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Abstract— Concerns about the protection of the global transport 

network have risen the need of new security and surveillance 

systems. Ontology-based and fusion systems represent an 

attractive alternative for practical applications focused on fast 

and accurate responses. This paper presents an architecture 

based on a geometric model to efficiently predict and calculate 

the topological relationships between spatial objects. This model 

aims to reduce the number of calculations by relying on a spatial 

data structure. The goal is the detection of threatening behaviors 

next to points of interest without a noticeable loss of efficiency. 

The architecture has been embedded in an ontology-based 

prototype compliant with the Joint Directors of Laboratories 

(JDL) model for Information Fusion. The prototype capabilities 

are illustrated by applying international protection rules in 

maritime scenarios. 

High-Level Fusion; Region Connection Calculus; Ontology-

based Application; Spatial Data Structure 

I.  INTRODUCTION 

Along the last decade the world has been beaten by terrorist 
actions, many of them perpetrated against public transport 
services. As a result of these incidents, global organizations 
have taken measures to regulate the security in public spaces. 
According to this, the International Maritime Organization 
adopted the International Ship and Port Facility Security (ISPS) 
code [1] for the protection of vessels and harbor facilities. The 
ISPS code applies to ships on international voyages (passenger, 
vessels, cargo vessels of 500 gross tonnage and upwards and 
mobile offshore drilling units) and port facilities serving these 
ships. 

The need of management of the information sources 
available in these environments has become critical. 
Knowledge-based approaches for Information Fusion systems 
provide desirable characteristics for fast processing and a 
readable response of preconceived data from different sources, 
such as the Automatic Identification System (AIS) which 
provide reliable data –unique ship identification, position, 
kinematic states, and so on– from vessels larger than 65 feet 
and merchant ships over 300 GRT.  

The maritime environments face with two levels of threats: 
(i) threats which affect facilities, traffic of land vehicles and 

people, (ii) threats which are related with maritime traffic, only 
applicable to ships. The ISPS code specifies rules for both 
levels, for instance, for protecting a vessel there should be 
monitored the “deck areas and areas surrounding the ship” 
while for safeguarding a port there might be control the 
“restricted areas to ensure that only authorized people have 
access”. These rules can be easily modeled through ontology 
approaches able to represent and reason with qualitative spatial 
relationships. 

Despite of the fact that the spatial reasoning has been 
defined as a basic process for the interpretation system [2], 
ontology-based spatial representations are not expressive 
enough to directly support widely-use spatial or topological 
theories [3]. This paper presents an architecture for on-the-fly 
updates of qualitative spatial relationships in ontology-based 
approaches. The architecture, named Dynamic RCC, deals with 
the efficient calculation of Region Connection Calculus (RCC) 
relations by relying on a spatial data structure. RCC is a fully 
axiomatized first-order theory [4] which allows inferring 
implicit knowledge from explicit knowledge representing 
topological relationships between spatial entities. 

Calculations are made using a Euclidean planar linear 
geometric model which discovers, maintains and provides 
qualitative spatial relationships. To keep the spatial 
relationships updated, it is necessary to perform a pairwise 
comparison of all the geometries updated at a given instant. 
This calculations has a quadratic complexity which may act as 
a bottleneck of the system performance. Dynamic RCC uses an 
auxiliary data structure that reduces the number of checks and 
improves the scalability by comparing only close objects. 

This architecture has been designed to be embedded in an 
ontology-based prototype [5, 6] inspired on the Joint Directors 
of Laboratories (JDL) [7] fusion model. This model is able to 
manage both context data coming from users and dynamic 
spatial data coming from sensors. The prototype is being 
currently tested against security examples in harbor scenarios 
respecting and making use of the international standards related 
with the maritime environment. In this paper, we present the 
organization of the architecture, the methods used to calculate 
and represent spatial relations, and some interesting 
implementation details. We illustrate the advantages of this 
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approach by depicting a simple example in the domain of 
harbor surveillance. 

