstrated that different input technologies can be integrated into
a unique solution.

• A user study. The user study has been carried out with the objective to evaluate
how the framework affect the development (in terms of programming time) when
compared with state of the art libraries. The experiment has been designed to
have subjects to program the behavior of different devices in the comprehensive
environment provided by the framework or, instead, by integrating different libraries
in the same project. The framework resulted to positively affect the programming
of interaction (time reduced by at least a 40%) when heterogeneous devices coexist
in the same environment, with a confidence interval of 95% and a statistical power
of 90%.



7
Conclusions

Remember that death is not the end but only a
transition.

—Fatal tragedy
Dream Theater, Progressive Metal Band

This research has provided evidences that by encompassing heterogeneous de-
vices into a unique design it is possible to reduce user efforts to develop for
interactions in ubiquitous environments. The research has been motivated by the
need to ease the rapid prototyping of Ubiquitous Interaction, given that developers have
to face several hindrances, such as software programming, hardware knowledge and
the intrinsic heterogeneity of the environment where different devices and interaction
techniques coexist.

The main goal of this work has been to define a conceptual model and a reference
architecture that provide users with a comprehensive framework for managing device
ecologies. The framework has been demonstrated to be able to:

• model interactive spaces where different devices coexist, as shown in Section 5.1
with two sample scenarios,

• implement real systems that make use of heterogeneous I/O devices and interaction
modalities, as shown in Section 6.2 with the digitally-augmented product shelf case
study and,

• reduce the time needed by developers to implement the interactive behavior of
different devices in the same scenario, as demonstrated by the user study reported
in Section 6.3.

Furthermore, this dissertation has provided a significant contribution to the design
of software support for Ubiquitous Interaction that could relieve designers from imple-
mentation and programming burdens. It is to be hoped that, by making technical details



153

transparent, designers could only focus on creative processes and researchers could better
understand how people interact — or do not interact — with these designs.

This dissertation has focused on two open issues regarding the development of
Ubiquitous Interaction, which are:

• Issue 1. Integration of heterogenous devices.

• Issue 2. Lowering the technical expertise for the rapid prototyping of Ubiquitous
Interaction.

Advances with respect to issue 1 have been made through the definition of an hardware
abstraction layer that makes use of a common data type model. Primitive data types allow
to abstract hardware input, and thus acquiring input from a wide range of different devices,
independently of the hardware implementation. Moreover, input from different sources can
be combined and define, in this way, new input devices from the software composition of
existing hardware. Issue 2 has been addressed by providing a comprehensive environment
for programming the behavior of heterogeneous devices (issue 1) that are operated by
different interaction techniques. A common communication protocol has been used that
is based on OSC and it is compliant with TUIO (see description of the protocol on page
111) so that users can easily integrate middlewares for input handling or programming
their own, again independently of the underlying hardware components. Encompassing
different devices and interaction techniques in a single programming environment, which
is the manifestation of a comprehensive reference architecture, has been demonstrated
(Chapter 6) to effectively reduce the development time. From one side users do not need
to learn different libraries to manage input devices that may expose the same hardware
interface. From another side, an integrated environment provides a coherent approach to
manage I/O components, which could not be true when using distinct software solutions
due to differences on programming languages or implementation choices. For both
cases, refer to Chapter 6. The case of programming the behavior of an accelerometer
sensor for the Nintendo Wii Remote Controller or the Apple iPad is presented Chapter
6. Moreover, users commentaries are reported after programming tasks using both
the proposed framework or specific libraries for the implementation. It has also been
shown that the framework can be successfully used to develop specific applications for
ubiquitous environments where different I/O technologies are adopted, as in the case of
the digitally-augmented product shelf use case (Chapter 6).

In this chapter the contributions of this dissertation are summarized with respect to
the two issues introduced in Chapter 3 and potentials for future research are presented.
In Section 7.1 the contributions to the HCI research field are described. Finally in Section
7.2 future works that may arise from this dissertation are acquainted.



154 7. Conclusions

7.1 Contributions

The main contributions of this work concern to the HCI research field and its intersection
with Ubiquitous Computing and Interaction Design. This dissertation contributes to
the development of software support for Ubiquitous Interaction with the following main
result:

• A comprehensive framework based on primitive data types, where the top-level
components allow for flexible and generic access to device features. As reported
in the previous section, abstracting from heterogeneous devices implementations
requires the definition of a high-level data types structure that can describe raw
data from hardware devices in a unified and device-independent way. To this end,
a data type structure has been defined for communication between devices in
an ubiquitous environment. The framework exploits this data model in a layered
architecture (Chapter 5) that provides a comprehensive environment to manage
interaction with heterogeneous devices and techniques.

In addition to this primary contribution, the dissertation also provided the following
results:

• Requirements. The definition of requirements is crucial because they connect the
software artifact being developed with the problem driving the development. When
developing software support for ubiquitous environments, the designer must known
the possibilities offered by the environment but also the needs from the point of view
of the users and the technology — in this dissertation the technological side has been
addressed. The list of requirements, therefore, contributes to the understanding of
technological needs and guides the development of new frameworks.

• A software library for ubiquitous interaction that employs hardware abstraction
to ease the prototyping process. Providing access to devices, sensors and emitters
by means of a unified, high-level API results in the support of the rapid prototyping
of interactive systems and the reuse of software components in different applications
so to reduce their development time and make it possible for developers to quickly
explore numerous designs. The software library is the implementation of the model
proposed with the framework.

• A case study of an interactive system that demonstrates how the software
framework can be used to implement actual applications.

• An experimental evaluation with users to demonstrate that a comprehensive
framework, which exploits hardware abstraction, positively affects the efficiency of
prototyping interaction in the case of device ecologies.



7.2. Potential for Future Research 155

7.2 Potential for Future Research

While, in this dissertation, tangible contributions to the development of ubiquitous
computing have been provided, there are aspects that have not been considered or fully
addressed, as well as directions that can be further explorer and might add knowledge
to the larger research area. The implementation presented in Chapter 5 has allowed to
demonstrate the effectiveness of the framework. Nevertheless it is not exhaustive. At
present time, only a restricted set of input devices and sensors are supported, as well
as interaction techniques and widgets of the user interface. Even if, with the actual
implementation, it was possible to generate a use case involving touch and marker-based
interaction, the framework needs to be extended to a wide range of existing devices
and techniques. In this way it will be possible to better understand to what extent the
framework is suitable for the development of more complex ubiquitous environments.
For instance, the framework is going to be exploited in the european project meSch,
Material EncounterS with digital cultural Heritage1. The project explores do-it-yourself
tangible interactives at heritage sites: extending the framework it will be possible to
enable interactions between tangible devices and digital interfaces. At the moment a
proof-of-concept has been developed that makes use of a transparent multi-touch display:
user interface widgets can be displayed on the screen and, at same time, objects that are
behind the screen are visible like, for instance, a piece in a museum. The digital widgets
can be coupled with physical output, activating physical behavior of interactive objects,
like having the piece rotating by activating a servo motor2.

As pointed out throughout the dissertation, the framework focuses on the technical
side of the socio-technological system that characterizes ubiquitous interaction. Having
an infrastructure that eases the development of device ecologies, where different devices
coexist and communicate, allow designers to focus on the human side and understand
how to best design such environments in order to support users needs. A key challenge,
therefore, is determining how to exploit the characteristics of individual devices and how
these can be combined to best support various human collaborative activities. First
examples can be found in the work of Coughlan et al. [2012]. The support to complex
gestural interaction is another point that has been left unexplored in this dissertation.
Currently the framework only support basic gestural interaction, such as using a device to
point at another device or recognizing touch points on a touch-sensitive surface. Touch
or in-air gestures, body movements or motion sensing gestures with portable device
need to be implemented that allow input from heterogeneous sources to be mapped into
commands for the user interface independently of the underlying hardware. Approaches
such as the specification language proposed by GISpL [Echtler and Butz, 2012] will be

1The project (2013-2017) receives funding from the European Community’s Seventh Framework
Programme ‘ICT for access to cultural resources’ (ICT Call 9: FP7-ICT-2011-9) under the Grant
Agreement 600851.

2A sample video of the proof-of-concept can be found at http://youtu.be/sFIgyOhnSXU



156 7. Conclusions

explored in the attempt to organize unambiguous description of gestural input across
a wide range of input devices. As discussed in Chapter 6 this framework demonstrates
to reduce the implementation of applications that make use of different input devices,
display technologies and interaction techniques. However, further investigation is needed
in order to understand how transferable these results are. For example, current APIs are
intended to be used by expert programmers. One question is: "how does the framework
can address the needs of researchers or interaction designers with low, or no, programming
experience?". The development of a visual language, as also suggested by other projects
such as Squidy [König et al., 2009] or vvvv, can be a path to further explore. Finally, the
holistic approach promoted by the framework gives designers a different point of view of
the design space and the language of the software libraries gives them a novel tool to
express their creative power and create new solutions. We, as humans, create tools to
accomplish certain tasks, but the tools we create also affect the kind of actions we can
perform and our cognitive processes. Therefore, the development of the framework could
also be a starting point to further explore to what extent the rationale of a framework
influences the type of design solutions that can be produced and, by comparing different
frameworks, understand which tool is the best for a particular problem (or a set of
problems) and why. The idea that a tool influences the exploration and understanding of
a problem space is not new in science. Just to cite one example: between linguistics,
cognitive psychologists and philosophers there is a strong debate on the way the language
we speak affects our thoughts about the world, which is known as linguistic relativism
[Swoyer, 2010]. This question has been in large part supported by the empiric evidence
that people from different parts of the world and that speak different languages talk
about the world differently. Although there are no definitive answers to this subject,
some studies demonstrated that, even if it is not the only cause, the native language of a
person plays an important role in shaping habitual thought.



References

Bailey, B. P., Konstan, J. A., and Carlis, J. V. (2001). Demais: designing multimedia
applications with interactive storyboards. In Proceedings of the ninth ACM international
conference on Multimedia, MULTIMEDIA ’01, pages 241–250, New York, NY, USA. ACM.

