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Abstract. This paper presents a new approach for trajectory segmentation in the 
area of Air Traffic Control, as a basic tool for offline validation with recorded 
opportunity traffic data. Our approach uses local information to classify each 
measurement individually, constructing the final segments over these classified 
samples as the final solution of the process. This local classification is based on 
a domain transformation using motion models to identify the deviations at a lo-
cal scale, as an alternative to other global approaches based on combinatorial 
analysis over the trajectory segmentation domain. 
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1   Introduction 

Air Traffic Control (ATC) is a critical area related with safety, requiring strict valida-
tion in real conditions [3]. The basic considered data are sensor plots having the 
following components: stereographic projections of their x and y components, cova-
riance matrix and detection time. The coordinates may be affected by errors, contain-
ing biases and noise. These sensor plots are then divided into segments sharing the 
same mode of flight or MOF (this division is known as the segmentation process, not 
to be mistaken for the one in contexts like [8]). The difficulty of that process is to 
differentiate accurately the different segments, especially at their edges (where it is 
difficult to determine whether position variation is caused by the measuring errors or 
by a different MOF). To improve that accuracy, as we are handling recorded data, we 
may use both past and future measures for our estimations. 

Even though we have presented it for the ATC domain, this problem is presented 
in a wide range of domains such as tracking and segmentation of an object’s trajecto-
ry in video data [2] (relating it to dimensionality issue), or the pattern recognition 
domain [9], (presenting segmentation as an optimization problem which trades off 
model fitting error versus the cost of introducing new segments, and introducing a 
solution based on dynamic programming). 

In our current domain, some of the ideas we will be proposing in our segmentation 
algorithm are already found in available works, but in different contexts and applica-
tions. Machine learning techniques are applied in [5], but with very different 
attributes for our trajectory’s measurements (in the reference they are based on IMM 
filtering [10]). Also the idea of needing several basic MM’s (or movement models, a 
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simplification of the MOF’s) is commonly covered ([5], [12], [6]), but their use dif-
fers to the one included in our proposal (for example, as individual models on an 
IMM filter or in the reconstruction process). It is interesting, as well, to consider that 
this segmentation problem is usually presented as a first step in the larger issue of 
trajectory reconstruction [12], [6].  

In this study we will discuss an approach to the segmentation of trajectories where 
the three possible MM’s are uniform, turn and accelerated movements [7]. With the 
presented input attributes, we will look for an algorithm that will sequentially use a 
different model to classify the measures belonging to each individual MM. This paper 
will be centered in the uniform MM.  

In most cases available in the current literature on this topic, this segmentation 
problem and its solution are exposed as a global optimization issue [9]. Even so, all 
through this paper a local approach will be used. This implies that each of the trajec-
tory’s measurements will be individually classified according to the local information 
around it, and segments built with the classified isolated measurements will be the last 
step of our solution.  

The formalization for our problem will be explained in the second section of this 
paper. The third section will present our general approach to the solution, while the 
fourth will analyze some initial issues of that proposal. The fifth section will present 
the validation experiments for the solution presented, along with some general results 
using that solution. Finally we will present the conclusions obtained from the solu-
tion’s design and the overall results. 

2   Problem Definition 

2.1   General Problem Definition 

As we presented in the introduction section, each analyzed trajectory (ܶ௜) is com-
posed by a collection of sensor reports (or measurements), which are defined by the 
following vector: ݔԦ௝௜ = ൫ݔ௝௜, ,௝௜ݕ ,௝௜ݐ ௝ܴ௜  ൯, ݆ ߳ ሼ1, … , ܰ௜ሽ  (1)

where the j sub-index indicates the measurement number, the i super-index indicates 
the trajectory number, ݔ௝௜, .௝௜ is the detection time,௝ܴ௜ is the covariance matrix and ܰ௜ is the last measurement of the analyzed trajectoryݐ ,௝௜ are the stereographic projectionsݕ
From this problem definition our objective is to divide our trajectory into a series of 
segments (ܤ௞௜ ሻ, according to our estimated MOF. This is performed as an off-line
process (meaning that we may use past and future information from our trajectory). 
The segmentation problem is formalized in (2) ܶ௜ = ڂ ௞௜ܤ ௞௜ܤ         = ሼݔ௝௜ሽ       ݆ ߳ ሾ݇௠௜௡, ݇௠௔௫ሿ (2)

where k is the segment number and ݇௠௜௡, ݇௠௔௫ the given measurement boundaries for 
that segment. In the general definition of this problem these segments are obtained by 
the comparison with a test model of some windows of measurements coming from 
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3   Solution Proposal 