The paper is organized as follows. Section 2 discusses 
several current practical approaches for qualitative spatial 
representation. Section 3 describes the ontology-based 
prototype as the framework to embed the Dynamic RCC 
architecture, which is defined in Section 4. Some application 
examples to detect maritime threatening situations applying the 
prototype are illustrated in Section 5. Finally, Section 6 
explains the conclusions obtained and the future work. 

II. QUALITATIVE SPATIAL APPROACHES

The Open Geospatial Consortium [8] is one of the most 
important organizations that is currently proposing standards to 
represent and manage topological information. OpenGIS 
Simple Features standard [9] is a specification for digital 
storage of geographical data with spatial and non spatial 
attributes. It defines a set of methods to evaluate the spatial 
relationships, like overlaps and contains; a set of methods to 
support spatial analysis, like distance, union and difference; 
relational operators between entities; and several kinds of 
representation point, like multipoint, curve and surface. 

RCC is a logic theory for qualitative spatial representation 
and reasoning. The RCC is an axiomatization of certain spatial 
concepts and relations in first order logic. The basic theory 
assumes just one primitive dyadic relation: C(x, y) read as “x 
connects with y”. Individuals (x, y) can be interpreted as 
denoting spatial regions. The relation C(x, y) is reflexive and 
symmetric. Of the defined relations, Disconnected (DC), 
Externally Connected (EC), Partially Overlaps (PO), Equal 
(EQ), Tangential Proper Part (TPP), Non Tangential Proper 
Part (NTPP), Tangential Proper Part Inverse (TPPi) and Non 
Tangential Proper Part Inverse (NTPPi) have been proven to 
form a jointly exhaustive and pairwise disjoint set, which is 
known as RCC-8. Similar sets of one, two, three and five 
relations are known as RCC-1, RCC-2, RCC-3 and RCC-5. 

Figure 1.  RCC-8 relations. 

Currently there are implementations of this theory for two 
of the most powerful reasoning systems based on ontologies, 
Pellet [10] and RACER [11]. 

The 9-intersection model [12] is an alternative 
representation to RCC which associates three sets of points 
with every region –interior, boundary and complement. Every 
entry in a 3x3 matrix denotes if the intersection of the point sets 
is empty or not. The 9-intersection set of relations seems 
similar to RCC-8 however RCC allows much more general 
domains and its computational properties makes reasoning an 
easier task. 

Orientation of spatial entities is usually shown as a very 
suitable approach for qualitative classification. Unlike 
topology, orientation is a ternary relationship depending on a 
located object, a reference object and a frame of reference [13]. 

The most widely used orientation-based approaches are the 
cone-based method and the projection-based method [14, 15]. 
These methods are based on cardinal points to determine 
different sectors corresponding to single directions. 

Distance estimation is a cognitive capability usually 
manifested in qualitative approaches as imprecise numerical 
values (A is about a meter from B), qualitative categories (A is 
next to B) or qualitative compared categories (A is closer to B 
than C). These approaches can also distinguish between 
absolute and relative distances. 

It is advisable to combine several qualitative methods [16] 
in the same system since descriptions provided are 
complementary and hardly redundant. 

A fundamental assumption about the qualitative 
relationships is the change along the time. Therefore a 
complete description of the scene must include knowledge 
about the time instants and a relative representation of the 
temporal knowledge using temporal intervals as primitive. 
Even though RCC representation is also possible for time 
intervals, the most influential approach is the jointly exhaustive 
and pairwise disjoint set of 13 relations proposed by Allen [17]. 

III. OVERALL ARCHITECTURE

The Dynamic RCC is an essential part of the knowledge-
based prototype for Information Fusion proposed in previous 
works [5, 6]. The aim of Dynamic RCC is to solve efficiently 
the calculations of the relationships between objects in a 
maritime scenario. Fig. 2 shows a simplified representation of 
the overall framework including the Dynamic RCC component. 