Baudel, T. and Beaudouin-Lafon, M. (1993). Charade: remote control of objects using
free-hand gestures. Commun. ACM, 36(7):28–35.

Baxter, L. (1997). Capacitive sensors design and applications.

Bazoli, J. (2012). Interfacce utente avanzate per l’internet of things: verso un’integrazione
naturale di persone, oggetti e reti sociali. Master’s thesis, Universita degli Studi di Brescia.

Bellucci, A., Malizia, A., and Aedo, I. (2011). Tesis: turn every surface into an interactive
surface. In Proceedings of the ACM International Conference on Interactive Tabletops and
Surfaces, ITS ’11, pages 1–1, New York, NY, USA. ACM.

Bellucci, A., Malizia, A., Diaz, P., and Aedo, I. (2010). Don’t touch me: multi-user annotations
on a map in large display environments. In Proceedings of the International Conference on
Advanced Visual Interfaces, AVI ’10, pages 391–392, New York, NY, USA. ACM.

Bencina, R. and Kaltenbrunner, M. (2005). The design and evolution of fiducials for the
reactivision system. In 3rd International Conference on Generative Systems in the Electronic
Arts.

Benyon, D., Turner, P., and Turner, S. (2005). Designing interactive systems: People,
activities, contexts, technologies. Addison-Wesley.

Bolt, R. A. (1980). "put-that-there": Voice and gesture at the graphics interface. In
Proceedings of the 7th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’80, pages 262–270, New York, NY, USA. ACM.

Bragdon, A., DeLine, R., Hinckley, K., and Morris, M. (2011). Code space: touch+ air
gesture hybrid interactions for supporting developer meetings. In Proceedings of the ACM
International Conference on Interactive Tabletops and Surfaces, pages 212–221. ACM.

Brandt, E. and Messeter, J. (2004). Facilitating collaboration through design games. In
Proceedings of the eighth conference on Participatory design: Artful integration: interweaving
media, materials and practices - Volume 1, PDC 04, pages 121–131, New York, NY, USA.
ACM.

Butler, A., Izadi, S., and Hodges, S. (2008). Sidesight: multi-"touch" interaction around
small devices. In Proceedings of the 21st annual ACM symposium on User interface software
and technology, UIST ’08, pages 201–204, New York, NY, USA. ACM.



158 References

Buxton, B. (2007). Sketching User Experiences: Getting the Design Right and the Right
Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Buxton, W. (2009). Multi-touch systems that i have known and loved.

Buxton, W. (2010). A touching story: A personal perspective on the history of touch interfaces
past and future. Symposium Digest of Technical Papers,, 41(1):444–448.

Buxton, W., Hill, R., and Rowley, P. (1985). Issues and techniques in touch-sensitive tablet
input. SIGGRAPH Comput. Graph., 19(3):215–224.

Carroll, J. M. (2000). Making use: scenario-based design of human-computer interactions.
MIT press.

Christensen, M. (2006). As We May Feel–Interpreting the Culture of Emerging Personal
Affective Mobile Media. PhD thesis, IT University of Copenhagen.

Clarke, S. (2004). Measuring api usability. Doctor Dobbs Journal, 29(5):1–5.

Cochran, W. G. and Cox, G. M. (1950). Experimental designs. Soil Science, 70(2):164.

Cook, T. D., Campbell, D. T., and Day, A. (1979). Quasi-experimentation: Design & analysis
issues for field settings. Houghton Mifflin Boston.

Costanza, E. and Robinson, J. (2003). A region adjacency tree approach to the detection and
design of fiducials. In VVG, pages 63–69.

Costanza, E., Shelley, S. B., and Robinson, J. (2003). D-touch: A consumer-grade tangible
interface module and musical applications. In Proceedings of Conference on Human-Computer
Interaction (HCI03).

Coughlan, T., Collins, T. D., Adams, A., Rogers, Y., Haya, P. A., and MartíN, E. (2012). The
conceptual framing, design and evaluation of device ecologies for collaborative activities. Int.
J. Hum.-Comput. Stud., 70(10):765–779.

Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user
information systems: Theory and results. PhD thesis, Massachusetts Institute of Technology.

de la Barré, R., Chojecki, P., Leiner, U., Mühlbach, L., and Ruschin, D. (2009). Touchless
interaction-novel chances and challenges. In Jacko, J., editor, Human-Computer Interaction.
Novel Interaction Methods and Techniques, volume 5611 of Lecture Notes in Computer
Science, pages 161–169. Springer Berlin / Heidelberg.

Dey, A. K., Abowd, G. D., and Salber, D. (2001). A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human–Computer Interaction,
16(2-4):97–166.

Dietz, P. and Leigh, D. (2001). Diamondtouch: a multi-user touch technology. In Proceedings
of the 14th annual ACM symposium on User interface software and technology, UIST ’01,
pages 219–226, New York, NY, USA. ACM.



References 159

Dippon, A. and Klinker, G. (2011). Kinecttouch: accuracy test for a very low-cost 2.5d
multitouch tracking system. In Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces, ITS ’11, pages 49–52, New York, NY, USA. ACM.

Dourish, P. and Bell, G. (2011). Divining a digital future: mess and mythology in ubiquitous
computing. MIT Press.

Dumas, B., Lalanne, D., Guinard, D., Koenig, R., and Ingold, R. (2008). Strengths and
weaknesses of software architectures for the rapid creation of tangible and multimodal interfaces.
In Proceedings of the 2nd international conference on Tangible and embedded interaction,
TEI ’08, pages 47–54, New York, NY, USA. ACM.

Echtler, F. and Butz, A. (2012). Gispl: gestures made easy. In Proceedings of the Sixth
International Conference on Tangible, Embedded and Embodied Interaction, pages 233–240.
ACM.

Echtler, F. and Klinker, G. (2008). A multitouch software architecture. In Proceedings of the
5th Nordic conference on Human-computer interaction: building bridges, NordiCHI ’08, pages
463–466, New York, NY, USA. ACM.

Ellis, T. J. and Levy, Y. (2010). A guide for novice researchers: Design and development
research methods. In Informing Science and IT Education Conference.

Endres, C., Butz, A., and MacWilliams, A. (2005). A survey of software infrastructures and
frameworks for ubiquitous computing. Mob. Inf. Syst., 1(1):41–80.

Esenther, A., Forlines, C., Ryall, K., and Shipman, S. (2002). Diamondtouch sdk: Support
for multi-user, multi-touch applications. Mitsubishi Electronics Research Laboratory, Report
No. TF2002-48.

Figueroa, P., Bischof, W. F., Boulanger, P., and Hoover, H. J. (2005). Efficient comparison
of platform alternatives in interactive virtual reality applications. Int. J. Hum.-Comput. Stud.,
62(1):73–103.

Fitzmaurice, G. W., Ishii, H., and Buxton, W. A. S. (1995). Bricks: laying the foundations
for graspable user interfaces. In Proceedings of the SIGCHI conference on Human factors in
computing systems, CHI ’95, pages 442–449, New York, NY, USA. ACM Press/Addison-Wesley
Publishing Co.

Freeman, D., Hilliges, O., Sellen, A., O’Hara, K., Izadi, S., and Wood, K. (2012). The role
of physical controllers in motion video gaming. In Proceedings of the Designing Interactive
Systems Conference, DIS ’12, pages 701–710, New York, NY, USA. ACM.

Freeman, J. (1975). The modelling of spatial relations. Computer graphics and image
processing, 4(2):156–171.

Fukumoto, M., Mase, K., and Suenaga, Y. (1992). "finger-pointer": a glove free interface.
In Posters and short talks of the 1992 SIGCHI conference on Human factors in computing
systems, CHI ’92, pages 62–62, New York, NY, USA. ACM.



160 References

Gill, S., Loudon, G., and Walker, D. (2008a). Designing a design tool: working with industry
to create an information appliance design methodology. Journal of Design Research, 7(2).

Gill, S., Walker, D., Loudon, G., Dix, A., Woolley, A., Ramduny-Ellis, D., and Hare, J. (2008b).
Rapid development of tangible interactive appliances: Achieving the fidelity / time balance.
International Journal of Art and Technology, 1(3-4):309–331.

Green, T. R. G., Petre, M., et al. (1996). Usability analysis of visual programming environments:
A ’cognitive dimensions’ framework. Journal of visual languages and computing, 7(2):131–174.

Greenbaum, J. M. and Kyng, M., editors (1991). Design at Work: Cooperative Design of
Computer Systems. L. Erlbaum Associates Inc., Hillsdale, NJ, USA.

Greenberg, S. (2007). Toolkits and interface creativity. Multimedia Tools and Applications,
32:139–159. 10.1007/s11042-006-0062-y.

Greenberg, S. and Fitchett, C. (2001). Phidgets: easy development of physical interfaces
through physical widgets. In Proceedings of the 14th annual ACM symposium on User interface
software and technology, UIST ’01, pages 209–218, New York, NY, USA. ACM.

Hall, E. T. and Hall, E. T. (1969). The hidden dimension. Anchor Books New York.

Han, J. Y. (2005). Low-cost multi-touch sensing through frustrated total internal reflection.
In Proceedings of the 18th annual ACM symposium on User interface software and technology,
UIST ’05, pages 115–118, New York, NY, USA. ACM.

Harris, A., Rick, J., Bonnett, V., Yuill, N., Fleck, R., Marshall, P., and Rogers, Y. (2009).
Around the table: are multiple-touch surfaces better than single-touch for children’s collabora-
tive interactions? In Proceedings of the 9th international conference on Computer supported
collaborative learning-Volume 1, pages 335–344. International Society of the Learning Sciences.

Harrison, C. (2010). Appropriated interaction surfaces. Computer, 43(6):86–89.

Harrison, C. and Hudson, S. E. (2008). Scratch input: creating large, inexpensive, unpowered
and mobile finger input surfaces. In Proceedings of the 21st annual ACM symposium on User
interface software and technology, UIST ’08, pages 205–208, New York, NY, USA. ACM.

