
DEPARTMENT OF SYSTEMS ENGINEERING AND AUTOMATION

Reconstruction and Recognition of
Confusable Models using

Three-Dimensional Perception

Jorge Garcı́a Bueno

PhD Thesis

Leganés, 2013

PhD Thesis

RECONSTRUCTION AND RECOGNITION OF CONFUSABLE

MODELS USING THREE-DIMENSIONAL PERCEPTION

CANDIDATE

Jorge Garcı́a Bueno

ADVISER

Univ.-Prof. Luis Moreno Lorente

REVIEW COMMITTEE

? Chair (Presidente)

? Vocal (Vocal)

? Secretary (Secretario)

Substitute (Suplente)

Grade(Calificación)

Doctorado en Ingenierı́a Eléctrica, Electrónica y Automática

Leganés, December 2013

This thesis was funded by the Education Ministry of Spain.
FPU grant AP2009-3445

Robotics Lab – Universidad Carlos III de Madrid

Abstract

Perception is one of the key topics in robotics research. It is about the processing
of external sensor data and its interpretation. The necessity of fully autonomous
robots makes it crucial to help them to perform tasks more reliably, flexibly, and
efficiently. As these platforms obtain more refined manipulation capabilities, they
also require expressive and comprehensive environment models: for manipula-
tion and affordance purposes, their models have to involve each one of the objects
present in the world, coincidentally with their location, pose, shape and other as-
pects.

The aim of this dissertation is to provide a solution to several of these chal-
lenges that arise when meeting the object grasping problem, with the aim of im-
proving the autonomy of the mobile manipulator robot MANFRED-2. By the anal-
ysis and interpretation of 3D perception, this thesis covers in the first place the
localization of supporting planes in the scenario. As the environment will con-
tain many other things apart from the planar surface, the problem within cluttered
scenarios has been solved by means of Differential Evolution, which is a particle-
based evolutionary algorithm that evolves in time to the solution that yields the
cost function lowest value.

Since the final purpose of this thesis is to provide with valuable information for
grasping applications, a complete model reconstructor has been developed. The
proposed method holds many features such as robustness against abrupt rotations,
multi-dimensional optimization, feature extensibility, compatible with other scan
matching techniques, management of uncertain information and an initialization
process to reduce convergence timings. It has been designed using a evolutionary-
based scan matching optimizer that takes into account surface features of the ob-
ject, global form and also texture and color information.

The last tackled challenge regards the recognition problem. In order to pro-
cure with worthy information about the environment to the robot, a meta classifier

i

that discerns efficiently the observed objects has been implemented. It is capable
of distinguishing between confusable objects, such as mugs or dishes with similar
shapes but different size or color.

The contributions presented in this thesis have been fully implemented and
empirically evaluated in the platform. A continuous grasping pipeline covering
from perception to grasp planning including visual object recognition for confus-
able objects has been developed. For that purpose, an indoor environment with
several objects on a table is presented in the nearby of the robot. Items are recog-
nized from a database and, if one is chosen, the robot will calculate how to grasp
it taking into account the kinematic restrictions associated to the anthropomorphic
hand and the 3D model for this particular object.

ii

Resumen

La percepción es uno de los temas más relevantes en el mundo de la investi-
gación en robótica. Su objetivo es procesar e interpretar los datos recibidos por
un sensor externo. La gran necesidad de desarrollar robots autónomos hace im-
prescindible proporcionar soluciones que les permita realizar tareas más precisas,
flexibles y eficientes. Dado que estas plataformas cada dı́a adquieren mejores ca-
pacidades para manipular objetos, también necesitarán modelos expresivos y com-
prensivos: para realizar tareas de manipulación y prensión, sus modelos han de
tener en cuenta cada uno de los objetos presentes en su entorno, junto con su lo-
calización, orientación, forma y otros aspectos.

El objeto de la presente tesis doctoral es proponer soluciones a varios de los
retos que surgen al enfrentarse al problema del agarre, con el propósito final de
aumentar la capacidad de autonomı́a del robot manipulador MANFRED-2. Me-
diante el análisis e interpretación de la percepción tridimensional, esta tesis cubre
en primer lugar la localización de planos de soporte en sus alrededores. Dado que
el entorno contendrá muchos otros elementos a parte de la superficie de apoyo bus-
cada, el problema en entornos abarrotados ha sido solucionado mediante Evolución
Diferencial, que es un algoritmo evolutivo basado en partı́culas que evoluciona
temporalmente a la solución que contempla el menor resultado en la función de
coste.

Puesto que el propósito final de este trabajo de investigación es proveer de in-
formación valiosa a las aplicaciones de prensión, se ha desarrollado un reconstruc-
tor de modelos completos. El método propuesto posee diferentes caracterı́sticas
como robustez a giros abruptos, optimización multidimensional, extensión a otras
caracterı́sticas, compatibilidad con otras técnicas de reconstrucción, manejo de in-
certidumbres y un proceso de inicialización para reducir el tiempo de convergen-
cia. Ha sido diseñado usando un registro optimizado mediante técnicas evoluti-
vas que tienen en cuenta las particularidades de la superficie del objeto, su forma
global y la información relativa a la textura.

iii

El último problema abordado está relacionado con el reconocimiento de ob-
jetos. Con la intención de abastecer al robot con la mayor información posible
sobre el entorno, se ha implementado un meta clasificador que diferencia de man-
era eficaz los objetos observados. Ha sido capacitado para distinguir objetos con-
fundibles como tazas o platos con formas similares pero con diferentes colores o
tamaños.

Las contribuciones presentes en esta tesis han sido completamente implemen-
tadas y probadas de manera empı́rica en la plataforma. Se ha desarrollado un sis-
tema que cubre el problema de agarre desde la percepción al cálculo de la trayecto-
ria incluyendo el sistema de reconocimiento de objetos confundibles. Para ello, se
ha presentado una mesa con objetos en un entorno cerrado cercano al robot. Los el-
ementos son comparados con una base de datos y si se desea agarrar uno de ellos,
el robot estimará como cogerlo teniendo en cuenta las restricciones cinemáticas
asociadas a una mano antropomórfica y el modelo tridimensional generado del
objeto en cuestión.

iv

A mis padres Rosalı́a y Jorge,
a mi hermano Luis,

a mi abuelo Luis.

v

Amat Victoria Curam
La victoria favorece a los que se preparan

vii

Agradecimientos

No ha sido fácil. Nadie dijo que lo fuera, y sin embargo llegados a este punto no
puedo sino agradecer el esfuerzo a toda la gente que me ha impulsado este tiempo.

Luis Moreno, gran profesor y mejor persona. Has conseguido formarme como
pocos, abrirme caminos más allá de los libros y sobretodo apoyarme en cada una
de mis decisiones. No tengo palabras para agradecerte este apoyo incondicional.

Mi familia, mis padres, mi hermano. Vuestro interés, insistencia, paciencia y
sabidurı́a me han permitido llegar hasta aquı́. Se que no ha sido fácil tampoco para
vosotros, han sido muchas cenas escuchando mis batallas. Os quiero muchı́simo.

A Alex, mi socio, compañero y ante todo un amigo único. Larga es la lista de
batallas y experiencias que hemos vivido juntos los últimos años que no han hecho
más que reforzar una amistad. Solamente puedo decirte una cosa: eres un genio.
Muchı́simas gracias a mis compañeros del Robotics Lab: Nico Burrus, Fer Monar,
Concha, Santiago, Dolores y por supuesto a Miguel Fierro. La lista de historias
contigo es interminable. Gracias a Vı́ctor , David, Fran, Antonio y Alejandro por
vuestras aportaciones en mis artı́culos.

Sin embargo, hay mucha más gente detrás que también me han aportado su
granito de arena. La panda de toda la vida: Santi, Pablo, Kiko, Elena, Leyre, Raúl,
Miguel, Javivi, Clemen, Mota, Fuentes, Marco. Y los amigos de la Universidad, en
especial cuatro; Azu, Nacho, Chema y Diego Fogeda. A vosotros os debo tanto o
más que a los demás por el cariño y el interés que me habéis demostrado dı́a a dı́a.

Finalmente, y no por ello menos importante, quiero agradecer el apoyo a Isabel.
Con tu positivismo y alegrı́a consigues cada dı́a hacerme un poquito más feliz :)

¡gracias a todos!

ix

x

Abbreviations

2D Two dimensional
3D Three dimensional
6D Six dimensional
CS Consensus Set
CWM Continuous Wave Modulation
DE Differential Evolution
DOF Degrees of Freedom
EA Evolutionary Algorithms
ECE Euclidean Cluster Extraction
FLANN Fast Approx. Nearest Neighbors w. Automatic Algorithm Conf.
FOV Field Of Vision
GA Genetic Algorithm
ICP Iterative Closest Points
KNN k Nearest Neighbours
LSM Least Squares Method
MSS Minimal Sample Set
NARVP Normal Aligned Range Value Patch
NN Nearest Neighbours
R&D Research and Development
SIFT Scale Invariant Feature Transform
SLAM Simultaneous Localization and Mapping
SV Stereo Vision
SURF Speeded Up Robust Feature
ToF Time of Flight
TSDF Transform Signed Distance Function
VFH Viewpoint Feature Histograms

xi

xii

Contents

Abstract i

Resumen iii

Agradecimientos ix

Abbreviations xi

1 Introduction 2

I Clustering point clouds 7

2 Hardware and sensing devices 9
2.1 Stereo Vision . 10
2.2 Time-Of-Flight Technology . 11

2.2.1 Intensity Modulation Principle 14
2.2.2 3D Related Problems . 15

2.3 RGB-D Systems . 20
2.4 Light Coding . 23

3 Experimental Platform 31
3.1 Mechanical and Electric Structure . 35

3.1.1 Physical Description . 36
3.1.2 Robotic Arm LWR-UC3M-1 . 37
3.1.3 Anthropomorphic Robot Hand: Gifu Hand III 39

3.2 Sensory Interfaces . 40
3.2.1 Force Sensor . 40

xiii

3.2.2 Laser Telemetry Sensors . 41
3.3 Control System . 42

4 Detecting supporting planes 45
4.1 Estimating 2D Lines . 49

4.1.1 Outliers, Bias and Breakdown Point 50
4.1.2 Minimal Sample Set . 51
4.1.3 Random Sample and Consensus 51

4.2 Evolutionary Plane Fitting . 55
4.2.1 Stabilization of Parameters . 57
4.2.2 Estimator Robustness . 58
4.2.3 Time Analysis . 60

4.3 Geometric and Outlier Filtering . 61
4.3.1 Selecting the Most Dense Plane 62

5 Clustering point clouds 65
5.1 k-means distance clustering . 67
5.2 Estimating Surface Normals and Curvature 69
5.3 k-dimensional trees . 71

5.3.1 kNN searchs . 73
5.3.2 Octrees . 74

5.4 Clustering using Normals and Region Growing 75
5.5 Euclidean Cluster Extraction . 75

II Reconstructing new models 81

6 Correspondence between point clouds 83
6.1 Reconstruction based on Dense Maps 86

6.1.1 Visual Hull Reconstruction . 86
6.1.2 Space Carving Reconstruction 89
6.1.3 Surface Integral Minimization Reconstruction 91

6.2 Correspondence between Point Clouds 92
6.2.1 Iterative Closest Point . 95
6.2.2 Kinect Fusion a.k.a. Kinfu . 98

7 Evolutionary model reconstructor 103
7.1 Reconstructor Architecture . 109
7.2 Curvature Extension and Hole Filling 110

7.2.1 Synthetic Slice Initialization . 113
7.2.2 Curvature Estimation . 115

xiv

7.2.3 Hole Filling using Side by Side Interpolation 116
7.3 Yaw Initialization . 117
7.4 Evolutionary Optimizator in 3D Data Registration 120

7.4.1 Fitness Function . 125
7.4.2 Filtering the Point Cloud . 136

7.5 Experimental Results . 137
7.5.1 Yaw Initialization Response . 138
7.5.2 Hole Filling Enrichment . 140
7.5.3 ICP versus DE-ICP . 141

III Recognizing models 145

8 3D Features 147
8.1 Object Recognition . 149
8.2 Normal Aligned Range Value Patches 151

8.2.1 Normal Aligned Radial Features 152
8.3 3D Scale Invariant Feature Transform 153

8.3.1 Maxima and Minima Detection in the Space-scale 155
8.3.2 Keypoints Localization . 158
8.3.3 Orientation Assignment . 160
8.3.4 Keypoints Descriptors . 160
8.3.5 3D Approach . 161

8.4 Point Feature Histogram . 161
8.5 Fast Point Feature Histogram . 165
8.6 Viewpoint Feature Histogram . 165

9 3D Object meta-classifier 167
9.1 Model Matching Methods . 171

9.1.1 Feature Vectors . 171
9.1.2 Non-feature Vector Matching Techniques 173

9.2 Architecture of the Classifier . 174
9.3 Distance Metric . 177
9.4 Surface Shape Filter . 178
9.5 Geometrical and Color Filtering . 180

9.5.1 Bounding Box Extraction . 181
9.5.2 Color Filter . 182

9.6 Experimental Results . 183
9.6.1 Distance Metric Performance 185
9.6.2 Depth Reliance . 186
9.6.3 Confusion Matrices . 186

xv

9.6.4 Updating the Database . 191

IV Application 195

10 Affordance experiment 197
10.1 Proposed Architecture . 200
10.2 Fast Marching and Path Planning . 201

10.2.1 Fast Marching Method . 201
10.2.2 Fast Marching Square Method 202
10.2.3 3-Dimensional Fast Marching Square 204
10.2.4 Geometry of the Hand as a Robot Formation 204
10.2.5 Robot Formation Control with Fast Marching Square 205

10.3 Experimental Results . 207
10.3.1 Finger Simulation . 213

11 Conclusions and future developments 217
11.1 Supporting Plane Fitting . 219
11.2 Evolutionary Model Reconstructor . 220
11.3 3D Object Meta-classifier . 220
11.4 Future Developments . 222

A Differential Evolution 223
A.1 Optimization for Monomodal Functions 225

A.1.1 Derivative-Based Optimization 225
A.1.2 Brute Force Search . 228
A.1.3 Random Walk . 229

A.2 Optimization for Multimodal Functions 230
A.3 Differential Evolution . 232

A.3.1 Population Composition . 232
A.3.2 Initialization . 234
A.3.3 Mutation . 234
A.3.4 Crossover . 235
A.3.5 Selection . 235
A.3.6 Convergence . 235

B Jensen-Shannon divergence 237

Bibliography 243

xvi

List of Tables

2.1 Intrinsic parameters of both cameras for the first approach 22
2.2 Extrinsic parameters. Relation between both cameras in 3D world

coordinates . 22
2.3 Benchmark for the Asus Xtion Pro Live camera 28
2.4 Highlights and drawbacks for the three 3D depth computation meth-

ods here proposed. 29

3.1 Weights of the main devices installed in the platform. 37
3.2 Comparison between the actual robotic arm LWR-UC3M-1 and the

new approach LWR-UC3M-2. 38

4.1 Terminology and preliminaries for RANSAC algorithm 52
4.2 Experimental values for the plane extraction 54
4.3 Plane parameters for both estimators at different observations of the

experiment: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110. Most param-
eters varies after the third digit. 61

7.1 Population definition formulation for the fitness function 122
7.2 Average of the final transformation and MSE for different initializa-

tions at generation 150 . 139
7.3 Results of error measurements for different objects with a curvature

estimation length of 10 points/mm 140
7.4 Results of error measurements for different objects with a curvature

estimation length of 5 points/mm . 141
7.5 Results of error measurements for different objects with a curvature

estimation length of 3 points/mm . 141
7.6 Comparison between the results given by classic ICP scan matching

and the evolutionary reconstructor in all its variants. In blue the best
result configuration. 141

xvii

9.1 Distance metrics used for this study. Most of them are Minkowski
family functions and divergence functions 178

9.2 Bounding box parameters variance. A rigid cube of 0.10 × 0.10 ×
0.10m3 is measured 100 times in order to determine the stability of
the observed dimensions. 181

9.3 Recognition rates for different distance metrics at short distances
(0.4 - 0.5 m) and large distances (0.9 - 1.0 m). The mixture of Kullback-
Leibler divergence for VFH descriptor and Jensen Shannon diver-
gence for color histogram presents the most accurate results for VFH
comparisons . 185

9.4 Recognition rates at several distances (0.40, 0.60 and 0.80 m.) There
exist a strong relationship between the classifier performance rate
and the depth at which the object is positioned. 187

9.5 Confusion matrix for VFH filter. Note the high degree of confusion
among scaled versions of the same objects. 188

9.6 Confusion matrix for VFH+Geometry filter. Objects with similar ge-
ometry but different textures are still confused. 188

9.7 Confusion matrix for VFH+Geometry+Color filter. Confusion ma-
trix is highly diagonal, stating the degree of success for the filter. . . . 189

9.8 Classifier color reference. Relation between objects and color for the
classifier. 189

10.1 Time intervals for the 5 fingers path planning at different voxel reso-
lutions. As long as resolution is increased, the elapsed time to com-
pute the fine path planning increases exponentially. 212

10.2 Time intervals for each part of the pipeline 213

xviii

List of Figures

1.1 Outline of the thesis. General view of the thesis, conformation of the
four parts and the chapters contained in each section. 6

2.1 Stereo Vision. Perfect model of a stereo-pair for depth acquisition [6] 11

2.2 Comercial ToF cameras. (a-c) SR3000 and SR4000 from Mesa Imaging
AG c©, (d) O3D100 from IFM Electronic c©, (e) CanestaVision R©, (f)
PMD[Vision] c©CamCube 2.0, (g) PMD[Vision] c©CamBoard nano. . 12

2.3 ToF technology explanation. Schema of the connections between the
scene and the depth map. A nano-temporizer is activated when the
led emitter (in red) pushes an infrared signal. Blue led receives the
returned signal and stops the timer. The time-delay represents the
distance to the object. 13

2.4 ToF outputs. Original RGB scenario. Depth map, intensity image and
amplitude map are the three sources of information given by a ToF
sensor (PMD Camera) . 14

2.5 Functional block. Image processing chain comparison between SV
and ToF systems by Hussmann et al. [14]. 16

2.6 Correspondence problem. Real example comparing SV and ToF tech-
nologies for a small jug in the laboratory. 18

2.7 Temperature effect on ToF. Relation between Integration-Time and Mea-
sured Distance with respect to different external temperatures for a
fixed object (extracted from [19]). 19

2.8 RGB-D custom system. Placement of the ToF and RGB cameras to
generate RGB-D maps using Zhang calibration. 20

xix

2.9 Correction of depth measurements. Each red circle corresponds to an
error computed by comparing a ground truth depth value with its
ToF estimate. On the left side, values are plotted before correction
and show the fitted correction polynomial (green). This polynomial
is then used to apply a depth offset, and corrected values are plotted
on the right side. 21

2.10 Distortion correction. Left image shows the original image from the
3D camera and central image shows the undistorted correction. Last
image shows the chessboard corner detection from OpenCV library. 23

2.11 Stereo calibration. Calibration of both cameras and its representation
using the Matlab Toolbox provided by California Institute of Tech-
nology. 24

2.12 Light coding. A projected circle then becomes an ellipse whose orien-
tation depends on depth (Freedman et al. , US Patent 2010/0290698).

. 25
2.13 Light coding. IR pattern patented by PrimeSense for Kinect 3D sens-

ing (Shpunt et al., US 2008/0106746). 26
2.14 Light Coding sensor Carmine PS1080. Main structure of PrimeSense

SoC’s Carmine (PS1080), the processor for Kinect sensing devices. . 27

3.1 Experimental platform. Photo of MANFRED-2 and some of the sub-
systems integrated in the platform. The modular design separates
successfully the hardware level (mechanical and electric interfaces)
from the software level (communication interfaces between applica-
tions). 34

3.2 Mechanical and electric details of the experimental platform. MANFRED-
2 is composed by a set of 24V batteries, two driven wheels, a control
board with power configuration and a set of switches to control the
sensors. 36

3.3 Robotic arms LWR-UC3M-1 and LWR-UC3M-2 . Left image shows the
new version of the arm that will be provided in the near future to
MANFRED-2. Right image shows the actual version LWR-UC3M-1. . 39

3.4 Structure of Gifu Hand III. Representation of the robotics hand from
different views and mobility space for each finger. In red the space
for the thumb, in green for the rest. 40

3.5 Laser Telemetry Sensor. Result of the SICK 3000 range laser sensor
scanning in the laboratory on the left; a detail of the pitch-movable
stand on the right. 42

3.6 PMAC2-PCI. The control unit for MANFRED-2 manipulator robot is
an eight axis controller card PMAC2-PCI. 43

xx

4.1 MANFRED-2 Perception example (a) Texture of the 3D scenario per-
ceived by the robot. (b) Depth representation of the 3D scenario in
gray scale. The darker the region, the closer to the sensor. 47

4.2 Estimating 2D Lines. Line fitting for 2D data. 49
4.3 RANSAC theoretical aspects. Representation of the model spaceM in

dark magenta. Light magenta surfaces represent the boundaries for
the inliers. All datum between those surfaces are considered part of
S. White dots represent the inliers and their arrows measure their
relative distance to the model space. 53

4.4 Supporting plane estimation. (a) Global-view of the scenario with the
table colored in blue. Notice the amount of noise provided by the
background items; (b) Top-view of the scenario. 3D shadows are
projected in the supporting plane; (c) Front-view of the scene with
some details of the objects lying on the table. 55

4.5 Several planes in a large environment. Left frame shows a dense point
cloud of an office where multiple planes can be found. In right frame
several planes have been found and have been represented in differ-
ent colors. Not all of them are valid candidates to become a support-
ing plane. 56

4.6 Error comparison. Comparison of relative errors for RANSAC and
the proposed evolutionary plane estimator for an experiment with
100 measures. 58

4.7 Example of a cluttered scenario. The number of outliers treble the num-
ber of points forming the supporting plane. Left image highlight in
blue the plane equation in the 3D point cloud while left image shows
the real scenario viewed from the color camera. 59

4.8 Comparison of relative errors. Comparative between RANSAC and
the proposed evolutionary plane estimator for an scenario where a
large list of objects are positioned on the table inducing to misalign
the original plane equation. 60

4.9 Comparison of relative errors. Comparison of relative errors for RANSAC
and the proposed evolutionary plane estimator for a scenario where
a large list of objects are positioned on the table inducing to misalign
the original plane equation. 62

4.10 Errors due to wrong plane fitting. Comparison of the same object ex-
tracted using different plane estimations. The amount of informa-
tion relative to the object is reduced with the addition of noise ele-
ments into the depth map for RANSAC plane fitting. 63

4.11 Orientation filtering. Result after applying an orientation filter in or-
der to select a valid supporting plane 63

xxi

5.1 k-means algorithm. Graphical explanation of k-means algorithm and
the evolution of three clusters. Last two steps are repeated until
centroids converge to a stable position 68

5.2 Surface normals estimation. Normal direction is computed taking into
account the view point coordinates for each point. Circles contain a
zoomed area of the objects for a better visualization. 70

5.3 2D k-d tree. Representation of the tree as a hyperplanes in 2D space
on the left. Graph view on the right where blue color represents x
split axis, while green depicts y split axis. 72

5.4 3D k-d tree. Original cell (gray) is splitted into two subregions (or-
ange). Afterwards both cells are divided into four subcells (green).
Lastly, eight different regions are formed in the last split (purple). . . 73

5.5 Octree representation. Incrementing depth of the octree (14 levels)
involves better resolution. From top to bottom voxel sizes are in-
creased for a point cloud of a mug formed by 3461 points. Voxels
size varies from 81.9 to 0.06 mm. 76

5.6 Euclidean Cluster Extraction. (a) Result of clustering a set of unknown
objects lying on a table using ECE. Each color represents an individ-
ual cluster; (b) Detail of two clusters at the maximum cluster toler-
ance (2 cm). The algorithm would mislead the two mugs if a large
cluster tolerance is set. 77

5.7 Euclidean Cluster Extraction Examples. Demonstration of the cluster-
ing on the laboratory. 79

6.1 Visual hull object reconstruction. Carving process by silhouette cones
to locate object shape. Courtesy of Yemez et al. [71]. 87

6.2 MakerBot Digitizer Desktop 3D Scanner. Companies are developing
fast 3D scanners based on convex hull techniques. They include
color sensor devices to map the 3D point clouds. 88

6.3 Silhouette extraction. Using a ToF camera and simple depth thresh-
olding. The depth image is color-encoded. 89

6.4 Examples of acquired models. First the object to scan is represented;
then, the carved volume generated; afterwards, the Poisson recon-
struction is performed and finally the re-projection on a color image
with known pose. 90

6.5 Surface Integral Minimization Reconstruction using RBFs. Using a greedy
algorithm iteratively, a RBF is fitted in the point cloud reducing the
number of centers required to represent the whole surface. Courtesy
of [85]. 92

xxii

6.6 Correspondence problem. A set of samples from different point-views
of the same face are merged into a global point cloud 94

6.7 Iterative Closest Point flow chart. Representation of the steps followed
by ICP iteratively to estimate the transformation between two point
clouds. The algorithm converges when error e(R, t) is lower than
the threshold ι . 96

6.8 Moving volume schema. Representation of a subset of the moving
volumes used in [123] to reconstruct a climb up two staircases in a
hallway (∼ 11.3 m). 100

6.9 Moving volume Kinect Fusion. Representation of the laboratory using
Kinect Fusion algorithm with moving volume. Global reconstruc-
tion volume is updated on demand so Kinfu is extended to larger
environments. Respectively: original point cloud, Delaunay mesh
triangulation [123], Poisson surface interpolation [76] and texture
mapping. The office chair has been zoomed to highlight the defini-
tion level of the algorithm. 102

7.1 Reconstructor schema. Diagram of the different parts of the proposed
reconstructor. Features are extracted from each scan, a hole filling is
done using a curvature hypothesis. A first alignment is initialized
based on yaw using brute force and then a scan matching based on
DE optimizer is done. Finally, a filter is passed to clean noise points. 110

7.2 Curvature extension. Graphical explanation of the curvature hypoth-
esis to fill holes in areas where discontinuities appear or abrupt
changes are distinguished. Certainty function will give a different
weight to guess points according to a exponential function. 111

7.3 Curvature extension. A set of 10 planes cross the cluster and extract
the distribution curvature on each stage. If necessary, extra points
will be attached into the borders for a better matching estimation.
If the number of points close to a single slice is lower than a certain
quantity, the slice will be discarded. 112

7.4 Curvature extension. Display of the ten slices of the model for the
previous figure. Each slice is then processed independently, analyz-
ing its curvature with respect to its barycenter and filled with new
points if necessary. 113

7.5 Synthetic slice initialization. Representation of a 360-length slice and
its radius of curvature histogram . 114

xxiii

7.6 Computation of curvature. Curvature for two dimensions has been
defined as the angle between the vector that goes from the barycen-
ter to each point (so called ρi) and the linear regression formed by
the nearest neighbors of that point (so called mi) 115

7.7 Curvature extrapolation. Representation of the original curvature his-
togram in red and the extrapolation near the empty areas in blue.
Note that the filter only attacks to the empty areas growing at once
from both hole sides. 117

7.8 Curvature extension. Representation of two objects, a mug and a
teddy, from different perspectives. Light points belong to the orig-
inal point clouds while dark points represent the additional point
clouds in charge of improving the scan matching. 118

7.9 Registration initialization. Taking in mind that objects are lying on a
horizontal plane, roll and pitch angles can be restricted to get a fast
rough initialization for the matching procedure. 120

7.10 Registration initialization result. On the left the model (red) and the
view (green) point clouds are displayed superposed. After the ini-
tialization histogram, the view point cloud is rotated over the yaw
axis 49o and the result is displayed on the right. This step helps the
scan matching algorithm to evolve and converge much faster. 121

7.11 Normal distance Display of the normal distance (on the right) based
on the input 3D map (on the left). Each normal is extracted and a
surfel histogram is computed for each pixel looking at its neighbors.
Search is performed using Kullback-Leibler divergence as distance
metric. 130

7.12 Color distance Representation of the color distance for an scenario.
The input color map (on the right) is analyzed and a HSV histogram
is extracted for each pixel looking at its neighbors. Then a global
matching search is done using Jensen-Shannon divergence as dis-
tance metric. 133

7.13 Outlier filtering by radius search. Each element of the point cloud is
accepted if there exists at least a certain number of neighbors in its
nearby. 137

7.14 Normal alignment filter. Result of filtering the global 3D point cloud
of a mug using a Moving Least Squares surface reconstruction. The
surface becomes smoother and noisy data is avoided (right). 138

7.15 Yaw initialization response. Average of fitness function e(R, t) with
different angle resolutions during the yaw initialization process. Op-
timization stops after 150 generations. 139

xxiv

7.16 Reconstruction results. Representation of the best transformation achieved
for each algorithm. Each row represents a different object. Columns
are the transformation using ICP, DE1, DE2, DE3 and DE4 functions. 142

7.17 Reconstruction rendering. Rendering of some of the models generated
using the evolutionary reconstructor. 143

8.1 Harris feature detector. Example of a gray scale range image (brighter
pixels represent further positions) on the left. Harris features are
superimposed on the color frame on the right. 151

8.2 NARF keypoints. Representation of a point cloud with a sample
patch with its descriptor and the pattern used to extract it. 154

8.3 NARF keypoints. Example of a cluttered environment point cloud
(on the left) and the NARF keypoints generated by the NARF fea-
ture extractor in pink (on the right). 154

8.4 Difference of Gaussians. Each octave generates several DoG images.
On each iteration, image is reduced and blurred again 157

8.5 Difference of Gaussians Original depth map and three Gaussians of
the same octave get blurred as long as the process iterates 157

8.6 Difference of Gaussians Finding maxima and minima not only in the
same scale but also in upper and bottom scales [188] 158

8.7 Keypoints orientation Divisions performed to create a gradient orien-
tation histogram [188] . 161

8.8 Point Feature Histograms. Darboux coordinates frame between source
and target points when computing PFH 163

8.9 Point Feature Histograms. Influence region for a query point pq when
computing the PFH. 164

8.10 Viewpoint Feature Histograms. Representation of a Feature Histogram
for a mug. It consists of 45 binning subdivisions for each of the 3
extended FPFH values, plus another 45 binning subdivisions for the
distances between each point and the centroid and 128 bins for the
viewpoint component. 166

9.1 Ray-based feature vector. Back-transform of the ray-based samples
from frequency to spatial domain at several frequencies 170

9.2 Feature-based similarity search. Each object is analyzed and a high
dimensional feature vector is extracted. This vector is then inserted
in a high dimensional index structure with the rest of the database
members. 172

9.3 Skeleton based similarity. Two objects and their corresponding skele-
ton [200] . 174

xxv

9.4 Database created by the author. Representation of 2D and 3D views
for several objects acquired during the classification process. Notice
that most of the items are geometrically similar. 175

9.5 Meta-Classifier schema. Diagram of the classifier proposed for this
study. Distance metric can be changed before filtering is done. The
meta-classifier takes into account 3D surface descriptors, color and
geometry for each query and returns the closest candidate in the
database. 176

9.6 k-NN distance results for a given VFH. Result of searching for similar
objects in the database. The top item is the query and the above
candidates are the most similar sorted by VFH distance. 179

9.7 Representation of VFH histograms. Illustration of several items in 3D
and their corresponding View-Point feature Histogram in red. His-
tograms look quite similar due to their shape similarity. 180

9.8 Projected bounding box for a cluster. Bounding box of a point cloud
projected on each axis referenced to the normal of the supporting
plane π . 182

9.9 Illustration of color histograms in RGB space. Representation of the
color histograms created by the classifier. Only extremely different
textures can be distinguished easily. 183

9.10 Color distance results for a red mug. Result of searching for color-like
objects in the database on the HSV space. The top item is the query
and the above candidates are the most similar sorted by color dis-
tance with the corresponding distance on each footer. 184

9.11 Classifier results for complex scenarios. Representation of the classifier
results. On the left the original scenarios and on the right the result
of the three-layer classification. Objects are colored consistently. . . . 190

9.12 Close loop while learning new object. Graph showing the evolution of
the three parameters dKL (blue), dJS (red), dDI (green) and the result
distance d of the complete conjunction 193

9.13 Snapshots of the unknown object during the learning phase. Represen-
tation of several views during the learning process. The number
associated to each view is the total distance d for this particular view. 194

10.1 Images of the global experiment. On the left a wide and close-up of a
scene containing a mug and the tool center point 199

10.2 Experiment course. Pipeline with the main steps followed by the pro-
posed framework to recognize and pick up an object with obstacle
avoidance and safe path planning. 200

xxvi

10.3 Example of a path obtained with the FMM. The left side shows the orig-
inal map and the path calculated. In the right there is the map of
distances computed with FMM. 203

10.4 Fast Marching algorithm. Computation of the distance transform in a
2D scenario after applying FMM over the map of velocities. In the
center the result of the FMM. On the right the front-wave represen-
tation. 204

10.5 Example of a 3D path result of the 3D FM2 algorithm. The path is
crossed three times passing through small wholes. The path must
be considered smooth and safe. 205

10.6 Gifu Hand III. Kinematic model of the Gifu Hand III. 206
10.7 Images of the global experiment. The robot was positioned in an unex-

plored scenario and was asked to move forward until a supporting
plane was found within a distance below 60 cm. 208

10.8 Result of the Euclidean Clustering algorithm. After the extraction of the
supporting plane. Each object is marked with a different colour. For
this project, red mug will be chosen as grasping target. 209

10.9 3D Mesh. Render and mesh generation using Poisson reconstruction
for a single point cloud view. 210

10.10Rough hand approximation. Representation of the voxelized environ-
ment with the bounding boxes of each obstacle. Left column shows
the path planning and the hand during the approaching phase. Red
path means portion of the path covered by the hand up to now. Cen-
ter and right columns show the experiment from the robot point of
view and from an external observer. 211

10.11Fine fingers approximation. Evolution of the finger’s path planning
moving to the grasping point positions for the target object. 213

10.12Fine affordance for the 5 fingers of the anthropomorphic hand. Different
perspectives of the affordance simulation using Graspit! simulator. . 215

A.1 Example of a monomodal or unimodal function. It contains only a local
minimum m(mx,my). 226

A.2 Derivative-based optimization. Representation of the path x0 → m
(global minimum) if the objective function is quadratic and differ-
entiable. 227

A.3 Derivative-based optimization. Representation of the steepest descend
gradient path for an objective function that is quadratic and differ-
entiable. 228

A.4 Derivative-based optimization. The lack of knowledge about the objec-
tive function makes brute force search useless for most cases. 229

xxvii

A.5 Random Walk. A Gaussian distribution selects the candidates and the
one which falls closer to the minimum turns into the next candidate. 230

A.6 Representation of Schwefel’s multimodal function. It contains several
local minima and only a global solution. 231

A.7 DE procedure. Result of all the steps followed by DE in each iteration. 233

xxviii

1

Chapter 1
Introduction

2

3

Generation by generation, human beings have claimed innovative technolo-
gies in order to face new demanding challenges. Prolongation of productive life
expectancy and the irruption of new communications such as Internet has con-
verted actual communities in a perfect breeding ground for independent living
societies. With this problem in mind, developed countries are putting intense ef-
forts into personal robots capable of interacting with people for their company.
This challenge contemplates, among other assignments, the assistance in case of
emergencies or cooperation during household chores such as laundry and dish-
washing.

In order to fulfill these necessities, travail has been focused on new assistive
robots becoming more intelligent as they are provided with improved perception
skills for daily activities performances. These new generations of personal robots
are prepared to interact with humans, learn new abilities, exchange previous expe-
riences or take their own decisions according to their knowledge. The instinctive
way of this interaction to happen passes through the creation of new perception
channels, providing robots with relevant information of their surroundings. These
technological advantages lead to convert them into smarter platforms.

The robots must be prepared to acquire new sources of information, detect pat-
terns according to received data, react to these stimuli corresponding to learned
behaviors by motion planning and finally perform actions based on the estima-
tions. Manipulation skill is, without any doubt, one of the desirable abilities that
covers all the previous requests. They have to synthesize the sensor data within
the context of the actions and activities they perform. If the robot has to grasp a
mug laying on a tray, it has to find a handle in a first stage and then plan a safe
path to reach the object.

