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Abstract. The introduction of learning to the search mechanisms of op-
timization algorithms has been nominated as one of the viable approaches
when dealing with complex optimization problems, in particular with
multi-objective ones. One of the forms of carrying out this hybridiza-
tion process is by using multi-objective optimization estimation of dis-
tribution algorithms (MOEDAs). However, it has been pointed out that
current MOEDAs have a intrinsic shortcoming in their model-building
algorithms that hamper their performance.

In this work we argue that error-based learning, the class of learning
most commonly used in MOEDAs is responsible for current MOEDA
underachievement. We present adaptive resonance theory (ART) as a
suitable learning paradigm alternative and present a novel algorithm
called multi-objective ART-based EDA (MARTEDA) that uses a Gaus-
sian ART neural network for model-building and an hypervolume-based
selector as described for the HypE algorithm. In order to assert the
improvement obtained by combining two cutting-edge approaches to op-
timization an extensive set of experiments are carried out. These experi-
ments also test the scalability of MARTEDA as the number of objective
functions increases.

1 Introduction

Multi-objective optimization has received a lot of attention by the evolution-
ary computation community leading to multi-objective evolutionary algorithms
(MOEAs) (cf. [1]). A multi-objective optimization problem (MOP) can be ex-
pressed as the problem in which a set of M objective functions f1(x), . . . , fM (x)
with should be jointly optimized;

min F (x) = 〈f1(x), . . . , fM (x)〉 ; x ∈ D ; (1)

where D ⊆ R
n is known as the feasible set and could be expressed as a set of

restrictions over the decision set, R
n . The image set of D produced by function

vector F (·), O ⊆ R
M , is called feasible objective set or criterion set (see [2] for

details on notation).
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The solution to this problem is a set of trade-off points. The adequacy of a
solution can be expressed in terms of the Pareto dominance relation [3]. The
solution of (1) is the Pareto-optimal set, D∗; which is the subset of D that
contains all elements of D that are not dominated by other elements of D. Its
image in objective space is called Pareto-optimal front, O∗.

There is a class of MOPs that are particularly appealing because of their inher-
ent complexity: the so-called many-objective problems [4]. These are problems
with a relatively large number of objectives. It has been shown that “estab-
lished” approaches fail to yield adequate solutions because of the exponential
relation between the dimension of the objective space and the amount of re-
sources, in particular population size, required to solve the problem correctly.
Although somewhat counterintuitive and hard to visualize for a human decision
maker, these problems are not uncommon in real-life engineering practice. For
example, [5] details some relevant real problems of this type.

Many-objective problems have been addressed from three main fronts:

1. the design of better fitness assignment (selection) functions;
2. the use of objective reduction strategies, and;
3. application of better search (variation) methods

There has been has been a relatively large body of work on the first two issues.
For example, it has been shown that the use performance indicators and some
forms of relaxed Pareto dominance for the fitness assignment task allows the
resulting algorithm to cope with higher dimension problems (cf. [6, 7, 8]). Simi-
larly, some works have focused on the reduction of the amount of objectives to
a minimum by eliminating redundant or irrelevant objectives (cf. [9, 10, 11]).

The third direction remains to be properly explored. Here, a viable approach
is to employ cutting-edge evolutionary algorithms that could effectively deal with
high-dimensional problems more efficiently.

The incorporation of learning as part of the search processes has been nom-
inated as a viable way of dealing with that third issue [12]. There are some
approaches that perform this task by providing hybrid evolutionary/machine
learning method, like, for example, the learnable evolution model (LEM) [13].
However, these efforts seem to have been concentrated on single-objective opti-
mization (c. f. [14, 15]).

Another form of carrying out this task is to resort to estimation of distribu-
tion algorithms (EDAs) [16]. This is because of EDAs capacity of learning the
problem structure. EDAs replace the application of evolutionary operators with
the creation of a statistical model of the fittest elements of the population in a
process known as model-building. This model is then sampled to produce new
elements. Nevertheless, the so-called multi-objective EDAs (MOEDAs) [17] have
not live up to their a priori expectations. This is can be attributed to the fact that
most MOEDAs have limited themselves to transforming single-objective EDAs
into a multi-objective formulation by including an existing multi-objective fitness
assignment function.

