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Abstract. In order to achieve a substantial improvement of MOEDAs
regarding MOEAs it is necessary to adapt their model–building algo-
rithms. Most current model–building schemes used so far off–the–shelf
machine learning methods. These methods are mostly error–based learn-
ing algorithms. However, the model–building problem has specific re-
quirements that those methods do not meet and even avoid.

In this work we dissect this issue and propose a set of algorithms
that can be used to bridge the gap of MOEDA application. A set of
experiments are carried out in order to sustain our assertions.

1 Introduction

The multi–objective optimization problem (MOP) can be expressed as the prob-
lem in which a set of objective functions should be jointly optimized. In this class
of problems the optimizer must find one or more feasible solutions that jointly
minimizes (or maximizes) the objective functions. Therefore, the solution to this
type of problem is a set of trade–off points.

Evolutionary algorithms (EAs) have proven themselves as a valid and com-
petent approach from theoretical and practical points of view. These multi–
objective evolutionary algorithms (MOEAs) [4] have succeeded when dealing
with these problems because of their theoretical properties and real–world ap-
plication performance.

There is a class of MOPs that are particularly appealing because of their inher-
ent complexity: the so–called many–objective problems [18]. These are problems
with a relatively large number of objectives.

The results of works that have ventured into these problems called for the
search of other approaches that could handle many–objective problems with
a reasonable performance. Among such approaches we can find estimation of
distribution algorithms (EDAs) [13]. However, although multi–objective EDAs
(MOEDAs) have yielded some encouraging results, their introduction has not
lived up to their a priori expectations. This fact can be attributed to different
causes, some of them, although already existing in single–objective EDAs, are
better exposed in MOEDAs, while others are derived from the elements taken
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from MOEAs. An analysis on this issue led us to distinguish a number of incon-
veniences, in particular, the drawbacks derived from the incorrect treatment of
population outliers; the loss of population diversity, and; the dedication of an
excessive computational effort to finding an optimal population model.

There have been some works that have dealt with those three issues, in par-
ticular with the loss of diversity. Nevertheless, the community has failed to ac-
knowledge that, perhaps, the underlying cause for those problems can be traced
back to the algorithms used for model–building in EDAs.

In this work we examine the model–building issue of EDAs in order to show
that some its characteristics, which have been ignored so far, render most current
approaches inviable. We hypothesize that the problems of current EDAs can be
traced back to the error–based machine learning algorithms used for mode–
building and, that new classes of algorithms must be applied to properly deal
with the problem. With that idea in mind we carried out a set of experiments
that compare some algorithms typically used for model–building with other that,
according to our hypothesis should perform well in this class of problems.

Reaching a rigorous understanding of the state–of–the–art in MOEDAs’
model–building is hard since each model builder is embedded in a different
MOEDA framework. Therefore, in order to comprehend the advantages and
shortcomings of each algorithm, they should be tested under similar conditions
and isolated from the MOEDA it is part of. That is why, in this work we as-
sess some of the main machine learning algorithms currently used or suitable
for model–building in a controlled environment and under identical conditions.
This framework guarantees the direct comparison of the algorithms and allows
for valid tests.

The rest of this contribution proceeds as we introduce the theoretical aspects
that support our discussions. We then deal with the model–building problem,
its properties and how it has been approached by the main MOEDAs. Subse-
quently, a set of experiments, using community–accepted, complex and scalable
test problems with a progressive increase in the number of objective functions.
Finally some concluding remarks and lines for future work are put forward.

2 Theoretical Background

The concept of multi–objective optimization refers to the process of finding one
or more feasible solutions of a problem that corresponds to the extreme values
(either maximum or minimum) of two or more functions subject to a set of
restrictions.

More formally, a multi–objective optimization problem (MOP) can be defined
as:

Definition 1 (Multi–objective Optimization Problem)

minimize F (x) = 〈f1(x), . . . , fM (x)〉 ,
with x ∈ D ,

}
(1)
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where D is known as the decision space. The functions f1(x), . . . , fM (x) are the
objective functions. The image set, O, product of the projection of D through
f1(x), . . . , fM (x) is called objective space (F : D → O).

In this class of problems the optimizer must find one or more feasible solutions
that jointly minimizes (or maximizes) the objective functions. Therefore, the
solution to this type of problem is a set of trade–off points. The adequacy of
a solution can be expressed in terms of the Pareto dominance relation. The
solution of (1) is the Pareto–optimal set, D∗; which is the subset of D that
contains elements that are not dominated by other elements of D. Its image in
objective space is called Pareto–optimal front, O∗.