Those tasks are, unfortunately, rough to accomplish. Each attempt of the robot
becomes different from the last in every aspect. The perception sensor does not
provide exactly the same data values and therefore the subsequent steps of the
chain might vary. However, by means of machine learning tools, the robots are
able to innovate so that unexpected changes can be assumed successfully. The
first usages of machine learning were applied by Elfes [1] in 1989 for environment
mapping of an autonomous robot. After that, robots were programmed not only
to perform a single task but to carry out a comprehensive family of tasks.

But the challenge is wider than that. Autonomous robots are not asked for ma-
nipulating objects solely, they must understand that if a mug is taken, it has to be
grasped by its handle or that the sharp edge of a knife has to be dodged, turning

4 Chapter 1. Introduction

this into one of the main issues of semantic perception for mobile manipulation.

This dissertation thesis proposes a set of improvements in several fundamen-
tal aspects for human-robot interaction. The aim of this research is to provide the
robot with the ability of recognizing objects lying on a table that is situated on its
vicinity. Furthermore, in case the object is not identified, the robot must be able to
acquire sufficient views of the object so it would be distinguished in any upcoming
occasion. Since the final purpose of the robot is to grasp a certain object, it has to
comprehend the different views of the object and recreate a global model of the
item. The challenge goes even further as the global model has to be sufficiently
accurate and robust to permit others to analyze it in order to find optimal grasping
points. Additionally to the above, the robot will be prepared to discriminate be-
tween confusable objects that might appear in the scene. In other words, the robot
has to classify families of objects that could be easily confused due to a similar
shape, size or color. That means that if two identical glasses of wine are disposed
in front of the robot, it has to be prepared for classifying them favorably.

Thesis Outline and Contributions

The contributions of this thesis moves in harmony with the skills a robot must
evolve in order to interact and grasp objects such as humans do in a natural way.
Divided into three main parts, it is intended to reach the whole pipeline that the
problem demands. Figure 1 illustrates the different parts of the thesis validating
the continuity of the research. This dissertation deals with several facets of percep-
tion that have been separated and presented in a logical and natural way so that
the reader can comprehend the challenges affronted in each part, the way those
difficulties where solved and ergo in what manner they are beneficial in the suc-
cessive robot tasks.

Each part has been splitted in different chapters within a common structure.
The heading chapters on each part introduce the problem being faced while pre-
senting the state-of-the-art and solutions to that specific problem. The latter chap-
ters expose the author contributions and any experimental results necessary to
support the solution.

The thesis starts with an extensive state of the art of the 3D perception tech-
niques that exist up to these days. This section includes a novel proposal to inte-
grate color information within spatial data on Time of Flight cameras and also an

5

improved plane fitting algorithm that abides cluttered scenarios where the quan-
tity of objects resting on a table would become an issue for the plane computation.
The usage of a multi-modal optimizer provides with more stable results than clas-
sical techniques for estimating the parameters of a model.

The second part of the thesis addresses the three-dimensional model registra-
tion of unexplored objects based on their features. A wide study of the actual tech-
niques for object reconstruction is exposed and a novel reconstruction technique is
presented. The proposed system is an evolutionary-based scan matching method
that reassembles objects with a limited quantity of views within uncontrolled ac-
quisition processes and assumed to be performed without human intervention.
The latter includes a hole filling filtering algorithm that introduces a probabilis-
tic model that categorizes the certainty of observed and guessed points through a
mixed model.

Third part of this dissertation tackles the capacity of the robot to classify ob-
jects segmented during the preceding assignments. Thereby a meta-classifier is
presented designed to let the robot discriminate through a list of regular objects.
These objects were previously exposed to the robot in a table. The classifier has
been conceived to correlate objects by extracting shape features, geometrical char-
acteristics and also color and texture patterns. Several distance metrics have been
tested in order to determine the reliability and performance of the classifier with
confusable objects.

The latter part of the thesis presents the primary tests of all the contributions
in order to validate the perception aptitudes of the mobile manipulation robot
MANFRED–2. Besides, it integrates a safe path planning of the arm in order to
reach the barycenter of a certain object. Experimental results yield good robust-
ness in the supporting plane fitting for noisy environments and high recognition
rates during the classification stage.

6 Chapter 1. Introduction

CHAPTER 1

Introduction

CHAPTER 2
Hardware and
sensing devices

CHAPTER 3
Experimental

platform

CHAPTER 4Detecting
supporting planes

CHAPTER 5
Clustering

point clouds

CHAPTER 6Correspondences
between point clouds

CHAPTER 7Evolutionary
model reconstructor

CHAPTER 8

3D features

CHAPTER 9

3D object meta-classifier

CHAPTER 10

Affordance experiment

PA
R

T
4

P A
R

T
3

PA
R

T
2

P A
R

T
1

Figure 1.1: Outline of the thesis. General view of the thesis, conformation of the four
parts and the chapters contained in each section.

PART I

CLUSTERING POINT CLOUDS

7

Chapter 2
Hardware and sensing devices

9

10 Chapter 2. Hardware and sensing devices

Robots require from sensors to interpret their environment. Perception tech-
nology has changed with the time allowing researchers to improve and investigate
further on algorithms that enhance the way artificial machines interpret and re-
act to external responses. Just because humans are living in a three–dimensional
world, they are provided with an adequate set of tools to describe and locate differ-
ent objects in any surrounding scene. These given features include motion, relative
position, size and evolution of perceived objects. The demand of spatial percep-
tion has been satisfied by nature providing animals and humans with at least two
eyes [2]. This stereo vision ability allows humans to process an image flow inside
the brain and compute precisely depth measures of the observed environment.

Before Time-Of-Flight (ToF) technology was introduced, there were several meth-
ods to acquire and estimate 3D point clouds: those classical stereo vision algo-
rithms which are based on correspondence matching such as dense depth maps
generated with Dynamic Programming proposed in Gong et al. [3], block-matching
approach [4] or even improved methods based on various consecutive frames to
enhance the results as Davis et al. [5]. Besides, instead of passive systems like stereo
vision, active sensors came up removing problems such as illumination conditions,
unfocused scenes or image artifacts. This alternative is essentially a laser scanning
line that deliver a specific signal and measure the received answer. These methods
have been widely implemented in location problems, SLAM, environment model-
ing, surgery or industrial applications.

2.1 Stereo Vision

Stereo Vision systems comprise two perspective cameras with limited Field Of Vi-
sion (FOV). Any physical point is found in the observed 3D-space using both cam-
eras. For each pixel in one image, the appropriate location in the other view must
be found. Assuming that both cameras are perfectly calibrated, undistorted and
rectified, image planes for both images are coplanar if optical axis are exactly par-
allel. In that case, both cameras would have equal focal lengths fl = fr and also
equal principal points 1 cx

l = cx
r, as Figure 2.1 describes.

In order to do that, the pinhole model can be easily imposed in both cameras.
Equation 2.1 yields the corresponding relation between depth and disparity on
pixels location using the triangulation principle.

1A principal point is where the principal ray intersects the camera plane. This intersection de-
pends just on the optical axis of the lens.

2.2. Time-Of-Flight Technology 11

P

Z

f f

xl xr

xl xr

cx
l cx

r

TOl Or

d = xl − xr

Figure 2.1: Stereo Vision. Perfect model of a stereo-pair for depth acquisition [6]

T − (xl − xr)
Z − f

=
T

Z
→ Z =

fT

xl − xr
(2.1)

where xl − xr is defined as disparity. For this action, the most obvious drawback
found is the correspondence problem, that is, to match the pixel-wise pairs in both im-
ages. This operation requires a large consumption process in terms of computing
resources and time to achieve good results due to the fact that pixels are not easy
to find. Several applications have been developed during the last years in order to
decrease computing times using new concepts such as parallel computing using
CUDA proposed by Martı́n in [7], dynamic programming or Parallel cells such as
Liu et al. [8].

2.2 Time-Of-Flight Technology

Once again, nature has beaten humans when talking about intelligence. Several
thousands of years have passed since bats or dolphins were able to see without
proper eyes. Those species use this sensor for both navigating and object track-
ing. This feature makes them able to detect and locate external actions or events in

12 Chapter 2. Hardware and sensing devices

order to escape or attack. Humans have applied time-of-flight measurement sys-
tems later on, for instance when measuring the unknown depth of a well listening
to the returned echo after a stone was thrown. These ToF methods are based on the
propagation time of sound instead of light. It was in the 17th century when Galileo
Galilei performed an experiment to estimate the speed of light [9]. To do that, he
took two people handling a torch and placed them at the top of two mountains one
kilometer far. If one of them turned it on, the other would do the same and vicev-
ersa. With this simple experiment, he tried to measure the light speed neglecting
the time of reaction of the contributors.

There are two mainly approaches currently employed in ToF technology [10].
The first one uses modulated, incoherent light and it is based on a phase measure-
ment that is possible to be implemented in standard CMOS or CCD technology.
The second solution is based on an optical shutter technology having been first
used in studio cameras and later on miniaturized cameras. In Figure 2.2 the most
notable ToF cameras and their respective manufacturers are represented.

Figure 2.2: Comercial ToF cameras. (a-c) SR3000 and SR4000 from Mesa Imaging
AG c©, (d) O3D100 from IFM Electronic c©, (e) CanestaVision R©, (f) PMD[Vision]
c©CamCube 2.0, (g) PMD[Vision] c©CamBoard nano.

The basic principle of a ToF camera is represented in Figure 2.3 and it is re-
sumed by Lange et al. [11] as follows: A source emits a light pulse and starts a highly
accurate stopwatch. The light pulse travels to the target and goes back. Reception of the
light pulse by the detector mechanism stops the stopwatch, which now shows the time of
flight of the light pulse. Considering the fact that the light pulse travels the distance
twice (forth and back) and that the speed of light is 299.792.458 m/s, then a mea-
sured time of 6.67 ns corresponds to a distance of one meter. As it is logical, the
hardest problem here is to create a highly accurate time measurement system able
to deal with nano and pico seconds. For instance, a resolution of 1 cm requires a
time interval of 70 pico seconds.

Since ToF cameras are highly compact devices, the active light source and re-
ceiver are located very closely avoiding shadowing effects. That is, illumination

2.2. Time-Of-Flight Technology 13

n-s watch computer

depth map

camera sensor

intensity map

amplitude map

receiver

emitter

Figure 2.3: ToF technology explanation. Schema of the connections between the scene
and the depth map. A nano-temporizer is activated when the led emitter (in red)
pushes an infrared signal. Blue led receives the returned signal and stops the timer.
The time-delay represents the distance to the object.

and observation directions are collinear [12]. Furthermore, one of the most impor-
tant conditions of ToF sensors in general is that emitter and detector are operated
synchronously, extracting the time of flight as accurate as possible.

ToF cameras are able to return three different sources of information. Firstly, a
range map with a resolution of 204 × 204 pixels float precision in centimeters.
This information it is obviously used to acquire object distances, scene segmenta-
tion and object modeling (Figure 2.4.b). Secondly, an intensity image that reveals
the texture and brightness for each item inside the scene. That information be-
comes crucial for pattern recognition and camera calibration (Figure 2.4.c). Finally,
an amplitude image that contains an estimation of the committed error measuring
the time of flight for every pixel (Figure 2.4.d). Exploiting this information may
increase the reliability of distance for each pixel, as it is considered with the dis-
cussion of the shading constraint by Bohme et al. in [13]. In Figure 2.4.a the original
scenario to obtain a better understanding is displayed .

14 Chapter 2. Hardware and sensing devices

Figure 2.4: ToF outputs. Original RGB scenario. Depth map, intensity image and
amplitude map are the three sources of information given by a ToF sensor (PMD
Camera)

2.2.1 Intensity Modulation Principle

The most important companies have focused out their prototypes following this
kind of ToF-principle such as Mesa Imaging 2 (Figure 2.2.a), PMDTech electronics
3 (Figure 2.2.b) and CanestaVision Camera Modules 4(Figure 2.2.c). The intensity
modulation principle is based on the on-chip correlation of the incident optical sig-
nal s, which comes from a modulated near infra-red (NIR) source and is reflected by
the objects inside the scenario, with a reference signal g, which posses an internal
offset τ :

c(τ) = s⊗ g = lim
T→∞

∫ +T/2

−T/2
s(t) · g(t+ τ)dt (2.2)

Choosing s and g as sinusoidal signals:

g(t) = cos(ω · t), s(t) = b+ a · cos(ω · t+ φ) (2.3)

where ω represents the modulation frequency, a is the amplitude of the incident
optical signal, b corresponds to the correlation bias and φ is the phase offset due to
the incident object distance. The convolution of those signals yields

c(τ) =
A

2
cos(ω · τ + φ) + b (2.4)

Every pixel of the sensor samples the amount of modulated light reflected by any
object four times every period at equal intervals m1 to m4. These four values are

2Mesa Imaging – http://www.mesa-imaging.ch
3PMDTech electronics – http://www.pmdtec.com
4Canesta Vision – http://canesta.com/

http://www.mesa-imaging.ch
http://www.pmdtec.com
http://canesta.com/

2.2. Time-Of-Flight Technology 15

sufficient to recover the sinusoidal signal easily. The phase offset between the emit-
ted light and the received signal is

φ = arctan(
m4 −m2

m3 −m1

), mi = c (i,
π

2
), i = 1, . . . , 4. (2.5)

and this value determines the range of the object in the scene which is given by

R =
c

4πω
· φ, c ≈ 299.792.458m/s (2.6)

The intensity of the objects in the image can be recovered from the average light
reflected as

I =
m1 +m2 +m3 +m4

4
(2.7)

The amplitude of the measured sinusoidal can be expressed as

A =

√
(m3 −m1)2 + (m4 +m2)2

2
(2.8)

and therefore it allows the prediction of the quality of the measurement ∆R as

∆R =
c

2ω
√

8

√
I

2A
(2.9)

With all this information, it is possible to obtain in real time not only depth val-
ues for each pixel but also the reliability or estimated error for each pixel.

2.2.2 3D Related Problems

Common arising problems

There exist several problems when processing images of captured objects. Aperture
problem leads the list exhibiting the limited aperture angle of the camera optics giv-
ing information of a partial environment. FOV problem arises when fixing the field
to a specific application. 3D information gets lost when projecting information into
a planar sensor, that is, the optical projection problem. Finally, the detection of fast
object movements cannot be sampled due to the sampling rate limit given by the
camera, what is known as sampling problem. In addition to all these problems, the
error committed measuring gray level changes in pixels (divergence problem) has to
be considered.

16 Chapter 2. Hardware and sensing devices

Figure 2.5: Functional block. Image processing chain comparison between SV and
ToF systems by Hussmann et al. [14].

ToF cameras do not have all the problems shown in Figure 2.5. Only sampling
and aperture problems appear. Other issues such as FOV problem do not affect
just because hardware setup can be changed easily. There are neither correspon-
dence, divergence nor allocation problems due to the fact that each pixel of sensor
calculates a range value and therefore no object information is lost by the optical
projection on a planar sensor.

Field of View problem

ToF cameras do not depend on geometrical parameters contrary to SV systems
where the distance between cameras implies different triangulation possibilities
and therefore a range of depth resolutions. The usage of active modulated light
source makes ToF systems more effective and reliable.

Two different approaches are the most common modulation techniques used
for depth measurement. The first one is pulsed modulation, introduced 20 years ago
by Moring et al. [15] and it is not very frequently used by the literature. The al-
ternative is Continuous Wave Modulation (CWM) explained by Beheim et al. in [16].
CWM is nowadays used in ToF systems because this method does not require high

2.2. Time-Of-Flight Technology 17

rise and fall times allowing then several sources of light to be used. Usually, square
waves or sinusoidal waveforms are applied for modulation. The idea is simply to
measure the phase between sent signal and received signal instead of measuring
the time to go and return of a single light source. Once modulation frequency fmod
is established, the measured corresponding phase means directly the time-of-flight
[11]. Using Equation 2.6 and replacing φ by the frequency response of the modu-
lation

φ = (
ϕ0

360o
+N · 360o) with N = 0, 1, 2, 3, ... (2.10)

In case of modulation, 2 ·πω in 2.6 equals to fmod, and therefore the range of the
camera can be expressed as

R = (
c

2 · fmod
) · (ϕ0

360o
+N · 360o) with N = 0, 1, 2, 3, ... (2.11)

Studying the above Equation 2.11, if fmod is set to 20Mhz as [17] recommends
for typical PMD cameras, the Non Ambiguity Range (NAR) turns to

NAR = max (R) =
c

2 · fmod
=

3 · 108m/s

2 · 2 · 107s−1
= 7.5m (2.12)

giving an idea of the spaciousness those devices can take in. Equations 2.11 and
2.12 demonstrates that NAR depends only on the frequency fmod applied to obtain
a larger or shorter distance region.

Correspondence problem

As mentioned before, one of the most relevant problems that emerge in ToF tech-
nology is the correspondence problem, also named by Chung et al. as correspon-
denceless in [18]. The idea is quite simple, SV systems need rich textured frames to
offer good reliability. That is because disparity has to be found between equiva-
lent pixels in both images. If gray values are quite similar along the epipolar lines,
disparity levels would be erroneous inducing into bad disparity maps.

A small jug has been captured in the laboratory (Figure 2.6.a) and computed
with a SV system (Figure 2.6.b) and then with a ToF system (Figure 2.6.c). It is
trivial to find out how background is computed erroneously when it is poorly tex-
tured. Contrary to ToF cameras, SV systems require several settings such as dispar-
ity window size or maximum disparity levels to be defined beforehand, otherwise
depth maps will not correspond to observed systems. Furthermore, due to the fact
that SV systems run without active lighting, they generate shadows creating false

18 Chapter 2. Hardware and sensing devices

positives and hence, they cannot estimate the 3D information of the objects due to
the correspondence problem.

Figure 2.6: Correspondence problem. Real example comparing SV and ToF technolo-
gies for a small jug in the laboratory.

Influence of the Temperature onto the distance measurement

As Kahlmann et al. explains in [19], CCD and CMOS photo sensors are extremely
temperature dependent and therefore an increment of temperature causes a higher
rate of thermal generated electrons. There happen two effects on the sensor:

• Internal Temperature.- The internal heating of the sensor creates a self-induced
error that requires from approximately 10 minutes (studied in [19]) to get
stabilized when measuring a fixed target.

• External Temperature.- The measured distance increases with temperature (see
Figure 2.7). It can be also pointed out that the problem is systematic and thus
could be fixed with a calibration procedure. The determined drift lies around
8mm/oC. That means that during the first few minutes, while the camera
warms up, the measured distance increases.

Other error sources

In first place, Lindner and Kolb [20] perceive a periodic error related to the mea-
sured distance. The error has a wave length of approximately 2m. They account
this error to the fact that the evaluation of the distance assumes a impeccably sinu-
soidal light source, which in practice is not granted.

2.2. Time-Of-Flight Technology 19

Figure 2.7: Temperature effect on ToF. Relation between Integration-Time and Mea-
sured Distance with respect to different external temperatures for a fixed object
(extracted from [19]).

Another source of error is the time elapsed to transfer the signal from the sensor
to the CPU. This error rests on the relative location of the sensor within the array
(i.e. the pixel in the image) as expressed by May et al. [21]. Additionally, since the
distance prediction depends on the amount of reflected light, the intensity of the
optical signal (i.e. the brightness) affects the distance measurements. However, a
low intensity leads to a wrong signal to noise relation, misleading the measure-
ment erratically. Another error arises from the shutter time of the camera, i.e. the
time over which the camera integrates the image.

Longer integration times tend to shift the image towards the camera [19] [22].
Kahlmann et al. [19] also report that the internal temperature of the camera, as well
as the external temperature, influence the depth measurements. But even after
the temperature has been stabilized, Kahlmann et al. announce a little deviation
that, according to them, is due to a cool down which occurs in between taking
the individual images. Finally, Gudmundsson et al. [23] discusses in the effects of
multiple reflections on the distance measurements.

20 Chapter 2. Hardware and sensing devices

2.3 RGB-D Systems

After the arrival of ToF technology, devices were able to extract pretty small frames
at fast rates containing 3D raw maps without texture information. This absence of
color information led to emerging strategies to embed indirectly the chromaticity
of the scene in the depth map using custom calibration techniques.

Both devices were calibrated using Bouguet stereo method thanks to the gray-
scale output of the PMD camera as explained by the author in Bueno et al. [24] and
Burrus et al. [25]. It is thus possible to get color information for each pixel of the
depth image by back-projecting the pixel back to 3D using the estimated depth,
and then projecting it onto the color image. Figure 2.8 contains the imagery sys-
tem developed in the laboratory using a PMD [vision] CamCube 2.0 camera with
a resolution of 204×204 pixels and a QuickCam Pro 9000 camera with a resolution
of 640×480 pixels to provide color information. The goal of this setup is to mix up
depth information with texture with good reliability.

Figure 2.8: RGB-D custom system. Placement of the ToF and RGB cameras to gener-
ate RGB-D maps using Zhang calibration.

Raw data from the ToF camera are very noisy and suffer from various bias. A
5× 5 median filter is used to remove spurious values, and the bias are reduced us-
ing similar techniques as [26]. Radial bias becomes the most significant distortion:
pixels which are further from the optical center tend to get higher depth estimates.
To reduce it, ground truth depth values were computed using checkerboards, and
then compared to ToF measurements. As shown in Figure 2.9, a polynomial func-
tion is then fitted to the observed errors and is then used as a depth correction

2.3. RGB-D Systems 21

LONGITUDINAL ERROR BEFORE CORRECTION LONGITUDINAL ERROR AFTER CORRECTION

VERTICAL ERROR BEFORE CORRECTION VERTICAL ERROR AFTER CORRECTION

0

0

0

0

Figure 2.9: Correction of depth measurements. Each red circle corresponds to an error
computed by comparing a ground truth depth value with its ToF estimate. On
the left side, values are plotted before correction and show the fitted correction
polynomial (green). This polynomial is then used to apply a depth offset, and
corrected values are plotted on the right side.

offset. ToF measurements also suffer from relatively strong bias due to the varying
reflectivity of the objects: dark objects usually appear closer. However, this bias
turns out to be difficult in order to improve the reliably and therefore this problem
has not been faced during this work.

Two different alternatives have been used in order to obtain and interpret the
intrinsic and extrinsic parameters for both cameras. That is, the individual and in-
ternal variables (focal length, center of image, etc.) and external variables (distance
between cameras and relative rotation).

Firstly, OpenCV library 5 has been used. This library offers a complete set of
API’s that allow recognizing the desired parameters with a batch of chessboard’s
pattern frames. For this project, 20 frames of chessboard pattern in different poses
have been used. It is important to remark that the more changes in pose, the bet-
ter the results become. That yields from the fact that the parameters are obtained
iterating on those frames’s poses. Some of the results before artifacts removal are
shown in the following Tables. It is easy to interpret the results of the calibration.

5More information in http://opencv.org/

http://opencv.org/

22 Chapter 2. Hardware and sensing devices

Secondly, those results have been checked with the library provided by Jean-
Yves Bouguet, called Camera Calibration Toolbox for Matlab 6. The values were almost
the same, with slight changes in distortion factors reason why they are not repre-
sented here.

Focal lengths are normal and centers of image are close to the real centers in
both cameras. For this work, images have been resized into 640 × 480 pixels for
Logitech’s frames and into 500 × 500 pixels for PMD camera. This inconsistence is
changed and fixed later with a physical offset of the cameras. Intrinsic values for
both cameras can be shown in Table 2.1.

CALIBRATION RESULTS

Intrinsic Logitech Camera ToF Camera
fx 540.475185 773.901272
fy 541.428144 771.584695
cx 307.210290 230.014322
cy 226.635229 244.194863

Table 2.1: Intrinsic parameters of both cameras for the first approach

The centers are shifted due to distortions. For the distortion parameters, Table
2.2 describes the results obtained.

CALIBRATION RESULTS

Distortion Logitech Camera ToF Camera
k1 0.0288288 -0.34804000
k2 0.4753549 -1.83188588
p1 0.0042067 0.00453175
p2 0.0004481 0.00006298
k3 -3.8845537 26.118679

Table 2.2: Extrinsic parameters. Relation between both cameras in 3D world coor-
dinates

It is important to highlight the large radial and tangential distortion that ap-
pears in the PMD camera. Figure 2.10 represents the effect of both distortions in

6More information in http://www.vision.caltech.edu/bouguetj/calib_doc/

http://www.vision.caltech.edu/bouguetj/calib_doc/

2.4. Light Coding 23

the image and how it is rectified.

Figure 2.10: Distortion correction. Left image shows the original image from the 3D
camera and central image shows the undistorted correction. Last image shows the
chessboard corner detection from OpenCV library.

Finally, the extrinsic parameters for translation (in millimeters) and rotation (in
radians) are listed in the following lines and represented in Figure 2.11.

T = [0.843615,−41.014156, 7.2423722] (2.13)

R =

 0.9999887 −0.0021876 0.0042038
0.0025968 0.9949743 −0.1000964
−0.0039637 0.1001062 0.9949688

 (2.14)

That means that there is a spatial offset of approximately 4 cm in the Y axis and
0.7 cm in the Z axis and they are over the same vertical plane.

2.4 Light Coding

Light coding technology (also known as structured light technique) was developed
originally by Curless and Seitz [27]. It was lately developed in a single microchip
by PrimeSense Ltd., a company founded in 2005 in Israel. Their mayor contribu-
tion was a novel 3D depth sensor that works by coding the scene with near-IR
light, which is invisible to the human eye [28]. This sensor alternative projects a
patter of pixels in the scenario and captures the deformation for those pixels once
they are projected into the objects. If the pair IR emitter–camera is well calibrated,

24 Chapter 2. Hardware and sensing devices

Figure 2.11: Stereo calibration. Calibration of both cameras and its representation
using the Matlab Toolbox provided by California Institute of Technology.

it is possible to estimate the depth for each pixel based on the matrix deformation.
The estimation is done triangulating signals from emitter, camera and pixel matrix
positions. According to Kramer et al. [29], the depth map is constructed by analyz-
ing a speckle pattern of IR laser light at 830nm. This principle, which was firstly
proposed by [27], was improved by PrimeSense by the combination of two classic
computer vision techniques:

• Depth from focus.- Based on the principle that objects positioned further away
will be more blurry and those closer will be more focused. Using a special
astigmatic lens with different focal length in x and y directions, a projected
circle then becomes an ellipse whose orientation depends on depth as shown
in Fig. 2.12.

• Depth from stereo uses parallax.- If you look at the scene from a different an-
gle, objects that are close gets shifted to the side more than those which are
further. Kinect devices analyzes the shift of the speckle pattern by projecting
from one location and observing from another.

The pattern used in Kinect devices is part of the PrimeSense patent (see Fig.
2.13, [30]), generated from a set of diffraction gratings with special care to lessen
the effect of zero-order propagation of a center bright dot. However, there exit sev-
eral techniques listed by Pan et al. in [31] to achieve this patterns. Some of them are

2.4. Light Coding 25

Figure 2.12: Light coding. A projected circle then becomes an ellipse whose orienta-
tion depends on depth (Freedman et al. , US Patent 2010/0290698).

colored strips, colored disordered coding, colored grid of points, black and white
strip, black and white dot matrix or a black and white grid, as in this particular
case.

The solution then uses a standard off-the-shelf CMOS image sensor to read the
coded light back from the scene. Their first chip release, with more than 20M users
is Carmine (PS1080), a multi-sense system which provides a synchronized depth
image, color image and audio stream.

Kinect device contains three vital pieces that work together to detect the motion
and create the physical image on the screen: an RGB color VGA video camera, a
depth sensor, and a multi-array microphone.

1. The RGB camera detects the red, green and blue color components. It has
a pixel resolution of 640×480 (VGA) and a frame rate of approximately 30
fps. This helps in facial and body recognition, texture comparison or features
extraction.

26 Chapter 2. Hardware and sensing devices

Figure 2.13: Light coding. IR pattern patented by PrimeSense for Kinect 3D sensing
(Shpunt et al., US 2008/0106746).

2. Depth sensor contains a monochrome CMOS sensor and infrared projec-
tor that help create the 3D imagery throughout the room. It also measures
the distance of each point of the user’s body by transmitting invisible near-
infrared light and measuring its ToF after it reflects off the objects.

3. The microphone is actually an array of four microphones that can isolate the
voices of the user from other background noises allowing players to use their
voices as an added control feature. This feature is not yet used up to day in
robotics but the microphones will be surely exploited in HRI applications in
a few years.

Calibration parameters are not easily modified but since Kinect devices are
massively produced, most of the distortion parameters, focal distance and optical
parameters are customized by manufacturers. Khoshelham et al. [32] developed a
deep study of accuracy and resolution for Kinect and determined that calibration
error might reach less than 1 mm. for a workspace of one meter depth. With this
information in mind, the sensor will be assumed to be undistorted and calibrated
with the manufacturer estimations.

As every image processing solution, speed turns into a critical constraint. Most
of the challenges require real-time execution enabling robots to interact with the

2.4. Light Coding 27

Figure 2.14: Light Coding sensor Carmine PS1080. Main structure of PrimeSense
SoC’s Carmine (PS1080), the processor for Kinect sensing devices.

environment as fast as it changes. Since the first step in perception is data acqui-
sition, the interface has to provide data as faster as possible avoiding bottle necks.
For this study, an Asus Xtion Pro Live camera is used. It contains a PrimeSense
Carmine 1.8 3D Sensor. Table 2.3 contains the benchmark results for depth and
color streams. The results have been extracted in the laboratory taking a sample
of one thousand frames at different positions. The variability has been computed
analyzing the output depth variations of the sensor in a fixed position. There are
several features of the camera that are not used in this work such as the built-in
microphones. However, it is not ruled out the possibility of using in the future to
introduce some human-robot interaction.

28 Chapter 2. Hardware and sensing devices

MOST RELEVANT FEATURES

Avg. frame-rate 29.5498 Hz
Variability 1.2 mm
Min range 800 mm
Max range 3500 mm
Resolution VGA (640x480)
Field of View (Horizontal, Vertical, Diagonal) 57.5, 45, 69
Spatial x/y Resolution (2-Sigma Values) @2m 3.4
Depth Resolution (2-Sigma Values) @2m 1.2
Built-in Microphones 2
Data Format 16 bits
External Digital Audio Inputs 4 inputs
Dimensions: Width x Height x Depth 18 x 2.5 x 3.5 cm
Power Supply USB (5V)
Maximal Power Consumption 2.25 W

Table 2.3: Benchmark for the Asus Xtion Pro Live camera

That means that the frame rate of the whole system will be at most the acqui-
sition rate of 29.5 fps. Therefore, the three technologies presented in the previous
sections can be summarized in Table 2.4.

2.4. Light Coding 29

O
V

E
R

A
L

L
3D

T
E

C
H

N
O

L
O

G
IE

S

D
es

cr
ip

ti
on

To
F

C
am

er
a

St
er

eo
V

is
io

n
St

ru
ct

ur
ed

Li
gh

t
C

or
re

sp
on

de
nc

e
pr

ob
le

m
N

o
Ye

s
Ye

s
Ex

tr
in

si
c

ca
lib

ra
ti

on
N

o
Ye

s
Ye

s
A

ut
o

ill
um

in
at

io
n

N
o

N
o

Ye
s

U
nt

ex
tu

re
d

su
rf

ac
es

G
oo

d
pe

rf
or

m
an

ce
Ba

d
pe

rf
or

m
an

ce
G

oo
d

pe
rf

or
m

an
ce

D
ep

th
ra

ng
e

0.
3

–
7.

5
m

.
Ba

se
-l

in
e

de
pe

nd
en

t
Li

gh
t-

po
w

er
de

pe
nd

en
t

Im
ag

e
re

so
lu

ti
on

U
p

to
20

4
×

20
4

H
ig

h
re

so
lu

ti
on

.C
am

er
a

de
pe

nd
en

t
Fr

am
e

ra
te

U
p

to
25

fp
s.

Ty
pi

ca
lly

30
fp

s.
C

am
er

a
de

pe
nd

en
t

Ta
bl

e
2.

4:
H

ig
hl

ig
ht

s
an

d
dr

aw
ba

ck
s

fo
r

th
e

th
re

e
3D

de
pt

h
co

m
pu

ta
ti

on
m

et
ho

ds
he

re
pr

op
os

ed
.

Chapter 3
Experimental Platform

31

33

MANFRED V2 Robot (MAN FRiEnDly Version 2) is a eight Degrees Of Free-
dom (DOF) mobile manipulator designed and built by Robotics Lab research group
from the Systems and Automation Engineering Department in Carlos III Univer-
sity of Madrid. MANFRED-2 is used as a general rule to test any algorithm devel-
oped by the researches. This includes MSc. students, PhD. students and Profes-
sors. It is used as an adhoc experimental platform for R&D in any field related with
robotics. Most of the technical details have been extracted from Rascón [33] and
Monar [34].

The main fields of application of MANFRED-2 are 2D and 3D location and
mapping, machine learning, safe path planning, manipulation, grasping, affor-
dance, multi-robot coalition formation, object recognition, SLAM, etc., allowing
the robot to get on with its surroundings autonomously. Those environments are
in any case designed for robots, increasing the difficulty during the perception of
anything around. Manfred has been designed to avoid obstacles, localize itself
inside a building or even turn the light on, but in this thesis, its main feature is
focused on 3D perception. It has to be capable of recognizing home items such as
cups, plates, glasses, mugs or any easy to handle objects, localize them and learn
new elements.

The robot has been designed following the standards of rovers, used for spacial
missions and also communication satellites. It has a differential mobile base (with
two DOF) and a lightweight anthropomorphic arm of six DOF. It is composed of
a list of independent sub-systems such as the sensory system, the locomotive sys-
tem, the on-board computer, the power distribution system, drivers, etc., that are
interconnected in such a way that it can be modified or improved in the near fu-
ture with less efforts. The modular design separates successfully the hardware
level (mechanical and electric interfaces) from the software level (communication
interfaces between applications). This characteristic simplifies the subsystems in-
tegration. Figure 3.1 presents in MANFRED-2 and some of the features and sub-
systems that the robot includes.

The platform has a total of eight DOF, six in the arm and two in the base. The
whole mechanical structure is connected through a common control board. It can
be tele-operated and remotely controlled using a computer. The robot is formed
by four main topics:

1. Mechanical and electric structure.- Main physical structure, drivers, batteries
and any device required to let the robot move.

2. Sensory interfaces.- Sensors and all devices in charge of perceiving externals

34 Chapter 3. Experimental Platform

MANFRED ROBOT

ELECTRIC SWITCHES

PERCEPTION SYSTEM

FORCE SENSORS

PMAC CONTROLLER

GRASPING TOOL

LASER RANGE FINDER

Figure 3.1: Experimental platform. Photo of MANFRED-2 and some of the subsys-
tems integrated in the platform. The modular design separates successfully the
hardware level (mechanical and electric interfaces) from the software level (com-
munication interfaces between applications).

3.1. Mechanical and Electric Structure 35

signals in order to make the robot decide how to behave.

3. Control system.- Description of the robot control system. Architecture and
technical description of its main parts.

4. Software layer.- Information about the software platform, the operative system
and other technical details about MANFRED-2 programming languages and
internal structure.

3.1 Mechanical and Electric Structure

MANFRED-2 was designed with a very desirable expectation resumed in various
specifications: high mobility for arm and base movements, mechanical and elec-
trical robustness, high movement repeatability and straightforward integration of
new parts and fixing based on a modular principle. Those requirements have been
established for both the anthropomorphic arm and the wheeled base, in order to
perform accurate, safe and human-like movements. Task performance has been
identified as a must, and for this reason the mechanical design is pretended to be
robust and reliable.

First sight improvements with respect to the previous robot version (formally
named MANFRED) are a better force balance, several communication enhance-
ments and a new software control. However, the force balance have been the most
noticeable change, allowing the new version to reproduce critical arm tasks with-
out taking extra risk. To do that, the base components (batteries, wiring, etc.) have
been re-organized counterbalancing the arm when the robot is accomplishing a
specific task. This tweak made the robot more stable and robust, making the grip
achieve further elements inside the workspace. The most significant mechanical
and electrical features are listed down below including the highlights versus the
prior version of the platform.

• Stability has been improved moving some of the elements of the base to a
lower height. The center of mass of the base has been displaced vertically.

• Rigidity has been boosted changing two elements: principal mast has been
extended to the bottom plate and more columns have been added between
the actual plates.

• Better calibration accuracy thanks to an improved height adjustment in the
drive wheels.