Hartmann, B., Klemmer, S. R., Bernstein, M., and Mehta, N. (2005). d.tools: Visually
prototyping physical uis through statecharts. In in Extended Abstracts of UIST 2005. ACM
Press.

Hasan, H. (2003). Information systems development as a research method. Australasian J. of
Inf. Systems, 11(1).

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design Science in Information
Systems Research. MIS Quarterly, 28(1):75–105.

Hornecker, E. (2009). Tangible interaction. http://www.interaction-
design.org/encyclopedia/tangible_interaction.html.



References 161

Hornecker, E. (2012). Beyond affordance: tangibles’ hybrid nature. In Proceedings of the
Sixth International Conference on Tangible, Embedded and Embodied Interaction, TEI ’12,
pages 175–182, New York, NY, USA. ACM.

Houde, S. and Hill, C. (1997). What Do Prototypes Prototype? Handbook of Human-
Computer Interaction.

Igoe, T. and O’Sullivan, D. (2004). Physical Computing: Sensing and Controlling the Physical
World with Computers. Course Technology PTR, 1 edition.

Ishii, H. (2008). Tangible bits: beyond pixels. In Proceedings of the 2nd international
conference on Tangible and embedded interaction, TEI ’08, pages xv–xxv, New York, NY,
USA. ACM.

Ishii, H. and Ullmer, B. (1997). Tangible bits: Towards seamless interfaces between people,
bits and atoms. In Proc. Conf. on Human Factors in Computing Systems (CHI), pages
234–241, Atlanta, GA. ACM Press.

Israel, J. H., Belaifa, O., Gispen, A., and Stark, R. (2011). An object-centric interaction
framework for tangible interfaces in virtual environments. In Proceedings of the fifth interna-
tional conference on Tangible, embedded, and embodied interaction, TEI ’11, pages 325–332,
New York, NY, USA. ACM.

Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges,
S., Freeman, D., Davison, A., et al. (2011). Kinectfusion: real-time 3d reconstruction and
interaction using a moving depth camera. In Proceedings of the 24th annual ACM symposium
on User interface software and technology, pages 559–568. ACM.

Johnson, R. E. (1997). Frameworks = (components + patterns). Commun. ACM, 40(10):39–
42.

Jonathan Lazar, Jinjuan Heidi Feng, H. H. (2010). Research Methods in Human-Computer
Interaction. Wiley.

Jones, W., Spool, J., Grudin, J., Bellotti, V., and Czerwinski, M. (2007). "get real!": what’s
wrong with hci prototyping and how can we fix it? In CHI ’07 extended abstracts on Human
factors in computing systems, CHI EA ’07, pages 1913–1916, New York, NY, USA. ACM.

Jordà, S., Geiger, G., Alonso, M., and Kaltenbrunner, M. (2007). The reactable: exploring
the synergy between live music performance and tabletop tangible interfaces. In Proceedings
of the 1st international conference on Tangible and embedded interaction, TEI ’07, pages
139–146, New York, NY, USA. ACM.

Jordà, S., Hunter, S. E., Pla i Conesa, P., Gallardo, D., Leithinger, D., Kaufman, H.,
Julià, C. F., and Kaltenbrunner, M. (2010). Development strategies for tangible interaction
on horizontal surfaces. In Proceedings of the fourth international conference on Tangible,
embedded, and embodied interaction, TEI ’10, pages 369–372, New York, NY, USA. ACM.



162 References

Jorda, S., Kaltenbrunner, M., Geiger, G., and Bencina, R. (2005). The reactable*. In
Proceedings of the international computer music conference (ICMC 2005), Barcelona, Spain,
pages 579–582.

Jørgensen, A. H. and Myers, B. A. (2008). User interface history. In CHI ’08 extended
abstracts on Human factors in computing systems, CHI EA ’08, pages 2415–2418, New York,
NY, USA. ACM.

Jung, H., Stolterman, E., Ryan, W., Thompson, T., and Siegel, M. (2008). Toward a
framework for ecologies of artifacts: how are digital artifacts interconnected within a personal
life? In Proceedings of the 5th Nordic conference on Human-computer interaction: building
bridges, NordiCHI ’08, pages 201–210, New York, NY, USA. ACM.

Kahn, J. M., Katz, R. H., and Pister, K. S. J. (1999). Next century challenges: mobile
networking for &ldquo;smart dust&rdquo;. In Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, MobiCom ’99, pages 271–278,
New York, NY, USA. ACM.

Kaltenbrunner, M. and Bencina, R. (2007). reactivision: a computer-vision framework for
table-based tangible interaction. In Proceedings of the 1st international conference on Tangible
and embedded interaction, TEI ’07, pages 69–74, New York, NY, USA. ACM.

Kaltenbrunner, M., Bovermann, T., Bencina, R., and Costanza, E. (2005). Tuio: A protocol
for table-top tangible user interfaces. In Proceedings of the The 6th Int’l Workshop on Gesture
in Human-Computer Interaction and Simulation, Vannes, France.

Kammer, D., Freitag, G., Keck, M., and Wacker, M. (2010). Taxonomy and overview of
multi-touch frameworks: Architecture, scope and features. In Workshop on Engineering
Patterns for Multitouch Interfaces, Berlin.

Klemmer, S. (2012). The power of prototyping. https://class.coursera.org/hci/lecture/preview.

Klemmer, S., Newman, M. W., and Sapien, R. (2000). The designer’s outpost: a task-centered
tangible interface for web site information design. In CHI ’00 extended abstracts on Human
factors in computing systems, CHI EA ’00, pages 333–334, New York, NY, USA. ACM.

Klemmer, S. R. and Landay, J. A. (2009). Toolkit Support for Integrating Physical and Digital
Interactions. Human-Computer Interaction, 24(3):315–366.

Klemmer, S. R., Li, J., Lin, J., and Landay, J. A. (2004). Papier-mache: toolkit support for
tangible input. In Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI ’04, pages 399–406, New York, NY, USA. ACM.

Klokmose, C. N. (2009). On Human-Computer Interaction in Complex Artefact Ecologies.
PhD thesis, Department of Computer Science, Aarhus University, Denmark.

König, W. A., Rädle, R., and Reiterer, H. (2009). Squidy: a zoomable design environment for
natural user interfaces. In Proceedings of the 27th international conference extended abstracts
on Human factors in computing systems, CHI EA ’09, pages 4561–4566, New York, NY, USA.
ACM.



References 163

Krafzig, D., Banke, K., and Slama, D. (2005). Enterprise SOA: service-oriented architecture
best practices. Prentice Hall PTR.

Kray, C., Nesbitt, D., Dawson, J., and Rohs, M. (2010). User-defined gestures for connecting
mobile phones, public displays, and tabletops. In Proceedings of the 12th international
conference on Human computer interaction with mobile devices and services, pages 239–248.
ACM.

Krueger, M. W., Gionfriddo, T., and Hinrichsen, K. (1985). Videoplace&mdash;an artificial
reality. In Proceedings of the SIGCHI conference on Human factors in computing systems,
CHI ’85, pages 35–40, New York, NY, USA. ACM.

Kunz, A. and Fjeld, M. (2010). Tabletops - Horizontal Interactive Displays, chapter From
Table–System to Tabletop: Integrating Technology into Interactive Surfaces, pages 51–69.
Springer London.

Kvale, S. (2007). Doing Interviews. SAGE Publications.

Landay, J. A. (1996). Silk: sketching interfaces like krazy. In Conference companion on
Human factors in computing systems: common ground, CHI ’96, pages 398–399, New York,
NY, USA. ACM.

Laufs, U., Ruff, C., and Zibuschka, J. (2010). Mt4j - a cross-platform multi-touch development
framework. CoRR, abs/1012.0467.

Lee, J. and Ishii, H. (2010). Beyond: collapsible tools and gestures for computational design.
In Proceedings of the 28th of the international conference extended abstracts on Human
factors in computing systems, pages 3931–3936. ACM.

Lee, J. C. (2008). Hacking the nintendo wii remote. IEEE Pervasive Computing, 7:39–45.

Lee, J. C., Avrahami, D., Hudson, S. E., Forlizzi, J., Dietz, P. H., and Leigh, D. (2004). The
calder toolkit: wired and wireless components for rapidly prototyping interactive devices. In
Proceedings of the 5th conference on Designing interactive systems: processes, practices,
methods, and techniques, DIS ’04, pages 167–175, New York, NY, USA. ACM.

Lifton, J. and Paradiso, J. A. (2010). Dual reality: Merging the real and virtual. In Facets of
Virtual Environments, pages 12–28. Springer.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology.

Lim, Y.-K., Stolterman, E., and Tenenberg, J. (2008). The anatomy of prototypes: Prototypes
as filters, prototypes as manifestations of design ideas. ACM Trans. Comput.-Hum. Interact.,
15(2):7:1–7:27.

Lin, H. X., Choong, Y.-Y., and Salvendy, G. (1997). A proposed index of usability: a method
for comparing the relative usability of different software systems. Behaviour & information
technology, 16(4-5):267–277.



164 References

Lin, J., Newman, M. W., Hong, J. I., and Landay, J. A. (2000). Denim: finding a tighter fit
between tools and practice for web site design. In Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI ’00, pages 510–517, New York, NY, USA. ACM.

Loke, S. and Ling, S. (2004). Analyzing observable behaviours of device ecology workflows.
In In Proceedings of the 6th International Conference on Enterprise Information Systems.
Citeseer.

MacIntyre, B., Gandy, M., Dow, S., and Bolter, J. D. (2004). Dart: a toolkit for rapid
design exploration of augmented reality experiences. In Proceedings of the 17th annual ACM
symposium on User interface software and technology, UIST ’04, pages 197–206, New York,
NY, USA. ACM.

MacKenzie, I. S. (2002). Within-subjects vs. between-subjects designs: Which to use?

