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Abstract. The high complexity of semantics extraction with automatic video 
analysis has forced the researchers to the generalization of mixed approaches 
based on perceptual and context data. These mixed approaches do not usually 
take in account the advantages and benefits of the data fusion discipline. This 
paper presents a context reasoning environment to deal with general and 
specific tracking problems. The cornerstone of the environment is a symbolic 
architecture based on the Joint Directors of Laboratories fusion model. This 
architecture may build a symbolic data representation from any source, check 
the data consistency, create new knowledge and refine it through inference 
obtaining a higher understanding level of the scene and providing feedback to 
autocorrect the tracking errors. An ontology-based prototype has been 
developed to carry out experimental tests. The prototype has been proved 
against tracking analysis occlusion problems. 

Keywords: Context Reasoning, Occlusion Problem, Knowledge Approach, 
Video Tracking. 

1   Introduction 

The widespread use of video applications in new areas and to new publics has led to 
an increase amount of raw and unclassified resources. This trend has generated the 
need to automatically get semantic information by analyzing the resources and 
cataloging the data to achieve a scene interpretation. 

Low informative quality of the data presented by video applications has resulted in 
an incapability to manage the extracted information on a semantic level. For years 
researchers have been working in two different ways to save the semantic gap; 
machine learning methods focused on low level visual descriptors such as texture, 
shape, etc. and knowledge approaches, which try to extract semantic descriptions 
using a higher abstraction perspective. None of these approaches can only by itself 
cover the entire problem.  

Increasingly low level and knowledge approaches are being used in a synergistic 
way taking in account their abstraction level. Machine learning methods are used to 
imitate the way users assess visual similarity. Knowledge-based approaches are used 
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to discover new hidden domain knowledge through inference operations. However, 
these mixed approaches are not normally prepared to accept different kinds of 
measures form different kinds of devices, to fuse all the data generated and to make 
inference reasoning over these. In addition, normally with these solutions is not 
possible to deal specific problems at different abstraction levels. 

In order to solve these limitations this paper presents an integral environment 
which combines machine learning methods with a general purpose knowledge 
approach based on symbolic representation formalism. The goal of this environment 
is to carry out a comprehensive tracking analysis extracting all the semantics at 
different abstraction levels from the resources. 

The general context reasoning environment is divided in three main modules a 
tracking system, an annotation system and a knowledge system. The tracking module 
collects part of the data performing a low level analysis over the raw resources. The 
annotation module carry out tasks such as annotating and showing the attained and 
inferred data, controlling the main flow of the execution and acting as interface between 
the user and the rest of the system. The knowledge module is built under the guidance of 
an architecture [3] based on a symbolic version of the Joint Directors of Laboratories 
(JDL) model [4] to deal with tracking problems. The JDL-based architecture is the 
cornerstone of the overall architecture. Their main capabilities are symbolic 
representation of the real world with ontologies, information flow refined through 
deductive and abductive reasoning from low level data to high level domain knowledge, 
consistency in the data inherent to the chosen representation formalism and feedback 
information that makes suggestions to improve the behavior of the tracking system. 

To test the potential of this environment a prototype has been developed. As a 
demonstration of the current performance to solve problems at several levels, the 
system has been tested to the automatic detection and treatment of occlusion 
situations between scene objects. 

The paper is organized as follows. In Section 2 the overall architecture is 
presented. Section 3 shows the detailed implementation of knowledge model 
prototype. Section 4 shows an example of how a typical video tracking problem is 
solved applying the solution presented. Section 5 explains the conclusions obtained 
and the future work. 

2   Overall Architecture 

As it is illustrated in Fig. 1, the overall architecture is composed by a tracking 
module, an annotation module and a knowledge module. A user supervisor is 
normally necessary to monitor the tracking performance. The basic inputs for this 
architecture are a data formalism, a variable quantity of predefined data and the video 
frames. The two first, are inputs of the knowledge module. The data formalism 
represents the skeleton of concepts, placed according to their abstraction level, where 
the data is stored. Optionally this formalism could be accompanied with predefined 
data, such as, assertions of a knowledge base. Normally these data come from 
previous analysis and context information. The video frames are the tracking module 
inputs; each frame starts the sequence analysis whose information stream covers all 
the environment elements. 
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Fig. 1. Overall architecture of the general context reasoning environment 

After a frame entry, a real time tracking analysis is performed. When the analysis 
have finished the tracking module returns information related with tracking entities, 
such as, position, size, etc. The annotation module supports two inputs the tracking 
data and the previous frame scene interpretation. The scene interpretations are the 
semantic conclusions of the knowledge module about the situation of the video scene 
at different abstraction levels. All these inputs are presented as annotations to the user 
supervisor. Once the information is checked by the user, the annotation module sends 
this data monitored to the knowledge module. The knowledge module triggers its 
reasoning abilities obtaining a new interpretation of the video scene and 
recommendations of how should the tracking module behave during the analysis. 