36 Chapter 3. Experimental Platform

• Redesign of the control panel to integrate safety button and switches in the
same location.

• Casing attachment has been improved to facilitate the access to internal pieces
with magnet strips.

3.1.1 Physical Description

MANFRED-2 structure is divided into two main parts: an octagonal base that sup-
plies with electricity the platform and the principal mast where the arm is attached.

The base, with a height of 250 mm, is formed by two octagonal aluminum
pieces one over the other one. Four batteries are integrated within the base, includ-
ing the power electronic boards required by the engines in charge of the wheels. As
mentioned before, the set of batteries of 12V and 45A/h disposed in serial connec-
tion are used as counterweight. Several DC/DC converters are included to cover
the current demand of any electrical or electronic device plugged into MANFRED-
2. Furthermore, the robot can be connected to a physical electrical network if de-
manded. Some of those elements can be seen in Figure 3.2.

Wheels are provided by Rockland Bayside, model DX 6-20-1M-P Servo-Wheels,
and use a brushless engine and a 20:1 reduction gear. Each wheel is provided also
with an optical encoder, model HEDS-5540-A06 with a resolution of 512 steps per
revolution. There are also three passive wheels in permanent contact with the base-
ment, providing a better stability to the base.

SWITCHESPOWER BOARDDRIVER WHEELSSET OF BATTERIES

Figure 3.2: Mechanical and electric details of the experimental platform. MANFRED-2 is
composed by a set of 24V batteries, two driven wheels, a control board with power
configuration and a set of switches to control the sensors.

3.1. Mechanical and Electric Structure 37

The principal mast is 150 mm height, fixed properly to the base. The mast sup-
ports the arm and the 3D camera among other sensors. The home position of the
arm is designed in such a way that if current is stopped, it can move to that posi-
tion without damaging other elements. Mast is designed with two anchor blocks
so another extra arm can be attached in a near future. Actually, a new version of
the robot is being designed and several new features will be listed afterwards.

Other elements found in the mast are 48 V DC/ 24 V DC to feed the SICK 3000
Laser, 48 V DC/ 12 V DC to feed the Asus Camera, 48 V DC/ ± 15 V DC traco-
power converters, fuses, supply power, power drivers for the arm, communication
wirings, and connectors such as RS-232, VGA, USBs and security switch buttons.

Table 3.1 covers the weighty elements of the platform

MANFRED-2 WEIGHTS

Device unit weight [kg] total weight [kg]
12V Battery 15.40 61.60

Support structure 29.00 29.00
Driver wheels 7.00 14.00

Wiring & comms. 6.00 6.00
Drivers 0.68 5.44

Computer 5.00 5.00
Electronic components 2.75 2.75

DC/DC converters 2.00 2.00
Caster wheels 0.42 1.26

Table 3.1: Weights of the main devices installed in the platform.

3.1.2 Robotic Arm LWR-UC3M-1

MANFRED-2 has been provided with a six DOF robotic arm, developed by sev-
eral researchers in the department. It has been named LWR-UC3M-1 (LightWeight
aRm UC3M-1) and it is designed to perform a large amount of manipulation tasks:
object grasping, robot-human tasks, open doors or switch the light in a room. It is
composed of rigid elements made of carbon fiber connected by revolution joints.

The DOF of the robot are delegated in the following form:

• SHOULDER with two DOF allowing movements in the antero-posterior and
transverse axis.

38 Chapter 3. Experimental Platform

• ELBOW with one DOF permitting the same movement as humans do.

• WRIST with 3 DOF, one for pronation-supination movement, another one for
abduction and adduction and the last for flexion-extension depending on the
relative position with respect to the previous joint.

The arm was designed with several material proposals such as magnesium, alu-
minum alloys, titanium alloys, lithium and carbon fiber. Magnesium was rejected
because its mechanical properties do not allow an easy mechanization. Titanium
is a high expensive material, lithium might become dangerous in direct contact.
Accordingly, aluminum has been used for almost the whole structure while some
links are made of carbon fiber. The links, hollow cylinders are used as transfer
elements for wiring, electronic components, control and electrical parts.

However, a new version of the arm LWR-UC3M-2 is being developed these
days. It has several new improvements that are listed in Table 3.2 and gathers the
most important highlights of this new arm with respect to the actual situation.

ROBOTIC ARMS COMPARISON

Characteristic LWR-UC3M-1 LWR-UC3M-2
weight [Kg] 18.00 11.00

max load [Kg] 4.50 5.00
range [mm] 955 1000

DOF 6 7
encoders relative absolute

tool grip hand

Table 3.2: Comparison between the actual robotic arm LWR-UC3M-1 and the new
approach LWR-UC3M-2.

The addition of the new arm in MANFRED-2 will turn the platform into a fully
anthropomorphic robot with two arms. The following Figure 3.3 contains both
versions, on the left the new LWR-UC3M-2 arm and on the right the actual version
LWR-UC3M-1.

The actual arm is located on the lateral side of the mobile robot’s mast in such
a way that the computer vision sensors and laser telemetry systems are not inter-
fered with the arm. The arm joints are equipped with DC brushless motors from
Kollmorgen and Harmonic Drives model HFUC-2UH for reducing the speed and
increasing the torque. An optical encoder HEDS550 is included to measure the ro-
tations and a presence inductive sensor is attached on each motor to find out the

3.1. Mechanical and Electric Structure 39

Figure 3.3: Robotic arms LWR-UC3M-1 and LWR-UC3M-2 . Left image shows the
new version of the arm that will be provided in the near future to MANFRED-2.
Right image shows the actual version LWR-UC3M-1.

home position for each joint. LWR-UC3M-1 encoders are relative, as shown in Ta-
ble 3.2. This means that encoders are designed to return relative information from
the home position to the actual position.

Home position has been designed to have each motor relaxed with no energy
consumption. To convert any relative measurement to absolute values, the robot
arm has to be moved to the home position, and from there, to the desired point.
The home function has been implemented direct into the PMAC2-PCI.

3.1.3 Anthropomorphic Robot Hand: Gifu Hand III

Two of the most challenging tasks that are being faced these days in the research
group are the control and integration of the anthropomorphic robot hand named
Gifu Hand III from the Virtual System Laboratory in Gifu University [35] in MANFRED-
2. Some of the technical specifications of the hardware are listed in Figure 3.4.

The Gifu Hand is a five-fingered hand driven by built-in servomotors and has
20 joints with 16 DOF. The hand is controlled with ART-Linux real-time operating
system. The thumb has four joints with four DOF and each of the fingers has four
joints with three DOF each. The movement of the first joint of the thumb and of the
fingers allows adduction and abduction, and that of the second joint to the fourth
joint allows ante-flexion and retro-flexion.

40 Chapter 3. Experimental Platform

Figure 3.4: Structure of Gifu Hand III. Representation of the robotics hand from
different views and mobility space for each finger. In red the space for the thumb,
in green for the rest.

The most advanced characteristics of this hand are: a high response (the mini-
mum bandwidth of the robot hand is 7.4 Hz while the human hand is even lower
than 5.5 Hz) and a large opposability of the thumb. Furthermore, it can be enveloped
with a distributed tactile sensor that consists on a grid pattern of electrodes and
uses conductive ink in which the electric resistance changes in proportion to the
pressure on the top and bottom of a thin film. This sensor can be easily attached to
the hand providing with valuable outputs and statistics for grasping researches.

3.2 Sensory Interfaces

Several sensors are attached to MANFRED-2 including lasers for 2D location, mo-
torized lasers for 3D location and mapping, odometry sensors or perception sen-
sors. Each of them transforms a physical variable into a logical variable, allowing
the robot to acquire, transform, interpret and react to any external impulse per-
forming tasks.

3.2.1 Force Sensor

In order to let MANFRED-2 perform safe and effective manipulation tasks such as
holding the doorknob or pressing a switch, a force/torque sensor is included in the

3.2. Sensory Interfaces 41

end point of the arm from JR3 manufacturer, model 67M25A50-I40. It can measure
as far as 11 kg with a weight of 0.175 kg at 8 measures per second rate. It has
been displayed in Figure 3.1. Force sensor is implemented with six strain gauges
proportional to the force applied in X ,Y and Z axis. However, this sensor requires
of a digital signal converter (DSP) to process the output. In this case, a ADSP-
2184 sensor from Analog Devices is in charge of converting the analog signal into
a digital value. Finally a PCI card connects the DSP with the computer where data
is then processed.

3.2.2 Laser Telemetry Sensors

Navigation, localization and mapping are abilities that require from external in-
formation to be successfully carried out. The aim of telemetry sensors is to pro-
vide with 2D or 3D data representing which are the obstacles around the robot.
If the robot has to avoid objects on its way, recognize where it is positioned in a
workspace or estimate a motion planning, measuring the surroundings is quite
imperative.

Two different sensors are included in MANFRED-2. Both are laser range finders
and their details are listed above:

• SICK S3000.- A bi-dimensional laser telemeter SICK S3000 Professional CMS
is located at the base of the robot. Its assignment is to detect objects with a
minimum size of 35 cm in a range between 0.1–10 m. Examples of these ob-
stacles are people feet, chairs, boxes and walls. Its angular resolution is 0.25o

(with a 180o opening range) and has a power consumption of 800mA with
24V. It is connected to the computer directly using a USB 2.0 port. It has been
mounted on a movable stand to permit pitch movements so a 3D scenario
can be modeled (see Figure 3.5) with consecutive scans. Measurement error
is below 10 mm.

• HOKUYO UTM-30LX.- This telemeter has a better opening range reaching
270o with a distance range between 0.1–30 m. This sensor is located at 1 meter
above the ground to intercept not only navigation obstacles but also further
elements such as walls, room openings or doors. Due to its 0.25o angular
resolution, it acquires 1081 measures per scan in 25 ms. It is connected to the
computer directly using a USB 2.0 port and consumes about 12V and 700mA.

42 Chapter 3. Experimental Platform

Figure 3.5: Laser Telemetry Sensor. Result of the SICK 3000 range laser sensor scan-
ning in the laboratory on the left; a detail of the pitch-movable stand on the right.

3.3 Control System

The platform has been provided with eight motors distributed in two parts: two
in the base and six in the arm. All those motors have to be controlled constantly.
For this reason, a controller card has been installed.

The PMAC2-PCI is a Programmable Multi-Axis Controller card developed by
Delta Tau Data Systems Inc. It is a high performance device able to control eight
axis simultaneously with high precision. Tunning its more than a thousand con-
figuration variables, PMAC2-PCI is more than enough to control the eight DOF.
It is connected to a computer via PCI bus or using a serial port. PMAC2-PCI (see
Figure 3.6) is able to run its own applications independently as an industrial com-
puter. The DSP that has been incorporated is DSP56002 of 24 bits with an operation
frequency of 40 MHz. It works in real time and it supports multi-task operations.

However, PMAC2-PCI controller card cannot be connected directly to the mo-
tors. It requires an intermediate interface. In this case, control commands to the
motors are transmitted using an additional card named ACC-8E. Each 8E card is
fed with±15V, has four 18-bit D/A converters and is able to command two motors
using an analog input. Thus four of those cards are needed to control the full plat-
form. Furthermore, each 8E card is plugged in the control card through a 100-pin

3.3. Control System 43

Figure 3.6: PMAC2-PCI. The control unit for MANFRED-2 manipulator robot is an
eight axis controller card PMAC2-PCI.

flat bus named JMACH.

There exist two guidebooks named Software reference manual and PMAC2 user
manual that explain how to configure and make use of the controller card. Set-up
and starting operations of PMAC2-PCI card are extremely arduous assignments
that must be performed with certainty. Configuration variables are referenced as
I-variables and there exist 1025 altogether. Manufacturer provides with a software
that allows tunning the modification of the configuration parameters and includes
other interesting tools such as:

• Terminal window.- For sending ASCII encoded commands to the card.

• Watch window.- Track and modify internal variables in real time.

• Position window.- Trace motor movements, encoder positions, speed and track-
ing errors.

• Tunning Pro.- Configure each PMAC2-PCI parameter such as PID, filters,
DAC calibration files, etc.

PMAC2-PCI controller card is able to execute different programming commands:

• Motion programs.- Controller card executes a task line by line. Each task corre-
sponds with a specific command such as motor movement.The PMAC2-PCI
controller card can store and execute up to 256 motion programs and is ready
to execute another program or terminal commands.

44 Chapter 3. Experimental Platform

• Programmable Logic Controller.- If a program needs to be executed asynchronously
during a large amount of time, they have to be PCL coded. These snippets
are exactly equal to motion programs with the only difference that they in-
clude a header at the beginning of the code to classify them as PCL. Once
the program is run, the controller card will execute the code on each cycle as
long as it is possible.

Chapter 4
Detecting supporting planes

45

47

This chapter proposes a novel plane fitting algorithm that improves the robust-
ness of state of the art alternatives for this. It is based on DE algorithm. As this
optimizer is used multiple times throughout the document, this chapter is going to
focus on the problem statement and not on the optimizer particularly. Neverthe-
less, the genetic algorithm will be described in detail in the subsequent chapters.
As a main advantage of this contribution, the plane fitting proposal yields better
results in cluttered scenarios where the quantity of objects resting on a table would
become an issue for the plane computation.

As this thesis is mainly based on perception, the Asus Xtion Pro Live 3D sen-
sor as three-dimensional sensor device has been selected. This camera version is
categorized as a developer version of the original Kinect camera with several mod-
ifications to make it simpler: tilt and pan motors are avoided and the microphone
array has been reduced to just two of them. This sensor is positioned in the front
upper part of MANFRED-2 as shown in Figure 3.1. From this position, the robot
perceives the environment as humans do. Figure 4.1 shows an example of a room
with objects and how the robot perceives that environment.

Figure 4.1: MANFRED-2 Perception example (a) Texture of the 3D scenario perceived
by the robot. (b) Depth representation of the 3D scenario in gray scale. The darker
the region, the closer to the sensor.

The robot has to interpret the information acquired by the camera and trans-
form it into real data. Before light coding technology came up, 2D segmentation
was performed using HSV color segmentation such as Dillmann et al. [36] or Rusu
et al. [37] converting shape blobs into 3D poses using PCA to reduce dimension-
ality. This solutions were based on huge databases of different views for the same

48 Chapter 4. Detecting supporting planes

object and then compressed into eigen-views. Those techniques are slow and, more
importantly, color dependent.

Lately, with the overrunning of stereo vision and RGB-D systems, 3D analysis
started. Researchers such as Rusu et al. [37] began extracting supporting planes
using stereo vision. These alternatives focus the problem to those points suffi-
ciently close to the plane. They proposed a supporting plane extraction based on
RANSAC (as will be explained below from Zuliani [38]). However, they claimed
that according to the Extended Gaussian Image (EGI), most of the estimated point
normals in their datasets are found around the principal XY Z directions. Hin-
terstoisser et al. [39] merged both visual features and 3D data avoiding planes
detection. This solution required of more than 3000 templates comparison of each
object to be detected but it can become extremely fast when programmed in GPU.

In order to provide MANFRED-2 with a successful object grasping, 3D map
will be examined so any supporting planes will be extracted. As a general rule,
any plane found on the raw point cloud will be chosen as a candidate. Afterwards,
a filter will choose if there exist a principal supporting plane and populate it de-
pending on several conditions:

• Percentage of inliers at a certain thresholded distance to the proposed sup-
porting plane.

• Orientation based on the geometrical parameters of the proposed supporting
plane.

Until now, multiple ways of ground segmentation have been proposed for
robot navigation and obviously SLAM applications. Most of them were based
on color maps provided by an on board camera, extracting texture features such
as Cherian et al. [40]. Others such as Milellaet al. [41] use a specific mixture of
sensors such as radars and cameras to determine the path. In three-dimensional
perception, there exist multiple ways to extract planes inside 3D point clouds. The
majority try to fit multiple parametric models inside the data using a geometric
arrangement of the input data points. For instance, Linarth in [42] is based on a
Bayesian hypothesis using a Particle Filter to provide a robust estimation of the
plane parameters taking in mind the non-linearities.

However, using exclusively depth data is possible to determine the planar seg-
mentation. Enjarini and Gräser [43] proposed a gradient of depth feature to filter
points belonging to surfaces based on their relative depth to neighbor pixels. Each
pixel is then defined by two components: Magnitude Gradient of Depth (MGoD) and

4.1. Estimating 2D Lines 49

θ1x1 + θ2x2 + θ3 = 0

d
eM(d;θ)

Figure 4.2: Estimating 2D Lines. Line fitting for 2D data.

Directional Gradient of Depth (DFoD). Both features are based on pixel-wise depth
information. The author proposed in Bueno et al. [44] a ground truth method based
on depth.

This thesis proposes a novel plane fitting method based on evolutionary al-
gorithms as will be described later. Error measurement is generally performed
applying a generalization of least squares (LS) problem. The LS technique is proved
to be inefficient for nonlinear estimations but can be largely improved. The esti-
mation filtering method is based on the optimization of the observation likelihood
but without modeling a probabilistic distribution.

4.1 Estimating 2D Lines

In order to understand the 3D model fitting problem, it is recommended to start
with a 2D simple case and extrapolate it to three-dimensional statement. Consid-
ering a set of N points D = {d1, d2, ..., dN} ⊂ R2, the estimation of the best line
(model) that fits such points is desired. There exist an error function that repre-
sents the consistency of the model such as

eM(d;θ) =
θ1x1 + θ2x2 + θ3√

θ2
1 + θ2

2

(4.1)

This error is a monotonically increasing function of the absolute value of the
signed error. And the modelM used to fit the measurements is θ1x1 +θ2x2 +θ3 = 0,
θ ∈ R2 being the parameter vector. This fitting is known as orthogonal regression
because of its nature: each sample point is evaluated measuring the orthogonal

50 Chapter 4. Detecting supporting planes

distance to the model itself.

If the fitting error is modeled as a Gaussian random variable with zero mean
and ση standard deviation (eM(d;θ) ∼ N (0, ση)), the maximum likelihood estima-
tion will try to find the parameter vector θ that maximizes the likelihood of the
joint error distribution such as

L(θ) ≡ p[eM(d1;θ), ..., eM(dN ;θ)] (4.2)

where p represents the joint probability distribution function (pdf) of these errors.
The estimate of the parameter vector that maximizes the probability of observing
the signed errors eM(d;θ) is given by

θ̂ = arg max
θ
L(θ) (4.3)

Assuming that error distributions are independent, it is valid to consider log-
likelihood since logarithm operator is a monotonically increasing function which
does not affect the maximization problem L∗(θ) ≡ logL(θ), and therefore

L∗(θ) = log
N∏
i=1

p[eM(di;θ)] =
N∑
i=1

log p[eM(di;θ)] = (4.4a)

=
N∑
i=1

(
log

1

ZG
− 1

2

(
eM(di;θ)

ση

)2
)

(4.4b)

where ZG =
√

2πση gives the normalization parameter for the Gaussian distribu-
tion. The maximum likelihood estimate of the parameter vector is given by

θ̂ = arg max
θ

N∑
i=1

(
log

1

ZG
− 1

2

(
eM(di; θ)

ση

)2
)

= arg min
θ

N∑
i=1

1

2

(
eM(di; θ)

ση

)2

(4.5)

That represents the well known least square estimator.

4.1.1 Outliers, Bias and Breakdown Point

Assuming that there exists a true model (with a set of true parameters) of the ob-
served data, an outlier its considered to be any datum failing a statistical hypothe-
sis test such as Chi-square. Outliers are commonly comprised by noise side effects.
Therefore inliers are considered all the subsets that are not outliers. There is an-
other parameter named bias with a huge significance while studying the behavior

4.1. Estimating 2D Lines 51

of the estimation.

Let DI ⊂ D be a set of inliers and let DI|O(m) be the previous set after m inliers
that have been replaced by random outliers. Bias measures the maximum pertur-
bation that can be found using only inliers and then replacing some of them by
outliers. It is defined as

biasM(m;DI) ≡ sup
DI|O(m)

Ω
[
θ(DI),θ(DI|O(m))

]
M (4.6)

where Ω function measures the distance between parameter vectors for each sub-
set and any p−norm based distance can be used. Finally, breakdown point BP
is defined as the minimum ratio of outliers that can increase the bias parameter
consistently. That is,

BPM(DI) ≡ min

{
m

|DI |
: biasM(m;DI) =∞

}
(4.7)

4.1.2 Minimal Sample Set

Minimal Sample Set (MSS) is considered as the minimum number of datum ele-
ments that permits to determine a parameter vector entirely. For instance, if the
desired parametric model is a line, two points are required in order to identify the
line uniquely. Likewise, if the model is a plane, three points are required.

4.1.3 Random Sample and Consensus

As stated during the previous section, the aim of this part of the process is to deter-
mine the location of any supporting plane that might exist inside the point cloud.
Facing the problem that there might exist a large quantity of noise inside the data
source (any object lying on the plane, artifacts due to shiny areas, any inconsistent
point captured through the sensor, etc.), it is necessary to use a robust estimator
ready to handle outliers even larger than 50% of the complete dataset.

RANSAC algorithm (RANdom Sample And Consensus) has been demonstrated
to be a powerful tool in terms of robustness, convergence speed and stability. The
following explanation aims to illustrate the base of this method and how to put
it into practice to solve the supporting plane statement. RANSAC comprises two
steps that are iteratively repeated:

• Hypothesize.- First MSSs are randomly selected. Parameter vector is com-
puted using exclusively the selected elements of the MSS.

52 Chapter 4. Detecting supporting planes

• Test.- Check how good each element fits in the entire dataset with the param-
eter vector generated during the previous step. All those elements consistent
with the model take part of the consensus set (CS).

The more elements gathered in the CS, the better representation of the parame-
ter vector is achieved. The algorithm stops when the probability of finding a better
CS is below a threshold value.

Terminology and Preliminaries

Table 4.1 explains the nomenclature used during the rest of the section.

Symbol Description
superscript (h) hth iteration

x̂ estimated value of the quantity x
N number of elements of input dataset

D = {d1, ...,dN} input data set
S indicate a MSS

θ ({d1, ...,dh}) parameter vector using the subset {d1, ...,dh}
fM smooth function whose zero level set contains all the points

that fit the modelM based on θ

Table 4.1: Terminology and preliminaries for RANSAC algorithm

The model spaceM (see Fig. 4.3) represents all those points that fulfill fM

M(θ) ≡ {d ∈ Rd : fM(d;θ) = 0} (4.8)

In order to determine a CS, it is necessary to define an error function that mea-
sures the consistency of the datum on the proposed model space. Distance between
datum d and model spaceM(θ) is

eM(d;θ) ≡ min
d′∈M(θ)

Ω(d,d′) (4.9)

being Ω(·, ·) a suitable distance function. Now a CS can be defined as

S(θ) ≡ {d ∈ D : eM(d;θ) ≤ δ} (4.10)

where δ is a threshold value that has to be set specifically on each problem.

4.1. Estimating 2D Lines 53

Rd

M(θ)

Figure 4.3: RANSAC theoretical aspects. Representation of the model space M in
dark magenta. Light magenta surfaces represent the boundaries for the inliers. All
datum between those surfaces are considered part of S. White dots represent the
inliers and their arrows measure their relative distance to the model space.

Procedure

A MSS s(h) is randomly selected from D. Secondly, the parameter vector θ(h) is
computed using uniquely the MSS datum. Thirdly, RANSAC measures the con-
sistency of the complete dataset D based on θ(h) and, if succeeds, it updates the
current best CS referenced as S∗. If the probability of finding a better CS turns be-
low a threshold, the algorithm finalizes. There exists a termination criterion based
on the maximum number of iterations for the algorithm to recognize S∗.

Determining the number of iterations

The best estimation of the model parameters will be generated picking up a MSS s
containing solely inliers. The probability of achieving this situation is q. Therefore,
there is a probability 1 − q of picking at least one outlier. The more number of
iterations h, the less probability of obtaining all MSS contaminated by at least one
outlier (1 − q)h. h must be chosen so that the probability (1 − q)h is lower than a
certain value ε.

(1− q)h ≤ ε =⇒ h ≥
[

log ε

log (1− q)

]
(4.11a)

T̂iter =

[
log ε

log(1− q)

]
(4.11b)

54 Chapter 4. Detecting supporting planes

Creating the MSSs

The probability of choosing a MSS composed with all the inliers (all elements with
the same probability of being chosen) is defined as

q =

(
NI

k

)
(
N
k

) =
NI !(N − k)!

N !(NI − k)!
=

k−1∏
i=0

NI − i
N − i

(4.12)

where k represents the cardinality of the MSS (the smallest sufficient to determine
the parameter vector) and NI is the total number of inliers. Because k is much
lower than the number of inliers and even much lower than the total population.

q ≈
(
NI

N

)k
(4.13)

This is equivalent to say that the probability of choosing the true MSS is ap-
proximately the same as picking consecutively k elements from the total datum
population.

Experimental values

The experimental values used for plane extraction using the PCL library are stated
in Table 4.2.

Parameter Value
N ≈ 87286
δ 0.005 m
ε 0.99

T̂MAX
iter 1000

Table 4.2: Experimental values for the plane extraction

In Figure 4.4 the experimental result of the RANSAC algorithm has been repre-
sented for one plane candidate. Firstly, the color environment is displayed on the
left (for understanding purposes). Lastly, the result of the algorithm in a 3D point
cloud is represented on the right, where datum has been differentiate between in-
liers in green and outliers in blue.

However, as stated before, part of the problem comes when more than one
plane is found by the algorithm as shown in Figure 4.5, where a large environment
point cloud is represented and several planes can be found.

4.2. Evolutionary Plane Fitting 55

Figure 4.4: Supporting plane estimation. (a) Global-view of the scenario with the
table colored in blue. Notice the amount of noise provided by the background
items; (b) Top-view of the scenario. 3D shadows are projected in the supporting
plane; (c) Front-view of the scene with some details of the objects lying on the table.

4.2 Evolutionary Plane Fitting

As a contribution for this work, a plane fitting comparison has been performed in
order to measure the robustness of RANSAC based on the quantity of objects lying
on the supporting table. That is, the higher the number of outliers, the larger the
error must become during the plane fitting. The classic iterative method has been
compared with an evolutionary algorithm based on Differential Evolution (see Ap-
pendix A for more information about DE) in order to determine if multi-modal
functions are more adaptable and versatile as the the number of points grows.
Considering a set of N points D = {d1, d2, ..., dN} ⊂ R3, the estimation of the best
plane (model) that fits such points is desired.

Taking Equation 4.1into account, there exist an error function that represents
the consistency of the model for R3 such as

eM(d;θ) =
|θ1x1 + θ2x2 + θ3x3 + θ4|√

θ2
1 + θ2

2 + θ2
3

(4.14)

For this experiment, the proposed fitness function is represented in Equation

56 Chapter 4. Detecting supporting planes

Figure 4.5: Several planes in a large environment. Left frame shows a dense point
cloud of an office where multiple planes can be found. In right frame several
planes have been found and have been represented in different colors. Not all
of them are valid candidates to become a supporting plane.

4.15. It considers the distance between an evolutionary plane formed by θ and the
list of elements in the point cloud.

arg min

θ

∑
N

eM(d;θ) (4.15)

The stochastic search of the matching pose is done using the DE method for
global optimization problems over continuous spaces. The evolutionary plane is
formed by four elements on each iteration k such as

popk = (θk1 , θ
k
2 , θ

k
3 , θ

k
4) (4.16)

where popki represents the candidate supporting plane at iteration k. The initial
population might be chosen randomly at first glance because there is any fact or
information of the pose of the robot and its relative position with the table. If a
global map is provided based on global localization techniques such as SLAM, the
initialization of the candidates would lead to a faster convergence. However, the
physical constraints of the robot can reasonably determine an initial value for the
population taking into account that the camera is positioned at 1.6 m. and that the
supporting plane must be located at a height of 1 m approximately for the robot to

4.2. Evolutionary Plane Fitting 57

reach the object. For this reason, the initial values of the algorithm could be empir-
ically established.

The convergence of the algorithm has been established with a maximum fixed
number of 100 iterations or no changes in the population member cost functions
(global convergence). Other stop alternatives such as maximum error distance or
threshold timing have been excluded because the error depends on several param-
eters that make it unfeasible to determine an adaptive factor and time may vary
substantially. A few of those uncontrolled parameters are the number of objects,
occupancy of those clusters in the scene or even the distance between the robot
and the supporting plane.

4.2.1 Stabilization of Parameters

The first experiment evaluates the consistency and repeatability of θ for both alter-
natives. This is performed calculating the plane equation in a tidy scenario where
only the table is presented opposite to the robot. The errors for both estimators
are represented in Figure 4.6 for a set of 100 estimations. The static error has been
computed as the error distribution of the fourth parameter of the plane estima-
tor θ4 that represents the euclidean distance between the table and the pose of the
sensor (camera height). The difference between the estimated parameter and the
experimental value θ̂4 has been calculated

ξ = 100 · |θ̂4 − θ4|
θ̂4

(%) (4.17)

Both estimator errors ξRANSAC and ξDE behave as two Gaussian distributions
with the following parameters:

ξRANSAC(%) = N (3.62722, 0.09262)
ξDE(%) = N (3.35306, 0.3261)

(4.18)

Thus, the standard deviation of the evolutionary estimator is wider than ξRANSAC
but the average error is smaller. That is, DE offers a better performance execution
with a small average error nonetheless with a higher variation degree. RANSAC
error range moves in the range [3.53459, 3.71984], while DE moves in the range
[3.20458, 3.85678], meaning that probabilistically the evolutionary estimator has a
better performance than RANSAC in average though more diffused.

Futhermore, the importance of the algorithm does not only resides on this sta-
bility but on the global estimation for cluttered scenarios. A large portion of this

58 Chapter 4. Detecting supporting planes

4% of static error can be attached to the physical sensing device, lighting condi-
tions and surface material.

0%

1%

2%

3%

4%

5%

6%
ξ(%)

observations

RANSAC ESTIMATOR
EVOLUTIONARY ESTIMATOR

Figure 4.6: Error comparison. Comparison of relative errors for RANSAC and the
proposed evolutionary plane estimator for an experiment with 100 measures.

4.2.2 Estimator Robustness

The goal is to compare both plane fitting strategies in terms of robustness against
noise and time to extract the plane. Thus, a set of scenarios are prepared in the lab-
oratory where on each case, the number of objects lying on the table is increased.
Each scene contains a different portion of inliers/outliers that will be increased
until obtaining a full cluttered scenario as shown in Figure 4.7. Given the equa-
tion of the supporting plane without elements on it, it becomes straightforward to
measure the deviation of the parametric equation parameters for both models and
determine the robustness against objects shadowing the supporting plane.

Figure 4.8 explains the behavior of RANSAC and evolutionary plane fitters
with the increase of objects laying in the scenario. As can be noticed, the abruptly
changes of RANSAC estimation are exaggerated after observation 137 in the ex-
periment. Contrary to that, the DE based algorithm behaves steady, stable and
nonfluctuating. This happens because the proper nature of RANSAC is based on

4.2. Evolutionary Plane Fitting 59

Figure 4.7: Example of a cluttered scenario. The number of outliers treble the number
of points forming the supporting plane. Left image highlight in blue the plane
equation in the 3D point cloud while left image shows the real scenario viewed
from the color camera.

an iterative process with random selection, while the genetic algorithm improves
the inlier selection on each iteration. The last observation corresponds to the worst
scenario evaluated and it is displayed in Figure 4.7 for a better understanding pur-
poses. Using the evolutionary estimator it is not necessary to track the supporting
plane with solutions such as Kalman or Particle Filters [45] for these types of clut-
tered scenarios.

However, to get a better idea of what is happening internally in both estima-
tors, it is necessary to track not only the error but the number of inliers processed
on each observation. Table 4.3 contains the parameters of the fitting planes for
both estimators at several points of the experiment. Figure 4.9 contains the num-
ber of inliers with respect to the ouliers for each observation. As can be noticed,
as long as the error increases, the number of estimated inliers decreases instantly
and vice-versa. The experiment has been performed with a total number of 164761
points. However, this number may vary as the point cloud is filtered and spurious
measures are removed.

60 Chapter 4. Detecting supporting planes
ξ(%)

observations

RANSAC ESTIMATOR
EVOLUTIONARY ESTIMATOR

0%

2%

4%

6%

8%

10%

12%

Figure 4.8: Comparison of relative errors. Comparative between RANSAC and the
proposed evolutionary plane estimator for an scenario where a large list of objects
are positioned on the table inducing to misalign the original plane equation.

It is important to highlight that both estimators extract almost the same propor-
tion of inliers during the experiments until a certain moment when the RANSAC
estimator falls down. This happens when the number of inliers sums below 72%.
After that happens, the estimations start failing and being unstable. Contrary to
that, the evolutionary plane fitting estimator reduces the inliers gradually, becom-
ing more stable and steady.

4.2.3 Time Analysis

As it has been stated in the literature multiple times, one of the most significant
drawbacks of Genetic Algorithms (GA), and more precisely in Evolutionary Algo-
rithms (EA), is the large amount of time that those algorithms require to converge
into a reasonable solution. This happens because of the proper nature of the evolu-
tion, as the algorithm needs to improve previous records in parallel, which requires
a high computational cost.

The elapsed time for both estimators is quite dissimilar. RANSAC spends as
much as 49,409 ms per observation, while the evolutionary estimator requires

4.3. Geometric and Outlier Filtering 61

PLANE FITTING PARAMETERS ESTIMATION

ICP parameters Evolutionary parameters
A B C D A B C D

0.0670087 -0.781455 -0.620353 0.674016 0.0639165 -0.781623 -0.620468 0.673949
0.0802332 -0.778951 -0.621930 0.675195 0.0716981 -0.780098 -0.621536 0.674658
0.0835140 -0.778814 -0.621670 0.675022 0.0774038 -0.780234 -0.620680 0.673850
0.0826786 -0.780034 -0.620251 0.673722 0.0772123 -0.780661 -0.620167 0.673975
0.0826191 -0.779979 -0.620327 0.673695 0.0776226 -0.780232 -0.620655 0.673782
0.0822349 -0.778656 -0.622038 0.675423 0.0781921 -0.784379 -0.615334 0.668163
0.0826251 -0.779832 -0.620512 0.673967 0.0772753 -0.780413 -0.620470 0.673678
0.0830126 -0.779504 -0.620873 0.674231 0.0771343 -0.780211 -0.620742 0.673889
0.0821487 -0.779545 -0.620936 0.674250 0.0772315 -0.780186 -0.620762 0.673881
0.0832413 -0.778810 -0.621712 0.674860 0.0774314 -0.780218 -0.620696 0.673840
0.0830310 -0.778514 -0.622111 0.675265 0.0770501 -0.780217 -0.620745 0.673865
0.0825714 -0.779821 -0.620534 0.673916 0.0633838 -0.779597 -0.623066 0.671071

Table 4.3: Plane parameters for both estimators at different observations of the
experiment: 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110. Most parameters varies
after the third digit.

1742,495 ms to do the same job, one order of magnitude more. However, contrary
to the belief that RANSAC can be the best choice as it requires less time, manipu-
lation tasks demand good quality models as they are decisive for grasping tasks.

Figure 4.10 summarizes the problem of a bad and noisy plane estimation. One
of the items of the supporting plane is analyzed at several observations during
the experiment applying the plane parameters given by RANSAC. As can be seen,
as far as the number of objects increases, the bottom part of the object is avoided
reducing the total number of faces of the mesh up to 8.95%. However, this number
can be easily increased if the object has a strong horizontal arrangement such as
boxes or plates and more perceptible in small objects as pens or markers. This
value falls down to 2.47% if the evolutionary plane estimator is adopted.

4.3 Geometric and Outlier Filtering

The ultimate goal of the process is not only to extract the plane model M but to
ensure that it corresponds to a valid supporting plane, meaning that θ represents a
horizontal orientation plane. This can be done with the dot product of the normal
associated to the plane −→nθ ′ and the y−axis −→ny.

62 Chapter 4. Detecting supporting planes

pr
op

or
ti

on
of

in
lie

rs

observations

RANSAC INLIERS

DE INLIERS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Figure 4.9: Comparison of relative errors. Comparison of relative errors for RANSAC
and the proposed evolutionary plane estimator for a scenario where a large list of
objects are positioned on the table inducing to misalign the original plane equation.