A. A Knowledbe-based Framework for Information Fusion 

The architecture’s basic inputs are three: a variable amount 
of a priori knowledge, sensor data coming from different 
information sources and data formalisms. The data formalisms 
include a set of terminological boxes (TBoxes) each of which 
contains sentences describing concept hierarchies. In turn, an 
assertional box (ABox) contains facts about individuals of the 
domain of discourse. These TBoxes make up the structure of 
the Information Fusion Symbolic Representation (IFSR). 

The IFSR [5, 6] is based on the JDL data processing model 
for Information Fusion systems. It is stepped in several levels 
ranging from low-level track data to high-level scene 
situations. Each ontology level provides a skeleton that 
includes general concepts and properties to describe entities 
and relations. These levels are: 

 Tracking Entities (TREN) level, to model input data
coming from sensors.

 Scene Objects (SCOB) level, to model real-world
entities, properties, and relations.

 Activities (ACTV) level, to model event and behavior
descriptions.

 Impact (IMPC) level, to model the association between
a cost value and an activity description.
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Concepts that belong to a less abstract ontology are the 
building blocks of a more abstract ontology. The complete 
knowledge model has been designed to promote extensibility 
and modularity. This means that the general structure can be 
refined to apply this model to a specific domain. Local 
adaptations should not cause cascade changes in the rest of the 
structure. 

Ontologies may contain both perceptual and context data. 
Perceptual data is automatically asserted from different 
information sources, while the context data is external 
knowledge used to complete the comprehension of the scene. 
Context data includes information about scene environment, 
information previously computed, user-requested information 
and so forth. For example, the description of a static object 
(size, position, kind of object and so on) is regarded as context 
data. 

The output of the knowledge-based architecture is a 
coherent and readable interpretation of the scene logically 
justified from the low-level data to the high-level 
interpretation. 

B. Implementation 

The implementation of the architecture above is based on 
the RACER reasoner. RACER has been chosen because it 
includes support for different kind of inference rules through 
the new Racer Query Language (nRQL), such as deductive, 
abductive, spatial and temporal [26].  

As we discussed previously, ontological reasoning with 
spatial objects is very expensive, RACER is the first inference 
engine able to manage the spatial knowledge through an 
implementation of the Region Connection Calculus (RCC) as 
an additional substrate layer. A substrate is a complementary 
representation layer associated to an ABox. The RCC substrate 
offers querying facilities, such as, spatial queries and combined 
spatial and non-spatial queries. Although spatial instances from 
the ABox are not automatically connected with the RCC 
substrate, there is an identifying correspondence between them 
and the objects stored in the substrate. 

A temporal dimension can be represented as temporal 
intervals or timestamps. Temporal intervals may be represented 
in the RCC substrate thanks to their proper relationships [27]. 
Timestamps are represented using snapshots of capturing data. 
This implies that a temporal dimension can be applied in both 
ways into the antecedent of rules, for example, “if the time 
interval permitted for a vessel docking exceed a recommended 
time interval...” or “if a vessel is stopped in a restricted area in 
a specific timestamp…”. 

The reasoner hosts the IFSR, which includes the three 
lowest levels of the JDL-based model; namely, TREN, SCOB 
and ACTV. The ABoxes of these levels are filled with 
assertions from predefined context knowledge, previous 
inferences and sensor data (AIS, radar, on board and harbor 
video cameras, etc.). 

Beyond the standard ontology reasoning mechanism based 
on subsumption, RACER also support abductive and deductive 
rule-based inference. During the execution, abductive nRQL 
rules defined in a sub-ontology create new instances that are 

asserted into the same level or into an upper level. Eventually, 
the creation of new instances as defined in the consequents of 
the rules draws instances corresponding to an interpretation of 
the scene in terms of the ACTV ontology. Deductive rules, in 
turn, are used to maintain the logical consistency of the scene. 
The consistency verifies whether all concepts in the TBox 
admit at least one individual in the corresponding ABox. 

Figure 2.  A simplified view of the knowledge system with the prototype 

integrated. 