This straightforward extrapolation has prompted the existence of a number of
shortcomings en current MOEDAs. We have recognized three of them, in
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particular, those derived from the incorrect treatment of outstanding but isolated
elements of the population (outliers); the loss of population diversity, and that too
much computational effort is being spent on finding an optimal population model.

The performance issue of current MOEDAs has been traced back to the their
underlying learning paradigm: the dataset-wise error minimization learning, or
error-based learning, for short [18]. This class of learning, in different forms, is
shared by most machine learning algorithms. It implies that model is tuned in
order to minimize a global error measured across the dataset. In this type of
learning isolated data is not taken into account because of their little contribu-
tion to the overall error and therefore they do not take an active part of learning
process. This assertion is in part supported by the fact that most the approaches
that had a better performance in comparative experiments like [18] do not ex-
actly conform to the error-based scheme. That is why, other learning paradigms
should be assessed.

Adaptive resonance theory (ART) [19] is a theory of human cognition that has
seen a realization as a family of neural networks. It relies on a learning scheme
denominated match-based learning and on intrinsic topology self-organization.
These features make it interesting as a case study as model-building approach.
Match-based learning equally weights isolated and clustered data [20], and, there-
fore, the algorithm does not disregard outliers. Similarly, self-organization makes
possible the on-the-fly determination the model complexity required to correctly
represent the data set, thus eliminating the need of an external algorithm for
that task.

In this work we argue that error-based learning, the class of learning most com-
monly used in MOEDAs is responsible for current MOEDA underachievement.
We discuss in detail ART-based learning as a viable alternative and present a
novel algorithm called multi-objective ART-based EDA (MARTEDA) that uses
a Gaussian ART neural network [21] for model-building and an hypervolume-
based selection as described for the hypervolume estimation algorithm for mul-
tiobjective optimization (HypE) [8]. We experimentally show that thanks to
MARTEDA’s novel model-building approach and an indicator-based population
ranking the algorithm it is able to outperform similar MOEDAs and MOEAs.
Elements of MARTEDA have been discussed in some preliminary works [22],
but it has not yet been presented in detail.

The remaining part of the work proceeds as we discuss the model-building
issue. Following that we describe the Gaussian ART network that is used as start
point for our model-building algorithm. Subsequently, MARTEDA is introduced,
describing how the HypE selection and Gaussian ART are blended together
in a MOEDA framework. Section 5 presents and discusses the results of the
comparative experiments involving MARTEDA and a selection of other current
state-of-the-art algorithms dealing with a set of community accepted problems.
These problems are configured with an progressive number of objectives (3, 6,
9 and 12) in order to assess the performance of our proposal in the context of
many-objective optimization. Finally, some conclusive remarks and future lines
of research are outlined.
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2 The Model-Building Issue

Notwithstanding the diverse efforts dedicated to providing usable model-building
methods for EDAs the nature of the problem itself has received relatively low
attention. An analysis of the results yielded by current multi-objective EDAs and
their scalability with regard to the number of objective leads the identification
of certain issues that might be hampering the obtention of substantially better
results with regard to other evolutionary approaches.

Data outliers issue is a good example of insufficient comprehension of the
nature of the model-building problem. In machine-learning practice, outliers are
handled as noisy, inconsistent or irrelevant data. Therefore, outlying data is
expected to have little influence on the model or just to be disregarded.

However, that behavior is not adequate for model-building. In this case, is
known beforehand that all elements in the data set should be take into account
as they represent newly discovered or candidate regions of the search space and
therefore must be explored. Therefore, these instances should be at least equally
represented by the model and perhaps even reinforced.

Another weakness of most MOEDAs (and most EDAs, for that matter) is
the loss of population diversity. This is a point that has already been made, and
some proposals for addressing the issue have been laid out [23,24,25,26,27]. This
loss of diversity can be traced back to the above outliers issue of model-building
algorithms.