MOPs have been addressed with a broad range of approaches. Among them,
evolutionary algorithms (EAs) have proven themselves as a valid and com-
petent approach from theoretical and practical points of view. These multi–
objective evolutionary algorithms (MOEAs) have succeeded when dealing with
these problems because of their theoretical properties and real–world application
performance.

2.1 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) have been claimed as a paradigm
shift in the field of evolutionary computation. Like EAs, EDAs are population
based optimization algorithms. However in EDAs the step where the evolution-
ary operators are applied to the population is substituted by construction of a
statistical model of the most promising subset of the population. This model
is then sampled to produce new individuals that are merged with the original
population following a given substitution policy. Because of this model–building
feature EDAs have also been called probabilistic model–building genetic algo-
rithms (PMBGAs).

The introduction of machine learning techniques implies that these new al-
gorithms lose the biological plausibility of its predecessors. In spite of this, they
gain the capacity of scalably solve many challenging problems, significantly out-
performing standard EAs and other optimization techniques.

Probably because of their success in single–objective optimization, EDAs have
been extended to the multi–objective optimization problem domain, leading to
multi–objective EDAs (MOEDAs) [17].

3 Error–Based Learning in Model–Building Algorithms

One topic that remains not properly studied inside the MOEDA scope is the
scalability of the algorithms. The most critical issue is the dimension of the
objective space. It has been experimentally shown to have an exponential rela-
tion with the optimal size of the population. This fact implies that, with the
increase of the number of objective functions an optimization algorithm needs
an exponential amount of resources made available to it.
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Notwithstanding the diverse efforts dedicated to providing usable model–
building methods for EDAs the nature of the problem itself has received rela-
tively low attention. In spite of the progressively improving succession of results of
EDAs, one question arises when looking for ways to further improve them. Would
current statistically sound and robust approaches be valid for the problem being
addressed? or, in other terms, does the model–building problem have particular
demands that require custom–made algorithms to meet them? Machine learning
and statistical algorithms, although suitable for their original purpose, might not
be that effective in the particular case of model–building.

Generally, those algorithms are off–the-shelf machine learning methods that
were originally intended for other classes of problems. On the other hand, the
model–building problem has particular requirements that those methods do not
meet and even have conflicts with. Furthermore, the consequences of this misun-
derstanding would be more dramatic when scaling up in the amount of objectives
since the situation is aggravated by the implications of the curse of dimensionality.

An analysis of the results yielded by current multi–objective EDAs and their
scalability with regard to the number of objective leads to the identification
of certain issues that might be hampering the obtention of substantially better
results with regard to other evolutionary approaches. Among those issues we
can distinguish the following: incorrect treatment of data outliers, and; loss of
population diversity.

This behavior, in our opinion, can be attributed the error–based learning ap-
proaches that take place in the underachieving MOEDAs. Error–based learning
is rather common in most machine learning algorithms. It implies that model
topology and parameters are tuned in order to minimize a global error measured
across the learning data set. This type of learning isolated data is not taken into
account because of their little contribution to the overall error and therefore they
do not take an active part of learning process. In the context of many problems
this behavior makes sense, as isolated data can be interpreted as spurious, noisy
or invalid data.

That is not the case of model–building. In model–building all data is equally
important and, furthermore, isolated data might have a bigger significance as
they represent unexplored zones of the current optimal search space. This as-
sessment is supported by the fact that most the approaches that had a better
performance do not follow the error–based scheme. That is why, perhaps another
class of learning, like instance–based learning [11] or match–based learning [7]
would yield a sizable advantage. Therefore, it can be presumed that, in order to
obtain a substantial improvement on this matter, algorithms that conform those
types of learning should be applied.

3.1 Randomized Leader Algorithm

The randomized leader algorithm [8] is a fast and simple partitioning instance–
based algorithm that was first used in the EDA context as part of the IDEA
framework [3]. Its use is particularly indicated in situations when the overhead
introduced by the clustering algorithm must remain as low as possible. Besides
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its small computational footprint, this algorithm has the additional advantage
of not having to explicitly specify in advance how many partitions should be
discovered. On the other hand, the drawbacks of the leader algorithm are that
it is very sensitive to the ordering of the samples and that the values of its
thresholds must be guessed a priori and are problem dependent.