Marquardt, N., Diaz-Marino, R., Boring, S., and Greenberg, S. (2011). The proximity toolkit:
prototyping proxemic interactions in ubiquitous computing ecologies. In Proceedings of the
24th annual ACM symposium on User interface software and technology, pages 315–326.
ACM.

Mazalek, A., Mironer, B., O’Rear, E., and Devender, D. V. (2008). The tviews table role-playing
game. Journal of Virtual Reality and Broadcasting, 5(8). urn:nbn:de:0009-6-14913,, ISSN
1860-2037.

Mazalek, A., Reynolds, M., and Davenport, G. (2006). Tviews: An extensible architecture for
multiuser digital media tables. IEEE Comput. Graph. Appl., 26(5):47–55.

McLoughlin, D. (1985). A framework for integrated emergency management. Public Adminis-
tration Review, pages 165–172.

Mellis, D. A., Banzi, M., Cuartielles, D., and Igoe, T. (2007). Arduino: An open electronics
prototyping platform. In ACM, editor, CHI ’07 Extended Abstracts.

Mi, H. and Sugimoto, M. (2011). Hats: interact using height-adjustable tangibles in tabletop
interfaces. In Proceedings of the ACM International Conference on Interactive Tabletops and
Surfaces, pages 71–74. ACM.

Mistry, P. and Maes, P. (2009). Sixthsense: a wearable gestural interface. In ACM SIGGRAPH
ASIA 2009 Sketches, SIGGRAPH ASIA ’09, pages 11:1–11:1, New York, NY, USA. ACM.

Montgomery, D. C. (2008). Design and analysis of experiments. Wiley.

Moscovich, T. and Hughes, J. F. (2006). Multi-finger cursor techniques. In Proceedings of
Graphics Interface 2006, pages 1–7. Canadian Information Processing Society.

Muller, M. J. (2001). Layered participatory analysis: new developments in the card technique.
In Proceedings of the SIGCHI conference on Human factors in computing systems, CHI ’01,
pages 90–97, New York, NY, USA. ACM.

Muller, M. J. and Kuhn, S. (1993). Participatory design. Commun. ACM, 36(6):24–28.



References 165

Mumford, E. (2000). A socio-technical approach to systems design. Requirements Engineering,
5(2):125–133.

Myers, B., Hudson, S. E., and Pausch, R. (2000). Past, present, and future of user interface
software tools. ACM Trans. Comput.-Hum. Interact., 7(1):3–28.

Myers, B. A. and Rosson, M. B. (1992). Survey on user interface programming. In Proceedings
of the SIGCHI conference on Human factors in computing systems, CHI ’92, pages 195–202,
New York, NY, USA. ACM.

Nam, T.-J. and Lee, W. (2003). Integrating hardware and software: augmented reality based
prototyping method for digital products. In CHI ’03 extended abstracts on Human factors in
computing systems, CHI EA ’03, pages 956–957, New York, NY, USA. ACM.

Ni, T. (2011). A Framework of Freehand Gesture Interaction: Techniques, Guidelines, and
Applications. PhD thesis, Virginia Polytechnic Institute and State University.

Nielsen, J. (1995). Card sorting to discover the users’ model of the information space.

Nielsen, J. (2005). Time budgets for usability sessions. Useit. com: Jakob Nielsen’s web site,
12.

Nielsen, J. and Hackos, J. T. (1993). Usability engineering, volume 125184069. Academic
press San Diego.

Noether, G. E. (1987). Sample size determination for some common nonparametric tests.
Journal of the American Statistical Association, 82(398):645–647.

Norman, D. A. (1999). The Invisible Computer: Why Good Products Can Fail, the Personal
Computer Is So Complex, and Information Appliances Are the Solution. The MIT Press.

Norman, D. A. (2010). Natural user interfaces are not natural. interactions, 17(3):6–10.

NUI (2009). Multi-touch technologies. http://nuigroup.com/log/nuigroup_book_1/.

O’Hara, K., Harper, R., Mentis, H., Sellen, A., and Taylor, A. (2012). On the naturalness of
touchless interaction. ACM Trans. on Computer Human Interaction.

Oulasvirta, A. (2008). Feature: When users "do" the ubicomp. interactions, 15(2):6–9.

Oviatt, S. (2003). Multimodal Interfaces. In Jacko, J. A. and Sears, A., editors, The
Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies and Emerging
Applications, chapter Multimodal interfaces, pages 286–304. L. Erlbaum Associates Inc.,
Hillsdale, NJ, USA.

Patten, J., Recht, B., and Ishii, H. (2002). Audiopad: a tag-based interface for musical
performance. In Proceedings of the 2002 conference on New interfaces for musical expression,
NIME ’02, pages 1–6, Singapore, Singapore. National University of Singapore.

Paul, C. L. (2008). A modified delphi approach to a new card sorting methodology. Journal
of Usability Studies, 4(1):7–30.



166 References

Peffers, K., Tuunanen, T., Rothenberger, M., and Chatterjee, S. (2007). A design science
research methodology for information systems research. J. Manage. Inf. Syst., 24(3):45–77.

Peralta, D. (2012). Master’s thesis, Universidad Carlos III de Madrid.

Perlis, A. J. (1982). Epigrams on programming. SIgPLAN Notices, 17(9):7–13.

Philip, G. C. (1998). Software design guidelines for event-driven programming. Journal of
Systems and Software, 41(2):79–91.

Poslad, S. (2009). Ubiquitous Computing: Smart Devices, Environments and Interactions.
Wiley.

Potter, R. L., Weldon, L. J., and Shneiderman, B. (1988). Improving the accuracy of
touch screens: an experimental evaluation of three strategies. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 27–32. ACM.

Poulton, E. and Freeman, P. (1966). Unwanted asymmetrical transfer effects with balanced
experimental designs. Psychological Bulletin, 66(1):1.

Pressman, R. S. (2001). Software Engineering: A Practitioner’s Approach. McGraw-Hill
Higher Education, 5th edition.

Reichl, P., Froehlich, P., Baillie, L., Schatz, R., and Dantcheva, A. (2007). The liliput
prototype: a wearable lab environment for user tests of mobile telecommunication applications.
In CHI ’07 extended abstracts on Human factors in computing systems, CHI EA ’07, pages
1833–1838, New York, NY, USA. ACM.

Rekimoto, J. and Matsushita, N. (1997). Perceptual surfaces: Towards a human and object
sensitive interactive display. In Workshop on Perceptual User Interfaces (PUI’97), pages 30–32.

Rekimoto, J. and Saitoh, M. (1999). Augmented surfaces: a spatially continuous work space
for hybrid computing environments. In Proceedings of the SIGCHI conference on Human
factors in computing systems: the CHI is the limit, CHI ’99, pages 378–385, New York, NY,
USA. ACM.

Robertson, J. and Robertson, S. (2012). Mastering the Requirements Process: Getting
Requirements Right. Addison-Wesley Professional.

Rogers, Y. (2006). Moving on from weiser’s vision of calm computing: Engaging ubicomp
experiences. UbiComp 2006: Ubiquitous Computing, pages 404–421.

Saffer, D. (2008). Designing gestural interfaces. O’Reilly Media.

Schöning, J., Brandl, P., Daiber, F., Echtler, F., Hilliges, O., Hook, J., Löchtefeld, M.,
Motamedi, N., Muller, L., Olivier, P., Roth, T., and von Zadow, U. (2008). Multi-Touch
Surfaces: A Technical Guide. Technical report, University of Munich.

Sculley, J. (1987). Odyssey: Pepsi to Apple : A Journey of Adventure, Ideas, and the Future.
HarperColins.



References 167

Serrano, M., Nigay, L., Lawson, J.-Y. L., Ramsay, A., Murray-Smith, R., and Denef, S. (2008).
The openinterface framework: a tool for multimodal interaction. In CHI ’08 extended abstracts
on Human factors in computing systems, CHI EA ’08, pages 3501–3506, New York, NY, USA.
ACM.

Shapiro, S. S. and Wilk, M. B. (1965). An analysis of variance test for normality (complete
samples). Biometrika, 52(3/4):591–611.

Shneiderman, B. (2007). Creativity support tools: accelerating discovery and innovation.
Commun. ACM, 50(12):20–32.

Snyder, C. (2003). Paper Prototyping: The Fast and Easy Way to Design and Refine User
Interfaces (Interactive Technologies). Morgan Kaufmann, 1 edition.

Sokal, R. R. (1958). A statistical method for evaluating systematic relationships. Univ Kans
Sci Bull, 38:1409–1438.

Streitz, N. A., Geissler, J., Holmer, T., Konomi, S., Müller-Tomfelde, C., Reischl, W., Rexroth,
P., Seitz, P., and Steinmetz, R. (1999). i-land: an interactive landscape for creativity and
innovation. In Proceedings of the SIGCHI conference on Human factors in computing systems:
the CHI is the limit, CHI ’99, pages 120–127, New York, NY, USA. ACM.

Stylos, J. and Myers, B. A. (2008). The implications of method placement on api learnability.
In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of
software engineering, pages 105–112. ACM.

Swoyer, C. (2010). Language and Bilingual Cognition, chapter How does language affect
thought? Psychology Press.

Taylor, II, R. M., Hudson, T. C., Seeger, A., Weber, H., Juliano, J., and Helser, A. T. (2001).
Vrpn: a device-independent, network-transparent vr peripheral system. In Proceedings of the
ACM symposium on Virtual reality software and technology, VRST ’01, pages 55–61, New
York, NY, USA. ACM.

Tse, E., Shen, C., Greenberg, S., and Forlines, C. (2006). Enabling interaction with single
user applications through speech and gestures on a multi-user tabletop. In Proceedings of the
working conference on Advanced visual interfaces, pages 336–343. ACM.

Ullmer, B. and Ishii, H. (1997). The metadesk: models and prototypes for tangible user
interfaces. In Proceedings of the 10th annual ACM symposium on User interface software and
technology, UIST ’97, pages 223–232, New York, NY, USA. ACM.