A significant amount of knowledge of SCOB and ACTV is 
obtained by abductive rules that include spatial properties in 
their antecedent. As previously mentioned, reasoning with 
spatial entities is very expensive in terms of computation time, 
since it grows with the number of entities and the complexity 
of the scene increases. The Dynamic RCC module, integrated 
into the system prototype, solves this problem. 

The area shaded in blue in Fig. 2 indicates the integration of 
the Dynamic RCC architecture into the overall system. The 
optimized geometric model receives spatial data from the 
SCOB level. These data is instantiated into the Java Topology 
Suite (JTS). The JTS is an open source Java software library of 
two-dimensional spatial predicates and functions compliant to 
the Simple Features Specification SQL published by the Open 
GIS Consortium. JTS provides a complete, fast, consistent and 
robust implementation of basic two-dimensional spatial 
algorithms. 

A spatial data structure indexes the geometries from the 
JTS. As it is shown in Section 4B there are not many 
alternatives on choosing a spatial data structure for moving 
objects. We have chosen TPR*-tree because it satisfies the 
conditions given in Section 4A. Furthermore TPR*-tree can 
handle predictive queries about the object’s future position. 
These kinds of queries are interesting on security environments 
where prediction of attacks and incidents in points of interest 
improves the managing of resources while minimizing costs 
and losses. In addition, the source code of the data structure 
developed by the author is available on the World Wide Web 
[28].  

IV. DYNAMIC RCC ARCHITECTURE

Trying to find all the spatial relationships in a scene can 
become an expensive task. One of the aims in the Dynamic 
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RCC architecture is to reduce the number of checks between 
objects in the scene without taking into account any assumption 
about their features. 

Dynamic RCC includes three main components: (i) a 
knowledge base with spatial features from individuals, (ii) an 
optimized geometric model, including a geometric model and 
an auxiliary data structure, and (iii) a Region Connection 
Calculus implementation where the resulting qualitative spatial 
relationships are stored. The overall architecture is illustrated in 
Fig. 3. 

Figure 3.  Dynamic RCC overall architecture. 

The knowledge base of Dynamic RCC contains 
representations of both dynamic and static objects. These 
objects are instantiated into the geometric model in two cases: 
(i) if they do not exist previously in the model, (ii) if they were 
already instantiated but its position or size changed regarding 
the last update. To obtain the new topological relationships 
when the situation changes, it is necessary to perform a full 
topological analysis between the newly instantiated or updated 
geometries and the remaining the geometries. All the objects 
that change their position or size have to be checked against all 
the static (M) and dynamic objects (N). The total amount of 
checks (X) can be seen in (1).  

  

It must be taken into account that topological relationships 
are symmetric. In this case the total amount of checks is (2).  

 

 

According with (2), the analysis has a quadratic 
complexity. In scenarios where objects move in a consistent 
manner, topological relationships change between close objects 
in consecutive time instants. Therefore, for an efficient 
behaviour, topological analysis should be done only between 
close geometries. A disjoint status is assumed for non-

calculated topological relationships. An auxiliary data structure 
can be used to determine the geometries that are candidates to 
modify the spatial relations of each geometry. These candidates 
usually form a clearly distinguished subgroup of the scene 
objects. 

Once the candidates have been obtained by querying the 
auxiliary data structure, the topological relations of a geometry 
can be updated by analyzing only a few candidates. The 
topological relationships which change from the previous state 
are then updated in the RCC layer. There is an identifying 
correspondence between the individuals stored in the 
knowledge base and the topological relationships stored in the 
separated RCC layer.  

A. Optimized Geometric Model 

The optimized geometric model is composed of two sub-
modules: (i) a geometric model, (ii) an auxiliary data structure.  

The geometric model is a system that represents spatial 
objects in a Euclidean plane and obtains spatial relationships 
between two-dimensional objects quickly. It is implemented 
according to the OpenGIS Simple Features standard shown in 
Section 2. Although OpenGIS spatial predicates and RCC-8 are 
not directly compatible, the output from the geometric model 
can be easily mapped from the OpenGIS format –in some 
cases, it only involves translating the name of the relationships. 
A correlation table between OpenGIS spatial predicates and 
RCC-8 can be found in [25]. 