The algorithm goes over the data set exactly once. For each sample drawn
it finds the cluster whose leader is the closest, given threshold the ρLd. If such
partition can not be found, a new partition is created containing only this single
sample. Once the amount of samples in a cluster have exceeded the amount ρLc,
the leader is substituted by the mean of the cluster members. The mean of a
partition changes whenever a sample is added to that partition. After obtaining
the clustering a Gaussian mixture is constructed relying on it, as described for
the näıve MIDEA algorithm [3]. This allows the sampling of the model in order
to produce new elements.

3.2 Model–Building Growing Neural Gas

The model–building growing neural gas network (MB–GNG) [15] has been pro-
posed as a form of dealing with the model–building issue. It has been devised with
to deal with the model–building issue. The multi–objective neural EDA (MON-
EDA) [14], that incorporates MB–GNG, has yielded relevant results [14, 16].

MB–GNG is a modified growing neural gas (GNG) network [6]. GNG networks
have been chosen previously presented as good candidates for dealing with the
model–building issue because of their known sensibility to outliers [19].

The network grows to adapt itself automatically to the complexity of the
dataset being modelled. It has a fast convergence to low distortion errors and in-
corporates a cluster repulsion term to the original adaptation rule that promotes
search and diversity.

3.3 Gaussian Adaptive Resonance Theory Network

Adaptive Resonance Theory (ART) neural networks are capable of fast, sta-
ble, on-line, unsupervised or supervised, incremental learning, classification, and
prediction following a match–based learning scheme [7]. During training, ART
networks adjust previously–learned categories in response to familiar inputs, and
creates new categories dynamically in response to inputs different enough from
those previously seen. A vigilance test allows to regulate the maximum tolera-
ble difference between any two input patterns in a same category. It has been
pointed out that ART networks are not suitable for some classes of classical
machine–learning applications [20], however, what is an inconvenience in that
area is a feature in our case.

There are many variations of ART networks. Among them, the Gaussian ART
[21] is most suitable for model–building since it capable of handling continuous
data. The result of applying Gaussian ART is a set of nodes each representing
a local Gaussian density. These nodes can be combined as a Gaussian mixture
that can be used to synthesize new individuals.
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4 Experimental Analysis

To identify the model–building issue and its relation to error–based learning it
is helpful to devise a comparative experiment that casts light on the different
performance of a selected set of model–building algorithms subject to the same
conditions when dealing with a group of problems of scaling complexity. In par-
ticular, we deal with two of the problems of the Walking Fish Group (WFG)
continuous and scalable problem set [9], in particular the WFG4 and WFG9.

WFG4 is a separable and strongly multi–modal problem while WFG9 is non–
separable, multi–modal and have deceptive local–optima. Both problems have a
concave Pareto–optimal front that lies in the first orthant of a unit hypersphere
located at the coordinates origin. This feature make them suitable for high–
dimensional experiments where assessing the progress of algorithms is expensive
for other shapes of fronts.

A MOEDA framework is shared by the model–building algorithms involved
in the tests in order to ensure the comparison and reproducibility of the results.

The model–building algorithms involved in the tests were: (i) expectation
maximization algorithm, as described for MIDEA [3]; (ii) Bayesian networks, as
used in MrBOA [1]; (iii) (1 + λ)–CMA–ES as described in [10]; (iv) randomized
leader algorithm, (v) MB–GNG, and; (vi) Gaussian ART.

4.1 Shared EDA Framework

To test MB–GNG is it essential to insert it in an EDA framework. This frame-
work should be simple enough to be easily understandable but should also have
a sufficient problem solving capacity. It should be scalable and preserve the di-
versity of the population.

Our EDA employs the fitness assignment used by the NSGA–II algorithm
[5] and constructs the population model by applying MB–GNG. The NSGA–II
fitness assignment was chosen because of its proven effectiveness and its relative
low computational cost.

It maintains a population of individuals, Pt, where t is the current iteration.
It starts from a random initial population P0 of z individuals. It then proceeds
to sort the individuals using the NSGA–II fitness assignment function. A set P̂t

containing the best �α |Pt|� elements is extracted from the sorted version of Pt,
∣∣∣P̂t

∣∣∣ = α |Pt| . (2)

The population model is then built using P̂t. The model is then used to create
�ω |Pt|� new individuals is synthesized. Each one of these individuals substitute
a randomly selected ones from the section of the population not used for model–
building Pt \ P̂t. The set obtained is then united with best elements, P̂t, to form
the population of the next iteration Pt.