Notice that before applying this condition, it is required to take into account
the view-point transformation. Camera global rotation and translation Tcam have
to be taken into account by projecting the point cloud using the parametric model
generated beforehand

Tcam = (Rcam|tcam) (4.19)

so −→nθ = Tcam · −→nθ ′. Therefore, any plane can be accepted as a supporting plane if

|−→nθ · −→ny| =
|θ2|√

θ2
1 + θ2

2 + θ2
3

≤ τy (4.20)

Values of τy can vary from 0.8 to 0.95 for most of the cases. If the plane model
does not reach the orientation condition, the plane is rejected.

4.3.1 Selecting the Most Dense Plane

Even after filtering those candidates which are not horizontal, it is possible to deal
with more than one candidate. There must exist only one principal supporting
plane. To do that, planes are sorted by number of inliers and the most dense one
is chosen only if the ratio between its number of inliers in comparison with the

4.3. Geometric and Outlier Filtering 63

15386 FACES 14976 FACES 14818 FACES 14201 FACES 14008 FACES

Figure 4.10: Errors due to wrong plane fitting. Comparison of the same object ex-
tracted using different plane estimations. The amount of information relative to
the object is reduced with the addition of noise elements into the depth map for
RANSAC plane fitting.

−→nθ = 1√
θ2
1+θ2

2+θ2
3

(θ1, θ2, θ3)−→ny = (0, 1, 0)

θ1x1 + θ2x2 + θ3x3 + θ4 = 0

Figure 4.11: Orientation filtering. Result after applying an orientation filter in order
to select a valid supporting plane

number of inliers of the following candidate is larger than a certain value ϕ. So, if
the list of p candidates is Θ = {θ1,θ2, ...,θP}, where P is the number of candidates
and they are sorted by NI(p), it yields

θsel =

{
θ1 if NI(1) > ϕ ·NI(2)

null if NI(1) ≤ ϕ ·NI(2)
(4.21)

Threshold parameter ϕ can be discussed further, but a fixed value between 1.6
and 2.5 is enough for most of the cases (meaning that the first candidate contains
between 40% to 60% more inliers than the second one). This decision makes sense

64 Chapter 4. Detecting supporting planes

assuming that the robot is adjacent to the workspace. That is, the principal sup-
porting plane becomes θsel.

Chapter 5
Clustering point clouds

65

5.1. k-means distance clustering 67

Once the supporting plane is detected, next step to be carried out is to find
datum near to the surface and classify them into independent clusters. This pro-
cedure must be performed in an unsupervised way and the result must be a list
of subsets that could represent objects that will need to be recognized afterwards.
There exist multiple techniques to segment clusters: based uniquely on relative
distance between datum, gather them based on normals, training with predefined
models [46], mixing color and texture with geometric constraints [47], using graph-
based [48] or even based on parametric models [49]. Clustering techniques are
quite interesting to reduce computation times if patterns have to be found or point
clouds have to be analyzed simply because they segment interesting datum from
background (or uninteresting) information.

5.1 k-means distance clustering

The k-means algorithm is one of the most famous unsupervised clustering algo-
rithms. The procedure follows a simple strategy to classify a given data set of n ob-
servations (p1, p2, ..., pn) through a fixed number of k clusters C = {C1, C2, ..., Ck}.
The main idea is to define k centroids ck, one for each cluster. These centroids
should be placed wisely since varying its initial location may cause unexpected
results. Afterwards, each single observation is associated to the nearest centroid
using a custom distance function. When every point is classified, an iteration is
performed. At this point, each ck is recomputed and updated based on the actual
clustering. If this process is repeated a sufficient number of times, centroids might
converge to a stable position. The formulation for such minimization is called
within-cluster sum of squares (WCSS) and it is defined as

arg min
C

k∑
i=1

∑
pj∈Ci

‖pj − ci‖2 (5.1)

where a norm L-2 distance measurement between any single datum and the cluster
center is considered. The summation gathers the distance of theN data points from
their respective cluster centers. The algorithm is stochastic and is composed of four
steps:

1. Initialization.- Place k points into the space represented by the objects that are
being clustered. These points represent initial group centroids.

2. Assignment.- Assign each object to the group that has the closest centroid.

3. Recalculation.- When all objects have been assigned, recalculate the positions
of the k centroids.

68 Chapter 5. Clustering point clouds

ARBITRARY INITIAL SELECTION ORIGINAL CONSENSUS

CENTROID CALCULATION CLUSTER REASSIGNMENT

Figure 5.1: k-means algorithm. Graphical explanation of k-means algorithm and the
evolution of three clusters. Last two steps are repeated until centroids converge to
a stable position

4. Convergence.- Repeat Steps 2 and 3 until the centroids no longer move. This
produces a separation of the objects into groups from which the metric to be
minimized can be calculated.

Although this solution will always converge, the k-means algorithm does not
necessarily find the most optimal configuration, corresponding to the global objec-
tive function minimum. The algorithm is also significantly sensitive to the initial
randomly selected cluster centers as the initial centroids are stochastically selected,
giving different solutions at each run. The k-means algorithm can be run multiple
times to reduce this effect. Nevertheless, Yuan et al. [50] and [51] introduces an im-
provement in the initial centroids assignment by evaluating the distances between
every pair of data-points and then trying to gather those similar pairs. Figure 5.1
represents the evolution of the algorithm and the results on each iteration. JianYu
[52] compares the k-means method with Otsu image thresholding method as they
are both based on a same criterion minimizing the within-class variance.

In terms of speed, Na et al. [53] proposes a summation buffer that reduces
the number of times calculating the distance between each data element and all
cluster centers in each iteration reducing one half the execution time. Others such

5.2. Estimating Surface Normals and Curvature 69

as Hong-tao et al. [54] designed a GPU (Graphics Processing Unit) alternative of
the algorithm that parallelizes the full process using CUDA, obtaining 40 times of
the CPU-based version.

5.2 Estimating Surface Normals and Curvature

Surface normals are very useful to understand the geometry of the surface and also
to reconstruct and understand the point cloud. Normal extraction means estimat-
ing the normal of a plane tangent to the surface. This process can be as simply as
computing the cross product between a pair of nearest points for any query point.
This technique is not recommended for noisy point clouds because results are in-
consistent and extremely variable [55].

Literature [56] [57] recommends extracting normals as a least-square plane fit-
ting estimation problem. With the analysis of the eigenvectors and eigenvalues of
a covariance matrix C created from the nearest neighbors to the query point, it is
possible to determine the surface normal

C =
1

k

k∑
i=1

(pi − p̄) · (pi − p̄)T (5.2)

where

C · ~vj = λj · ~vj, j ∈ {0, 1, 2} (5.3)

where λj represents the j − th eigenvalue and ~vj is the j − th eigenvector of C.
Principal Component Analysis (PCA) is intended to find the directions in the data
with the most variation, i.e. the eigenvectors corresponding to the largest eigenval-
ues of the covariance matrix, and project the data onto these directions discarding
important non-second order information provided by the covariance matrix. If
eigenvectors are sorted such that λ0 ≥ λ1 ≥ λ2, then the primary surface direction
or plane normal might be assumed to be given by the third eigenvector

~ni = ± ~n3 (5.4)

Obviously the best estimation is yielded when the ratio λ0 � λ1. Therefore, the
problem can be solved in five steps:

1. Construct a projection matrix for the tangent plane given by the normal of
the query point.

70 Chapter 5. Clustering point clouds

2. Project all normals from a k-neighborhood (surface patch) onto the tangent
plane.

3. Compute a centroid in that projected space, and a covariance matrix.

4. Perform eigen decomposition to obtain the principal directions.

5. Choose the largest eigenvalue and select its corresponding eigenvector as
plane normal.

Normals orientation is solved applying the viewpoint constraint given by

~ni · (vp − pi) > 0 (5.5)

where vp is the global position of the viewpoint or sensor coordinates.

An example of this algorithm is displayed in Figure 5.2 where Equation 5.4
produces normal directions to point accordingly to the view point. The map rep-
resenting the normals of each of the points of the point cloud P is represented as
Ξ(M).

Figure 5.2: Surface normals estimation. Normal direction is computed taking into
account the view point coordinates for each point. Circles contain a zoomed area
of the objects for a better visualization.

5.3. k-dimensional trees 71

5.3 k-dimensional trees

Dealing with 3D point clouds is a hard challenge from the computational point of
view. 3D cameras work at 30 frames per second with resolution of 640×480 pixels
per frame and with XYZ plus RGB information enclosed for each individual point.
That makes a sum of 55,296.000 values processed every second by the perception
system.

There exist several alternatives to reduce point clouds such as spatial partition-
ing, and search operations with Octrees or compressing the point cloud data. All
those methods concern about reducing the amount of memory resources. The most
extensively adopted procedure for optimal searching of group of points with com-
mon attributes within a point cloud was presented by Freidman et.al [58] and is
based on the use of trees.

A tree is a widely-used data structure that imitates a hierarchical tree structure
with a group of linked nodes. In mathematical terms, a tree is a synonym of an
arborescence or tree view: an acyclic connected graph where each node has zero or
more children nodes and parent node on the top. Additionally, the children of each
node have a specific order that fits together with the search condition imposed for
the tree. All the implicit searches carried out in this work are performed using k-d
trees diminishing the execution times largely.

A k-d tree is explained as a binary tree in which every node represents a k-
dimensional point where nodes are grouped into two classes: leaf or non-leaf el-
ements. Every non-leaf element creates a new hyperplane splitting the space into
two subspaces. Left subtree contains all the points whose location is on the left
part of the hyperplane attending to the dimension that has been chosen (3D coor-
dinates, RGB values, curvature, normal direction, etc.).

For this explanation Cartesian coordinates will be established so that each hy-
perplane attached perpendicularly to the tree generates a new subtree. As an ex-
ample, if pn (xn, yn, zn) is non-leaf node associated with the y−axis in a set of points
pi (xi, yi, zi), the condition for the division is determined as

pn (xn, yn, zn)

{
left : ∀pi 3 (yi < yn)

right : ∀pi 3 (yi ≥ yn)

}
(5.6)

72 Chapter 5. Clustering point clouds

X

Y

X

Y

X

Y

(35, 90)

(10, 75) (70, 80)

(25, 10) (80, 40) (50, 90)

(20, 50) (70, 30) (90, 60)

(50, 25)

(60, 10)

(35, 90) (50, 90)

(10, 75)

(70, 80)

(90, 60)

(20, 50)

(80, 40)

(70, 30)

(50, 25)

(60, 10)

(25, 10)

Figure 5.3: 2D k-d tree. Representation of the tree as a hyperplanes in 2D space on
the left. Graph view on the right where blue color represents x split axis, while
green depicts y split axis.

There exist multiple ways of cutting the tree. However, as a general rule, me-
dian according to the axis of the hyperplane is used to create new subspaces. Split-
ting planes are cyclically shifted, so each level of the three represents one dimen-
sion (e.g. in a 3D k-d tree the first dimension is x, then in the next division turns to
y, afterwards z and finally cutting axis accomplishes again into x.) An example of
a 2D k-d tree is shown in Figure 5.3, where blue color represents x axis while green
depicts y axis.

There is a time complexity associated to a k-d tree ofO(n log2 n) for a point cloud
set of n points if a O(n log n) sort algorithm is used to compute the median. There
exist alternatives to reduce complexity such as Quicksort [59] or the one proposed
by Thomas et al. [60] which diminishes the time complexity to O(n log n).

Another example of k-d tree is shown in Figure 5.4 where a 3D tree space has
been plotted. Each subregion is determined by a hyperplane of a different color.
The cell is divided on 8 subregions.

5.3. k-dimensional trees 73

Figure 5.4: 3D k-d tree. Original cell (gray) is splitted into two subregions (orange).
Afterwards both cells are divided into four subcells (green). Lastly, eight different
regions are formed in the last split (purple).

5.3.1 kNN searchs

As mentioned before, the very first intention of k-d trees is to boost the speed for
searching in a large number of point clouds. For this type of searches, an inter-
esting election Nearest Neighbors (NN). Whose aim is to find the set of N points
closer to a custom query point. The speed up happens because the tree rejects in
each level a large amount of candidates, reducing the search space and therefore
making the process extremely fast.

However, the original proposal [58] works adequately for exact nearest neigh-
bor search in low-dimensional data but quickly loses its effectiveness as dimen-
sionality increases. This effect is named curse of dimensionality or Hughes effect,
as discussed by [61]. Arya et al. [62] proposed an approximate matching named
ε-approximate NN that imposes a fixed bound on the accuracy. Therefore, a point
p ∈ X is an ε-approximate nearest neighbor of a query point q ∈ X , if

d(p, q) ≤ (1 + ε) · d(p∗, q) (5.7)

where p∗ is the true nearest neighbor and d(x, y) represents the distance based on
any norm. This improves the search speed at the cost of the algorithm not always

74 Chapter 5. Clustering point clouds

returning the exact nearest neighbors.

Other improvements based on approximate NN have been proposed since then,
Fast Approximate Nearest Neighbors (FLANN) with Automatic Algorithm Configu-
ration, presented by Muja and Lowe [58], is nowadays the most commonly used.
FLANN is a method that reduces the classical kNN searching process one order of
magnitude by applying priority search on hierarchical k-means trees and selecting
the fastest approximate nearest-neighbor algorithm for a given set of data. That is,
FLANN chooses the best candidate from two approximate nearest neighbor algo-
rithms:

• Randomized kd-tree algorithm.- The original k-d tree algorithm splits the data
into two halves at each level of the tree in the dimension for which the data
exhibits the greatest variation. Randomized k-d trees are built by choosing
the split dimension randomly from the first D dimensions on which data has
the greatest variance.

• Hierarchical k-means tree algorithm.- Splits the data points at each level into
K distinct regions using a k-means clustering, and then applying the same
method recursively to the points in each region. It stops when the region is
smaller than K.

To perform this selection, FLANN automatically analyzes a subset of the dataset
(as a general rule a tenth of the whole population is randomly chosen) and looks
for correlations between features. With this information the algorithm optimizes
the parameters required for both alternatives: number of randomized trees to use
in the case of kd-trees and both the branching factor and the number of iterations
in the case of the hierarchical k-means tree.

5.3.2 Octrees

An octree is a tree-based system for managing distributed 3D point clouds pro-
posed for the first time by Meagher [63]. Octrees subdivide the space into eight
cubes called octants recursively. The root node describes a cubic bounding box
which encapsulates all points. At every tree level, this space becomes subdivided
by a factor of two, which results in an increased voxel resolution. Octrees are
able to deal with 3D point clouds with a high performance because they permit
to analyze the occupancy of a region of the point cloud. Octants are internally
linked, permitting custom searches such as Neighbors within Voxel Search, k-
Nearest Neighbor Search or Neighbors within Radius Search.

5.4. Clustering using Normals and Region Growing 75

Figure 5.5 represents the octrees for a mug at different depths. As long as the
resolution is increased, the size of the voxels is reduced. Note that the algorithm
prioritizes the divisions on those zones where the density is higher, focusing on
those zones that contain more information. As illustrated in Figure 5.5, the number
of voxels can even reach the total number of elements in the point cloud as an
extreme instance.

5.4 Clustering using Normals and Region Growing

This method is based on point-wise normals and the distance between the individ-
uals. From any input data P = {d1, ...,dN}, normals are computed associated to
each member N = {n1, n2, ..., n} and their curvature.

Points are gathered into groups based on their normals and curvature with the
definition of a custom threshold that establishes that two clusters are different.
As a flood method, the first decision is where is the optimal starting point. A
good initialization for these seeds are those zones where points have the slightest
variations of curvature. This strategy demands an initial classification of points
based on their relative curvature but in return the number of clusters is smaller
and more consistent. The algorithm steps are:

1. Sort datum based on curvature. Pick up the member with minimum curva-
ture value (called initial seed) and find out its neighbors.

2. For each neighbor measure the angle between its normal and the initial seed.
If it is below a certain threshold γthr, add the neighbor to the actual cluster.

3. If neighbor, not only fulfills the normal condition but also has a curvature
below a certain threshold φthr, add the neighbor to the seed list.

4. Remove seed and loop until all datum has been labeled.

5.5 Euclidean Cluster Extraction

Taking advantage of octrees representation, it is straightforward to classify the
workspace in occupied and unoccupied voxels. That is, Euclidean Cluster Ex-
traction (ECE) is based on occupancy grids. As a flood-fill algorithm, ECE tries
to gather groups of occupied voxels, examining if they are connected or not, as
explained in Algorithm 1. ECE is unsupervised but, contrary to the k-means algo-
rithm, the number of clusters is not an input requirement.

76 Chapter 5. Clustering point clouds

9 voxels 35 voxels

375 voxels 1170 voxels

3406 voxels 3461 voxels

Figure 5.5: Octree representation. Incrementing depth of the octree (14 levels) in-
volves better resolution. From top to bottom voxel sizes are increased for a point
cloud of a mug formed by 3461 points. Voxels size varies from 81.9 to 0.06 mm.

5.5. Euclidean Cluster Extraction 77

ECE requires a cluster tolerance that delimits the minimum division between
clusters. This value has to be chosen wisely because a large value will connect
different clusters and a small number could make an actual object to be seen as
multiple clusters. A reasonable value for this radius is 2 cm for small objects seg-
mentation. Figure 5.6.a shows the result of ECE for an office scenario. Each clus-
ter is colored distinctively to discriminate its boundaries. Figure 5.6.b details two
clusters extremely close to each other. They might be unexpectedly gathered in the
same cluster if they are close enough. This problem might arise when the cluster
tolerance value is disgracefully picked.

Figure 5.6: Euclidean Cluster Extraction. (a) Result of clustering a set of unknown
objects lying on a table using ECE. Each color represents an individual cluster;
(b) Detail of two clusters at the maximum cluster tolerance (2 cm). The algorithm
would mislead the two mugs if a large cluster tolerance is set.

Therefore, this chapter gathers the different techniques that can be used to ex-
tract clusters from supporting planes. Once those clusters are enclosed, it is high
time to analyze them and examine them to determine if they are familiar to the

78 Chapter 5. Clustering point clouds

Algorithm 1 Euclidean Cluster Extraction. Computes the ECE for a point cloud P
returning the resulting clusters C
Require: Point cloud P
Require: list of clusters C
Require: list of points Q
Require: Cluster tolerance r

1: K ⇐ KD tree (P)
2: C ⇐ {}
3: Q⇐ {}
4: N = size(P)
5: for j = 1, 2, ..., N do
6: p = P [j]
7: Q← p
8: M = size(Q)
9: for k = 1, 2, ...,M do

10: E ← K.search(p, r)
11: T = size(E)
12: for l = 1, 2, ..., T do
13: if T [l]is not processed then
14: Q← T [l]
15: end if
16: end for
17: end for
18: C ← Q
19: Q← {}
20: end for
21: return C

robot. Figure 5.7 contains several examples of the clustering algorithm for differ-
ent configurations and objects.

5.5. Euclidean Cluster Extraction 79

Figure 5.7: Euclidean Cluster Extraction Examples. Demonstration of the clustering
on the laboratory.

PART II

RECONSTRUCTING NEW MODELS

81

Chapter 6
Correspondence between point clouds

83

85

An autonomous robot must obtain a correct idea of which and where are the ob-
jects approaching to its surroundings to place a safe interaction with them. It must
be capable of recognizing them, grasping them and even using them to perform
some specific tasks such as filling a glass of water by picking a jar. This chapter
presents mechanisms for the integration of partial datasets acquired from different
views of an scenario or an object into a consistent global model.

Before recognizing a single item, it must be taught how to extract valuable in-
formation in order to learn from it. This includes parameters such as its geometric
definition, color histograms, textures, shapes, semantic information related with
the object such as places where the item can be found, what kind of task the object
is designed to perform, any information that might help to localize the robot itself,
etc. Furthermore, each item might indicate if it is normally used alone or requires
from other objects to become useful, increasing the probability of finding the rest
of those necessary objects in the nearby of the query item. There are many areas
concerned with 3D reconstruction among which virtual reality applications, digi-
tal preservation of cultural heritage, machine vision, medical imaging are the most
common.

The first thing to do in order to recognize the object with a 3D camera is to
acquire a complete three-dimensional model of each desired object. Furthermore,
this comprehensive model may help not only to recognize it from other points of
view but also to define a safe strategy to grasp it. A large list of techniques has
been proposed for object model acquisition using RGB-D cameras. In [64], classi-
cal multi-view stereo is combined with a ToF camera to reconstruct poorly textured
regions. Using just a single 3D camera, Cui [65] focuses on providing high quality
models with costly super-resolution techniques. Using a different kind of RGB-D
camera, Krainin et al. [66] established a surface-based technique relying on surfels
(surface elements). This technique however requires a high depth precision that is
not currently provided by existing ToF cameras.

There exist two principal solutions to face the object reconstruction challenge.
On the one hand, those methods based on space volume. On the other hand, those
based on registering points. The first alternative generates a fixed 3D volume that
contains a solid body and it is carved using a ray emitted from the sensor device
along the robot point of view. When the sensor perceives a depth distance at any
three-dimensional position, the volume is carved until reaching the same depth.
Repeating the process along the scenario it is possible to create a carved recon-
struction of the surfaces.This is assumed as an efficient tool to provide dense and
full 3D reconstructions of objects from multiple views.

86 Chapter 6. Correspondence between point clouds

The second alternative is known as correspondence between point clouds. Given
two consecutive point clouds, the rigid transformation between them is deter-
mined and constructing a new point cloud containing the summation of both. This
is done iteratively creating a global point cloud containing single views of the sce-
nario. The reconstruction of a scene using 3D sensors or range scanners requires
an acquisition phase, a registration of the range scans in the same coordinate sys-
tem and a data processing for refinement: removal of redundant information and
creation of a hole filling model comprised by polygonal facets. Registration algo-
rithms are divided into two groups based on the dynamic of the scenario: rigid
objects acquisition and those for non-rigid objects [67]. The range scan registra-
tion procedure can be divided into two steps: an initial registration that provides
a good initial guess of the alignment transformation and then fine registration that
gives the accurate alignment transformation.

6.1 Reconstruction based on Dense Maps

Dense maps reconstruction is also known as multi-view reconstruction. Merging
several depth maps in the same space provide of dense and full 3D reconstruc-
tions. Observing that ToF sensors are very good at delivering silhouettes of the
objects in a scene, the first idea was to reconstruct objects based on the visual hull
of the object. Also, based on the surface of the object, space carving reconstruction
methods exist that erode a solid body. Finally, there exists a class of methods that
optimize the surface integral of a consistency function over the surface shape. Last
alternative is more focused on methods that optimize iso-surfaces.

6.1.1 Visual Hull Reconstruction

Silhouettes have been used extensively in the literature such as Kutulakos et al.
[68], Yemez et al. [69] and Walck et al. [70], but their computation is still prob-
lematic using classical cameras. Uniform or easily discriminated backgrounds are
usually required, resulting into a less flexible system. However, using depth infor-
mation, it becomes easy to discriminate an object of interest from the background
extracting silhouettes using a depth threshold. Silhouette-based methods are pop-
ular for use in multi-camera environments mainly due to their simplicity and com-
putational efficiency. 3D reconstruction based on silhouette information is done by
means of the intersection of visual cones, as shown in Figure 6.1.

Franco and Boyer [72] presented a framework for multi-view silhouette cue

6.1. Reconstruction based on Dense Maps 87

Figure 6.1: Visual hull object reconstruction. Carving process by silhouette cones to
locate object shape. Courtesy of Yemez et al. [71].

fusion where a space occupancy grid is translated into a probabilistic 3D represen-
tation of scene contents. The idea behind their work was to consider each camera
pixel as a statistical occupancy sensor. All pixel observations are then used jointly
to infer where, and how likely, the object is presented in the scenario. Yemez and
Wetherilt propose in [69] a volumetric fusion technique that fuses geometrical in-
formation acquired from silhouette images and optical triangulation using march-
ing cubes algorithm [73]. A Bayesian approach was proposed by Grauman et al.
[74], where they model the prior density using a probabilistic principal compo-
nents analysis-based technique and then estimate a maximum a posteriori recon-
struction of multi-view contours.

With the recent revolution of 3D printers, visual hull reconstruction techniques
are being widely exploited to reconstruct objects creating 3D scanners. Compa-
nies such as makerbot Inc. have developed a digitizer7 (see Figure 6.2) based on
this principle, permitting to create models in less that 12 seconds using 720 sil-
houette scans and texture information. As a general rule, shape-from-silhouette
approaches have been a cheap and fast alternative for object reconstruction in off-
line tasks where the human supervision is taken for granted. Dynamic scenarios
are not supported as silhouettes might not match and become inconsistent during
the occupancy analysis.

In this aspect, a simple space carving technique based on the depth measure-
ments was designed in the laboratory and explained in [75] and is illustrated on
Figure 6.3. It is similar in spirit to the work of Walck et al. [70] but without the
application of photo consistency. This prevents the integration of small concave
details but processing is faster and the obtained models are accurate enough for
manipulation tasks.

7More info: http://store.makerbot.com/digitizer.html

88 Chapter 6. Correspondence between point clouds

turning table

color sensor

detail of the laser

ORIGINAL POINT CLOUD 3D MODEL

Figure 6.2: MakerBot Digitizer Desktop 3D Scanner. Companies are developing fast
3D scanners based on convex hull techniques. They include color sensor devices
to map the 3D point clouds.

The algorithm developed iteratively carves a 3D discrete volume. Each voxel is
represented as a cube whose size is user-defined in function of the level of details
required. For each view taken by the Time of Flight camera, voxels are eliminated
according to their depth compatibility with the new view. This is done by pro-
jecting each voxel onto the depth image, and comparing its depth dvoxel with the
measured depth dview. If dview > dvoxel+δ, it means that the voxel is not consistent in
the scene, and it is discarded. δ is the tolerated margin and depends on the sensor
precision. In all the experiments performed it was set to 3 cm to be conservative
and avoid removing voxels with the camera. This value is not very sensitive since
most of the carving will come for the edges. A small value however enables the
reconstruction of concave structures whose depth is greater than δ.

Depending on the voxel size, the projection of one voxel can overlap several
pixels on the depth image. The actual overlap is approximated by computing the
projected width and height of the voxel and comparing dvoxel with the depth mea-
surements in the corresponding neighborhood in the depth image. If at least one
dview is compatible with dvoxel, the voxel is kept. The output of the algorithm is a
rather dense set of cube-shaped voxels. For manipulation tasks, it is more useful
to get a surface representation of the object. This can be achieved by first remov-
ing all the inside voxels with a simple neighborhood test, and then run a surface
reconstruction algorithm such as Poisson [76].

6.1. Reconstruction based on Dense Maps 89

Figure 6.3: Silhouette extraction. Using a ToF camera and simple depth thresholding.
The depth image is color-encoded.

Some results are given in Figure 6.4. These models were acquired using 35
views captured by rotating the turntable by 10o steps. The camera was at a dis-
tance of 50 cm from the object and the chosen voxel size is 1 mm. Processing time
is currently less than 10 s on a 2 Ghz computer for 36 views, and real time perfor-
mance should be reachable using a careful implementation.

6.1.2 Space Carving Reconstruction

This reconstruction method takes into account the photometric consistency of the
surface across the input images creating a consistent model of the scanned object.
Starting with a dense space sufficiently enough to house the object, the surface of
reconstruction is partially eroded on those areas where consistency is approved.
When evolving the surface, the visibility has to be considered because it depends
specifically on the view it is observed from. If a voxel is removed, visibility has to
be updated because new voxels might then appear. This method is efficiently done
using a multi-pass plane-sweep algorithm that repeats the scan until it converges.
Furthermore, voxel removing has to be performed with care because if a voxel is
removed by error, further voxels can be erroneously removed in a cascade effect,
as Kordelas et al. pointed in [77].

The voxel-based representation, used in the space carving approaches, disre-
gards the continuity of shape and makes very hard to enforce any kind of spatial

90 Chapter 6. Correspondence between point clouds

Figure 6.4: Examples of acquired models. First the object to scan is represented; then,
the carved volume generated; afterwards, the Poisson reconstruction is performed
and finally the re-projection on a color image with known pose.

coherence. As a result, space carving is sensitive to noise and outliers and may
yield to noisy reconstructions. For this reason, spurious voxels are discarded us-
ing a noise filter.

This method brings up several limitations that must be taken into account:

• The photo hull is only guaranteed to be the tightest superset of the true re-
construction. That means that the reconstructed photo hull is only a superset
of the true shape but does not guarantee the removal of internal hulls.

• Photo-consistency measure is critical.

• If a voxel is wrongly removed it can lead to the removal of other correct parts
of the object.

• Needs calibrated input images.

• Might become problematic for non-Lambertian8 surfaces.

• Accuracy is limited by voxel resolution. GPU is highly recommended to re-
duce processing time. A 2563 voxel model requires 3-4 minutes to be com-
puted even on recent hardware [78], while Zach et al. [79] proposed a method
that creates a model in 5 seconds.

8Lambertian surface is commonly called to any surface with isotropic luminance.

6.1. Reconstruction based on Dense Maps 91

6.1.3 Surface Integral Minimization Reconstruction

The last class of methods for object reconstruction is focused on the surface shape
of the object. A cost function defines the level of similarity between a consistency
function and the surface shape. The idea is similar to drop a slim and lightweight
sheet over the object and analyze which is the best mathematical representation
of the sheet’s final shape. First proposals [80], [81] used gradient descent method
to converge the minimization problem, handling complicated topology and defor-
mations as well as noisy or highly non-uniform data sets. Duan et al. [82] devel-
oped a mathematical framework capable of discovering not only the underlying
topological structure of the object but also its geometric boundaries using partial
differential equations and deformable surfaces.

Jinet al. proposes in [83] a surface integral minimization algorithm which starts
with a cube and evolves it to approximate it to the object by numerically integrat-
ing systems of partial equations. The main restriction of this system is because of
the surface evolution, which assumes a closed and smooth surface. This assump-
tion rejects sharp or noisy objects such as outdoor or polyhedric objects. In [84], a
multi-resolution approach is presented. It starts with coarse settings, and then it is
refined in those zones of interest.

Radial Basis Functions (RBFs) are used by Carr et al. [85] to generate surfaces
based on a polyhedric representation. This functions permit to reconstruct mani-
fold surfaces from point-cloud data smoothly and also to repair incomplete meshes.
Because RBFs are scale-independent, this alternative is well-suited to reconstruct-
ing surfaces from non-uniformly sampled data. Figure 6.5 shows a sample of an
object reconstruction using RBFs functions. The number of centers of those RBS
functions determine the complexity and accuracy of the final reconstruction. In
this case the 544,000 point cloud is represented by 80,000 centers to a relative ac-
curacy of 5× 10−4 in the final frame. Pons et al. [86] proposed a method for multi-
view stereo vision that minimizes the prediction error using a global image-based
matching score handling projective distortion and partial occlusions.

Indeed, there exists a second class of surface minimization based on graph-cuts.
Those methods such as Yuet al. [87] and Boykov et al. [88] transform the surface fit-
ting problem into a graph optimization. By means of Surface Distance Grid (SDG),
Yu et al. [87] minimize a cost function over the object surface where two types
of biases are found: the minimal surface bias and the discretization bias. These
biases make it difficult to recover surface extrusions and they are turned into con-
trollable degree of surface smoothness. This method requires an initial estimation

92 Chapter 6. Correspondence between point clouds

Figure 6.5: Surface Integral Minimization Reconstruction using RBFs. Using a greedy
algorithm iteratively, a RBF is fitted in the point cloud reducing the number of
centers required to represent the whole surface. Courtesy of [85].

close enough to the final model in order to converge successfully. Hornung et al.
[89] uses an octahedral graph structure that creates a well delimited connection
between the photo-consistency of a voxel and the edge weights of an embedded
octahedral subgraph. This specific graph design supports a hierarchical surface
extraction, which allows processing even high volumetric resolutions and a large
number of input images efficiently. Shi et al. [90] integrate a curvature-based vari-
ational model and Delaunay-based tetrahedral mesh framework succeeding in the
reconstruction of surfaces with important features such as sharp edges and cor-
ners.

6.2 Correspondence between Point Clouds

The challenge of consistently aligning various 3D point cloud data views into a
complete model (world) is known as registration. Registration transforms multiple
3D datasets into the same coordinate system so as to align overlapping compo-
nents of these sets. As a result of the restrictions of 3D scanning technology, more
than one datasets must be grabbed from different view-points, each scan is asso-
ciated with a different coordinate system. Original reconstructions were used to

6.2. Correspondence between Point Clouds 93

align laser scanner technology, nowadays those systems are used also in 3D sen-
sors using Time of Flight or light coding technology. The basic advantages of the
methods that use this technology are: speed, accuracy and resolution of the recon-
struction. This alternative can be used not only for small and reduced scenarios
but also to large scale outdoor scenes where the number of points becomes enor-
mous.

The challenge during the 3D reconstruction consists on register each point cloud
and determine the rigid transformation between consecutive scans. As a general
rule, the registering process is a challenging task due to several drawbacks:

• Point clouds could contain not only systematic noise due to the sensor but
floating artifacts in borders or zones with significant depth changes.

• Bright and shiny surfaces affect the reflexion of the infrared pattern altering
the resulting point cloud elements.

• Errors are depth dependent. That means that the precision varies with dis-
tance: the further the object, the most inaccurate the measure.

• Uncertain shadows and black gaps behind the objects, due to a view-point
dependency, might make the correlation difficult.

• Large rotation changes of the camera entail into dissimilar scenarios.

• Point clouds might not coincide from a feature representation point of view
or in space due to slight changes in borders or corners.

The variety of applications is worth while, such as reverse engineering and
mold fabrication in the manufacturing process, artifact reproduction and 3D mod-
eling of carving pieces and sculptures both with applications in the souvenir indus-
try and virtual museums, and many others such as augmented reality in graphics
and map building in robotics. Figure 6.2 illustrates the correspondence problem:
a set of point clouds of the same face are disposed from different poses which are
incipiently unknown. The intention of gathering all those samples and construct-
ing a global face model requires from observed information to be examined and
processed.

There exists a considerable number of ways to perform the correspondence,
range data alignment proposals are widely extended in the literature: Bienert and
Maas propose in [91] a registration method for forest stands using a terrestrial laser
scanner. Three detection features are used: artificial key-points, using the tree axes

94 Chapter 6. Correspondence between point clouds

sample 1 sample 2 sample 3 global point cloud

Figure 6.6: Correspondence problem. A set of samples from different point-views of
the same face are merged into a global point cloud

and finally avoiding artificial tie points. Others such as [92] mixtures multi-view
geometry with automated registration of 3D range scans to produce photo-realistic
models with minimal human interaction. Feature-based registration algorithms
are based on angular features, as Chen et al. [93] or Jiang et al. [94] pointed out.
Most of these methods are based on finding correspondences between distinctive
features that may be present in the overlapping area. The basic procedure involves
the identification of features, assignment of feature correspondences and then com-
puting an alignment based on these correspondences. There exist many different
features that can be explored: edge maps [95], lines and planes [96], bitangent
curves [97], surface curvatures introduced by Yamany et al. [98], [99], surface ori-
entation explained in [100] by Johnson, and invariant features, such as moments
and curvature detailed by Sharp et al. [101].

In some circumstances, markers are used as in Qian et al. [102], Bienert et al.
[91] or Akca et al. [103], making it simple to extract the features, but with a com-
mon drawback: the object to be scanned has to be physically prepared or, in case
the interest is focused on a scenario, the placement has to be previously adapted.

In [104], Chua and Jarvis presented the Point Signature, a new form of point
representation for describing 3D free-form surfaces that is invariant to rotation and
translation. The point signature can be used directly to hypothesize the correspon-
dence to model points with similar signatures. Furthermore, surface registration
can be planted as a high dimensional optimization problem solved using genetic
algorithms such as Chow et al. [105], where a novel fitness function is presented.
A common issue during the correspondence is to deal with coarse point clouds.

6.2. Correspondence between Point Clouds 95

Mian et al. [106] presented a new feature matching algorithm that uses a tensor
representation which acts for a semi-local 3D surface patches of a range image by
third order tensors. This novel representation becomes robust for dense-limited
point clouds.

Any registration algorithm must take into account several challenges includ-
ing extensive structural changes, large viewpoint differences, repetitive structure,
illumination differences and flat regions on every scan. For this reason, the usage
of textures, and in particular the frequency analysis of these textures, may lead to
better results. Makadia et al. present in [107] a scan alignment based on the corre-
lation of two Extended Gaussian Images (EGIs) created by [108] in 1993. EGIs are
useful in poor overlapping scans with large displacements between consecutive
scans. On those, the EGIs correlation is done in the Fourier domain and therefore
the rotational alignment is obtained by the alignment of constellation images gen-
erated from the EGIs.