A spatial data structure maintains a hierarchical topological 
sort on the Euclidean space of the scene. It supports spatial 
queries to retrieve the candidate geometries involved into a 
topological analysis; e.g., ‘which geometries share area 2 with 
geometry 2?’. These candidate geometries are the nearest 
geometries of the one in the query.  

Figure 4.  Example of structured spatial information. 

The sorting of the auxiliary spatial data structure is not 
predefined by the architecture. It is required, however, to fulfill 
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the following restrictions: (i) the spatial structure must be able 
to define a recursive spatial hierarchy throughout the time; (ii) 
it must handle the overlap between entities; (iii) query, 
deletion, insertion and update operations must not imply a high 
overhead. 

Data structures assume that spatial objects are represented 
by axes-aligned bounding boxes, even though tracked objects 
do not satisfy this condition. Consequently, it is necessary to 
implement an algorithm to calculate the smallest rectangle that 
encloses the corresponding object. The geometry inserted into 
the data structure is not the track, but the smallest axis-aligned 
rectangle that includes it.  

B. Spatial Data Structure Alternatives 

The problem of the spatial storage and representation is 
very common in the spatial databases. Usually, spatial 
databases receive and store spatial data making use of an 
efficient indexing structure to optimize object searches. During 
the last two decades lots of approaches have been designed to 
obtain an efficient and reasonably simple spatial index. The R-
Tree [18] has been one of the most efficient access structures 
for rectangles. An important number of variants for specific 
purposes have been developed during these years; for example, 
B+-tree, R+-tree and R*-tree. Despite the quality of these 
research works most of them are only applicable for static 
scenarios and do not take into account the past, present and 
future situation of the objects. 

Accordingly, additional techniques have been developed 
trying to overcome these limitations. TPR-tree [19] was one of 
the first advances in the area of moving objects. This structure 
is capable of indexing moving objects up to three dimensions. 
In addition, it efficiently indexes the current and anticipated 
future positions of moving objects. This approach was 
significantly outperformed under all conditions by the TPR*-
tree [20] and the Bx-tree [21]. In particular, the latter uses a 
new linearization technique that exploits the volatility of data 
values. Currently, Rdual-tree [22] is considered the state-of-art 
in this area. This dual space index is faster in query processing 
than TPR*-tree and improves the update times of the Bx-tree. 
BBx-tree [23] (a version of Bx-tree) and RPPF-tree can index 
historical, current and future positions of moving objects. 
Nevertheless almost all of this kind of approaches assumes a 
linear movement model.  

Las but not least, it is important to notice that indoor and 
outdoor moving objects do not have similar behavior. Thus 
several techniques have been developed to address indoor 
objects from their trajectories, such as the RTR-tree [24] and 
the TP2R-tree.  

V. APPLICATION EXAMPLE: PERIMETER CONTROL 

Maritime safety standards give to each ship a protection 
perimeter that must not be broken by other ships. In fact, 
perimeter protection of vessels and facilities in harbor scenarios 
is one of the concerns of the ISPS code. Perimeter can be 
inferred by knowing the type of ship thanks to the AIS sensor 
data. This section gives some examples of how our prototype 
deal with ship-ship interfaces –interaction between ships– and 
ship-port interfaces –the port services interaction to the ship or 

from the ship. The examples assume that the spatial entities are 
security perimeters of vessels. 

Figure 5.  Using security perimeters as spatial entities. 

We have used simulations of ships trajectories in the 
Canadian harbor of Victoria in the preliminary tests. This 
emplacement combines touristic services, air and sea traffic 
operations and international interchanges among other 
operations. The tests have validated the general functioning of 
the prototype without including the interaction with the spatial 
data structure, which remains as future work. Simulations show 
a simplified view of the harbor including navigation lanes 
(context data) and four trajectories of ships updated over the 
time (sensor data).  

The event recognition has been addressed in terms of the 
topological configuration of the scene objects. Timestamps and 
temporal intervals are used to limit the search and to give a 
semantic approximation of temporal interactions. Time 
intervals representation is directly supported by the RCC 
substrate. 