2.1   Tracking Module 

The tracking module architecture, presented in Fig 2, is based on a video chain with 
different submodules that run in sequence, which correspond to the successive phases 
of the tracking process.  

Fig. 2. Tracking Module Architecture 

This architecture is composed by four processes: Foreground/Background 
Detection module, shows when a pixel has moved and group them in blobs. 
Association module, predicts the blobs positions, assign sets of blobs to tracks and 
finally update the tracks positions. Initialize or Delete module, create and delete 
tracks when have not assigned to any blob. Trajectory Generator module, detects 
anomalous behaviors studying tracks trajectories. The algorithms belonging to each 
submodule are interchangeable in each run. The input data for the pipeline is a frame 
and the output data is the track features. 
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2.2   Annotation Module 

The annotation module is based on the ViPER-GT tool [10]. The initial goal of this 
tool was to provide instruments to easily create and share ground truths in a flexible 
format. It was designed to allow frame-by-frame markup of video metadata stored in 
a XML format. The GUI developed is very useful for visualization and could be used 
to record the requisite information in a single scan of the video content.  

The modified version of this tool [7] allows user to supervise data generation 
through predefined dynamic templates. Predefined templates present the information 
related with the knowledge module abstraction levels tracking, objects, activities, etc. 
The annotation tool also offers some possibilities like creation, deletion and update on 
the semantics of the scene, for example, the user could update in a template the size of 
a track. All the new data have to be finally sent to the knowledge module due to user 
updates may modify the interpretation of the global situation. For example, the user 
could update in a template the size of a context object which modifies the semantic 
relationships between some other objects. 

2.3   Knowledge Module 

The knowledge module is an ontology based model compliant with JDL to represent 
knowledge in cognitive visual data fusion systems [3]. This model is stepped in 
several levels from low-level track data to high level situations whose structure is 
determined by a set of ontologies. Each ontology level provides a skeleton that 
includes general concepts and relations to describe the computer vision entities and 
their relations. 

• TREN ontology (L1). The input data come from the tracking module and represent
tracked entities information (color, position, velocity, etc.) and frames.

• SCOB ontology (L1-L2). Represents real-world entities, properties and relations of
the scene: moving and static objects, topological relations, etc.

• ACTV ontology (L2). Models the behavior descriptions: grouping, approaching,
picking an object, etc.

• IMPC ontology (L3). Define the association of a cost value to activity descriptions.

The ontology model has been designed to promote extensibility and modularity. This 
general structure might be refined to apply this model in a specific domain. It is 
interesting to note that the amount of data in lower level ontologies is larger than 
higher levels. Concepts that belong to less abstract knowledge form the basis of the 
high abstract knowledge. 

These ontologies can contain both perceptual and context data. Perceptual data is 
automatically extracted by the tracking algorithm. Context data is external knowledge 
used to complete the comprehension of the scene. Context data includes information 
about scene environment, the parameters of the recording, information previously 
computed and user-requested information. For example, an static object and its 
features size, position, topological state, etc. are regarded as context data. The 
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producing sources of context are the a priori knowledge and the users. A priori 
knowledge is generally common sense data introduced before the initialization of the 
system. This information is usually closely linked to the specific purpose of 
the application. Users must also provide the required amount of the context data 
interacting with the annotation module. This required data should be introduced 
during the execution when a bad comprehension of the scene is detected in the 
behavior of the tracking module. 

New knowledge assertions in each ontology from the proper and the previous level 
are also possible thanks to the abductive reasoning. Beyond the standard reasoning 
based on the subsumption ontology mechanism, this model can perform rule based 
inferences using a description logic inference engine. Deductive and abductive rules 
are the two main types of reasoning procedures. Deductive rules maintain the 
consistency in the ontology. The consequent include logical conditions and not 
include in the consequent any individual not mentioned in the antecedent. Abductive 
rules are used to achieve the scene interpretation and creation of feedback for the 
tracking module. These rules allow the inclusion of additional individuals in the 
consequent, which are created as new instances of the ontology. Abductive reasoning 
use additional mechanism like data retrieval queries, previously stored queries or 
queries depending on arithmetical calculus. 