Additionally, intensity features can be combined with range information to
boost registration methods such as [109], where local structures and color of ob-
ject surfaces are extracted as shape and chromaticity patterns so it is possible to
determine the pose increment between scans. Bendels et al. [110] extract 2D Scale
Invariant Features Transform (SIFT) descriptors from each frame to estimate the rigid
transformation based on texture and then re-project the position onto the depth
map. In [111], Speeded Up Robust Features (SURF) features of color images are ex-
tracted and then RANSAC algorithm is employed to remove large amount of out-
liers.

As mentioned before, 3D reconstruction based on registration is divided into
two main parts: an initial registration that provides a good initial guess of the
alignment transformation and then fine registration that gives the accurate align-
ment transformation. The later part is in charge of improving the initial alignment
transformation. The better initial estimation, the faster the convergence of the re-
finement. In the literature, the Iterative Closest Point (ICP) is a very popular method
for the fine registration of 3D data sets.

6.2.1 Iterative Closest Point

ICP was originally presented by Zhang [112] and proposed for point matching for
free-form curves and surfaces, but it can be easily extended to three-dimensional
problems or any N−dimensional system. ICP is in charge of refining the 3D point

96 Chapter 6. Correspondence between point clouds

cloud focusing on the position of each point. It iteratively revises the rigid trans-
formation (translation R, rotation t) required to minimize the distance between
the points of corresponding point sets A = {a0, a1, ..., aN} and B = {b0, a1, ..., bN},
such that a error function e(R, t) can be defined as

e(R, t) =

NA∑
i=1

NB∑
j=1

wi,j‖ai − (R · bi + t)‖2 (6.1)

where wi,j is equal to 1 if i and j are corresponding points. It means that they de-
scribe the same point in the space. If they are not corresponding points, wi,j is 0.

INITIALIZATION e(R, t) =∞

CORRESP.
SEARCH
wi,j

MOTION
ESTIMAT.
R, t

ALIGN
CLOUDS
R · bi + t

UPDATE
ERR0R
e(R, t)

e(R, t) < ι
yes

no

RESULT

R, t

Figure 6.7: Iterative Closest Point flow chart. Representation of the steps followed
by ICP iteratively to estimate the transformation between two point clouds. The
algorithm converges when error e(R, t) is lower than the threshold ι

The original algorithm is presented in Algorithm 2 (notice that Nearest Neigh-
bor Problem was introduced as an improvement proposed in 2001 by Greenspan
and Godin [113]). Its complexity is low enough to work in real time even with
large 3D cloud points. Despite the fact that the results provided by authors were
very good, ICP usually presents problems of convergence, lots of iterations are re-
quired, and in some cases the algorithm converges to a local minimum due to large
variations between scans. The key concept of the standard ICP algorithm can be
summarized in two steps:

1. Compute correspondences between the two scans.

2. Compute a transformation which minimizes distance between correspond-
ing points.

The flow chart of the ICP process has been displayed in Figure 6.7. For this
work, a modified version of the algorithm proposed by Besl et al. [114], called
Generalized ICP has been used. This method is based on attaching a probabilistic
model to the minimization step on line 11 of Algorithm 2. This option does extract

6.2. Correspondence between Point Clouds 97

Algorithm 2 Iterative Closest Point pseudo-code
Require: Two point sets: A = {a0, a1, ..., aN} and B = {b0, a1, ..., bN}
Require: Initial transformation : T0

Require: KNN search radii r
Ensure: Rigid transformation Matrix t [4x4] which aligns A and B

1: T ← T0

2: K ⇐ KD tree(A)
3: while not converged do
4: for i← 1 to N do
5: mi ← K.search(T · bi, r)
6: if ||mi − T · bi|| ≤ dmax then
7: wi ← 1
8: wi ← 0
9: end if

10: T ← arg min
T
{
∑

iwi · ||T · bi −mi||2}
11: end for
12: end while

planes from both clouds, doing a plane matching instead of point matching. This
probabilistic approach mix the simplicity of the original proposal over the advan-
tages of other fully probabilistic techniques: speed and simplicity. Furthermore,
other works such as Godin et al. [115] included color and curvature as matching
constraints but they did not regard on luminance variations or occlusions.

Trucco et al. [116] implemented the RICP (Robust ICP) method making use of
the Least Median of Squares approach to boost the quality of the method, increas-
ing the robustness of ICP substantially. The method is based on executing the
registration with simply a portion of random points (m points), evaluating this op-
eration a sufficient number of times with the aim of finding a registration without
outliers. The Monte Carlo algorithm was used to estimate the number of execu-
tions. Once all the potential registrations were computed, the one that minimizes
the median of the residuals is chosen as the solution. Finally, the correspondences
with a residual larger that 2.5σ were removed and the transformation between
both views was computed using only the remaining inliers.

Nevertheless, during the last years, the inclusion of faster processors and sen-
sors has provided with new techniques for 3D correspondence mixing both vol-
ume carving and point cloud correspondences. Others such as Klein and Murray
[117] created a parallel tracking and mapping system called PTAM. Newcombe

98 Chapter 6. Correspondence between point clouds

et al. presented a dense tracking and mapping algorithm called DTAM in [118].

As a drawback, notice that ICP refinement requires from small transformations
between frames in order to succeed and also from a reasonable good initial estima-
tion. Otherwise, ICP may fail if the relative rotation between consecutive scans or
the displacement is abrupt. As Byunget al. [119] conclude, the variance of the ICP
registration error is directly proportional to the variance of the additive noise and
inversely proportional to the proposed reliability and the number of data points.
Byung recommends to increment the number of control point around the axis dur-
ing rotation to increase reliability.

6.2.2 Kinect Fusion a.k.a. Kinfu

Kinect Fusion was originally presented by Newcombe and Izadi et al. in [120] and
also in [121] during the last trimester in 2011. Microsoft Research Cambridge in
conjunction with the Imperial College London (UK) proposed an innovative and
revolutionary algorithm for scan matching based on a quite smart clue. They mi-
grated the tedious point-wise correspondence process to the GPU, boosting the
complete scan matching process several times faster.

Kinfu pipeline

The Kinect Fusion technique reconstructs a sole dense surface model with smooth
surfaces by combining the depth data from Kinect continuously from several view-
points. The camera viewpoint pose is tracked (both translation and rotation) as it
is moved. With every single frame pose estimation and the relative position of the
following and last, it is possible to fuse all depth maps from multiple viewpoints
together into a unique reconstruction voxel volume.

For this fusion, an empty reconstruction volume is initially created (usually a
cube with 3 – 4 m3 depending on the available GPU memory). Depth data are in-
tegrated on each iteration over the reconstruction volume as long as new scans are
positioned inside its limits. This integration is also called volume carving because
it carves on each voxel the distance determined by the sensor.

The algorithm is divided into four parts:

1. Depth map conversion.- Transform the raw point cloud captured by the Kinect
sensor into real world 3D floating point depth values based on the camera
coordinate axis and compute the normals for the actual depth map.

6.2. Correspondence between Point Clouds 99

2. World pose estimation.- Integrate the actual depth map into the global coordi-
nate system based on the relative transformation between the scan and the
initial starting frame. An implementation of a parallelized ICP scan matching
algorithm is used reaching more than 20 fps.

3. World volumetric fusion.- According to the pose estimation result, the depth
map is introduced into the global reconstruction volume. This step is done
introducing a Bayesian occupancy estimation for each voxel so that dynamic
objects can be altered over time from the global scenario. Furthermore, this
process is fastened using a TSDF cloud. The TSDF value is the distance to
the nearest isosurface for each voxel of the scan. That is, TSDF is zero in
an isosurface, positive between the sensor and the isosurface, and negative
otherwise.

4. Raycast rendering.- Scenario is ray-casted from the current Kinect sensor pose
so the global reconstruction volume is shaded for a rendered visible image of
the complete 3D scenario. This last step is exclusively used for representation
purposes and could be ignored.

However, Kinfu is not a real SLAM algorithm as it does not explicitly close
large-scale loops and will inevitably incur drift over time. Rather, it can be con-
sidered a 6D visual odometry approach which tracks relative camera motion. Of
course the significant additional benefit beyond visual odometry alone is that a
map of local environment surfaces is also always available.

Moving Volume KinectFusion

The most determining problem of Kinect Fusion is that the global reconstruction
volume is fixed to a certain value. This might be an issue if large scenarios are
demanded to be scanned. To solve this, Roth et al. [122] proposed moving volume
Kinfu. Figure 6.9 represents a large scenario where several moving volumes have
been used.

Using a fixed volume of 3m3, Kinfu is performed as usual. When the sensor
starts capturing data outside itself, the actual volume is moved from GPU to CPU
and a new fixed moving volume is created. Taking the last transformation on each
volume, it is possible to recreate in CPU the summation of the individual global
reconstruction volumes as represented in Figure 6.8.

Definitely, correspondence algorithms are used thoroughly in robotics to create
global maps of information in the vicinity of robots and they have become a pow-
erful tool not only to perceive the surroundings but also to model any object that

100 Chapter 6. Correspondence between point clouds

Figure 6.8: Moving volume schema. Representation of a subset of the moving vol-
umes used in [123] to reconstruct a climb up two staircases in a hallway (∼ 11.3
m).

might be interesting for any reason. In this thesis, the correspondence problem
has been applied for object reconstruction as will be introduced in the following
chapter. A novel ICP algorithm that makes use of an evolutionary algorithm will
be presented to generate complete 3D models of objects with limited point cloud
information.

6.2. Correspondence between Point Clouds 101

O
R

IG
IN

A
L

P
O

IN
T

C
L

O
U

D
D

E
L

A
U

N
A

Y
M

E
S

H
P

O
IS

S
O

N
R

E
C

O
N

S
T

R
U

C
T

IO
N

/ ,

\ l'

l.,
,.. ,

\ / ,
"

¡.

" '~ ",

.(

102 Chapter 6. Correspondence between point clouds
R

A
Y

C
A

S
T

IN
G

S
U

R
FA

C
E

S
T

E
X

T
U

R
E

D
S

C
E

N
A

R
IO

Figure 6.9: Moving volume Kinect Fusion. Representation of the laboratory using
Kinect Fusion algorithm with moving volume. Global reconstruction volume is
updated on demand so Kinfu is extended to larger environments. Respectively:
original point cloud, Delaunay mesh triangulation [123], Poisson surface interpo-
lation [76] and texture mapping. The office chair has been zoomed to highlight the
definition level of the algorithm.

Chapter 7
Evolutionary model reconstructor

103

105

The aim of this chapter is to formulate the registration problem as a high dimen-
sional optimization problem which will be solved using a evolutionary algorithm
(EA). In particular, DE optimizer is proposed with a precise fitness function that
takes merges favorably several characteristics from the point cloud.

The majority of the alternatives to reconstruct 3D models based on registra-
tion are divided into two strategies: point-wise comparison and feature matching.
The first choice has been explained in detail during the preceding sections in algo-
rithms such as ICP. This process can be boosted parallelizing the proper algorithm
achieving large frame rates. On the other side, the second alternative is the usage
of matches based on correspondences such as in Yamany et al. [124], who proposed
a novel surface signature that can be compared using template matching. In [125],
Schutz et al. analyze a multi-feature ICP matching algorithm that includes the sur-
face color and the surface orientation information.

The problem of ICP falls in the enormous sensitivity to rotations. While the
algorithm responds correctly to point cloud correspondences when the object is
linearly shifted, it breaks when rotations are abrupt. Furthermore, its performance
is greatly affected by noise and occlusion, specially in multiple range image reg-
istration. Thus, in cases where there are a few views of the object, or situations
where the robot moves at the same time as the object does, as a general rule ICP
does not converge successfully to a global minima. A robust method for dense
clouds was proposed by Masuda and Yokoza[126], where random sampling and
the Least Median of Squares (LMS) estimator were integrated in the original ICP al-
gorithm. In this way, they firstly segmented input data points in four types: inliers
and three categories of outliers (occluded, unpaired or outlier). The least squares
estimator minimizes the sum of squared residuals while the LMS estimator mini-
mizes the median of squared residuals. As the LMS estimator yields better results
than the standard least squares, outliers might be better tolerated up to a presence
of 50%. There exist then, three drawbacks of ICP that must be overcame in order to
succeed: sensitivity to rotations, delicacy to noise and data occlusion and finally,
its initial estimation dependence.

To overthrow these particular situations, global optimization can turn into a
powerful tool. If the problem cannot be solved locally due to large movements or
steep transitions, multi-modal algorithms, in particular evolutionary-based ones,
can help. In this way, this chapter brings a new approach in point cloud correspon-
dence alternatives with an evolutionary-based method. The approach reaches the
following aspects:

106 Chapter 7. Evolutionary model reconstructor

• Robustness against abrupt rotations.- The alternative has to improve ICP and
converge models with large rotations. It must be ready to deal with changes
of any quantity. For this reason, a multi-modal optimizer is a good idea, it
will check and try on random poses covering all the possibilities.

• Multi-dimensional optimization .- Due to the geometrical restrictions of the sup-
porting plane, the most noticeable change will be performed in the yaw an-
gle, but the three Euler angles must be tuned in each transformation and
therefore the six DOF have to be evaluated and optimized.

• Feature extensible .- The more information processed, the better guess about
the relative pose achieved. For this reason, it becomes extremely useful to
include extra data in the matching algorithm such as apart from the 3D point
cloud, geometrical features, color, textures or any other custom features that
might be added posteriorly.

• Compatibility .- The result of the algorithm has to be consistent and compat-
ible with other alternatives. The most reasonable output is a 6 DOF matrix
containing the displacement and Euler angles of the relative movement.

• Uncertainty models .- The lack of information about the different views of the
same model has to be dealt with properly. ICP demands a lot of points and
poses to create the complete model. However, this large quantity of views is
not always available. The proposed method has to be able to converge with
a minimum amount of views to complete the full model view.

• Initialization .- While the ICP-based algorithm yields good results, a good
initial guess is indispensable. If the initial solution is far from the actual
solution, the most probable thing is that the algorithm does not converge
favorably.

Let us say there exist two point clouds: the first one is the model M and the
second one is known as view V . This model is the reference and it will never be
altered or moved. Matching is performed modifying always the view point cloud.
Therefore, rigid transformations, constraints and in general any kind of point-wise
transformation T will be applied in V .

Brunnstrom and Stoddart addressed in [127] the problem of free-form surface
matching without an initial guess using a genetic algorithm. They defined a fitness
function designed to be invariant to translation or rotation of either the scene or
model becoming robust in the presence of clutter as well. They perform optimiza-
tion in the correspondence space rather than the transformation space. Assuming

107

that two points p, q are chosen, there exist two absolute positions ~rp, ~rq and two
normals associated to each point ~np, ~nq. In order to make the distance invariant to
rotation or translations, relative measurements between points are taken

‖~vpq‖ = ‖~rp − ~rq‖
cos(θpq) = ~np · ~vpq
cos(θqp) = ~nq · ~vqp
cos(βpq) = (~nq · ~vpq) · (~np · ~vpq)

(7.1)

Then, if two points p, q are selected fromM and their corresponding fromM
are picked r, s, then the pairwise match quality e(r, s) will be the product of two
terms, the first related to the distance mismatch

ed(r, s) = exp

{
−(‖~vrs‖ − ‖~vpq‖)2

2σ2

}
(7.2)

and the second representing the angular quality

en(r, s) = exp

{
−

(θrs − θpq)2 + (θsr−θqp)
2 + (βrs − βpq)2

2µ2

}
(7.3)

where σ and µ are related to measurement noise and sampling density. Then, the
whole quality error is defined by

e(r, s) = ed(r, s) · en(r, s) (7.4)

that equals 1 when there exist a perfect matching and decreases to zero as fast as
matching dissociates. If C stands for the total number of correspondences of index
c between two point clouds, a pairwise relation for that match can be defined as

e(r, s) =
∑
c∈C

e(Vc,Mc) =
∑
c∈C

ed(Vc,Mc) · en(Vc,Mc) (7.5)

However, as they suggested in [127], the algorithm they presented was no suit-
able for matching objects composed of simple surfaces such as planes, cylinders or
spheres. They recommended the usage of other methods that extract such features
and perform matching based on them. Their results are, as they conclude, not
accurate and valid to determine fine poses. Furthermore, their experiments were
presented using scans with more than a 50% overlap with a genetic population of
50 individuals, a crossover probability of 90% and a mutation rate of one percent,
the number of operations needed to evaluate it growing quadratically with the
number of points. Yamany et al. [98] proposed a registration solved by a genetic al-
gorithm minimizing the mean-squared error considering uniquely the points that

108 Chapter 7. Evolutionary model reconstructor

overlapped the two data sets. Salomonet al. [128] presented a DE-based registra-
tion that works directly on the parameter vector to be optimized. The weak point
is that the cost function exploits exclusively 3D views created using high precision
models being unaware of imprecise scans. Furthermore, the rotation boundaries
were too much moderate, reaching relative rotations of ±20o. Nevertheless, their
work has been meticulous studied and taken as a model to improve in this the-
sis. Robertson et al. [129] proposed a parallel evolutionary registration approach
based on GA. This alternative avoided becoming trapped in a local minimum in
most cases reducing computational time but reducing the precision of the registra-
tion.

A quite interesting research was followed by Silva et al. in [130], where they
suggested a hybrid genetic algorithm technique, including hill-climbing and parallel-
migration, combined with a robust evaluation metric based on surface interpene-
tration 9. They defined a measure of surface alignment that was called Surface
Interprenetation Measure (SIM), an improvement of the classical mean-squared
error used in ICP.

Chow et al. [105] proposed to minimize the median of the residuals instead
of the Euclidean distances among all correspondence pairs. This improves the
robustness but makes the method inapplicable to data overlaps below 50%. This
alternative makes sense when the overlapping is sufficient. For this reason, the me-
dian of the residuals might be favorable during the last iterations of the optimiza-
tion process. Olague et al. [132] presented a hybrid evolutionary ridge regression
approach for the problem of corner modeling. Image data is modeled using multi-
parameter corner models named L-corners. This is not a registration problem as
they use parametric models but in essence tries to solve the same problem but for
corner modeling. Xu and Dony [133] presented an improvement of Powell’s di-
rection set method (PDSM) for image registration by using DE for initialization.
The most noticeable shortcoming of PDSM method is a local search which is not
guaranteed to find the global optimum, making its performance sensitive to the
initial conditions. In that way, Xu and Dony proposed a multi-resolution scheme
to supplement the initial statement. The results yielded are valid but it does not
converge in some cases and suffers from inefficiency when the dimension of the
problem is too large.

9Dalley and Flynn [131] proposed that a good pair-wise registration should exhibit a large
splotchy surface, which is the visual consequence of two surfaces represented in a contrasted color
crossing over each other repeatedly. This effect can be particularized as the interpenetration of the
two surfaces.

7.1. Reconstructor Architecture 109

7.1 Reconstructor Architecture

A 3D scan matching algorithm has been implemented that fulfills the conditions
mentioned previously for object reconstruction. Registration is based on the DE
optimizer, a particle-based evolutionary algorithm that evolves with the time to
the solution that yields the cost function minimum value. If the cost function is
strategically thought, it becomes feasible to determine the solution for the scan
matching problem applying this method. The high accuracy and computational
efficiency of the proposed alternative have been demonstrated with experimental
results.

The management of uncertainty models due to a small number of views is also
addressed by this reconstructor. An algorithm has been developed that performs
a global estimation before the point cloud matching starts, with the aim of creat-
ing a robust model with a reduced quantity of observations. Furthermore, noise
points and spurious measurements are threated separately in order to differentiate
the valuable information of the point cloud by means of a smoothing process on
each addition to the full model. Figure 7.1 resumes the correspondence process
followed in this research and the complete pipeline of how each view is attached
into the full model using an evolutionary optimizer.

The system works as follows:

1. Features extractor.- For each view of the object, three characteristics are ex-
tracted: an intensity map based on texture histograms, a normal map based
on local PCA fit planning and a distance kd-tree to reduce posterior compu-
tation time.

2. Curvature extension.- Reconstructor may deal with live captures from a struc-
tured light sensor. As they suffer from inconsistency and extensive variance
in borders, holes and fuzzy boundaries may appear. Furthermore, the num-
ber of views are supposed to be restricted, with almost no overlapping be-
tween point clouds. In order to improve the optimization process, a curva-
ture extension will be performed in those areas where holes or discontinuities
appear. Those synthetic points included will be regarded in a different way
during the surface alignment.

3. Yaw initialization.- As the number of views is limited, a first transformation
will be held based on a yaw angle rotation. Taking in mind the fact that ob-
jects are lying on a supporting plane, the most probable rigid transformation
between scans will be a yaw angle alteration. Evaluating a top projection of

110 Chapter 7. Evolutionary model reconstructor

VIEW 1

VIEW 2

VIEW 3

VIEW N

GLOBALVIEW

3D Point cloud
RGB maps

Supporting plane

3D Point cloud
RGB map

Supporting plane

lis
t o

fi
np

ut
sc

an
s

Optimizer

FEATURES
EXTRACTOR

?Intensity
?Normals
?Distances

CURVATURE
EXTENSION

?Interpolat.
?Hole filling
?Filtering

Y
A
W

I
N

I
T

SCAN
MATCHING

?Initialize
?Optimize
?Filter

Figure 7.1: Reconstructor schema. Diagram of the different parts of the proposed
reconstructor. Features are extracted from each scan, a hole filling is done using
a curvature hypothesis. A first alignment is initialized based on yaw using brute
force and then a scan matching based on DE optimizer is done. Finally, a filter is
passed to clean noise points.

the point cloud at different yaw angles, it is possible to determine an initial
transformation of the view in relation with the previous scan.

4. Scan matching.- Reconstruction of the set of point clouds using a DE-based
algorithm that merges all views into a global object performing a fine regis-
tration. After the registration, a radius filtering process is accomplished to
remove noise.

7.2 Curvature Extension and Hole Filling

With the purpose of increasing the robustness of the correspondences, a proba-
bilistic model in particular areas has been introduced with the aim of improving
the matching performance. According to the curvature distribution of each object,
an extension of the point cloud is performed in those areas where discontinuities
appear or abrupt changes are distinguished. Thus, the curvature extension algo-
rithm will fill those regions close to the borders of the view, introducing a set of
synthetic points called guess points that will create an extension of the observable
point cloud. Those guess points will be introduced according to a probabilistic

7.2. Curvature Extension and Hole Filling 111

Observable point cloud Guess point cloud Observable point cloud

certainty function

Figure 7.2: Curvature extension. Graphical explanation of the curvature hypothesis
to fill holes in areas where discontinuities appear or abrupt changes are distin-
guished. Certainty function will give a different weight to guess points according
to a exponential function.

model so the importance of guess points is related to their distance to the closest
observable element in the observable point cloud. In Figure 7.2 a visual explanation
of the hypothesis is performed. As long as the certainty decreases, points become
brighter for a better understanding. Certainty function returns a single unit within
the observable point cloud and decreases exponentially as long as it covers the
hole or discontinuity.

In such a way, the view is splitted into several slices similar to a level set
method. For each slice, the curvature distribution is examined and an extra col-
lection of new points is adhered if necessary on the frontiers. Figure 7.3 shows a
point cloud and a set of crossing planes. In first place, the point cloud is sliced
every σslice = 2mm from the ground upward along the Y− axis. Curvature is then
tracked for each slice, detecting those areas where the sensor has not acquired any
information and, if necessary, it is extended with the result of the curvature esti-
mation as explained in Algorithm 3 and represented in Figure 7.2.

Figure 7.4 represents the set of slices that are created for each model. The set of
slices S is defined as

S = {ςj : ςj ∈ V} (7.6)

where ςj represents each slice. Mathematically speaking, a slice will be generated
such as

ςj =
{
pi ∈ R3 ∧ d(pi, πj) ≤ σslice

}
(7.7)

112 Chapter 7. Evolutionary model reconstructor

Algorithm 3 Curvature expansion. Generates a point cloud where holes are filled with
extra points to improve the matching process
Require: Point cloud P . Original Point cloud
Require: New extra point cloud N
Require: Threshold for sliding σslice

1: S ⇐ {} . Clear the list of slices
2: (pmin, pmax)← getMaxMin(P)
3: height = pmin(y) <
4: while height < pmax(y) do
5: s←getClosestPoints(P , height,σslice)
6: height← height+ σslice
7: if size(s)> 0 then
8: c←getCurvature(s) . Curvature distribution
9: s̃← interpolateCurvature(c) . New slice interpolation

10: S ← S + s̃
11: end if
12: end while
13: N ← reconstructSlices(S,pmin(y) <, pmax(y) <, σslice) . Recreate point cloud
14: return N

σslice = 2mm

−→nθ

∧
|

Figure 7.3: Curvature extension. A set of 10 planes cross the cluster and extract the
distribution curvature on each stage. If necessary, extra points will be attached
into the borders for a better matching estimation. If the number of points close to
a single slice is lower than a certain quantity, the slice will be discarded.

7.2. Curvature Extension and Hole Filling 113

Taking Figure 4.11 from Chapter 4 in mind, −→nθ symbolizes the normal direction
of the supporting plane. Thus, the set of planes Π are determined as

Π =
{
πi : −→nπj = (π(j)

x , π(j)
y , π(j)

z),−→nπj ‖ −→nθ
}

(7.8)
slice ς1 slice ς2 slice ς3 slice ς4 slice ς5

slice ς6 slice ς7 slice ς8 slice ς9 slice ς10

Figure 7.4: Curvature extension. Display of the ten slices of the model for the pre-
vious figure. Each slice is then processed independently, analyzing its curvature
with respect to its barycenter and filled with new points if necessary.

Once the model is sliced, each section is processed independently following
the steps explained in the previous Algorithm 3: curvature is estimated for each
slice, then curvature is interpolated and new points are added according to the
new members. Then the point cloud is updated and lately a filter is passed so any
spurious point is removed. The demanded condition to introduce new points in
the model is that new members have to follow the same curvature distribution as
their neighbors. In order to do so, curvature distribution will be computed near
to those areas of discontinuity and then new elements will be inserted. Finally,
a measure of certainly will be attached to each element according to their closest
distance to any observed member.

7.2.1 Synthetic Slice Initialization

The first thing to do is to create an empty point cloud with 360 points represent-
ing each circumference degree. Replicate those points included in the slice filling
the positions as appropriate. Some positions will be filled while others will remain
empty. Figure 7.5 represents the array of the projected points inscribed in a circum-
ference and the histogram representation of the radius of curvature with respect to
the barycenter of the set. It can be noticed that those empty areas are exactly the
uncertain holes that the algorithm is interested in filling with new points.

114 Chapter 7. Evolutionary model reconstructor

Figure 7.5: Synthetic slice initialization. Representation of a 360-length slice and its
radius of curvature histogram

'" '"
---- ---- ---- ----

0.0600

0.0450

\

\

\

" " '" '" '"
---- ----

\

\

\

/

\

\

\

/

/
... ~. °t

.. o
•• I •• ••• /

\ / ..

\

/

/

/

/

'"

\

/

/

. ,
---- ----o ----

'" '"

•
• o I

o - o-

., S •
••

0.00 :o---~!.ffi1LWJLl".-~~
0.00 100. 200. 300.

0.0300

0.0150

7.2. Curvature Extension and Hole Filling 115

7.2.2 Curvature Estimation

The next step consists on generating a curvature histogram. This histogram will
address the curvature for each element of the slice. Two-dimensional curvature for
a certain point pi has been established as the angle between two vectors: on the
one hand, the vector joining the barycenter MCoG and each point pi and, on the
other hand, the linear regression formed by the H nearest of pi. Figure 7.6 explains
the geometric meaning of the proposed curvature.

ignored points
pi

{pH}γi

MCoG

ρi =
−−−−−→
piMCoG

−→mi

Figure 7.6: Computation of curvature. Curvature for two dimensions has been de-
fined as the angle between the vector that goes from the barycenter to each point
(so called ρi) and the linear regression formed by the nearest neighbors of that
point (so called mi)

The curvature is therefore the angle formed by the two vectors γi. This is com-
puted as

γi = cos−1

(−−−−−→
piMCoG · −→mi

‖
−−−−−→
piMCoG‖ · ‖−→mi‖

)
(7.9)

and vector mi has been computed by least squares using the H nearest neighbors
of pi so that

−→mi = βi · pi(x) + τi (7.10)

being βi the slope associated to the linear regression of the H− nearest neighbors
{pH} = {p1(x1, y1, z1), p2(x2, y2, z2), . . . , pH(xH , yH , zH)} and τi its intercept. They

116 Chapter 7. Evolutionary model reconstructor

are defined as

βi =

H · (
H∑
h=1

xh · zh)− (
H∑
h=1

xh)(
H∑
h=1

zh)

H · (
H∑
h=1

x2
h)− (

H∑
h=1

xh)2

(7.11)

and the intercept τi becomes

τi =

(
H∑
h=1

zh) · (
H∑
h=1

x2
h)− (

H∑
h=1

xh) · (
H∑
h=1

xh · zh)

H · (
H∑
h=1

x2
h)− (

H∑
h=1

xh)2

(7.12)

However, to perform a noise reduction and obtain a smoother curvature esti-
mation, a Moving Average Filter is performed over the γi element with the identi-
cal number of neighbors H by means of the following operation 10:

γ̃i =
1

H

+H/2∑
h=−H/2

γi+h, i = {H
2
,
H

2
+ 1,

H

2
+ 2, . . . , 360− H

2
} (7.13)

Therefore, the set of filtered curvatures γ̃ is an array of 360 pair elements with
a curvature γ̃i and a radius ρi associated to each angle:

γ̃1 γ̃2 γ̃3 . . . γ̃358 γ̃359 γ̃360

ρ1 ρ2 ρ3 . . . ρ358 ρ359 ρ360

7.2.3 Hole Filling using Side by Side Interpolation

Once the list of curvatures has been computed, it can be represented in a histogram.
The reader can note that there might exist certain holes in the histogram desirable
to be filled. To do that, a linear interpolation has been chosen at each side of each
hole. Therefore, analyzing the trend of the curvature near the hole frontiers, it is
possible to extrapolate to new points. In this experiment, the number of supple-
ment points has a maximum of 10 units on each side. Using a linear interpolation
between the opposite ends of the hole, new curvatures are attached, as it is rep-
resented in Figure 7.7. Red elements represents the original γ̃ array while blue
elements symbolizes the extrapolated curvature elements.

10Notice that the first and last H/2 elements of the filtered curvature array have been filled with
the original curvature values.

7.3. Yaw Initialization 117

Figure 7.7: Curvature extrapolation. Representation of the original curvature his-
togram in red and the extrapolation near the empty areas in blue. Note that the
filter only attacks to the empty areas growing at once from both hole sides.

Once the curvature distribution is filled with new points, it is necessary to in-
troduce the respective position of those new points inside the radius distribution.
To do that, a simple linear transformation is performed so that the new ρi values
are interpolated. Suppose the following situation

. . . γ̃p−1 γ̃p γ̃p+1 . . . γ̃m . . . γ̃q−1 γ̃q γ̃q+1 . . .

. . . ρp−1 ρp 0 0 ρm 0 0 ρq ρq+1 . . .

The addition has be performed using the following equation

ρm = ρp +
(ρq − ρp)
(γ̃q − γ̃p)

· (γ̃m − γ̃p) (7.14)

Now the model is formed by two point clouds: the original observed model
and the estimation as it is displayed in Figure 7.8.

7.3 Yaw Initialization

Matching two point clouds might demand a lot of time. For this reason, the initial-
ization process for global optimization functions is always appropriated. Solutions
to this initialization problem depend on the nature of the process and also on the
information addressed on each case, such as in Smith et al. [134], who extract SIFT
features to perform the initial matching problem. Evolutionary algorithms have
been applied to improve the domain of convergence of ICP, but the initialization
process will accelerate the complete process.

This research addresses the problem exploiting the geometric conditions of the
object. Taking in mind that the object is lying on the supporting plane, the restric-
tions affect uniquely the rotating angles. That is, pitch and roll angles are restricted

118 Chapter 7. Evolutionary model reconstructor

Figure 7.8: Curvature extension. Representation of two objects, a mug and a teddy,
from different perspectives. Light points belong to the original point clouds while
dark points represent the additional point clouds in charge of improving the scan
matching.

....

. ... :::::.... :(;. .. -..

"

7.3. Yaw Initialization 119

and only yaw can be altered as far as the object rotates in the scenario. For this rea-
son, and giving importance to the fact that the individual views of the object are
rotated randomly, a yaw initialization process is performed in a few steps.

1. Project the model and view in the supporting plane.

2. Extract the concave hull representation of both model and view.

3. Rotate the view over the yaw angle and calculate the matching distance for
each angle.

4. Apply a reduction factor for each angle giving more importance to those an-
gles near the origin.

5. Extract the minimum matching error angle and set the initial transformation
to this value.

This procedure has to be performed once for each view. However, it can be
easily improved saving the last iteration point clouds in order to reduce the pro-
cessing intervals. Figure 7.9 represents the initialization process and the resulting
histogram of distances for each angle. The histogram presented accumulates the
matching error for each angle by an iterative comparison. Furthermore, this his-
togram is convoluted with a triangular weight function giving more importance
to those angles near the origin (it is supposed that the consecutive views have suf-
fered the minimum variance) with a 30% decay. After all, the minimum angle in
the processed histogram is then selected (49o) as the best initial yaw angle with a
top-view matching error 0.0087788.

As a general rule, the triangular filter will return the same result as the origi-
nal min-function. However, this filter might reduce the number of false positives
in those situations where the object is highly rotated but a pronounced peak ex-
ists. Therefore, with this improvement the matching process increments its perfor-
mance. This reduction factor does not necessarily needs to be a linear function and
can be extended to exponential or polynomial functions easily. In order to reduce
processing time, the weight values are stored in a look-up table. Figure 7.10 repre-
sents the stages of the initialization and the result obtained. The two point clouds
represent the model and the view in the original position and after the initializa-
tion process.

120 Chapter 7. Evolutionary model reconstructor

0 +180-180

TOP-VIEW MATCHING ERROR
LINEAR REDUCTION FACTOR

←
−

best init yaw angle

yaw angle

Figure 7.9: Registration initialization. Taking in mind that objects are lying on a hori-
zontal plane, roll and pitch angles can be restricted to get a fast rough initialization
for the matching procedure.

7.4 Evolutionary Optimizator in 3D Data Registration

One of the fundamental parts of this chapter focuses on the design of an applica-
tion of evolutionary optimization in 3D data registration. Considering the problem
of Euclidean alignment of two arbitrarily oriented, partially overlapping surfaces
represented by measured point sets contaminated by noise and outliers, the pro-
posed solution must converge into a global minimum overlapping the set of views
as much as possible. However, this work is focused on small datasets that contain a
limited number of views of the object (most of the times the number of views is less
than a dozen). That means that classical registration algorithms are worthless and
in most cases ineffective due to their ICP-based nature. Furthermore, attending to
the necessities explained at the beginning of the chapter, the proposed system will
exploit the view features such as color information and spatial distribution of the
point cloud among others.

Thus, in this thesis the registration problem has been addressed to reconstruct
point clouds extracted from a structured light sensor (as explained in Chapter 2) by
means of an evolutionary optimization technique. The usage of evolutionary opti-
mization techniques turn out to be a valid decision in those problems that require
global optimization such as multi modal functions with several local minimums.
Evolutionary optimizers are probabilistic, avoiding derivatives to estimate the best

7.4. Evolutionary Optimizator in 3D Data Registration 121

view X−axis

model X−axis

yaw axis

BEFORE INITIALIZATION AFTER INITIALIZATION

Figure 7.10: Registration initialization result. On the left the model (red) and the view
(green) point clouds are displayed superposed. After the initialization histogram,
the view point cloud is rotated over the yaw axis 49o and the result is displayed
on the right. This step helps the scan matching algorithm to evolve and converge
much faster.

solution to the correspondence problem. The usage of evolutionary algorithms for
global optimization problems has been addressed regularly in 3D location prob-
lem such as Martı́n-Monar et al. [135] or Moreno et al. [136], where a SLAM filter
is designed using a non linear evolutionary filter called Evolutive Localization Fil-
ter (ELF) that searches stochastically along the state space for the best robot pose
estimate. Others such as Vahdat et al. [137] compare the genetic proposal with
particle swarm optimization obtaining encouraging results. Following the same
line, Martı́n-Monar [34] presented a DE-based Scan Matching and Feature-based
Loop Detection. He developed a mapping algorithm that recreated maps from
local views. This section illustrates the optimizer and their most representative
features.