Sometimes the permanency of a ship or a group of them 
next to another in a given instant can be a hint of a threatening 
situation. Specific rules to detect these situations are easily 
developed with our prototype. The following abductive rule 
triggers perimeter violation between two ships. 

Rule’s variables are denoted with a question mark at the 
beginning of their names (?), variables belonging to the RCC 
substrate are labeled adding a star (?*), concept types start with 
a hash (#) and RCC-8 relationships are labeled with a colon (:). 
For the sake of simplicity ?*ship1 and ?*ship2 variables 
represent ship security perimeters, rather than ships. Besides, 
the syntax of nRQL has been slightly simplified to make them 
more readable. 
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Figure 6.  Rule to check perimeter violations. 

RCC relationships partially overlap (po), tangential proper 
part (tpp) and non tangential proper part (ntpp) are used to 
detect the topological configuration of the vessels’ perimeters 
(5-7). The consequent of the rule creates a new 
PerimeterViolation instance (9) and classifies the ships as 
vessels atRisk associated with the PerimeterViolation (10-11). 

Figure 7.  Ship1 (green spot) and Ship2 (pink spot) are atRisk involved in a 

PerimeterViolation. 

In the rule above ships were directly considered scene 
object (SCOB) instances. However these assertions have to be 
founded on objective criteria supported by the low-level data 
from sensors. The rule below sets out several  measures to 
discern the vessels from the rest of tracks. This classification 
exemplifies how abductive reasoning creates new refined 
knowledge towards the high-level. 

The search is constrained to a specific Track (4-5) and 
current measures (6-7) using data capturing timestamps. 
Criteria that support the classification are the size of the vessel 
(8-11), in order to discard smaller ships, and its relationship 
with the environment. A second clause employs context data 
(3) and spatial relationships (12-13) to check if the Track is 
into a navigable area. In the consequent a new Vessel 
individual with an ID and associated to a Track is asserted (15-
17) in the SCOB level.

Figure 8.  Vessels’ classification rule. 

Threatening situations are more recognizable if spatial and 
temporal knowledge is represented. Moreover, a better 
classification can be achieved if the duration of the events is 
represented by means of time intervals. Relationships between 
event’ time intervals may transform a routine activity into a 
dangerous situation. The rule below illustrates how a transient 
situation becomes the violation of a restricted area if we take 
into account the time interval duration. 

Figure 9.  Rule for threatening situation recognition. 

As it is shown in Figure 7, a TransientSituation (5) 
comprises a geographic area, where it happens, a validity time 
interval, to set out an event’s maximum duration and the 
current duration interval of the event (6-8). Similar to the rule 
in Figure 6, the spatial configuration between a non identified 
ship (3) and a restricted area (4) is checked (9-11). Eventually, 
the permitted time interval for the normal development of 
events is compared with the specific time interval of the event 
(12-13). Notice that RCC relations were used to compare time 
intervals. 
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Figure 10.  The ship out of the navigational lanes (purple spot) eventually 

causes a ThreateningSituation. 

In this case, the consequent does not generate new 
knowledge. Instead a TransientSituation is also classified as a 
ThreateningSituation (15). The ship is also classified as 
suspicious (16) and the restricted area is marked as 
compromised (17). 

VI. CONCLUSION AND FUTURE WORK

This paper presents an architecture named Dynamic RCC 
aimed to efficiently calculate and represent relationships 
between two-dimensional static and dynamic objects. The 
Dynamic RCC module is part of a framework for knowledge-
based Information Fusion in the maritime domain. Some rules 
from the ISPS code related with topological issues in maritime 
scenarios illustrate the capabilities of the prototype. Some 
optimizations techniques have been applied to improve the 
performance of the calculations; namely, the use of specialized 
data structures to minimize update costs. 

Future works will include a complete study about which 
spatial data structure may be more appropriate for each 
problem. Data structure integration, scalability analysis and 
performance results are also pending for future research. 
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