Iterations are repeated until a given stopping criterion is met. The output of
the algorithm is the set of non–dominated individuals of Pt.
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4.2 Results

The WFG4 and WFG6 problems were configured with 3, 5 and 7 objective func-
tions. The dimension of the decision space was set to 10. Tests were carried
out under the PISA experimental framework [2]. The binary additive epsilon
indicator [12] was used to assess the performance. Although many other suit-
able indicators exist we have limited to this one because its low computational
footprint and the space constraints imposed to this paper.

Figure 1 shows the box plots obtained after 30 runs of each algorithm for
solving the different the problem/dimension configuration.

In the three dimensional problems our approach performed similarly to the
rest of the algorithms. This was an expected outcome. However, in the case of

(a) WFG4; M = 3. (b) WFG9; M = 3.

(c) WFG4; M = 5. (d) WFG9; M = 5.

(e) WFG4; M = 7. (f) WFG9; M = 7.

Fig. 1. Boxplots of the binary additive epsilon indicator values obtained when dealing
with the WFG4 and WFG9 problems with EDAs using expectation–maximization
(EM), Bayesian networks (Bays), covariance matrix adaptation ES (CMA), randomized
leader algorithm (RLdr), modified growing neural gas networks (MGNG) and Gaussian
adaptive resonance theory neural networks (GART) for model–building. The result of
each algorithm is measured against a sampled version of the Pareto–optimal front.
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(a) WFG4; M–B CPU ops. (b) WFG4; Obj. func. evals.

(c) WFG9; M–B CPU ops. (d) WFG9; Obj. func. evals.

Fig. 2. Analysis of the computational cost of dealing with WFG4 and WFG9. The
number of CPU ops dedicated for model–building and the number of objective functions
evaluations are measured in each case (see Fig. 1 for algorithms’ acronyms).

five and seven the three non–error–based learning algorithms outperform the
rest of the optimizers applied.

One can hypothesize that, in this problem, the model–building algorithm
induces the exploration of the search space and therefore it manages to discover
as much as possible of the Pareto–optimal front. It is most interesting that our
proposal exhibits rather small standard deviations. This means that it performed
consistently well across the different runs. These results must be investigated
further to understand if the low dispersion of the error indicators can only be
obtained in the problems solved or if can be extrapolated to other problems.

These results are further confirmed by inspecting figure 2. Here the advantages
of using error–based learning in approximation quality terms are supplemented
by the low computational costs of those algorithms. It can be perceived that,
while all algorithms used similar numbers of objective function evaluations, the
three non–error-based ones required far less computational resources to build
the population models.

It is important to underline the performance of Gaussian ART that had never
been used before in this application context. Gaussian ART outperformed the
rest of the approaches in 5 and 7 objectives in WFG4 and WFG6 in terms of
solution quality and computational cost.
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5 Conclusions

In this paper we have discussed an important issue in current evolutionary multi–
objective optimization: how to build algorithms that have better scalability with
regard to the number of objectives. In particular, we have focused on one promis-
ing set of approaches, the estimation of distribution algorithms.

We have argued that most of the current approaches do not take into account
the particularities of the model–building problem they are addressing and, be-
cause of that they fail to yield results of substantial quality.

In any case, it seems obvious after the previous discussions and experiments
that the model–building problem deserves a different approach that takes into
account the particularities of the problem. Perhaps the ultimate solution to this
issue is to create custom–made algorithms that meet the specific requirement of
this problem.
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via Probabilistic Modeling: From Algorithms to Applications. Studies in Compu-
tational Intelligence, pp. 223–248. Springer, Heidelberg (2006)

18. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflict-
ing objectives. IEEE Transactions on Evolutionary Computation 11(6), 770–784
(2007), http://dx.doi.org/10.1109/TEVC.2007.910138

19. Qin, A.K., Suganthan, P.N.: Robust growing neural gas algorithm with ap-
plication in cluster analysis. Neural Networks 17(8–9), 1135–1148 (2004),
http://dx.doi.org/10.1016/j.neunet.2004.06.013

20. Sarle, W.S.: Why statisticians should not FART. Tech. rep., SAS Institute, Cary,
NC (1995)

21. Williamson, J.R.: Gaussian ARTMAP: A neural network for fast incremental learn-
ing of noisy multidimensional maps. Neural Networks 9, 881–897 (1996)

10