Ullmer, B. and Ishii, H. (2000). Emerging frameworks for tangible user interfaces. IBM
systems journal, 39(3.4):915–931.

van Dam, A. (1997). Post-wimp user interfaces. Commun. ACM, 40(2):63–67.

van den Akker, J. (2000). Principles and methods of development research. Kluwer Academic
Publishers.



168 References

Vaughan-Nichols, S. J. (2009). Game-console makers battle over motion-sensitive controllers.
Computer, 42:13–15.

Vogt, W. P. and Johnson, R. B. (2011). Dictionary of statistics & methodology: A nontechnical
guide for the social sciences. SAGE Publications, Incorporated.

Wallace, V. L. (1976). The semantics of graphic input devices. In The papers of the ACM
symposium on Graphic languages, pages 61–65, New York, NY, USA. ACM.

Weiser, M. (1991). The computer for the 21st century. Scientific American.

Welch, G. and Bishop, G. (1995). An introduction to the kalman filter.

Wigdor, D., Jiang, H., Forlines, C., Borkin, M., and Shen, C. (2009). Wespace: the design
development and deployment of a walk-up and share multi-surface visual collaboration system.
In Proceedings of the 27th international conference on Human factors in computing systems,
pages 1237–1246. ACM.

Wigdor, D. and Wixon, D. (2011). Brave NUI World: Designing Natural User Interfaces for
Touch and Gesture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.

Wilcoxon, F. and Wilcox, R. A. (1964). Some rapid approximate statistical procedures. Lederle
Laboratories.

Wilde, N. P. (1996). Using cognitive dimensions in the classroom as a discussion tool for
visual language design. In Conference companion on Human factors in computing systems:
common ground, pages 187–188. ACM.

Wilson, A. D. (2010). Using a depth camera as a touch sensor. In ACM International
Conference on Interactive Tabletops and Surfaces, ITS ’10, pages 69–72, New York, NY, USA.
ACM.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012).
Experimentation in software engineering. Springer.

Wu, A., Jog, J., Mendenhall, S., and Mazalek, A. (2011). A framework interweaving tangible
objects, surfaces and spaces. In Proceedings of the 14th international conference on Human-
computer interaction: interaction techniques and environments - Volume Part II, HCII’11,
pages 148–157, Berlin, Heidelberg. Springer-Verlag.

Wu, A., Mendenhall, S., Jog, J., Hoag, L. S., and Mazalek, A. (2012). A nested api structure
to simplify cross-device communication. In Proceedings of the Sixth International Conference
on Tangible, Embedded and Embodied Interaction, TEI ’12, pages 225–232, New York, NY,
USA. ACM.

York, J. and Pendharkar, P. C. (2004). Human- computer interaction issues for mobile
computing in a variable work context. International Journal of Human-Computer Studies,
60(5-6):771–797.

Zarraonandia, T., Aedo, I., and Díaz, P. (2012). Envisioning the transformative role of it in
lectures. Interaction Design and Architecture(s) Journal, pages 7–17.



A
Published Results

This appendix lists, in reverse chronological order, the scientific publications that resulted
from this dissertation.

• Bellucci, A., Malizia, A. and Aedo, I. (2013). Light on horizontal interactive surfaces:
input space for tabletop computing. Accepted for publication on ACM Computing
Surveys on date 26/06/2013.

• Bellucci, A. (2012). Prototyping natural interaction. BCS Interfaces, Autumn 2012, 92,
20-21.

• Bellucci, A., Malizia, A. and Aedo, I. (2012). Towards a framework for the rapid
prototyping of physical interaction. In Proceedings of the 4th International Workshop on
Physicality, co-located with British HCI 2012.

• Bellucci, A., Malizia, A. and Aedo, I. (2011) TESIS: Turn Every Surface into an Interactive
Surface. In Proceedings of the ACM International Conference on Interactive Tabletops
and Surfaces (ITS 2011).

• Bellucci, A. ,Malizia, A., Diaz, P. and Aedo, I. (2010). Human-Display Interaction
Technology. Emerging remote interfaces for pervasive display environments. IEEE
Pervasive Computing, 9(2), 72-76.

• Bellucci, A., Malizia, A., Diaz, P. and Aedo, I. (2010). Don’t Touch Me: multi-user
annotations on a map in large display environments. In Proceedings of International
Working Conference on Advanced Visual Interfaces (AVI 2010). Vol. 1, pp. 391-392.
ACM Press.

• Malizia, A., Onorati, T., Bellucci, A., Diaz, P., and Aedo, I. (2009). Interactive Accessible
Notifications for Emergency Notification Systems. In Proceedings of the 5th International
Conference on Universal Access in Human-Computer Interaction. Applications and
Services (UAHCI09), LNCS 5616. Springer Berlin Heidelberg, Berlin, Heidelberg, 385-
394.



B
Requirements Extraction

In this appendix are reported: (a) the list of initial requirements extracted by the state of
the art and the personal experience, (b) a typical interview protocol depending on the

profile of the interviewee, (c) the additional requirements extracted from the interviews, (d) the
categories defined with the card-sorting exercise and, (e) the list of final requirements under
categories.

B.1 List of Initial Requirements

1. Support Multi-Touch Interaction [Kaltenbrunner and Bencina, 2007; Laufs et al., 2010;
Wu et al., 2012]

2. Support Touch-less/Remote Interaction (free hand/body movements) [O’Hara et al.,
2012]

3. Support Motion Sensing Gestural Interaction [Bellucci et al., 2010]

4. Support Tangible Interaction [Echtler and Klinker, 2008; Kaltenbrunner and Bencina,
2007; Klemmer et al., 2004]

5. Support Multi-Surface Interaction [Wu et al., 2012]

6. Support Proxemic Interaction [Marquardt et al., 2011]

7. Support Multimodal Interaction [König et al., 2009; Serrano et al., 2008]

8. Transparent Communications [Taylor et al., 2001]

9. Distributed Communications [Taylor et al., 2001]

10. Automatic Resource Discovery [Dey et al., 2001]

11. Common Communication Protocol [Kaltenbrunner et al., 2005]

12. Common Programming Language [Greenberg, 2007]



B.1. List of Initial Requirements 171

13. Separation of Concerns [Laufs et al., 2010; Taylor et al., 2001]

14. Minimize Code Housekeeping [Dumas et al., 2008]

15. Hide Low-Level Coding Details [König et al., 2009]

16. Automate Processes and Tasks when Possible [Dey et al., 2001]

17. Easy to learn API [Wu et al., 2012]

18. Support Multi-touch Devices [NUI, 2009]

19. Support Tangible Devices [Klemmer and Landay, 2009]

20. Support Touchless Devices [Bellucci et al., 2010]

21. Support Traditional Devices [König et al., 2009; Serrano et al., 2008]

22. Support Sensors Input/Output [Hartmann et al., 2005; Mellis et al., 2007]

23. Device Identification/Tracking within the Interactive Space [Wu et al., 2012]

24. User Identification/Tracking within the Interactive Space [Marquardt et al., 2011]

25. Real/Virtual Space Matching [Taylor et al., 2001]

26. Data Fusion Mechanisms [Dumas et al., 2008; Israel et al., 2011; Taylor et al., 2001]

27. Data Fission Techniques [Dumas et al., 2008; Israel et al., 2011; Taylor et al., 2001]

28. Familiar Development Platform [Greenberg, 2007]

29. Programming via API [Wu et al., 2012]

30. Programming via Configuration File [Wu et al., 2012]

31. Visual Programming Tools [Hartmann et al., 2005; König et al., 2009; Marquardt et al.,
2011; Serrano et al., 2008]

32. Input Abstraction and Interpretation [König et al., 2009; Laufs et al., 2010; Taylor et al.,
2001]

33. Manage Heterogeneous Data Content [König et al., 2009; Laufs et al., 2010; Taylor
et al., 2001]

34. Device Interoperability [Laufs et al., 2010; Taylor et al., 2001; Wu et al., 2012]

35. Device Abstraction [Laufs et al., 2010; Taylor et al., 2001]

36. Manage Heterogeneous Devices [Israel et al., 2011; Laufs et al., 2010; Taylor et al., 2001]

37. Manage Different Data Streams [Dumas et al., 2008; Taylor et al., 2001]

38. Distributed Application Architecture [Marquardt et al., 2011; Taylor et al., 2001]



172 B. Requirements Extraction

39. Data-Oriented Architecture [König et al., 2009; Serrano et al., 2008; Wu et al., 2012]

40. Time Stamps for I/O Messages [Taylor et al., 2001]

41. Storage and Replay of Interactive Sessions [Dey et al., 2001]

42. Spatial Awareness within the Interactive Space [Marquardt et al., 2011]

43. Full-Duplex (two-way) Communications (Physical Object/Virtual Representation) [Israel
et al., 2011]

44. Real (e.g., haptic)/Digital(e.g., visual) User Feedback [Bellucci et al., 2010]

45. Event-Driven Architecture [Laufs et al., 2010]

46. Expandible/Extensible Architecture [Laufs et al., 2010]

47. Full and Clear Documentation of Architecture and API [Wu et al., 2012]

48. Common I/O Data Model [König et al., 2009]

49. Support User Scripting [Greenberg, 2007]

50. Cross-Device UI [Bragdon et al., 2011]

B.2 Interviews

Technical background. Typical questions for respondents with a technical, programming
background have been:

• Describe the projects related to the design and development of interactive systems you
are currently involved or have participated in the past...

• Have you ever designed and/or developed interactive systems for collaborative environ-
ments with heterogeneous technologies (e.g. multi-touch tables, video walls, smartphones,
tangible input, etc.)?

• What kind of input devices have you programmed? Which kind of interaction technique?

• What kind of programming languages, IDE, SDK you used in your projects?

• How did you manage the communication and data exchange between different devices?

• Do you know the OSC/TUIO protocol?

• Do you know the Arduino platform?

• Have you found yourself interested in doing something that the programming tool you
where using did not support? If so, what?