The incorrect treatment of outliers and the loss of population diversity can
be attributed the error-based learning approaches that take place in the most
MOEDAs. Error-based learning is rather common in machine learning algo-
rithms. It implies that model topology and parameters are tuned in order to
minimize a global error measured across the learning data set. This type of
learning isolated data is not taken into account because of their little contribu-
tion to the overall error and therefore they do not take an active part of learning
process. In the context of many problems this behavior makes sense, as isolated
data can be interpreted as spurious, noisy or invalid data.

That is not the case of model-building, as we have already argued. In model-
building all data is equally important and, furthermore, isolated data might have
a bigger significance as they represent unexplored zones of the current optimal
search space. This assessment is supported by the fact that most the approaches
that had a better performance do not follow the error-based scheme, like the
k-means algorithm, randomized leader algorithm and the growing neural gas
network [18]. That is why, perhaps another classes of learning, like instance-
based learning or match-based learning would yield a sizable advantage.

3 Model Building with Adaptive Resonance Theory

Adaptive Resonance Theory (ART) neural networks are capable of fast, stable, on-
line, unsupervised or supervised, incremental learning, classification, and predic-
tion following a match-based learning scheme [19]. Match-based learning is com-
plementary to error-based learning.During training, ART networks adjust previously-
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learned categories in response to familiar inputs, and create new categories dy-
namically in response to inputs different enough from those previously seen. A
vigilance test allows to regulate the maximum tolerable difference between any
two input patterns in a same category. It has been pointed out that ART networks
are not suitable for some classes of classical machine-learning applications [20],
however, what is an inconvenience in that area is a feature in our case.

3.1 Gaussian ART for Model-Building

There are many variations of ART networks. Among them, the Gaussian ART
[21] is most suitable for model-building since it capable of handling continuous
data. The result of applying Gaussian ART is a set of nodes each representing
a local Gaussian density. These nodes can be combined as a Gaussian mixture
that can be used to synthesize new individuals.

Gaussian ART creates classes of similar inputs. A match tracking mechanism
induces the creation of more specific classes when the prediction of the network
differs from the expected output at some degree.

Gaussian ART has a layer of afferent or input nodes, F1, and a classification
layer, F2. The F2 layer stores classes of inputs. Its activation is a combined
measure of the similarity of the input and the prototype of each class, and the
size of the given class.

For the model-building task we have modified the original formulation of the
network to make it more suited for the task. When an input x ∈ R

n is presented
to the input layer it is propagated to the F2 layer. F2 has N∗ units, with N of
them committed. Each committed unit models a local density of the input space
using Gaussian receptive fields with mean μj and standard deviation σj . A unit
is activated if it satisfies the match criterion. That is, the match function,

Gj = exp

(
−1

2

n∑
i=1

(
xi − μji

σji

)2
)

, j = 1, . . . , N , (2)

must be greater than the F2 vigilance parameter, ρ; according to this, the input
strength of a unit is computed as

gj =
{ ηj∏n

i=1 σji
Gj , if Gj > ρ

0 otherwise
, ρ > 0 , (3)

where ηj is a measure of the unit a priori activation probability. This is different
from the original Gaussian ART network where only one unit was allowed be
active after an input presentation.

After the presentation of an input, if no F2 unit is active, then an uncommitted
unit must be committed. The task of detecting when an input is not sufficiently
coded in F2 is accomplished by the F2 gain control, G, that fires if no committed
units are active. The signal

Γ =
{

1 if maxj=1,...,N gj = 0
0 otherwise (4)

is used to commit an uncommitted unit.
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The activation of each unit is then calculated normalizing the unit’s input
strength,

vj =
gj∑N
l=1 gl

. (5)

As other ART networks, this model is an on-line learning neural network.
Therefore, all adaptation processes have local rules. In F2, μj and σj are updated
using a learning rule based on the gated steepest descent learning rule. ηj is
updated to represent the cumulative category activation,

ηj (t + 1) = ηj (t) + vj , (6)

and, therefore, the amount of training that has taken place in the jth unit. The
use of ηj equally weights inputs over time with the intention to measure their
sample statistics.