Every particle-based evolutionary algorithm evolves through time to the lower
cost value minimizing a custom fitness function. The design of the fitness func-
tion consumes the largest efforts as it mostly determines the performance of the
whole optimizer and it will be explained in the subsequent section. In any case,
the fitness function represents the matching error between two scans. The method

122 Chapter 7. Evolutionary model reconstructor

is population-based where each population member represents a rigid transfor-
mation between the two point clouds. Any geometric relation (Euclidean rigid
transformation) between two surfaces can be interpreted by six parameters or DOF.
Each set of parameters is settled as a population member. Each parameter then cor-
responds to one of the genes in the candidate. They can be enumerated as shown
in Table 7.1.

POPULATION FORMULATION

Symbol Description Symbol Description
Tx Translation of x−axis Rx Rotation about x−axis
Ty Translation of y−axis Ry Rotation about y−axis
Tz Translation of z−axis Rz Rotation about z−axis

Table 7.1: Population definition formulation for the fitness function

Therefore, Tx, Ty and Tz represent the translation genes while the rotation ma-
trices Rx, Ry and Rz are formed by the genes α, β, γ, so that a rigid transformation
can be defined as

T = Rx ·Ry ·Rz · S (7.15)

where

Rx(α) =

1 0 0 0
0 cos(α) sin(α) 0
0 − sin(α) cos(α) 0
0 0 0 1

 (7.16)

Ry(β) =

cos(β) 0 − sin(β) 0

0 1 0 0
sin(β) 0 cos(β) 0

0 0 0 1

 (7.17)

Rz(γ) =

cos(γ) sin(γ) 0 0
− sin(γ) cos(γ) 0 0

0 0 1 0
0 0 0 1

 (7.18)

7.4. Evolutionary Optimizator in 3D Data Registration 123

and the translation matrix corresponds to

S(Tx, Ty, Tz) =

1 0 0 0
0 1 0 0
0 0 1 0
Tx Ty Tz 1

 (7.19)

Therefore, the population set will evolve through time to the optimal rigid
transformation that minimizes the fitness function. The stochastic search of the
robot’s coordinates is done using the DE method proposed by Storn and Price [138]
for global optimization problems over continuous spaces. In this section the basics
of this algorithm will be explained. If the reader considers interesting to get further
into the problem, an elaborated demonstration of Differential Evolution technique
can be found in Appendix A. Algorithm 4 explains the details of the method.

In the first place, a description of the environment and its highlights has to be
performed. Each view of a specific object corresponds to a point cloud that con-
tains between 1000 and 5000 points. Obviously its density depends on the actual
size of the observed object. Each point contains a three-dimensional position in
meters and a texture value RGB encoded. As it has been explained already, in
order to determine the correspondence between the two point clouds, six coordi-
nates must be estimated, defining a state space with six DOF (x− displacement,
y− displacement, z− displacement, row, pitch and yaw).

Search starts with a population of NP candidates or candidates where each one
represents a possible solution. As stated before, any rigid transformation has 6
DOF if is applied in a 3D space. Thus, a candidate popki D−dimensional is repre-
sented as:

popki = (xki , y
k
i , z

k
i , α

k
i , β

k
i , γ

k
i) (7.20)

where sub-index i represents the element number and super-index k the iteration.
Initial population can be set stochastically around the initial position or forced to a
certain value if there exist any clue about its value (Line #2). In this case, the yaw
initialization angle estimated in section 7.3 will be introduced as a first guess. With
no doubt, the selection of a good transformation involves in a better and faster con-
vergence as the number of iterations increases. For each initial candidate, a cost
value is associated by evaluating the candidate within the fitness function (Line
#3). The full description of the fitness function will be presented in the following
section. The main loop starts in Line #5 and it is replicated until the maximum
number of iterations max iterations is reached. However, this loop can be broken

124 Chapter 7. Evolutionary model reconstructor

Algorithm 4 Differential Evolution. Computes the rigid transformation between two
point clouds using evolutionary optimization
Require: Model point cloudM
Require: View point cloud V

1: for (i = 1 : NP) do . Population Initialization
2: pop1

i ⇐ init population(data initial pose) . First population generation
3: error0[i]⇐ fitness(M,V , pop1

i) . First cost computation
4: end for
5: for (k = 1 : max iterations) do
6: for (i = 1 : NP) do
7: vki ⇐ popka + F · (popkb − popkc) . Mutation
8: for (j = 1 : D) do . D = candidate dimension
9: uki,j ⇐ vki,j,∀pki,j < Crossover . Crossover

10: uki,j ⇐ popki,j,∀pki,j ≥ Crossover
11: end for
12: errork[i]⇐ fitness(M,V , popki) . Calculate cost
13: if (ek[i] < ek−1[i] · τ) then . Selection with thresholding τ
14: popk+1

i ⇐ uki,j
15: end if
16: end for
17: indexbest ⇐ minimum(ek) . Find best candidate
18: bestenergy ⇐ popk[indexbest] . Update best candidate
19: if (convergence(bestenergy) is true) then . Convergence condition
20: return (bestenergy, k) . Return the optimal candidate
21: end if
22: end for
23: return (bestenergy, k) . Return the best candidate found

if the convergence function of Line #20 is accomplished.

For each iteration k a search is performed. This evolutionary search starts in
Line #6 and generates a new population for the upcoming iteration. In order to
find the optimal solution, candidates are perturbed producing a variation vi for
each candidate using the following formula:

vki = popka + F · (popkb − popkc) (7.21)

where popka, popkb and popkc are three randomly selected candidates at k iteration.
The indexes a, b and c are always different to the actual index i. The constant F

7.4. Evolutionary Optimizator in 3D Data Registration 125

is a real number. It represents an amplification factor that determines the inten-
sification of the differential variations (popkb − popkc) and, as a consequence, the
population evolution rate. It has an empirical range of value (0, 1+) as it has not
been demonstrated yet that F > 1 achieves the optimal solution of the optimiza-
tion problem. It is feasible to solve optimization problems with F > 1, but every
case that is successfully solved always obtains a more suitable performance with
F < 1. Furthermore, a value of F = 1 does not make sense as there might ex-
ist infinite combinations of vectors with the same value. Depending on the three
elements selected during the perturbation process, different results are achieved 11.

One of the most valuable features of evolutionary strategies is the simplicity to
control and change the behavior of the evolution process. At this point, DE-based
algorithms enlarge the diversity of the population by introducing a crossover Cr
factor. Trial vector is represented as

uki = (uki,1, u
k
i,2, . . . , u

k
i,D) (7.22)

where each parameter depends on the crossover probability given by

uki,j =

{
vki,j ifpki,j < Cr
popki,j otherwise (7.23)

A random value from the interval [0, 1] is set on pki,j for each parameter j of the
candidate i at k iteration and it is updated for each trial vector i. Thus, any new
candidate uki,j is compared to popki (Line #13) to settle which element is better and
then will become a member of the next generation k+1. In case that the evaluation
of the element uki,j on the fitness function returns a better result than the actual popki ,
it is replaced by uki,j (Line #14). Otherwise the actual member is preserved until the
successive generation. Finally, the best index and energy values are updated until
the next iteration (Lines #17-18). If the best energy satisfies the convergence condi-
tions, the loop is finished. Otherwise it continues forward to the next iteration.

As a result, the algorithm returns the best candidate found and also the number
of iterations k required to converge. It yields the most suitable transformation T
that approaches both point cloudsM and V (Line #23).

7.4.1 Fitness Function

With the idea of converging into an optimal global minima avoiding local sinks,
the fitness function takes an important role in the whole correspondence process.

11Appendix A explains in deep the behavior of DE

126 Chapter 7. Evolutionary model reconstructor

The function here presented is based on the original idea expressed in Equation
6.1. That expression can be analyzed separately in two parts: the weights wi,j in
charge of the quality of the matching and the proper comparison for this iteration.

e(R, t) =

NA∑
i=1

NB∑
j=1

wi,j︸︷︷︸
quality

comparison︷ ︸︸ ︷
‖ai − (R · bi + t)‖2 (7.24)

The function given in the Equation 7.24 has been boosted with several improve-
ments based on the requisites and exigencies of the faced problem: models with
a high degree of symmetry, partially occluded, resting on a common supporting
plane with a few number of views. Tunning the quality term in the right way
will give out better capabilities and efficacy. The mentioned cost function can be
rewritten excluding all the non-corresponding points such as

e(R, t) =
∑
c∈C

d(ac, bc) (7.25)

beingC the total number of correspondences and c an index covering each of them.
All the values ac and bc represent each of those corresponding values and d(·, ·) a
custom distance function that can hold any desired feature according to any of
both point clouds. This function error represents a generic error assigning a spe-
cific value for each pair of correspondences.

With this in mind, in terms of view V = {vi}NVi=0 and model M = {mj}NMj=0 ,
Equation 7.25 representing the error can be rewritten as

e(R, t) =
∑
c∈C

d(Vc,Mc) (7.26)

where

Vc = { vi} / ‖vi − (R ·mj + t)‖2 < τ (7.27)

Mc = {mj} / ‖vi − (R ·mj + t)‖2 < τ (7.28)

with 0 < i < NV and 0 < j < NM. As stated before, the previous equation
represents the summation of a set of distance errors for features concerning to both
point clouds.

7.4. Evolutionary Optimizator in 3D Data Registration 127

Local distance error

The local distance error represents the n-dimensional distance between the query
point Vi and the average location of the H nearest neighbors in a radius ℵ in a k-d
tree of M. Applying the same concept as in Silva et al. [130], the local distance
error for one element is defined as

d(vi,mj)
2 =

1

H

H∑
h=1

ρ(rh) (7.29)

where

ρ(rh) =

{
rh if rh < ℵ
ℵ otherwise (7.30)

and rh represents the distance

rh = ‖mj − (R · vh + t)‖2 (7.31)

being vh the closest point in V to the point mj . For this work, H has been estab-
lished in a maximum of 10 neighbors using norm-2 distance. This operation does
not represent a high computational cost because the k-d tree returns immediately
the set of H points in the desired error space. Nevertheless, measuring the dis-
tance to an average of H elements smooths the distance error returning a more
confident value of the local error. Therefore, the local distance error will gather the
individual errors such as

dLDE(Vc,Mc)
2 =

∑
c∈C

d(vc,mc)
2 (7.32)

Based on the proposals by Chetverikov in [139] and [140], trimmed ICP (TrICP)
has been implemented on the local distance error as it is applicable to overlaps
under 50% and robust to erroneous and incomplete measurements. The concept is
straightforward in essence: sortws ascending local distances and only selects the
first Npo minimizing the trimmed mean-squared error. Therefore,

{
dLDE(Vc,Mc)

2
}Npo

1
: dLDE(V1,M1)2 ≤ dLDE(V2,M2)2 ≤ . . . ≤ dLDE(VNpo ,MNpo)

2

(7.33)

d∗LDE(Vc,Mc) =
1

Npo

Npo∑
i=1

dLDE(Vc,Mc)
2 (7.34)

However, the selection of Npo is not immediate since it directly affects the over-
lap, and in this study will be set to one half of the whole data set.

128 Chapter 7. Evolutionary model reconstructor

Global distance error

Up to now, the designed fitness function is intended to attend to local disparity
between point cloud elements but also a global distance representation might be
desired. Since the local distance error is focused on individuals, the global dis-
tance error is meant to measure the behavior of the transformation from a collec-
tion point of view. Therefore, the application of statistical tools such as median or
average make sense.

Zhang et al. [112] extended ICP to include robust statistics and adaptive thresh-
olding to handle outliers and partial occlusions. Masuda and Yokoya [126] used
ICP with random sampling and a least median square error measurement that is
robust to a partially overlapping scene. Chen and Medioni [141] separately re-
fined an approach similar to ICP, which minimizes the sum of squared distance
between scene points and a local planar approximation of the model. Correspon-
dences are formed by projecting the scene points onto the model in the direction of
their normal vectors rather than selecting the closest point. Dorai et al. extended
the method of Chen and Medioni to an optimal weighted least squares framework
in [142] by deriving a minimum variance estimator (MVE) for computing the view
transformation parameters accurately from two point clouds. Furthermore, Chow
et al. [105] proposes to minimize the median of the transformation instead of the
Euclidean distances among all correspondence pairs

min

T

∑
c∈C

Median ‖T (Vc)−Mc‖2 (7.35)

where T is the 6 DOF transformation such that T (a) = R · ai + t. Since the median
error function is non-linear, it is therefore non-differentiable in general and must
be optimized using a GA.

Normal alignment error

One of the extracted features of point clouds are normals associated to each ele-
ment. The usage of normals improve the stability of the algorithm as it represents
the principal direction of the surface on each point. Extracting the surface normals
as explained in Section 5.2 it is possible to compare point-wise the direction of the
query point and the model candidate. A shape descriptor, called surfel12 presented
by Wahl et al. [143] will be used as a reference. Furthermore, their descriptor has
been demonstrated to obtain robust recognition rates using Kullback-Leibler and

12A surfel is commonly named to any feature that describe a local surface curvature

7.4. Evolutionary Optimizator in 3D Data Registration 129

likelihood matching. This surflet definition is widely used in keypoints extraction,
addressed initially by Drost et al. in [144] and used afterwards in Wahl et al. [143]
and Rusu et al. [145] and more recently in Torsten et al. [146], where they use it for
an entropy-based interest operator that selects distinctive points on surfaces.

If Ξ(V) = {nVi }
NV
i=0,represents the normal map for the view V , the expression

Ξ(M) = {nMj }
NM
j=0 represents the equivalent in M. Let us assume that a corre-

spondence c is found between mc which has a normal associated nMj and vc with a
normal associated nVi . A reference frame is created so

u = nVi

v =
d× u
‖d× u‖

(7.36)

w = u× v

where d = mc − vc. The relative angles are then

ω = tan−1

(
w · nMj
u · nMj

)
(7.37)

ψ = v · nMj (7.38)

In order to describe curvature in the local vicinity of an correspondence point, a
histogram of surfel pair relations from neighboring surfels is created. A histogram
of 90 values is created for each correspondence point (see Figure 7.11). The first
half will contain the information relative to ω, while the last half will comprehend
the values of ψ. As ω and ψ values variate between 0 and 360o in the sexagesi-
mal numeric system, a bin will correspond to an interval of 8o for both variables.
For each correspondence, a surface histogram will be extracted according to their
surrounding normal values. A surfel histogram G associated to a certain corre-
spondence c ∈ C for the model point cloud can be computed as

G(Ξ(vc)) =

g(1)
vc , g

(2)
vc , . . . , g

(45)
vc︸ ︷︷ ︸

corresponds to ω

, g(46)
vc , . . . , g(90)

vc︸ ︷︷ ︸
corresponds to ψ

 (7.39)

130 Chapter 7. Evolutionary model reconstructor

SURFEL HISTOGRAMANGLES NEIGHBORHOOD

MODEL SCAN

← 90 BINS→

NORMAL DISTANCE

Figure 7.11: Normal distance Display of the normal distance (on the right) based on
the input 3D map (on the left). Each normal is extracted and a surfel histogram
is computed for each pixel looking at its neighbors. Search is performed using
Kullback-Leibler divergence as distance metric.

and for the same correspondence in the view point cloud will be

G(Ξ(mc)) =

g(1)
mc , g

(2)
mc , . . . , g

(45)
mc︸ ︷︷ ︸

corresponds to ω

, g(46)
mc , . . . , g

(90)
mc︸ ︷︷ ︸

corresponds to ψ

 (7.40)

where g(1)
mc corresponds to the first bin of the intensity histogram associated to mc.

The summation of bins for both distributions will be equal to one, so

90∑
k=0

g(k)
mc =

90∑
k=0

g(k)
vc = 1 (7.41)

In order to compare two surfels, Kullback-Leibler divergence method presented
in [147] will be applied as recommended in [146]. According to that, the distance
between two distributions P,Q is

DPQ =
N∑
i=1

pi · log
pi
qi

(7.42)

7.4. Evolutionary Optimizator in 3D Data Registration 131

It is important to pay attention to those cases where pi = 0 or qi = 0 because it
yields discontinuities. In these cases, the addend will be discarded. With this in
mind, the distance between to correspondences will be

d(vc,mc) =
90∑
k=1

(
g(k)
mc · log

g
(k)
mc

g
(k)
vc

)
∀g(k)

mc , g
(k)
vc 6= 0 (7.43)

and for the whole list of correspondences C

dNAE(Vi,M) =
∑
c∈C

d(vc,mc) (7.44)

that according to 7.43 corresponds to

dNAE(Vi,M) =
∑
c∈C

90∑
k=1

(
g(k)
mc · log

g
(k)
mc

g
(k)
vc

)
∀g(k)

mc , g
(k)
vc 6= 0 (7.45)

Intensity correlation error

The last addend is related to the texture disparity of the point clouds being matched.
This feature attends to detect the similarity in those objects with noticeable changes
in texture or intensity along their surfaces. There exists a large number of metrics
to determine the closeness of two pixels or colors. The most basic way to measure
two color pixels is using Euclidean distance over their RGB. This is insufficient
for most cases due to luminance is implicit in the RGB representation of the color.
This means thatRGB space is very sensitive to light changes and correlates weakly
with human color discrimination performance and therefore it is a powerless color
descriptor.

Ma et al. [148] searches for a dominant color profile usingCIE L∗a∗b color space
and then compares each with each neighbor creating a Color Distance Histogram
(CDH) descriptor. Once again, the problem searches for an Euclidean-distance
based homogeneity criteria with no explicit proof of its performance.

A good color descriptor should allow interest points to be matched despite il-
lumination changes as Kyriakoulis et al. stands in [149]. Taking as a reference the
work of Torsten et al. [146] a hue and saturation histograms in an inner volume
are extracted for each point in a HSV color space. The usage of histograms makes
correspondences rotation invariance, boosting the matching performance. Each
histogram is formed by 24 bins for hue and one last bin for unsaturated regions.
Each entry to a hue bin is weighted with its saturation value s. The gray bin will

132 Chapter 7. Evolutionary model reconstructor

receive a value of 1− s and therefore colorless regions will be perceived as well.

Euclidean distance is not suitable for color comparisons even in HSV space due
to its variation and irregularity in unsteady scenarios. For such a reason, a gener-
alization of the original Kullback Leibler divergence [147] is proposed as distance
metric in this work. Histograms have to be normalized before computing the his-
togram distance so that the area of the histogram equals one.

Therefore, for each correspondence a color histogram will be extracted accord-
ing to their surrounding texture values. Considering that the intensity distribution
of the view V is given by Λ(V) = {Λ(vc)

NV
i=0}, a hue histogram H associated to a

certain correspondence c ∈ C can be computed as

H(Λ(vc)) = {h(1)
vc , h

(2)
vc , . . . , h

(24)
vc } (7.46)

Accordingly, model distribution M is given by Λ(M) = {Λ(mj)
NM
j=0} and its

histogram for each correspondence will be

H(Λ(mc)) = {h(1)
mc , h

(2)
mc , . . . , h

(24)
mc } (7.47)

where h(1)
mc corresponds to the first bin of the intensity histogram associated to mc.

The summation of bins for both distributions will be equal to one, so

24∑
k=0

h(k)
mc =

24∑
k=0

h(k)
vc = 1 (7.48)

To compute the difference between two histograms, the Jensen-Shannon diver-
gence has been applied. Its fundamentals are based on the Kullback-Leibler diver-
gence, with two main differences: divergence always results in a finite value and
it is also symmetric. This divergence and its properties are explained in detail in
Appendix B. The base is, according to Endres and Schindelin in [150], the distance
between two distributions P,Q:

D2
PQ =

N∑
i=1

(
pi · log

2pi
pi + qi

+ qi · log
2qi

pi + qi

)
(7.49)

For a single correspondence c, the distance function will be

d(vc,mc)
2 =

24∑
k=1

(
h(k)
vc · log

2h
(k)
vc

h
(k)
vc + h

(k)
mc

+ h(k)
mc · log

2h
(k)
mc

h
(k)
vc + qi

)
(7.50)

7.4. Evolutionary Optimizator in 3D Data Registration 133

HSV HISTOGRAMCOLOR NEIGHBORHOOD

MODEL SCAN

← 24 BINS→

INTENSITY DISTANCE

Figure 7.12: Color distance Representation of the color distance for an scenario. The
input color map (on the right) is analyzed and a HSV histogram is extracted for
each pixel looking at its neighbors. Then a global matching search is done using
Jensen-Shannon divergence as distance metric.

and for the whole list of correspondences C

dICE(Vc,Mc)
2 =

∑
c∈C

d(vc,mc)
2 (7.51)

Replacing 7.50 in the last equation yields the color distance function

dICE(Vc,Mc)
2 =

24∑
k=1

(
h(k)
vc · log

2h
(k)
vc

h
(k)
vc + h

(k)
mc

+ h(k)
mc · log

2h
(k)
mc

h
(k)
vc + qi

)
(7.52)

Figure 7.12 shows an example of the color distance for a scenario. There are
two boxes and a can lying on a table. If the yellow point belonging to the can is
chosen, its 5x5 neighborhood is analyzed and a 24-bin hue histogram is created for
that particular element. Then, with that information, color distance function with
respect to the rest of the point cloud is applied.

For those scenarios whose objects are similar in saturation, a weight function
can be passed. Using an exponential filter with lower and upper boundaries [εmin, εmax],

134 Chapter 7. Evolutionary model reconstructor

distances are magnified near the extremes. Looking at the distance function gray
scale representation displayed in Figure 7.12, nearest distances are amplified fol-
lowing the weight function

y(x) = eb·x − a (7.53)

For the boundaries εmin, εmax and taking into account that pixels are represented
in gray scale between 0 and 255, the filter stands as

d∗(vc,mc)
2 = exp

{
log(1 + (εmax − εmin)) · d(vc,mc)

2

255

}
− (1− εmin) (7.54)

Overall fitness function

Several assumptions have to be done at this point. Firstly, since the global distance
makes sense during the initial alignment, it will have more importance during the
first iterations. The local distance error has an interest on those areas where cur-
vature information is irrelevant, such as flat surfaces or extremely noisy surfaces.
Thereby, normals alignment error take an important role in order to match parts
of the object with flat surfaces such as the handle of a mug, increasing the conver-
gence speed and discarding local minima. In order to make the fitness function
more efficient, two improvements will be held. On the one hand, the number of
elements will be reduced using a down-sampling filter using a voxelized grid ap-
proach. VoxelGrid creates a 3D voxel grid over the input point cloud data. Then,
in each voxel all the points present will be approximated with their centroid. On
the other hand, the second optimization process is the generation of k− d trees for
each point cloud, reducing search times.

It is also expected that the local distance is always lower than the global dis-
tance: this is true if the objects do not contain spurious measurements or floating
points. For this to happen, a smooth and outliers removal filter will be applied
as will be explained in the following section. Furthermore, intensity values are
extracted so the intensity becomes valuable when luminance and texture is rich
of information. Therefore, the fitness function assumes all those error sources and
merge them into a single cost. Equation 7.26 can be substituted with a more specific
version integrating all the errors in the fitness function.

7.4. Evolutionary Optimizator in 3D Data Registration 135

e(R, t) =
C∑
c=1

local distance︷ ︸︸ ︷
dLDE(Vc,M) + dGDE(Vc,M)︸ ︷︷ ︸

global distance

+

dNAE(Ξ(V)c,Ξ(M)︸ ︷︷ ︸
normal distance

) +

intensity distance︷ ︸︸ ︷
dICE(Λ(V)c,Λ(M)) (7.55)

So, those distances are exclusively computed to those correspondences. For this
case, a correspondence cwill be assigned to the pair (vi,mj) assuming that the view
point cloud has been transformed according to the corresponding transformation.
The overall registration process is explained in Algorithm 5.

Algorithm 5 Registration process. Explanation of each step performed to compute the
registration of a set of point clouds
Require: Model point cloudM
Require: List of NL View point clouds V̂ = {V1,V2, . . . ,VNL}
Require: Global Model point cloud G

1: M⇐ demean(M) . Initialization of the model
2: featuresmodel ⇐ extract features(M) . Features of the model
3: Tglobal ⇐ I . Initialization with unitary matrix
4: G ⇐ {} . Clear the global model
5: for (i = 1 : NL) do . Go through the list of views
6: V(i) ⇐ demean(V(i)) . Initialization of the view
7: features

(i)
view ⇐ extract features(V(i)) . Get all the features of the view

8: V(i) ⇐ Tglobal(V(i)) . Update the initial pose of the view
9: T

(i)
initial ⇐ yaw estimation(M,V(i)) . Estimate initial yaw value

10: (T
(i)
optimal, bestenergy)⇐ DE(M,V(i), T

(i)
initial, features

(i)
view, featuresmodel)

11: if (bestenergy < µ) then . Check false transformations
12: Tglobal ⇐ Tglobal · T (i)

optimal . Update the global transformation
13: G ⇐ G + T (V(i)) . Update the model
14: end if
15: end for
16: G ⇐ filter(G) . Clean the model
17: return G . Return the global model

The process requires from a list of view point clouds V̂ that corresponds to a set
of scans made by the robot during the learning process. Then a model point cloud

136 Chapter 7. Evolutionary model reconstructor

M that could be the first in the view list is also required. The model will repre-
sent the initial view from which the complete object will be reconstructed. Firstly
a demean function will move to the origin the whole point cloud as it is not neces-
sary for the correspondence process (Line #1). Two features maps are extracted for
the model that corresponds to the normal map Ξ(M) = {nMj }

NM
j=0 and an intensity

map Λ(M) = {mMj }
NM
j=0 (Line #2). Then, for the whole list of views, the registration

process starts. Primarily, the same process as that for the model is done, remov-
ing the spatial offset by demeaning the point cloud and extracting their features.
Then, a first transformation is performed and stored in Tglobal. The first time this
transformation is null but as long as the register process is being executed, it stores
the accumulation of all the transformations. Then, in Line #9 the yaw initializa-
tion process is performed to estimate the initial configuration of the view. Then
the global evolutionary optimizator is launched taking into account all the list of
features for both point clouds and also the initial transformation (Line #10). Then
in the next line, a check routine will determine if the solution received is correct or
not. This verification will avoid false local minima and accumulated errors. In case
the bestenergy is sufficiently small, the transformation will be assumed as valid and
the result T (i)

optimal will be incorporated in Tglobal. Furthermore, the global model G
will be updated with a new transformed point cloud. After the whole list of views
is analyzed, the global model will be filtered to remove noise points and spurious
elements and returned.

7.4.2 Filtering the Point Cloud

Last step consists on removing and filtering all the empty and spurious points from
the new point cloud and aligning the registered point clouds. For this process, an
outlier removal has been implemented using a radius filter. It operates searching
for the nearest neighbors for each element of the point cloud in an sphere using L2
euclidean norm. If a certain number of points fall inside the sphere, those points
are saved. Otherwise they are removed. Furthermore, it is possible to find garbage
points in the origin due to the geometrical operations performed previously. For
this reason, an extra inspection is done to avoid incoherences and dismiss any in-
correct point.

The following Figure 7.13 represents an example of how the radius filter re-
moval responds. If the number of neighbor points in the filter is set to one, only
the blue point will be removed. However, if the required number of points is equal
to two, both the blue and the red points will be removed. This approximation can
be extended to 3D with no effort. The only parameter to be chosen here is the
radius value. For this experiments, taking into account the size of the analyzed

7.5. Experimental Results 137

d

Np = 0

Np = 3

Np = 1

Figure 7.13: Outlier filtering by radius search. Each element of the point cloud is
accepted if there exists at least a certain number of neighbors in its nearby.

objects and the precision of the 3D sensor, a reasonable value for this distance is
0.02 m.

However, the problem of data irregularities yielded by the registration process
can be extremely decisive during the reconstruction phase. The addition of sys-
tematic errors in conjunction with the estimation errors induce to the addition of
noisy floating points, double walls effects or any other artifacts as a consequence of
a poor transformation estimation. The number of views is quite limited for some
cases and therefore the intrinsic information of the object. A solution is to use a
re-sampling algorithm, which attempts to recreate the missing parts of the surface
by higher order polynomial interpolations between the surrounding data points.
An example of this filter is represented in Figure 7.14 for a complete 3D model of
an object. As can be seen, the blue point cloud has a most structured shape.

7.5 Experimental Results

In this section several experiments will be performed in order to corroborate the
novel object reconstructor. The experimental results have been divided into three
different sections. Firstly, the initialization process, which has been studied in or-
der to determine its contribution to the fitness function during the initial iterations.
Secondly, the hole filling process will be measured in order to determine the en-
richment of the system after the scan matching. Finally, a comparison between the
classical ICP and the different versions of the fitness function will be discussed. All
the experiments have been developed using real models acquired in the laboratory.
Some examples of the resulting models can be seen at the end of the chapter.

138 Chapter 7. Evolutionary model reconstructor

top-view top-view

Figure 7.14: Normal alignment filter. Result of filtering the global 3D point cloud of
a mug using a Moving Least Squares surface reconstruction. The surface becomes
smoother and noisy data is avoided (right).

7.5.1 Yaw Initialization Response

The first experiment evaluates the effect of the yaw initialization with the conver-
gence of the scan matching optimizer. Therefore, two views of the same object
have been used in the whole experiment. In order to measure the convergence
speed, the angle resolution of the initialization process has been altered gradually.
Therefore, for a set of two views, the angle increment has been incremented. For all
the experiments the convergence condition is to finish by the number of iterations,
limited to 150. The weight function will be the same for all cases and will follow
the values plotted in 7.9.

Figure 7.15 represents the fitness function error during the first 150 iterations
of the evolutionary reconstructor. Each distribution corresponds to the average of
the experiment repeated 10 times at different yaw resolutions. As can be seen, the
lowest is the angle resolution, the fastest is the convergence during the first third
range of iterations.

At iteration number 10 the finest yaw resolution (in purple) gets stacked during
10 iterations while the rest of the series continue decreasing. However, at iteration
number 37, the fastest convergence is performed by the finest initialization, 1o. At
iteration 40 the results are almost the same: error values are sorted by yaw resolu-
tion. However, as long as the reconstructor iterates, the values for each resolution

7.5. Experimental Results 139

yaw resolution: 10o

yaw resolution: 5o

yaw resolution: 2o

yaw resolution: 1o

Figure 7.15: Yaw initialization response. Average of fitness function e(R, t) with dif-
ferent angle resolutions during the yaw initialization process. Optimization stops
after 150 generations.

start changing again.

At iteration 150, the results are almost the same for the four categories. Ana-
lyzing the whole evolution and taking into account the elapsed time of the initial-
ization and the convergence, the best resolution is the second one (measure errors
every two degrees) as it requires less time than the third and the fourth in most of
the cases. Table 7.2 contains the final transformation for each case.

TRANSFORMATION RESULTS

Y awres MSE tx[mm] ty[mm] tz[mm] rx[rad] ry[rad] rz[rad]
1 deg 1.02427 -0.31612 -0.19762 -0.82514 0.00264 -0.00349 -0.36444
2 deg 1.13281 -0.31622 -0.22152 -0.81529 0.00263 -0.00325 -0.35231
5 deg 1.17487 -0.32411 -0.21582 -0.74519 0.00261 -0.00355 -0.37107
10deg 1.48654 -0.36624 -0.24168 -0.46125 0.00261 -0.00337 -0.46669

Table 7.2: Average of the final transformation and MSE for different initializations
at generation 150

140 Chapter 7. Evolutionary model reconstructor

7.5.2 Hole Filling Enrichment

One of the most important challenges of structured light 3D sensors are the glows
of the objects. If the sensor has to deal with dark objects or extremely shining and
gloss surfaces, the depth estimation will decay abruptly. Technology advances in
this topic are providing with more and more precise sensors that reduce the sys-
tematic errors. In the mean time, algorithms like the one proposed in this disserta-
tion helps to introduce estimated data inside the observed model.

In this case, a Gaussian distribution will be used as weight function along those
estimated points introduced in uncertain areas of the observation such as holes and
boundaries. Therefore, elements with such lack of information in these areas will
yield better results during the matching process. A standard deviation of 1mmwill
be applied in the neighborhood of the holes. A k−NN tree will be created in these
areas to reduce times. Curvature estimation length parameter will be changed.
It represents the density of new elements that have to be introduced in these ar-
eas. For this experiment three different values will be picked: 3 points/mm, 5
points/mm and 10 points/mm.

In Table 7.3, Table 7.4 and Table 7.5 the result of introducing this feature is
compared with the original observations. As can be seen, the number of points in-
creases with the increase of density and the MSE gets its best result in 5 mm/point
curvature estimation length. If the parameter exceeds this value, the number of
points is overestimated and the MSE results are incorrect. And on the other hand,
if the curvature estimation length parameter is too short, the MSE is almost the
same.

EXPERIMENTAL RESULTS

object name Noriginal Nextended % increase MSEoriginal MSEextended

mug-cow 949 1891 +99.26% 1.23321 1.64223
mug-r-red 715 1422 +98.88% 1.16515 1.4239

mug-r-white 775 1541 +98.83% 1.38950 1.61609
mug-coffee-tiny 342 665 +94.27% 0.98732 1.14324

Table 7.3: Results of error measurements for different objects with a curvature es-
timation length of 10 points/mm

7.5. Experimental Results 141

EXPERIMENTAL RESULTS

object name Noriginal Nextended % increase MSEoriginal MSEextended

mug-cow 949 1274 +34.24% 1.23321 1.13475
mug-r-red 715 1007 +40.83% 1.16515 1.12471

mug-r-white 775 1073 +38.45% 1.38950 1.27589
mug-coffee-tiny 342 427 +24.85% 0.98732 0.89740

Table 7.4: Results of error measurements for different objects with a curvature es-
timation length of 5 points/mm

EXPERIMENTAL RESULTS

object name Noriginal Nextended % increase MSEoriginal MSEextended

mug-cow 949 1047 +10.32% 1.23321 1.23214
mug-r-red 715 814 13.84% 1.16515 1.16411

mug-r-white 775 955 +10.32% 1.38950 1.39474
mug-coffee-tiny 342 390 +14.03% 0.98732 0.98428

Table 7.5: Results of error measurements for different objects with a curvature es-
timation length of 3 points/mm

7.5.3 ICP versus DE-ICP

The last experiment illustrates the comparison between the classical ICP and the
reconstruction yielded by the evolutionary reconstructor. Table 7.6 contains the
MSE errors for different image pairs with the four fitness functions: only local
distance (DE1), local distance plus global distance (DE2), distances and normal
alignment (DE3) and finally the complete system with color matching (DE4).

SCAN MATCHING COMPARISON

object name MSE(ICP) MSE(DE1) MSE(DE2) MSE(DE3) MSE(DE4)
mug-cow 1.31414 1.30478 1.20179 1.17415 1.13475
mug-r-red 1.8725 1.34787 1.24381 1.15474 1.12471

mug-r-white 1.3999 1.4874 1.36544 1.25748 1.27589
mug-coffee-tiny 0.97584 0.92147 0.90558 0.88475 0.89740

Table 7.6: Comparison between the results given by classic ICP scan matching and
the evolutionary reconstructor in all its variants. In blue the best result configura-
tion.

Surprisingly, the color function does not always work as expected. This hap-
pens on texture-less objects such as the mug-r-white or mug-coffee-tiny,

142 Chapter 7. Evolutionary model reconstructor

where the color information may confuse the optimization algorithm. Neverthe-
less, the results are quite promising, improving the ICP algorithm in almost all
the cases. The best transformations (blue configurations in the previous Table 7.6)
have been represented in Figure 7.16. The model is in blue and the evolved view
is in red.

Figure 7.16: Reconstruction results. Representation of the best transformation
achieved for each algorithm. Each row represents a different object. Columns are
the transformation using ICP, DE1, DE2, DE3 and DE4 functions.

Finally, some images of the output reconstructor are displayed in Figure 7.17.
Those images are obtained after the application of the radius and the normal align-
ment filters explained earlier. The models are perfectly ready to be introduced in
grasping point analysis in order to determine the optimal grasping strategy. This
work goes beyond this thesis but it may address promising results.

7.5. Experimental Results 143

Figure 7.17: Reconstruction rendering. Rendering of some of the models generated
using the evolutionary reconstructor.