B.3. Additional Requirements 173

Non technical background. Typical questions for respondents with an academic back-
ground and little if no programming knowledge have been:

• What kind of projects regarding ubiquitous technologies have you been involved in?

• Could you please describe what kind of interactive scenarios were you interested to setup?

• How ubiquitous technologies are supposed to support or enhance envisioned interaction?

• What kind of problems did you encounter in your projects? What was the most time-
consuming part of the project?

B.3 Additional Requirements

1. Support Cross-Device Interaction

2. Support Augmented-Reality Interactions

3. Support Visual Markers Input (e.g., qrcode)

4. Easy Configuration of Input Devices

5. Storage and Replay of Interactive Sessions

6. Agnosticism of Legacy Middlewares

7. Low Viscosity of the Code

8. Easy to Program UI Behavior

9. Programming via Hard Coding

B.4 Categories

• Input/Output Hardware

• Data

• Architectural Traits

• Developing/Coding

• Interaction Modalities

• Interactive Space

• Application/User Interface



174 B. Requirements Extraction

B.5 Final Requirements Under Categories

Input/Output Hardware

1. Heterogeneous Input/Output Hardware

• Multi-touch Devices

• Tangible Devices

• Touchless Devices

• Traditional Devices

• Sensors (e.g., cameras, depth sensors, motion sensors)

• Visual Markers Input for Augmented Reality (e.g., qrcode)

Interaction modalities

2. Heterogeneous Interaction Modalities

• Multi-Touch Interaction

• Touch-less/Remote Interaction

– Free-Hand, Body Movement Gestural Interaction
– Device (Motion Sensing) Gestural Interaction
– Proxemic Interaction

• Tangible Interaction

• Multimodal Interaction

• Cross-device Interaction

Interactive Space

3. Spatial Awareness

• Matching between Real and Virtual Spaces

• Device Identification/Tracking within the Interactive Space

• User Identification/Tracking within the Interactive Space

4. Multi-Surface Environment



B.5. Final Requirements Under Categories 175

Architectural Treats

5. Distributed Architecture

• Transparent to the User (TTTU) Connections and Communications
• Automatic Devices Discovery
• Distributed Communications
• Full-duplex Communications

6. Common Communication Protocol

• Device Interoperability

7. Expandible/Extensible Architecture

• Separation of Concerns
• Common I/O Data Model
• Data-Oriented
• Event-Driven Architecture

8. Device Abstraction

• Input Abstraction and Interpretation

9. Different Data Streams

• Data Fusion/Fission Mechanisms
• Time Stamps for I/O Messages

10. Agnosticism of Legacy Middlewares

Developing/Coding

11. Common Programming Language

12. Familiar Development Platform

13. Low Viscosity of the Code

14. Hide Low-Level Coding Details

• Minimize Housekeeping
• Automate Processes and Tasks when Possible

15. Programming Alternatives

• Programming via API



176 B. Requirements Extraction

– Concise API
– Easy to learn API
– Full and Clear Documentation of Architecture and API

• Programming via Hard Coding
• Programming via Configuration File
• Visual Programming Tools
• User Scripting

Application/User Interface

16. Real (e.g., haptic)/Digital(e.g., visual) User Feedback

• Physical Object/Virtual Representation Communications (bidirectional)

17. Cross-Device UI

18. Storage and Replay of Interactive Sessions

19. Easy Configuration of Input Devices

20. UI Widgets

• Predefined UI Widgets
• Common Behavior to Input Methods
• Easy to customize/extended



C
User Evaluation

In this Appendix the material used during the user study is presented: the documentation given
to the users with step-by-step instructions of the evaluation, the informed consent form, the
pre-test and post-test questionnaires.

C.1 Documentation for the User Tasks

The following pages show the documentation given to the subject during the experimenta-
tion.



	  
	  

	  
Researcher:	  Andrea	  Bellucci,	  Ph.D.	  student,	  Dept.	  of	  Computer	  Science,	  abellucc@inf.uc3m.es.	  
Supervisor:	  Ignacio	  Aedo,	  Full	  Professor,	  Dept.	  of	  Computer	  Science,	  aedo@ia.uc3m.es.	  
_____________________________________________________________________________________________________________________________	  

Evaluation	  of	  a	  comprehensive	  framework	  for	  the	  rapid	  prototyping	  of	  ubiquitous	  interaction	  

D1.	  User	  study	  
You	   have	   been	   asked	   to	   participate	   in	   an	   experiment	   conducted	   by	   Andrea	   Bellucci	   to	  
investigate	  the	  impact	  of	  different	  software	  technologies	  in	  the	  prototyping	  of ubiquitous	  
interaction.	   The	   results	   of	   the	   experiment	  will	   be	   included	   in	   Andrea’s	   Ph.D.	   thesis.	   The	  
session	  will	  not	  last	  more	  then	  90	  minute,	  in	  which	  you	  will	  be	  introduced	  to	  the	  context	  of	  
the	  experiment	  and	  the	   technologies	   that	  will	  be	  used	  to	  carry	  out	   the	   tasks.	  You	  will	  be	  
asked	   to	  carry	  out	   two	  programming	   task	  and	   to	   fill	  out	   two	  anonymous	  questionnaires,	  
one	  at	   the	  beginning	  and	  one	  at	   the	  end,	   to	  gather	   information	  on	  your	  profile	  and	  your	  
experience	  after	  the	  programming	  tasks.	  Please	  be	  aware	  that	  the	  audio	  and	  video	  of	  the	  
session	  will	  be	  recorded	  in	  a	  digital	  archive	  so	  that	  it	  can	  be	  used	  for	  data	  analysis.	  We	  do	  
not	   record	   the	   interview	   without	   permission:	   you	   are	   kindly	   asked	   to	   read	   a	   sign	   the	  
consent	  (document	  D2)	  before	  proceeding	  with	  the	  experiment.	  

Introduction	  
The	  Ubiquitous	  Computing	  (UbiComp)	  is	  considered	  as	  an	  extension	  of	  the	  computational	  
capabilities	  of	   the	  physical	  environment,	   allowing	   the	  computational	   infrastructure	   to	  be	  
present	   everywhere	   in	   the	   form	   of	   small,	   inexpensive,	   robust	   networked	   processing	  
devices,	  distributed	  at	  all	  scales	  throughout	  everyday	  life	  and	  generally	  turned	  to	  distinctly	  
common-‐place	  ends.	  In	  the	  context	  of	  interaction	  in	  ubiquitous	  environments,	  the	  trend	  is	  
to	  extend	  the	  number	  of	  different	   input	  devices	  the	  user	   is	  capable	  to	   interact	  with;	   they	  
can	  be	  either	  traditional	  ones	  such	  as	  mouse	  and	  keyboard,	  or	  exploit	  new	  types	  of	  sensors	  
and	  tactile	  surfaces,	  accelerometers,	  RGB	  and	  infrared	  cameras,	  etc.	  In	  reality,	  UbiComp	  is	  
facing	  a	  big	  divide:	  due	  to	  the	  heterogeneity	  of	  its	  technologies,	  practical	  applications	  and	  
interfaces	  are	  pluggable	   and	   interchangeable	  only	   to	   a	   very	   limited	  extent.	  To	   cope	  with	  
this	   problem,	   tools	   that	   support	   the	   rapid	   prototyping	   of	   interfaces	   that	   use	   the	  
aforementioned	   hardware	   are	   needed.	   The	   goal	   of	   these	   tools	   is	   to	   develop	   a	   richer	  
interaction	  experience,	   in	  a	   fast	  and	  simple	  way,	  having	   the	  potential	   to	  provide	   time	  on	  
task	   by	   lowering	   prerequisite	   knowledge	   and	   by	   automating	   ’low-‐level’	   programming	  
skills.	  	  

In	   this	   experiment	   you	   will	   be	   asked	   to	   program	   the	   behavior	   of	   a	   physical/digital	  
environment	   using	   (a)	   different	   software	   libraries	   and	   (b)	   a	   comprehensive	   software	  
framework.	   

	   	  

Interactive Systems Group 



Pre-‐test	  questionnaire	  
You	  are	  kindly	  asked	  to	  fill	  out	  a	  pre-‐test	  questionnaire.	  

Training	  	  
You	  are	  given	  a	  brief	  tutorial	  on	  the	  usage	  of	  the	  Processing	  platform.	  The	  tutorial	  consists	  
of	  the	  following	  steps:	  

1. An	  introduction	  the	  Processing	  platform:	  the	  language,	  the	  API,	  the	  concept	  of	  
Sketch,	  how	  to	  import	  libraries	  in	  Processing	  and	  how	  to	  use	  the	  graphical	  IDE.	  

2. Practice:	  you	  will	  program	  a	  first	  “Hello	  World”	  sketch	  to	  get	  confident	  with	  the	  
platform.	  

The	  basic	  concepts	  of	  an	  accelerometer	  are	  explained.	  

Scenario	  
In	   the	   last	   two	   years	   you	   have	   been	   working	   in	   the	   R&D	   (Research	   and	   Development)	  
department	   of	   a	   company	   that	   develop	   solutions	   for	   technologically	   enhanced	  
environments	  (e.g.,	  smart	  rooms	  with	  tabletops	  and	  video	  wall	  interfaces).	  Thanks	  to	  your	  
programming	  skills,	  you	  have	  been	  proposed	  to	  join	  an	  inter-‐disciplinary	  group	  (designers,	  
artists,	   computer	   scientists,	   engineers,	   etc.)	   with	   the	   task	   to	   develop	   prototypes	   to	  
investigate	   the	   use	   of	   new	   sensors	   (e.g.,	   Microsoft	   Kinect)	   and	   ubiquitous	   devices	   (e.g.,	  
tablets,	  smart	  windows,	  etc.)	  for	  physical/digital	  interfaces.	  The	  sensors	  you	  are	  interested	  
to	  use	  in	  your	  prototypes	  are:	  
	  

• An	  accelerometer,	  a	  digital	  device	  capable	  of	  measure	  acceleration	  in	  two	  or	  three	  
axis	  of	  the	  space.	  	  