Learning the first and second moments of the input is

μji (t + 1) =
(
1 − η−1

j vj

)
μji (t) + η−1

j vjxi , (7)

λji (t + 1) =
(
1 − η−1

j vj

)
λji (t) + η−1

j vjx
2
i . (8)

The standard deviation,

σji (t + 1) =
√

λji (t + 1) − μji (t + 1)2 , (9)

is calculated using (7) and (8).
Gaussian ART is initialized with all units uncommitted (N = 0). Learning

takes place in active (vj > 0) F2 units following (7)–(9). However if no F2
units becomes active an uncommitted unit is committed and therefore N is
incremented. The new unit is indexed by N and initialized with vN = 1, ηN = 0.
Learning will proceed as usual but a constant γ2

i will be added to each λNi to
set σNi = γi. The value of γi has a direct impact on the quality of learning. A
larger γi slows down learning in its corresponding input feature but warranties
a more robust convergence.

The local Gaussian densities resulting from the described algorithm can be
combined to synthesize a Gaussian mixture. This Gaussian mixture is then used
can be used by the EDA to generate new individuals.

4 Multi-Objective ART-Based EDA

The multi-objective ART-based EDA (MARTEDA) is a MOEDA that uses the
previously described Gaussian ART network as its model-building algorithm.
Although it intends to deal with the issues raised by the previous discussion,
it was also designed with scalability in mind, since it is expected to cope with
many-objective problems. It also exhibits an elitist behavior, as it has proved
itself a very advantageous property. Finally, thanks to the combination of fitness
assignment and model-building it promotes diversity preservation.
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MARTEDA maintains a population, Pt, of npop individuals; where t is a given
iteration. The algorithm’s workflow is similar to other EDAs. It starts with a
random initial population P0 of individuals.

At a given iteration t the algorithm determines the set P̂t containing the best
�α |Pt|� elements. ∣∣∣P̂t

∣∣∣ = �α |Pt|� = �αnpop� . (10)

Different selection strategies can be applied. However, indicator-based selec-
tion seems to have a superior performance in complex and many-objective prob-
lems. The hypervolume-based selection have many theoretical features, like being
the only indicator that have the properties of a metric and the only to be strictly
Pareto monotonic [28] but has the drawback of being computationally intensive
to compute.

A lot of research has focused on improving the computational complexity of
this indicator [29, 30, 31, 32]. The exact computation of the algorithm has been
shown to be #P-hard [33] in the number of objectives. #P problems are the
analogous of NP for counting problems [34]. Therefore, all algorithms calculating
a hypervolume must have an exponential runtime with regard to the number of
objectives if P�=NP, something that seems to be true [35].

The HypE algorithms attempt to circumvent this problem by estimating the
value of the hypervolume by means of a Monte Carlo simulation. The detailed
description of this procedure is out of the scope of this paper, and, therefore we
invite the interested reader to consult the corresponding paper.

A Gaussian ART network is then trained using P̂t as its training data set. In
order to have a controlled relation between size of P̂t and the maximum size of
the network, Nmax, these two sizes are bound by the rate γ ∈ (0, 1],

Nmax =
⌈
γ

∣∣∣P̂t

∣∣∣⌉ = 	γ �αnpop�
 . (11)

The trained GNG network is a model of P̂t. The network can be interpreted
as a Gaussian mixture, as explained in the previous section. Therefore it can
be used to sample new individuals. In particular, �ω |Pt|� new individuals are
synthesized.

The local Gaussian densities resulting from the described algorithm can be
combined to synthesize the Gaussian mixture with parameters Θ,

P (x|Θ) =
1
N

N∑
i=1

P (x|μi, σi) . (12)

Each Gaussian density is formulated as

P (x|μi, σi) =
1

(2π)n/2|Σi|1/2
exp

(
−1

2
(x − μi)

�
Σ−1

i (x − μi)
)

, (13)
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with the covariance matrices Σi defined as a diagonal matrix with its non-zero
elements set to the values of the deviations σi. The Gaussian mixture can be
used by the EDA to generate new individuals. These new individuals are created
by sampling the P (x|Θ). The generation of randomly distributed numbers that
follow a given distribution has been dealt in depth by many authors. In our case,
we applied the Box-Muller transformation [36].

Each one of these individuals substitute a randomly selected ones from the
section of the population not used for model-building Pt \ P̂t. The set obtained
is then united with the best elements, P̂t, to form the population of the next
iteration Pt+1. Some other substitution strategies could be used in this step. For
example, the new individuals could substitute the worst individuals of Pt \ P̂t.
We have chosen the previously described approach because it promotes diversity
and avoids stagnation.