PART III

RECOGNIZING MODELS

145

Chapter 8
3D Features

147

8.1. Object Recognition 149

During the last years, object recognition has turned into a prior research line in
robotics. The idea of designing robots capable of detecting and recognizing objects
in their vicinity make more natural and prosperous their integration in humanlike
scenarios such as offices, kitchens [151] or living rooms [44] and [152]. With the
aim of detecting and interacting with these objects, robot perception abilities have
to be mostly enhanced. Time-Of-Flight technology and structured-light have be-
come decisive in perception sensorial devices such as Kinect camera or Asus Xtion
Pro Live. Those instruments are capable of capturing RGB-D point clouds at high
frame rates allowing robots to interpret and analyze with clarity what is coming
about [153] and consequently react to these perturbations.

8.1 Object Recognition

As Beserra et al. [154] reported, early object recognition systems acquired data from
expensive and rarely available range sensors, such as laser scanners [155],[156] and
structured light patterns [157]. Ashbrook et al. [155] describe an object recognition
system that relies on similarities between geometric histograms extracted from the
3D data and the Hough Transform [158]. Johnson and Hebert popularized the Spin
Images descriptor [156] or [157] which was used as the basis to an object recogni-
tion algorithm that groups correspondences of Spin Images extracted in a given
query model and those extracted in the scene data that share a similar rigid trans-
formation between the model and the scene [156]. Data from 3D scanners and also
from synthetic CAD 3D models are employed in the work of Mian et al. [159].
Until recently, 3D object recognition systems processed data mostly in an off-line
fashion, due to long computing times involved [160]. This paradigm has started to
shift as algorithms have been proposed in the Robotics community such as Rusu
[161] or Aldoma et al. [162], to enable real-time manipulation and grasping for
robotic manipulators.

In fact, algorithms designed to describe 3D surfaces through histograms of var-
ious local geometric traits evaluated on point clouds became a major trend in the
last years [161], [163], [164], [165]. Consequently, faster and more accurate 3D ob-
ject recognition systems based on keypoint matching and descriptors extracted in
the scene and in the sought object point clouds were developed. After being es-
tablished, point correspondences are grouped by hypotheses sharing a common
transformation, which is estimated by voting as Chen et al. [166] and afterwards
Tombari et al. in [167], multi-dimensional clustering [168], [169] or RANSAC [170].
The presence of the object of interest is then inferred if certain conditions are met,

150 Chapter 8. 3D Features

such as the number of votes, cluster size, or the number of RANSAC inliers.

With the wider availability of consumer-grade depth sensors such as the Mi-
crosoft Kinect, several works on 3D object recognition are proposed employing
this class of sensor [162], [171],[172], [173]. Aldoma et al. [162] proposed the global
feature coined Clustered Viewpoint Feature Histogram (CVFH) to improve per-
formance of object recognition for robotics. Machine learning-based approaches
such as Lai et al. in [174] were formulated to perform 3D object recognition mak-
ing heavy use of depth information, without any computation on point clouds in-
volved. There exist also 3D object classification/categorization systems, as in the
works by Wohlkinger et al. [175] and by Lai et al. [174]. In this latter class of sys-
tems, every chair in a scene should be labeled as the object of type ”chair”, whereas
in object recognition only the specific chair being sought should be retrieved from
the scene. Other features such as low-level features are used, e.g. histograms of
gradients, as well as those describing the saliency13 and exploited in works such
as Palmer et al. [176].

Objects are intended to be detected mostly for grasping. This fact leads to a
consequent challenge: items have to be not only successfully detected but also
favorably located in order to determine the path to reach and grasp them [24].
This requirement demands two different goals: object pose by means of its 6 DOF
and object labeling based on its inherent features such as color, texture, shape,
3D key-points, geometry, center of gravity, etc. For the first purpose, there ex-
ist multiple strategies such as 3D recognition based on correspondence grouping
using SHOT32 features, ICP-like algorithms such as Rusinkiewicz et al. [177] or
3D matching Garcá et al. [44] or the latter in [178],[179]. For the last, 3D fea-
tures are necessary. Some of the perception features used nowadays are SIFT 3D
presented by Scovanner in [178], or its optimized counterpart SURF 3D [179] and
[180]. NARF descriptor proposed by [181] will be explained below and other such
as FPFH, presented by Rusu in [145]. Without exception, every descriptor is based
on consistent features from a 3D point cloud cluster such as edges, normal varia-
tions on the surfaces or intrinsic geometric models such as lines, planes or spheres.

Most 3D features are extracted in areas where the surface is stable but has sub-
stantial change in the vicinity. Furthermore, interest points are always intended to
be robust against noise and displacements so that they can be applied in partial
views due to occlusions to create a collection of views correctly aligned.

13Saliency measures the level of unusualness in a specific region of the image

8.2. Normal Aligned Range Value Patches 151

8.2 Normal Aligned Range Value Patches

The first version of this feature named NARVP was proposed by Steder and Grisetti
in [182]. They proposed the extraction of point features from range images that are
computed from the point-clouds. Applying a Harris detector [183] on the range
image (see Figure 8.1 as an example), a list of interest points is extracted.

Then, for each of those point features pi a descriptor vector fi is calculated in
the following manner:

1. Find the nearest neighbors N(pi) of pi.

2. Extract the normal ni of N(pi) applying a least-square plane fitting estima-
tion (read section 5.2).

3. Select a point vi along the line which passes through pi and is oriented ac-
cording to ni.

4. Move the observer point of view at vi and its viewing direction according to
vector −ni.

5. A descriptor vector fi is generated by creating a square grid standing on the
previous plane. The distances of the surrounding points projected onto the
plane determine the value for every grid cell.

Figure 8.1: Harris feature detector. Example of a gray scale range image (brighter
pixels represent further positions) on the left. Harris features are superimposed on
the color frame on the right.

152 Chapter 8. 3D Features

There exist three DOF for each feature. Two of them are restrained by the selec-
tion of the viewpoint vi along the normal vector of the surface. The last degree is
fixed by orienting every patch according to the z−axis in the world. This restric-
tion is valid for objects lying on a supporting plane such as tables, chairs, etc., but
it is still a constraint that will be fixed below.

An object is labeled by extracting its features from different poses and gather
them in a feature list according to that item. While grabbing the scenario, the cor-
responding range image for this scan is calculated. Afterwards, features are ex-
tracted for the image and compared with the bag of feature lists. Correspondences
are extracted by means of GOODSAC [184] and a list of possible transformations is
created. This list contains a set of triples14 based on the previous correspondences.
With several filters and geometrical restrictions, the best triple is chosen represent-
ing the best fit.

With the aim of scoring the candidates, a comparison of the depth values of
the original range scenario Ds = {ds1, ds2, . . . , dsn} and validation points of the object
transformation Dv = {dv1, dv2, . . . , dvn} is performed penalizing those points in the
scene which should have been occluded by the matched object

s(dvi , d
s
i) =

dvi − dsi < −ε : 0

dvi − dsi < ε :
|dvi−dsi |

ε

dvi − dsi > ε : −p
(8.1)

and the score of the full transformation is the summation of each individual com-
parison

S(Ds, Dv) =

max(0,
∑
i

s(dvi , d
s
i))

n
(8.2)

With this implementation, Steder and Grisetti in [182] proposed a robust 3D
keypoints implementation that is able to run in real time. However, it was defi-
nitely improved several years later by Steder in [185], in a new keypoint descriptor
named NARF (Normal Aligned Radial Feature).

8.2.1 Normal Aligned Radial Features

The goals for this 3D range data point extractor are mainly two. In the one hand,
the algorithm aspire to ensure a robust estimation of the normal while in the other
hand these keypoints are prepared to focus on object borders (large changes in

14A triple is formed by three correspondences and represent a valid 3D rigid transformation.

8.3. 3D Scale Invariant Feature Transform 153

depth). To achieve this independence, dominant directions of the surface changes
in the area are obtained with the following points:

1. Find borders in the range image measuring the distance gradient along the
view-point axis.

2. Score each image point local neighborhood surface changes determining the
dominant directions for this change.

3. Measure the changes on those dominant directions.

4. Remove noise performing non-maximum suppression and smoothing the in-
terest values.

Therefore, as Steder states in [185], for each point, a normal aligned range value
patch is calculated taking into account the principal components of the normals lo-
cally around the point involved. With an image patch size of 10x10 pixels, a Gauss
kernel is passed to smooth the range image in this area. The star shaped pattern
represented in Figure 8.2 is projected onto the point with an angular resolution
that has been fixed to 10o so the descriptor is represented by a total of 36 values in
a histogram. As Skiff explains in [186], NARF features can be exploited in RGBD-
SLAM researches albeit there exist noisy and nonuniform point clouds, which can
be suitably filtered and segmented to generate basic blueprints of a certain space.
Grzonka [187]et al. proposed a NARF feature extraction to detect objects such as
chairs and tables from a small-sized quadrotor.

In the example displayed, the patch is colored in pink in the point cloud with
its normal in yellow. On the right side, the patch of the upper border of the chair
is printed in gray with the pattern superposed in pink. The dominant orientation
is represented with a blue arrow on the patch. The intuition says that the more the
structure below the beam changes, the higher the corresponding descriptor value.

Figure 8.3 represents a cluttered scenario with NARF keypoints represented.
As can be seen, borders and areas with large depth changes are more likely to be
interest points, contrary to the flat surfaces where there are no candidates at all.

8.3 3D Scale Invariant Feature Transform

This algorithm was proposed by Lowe [188] as a revolutionary solution to achieve
a large quantity of important points from bustling scenarios. This method has been
used not only for points extraction but also to correlate frames of the same scenario

154 Chapter 8. 3D Features

Figure 8.2: NARF keypoints. Representation of a point cloud with a sample patch
with its descriptor and the pattern used to extract it.

Figure 8.3: NARF keypoints. Example of a cluttered environment point cloud (on
the left) and the NARF keypoints generated by the NARF feature extractor in pink
(on the right).

8.3. 3D Scale Invariant Feature Transform 155

extracted from different points of view. The correct correlation of several clouds of
points might be used for building a complete 3D scene from a batch of 2D samples,
as Zhanget al. proposed in [189] or Schleicher in [190].

SIFT is divided mainly into four steps, each one extracts a different feature from
the image giving at the end a list of points with a complete description representing
the most important data fields for each frame [191]:

1. Maxima and minima detection in the space-scale: First step consists on the
search of possible candidates to represent keypoints. This search is done using
Gaussian Functions differences in order to identify points invariant to scale
and orientation.

2. Keypoints’s localization: After localizing candidates, scale and localization is
computed. Afterwards, those keypoints which are more stable are selected.

3. Orientation assignment: To each selected point, its orientation (or principal
orientations) is selected. Those orientations are defined based on local gradi-
ents around the keypoint.

4. Keypoints’s descriptors: Local gradients are measured and transformed into
a descriptor vector. This representation allows to describe the distortion lev-
els around keypoints and changes in illumination.

As it is going to be explained afterwards, the number of keypoints extracted
from any image will be dependent on the number of objects, textures and edges
of those objects. These keypoints can become very useful to have an idea of the
important regions of the image and then to pay more attention to find out objects
in these areas. Next sections will cover the four steps in detail, to get a global idea
of how this method works.

8.3.1 Maxima and Minima Detection in the Space-scale

As commented before, the first stage of SIFT algorithm corresponds to the detec-
tion of possible keypoints. To do that, stable features are searched along the frame
on different scales. Once this requirement is fulfilled, a Gaussian function is in
charge of space-scale changes.

Indeed, L(x, y, σ) is defined as a space-scale function in an image. It corre-
sponds to a convolution between a Gaussian of a scalar variable G(x, y, σ) and the
original image I(x, y) in this way:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (8.3)

156 Chapter 8. 3D Features

where Gaussian function is defined as

G(x, y, σ) =
1

2πσ2
e
−(x2+y2)

2σ2 (8.4)

To perform an efficient calculation of stable keypoints, in scale and space, the
usage of maxima and minima of D(x, y, σ) function is proposed, that corresponds
to the difference of Gaussians convoluted with the image. Difference of Gaussians
can be obtained from two contiguous scales separated by a multiplicative constant
k as

D(x, y, σ) = [G(x, y, k · σ)−G(x, y, σ)] ∗ I(x, y)

= L(x, y, k · σ)− L(x, y, σ) (8.5)

This approximation is quite fast and easy to compute in a computer. Further-
more, it represents a good representation of the normalized Laplacian σ2∇2G. That
is important since σ2 factor makes the transformation scale invariant. It is also
demonstrated that maxima and minima of the normalized Laplacian function are
more stable than gradient, Hessian function or even Harris corners.

The relation between D and σ2∇2G can be compared with the heat diffusion
equation, where temporal parameter is σ2(t = σ2)

∂G

∂σ
= σ2∇2G (8.6)

where in case of close scales kσ and σ it can be approximated

σ2∇2G =
∂G

∂σ
≈ G(x, y, k · σ)−G(x, y, σ)

kσ − σ
(8.7)

therefore,

G(x, y, k · σ)−G(x, y, σ) ≈ (k − 1)σ2∇2G (8.8)

This result demonstrates that DoG function differs from normalized function
just by factor (k − 1). Because this factor affects on every scale, it does not change
the maximums and minimums location. Next Figure 8.4 displays an optimal way
to construct D(x, y, σ) function.

Initial image is increasingly convoluted with Gaussians to produce separated
images by a constant scale factor k (left row). Each initial image forms an octave.
Each octave is divided a number of intervals s due to k = 21/s. Afterwards it has

8.3. 3D Scale Invariant Feature Transform 157
Scale (fist octave)

Scale (next octave)

Difference of Gaussian (DOG)

Figure 8.4: Difference of Gaussians. Each octave generates several DoG images. On
each iteration, image is reduced and blurred again

to be produced s + 3 images by octave in the group of fuzzy images so detection
of maximums and minimums covers a complete octave. Finally adjacent images
are subtracted to obtain a DoG image. After finishing the process for one octave,
images have to be sampled again, but this time with a σ value double to initial
value, taken the second pixel for each column and row. Precision is reduced in
each iteration. Figure 8.5 shows some Gaussians of the same octave and how they
get blurred.

Figure 8.5: Difference of Gaussians Original depth map and three Gaussians of the
same octave get blurred as long as the process iterates

To obtain the local maximums and minimums, not only the greater and closer
pixels from the neighbors pixels are good candidates, but they also those pixels that
are maximums and minimums on previous and next images in the same column
as Figure 8.6 displays. The computational cost of this maximum and minimum ob-
taining is small due to most of the points are removed during the initial checking.

158 Chapter 8. 3D Features

Scale

Figure 8.6: Difference of Gaussians Finding maxima and minima not only in the same
scale but also in upper and bottom scales [188]

A small spatial sampling does not ensure a large number of stable points. The
number of scales per octave has to be chosen experimentally. If a large number of
scales is chosen, a lot of unstable points would appear being less repetitive.

8.3.2 Keypoints Localization

Once the keypoints are found, next step is to adjust their location, scale and bright-
ness in the neighborhood. This information can reject points due to a low contrast
or poor localization near an edge. Again, another approximation has been done to
improve calculus and better computational times. In this case, DoG function has
been approximated to a Taylor series as

D(x) = D +
∂DT

∂x
x+

1

2
xT
∂2D

∂x2
x (8.9)

where D and its derivatives are evaluated in the sampling point and x = (x, y, σ)T

represents the offset in that point. The location of the critical point x̂ yields by
equaling Equation 8.9 to zero. Is obtained that

x̂ =
∂2D−1

∂x2

∂D

∂x
(8.10)

and it can be demonstrated that Hessian and derivative are approximated by the
use of difference of points around near samples. If the offset x̂ is greater than 0.5
in any dimension, that means that there is a critic point very close, and a simple

8.3. 3D Scale Invariant Feature Transform 159

interpolation between both points is performed. Using Equations 8.9 and 8.10 the
critical point D(x̂) is obtained as:

D(x̂) = D +
1

2

∂DT

∂x
x̂ (8.11)

According to [188], those points where ‖D(x̂)‖ < 0.03 can be discarded for nor-
malized pixels between 0 and 1. And that removes all those points with a low
contrast.

Nonetheless, there is another condition required for keypoints to became real
candidates: those points with a low location along an edge, as DoG posses a high
response along the edges. The principal curvature of a point can be processed from
a 2x2 Hessian matrix evaluated in the keypoint

H =

(
Dx,x Dx,y

Dy,x Dy,y

)
(8.12)

The required derivatives to obtain H matrix have been computed taking differ-
ences with neighbors in the sampling point. The H eigenvalues are proportional
to principal curvatures of D. Taking α as the greatest eigenvalue and β as the
smallest, the summation of eigenvalues can be done from the trace as

Tr(H) = Dx,x +Dy,y = α + β (8.13)

and the determinant as the product

Det(H) = Dx,x ·Dy,y − (Dx,y)
2 = α · β (8.14)

Taking r as the ratio between those eigenvalues (α = rβ), yields

Tr(H)2

Det(H)
=

(α + β)2

α · β
=

(r + 1)2

r
(8.15)

that only depends on the relation between eigenvalues. So, according to [188],
a reasonable threshold is r = 10 for Equation 8.16 to reject those instable points
because of a poor location in an edge.

Tr(H)2

Det(H)
<

(r + 1)2

r
(8.16)

160 Chapter 8. 3D Features

8.3.3 Orientation Assignment

The orientation of keypoints is quite important. A good assignment can make
the point invariant to rotation. The approach here exposed is based on local image
properties. This has a disadvantage, the number of descriptors selected is reduced,
cropping areas of the image.

The selection of the orientation is based on local gradients around the key-
points. For this, image is blurred with the highest Gaussian in that point. In this
way, calculus are done over information invariant to scale. For each sampling
image, L(x, y), gradient magnitude m(x, y) and orientation θ(x, y) are calculated
using pixel’s differences:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (8.17)

θ(x, y) = arctg

(
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

)
(8.18)

A histogram of a keypoint is formed by the orientation of the sampling point’s
gradients around the keypoint’s neighborhood. The orientation histogram is formed
by 36 divisions that covers 360o. Each sample added to the histogram has a weight
equivalent to the gradient magnitude multiplied by a Gaussian mask with a 1.5
times the value of the keypoint. Strong directions in the orientation histogram cor-
respond to dominant directions in local gradients. The maximum in the histogram
is recorded and compared with the second maximum. If there exist maxima above
80% of the largest one, those will be used to create new keypoints with different
orientations, creating a keypoint set with the same location but different orienta-
tion.

8.3.4 Keypoints Descriptors

Once all keypoints are found, processed and segmented, keypoint’s neighborhood
is divided into 4 × 4 regions of 4 × 4 pixels (See Figure 8.7). Then a gradient ori-
entation histogram is generated for each region with a weight Gaussian function
with σ = 4 pixels. To decrease conflicts made by small displacements, each pixel’s
contribution is multiplied by a weight 1 − d, where d represents the distance to
the neighborhood’s center. Since orientation histograms for each region are di-
vided into 8 columns, for each neighborhood a three dimensional histogram of
4× 4× 8(128) values is computed.

8.4. Point Feature Histogram 161

Figure 8.7: Keypoints orientation Divisions performed to create a gradient orienta-
tion histogram [188]

8.3.5 3D Approach

SIFT can be extended to three dimensional space in two different ways. Triggered
by the success of SIFT in 2D computer vision, there have been several attempts to
extend the algorithm to three dimensions. N-SIFT [192] and Volume-SIFT (VSIFT)
[193] are extensions of SIFT for 3D volumetric (medical) image data, but also ex-
tensions of the original SIFT algorithm to work on 3D surface data have been pro-
posed. In [194] the SIFT-algorithm is adapted to range images but is not suitable
for full 3D surface representations such as point clouds or meshes. The developed
algorithm is hence called Z-SIFT or 2.5D SIFT. Maes et al. [195] proposed mesh-
SIFT, an alternative that allows reliable detection of scale space extrema as local
feature locations.

The first and most direct way is applying keypoint extraction to 2D representa-
tions of the 3D depth map. This method is called Z-SIFT and was proposed by He
et al. [196]. The main idea is to take the intensity gradient of an object and extract
its keypoints for that view. This process can be made iteratively while rotating the
model and therefore acquiring multiple features for the same object.

8.4 Point Feature Histogram

Point Feature Histogram (PFH) was initially presented by Rusu et al. in [57]. It con-
sist on a histogram of values that represents with a single histogram the alterations

162 Chapter 8. 3D Features

and most remarkable variations for a specific surface. FPFH histogram might be
used to search similarities among different objects with scale invariability. This
feature becomes an issue when databases are composed by scaled versions of sim-
ilar objects at different scales (this circumstance is quite common for kitchen items
such as spoons, mugs, glasses or dishes). Classifiers are always supported by a
distance metric in charge of comparing candidates with the observed guest. The
selection of a correct metric can affect directly to the recognition rates as discussed
by Clemente in [7].

There exist multiple alternatives to represent and interpret surfaces. As a gen-
eral rule those techniques analyze point cloud curvatures and normals along the
surfaces to reduce a high dimensional problem into something more manageable.
Most scenes will contain 3D clusters that may represent dissimilar objects or not,
making it challenging to create a wide representation for 3D point clouds into a
single feature list. As mentioned before, Rusu et al. proposed in [145] and [57]
a novel point features representation named Point Feature Histogram, based on
the curvature and normal orientation between neighbors in a certain point cloud.
Since surface normals and curvature estimations are able to capture precise details
of the geometry around a point, most algorithms base their intention focusing on
them to deal with false correspondences.

In order to enhance recognition approaches, there exist many different feature
representations for a surface. In general, it would be ideal to represent each point
with an information label that contains the geometry class it belongs to: edge point,
spherical surface point, etc.

Following the above, there is a need of finding a multi-dimensional feature
space which separates surfaces in different categories. In terms of point-wise anal-
ysis, the concept of a dual-ring neighborhood is introduced for any point pi ∈ ℘
as

(∃)r1, r2 ∈ R, r1 < r2

{
r1 ⇒ ℘k1

r2 ⇒ ℘k2
(8.19)

with 0 < k1 < k2. ℘ represents the complete set of 3D points. Both radii r1, r2 have
a specific target. The value r1 represents the surface normal at the query point
pi obtained from the Principal Component Analysis formed by the neighborhood
patch ℘k1 . The radius r2 delimits the PFH representation itself.

As it has been stated before, the main goal of the PFH formulation is to encode
the ℘k2 neighborhood’s geometrical properties by generalizing the mean curvature

8.4. Point Feature Histogram 163

v = (pt − ps)× u v nt

ps pt

ns = u u

φ

w = u× v w

α

θ

Figure 8.8: Point Feature Histograms. Darboux coordinates frame between source
and target points when computing PFH

around pi using a multi-dimensional histogram of values. Assuming that normal
values of neighbors of pi have been already computed, it is possible to state that
having two different points pi and pj the relative difference between them can be
defined as follows:

~pij = pi − pj, ~pji = pj − pi (8.20)

if cos−1(~ni · ~pij) ≤ cos−1(~nj · ~pji) =⇒

{
ps = pi, ns = ni
pt = pj, nt = nj

otherwise =⇒
{
ps = pj, ns = nj
pt = pi, nt = ni

(8.21)

being ps the source and pt the target. As the above condition takes place, ps is
chosen such that the angle between its associated normal and the line connecting
the two points is minimal. It is then defined a Darboux coordinates frame is then
defined at one of the points as shown in Figure 8.8.

The following mathematical statements are disposed:

u = ns (8.22)

v = u× (pt − ps)
‖pt − ps‖2

(8.23)

w = u× v (8.24)

164 Chapter 8. 3D Features

With this in mind, the difference between the two normals ns and nt is defined
as

α = v · nt (8.25)

d = ‖pt − ps‖2 (8.26)

φ = u · (pt − ps)
d

(8.27)

θ = tan−1

(
w · nt
u · nt

)
(8.28)

The quadruplet< α, φ, θ, d > reduces itself from 12 initial values for both points
to 4. The influence region diagram for a query point pq can be represented as in
Figure 8.9, where k represents the neighbors of pq in a 3D sphere of radius r1 and
they are displayed as pki .

pk1

pk2pk2

pk3

pk4

p5

p6

p7

p8

p9

p10

pq

Figure 8.9: Point Feature Histograms. Influence region for a query point pq when
computing the PFH.

In order to encode the quadruplet a histogram has been created. The quadru-
plet values are divided into bins forming a histogram, each bin including the num-
ber of coincidences on this interval. Since three of the four values are angles, it is
straightforward to divide the values into equi-spaced bins.

8.5. Fast Point Feature Histogram 165

8.5 Fast Point Feature Histogram

A first improvement of PFH consists on taking into account the histogram of the
neighbors and set for each point a histogram averaged with the surrounding points,
so

• For each point pq a set of tuples < α, φ, θ > are computed between a query
point and its neighbors using the equations described above. This is called
SPFH (Simplified PFH).

• Then, for each point pq its histogram is recomputed taking into account a
weighted value of neighbors SPFH

FPFH(pq) = SPFH(pq) +
1

k

k∑
i=0

1

wi
· SPFH(pi) (8.29)

where wi represents a distance between the query point pq and a neighbor point pk
in some given metric space (for this study Euclidean distance metric will be com-
puted). FPFH includes additional point pairs outside the r1 radius sphere with a
re-weighting strategy that smooths local discontinuities and defines a better geom-
etry around the query point.

8.6 Viewpoint Feature Histogram

Last enhancement applied to FPFH concerns to the view point of the object. As ex-
plained previously, one of the problems of FPFH is the view point dependence. To
make the feature estimator view point independent, it has to be removed from the
quadruplet necessarily. [161] proposes to maintain viewpoint variance while re-
taining invariance to scale computing additional statistics between the viewpoint
direction and the normals estimated at each point creating a new descriptor named
Viewpoint Feature Histogram (VFH).

The best way to remove this dependence is straight mixing the viewpoint direc-
tion directly into the relative normal angle calculation in the FPFH. A histogram of
the angles that the viewpoint direction makes with each normal is computed. This
is done from the viewpoint direction at the central point and each of the normals
on the surface in order to maintain the feature scale invariant. The histogram then
appears as in Figure 8.10.

166 Chapter 8. 3D Features

α φ θ d extended FPFH component

Figure 8.10: Viewpoint Feature Histograms. Representation of a Feature Histogram
for a mug. It consists of 45 binning subdivisions for each of the 3 extended FPFH
values, plus another 45 binning subdivisions for the distances between each point
and the centroid and 128 bins for the viewpoint component.

As a conclusion, the usage of 3D descriptors based on keypoints are extremely
useful to recognize and classify objects viewed from different poses. In this thesis,
VFH descriptors are used in the following chapter to create a complete classifier
that detects confusable objects. The geometrical description of the object pose will
be determined by its VFH sign, the global object size and the texture information.

Chapter 9
3D Object meta-classifier

167

169

In this chapter, a meta-classifier to identify and distinguish between objects
with confusable geometry, similar in appearance, colors and dimensions is pro-
posed. The primary task of the proposed approach is to perform 3D scene labeling,
which is to assign a label to every cluster point in a 3D scene. The suggested classi-
fier has to be able to differentiate successfully between 3D point clouds with a high
degree of similarity extracting parameters such as 3D features from the surface of
the cluster, absolute geometrical boundaries and also color distributions. Objects
are until now detected based on its Viewpoint Feature Histograms (VFH) with the
downside of being scale independent, making the segmentation of items with sim-
ilar geometry difficult. Furthermore, this thesis discusses several distance metrics
to choose which one fits better with VFH descriptors based on the previous work
by Bueno et al. [197]. Several experiments that validate the model and corroborate
the meta-classifier are proposed.

As the quantity of new knowledge generated in the world quickly increments,
proficient search in collections of structured data is required. 3D objects are a sig-
nificant sort of multimedia information with many purposes. Latest advancements
in procedures for modeling, digitizing and visualizing 3D models have led to an
spread in the number of accessible 3D models in the Internet. For visualization,
3D models are represented as a surface, in particular as polygonal meshes. Many
researchers have investigated the specific problems of content based on 3D shape
retrieval and in the related fields of computer vision, object recognition, geometric
modeling and obviously in robotics for manipulation and Human-Robot interac-
tions.

Similitude seek in 3D models is becoming a notable mechanism in multime-
dia retrieval with many feasible applications such as CAD medicine, molecular
biology or entertainment [198]. These utilizations lead to noteworthy diversity in
the quantity of models growing in the past decade [199]. Utilization of the cur-
rent models can be helpful in many events, which demands adequate methods for
classifying or fetching the models in a large database. Searching and cataloging
objects from a database are conventionally performed by using notes with the well
studied keywords matching algorithm. It turns into a extremely difficult task to
depict by words shapes that are not in well known shape or semantic categories. It
is thus essential to have content-based search and retrieval systems for 3D models
that are based on the geometric shapes features and color descriptors, as Sundar
et al. states in [200].

Any classification process has to accomplish two basic rules to deal with 3D

170 Chapter 9. 3D Object meta-classifier

3D MODEL
original 42 harmonics 82 harmonics 122 harmonics

242 harmonics202 harmonics162 harmonicsreconstructed

Figure 9.1: Ray-based feature vector. Back-transform of the ray-based samples from
frequency to spatial domain at several frequencies

models. It has to interpret each model based on features or any possible represen-
tation and it has to be able to compare two different models.

• Model representations.- A custom or generic representation of an object based
on its proper features must be set. These features may contain accurate in-
formation about any desired feature that characterizes the object and make
it discriminative. Most literature base those features in 3D features, as ex-
plained in Chapter 8: VFH, SIFT-3D, NARF, etc. Those features can be mixed
up forming a feature container for each object that contains color informa-
tion, shape, texture, dimensions, surfaces, weight, usage, location, etc. A
model can even be represented by a frequency Fourier transform of the sur-
face and be back-transformed to spatial domain (see Figure 9.1).

• Similarity measuring.- The second requirement of a classifier is the measure-
ment tool. Since it has to discern between objects stored in a database, it has
to be able to compare their similarity. If the recorded features are arrays of
numbers, a classical way to measure their similarity is to compute the dis-
tance between pairs of descriptors. Then, a custom matching function will
determine a score indicating the degree of their resemblance.

Several methods are appropriate for similarity search requirement. The ap-
proaches should be invariant to alterations in the orientation, translation, reflection
and scale of 3D models in their reference coordinate frame. They should also be
robust with respect to variations of the level-of-detail and to small aberrations of
the topology and geometry of the models. As Ronneberger et al. exposes in [201],
the invariance and robust attributes are convenient for those practices that bear
in mind relative objects properties or that combine a similarity measurement over

9.1. Model Matching Methods 171

the space of transformations. Otherwise these properties can be approximated by
a preprocessing normalization, which transforms the objects so that they are rep-
resented in a canonical coordinates frame. In this form, directions and distances
are comparable between different models inside the classifier. Therefore, taking in
mind the two basic rules that any classifier has to interact with, this thesis will ad-
dress a feature representation of the objects based on 3D shape, dimensions and a
color descriptor. Furthermore, a list of distance metric candidates will be described
in order to determine which metric yields better results during the similarity mea-
suring.

9.1 Model Matching Methods

There exist two main alternatives for matching models. The first alternative are
feature vector-based (FV-based)methods and the second alternative are graph based
methods.

9.1.1 Feature Vectors

In order to measure the similarity of one item with respect to another, the 3D model
is changed somehow to acquire a mathematical representation for indexing and re-
trieval, which is refered to as feature vector (FV). The primary intention is to select
a list of numeric values that characterize the model under an unambiguous geo-
metric form, and to find the similarity of the models from the distance of these
feature vectors in some vector space. The consequent representation of a feature is
considered as a descriptor.

Features are displayed by vectors with real-valued elements, and such descrip-
tors are regarded as FV. Figure 9.2 shows the principle of a feature-based similarity
search system (extracted from [202]). Descriptors should be defined in such a way
that similar 3D models are attributed FVs that are close in search space. Apart
from the 3D features that have been explained before, other characteristics might
be used to extract a valid feature vector from any 3D point cloud. The similar-
ity measure of two 3D objects is determined by a nonnegative real number, and
usually, queries to the database are divided into two: range queries, which reports
all objects from the database that are within distance lower than some tolerance
value, and k− nearest neighbors queries, which assume that the distance between
the query and any other element is lower than a certain value.

172 Chapter 9. 3D Object meta-classifier

3D MODEL FEATURE VECTOR HIGH DIMENSIONAL
INDEX STRUCTURE

feature extraction database insertion

Figure 9.2: Feature-based similarity search. Each object is analyzed and a high dimen-
sional feature vector is extracted. This vector is then inserted in a high dimensional
index structure with the rest of the database members.

Silhouette Feature Vector method

Silhouette represents the region of a 2D image of an object which contains the pro-
jections of the visible points of that object. A silhouette can also be defined as an
outline of a solid object, and a contour as a collection of boundary points of a sil-
houette. A silhouette feature vector proposed by Heczko et al. [203] designates
3D objects in terms of their silhouettes that are obtained from canonical render-
ings. The objects are earliest PCA-normalized and scaled into a unit cube that is
axis-parallel to the principal axis. After that, parallel projections onto three planes,
each orthogonal to one of the principal axes, are obtained. The algorithm sug-
gests to recover a feature vector by concatenating Fourier estimation of the three
resulting contours. To obtain such nearness, a silhouette is sampled by placing a
predetermined quantity of uniformly spaced succeeding points on the silhouette,
and computing the Euclidean distance among the image center and the consecu-
tive outline points as the sampling evaluations.

Experimental results on the retrieval effectiveness of this descriptor were pub-
lished in Vranice and Saupe [204], while Song and Golshani [205] tackled the usage
of projected images for 3D retrieval. The authors suggested a structure to render
object images from manifold directions and to employ various distance functions
on resulting image pairs, for instance, based on circularity measures from the pro-
jections or distances between vectors of magnitudes after Fourier transform. There
are much more works on image-based retrieval methods reported in Ansary et al.
[206].

9.1. Model Matching Methods 173

Depth buffer feature vector method

Heczko et al. [203] proposed another image-based descriptor called depth-buffer
descriptor. It is also scaled into a unit cube and oriented as so. Six grey-scale
images are extracted (two for each of the principal axes). Each pixel encodes in
an 8-bit grey value the distance from the viewing plane of the object 15. The six
images are transformed using the standard 2D discrete Fourier transform and the
magnitudes of certain k first low-frequency coefficients of each image contribute
to the depth buffer feature vector of dimensionality 6k.

Surface Voxelization based method

Saupe et al. [207] proposed a FV method based on the rasterization of a model into
a voxel grid structure and then represent the feature in either spatial or frequency
domain. The bounding cube addressing the object is subdivided in n × n × n
equally sized voxels. Distance metric for these descriptors is obtained applying a
3D Fourier-Transform in the frequency domain. Extracting the first k frequency
coefficients, it is possible to perform a multi-resolution search.

9.1.2 Non-feature Vector Matching Techniques

As it has been explained, FV is focused on object characteristics such as spatial
extent, surface curvature, 2D projections, etcetera. In contrast, Bustos et al. [202]
determine that graph-based methods endeavor to obtain a geometric definition
from a 3D shape using a graph to expose that the shape basics are associated to
each other.

Model graph based similarity

Hilaga et al. [208] presented an approach to particularize the topology of 3D objects
by a graph assemblage and showed how to apply it for matching and retrieval.
The algorithm is based on an assembling so-called Reeb graphs from the models,
which can be interpreted as information about the skeletal structure of an item.
The fundamental concept is to divide the object into linked pieces by examining
a function µ that is bounded over the entire object’s surface. The Reeb graph cre-
ated from a 3D object is made up of nodes that signify divisions of the object for
which µ assumes values ranging in specific value intervals. Parent-child relation-
ships between nodes represent adjacent intervals of these function values for the
contained object parts. Similarity among objects is determined after the compar-
ison of the topology of the respective Reeb graph for both items. The selection of

15These images correspond to the concept of z− or depth− buffers in computer graphics

174 Chapter 9. 3D Object meta-classifier

Figure 9.3: Skeleton based similarity. Two objects and their corresponding skeleton
[200]

µ function is critical to the construction of graphs suited for object analysis and
matching.