As presented in the introduction section, we will consider three basic MM’s and clas-
sify our measurements individually according to them [7]. If a measurement is classi-
fied as unknown, it will be included in the input data for the next model’s analysis. 
This general algorithm introduces a design criterion based on the concepts of true 
positives rate (TPR, determining how many measurements belonging to our model are 
correctly classified) and false positives rate (FPR, determining how many unknown 
measurements we incorrectly classify), respectively equivalent to the type I and type 
II errors explained in [1]. The design criterion will be to keep a FPR as low as possi-
ble, understanding that those measurements, already assigned to a wrong model, will 
not be analyzed by the following ones. The proposed order for this analysis is the 
same in which we have introduced our MM’s, and the choice is based on how accu-
rately we can represent each of them.  

In the local approach problem definition section, the segmentation problem was di-
vided into two different sub-problems: the definition of the ܨ௣ሺݔఫపሬሬሬԦሻ function (to perform
measurement classification) and a final segment synthesis over that classification.  

We will divide our classification function F(ݔఫపሬሬሬԦሻ in a domain transformation DtሺݔఫపሬሬሬԦሻ
(domain specific, which may be seen as a data preprocessing [4]) and a final classifi-
cation Cl(DtሺݔఫపሬሬሬԦሻ) (based on general classification techniques). The domain transfor-

mation, DtሺݔఫపሬሬሬԦሻ will convert our input data into a transformed domain (based on model
fitting value) where a classification threshold will be chosen to determine whether our 
measurement belongs to the analyzed model or not. The output of that first phase will 
be several possible pre-classifications (according to parameters such as segment reso-
lution, which will be explained in the first phase section) for each measurement of the 
trajectory (ݔఫపሬሬሬԦ). For this first phase we will need to perform an analysis over the differ-
ent parameters involved and a design of their value for the final algorithm proposi-
tion. This paper will be centered on these parameters’ analysis. 

The introduced final classification, Cl(DtሺݔఫపሬሬሬԦሻ), will use the output data from the
first phase to obtain a final classification for each measurement. After that classifica-
tion has been performed, the isolated measurements will be joined into different seg-
ments, according to that classification (segment synthesis). 

The formalization of these phases and the subsequent changes performed to the da-
ta is presented in the following vectors, representing the output data for our three 
processes: 

Input data: ܶ௜ = ൛ݔఫపሬሬሬԦൟ, ݆߳ሼ1. . ܰ௜ሽ    ݔԦ௝௜ = ൫ݔ௝௜, ,௝௜ݕ ,௝௜ݐ ௝ܴ௜  ൯.
Domain transformation: DtሺݔఫపሬሬሬԦሻ ฺF(ݔఫపሬሬሬԦ|ܶ௜) ֜ F(ݔఫపሬሬሬԦ| ௝ܵ௜ሻ = {Pc௞௝ }, ݇ ߳ ሼ1. . ሽPc௞௝ܯ  = pre-classification k for measurement j. 

Classification process: Cl(DtሺݔఫపሬሬሬԦሻ)) = Cl({Pc௞௝ ௝ܥ =({
jC  = automatic classification result for measurement j. 

Final output: ܶ௜ = ڂ ௞௜ܤ ௞௜ܤ     = ሼݔ௝௜ሽ ݆ ߳ ሾ݇௠௜௡, ݇௠௔௫ሿ ܤ௞௜ = Final segments obtained by the union process.
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4   First Phase: Domain Transformation 

The first phase of our algorithm covers the process where we must synthesize an 
attribute from our input data to represent each of the trajectory’s measurements in a 
transformed domain and choose the appropriate thresholds in that domain to effective-
ly differentiate those which belong to our model from those which do not do so. This 
process has the following representative parameters: transformation function, segment 
management, extension and resolution, and threshold choosing technique.  