3   Ontology Based Prototype: Knowledge System 

The ontology based prototype implements the overall architecture seen in section 2, 
however, in terms of research quality the key piece of this architecture is the 
knowledge module. This module must carry out the fundamental tasks such as 
asserting symbolic context data, creating a symbolic representation of these data, 
checking the data consistency, making deductive and abductive inference and 
providing feedback at different levels. 

As is illustrated in Fig. 3, the developing of this module is almost entirely based on 
the RACER reasoner [9]. RACER has been selected because of the necessity of the 
system to develop different kinds of reasoning throw rules capable to infer new 
knowledge. In addition, RACER is one of the first reasoners to treat the spatial 
knowledge with an implementation of the Region Connection Calculus (RCC) theory. 

The knowledge module is represented by the computer vision symbolic 
representation (CVSR). The actual CVST implementation includes the three first 
lowest levels of the architecture, the tracking entities level (TREN), the scene object 
level (SCOB) and the activities level (ACTV). These levels are defined from a set of 
terminological box (TBox) that contains the hierarchical description of the concepts 
defining the classes and relations of the ontology of each level. CVSR assertional 
boxes (ABoxes) indicate the assertions about the individuals in the domain. The 
consistency verify whether all concepts in the TBox admit at least one individual in 
the corresponding ABox. These individual assertions come from predefined context 
knowledge given by the user or previous executions. Currently the system loads all 
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Fig. 3. The knowledge module implementation of the ontology based prototype 

these data, prior to the start of the execution, from a file previously saved with 
information of an ABox. 

During the execution, more context knowledge could be asserted by the user 
through the annotation system interface or by abductive new Racer Query Language 
(nRQL) rules. nRQL can be used to query RACER ABoxes, TBoxes and substrates 
and RDF and OWL documents. Abductive rules make flow new and more elaborated 
data at the same level or from low to upper abstraction levels. In the example below it 
can be seen a rule that generate new upper knowledge transforming a track 
in a dynamic scene object of the person class. This rule makes use of some reasoning 
facilities previously explained. Rule antecedent contains perceptual data such as track 
identifiers, previously stored queries like current-snapshot function, the a priori 
context knowledge showed in the width and height track properties condition, etc. 
Rule consequent generates a new individual labeled as person, declares a specific 
identifier and creates a new role which associates the individual to a track entity.  
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Abductive reasoning with spatial objects is very expensive in terms of development of 
rules and time computing and grows with the increasing number of entities and 
the complexity of the scene. An ontology-centric architecture based on an optimized 
geometry model [8] has been designed to solve the topological relationships between 
spatial objects automatically. The capability for automatic assertion is given by an 
object model based on geometries. The object model seeks to prioritize the 
optimization using a dynamic data structure of spatial data. The main goal is the 
automatic storage of the spatial relationships on a RCC without a noticeable loss of 
efficiency.  

RCC is a theory used for qualitative spatial representation and reasoning. This 
theory provides a formalism which allows inferring implicit knowledge from explicit 
knowledge and a set of qualitative spatial relationships to describe the relative location 
of spatial objects to one another. The RCC theory is implemented by RACER as a 
substrate.  In general substrate representation layers are used to associate a RACER 
ABox with an additional representation layer. The RCC substrate is a special kind of 
data substrate used to represent domain objects that also have spatial characteristics. 
This substrate also offers querying facilities, nRQL support both spatial and combined 
spatial and non-spatial queries. A significant amount of knowledge from the scene 
object and activities level is deducted from rules that manage the spatial object 
relationships discovered by the optimized geometries model. 

The scene interpretation output is presented to the user at the predefined dynamic 
templates of the annotation system. This allows the user to edit the erroneous 
semantic conclusions of the knowledge module at different abstraction levels to 
improve further recommendations. The tracking system recommendations have not 
been fully adapted to the prototype. The architecture presented in [1] and [2] uses a 
specific ontology called RECO which abstractly represents actions to improve the 
accuracy of the tracking system, and consequently, the quality of the measures of the 
fusion system. The current development directly modifies the features of the tracks at 
the lowest level to change the tracking behavior. 