• Touch	  sensor	  
• Buttons	  

	  
In	  order	  to	  learn	  how	  data	  retrieved	  from	  these	  sensors	  can	  be	  used	  in	  your	  projects,	  you	  
decide	   to	   explore	   actual	   devices	   that	   make	   use	   of	   an	   accelerometer,	   touchscreens	   and	  
buttons:	  the	  Nintendo	  Wii	  Remote	  Controller	  and	  the	  Apple	  iPad.	  As	  development	  platform	  
you	  chose	   to	  use	  Processing,	  because	   its	  ease	  of	  use,	   flexibility	  and	  widespread	  diffusion	  
within	  designers	  and	  digital	  artists.	  A	  quick	  search	  on	  the	   internet	  reveals	   that	   there	   is	  a	  
Processing	   library	   to	   interface	   with	   the	   Wiimote	   (wrj4P5),	   another	   one	   to	   get	   the	  
acceleration	   and	   touch	   data	   from	   the	   iPad	   (oscP5)	   and	   then	   you	   also	   find	   out	   that	   a	  
framework	   for	   Processing	   has	   been	   developed	   that	   allows	   to	   get	   data	   from	   sensors,	  
independently	   from	  the	  underlying	  hardware.	  The	   framework	  supports	   the	  Wiimote	  and	  
the	  iPad	  and	  therefore	  you	  think	  that	  it	  can	  be	  worthwhile	  to	  explore	  the	  functionalities	  of	  
the	  three	  software	  libraries.	  To	  this	  end	  you	  start	  to	  take	  a	  look	  at	  the	  API	  of	  each	  one	  the	  
libraries:	  wrj4p5,	  oscP5	  and	  the	  framework…	  
	  
…you	  now	  have	  up	  to	  15	  minutes	  to	  study	  the	  API	  of	  the	  provided	  libraries:	  the	  library	  to	  
program	  in	  processing	  with	  an	  iPad,	  the	  Wiimote	  and	  the	  framework.	  You	  can	  stop	  before	  
the	  15	  minutes	  if	  you	  feel	  you	  have	  gathered	  enough	  knowledge	  to	  start	  programming.	  
	  
Here	  you	  have	  the	  URL	  to	  the	  API	  reference	  for	  each	  library:	  

• wrj4P5	   http://sourceforge.jp/projects/wrj4p5/wiki/Wrj4P5%28en%29	   	  
• oscP5	   	   http://www.sojamo.de/libraries/oscP5/reference/index.html	  
• framework	   http://dei.inf.uc3m.es/abellucci/hat/index.html	   	  



Introduction	  to	  programming	  tasks	  
Use	  the	  two	  devices	  (Wiimote	  and	  iPad)	  to	  interact	  with	  a	  virtual	  environment	  and	  see	  the	  
results	  of	  the	  two	  tasks	  (T1	  and	  T2):	  press	  the	  A	  button	  on	  the	  Wiimote	  or	  touch	  the	  screen	  
of	  the	  iPad	  to	  have	  the	  color	  of	  a	  3D	  box	  to	  change	  from	  red	  to	  green	  and	  move	  the	  device	  
to	  have	  the	  3D	  box	  rotate.	  

Programming	  Tasks:	  general	  description	  	  
You've	  got	  to	  program	  a	  prototype	  that	  makes	  use	  of	  an	  accelerometer,	  touch	  screen	  (iPad)	  
and	  buttons	  (Wiimote)	  to	  interact	  with	  a	  virtual	  3D	  box,	  both	  with	  a	  Wiimote	  and	  an	  iPad.	  
In	  order	  to	  ease	  the	  development	  you	  are	  given	  a	  template	  and	  you	  are	  asked	  to	  fill	  the	  
missing	  code	  where	  specified.	  
	  

• Programming	  Task	  (T1).	  Your	  goal	  is	  to	  change	  the	  color	  (from	  red	  to	  green)	  of	  
the	  virtual	  3D	  box	  by	  pressing	  the	  A	  button	  on	  the	  Wiimote	  or	  thouch	  the	  screen	  
on	  the	  iPad.	  You	  are	  going	  to	  program	  the	  behavior	  of	  the	  3D	  box	  according	  to	  the	  
input	  from	  the	  A	  button	  of	  the	  Wiimote	  and	  the	  touch	  sensor	  of	  the	  iPad	  in	  both	  of	  
these	  two	  scenarios:	  

1. Using	  the	  two	  libraries:	  wrj4P5	  for	  the	  Wiimote	  and	  oscP5	  for	  the	  iPad;	  
2. Using	  a	  framework	  that	  provides	  integration	  of	  devices.	  

	   The	  task	  is	  divided	  into	  the	  following	  subtasks:	  
1. Write	  the	  code	  to	  establish	  a	  connection	  with	  the	  device;	  
2. Write	  the	  code	  to	  get	  relevant	  data;	  
3. Use	  the	  input	  data	  to	  have	  the	  cube	  changing	  color.	  

	  
• Programming	  Task	   (T2).	  Your	  goal	   is	  to	  rotate	  a	  virtual	  3D	  box	  on	   the	  X	  axis	  

using	  the	  data	  from	  the	  embedded	  accelerometer	  (Figure	  1	  and	  shows	  rotation	  axes	  
of	   the	   Wiimote	   and	   iPad).	   You	   are	   going	   to	   program	   the	   behavior	   of	   the	   cube	  
according	  to	  the	  input	  from	  accelerometer	  of	  the	  Wiimote	  and	  iPad	  in	  both	  of	  these	  
two	  scenarios:	  

1. Using	  the	  two	  libraries:	  wrj4P5	  for	  the	  Wiimote	  and	  oscP5	  for	  the	  iPad;	  
2. Using	  a	  framework	  that	  provides	  integration	  of	  devices.	  

The	  task	  is	  divided	  into	  the	  following	  subtasks:	  
1. Write	  the	  code	  to	  establish	  a	  connection	  with	  the	  device;	  
2. Write	  the	  code	  to	  get	  relevant	  data;	  
3. Use	  the	  acceleration	  data	  to	  have	  the	  cube	  rotating	  on	  the	  x	  axis.	  

	  
Fig.	  1.	  Wiimote	  axis.	  

	  
Fig.	  2	  iPad	  axis.	  

	   	  

+z 

t 
I 

-y 

/ 

-z - y 



Post-‐test	  questionnaire	  
You	  are	  kindly	  asked	  to	  fill	  out	  a	  post-‐test	  questionnaire.	  

Debriefing	  
The	   experimenter	   reports	   on	   details	   about	   the	   experiment	   and	   you	   are	   free	   to	   ask	   for	  
further	  explanations	  and/or	  provide	  any	  other	  comment/suggestion	  you	  might	  have.	  



182 C. User Evaluation

C.2 Written Consent Form

The following pages show the consent form participants were asked to sign before starting the
evaluation session.



 
In	   case	   of	   any	   questions	   or	   concerns,	   please	   feel	   free	   to	   contact:	   Andrea	   Bellucci	   Ph.D.	   Student,	   Dept.	   of	  
Computer	  Science,	  Universidad	  Carlos	  III	  de	  Madrid	  Avda.	  de	  la	  Universidad,	  30	  28911,	  Leganés,	  Madrid,	  +34	  
91624	  6260,	  abellucc@inf.uc3m.es.	  

 
 

 
Researcher:	  Andrea	  Bellucci,	  Ph.D.	  student,	  Dept.	  of	  Computer	  Science,	  abellucc@inf.uc3m.es.	  
Supervisor:	  Ignacio	  Aedo,	  Full	  Professor,	  Dept.	  of	  Computer	  Science,	  aedo@ia.uc3m.es.	  
______________________________________________________________________________________________________________________________ 

Evaluation	  of	  a	  comprehensive	  framework	  for	  the	  rapid	  prototyping	  of	  ubiquitous	  interaction	  

D2.	  Consent	  to	  participate	  in	  evaluation	  
You	   have	   been	   asked	   to	   participate	   in	   a	   user	   study	   conducted	   by	   Andrea	   Bellucci	   from	   Computer	   Science	  
Department	   at	   Universidad	   Carlos	   III	   de	  Madrid.	   The	   purpose	   of	   the	   study	   is	   to	   investigate	   the	   impact	   of	  
different	  software	  technologies	  in	  the	  prototyping	  of	  ubiquitous	  interaction.	  The	  results	  of	  this	  study	  will	  be	  
included	   in	  Andrea	  Bellucci’s	  Ph.D.	   thesis.	  You	  should	  read	  the	   information	  below,	  and	  ask	  questions	  about	  
anything	  you	  do	  not	  understand,	  before	  deciding	  whether	  or	  not	  to	  participate.	  	  
	  
• You	  will	  not	  be	  compensated	  for	  this	  evaluation	  session.	  	  
• Unless	  you	  give	  us	  permission	  to	  use	  your	  name,	  title,	  and	  /	  or	  quote	  you	  in	  any	  publications	  that	  may	  
result	  from	  this	  research,	  the	  information	  you	  tell	  us	  will	  be	  confidential.	  	  

• We	  would	  like	  to	  record	  the	  audio	  and	  video	  of	  this	  evaluation	  on	  a	  digital	  archive	  so	  that	  we	  can	  use	  it	  for	  
reference	  while	  proceeding	  with	  this	  study.	  We	  will	  not	  proceed	  with	  any	  recordings	  without	  your	  
permission.	  If	  you	  do	  grant	  permission	  for	  this	  session	  to	  be	  recorded,	  you	  have	  the	  right	  to	  revoke	  
recording	  permission	  and/or	  end	  the	  session	  at	  any	  time.	  	  

Written	  consent	  
Your	  signature	  on	  this	  form	  imply	  that	  (1)	  you	  understand	  the	  procedures	  described	  above,	  (2)	  your	  
questions	  have	  been	  answered	  to	  your	  satisfaction	  and	  (3)	  you	  agree	  to	  participate	  in	  this	  study.	  You	  will	  be	  
given	  a	  copy	  of	  this	  form.	  
	  