The transformation function decision is the most crucial one involving this first 
phase of our algorithm. In [7] the discussion of whether introducing noise information 
in the domain transformation function allows us to improve our results was presented. 
The results proved that, as expected, that noise information improves the overall re-
sults. The transformed value presented was a normalized BLUE residue (6).  ݏ݁ݎ = ଵሺ௞௠௔௫ି௞௠௜௡ାଵሻ ∑ ൫ݔሺ݇ሻ െ ሺ݇ሻݕ  ௜௡௧ሺ݇ሻݔ െ ௜௡௧ሺ݇ሻ൯௞ୀ௞௠௔௫௞ୀ௞௠௜௡ݕ ܴ௞ି ଵ ቀ ௫ሺ௞ሻି௫೔೙೟ሺ௞ሻ ௬ሺ௞ሻି௬೔೙೟ሺ௞ሻቁ (6) 

where ݔሺ݇ሻ, yሺ݇ሻ are the sensor measurements values, ܴ௞  is the covariance matrix
(associated to the sensor) and ݔ௜௡௧ሺ݇ሻ,ݕ௜௡௧ሺ݇ሻ are interpolated values using BLUE
equations. 

The rest of the parameters were briefly covered in [7] as well, even though we will 
review them here. The segment management determines whether we analyze the 
measurements alone or classify their surrounding segment according to the center 
measurement value. The segment extension is defines how we choose the units and 
boundaries for our segments (basically number of measurements or time interval 
constraints). Segment resolution refers to the choice of the length of those segments, 
and how it affects our results. The threshold choosing technique involves how we 
determine if a measurement belongs to our model or not. This parameter, not covered 
in previous works, will be covered in the next section. 

4.1   Threshold Choosing Technique 

The threshold choice involves determining the boundary above which transformed 
measurements will be considered as unknown. According to our design criterion, we 
would like to obtain a TPR as high as possible keeping our FPR ideally at a zero val-
ue. Graphically over figure 2, that implies getting the red line as low as possible, 
leaving only the central section over it (where the maneuver takes place, making its 
residue value high enough to get over our threshold).  

The presented residue value in (6) follows a Chi-squared probability distribution 
function (pdf) normalized by its degrees of freedom, n. “n” is given by twice the 
number of 2D measurements contained in the interval minus the dimension of P (P=4 
in uniform segment). For a valid segment residual, “res” behaves with distribution ଵሺ௞௠௔௫ି௞௠௜௡ାଵሻ ߯ଶሺ௞௠௔௫ି௞௠௜௡ାଵሻି௉ଶ , which has the following mean and variance: ߤ = 2 െ ௉ሺ݇݉ܽݔെ݇݉݅݊൅1ሻ ଶߪ     = ସሺ݇݉ܽݔെ݇݉݅݊൅1ሻ െ ଶ௉ሺ݇݉ܽݔെ݇݉݅݊൅1ሻమ (7) 
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Fig. 2. Threshold choosing example 

The residue distribution allows us to establish our criterion based on the TPR val-
ue, but not the FPR (we have a distribution over the uniform measurements, not the 
unknown ones), which is the one constrained by the design criterion. We may use the 
Chevychev’s inequality [11] to determine a threshold which should leave the 99% of 
the measurements belonging to our model above it (TPR>=0.99), with ߤ ൅  .value ߪ3
From the values exposed in (7) we get the following threshold value: thres=2 െ  ସே ൅  3ටସே െ ே଼మ  ܰ = ሺ݇݉ܽݔ െ ݇݉݅݊ ൅ 1ሻ  (8) 
This threshold depends on the resolution of the segment (N), which also influences 
the residue value in (6). It is interesting to notice that the highest threshold value is 
reached with the lowest resolution. This is a logical result, since to be able to keep our 
TPR (having fixed it with the inequality at 99%) with short segments, we need to 
have a high threshold, in order to counteract the noise effects (while longer segments 
are more resistant to that noise and thus the threshold value may be lower). 

We would like to determine how precisely our ߯ଶ distribution represents our nor-
malized residue in non-uniform trajectories with estimated covariance matrix. In the 
following figures we compare the optimal result of the threshold choice (dotted lines), 
manually chosen, to the results obtained with equation (8). Figure 3 shows the used 
trajectories for this comparison, whereas figure 4 shows the actual comparison for the 
proposed trajectories between the optimal TPR and the one obtained with (8) for in-
creasing threshold values. 

In the two trajectories in figure 4 we may appreciate two distortion effects intro-
duced by our approximation. The turn trajectory shows an underestimation of our 
TPR due to the inexactitude in the covariance matrix ܴ௞ . This inexactitude assumes a
higher noise than the one which is present in the trajectory, and thus will make us 
choose a higher threshold than necessary in order to obtain the desired TPR margin. 