Iterations are repeated until a given stopping criterion is met. The output of
the algorithm is a subset of Pt that contains the non-dominated solutions, P∗

t .

5 Experimental Study

The results of the experiments involving MARTEDA, some current state-of-
the-art MOEDAs and MOEAs in a selection of current community-accepted
problems are reported in this section.

The Walking Fish Group (WFG) problem toolkit [37] is a toolkit for creating
complex synthetic multi-objective test problems. The WFG test suite exceeds
the functionality of previous existing test suites. These include: non-separable
problems, deceptive problems, a truly degenerate problem, a mixed shape Pareto
front problem, problems scalable in the number of position related parameters,
and problems with dependencies between position- and distance-related param-
eters. The WFG test suite provides a better form of assessing the performance
of optimization algorithms on a wide range of different problems.

From the set of nine problems WFG4 to WFG9 were selected because of the
simplicity of their Pareto-optimal front that lies on the first orthant of a unit
hypersphere. This decision was also caused by the high computational cost of
the experiments being carried out and by the length restriction imposed upon
this contribution. Each problem was configured with 3, 6, 9 and 12 objective
functions. For all cases the decision space dimension was fixed to 30.

Besides applying MARTEDA to the aforementioned problems some other
MOEDAs and MOEAs are also assessed in order to provide a comparative ground
for the tests. One algorithm is of particular interest, the MONEDA [38] algo-
rithm. This approach was previously proposed by the authors to deal with the
model-building issue of MOEDAs and MARTEDA is supposed to be an im-
provement over it. However, as MONEDA used the less-performing NSGA-II
selection, we have also tested MONEDA with the HypE selection, in order to
have some basis for comparison.

Besides MONEDA, we also tested the näıve MIDEA [39], and MrBOA [40]
MOEDAs and the SMS-EMOA [41], HypE [8] and NSGA-II [1] MOEAs. One
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Parameters:
� γ, initial deviations.
� npop, population size.
� α ∈ (0, 1], selection percentile.
� ω ∈ (0, 1], substitution percentile.

Algorithm:
t← 0.
Randomly generate the initial population P0 with npop indi-
viduals.
repeat

Sort population Pt using the HypE+ ranking algorithm.
Extract first α |Pt| elements the sorted Pt to P̂t.
A Gaussian ART with P̂t as training data set.
Sample �ω |Pt|� from the network.
Substitute randomly selected individuals of Pt\P̂t with the
new individuals to produce P ′

t.
Pt+1 = P̂t ∪ P ′

t.
t = t + 1.

until end condition = true
Determine the set of non-dominated individuals of Pt, P∗

t .
return P∗

t as the algorithm’s solution.

Fig. 1. Algorithmic representation of MARTEDA

of the purposes of this study is to assess the parameter robustness of the al-
gorithms. That is why the same parameter values have been for all problems,
only increasing the population size as the number of objectives grows. For each
problem/dimension pair each algorithm was executed 30 times.

The quality of the solutions is determined by the use of the hypervolume
indicator [42].

The stochastic nature of evolutionary algorithms prompts the use of statistical
tools in order to reach a valid judgement of the quality of the solutions and how
different algorithms compare with each other. Box plots [43] are one of such
representations and have been repeatedly applied in our context. Although box
plots allows a visual comparison of the results and, in principle, some conclusions
could be deduced out of them. Nevertheless, in order to reach a substantiated
judgement it is necessary go beyond reporting the descriptive statistics of the
performance indicators. For this task is required to carry out a set of statistical
inferences that would support any judgements made from the data.