[	  ]	  I	  give	  permission	  for	  this	  evaluation	  session	  to	  be	  recorded	  on	  a	  digital	  archive.	  	  
	  
[	  ]	  I	  give	  permission	  for	  the	  following	  information	  to	  be	  included	  in	  publications	  resulting	  from	  this	  study:	  	  
	  

[	  ]	  my	  name	  	   [	  ]	  my	  title	  	  	  	  	  	  
[	  ]	  direct	  quotes	  from	  the	  audio	  recordings	   	  
[	  ]	  still	  images	  of	  me	  

	  
Name	  of	  Participant	  
	  
Signature	  of	  Participant	  	   _____________________________________	  	   Date	  ____________	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Signature	  of	  Researcher	   _____________________________________	   Date	  ____________	  

Interactive Systems Group 



184 C. User Evaluation

C.3 Pre-test questionnaire

The following pages show the questionnaire participants were asked to fill out before starting
the evaluation session. Data from this questionnaire has been used for user profiling.



Pre-‐test	  questionnaire	  
 
ID:  ________ 
 
Age:  ________ 
 

Gender: ☐ Male 

  ☐ Female 
 
Current Workplace (e.g., academia, industry, etc.): ______________________________ 
 
Occupation (e.g., Ph.D. student, developer, etc.):   ______________________________ 

 
 
1. Of the following programming language and technologies, check those that you have 

personally used and are familiar with: 

☐ Java2 SE ☐ Javascript 

☐ Java2 EE  ☐ Objective-C 

☐ C/C++ ☐ Ruby 

☐ C# ☐ Matlab 

☐ Flash AS3 ☐ Python 

☐ PHP ☐ Visual Basic 
 

write any other programming language that does not appear in the list:  ________________________ 

_________________________________________________________________________________ 
 

2. Please rate your technical programming knowledge (programming paradigms, data 
structures, frameworks, etc.) 
 
Low      High 

1 2 3 4 5 6 7 
 
 

3. If you know/use the Java programming language, what is your level of proficiency 
with the language? 
 

Elementary 
Proficiency 

     Professional 
Proficiency 

1 2 3 4 5 6 7 
 
 
4. How many Operating Systems (OS) have you worked with? 
 

☐ none ☐ 3-4 

☐ 1 ☐ 5-6 

☐ 2 ☐ more than 6 

	   	  



5. Of the following programming environment and software frameworks, check those that 
you have personally used and are familiar with: 

 

☐ Eclipse ☐ VVVV ☐ Squidy 

☐ Processing ☐ Physical Prototyping  
(e.g., arduino) 

☐ Open Exhibits 

☐ Visual Studio ☐ Quartz Composer ☐ Windows Presentation 
Framework 

☐ XCode ☐ OpenFrameworks ☐ TISCH 

☐ Pure Data ☐ Matlab ☐ reacTIVision 

☐ Max/MSP ☐ Unity3D 
 

 

write any other environment/framework that does not appear in the list:  ________________________ 

_________________________________________________________________________________ 
 
 

6. If you know/use the Processing development environment, what is your level of 
proficiency with this environment? 
 

Elementary 
Proficiency 

     Professional 
Proficiency 

1 2 3 4 5 6 7 
 
 
 

      

7. Of the following devices and sensors, check those that you have personally used and 
are familiar with: 

 
☐ desktop/personal 
computer 

☐ joy stick ☐ projector 

☐ laptop computer ☐ optical stylus ☐ mini/pico projector 

☐ tablet device (e.g., iPad) ☐ graphics tablet ☐ microphone 

☐ smartphone  
(e.g., iPhone) 

☐ head mounted display ☐ LED 

☐ touch screen ☐ virtual/augmented reality glass ☐ Arduino and the like 

☐ interactive surfaces 
(e.g., reacTable*) 

☐ virtual reality glove ☐ RGB camera 

☐ keyboard ☐ haptic feedback (e.g., rumble) ☐ depth camera 

☐ mouse ☐ touchless input (e.g., Wiimote) ☐ motion sensors  
(e.g., accelerometer) 

☐ trackball ☐ hand gestures or body 
movement recognition (e.g., Microsoft 
kinect) 

 

   
write any other device that does not appear in the list: _______________________________________ 

__________________________________________________________________________________ 

 
  



8. Have you ever programmed interactive systems that make use of the aforementioned 
hardware?  
 

☐ Yes 

☐  No 
 

8.1. If you answered yes, would you please specify the device, programming 

language and its use? 

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________ 

 
9. Is your academic/professional background related to interaction design, human-

computer interaction or ubiquitous computing? 
 

☐ Yes 

☐ No 
Additional comments: ___________________________________________________________________ 

____________________________________________________________________________________ 

____________________________________________________________________________________ 

____________________________________________________________________________________ 

____________________________________________________________________________________ 



188 C. User Evaluation

C.4 Post-test questionnaire

The following pages show the questionnaire participants were asked to fill out before starting
the evaluation session. Data from this questionnaire has be used to test the framework against
the three dimension of Threshold and Ceiling, Predictability and Moving Targets defined by
Myers et al. [2000].



Post-‐test	  questionnaire	  
 
ID  __________ 

	  

General	  	  
	  
1. How would you define your experience of programming the interaction of the 

prototype WITH the framework? 
 

Terrible      Wonderful  
1 2 3 4 5 6 7 NA 

 
Frustrating      Satisfying  

1 2 3 4 5 6 7 NA 
 

Dull      Stimulating  
1 2 3 4 5 6 7 NA 

 
Difficult      Easy  

1 2 3 4 5 6 7 NA 
 
Inadequate 
power to the 

task 

     Adequate 
power to 
the task 

 

1 2 3 4 5 6 7 NA 
 

Rigid      Flexible  
1 2 3 4 5 6 7 NA 

	  
	  
2. How would you define your experience of programming the interaction of the 

prototype WITHOUT the framework (with wrj4P5 and oscP5)? 
 

Terrible      Wonderful  
1 2 3 4 5 6 7 NA 

 
Frustrating      Satisfying  

1 2 3 4 5 6 7 NA 
 

Dull      Stimulating  
1 2 3 4 5 6 7 NA 

 
Difficult      Easy  

1 2 3 4 5 6 7 NA 
 
Inadequate 
power to the 

task 

     Adequate 
power to 
the task 

 

1 2 3 4 5 6 7 NA 
 

Rigid      Flexible  
1 2 3 4 5 6 7 NA 

	  
	   	  



3. When reading code that uses framework’s Application Programming Interface (API), 
was it easy to tell what each section of code does? Why? 
_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________ 

4. How did the technical environment (Processing) make the programming tasks? 
	  

Difficult      Easy  
1 2 3 4 5 6 7 NA 

        

5. Would you use the framework to develop interactive systems for ubiquitous 
environments? 

	  
Never      Always  

1 2 3 4 5 6 7 NA 
        

Threshold	  and	  Ceiling	  
	  
6. Learning how to use the framework was 

 
Difficult      Easy  

1 2 3 4 5 6 7 NA 
        
7. Your background made the learning 

 
Difficult      Easy  

1 2 3 4 5 6 7 NA 
        
8. Getting started with the framework was 

 
Difficult      Easy  

1 2 3 4 5 6 7 NA 
        

9. The time to learn how to use framework was 
 

Slow      Fast  
1 2 3 4 5 6 7 NA 
 

10. Remembering names and use of contructors, methods and variables for the 
framework was 
 

Difficult      Easy  
1 2 3 4 5 6 7 NA 

 
11. Did the framework allow you to complete the tasks in a straight-forward manner? 

 
Never      Always  

1 2 3 4 5 6 7 NA 
 

  



12. The ease of programming with the framework depends on the level of experience 
 

Always      Never  
1 2 3 4 5 6 7 NA 
 

13. Once part of the framework’s API is learned, how is to infer the rest of it? 
 

Difficult      Easy  
1 2 3 4 5 6 7 NA 
 

14. The API facilitates the exploration, analysis, and understanding of its components, 
and the way a developer goes about retrieving what is needed 
 

Disagree      Agree  
1 2 3 4 5 6 7 NA 
 

15. How did the amount of code required for the framework for each subtask in this 
scenario seem to you? 
 

Too  
Little 

     Too 
Much 

 

1 2 3 4 5 6 7 NA 
 
16. Please write your comments about how difficult is to learn how to use the framework 

and how much can be done using the framework here: 

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________ 

Predictability	  
	  
17. The names used for the framework’s objects, methods and variables were 

 
Confusing      Clear  

1 2 3 4 5 6 7 NA 
 

18. Were the names of objects, methods and variables of the framework consistent? 
 

Never      Always  
1 2 3 4 5 6 7 NA 
 

19. Did the APIs of the framework behave as expected? 
 

Never      Always  
1 2 3 4 5 6 7 NA 
 

20. The exploration of features by trial and error was 
 

Discouraging      Encouraging  
1 2 3 4 5 6 7 NA 

 
 



21. The framework is reliable 
 

Never      Always  
1 2 3 4 5 6 7 NA 
 

22. Please write your comments about the predictability of the framework here: 

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________ 

Moving	  Targets	  
	  
23. With the framework it was possible to create proper interaction for different kind of 

input devices without changing the underlying infrastructure 
 

Disagree      Agree  
1 2 3 4 5 6 7 NA 
 

24. Changing the input device (Wiimote and iPad) affected the development WITH the 
framework 
 

Drastically      Not at all  
1 2 3 4 5 6 7 NA 
 

25. Changing the input device (Wiimote and iPad) affected the development WITHOUT 
the framework 
 

Drastically      Not at all  
1 2 3 4 5 6 7 NA 
 

26. Please write your comments about your experience of developing for different 
devices in an integrated environment (the framework). To what extent it affected the 
development? 

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________

____________________________________________________________________________________ 