In the racetrack trajectory we perceive the same underestimation at the lower val-
ues of the threshold, but then our approximation crosses the optimal results and 
reaches a value over it. This is caused by the second distortion effect, the maneuver’s 
edge measurements. The measurements close to a maneuver beginning or end tend to 
have a higher residue value than the theoretical one for a uniform trajectory (due to 
their proximity to the non-uniform segments), making us increase the threshold value 
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Fig. 3. Considered trajectories 

Fig. 4. ߯ଶ approximation comparison 

to classify them correctly (which causes the optimal result to show a lower TPR in the 
figure). These two effects show that we may need a heuristic tuning in our ߯ଶ distribu-
tion in order to adapt it to these distortion effects. 

5   Experimental Algorithm Design and Validation 

The first step for the validation of the proposal is the generation of a set of test 
trajectories as representative as possible. We will include specific trajectories for 
each particular MM and also racetrack ones, which represent typical situations 
during landing procedures. To carry out the validation process we will add an addi-
tional component ܥ௝௜ to our measurement’s data, which contains the real classifica-
tion value of the measurement (one of our analyzed MM’s), to obtain the results of 
the TPR and FPR indicators. This validation must be based on two different 
processes: the experiments performed in order to determine the design of the 
algorithm and those used to validate that design’s results, covered in the next two 
sections. 
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5.1   Algorithm Design Parameters 

This section will present the validation experiments needed to determine the design of 
the algorithm in the first phase section. Each of these alternatives must be compared 
and a decision over its value taken. One of the main difficulties arising in that process 
is that most of those parameters are related, so that global elections need to be made. 

According to previous sections, we will use a BLUE reside, with the number of 
measurements as our segment extension and a ߯ଶ approximation based threshold 
choice. Resolution values allow us to obtain different effects according to their values, 
so a multi-resolution approach is chosen. Figure 5 shows the results for a sample turn 
trajectory of this pre-classifications, appreciating that high resolutions allow us to 
have better results (91 measurements) up to a certain limit, above which our maneuv-
ers’ boundaries start to increase, obtaining worse TPR results (121 measurements) 

Fig. 5. Pre-classification results with different resolutions 

5.2   Initial Validation Overview 

Validation over our first phase pre-classification is a rather difficult process, as the 
complete solution algorithm must be validated as a whole. Even so, each of the differ-
ent steps needs individual performance assessment in order to be able to design it cor-
rectly, so “ad hoc” validation methods are required. This is particularly true for this 
first phase, where the algorithm is required to find the input data for a second phase in 
order to be able, after that second phase, to classify each measurement correctly.  
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To make this achievement possible, we will choose a representative set of trajecto-
ries (two examples of each of the non-uniform possibilities presented) and obtain their 
TPR and FPR results over a set of different resolution values: 11, 31, 51, 71, 91 and 
111. Due to space requirements we will only show the best result for each trajectory 
and its associated resolution. The idea behind this validation is to test the representa-
tiveness of our results for different resolutions, being able to measure whether, by 
joining these results, we will be able to obtain an accurate final classification. Table 1 
shows these results. 

Table 1. Classification results over simulated data 

Trajectory Resolution chosen 
Results 

TPR FPR
Racetrack 1 31 0,9031 0 
Racetrack 1 51 0,7591 0 

Accel. 1 111 0,9935 0,0206 
Accel. 2 111 0,9928 0 
Turn 1 11 0,9876 0 
Turn 2 91 0,9874 0 

These results show that different resolutions allow us to accurately define the uni-
form segments of our trajectories (obtaining TPR values above 90 % in 5 out of 6 
trajectories from the data set) while keeping the ideal zero value of FPR in almost 
every case (even in the trajectory where it exceeds the zero value, it is very low). This 
defines the boundaries for non-uniform MM segments and allows the application to 
those segments of the different possible non-uniform models (less accurate than the 
one presented in this work) to perform the final reconstruction  

6   Conclusions 

In this paper we have presented the general segmentation issue and its formulation in 
our particular ATC domain, where it is of capital importance for the automation 
process which the domain is going through. The basic idea is to segmentate an air-
craft’s trajectory, by means of a simplification into three basic different MM’s. This 
can be performed from a global or a local approach, each of them with different ad-
vantages and difficulties. We have performed a local approach, covering in this paper 
its main issues: the domain transformation (along with the parameters determining 
how to choose the local information to classify each measurement), the classification 
techniques required and the final classification refinement needed (some of these only 
introduced, due to space restrictions). We have shown as well validation experiments 
over some critical parameters and a final overview over the quality of the general 
classification results, where we have obtained encouraging TPR and FPR values. 
Future work includes the complete description of the algorithm, introducing non-
uniform models, along with its application to real data, in order to test its complete 
performance in real environments.  
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