The statistical validity of the judgment of the results calls for the applica-
tion of statistical hypothesis tests. It has been previously remarked by different
authors that the Mann-Whitney-Wilcoxon U test [44] is particularly suited for
experiments in the context of multi-objective evolutionary optimization [42].
This test is commonly used as a non-parametric method for testing equality
of population medians. In our case we performed pair-wise tests on the signifi-
cance of the difference of the indicator values yielded by the executions of the
algorithms. A significance level, α, of 0.05 was used for all tests.
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WFG4 WFG5 WFG6 WFG7 WFG8 WFG9
0
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MART
MON/H
MON/NS
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SMS-EM
NSG-II

Fig. 2. Mean values of the performance index of MARTEDA (MART), MONEDA with
HypE (MON/H) or NSGA-II selection (MON/NS), näıve MIDEA (n.MID), MrBOA,
HypE, SMS-EMOA (SMS-EM) and NSGA-II (NSG-II) across the different problems,
P̄p ().

The visual analysis of the results is rather difficult as it implies cross-examining
and comparing the results presented separately. That is why we decided to adopt
a more integrative representation such as the one proposed in [45]. That is,
for a given set of algorithms A1,. . . , AK , a set of P test problem instances
Φ1,m,. . . ,ΦP,m, configured with m objectives, the function δ(·) is defined as

δ (Ai, Aj , Φp,m) =
{

1 if Ai � Aj solving Φp,m

0 in other case , (14)

where the relation Ai � Aj defines if Ai is significantly better than Aj when
solving the problem instance Φp,m, as computed by the statistical tests previously
described.

Relying on δ(·), the performance index Pp,m(Ai) of a given algorithm Ai when
solving Φp,m is then computed as

Pp,m (Ai) =
K∑

j=1;j �=i

δ (Ai, Aj , Φp,m) . (15)

This index intends to summarize the performance of each algorithm with regard
to its peers.

Figs. 2 and 3 exhibit the results computing the performance indexes grouped
by problems and dimensions.

Fig. 2 represents the mean performance indexes yielded by each algorithm
when solving each problem in all of its configured objective dimensions,

P̄p (Ai) =
1

|M|
∑

m∈M
Pp,m (Ai) . (16)
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NSG-II

Fig. 3. Mean values of the performance index across the different space dimensions,
P̄m. See Fig. 2 for a description of the acronyms.

It is worth noticing that MARTEDA has better overall results with respect
to the other algorithms in all problems. As it could be expected, the use of
indicator-based selection in MONEDA has yielded better results than the origi-
nal MONEDA. Indicator-based MONEDA and the indicator-based MOEAs have
a similar performance. It can be hypothesized that these results can be biased by
the three objective problems, having dramatic differences in their results with
respect to the rest of the dimensions considered.

This situation is clarified in Fig. 3, which presents the mean values of the
index computed for each dimension

P̄m (Ai) =
1
P

P∑
p=1

Pp,m (Ai) . (17)

In this case MARTEDA is shown to clearly outperform the rest in more than
three dimensions. Still, another important conclusion can be extracted. For more
than three objectives, the MOEDAs that attempt to tackle the model-building
issue (MONEDA and MARTEDA) and that also exploit indicator-based selec-
tion have outperformed the rest of the methods. This is very important, as it
transcends the particular results of a given algorithm but instead casts some
light on what should be the proper trend of development in this field.

Finally, the above experiments lead us to hypothesize that thanks to the treat-
ment of the outliers in the model-building data-set, the MARTEDA approach
manages to overcome the difficulties that hampers the rest of the methods. An-
other important result is that MARTEDA was able to yield good results across a
varied set of problems without tuning its parameters in every case. This implies
that MARTEDA has a certain degree of robustness regarding its parameters.
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6 Final Remarks

In this paper we have explored the model-building issue of MOEDAs and the
requirements it imposes on its supporting learning paradigm. We put forward
adaptive resonance theory as a alternative learning paradigm. Based on it, we in-
troduced a novel algorithm called multi-objective ART-based EDA (MARTEDA)
that uses a Gaussian ART neural network for model-building and the hyper
volume-based selection described for the HypE algorithm. We showed that by us-
ing this novel model-building approach and an indicator-based population rank-
ing the algorithm is able to outperform similar MOEDAs and MOEAs.

Still, the main conclusion of this work is that we provide strong evidences
that further research must be dedicated to the model-building issue in order to
make current MOEDAs capable of dealing with complex multi-objective prob-
lems with many objectives. In spite of the fact that obviously further studies are
necessary, these extensive experiments have provided solid ground for the use of
MARTEDA in a real-world application context.
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