4   Case Study: Occlusion Problem 

In this case study the main aim is to recognize and treat occlusion situations. The 
system has been tested against videos which show a scenario with several columns. 
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These columns have been defined by the user supervisor as context information and 
more specifically as a column concept which may be also considered as a static 
objects because one is a less general than the other. 

Table 1. Illustrated sequence of how the overall system treats the occlusion. 1A shows the 
beginning of an occlusion. 1B shows the track completly occluded by the column. 1C image 
shows the occlusion ending.  

The information given from the user to the system was the position, the size and the 
definition of the columns. The tracking system automatically detects the track position 
at every moment. This track is asserted in the TREN ontology with its features. The 
knowledge module detect that the track is a person and creates an individual in 
SCOB to represent the track at the object level from the rule view in section 3. Thus 
the system can make inference on the same level with columns and tracks.  

An occlusion is detected when a tracked object in an overlap relation with a 
static object, in this case a column, is deleted by the tracking system. In 1A the 
prototype does not confuse as an occlusion the situation between the “static object 2” 
and the “tracked object 1” because the tracked object is not deleted by the tracking 
system. To recognize and assert occlusion situations is necessary the use of inference 
rules with tracking entities and scene objects in the antecedent and activities in the 
consequent.  
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Table 2. Knowledge management sequence corresponding to the the image sequence in table 1 

Image 1 

TREN Instances: Track_1 [position and size] Previous 

Knowledge SCOB Instances: Static_object1, Static_object2, Static_object3, Static_object4 

[positions and sizes] 

Rule fired  Track_1 matches the person rule, new person instance is created. 

TREN Relationships: Track_1 isAssociatedTo Object PersonObj1 Rule Asserted 

Knowledge SCOB Instances: PersonObj_1 

Relationships: PersonObj_1 hasAssociatedTrack Track_1 

Tracking 

Event 

Track_1 deleted.  

Knowledge 

Event 

Track_1 and PersonObj_1 declared as inactive in knowledge base. 

Overlapping rule fired. 

Image Image 2 

Previous 

Knowledge 

SCOB Instances: Static_object1, Static_object2, Static_object3, Static_object4 

[positions and sizes] 

Rule fired PersonObj_1 matches the overlapping rule. 

TREN  Instances: Track_1 [new position, old size] 

Relationships: Track_1 isAssociatedTo Object PersonObj1 

Recommended 

Asserted 

Knowledge SCOB Instances: PersonObj_1 

Relationships: PersonObj_1 hasAssociatedTrack Track_1 

Rule Asserted 

Knowledge 

ACTV Instances: Occlusion_1_3 

Relationships: Occlusion_1_3 hasOccluder Static_object2 

Occlusion_1_3 hasOccluded PersonObj1 

Image Image 3 

TREN Instances: Track_1 [position, size] 

Relationships: Track_1 isAssociatedTo Object PersonObj1 

SCOB Instances: PersonObj_1, Static_object1, Static_object2, Static_object3, 

Static_object4 [positions and sizes] 

Relationships: PersonObj_1 hasAssociatedTrack Track_1 

Previous 

knowledge 

ACTV Instances: Occlusion_1_3 

Relationships: Occlusion_1_3 hasOccluder Static_object2 

Occlusion_1_3 hasOccluded PersonObj1 
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When the occlusion is fully detected some recommended behavior are sent directly to the 
tracking system prioritizing the knowledge system recommendations before the tracking 
algorithm detections. For the situation seen in 1B image the recommendations are re-
create the track, maintain the last registered size before the deletion and situate the object 
centered in the object that occludes. The tracked object is automatically re-activated 
through the rule seen in Section 3. Table 2 shows a simplified view of how the specific 
data of the occlusion situation flow from low level to high level comprehension and 
scene interpretation. 

5   Conclusion and Future Work 

We have presented a general purpose approach based context knowledge and 
inference reasoning to deal with general and specific tracking problems at different 
fusion levels. An ontology based prototype has been developed to demonstrate the 
performance of this knowledge module. The system has been tested against the 
occlusion problem. 

Future works will be addressed to expand the number of JDL model levels 
implemented. This extension will include ontologies to manage the impact of the 
recognized activities and the recommendations from the knowledge module to the 
tracking module. Therefore new rules, for abductive and deductive reasoning for these 
levels will have to be developed. 
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