Skeleton based similarity

Skeletons acquired from solid objects can be noticed as instinctive object descrip-
tions. Sundar et al. [200] used a skeletal graph shape descriptor encoding geo-
metric and topological information at the same time. To obtain a thin skeleton,
the authors recommended to apply a thinning algorithm on the voxelization of a
solid object. With that method, the model voxels are reduced to only those voxels
that are crucial for object reconstruction. This is determined by a heuristic that as-
sociates the distance transform value of each voxel with the mean of the distance
transform values of the voxels among its 26 neighbors [209]. In a second step, the
remaining voxels are clustered, and a minimum spanning tree is constructed con-
necting the voxel clusters. Figure 9.3 represents the final skeleton of two objects
and its corresponding volumetric representation.

9.2 Architecture of the Classifier

In this section, a novel classifier for confusable objects is presented. Its main pur-
pose is to permit the robot to categorize uncertain objects lying on a table and also
to distinguish all of them. As it will be shown, most of the objects are, on pur-
pose, extremely similar in shape. One of the challenges faced in this thesis is the
implementation of a classifier that attends not only to one specific feature of the ob-
ject but to the combination of several others. In order to classify correctly objects
with similar surfaces but different scales, it has been proposed a meta-classifier
that not only takes into account the VFH histogram but also the external geometry
of the object (height, width and depth dimensions) and the color texture to make
the robot recognize most objects in order to grasp them. Therefore, this research is

9.2. Architecture of the Classifier 175

focused on the extraction of the optimal result from the database in order to order
the robot, once the object has been recognized, to plan a safe path with the arm
and then grasp it.

Figure 9.4: Database created by the author. Representation of 2D and 3D views for
several objects acquired during the classification process. Notice that most of the
items are geometrically similar.

For this study, a 3D household items database has been created. It has been de-
veloped by the author and contains a list of 15 objects. Each object is formed by 20
views from different point views, bringing the total of 300 individual point cloud
views. The main feature of this database is that all the objects are quite similar in
terms of shape. Figure 9.4 shows a representation of some of the items included in
the author’s database created specifically for this study. As can be noticed, there
exist objects with similar surface shape but different size or color. All the objects
are labeled and ground truth poses are also given. All of them will be used in these
experiments as the final intention of the presented meta-classifier is to distinguish
specifically between confusable objects.

Geometry features contain absolute measures in the three axes giving more sig-
nificance to the height value. That condition is imposed to maintain the view-
point invariance since width and depth depend on the rotation of the object, while
height maintains constant relative to the supporting plane and detached from yaw
angle. The following subsections explain each part of the filter and the overall
meta-classifier.

As a setup stage, the list of object views have to be analyzed. For each view
of a certain object, all the involved features are extracted. The first one is the VFH

176 Chapter 9. 3D Object meta-classifier

QUERY VIEW RESULT VIEW

VFH features

Geometry

Color features

VFH features

Geometry

Color features

distance metric
nearest

database

meta-classifier

VFH filter

k-d tree

Geom. filter

3D distance

Color filter

KL diverg.

Figure 9.5: Meta-Classifier schema. Diagram of the classifier proposed for this study.
Distance metric can be changed before filtering is done. The meta-classifier takes
into account 3D surface descriptors, color and geometry for each query and returns
the closest candidate in the database.

descriptor explained in the later chapter. This descriptor will determine the form
of the surface in a local manner. Furthermore, this feature is scale invariant, rep-
resenting a problem for grasping as it may let the robot to get confused if two
similar objects of different scale are presented to it. For this reason, a second filter
will determine the global dimensions of the view, allowing the robot to distinguish
between similar objects at different scales. Finally, those objects that are most of
the time similar in size and shape but not in color (examples of this could be the
salt and pepper recipients or an orange versus apple, etc.) have to be considered.
Thus, in order to classify those last cases, a color classification is processed using
the same technique as the explained in the evolutionary reconstructor (see section
7.4.1 for more information). The color distance for every pixel of the cluster will be
computed and the classifier will discern the most probable one.

However, it may happen that an object is not yet in the database or needs to be
re-learned for some reason: it has changed its color, it is not rigid and its original
pose has been altered or it has been simply folded. In order to deal with these situ-
ations, the classifier has been provided with a learning routine that will introduce
a new object in the database. In order to do this, the robot will ask for a bunch
of views of the concerned object. The classifier will memorize the first view’s de-
scriptor and it will remain acquiring information from new views until the original
view is shown again. In that moment the system will ask for an object’s name and

9.3. Distance Metric 177

the new object will be attached to the database.

9.3 Distance Metric

As stated before, there exist two main metrics for feature vectors. The similarity
measurement of two 3D objects is determined by a real number that represents the
feature distance in a high level search space. Generally, a similarity measure is,
therefore, a function of the form

δ : Obj ×Obj =⇒ R+
0 (9.1)

where Obj is a suitable space of 3D objects. Similarity is then measured in terms
of δ. A small value of δ represents strong similarity (small distance) and, equiva-
lently, a high value of δ denotes a dissimilarity.

Let U represent the 2D object database and let q be the query 3D object in ques-
tion. There exist basically two types of similarities.

• Range queries.- A range query (q, r) for a tolerance value r ∈ R+ reports a list
of objects from the database that are within a distance r to q; that means that
(q, r) = {u ∈ U, δ(u, q) ≤ r}.

• k −NN queries.- It returns a list of the k objects from U closest to q. It means
that it yields a set C ∈ U such as |C| = k and ∀u ∈ C, v ∈ {U − C}, δ(u, q) ≤
δ(v, q).

It has to be considered a d−dimensional FV to perform similarity compar-
isons. Classical systems would report δ(u, v) as a metric distance L(~x, ~y) in the
d−dimensional space of FVs where ~x, ~y represent the FVs of u and v, respectively.
The most popular family of similarity functions in vector spaces is Minkowski Ls
family of distances

Ls(~x, ~y) =

(∑
1≤i≤d

|xi − yi|s
) 1

s

, ~x, ~y ∈ Rd, s ≥ 1 (9.2)

Most common variations of this family are Manhattan distance L1, Euclidean
distance L2 and the maximum distance L∞, L∞ = max1≤i≤d |xi − yi|.

If the feature components correspond to histogram data, as it is proposed in
this thesis, several further extensions to the standard Minkowski distance can be
featured. In the context of image similarity search, color histograms are often used.

178 Chapter 9. 3D Object meta-classifier

The descriptors then consist of histogram bins, and cross-similarities can be used
to reflect natural neighborhood similarities among different bins. In order to mea-
sure distances between distributions, several distance metrics have been proposed.

One of the aims of this research is to determine the degree of reliability for sev-
eral variations of the Minkowski family and also the Kullback-Leibler divergence,
already mentioned in this research. The main purpose of this study is to determine
the performance of each alternative and also to select the most accurate distance
metric to distinguish between different VFH histograms and color histograms. The
list of functions and their equations can be found in Table 9.1. It will be assumed
that all the histograms are normalized in order to satisfy the metrics conditions.

METRIC FUNCTIONS

Distance metric Distance function

Euclidean d =

√
N∑
i=1

(pi − qi)2

Manhattan d =
N∑
i=1

|pi − qi|

Bhattacharyya d = −ln
N∑
i=1

√
pi − qi

Kullback-Leibler d =
N∑
i=1

pi ln
pi
qi

Chi-Square d =
N∑
i=1

(pi−qi)2

(pi+qi)

Histogram Intersection Kernel d =
N∑
i=1

min(pi, qi)

Table 9.1: Distance metrics used for this study. Most of them are Minkowski family
functions and divergence functions

9.4 Surface Shape Filter

The earlier filter in the classifier extracts the VFH descriptor for the observed clus-
ter and compares it with the descriptors listed in the database for each view and
for each object. Because this operation might spend a lot of time, a k-NN tree is
previously built with the catalog of objects already added to the database. This
advancement achieves faster execution times. Therefore, the VFH histogram will

9.4. Surface Shape Filter 179

be compared with each member of the database. This comparison requires a dis-
tance metric. The metrics already mentioned will be evaluated in order to extract
the most sensible distance function.

The aim of this first procedure is to sort the database in order of 3D shape simi-
larity. From the whole list, only the ten most similar candidate views will be taken
into account. Those elements are supposed to be the majority of objects with the
same surface shape. Furthermore, those aspirants could have different scales or
textures but the same surfaces. Figure 9.6 represents a list of the five nearest neigh-
bors for a single candidate that is also shown in the upper part. The list is sorted
from left to right in order of similarity using Euclidean distance as the classification
metric. Surprisingly, all the resulting views do not belong to the same candidate.
This happens because of the nature of VFH. As this descriptor is exclusively based
on geometrical shapes and the selected database contains quite similar and con-
fusable objects, this results become predictable. The mission of the meta-classifier
is to refine the results and extract the most suitable result based on the similarity.

19.6091 20.0136 20.934 21.1594 21.940

Figure 9.6: k-NN distance results for a given VFH. Result of searching for similar
objects in the database. The top item is the query and the above candidates are the
most similar sorted by VFH distance.

The k-NN tree modeled contains, for each leaf, the VFH histogram of a single
view for a specific object. VFH implementation uses 45 binning subdivisions for
each of the three extended FPFH values, plus another 45 binning subdivisions for

180 Chapter 9. 3D Object meta-classifier

the distances between each point and the centroid and 128 binning subdivisions
for the viewpoint component yielding a total of 308-length vector. Figure 9.7 rep-
resents a set of views of the same object and their individual VFH values making
it easy to understand the structure of the database.

Figure 9.7: Representation of VFH histograms. Illustration of several items in 3D and
their corresponding View-Point feature Histogram in red. Histograms look quite
similar due to their shape similarity.

The small difference among VFH histograms for each view makes it mathemat-
ically complex to determine the dissimilarity between them. That is the reason why
several distance metrics have been evaluated. In order to transform histograms
into distributions, they have been weighted making them unitary on those where
it was necessary.

9.5 Geometrical and Color Filtering

As mentioned before, VFH is a scale-independent feature and therefore is not able
to distinguish between objects with the same shape but different size or texture.
To solve this deficiency, several options have been proposed. Taking into account
the real dimensions of the cluster, it is feasible to classify objects at various scales.
This dimensional feature is highly dependent on one factor that was mentioned in
Chapter 4: the plane fitting estimation. As long as the plane is well fitted on the
supporting surface, the computation of the height dimension of the view becomes
more and more confident. However, if the plane is poorly estimated, this factor in
the classification becomes less advantageous.

Furthermore, color features have been extracted for each view to classify cor-
rectly the candidates. Several color space representations (RGB, HSV and SciLab)
have been compared in order to determine the best classification feature.

9.5. Geometrical and Color Filtering 181

9.5.1 Bounding Box Extraction

The subsequent filter step of the classifier is focused on absolute dimension values
of the view: height, depth and width. The most valuable measure of these three is
the height, since either width or depth are weak to point of view or object rotation.
Height is almost view-point invariant as the higher part of the point cloud will
always remain observed from the camera coordinates, and therefore successfully
determined. Contrary to that, depth or width can be mistaken due to occlusions
or convex surfaces. Furthermore, if the observation errors are taken into account,
height value is the most confident value, since the object is always lying on a ta-
ble. Thus, at least the minimum height of the bounding box will be ensured by the
plane estimation, while the other two dimensions are freely modifiable. Table 9.2
shows the variability of a static object lying on a table over 100 measures.

OBJECT DIMENSIONS
width height depth

N (0.1244537, 0.079865) N (0.098416, 0.053207) N (0.081089, 0, 101128)

Table 9.2: Bounding box parameters variance. A rigid cube of 0.10×0.10×0.10m3 is
measured 100 times in order to determine the stability of the observed dimensions.

The selected object is a cube of 0.10× 0.10× 0.10m3. It has been measured 100
times and the resulting dimensions have been approximated to three normals, one
for each direction. As can be seen, the most stable and accurate one is the height
of the cube with an average of 9.84 cm. The most unstable measure is the depth of
the cube as floating pixels may vary the boundary in this direction. Therefore the
height remains as the best qualification for the geometrical filtering.

An arising problem when capturing these three dimensional values becomes
while determining the absolute position of the object according to the supporting
plane world position. For this reason, it is necessary not only to extract the object
cluster but also to project the point cloud to the coordinate system formed by the
supporting plane and the point view coordinates. Figure 9.8 represents the clus-
ter point cloud of a teddy with the three views projected based on the parametric
equation of the table plane π(πx, πy, πz).

182 Chapter 9. 3D Object meta-classifier

πy
πz

πx

left view

front view

top view

Figure 9.8: Projected bounding box for a cluster. Bounding box of a point cloud pro-
jected on each axis referenced to the normal of the supporting plane π

9.5.2 Color Filter

Last step of the classifier is focused on determining differences in texture between
similar candidates. This last condition makes the complete architecture able to
distinguish between objects with approximate surface shapes and identical geo-
metrical sizes but dissimilar colors.

There exist multiple ways of comparing textures among objects. For this re-
search, each color histogram R, G and B will be converted into a HSV histogram
and then assumed as an independent distribution. Figure 9.9 shows the RGB dis-
tributions of two mugs that might be distinguished clearly. Distributions change
slightly for each mug. For the first histogram relative to the redish mug, most of
the red distribution is assigned to the higher values of the red channel, while green
and blue values are maintained low. Contrary to this, the white mug distribution
obtain high values for the three channels assembling most of their values to the
tail of the sub-distributions. Note the density dimensions in both distributions.
However, this is not enough for many cases since orange and red colors are quite
confusable for RGB color space. For this reason, textures are transformed into HSV

9.6. Experimental Results 183

before being compared.

Figure 9.9: Illustration of color histograms in RGB space. Representation of the color
histograms created by the classifier. Only extremely different textures can be dis-
tinguished easily.

The distance metric will be the same as the one proposed for the object recon-
structor. The distance metric between objects will be the Jensen-Shannon diver-
gence. Each color distribution will be normalized to remove cluster size depen-
dency. From the three channels, Hue will be used in conjunction with Saturation,
while Value will be avoided.

Figure 9.10 a search by color similarity is displayed for a single object of the
database using the HSV space color. The upper element is the query and the list
below is the result of the color matching using the Jensen-Shannon divergence as
distance metric. As it is shown in the image, the color is not homogeneous and
the HSV histogram might get contaminated with noisy points and floating pixels.
However, the proposed method is robust for this kind of alterations in texture and
illumination.

9.6 Experimental Results

The proposed detection-based 3D scene labeling has been evaluated on the RGB-D
Object Dataset presented before, which contains everyday objects captured indi-
vidually in a non-controlled scenario. That means that turntable or similar tech-
niques were not used to acquire the models. All the models have bee acquired

184 Chapter 9. 3D Object meta-classifier

0.96285 0.91204 0.84671 0.77541

Figure 9.10: Color distance results for a red mug. Result of searching for color-like
objects in the database on the HSV space. The top item is the query and the above
candidates are the most similar sorted by color distance with the corresponding
distance on each footer.

using the 3D sensor provided to the robot (details about the sensor are addressed
in Chapter 2). The meta-classifier has been trained using captured objects individ-
ually and evaluates scene labeling on point clouds reconstructed from the RGB-D
scene videos. Furthermore, an extensive discussion of the proposed classifier is
done afterwards with a set of confusion matrices determining the accuracy of each
part of the classification. Results comparing the proposed technique will be held
and finally some examples of 3D labeling in real scenarios will be presented.

A good way for discussing the accuracy of an object recognition algorithm with
similar candidates is creating a confusion matrix with them. This type of studies
compare all the members and explain the correlation between them, similarities
and the degree of segmentation. For this study, several confusion matrices will
be shown. The first experiments will cover the dependency of distance matrices
when comparing VFH features and RGB histograms. The last investigations will
focus on the performance of the meta classifier and its accuracy depending on the
filters enabled.

9.6. Experimental Results 185

9.6.1 Distance Metric Performance

In this experiment, several distance metrics have been evaluated in order to mea-
sure their performance and select the most suitable function to evaluate the dis-
tance between feature histograms. As it has been mentioned in the previous sec-
tion, six classic distance functions will be used: Manhattan distance (L1), Euclidean
(L2), Bhattacharyya, Kullback-Leibler + Jensen Shannon divergence16 , Chi-Square
distance (χ2) and Histogram Intersection Kernel.

Their performances have been represented in Table 9.3 with a single candidate
tiny-mug-coffee from random poses and distances relative to the sensor view
point with the aim of obtaining realistic observations. The classifier will perform
the three-stage classification for this experiment: shape, dimensionality and color.

SHORT DISTANCES

Manhattan L1 Euclidean L2 Bhattacharyya K-L+ J-S χ2 HIK
63 % 66 % 46 % 84 % 74 % 23 %

LARGE DISTANCES

Manhattan L1 Euclidean L2 Bhattacharyya K-L + J-S χ2 HIK
58 % 61 % 45 % 81 % 63 % 22 %

Table 9.3: Recognition rates for different distance metrics at short distances (0.4 -
0.5 m) and large distances (0.9 - 1.0 m). The mixture of Kullback-Leibler divergence
for VFH descriptor and Jensen Shannon divergence for color histogram presents
the most accurate results for VFH comparisons

The above results have been computed using the following equation

performance = 100 ·

N∑
i=1

1− |oi − ri|

N∑
i=1

ri

(%) (9.3)

Results show up two main conclussions:

• The best performance is yielded by using Kullback-Leibler divergence when
comparing full feature histograms. The robustness of this metric is quite rec-
ommendable for features comparison and therefore, it will be used in the
subsequent experiments.

16Kullback Leibler divergence for measuring VFH dissimilarity and Jensen-Shannon divergence
for color histograms

186 Chapter 9. 3D Object meta-classifier

• Distance affects the recognition rate, since the number of observable points
decreases. As the robot interacts in a workspace between 0.4 and 0.8 meters,
this dependency does represent a problem that might be taken into account.

9.6.2 Depth Reliance

For a better understanding of the behavior of the meta-classifier with respect to
the distance of the objects, a statistical analysis has been performed in these terms.
Several objects have been classified independently at different distances in order to
determine the relation between depth and the recognition rates. For each item, the
classifier has been tested at different depths, the size of the observed point cloud
and the results are presented in Table 9.4.

From this table several conclusions are extracted. Firstly, there exists a strong
relation between performance rate and the relative distance between the sensor
and the object. This dependency basically decreases with the cluster size, since it
decreases as long as the object is moved away. Therefore, the amount of informa-
tion directly affects the classification score.

9.6.3 Confusion Matrices

The next experiment is focused on measuring the improvement of the filter as long
as it is refined. That is, by means of confusion matrix it is feasible to compare detec-
tion rates for similar candidates and therefore understand the degree of confusion
or precision of the filter. Three matrices have been computed. Each one represents
a different version of the filter. First version (Table 9.5) includes only the VFH fil-
ter, next version includes the geometric filter (Table 9.6) and the last differentiate
among colors and textures (Table 9.7).

VFH filter

The average recognition rate for this filter is 50.85%. Notice that it uniquely takes
into account the 3D surface shape of each object, confusing objects with similar sur-
faces such as mug-robotics-white and mug-robotics-red, which are highly
confusable. The same is happening between mug-medium and mug-big, where
the recognition rates are below 35%.

9.6. Experimental Results 187

DEPTH DEPENDENCY

Object name Depth [m] Cluster size [points] Performance

tiny-mug-coffee
0.40 1487 84%
0.60 1190 82%
0.80 1039 81%

medium-mug-coffee
0.40 2004 60%
0.60 1721 60%
0.80 1445 57%

big-mug-coffee
0.40 2395 96%
0.60 2137 92%
0.80 1866 87%

mug-robotics-white
0.40 3544 100%
0.60 2946 98%
0.80 2434 98%

mug-robotics-red
0.40 3444 88%
0.60 2730 85%
0.80 2287 80%

mug-cow
0.40 4083 100%
0.60 3411 100%
0.80 2813 95%

teddy
0.40 3303 100%
0.60 2969 100%
0.80 2607 98%

Table 9.4: Recognition rates at several distances (0.40, 0.60 and 0.80 m.) There
exist a strong relationship between the classifier performance rate and the depth at
which the object is positioned.

VFH+Geometry filter

This second experiment takes into account not only the surface features VFH but
also the global geometry of the object. With this addition, it is expected to decrease
the confusion error between objects with similar shape but different size, such as
the mug-tiny, mug-medium and mug-big, where confusion has decreased sig-
nificantly. Note that mug-cow and mug-big are now much better segmented due
to their distinction. The average recognition rate for this test is 75.85%.

188 Chapter 9. 3D Object meta-classifier

mug-tiny mug-medium mug-big mug-r-white mug-r-red mug-cow teddy

mug-tiny 7 41 3 19 30 0 0
mug-medium 0 29 26 18 27 0 0
mug-big 0 0 84 1 8 5 2

mug-r-white 0 0 0 26 74 0 0
mug-r-red 0 0 0 49 51 0 0
mug-cow 0 0 34 0 0 59 7
teddy 0 0 0 0 0 0 100

Table 9.5: Confusion matrix for VFH filter. Note the high degree of confusion
among scaled versions of the same objects.

mug-tiny mug-medium mug-big mug-r-white mug-r-red mug-cow teddy

mug-tiny 49 29 0 10 12 0 0
mug-medium 0 40 11 11 38 0 0
mug-big 0 0 99 1 0 0 0

mug-r-white 0 0 0 77 23 0 0
mug-r-red 0 0 0 30 67 0 3
mug-cow 0 0 1 0 0 99 0
teddy 0 0 0 0 0 0 100

Table 9.6: Confusion matrix for VFH+Geometry filter. Objects with similar geom-
etry but different textures are still confused.

VFH+Geometry+Color filter

Last filter compares VFH features, geometric features and color for each object. In
this case the confusion matrix’s diagonal is strictly higher and confusion is well di-
minished. mug-robotics-red and mug-robotics-white, which are geomet-
rically exact but with different color, are well segmented and recognized, while the
rest of the distinction rates are maintained as expected. The average recognition
rate for this last experiment which includes the three filters is 89.71%.

Therefore, the three-layer classifier presented in this chapter is able to classify
with objects lying on a table with the following requirements:

1. Objects that contain different surface shapes.- Depending on the shape of the sur-
face of the object, a VFH descriptor is able to distinguish dissimilar contours.
Those features are local features of each object that represent the singularities
and curvatures of a certain surface.

2. Objects with similar shape but different scale.- Since VFH descriptors are scale

9.6. Experimental Results 189

mug-tiny mug-medium mug-big mug-r-white mug-r-red mug-cow teddy

mug-tiny 84 12 0 4 0 0 0
mug-medium 20 60 20 0 0 0 0
mug-big 3 0 96 0 0 0 0

mug-r-white 0 0 0 100 0 0 0
mug-r-red 0 0 0 11 88 0 1
mug-cow 0 0 0 0 0 100 0
teddy 0 0 0 0 0 0 100

Table 9.7: Confusion matrix for VFH+Geometry+Color filter. Confusion matrix is
highly diagonal, stating the degree of success for the filter.

invariant, last requirement does not fulfill the distinction of objects with sim-
ilar surface shape but different scale. This second layer of the classifier is in
charge of measuring the global dimensions of the view and filter those views
with incongruous values.

3. Objects with equal shape and scale but contrasting textures.- Last layer of the clas-
sifier is in charge of selecting the most suitable candidates based on color
features. As the first two stages of the filter are based on 3D information, the
last part analyzes the HSV histogram of the view and determines which is
the closest view from the remaining aspirants.

In Figure 9.11, the 3D scene labeling results for four complex scenarios are dis-
played. On the left the original scenarios and on the right the result of the three-
layer meta-classifier. Objects are colored by their category according to Table 9.8.

COLOR REFERENCE
object name color

mug-coffee-big
mug-coffee-medium
mug-coffee-tiny

mug-cow
teddy

mug-robotics-red
mug-robotics-white

Table 9.8: Classifier color reference. Relation between objects and color for the
classifier.

190 Chapter 9. 3D Object meta-classifier

Figure 9.11: Classifier results for complex scenarios. Representation of the classifier
results. On the left the original scenarios and on the right the result of the three-
layer classification. Objects are colored consistently.

9.6. Experimental Results 191

9.6.4 Updating the Database

One of the aims of this thesis regards on the dynamism of the classifier. The idea
is to make the robot able to learn new objects on the fly. Contrary to other offline
systems such as Lai et al. [210], the meta-classifier here proposed is able to update
its database in real time and let the robot learn new objects with the minimum hu-
man intervention.

If the robot detects an unknown object and it is interesting for it to learn it, the
classifier activates the learning mode. In this state, the classifier will acquire a list
of views Vi at a constant rate of the unknown object in different poses and store
them in a buffer B such as

B = {V1,V2, . . . ,VN} (9.4)

Each view will be processed separately and a descriptor ψi will be associated
to that view so that

ψi = Ψ(Vi) (9.5)

where Ψ(∆) is a function that extracts the three-layer descriptor of the view (VFH
descriptor, bounding box dimensions and HSV histogram). If the robot considers
that it has enough information about the object, it will stop recording data and will
ask for a natural name for that object. Then, the algorithm will include the new in-
formation stored in B and it will re-structure the full database with the new object.

In order to make the classifier work autonomously, two things have to be taken
into account:

• Relative comparison.- The most probable case is that the 3D sensor acquires
frames at rates faster than the robot movements. Therefore, there must ex-
ist a reject function that controls the number of views introduced since the
information may become redundant. For a view i this is done such as{

d(ψi, ψi−1) ≥ τ : {B} ← Vi
d(ψi, ψi−1) < τ : discard(Vi)

(9.6)

That is, if the distance d in the high dimensional descriptor space between
two consecutive views is smaller than a certain threshold τ , then the view is
discarded. Otherwise, the buffer array is updated with ψi.

• Close loop.- Again, in order to finish the acquisition stage, the classifier needs
a exit condition. Literature recommends to close the loop comparing the ac-
tual view with the initial statement. Again, this comparison will be afforded

192 Chapter 9. 3D Object meta-classifier

using a custom distance d. According to that, the expression would be

if d(ψi, ψ0) ≥ σ : continue();
if d(ψi, ψ0) < σ& (i > ε) : continue();
else : exit();

(9.7)

where a new parameter ε has to be introduced that represents the minimum
number of views recommended to recognize the object in the future. A good
value for this parameter is ε = 5. However, the values of τ and σ depend
on several things, principally on the distance function selected. Neverthe-
less, these values have been established empirically for this research, even
they could be determined as adaptive variables finding a relation among the
parameters or statistically analyzing the behavior of the variables between
them.

The distance function d proposed for this part is the multiplication of three
unitary distances. As stated before, the best measurement between VFH de-
scriptors is Kullback-Leibler divergence dKL(ψi, ψj). For color histograms the
best metric is the Jensen-Shannon divergence dJS(ψi, ψj). Finally, in order to
compare the dimensions of the views, a unitary vector will be constructed re-
spectively, addressing the three values for each axis dDI(height, width, depth)
such that ‖dDI = 1‖. Therefore, the distance metric will be

d(ψi, ψj) = dKL(ψi, ψj) · dJS(ψi, ψj) · dDI(ψi, ψj) (9.8)

Figure 9.12 represents the evolution of each distance through the acquisition
of a new object in the database. The first point corresponds to the initial view of
the object V0 and due to the first restriction (Equation 9.7). After overpassing the
condition, the classifier will analyze each view as shown in the graph. The next
highlight happens at iteration 31 since it is when Equation 9.7 moves to the exit
condition. Some snapshots of the experiment have been introduced in Figure 9.13.
The number of the iteration has been included to understand better the behavior
of the global distance function.

In this chapter, a novel meta-classifier has been proposed. It has been designed
to recognize and classify objects lying on a supporting place in an unexplored sce-
nario. Furthermore, the system is able to extend its database by acquiring new

9.6. Experimental Results 193

1

σ

dKL
dJS
dDI
d

←
−

Loop closed

←
−

ε

Figure 9.12: Close loop while learning new object. Graph showing the evolution of the
three parameters dKL (blue), dJS (red), dDI (green) and the result distance d of the
complete conjunction .

models. With this feature in mind, MANFRED-2 is ready for interacting with ob-
jects in its nearby. The following part of this thesis presents the first perception
capabilities of the robot in the laboratory. The context of an experiment will be ex-
plained that integrates the work of several researches in order to make MANFRED-
2 capable of confirming the existence of a supporting plane, understanding which
objects confined in that area are found and finally verifying which of those objects
the robot is familiar with. Then, the robot will transfer this knowledge to a path
planning module and execute the best solution.

194 Chapter 9. 3D Object meta-classifier

d = 0.0 d = 0.36472 d = 0.58500

d = 0.21833 d = 0.25703 d = 0.36891

Figure 9.13: Snapshots of the unknown object during the learning phase. Representation
of several views during the learning process. The number associated to each view
is the total distance d for this particular view.

PART IV

APPLICATION

195

Chapter 10
Affordance experiment

197

199

The last chapter of this dissertation aims to integrate in MANFRED-2 manip-
ulator the contributions explained during the previous parts. An experiment that
faces the object grasping challenge from a global perspective has been designed,
completing the previous integrations of perception challenges in HOAP-3 humanoid
made by the author in Bueno et al. [211], [212] and Fierro et al. [213]. Although the
robot is still not qualified to grasp objects, all the previous steps will be executed.
That means that the whole perception platform has been integrated in order to
make MANFRED-2 ready to grasp familiar objects lying on a table. The platform
contains different modules: supporting plane detection, point cloud clustering,
features extractor and finally 6-DOF estimator.

However, the experiment goes a step further by integrating the path planner
developed by Álvarez et al. [214], Gómez et al. [215] and Arismendi et al. [216]
in the same process chain. For the desired object to be grasped, a two-step path
planning is presented: during the first phase the anthropomorphic hand reaches
the surroundings of the object with no collision and then the 5 fingers perform a
precision grasp17.

Figure 10.1: Images of the global experiment. On the left a wide and close-up of a
scene containing a mug and the tool center point

17This work has been developed with the invaluable collaboration of David Álvarez

200 Chapter 10. Affordance experiment

RGB-D POINT CLOUD NORMAL MAP

PLANE FITTINGCLUSTER ACQUISITION

6-DOF EXTRACTION PATH PLANNING

ev
ol

ut
io

na
ry

pl
an

e
fit

ti
ng

CLASSIFIER
META

rigid transformation

Figure 10.2: Experiment course. Pipeline with the main steps followed by the pro-
posed framework to recognize and pick up an object with obstacle avoidance and
safe path planning.

10.1 Proposed Architecture

The work proposed here defines a continuous grasping pipeline covering from
perception to grasp planning, including visual object recognition for confusable
objects. For that purpose, a household environment with several objects is pre-
sented in front of the robot. Items are recognized from a database and if one is
chosen, the robot will calculate how to grasp it taking into account the kinematic
restrictions associated to the anthropomorphic hand and the 3D model for this
particular object. Figure 10.2 considers the complete pipeline and the information
shared among modules on each part of the process.

For this study, a RGB-D Asus Xtion Pro Live fixed camera has been installed in
the upper part of the robot. The role of the camera is to acquire a valid model of

10.2. Fast Marching and Path Planning 201

the complete environment and substract all the possible objects that could inter-
fere during the path planning for the grasping. Camera output is VGA (640 × 480
pixels) and output video frame rate may vary between 25 and 30 Hz. Camera flow
acquisition is programmed using OpenNI library [217], while cloud operations are
done using Point Cloud Library [57] with ad-hoc interface for the visualization. All
the architecture follows a modular structure to facilitate the addition of new filters
or improvements.

The following section will provide a theoretical backup of the experiment. Since
safe path planning using Fast Marching is not within the list of objectives of this
thesis, part of the demonstrations and explanatory details will be omitted. One
of the aims of this experiment is to introduce the grasping problem to the robot.
Since it is a preliminary work, several aspects have been assumed. For instance,
the location of grasping points for the object is one of the aspects in the rough.
Being aware of the enormous state of art about object grasping as in Sahbani et al.
[218], the experiment here presented only provides with the very first guidelines
to make MANFRED-2 qualified for object grasping.

10.2 Fast Marching and Path Planning

In the framework presented in this paper, the Fast Marching Method (FMM) has
been chosen as path planner. Fast Marching is a computational algorithm to solve
the arrival time of a expanding wave in every point of the space. Conceptually, it
can be considered as a continuous version of the Dijkstra’s algorithm [219].

The FM2 method arises from the application of the FMM twice over the same
map. The first time it is used to create a map of velocities of the environment and
the second time computes the time of arrival of the wave for every point. The
velocity at which the wave moves is the one computed in the previous step. The
FM2 method is very versatile when applied to motion planning problems.

10.2.1 Fast Marching Method

The FMM was proposed by Sethian [220] to approximate the solution of the Eikonal
equation [221]. Let us assume a 2D map, where x = (x, y) is a point on the map
with the coordinates in relation to a Cartesian referential, T (x) is the front-wave
arrival time function and F (x) is the velocity of the wave propagation.

202 Chapter 10. Affordance experiment

Let us assume that a wave starts propagating at time T = 0 with velocity F ,
always non-negative. The Eikonal equation (10.1) defines the time of arrival of the
front-wave, T (x), at each point x, in which the propagation speed depends on the
point, F (x), according to

|∇T (x)|F (x) = 1 (10.1)

Discretizing the gradient ∇T according to Osher et al. [222], it is possible to
solve the Eikonal equation at each point p(xi, yj), where i and j are the row and
column of a grid map, as follows:

T1 = min(Ti−1,j, Ti+1,j) .
T2 = min(Ti,j−1, Ti,j+1) .

(10.2)

(
Ti,j − T1

4x

)2

+

(
Ti,j − T2

4y

)2

=
1

F 2
i,j

. (10.3)

The Fast Marching method consists on solving Ti,j for every point of the map,
starting at the source point of the wave where Ti0,j0 = 0. The following iterations
solve the value T (i, j) for the neighbors of the points solved in the previous one.
Using as an input a binary grid map, the output of the algorithm is a map of dis-
tances to obstacles as shown in Figure 10.3. These distances correspond to the time
of arrival of the expanding wave at every point of the map. By applying gradient
descent from any point of the map of distances, a path will be obtained with the
source of the wave as a goal point, this way FMM can be directly used as a path
planner algorithm. This is valid only if one wave has been employed to generate
the map of distances; otherwise, local minima will appear. The main advantage
of this method is that the path obtained is optimal in distance, as the example of
Figure 10.3.

10.2.2 Fast Marching Square Method

Although the paths provided by the FMM are optimal in distance terms, they do
not accomplish the smoothness and safety constraints that most of robotic applica-
tions require, since they run too close to obstacles and have sharp curves. In view
of these drawbacks, the FMM algorithm is not a good enough solution in most
cases. However, the FM2 algorithm [223] solves these two main disadvantages.

It is based on creating a map of velocities in which the velocity of the expand-
ing wave varies depending on the distance to the closest obstacle. The FMM can be
also applied in order to obtain this map of velocities. In this case, all the occupied

10.2. Fast Marching and Path Planning 203

Figure 10.3: Example of a path obtained with the FMM. The left side shows the original
map and the path calculated. In the right there is the map of distances computed
with FMM.

positions in the grid are labeled as wave sources. The result is a map of distances
in which those cells in the grid that are farther from the obstacles have a higher
value (Figure 10.4 up)).

Once the map of distances is computed, it is normalized and interpreted as
relative wave expansion speeds, so that 0 and 1 mean null and full speed of the
wave expansion, respectively. Then, the FMM is applied once again with the goal
point as wave source. During the expansion, the wave will propagate with the
velocities indicated in the map generated previously. The propagation ends once
the initial point of the path is reached. When gradient descent is applied to the re-
sulting map of distances, a very smooth path is obtained, as shown in Figure 10.4.
In summary, FM2 applies the FMM twice without any mathematical modification:
the first step creates a map of velocities, F (x), and the second step computes the
time of arrival function, T (x), in which gradient descent is applied to find the path.

In addition to the smoothness and safety, FM2 has other properties worth to
mention:

• No local minima.- As long as only one wave is employed to generate the map
of distances, FMM ensures that there is a single global minimum at the source
point of the wave (goal of the path).

204 Chapter 10. Affordance experiment

Figure 10.4: Fast Marching algorithm. Computation of the distance transform in a
2D scenario after applying FMM over the map of velocities. In the center the result
of the FMM. On the right the front-wave representation.

• Completeness.- The method finds a path, if it exists, and notifies it in case of
no feasible path.

• Fast response.- If the environment is static, the map of velocities is calculated
only once. Since the FMM can be implemented with a complexity order of
O(n) [224], building the map of velocities is a fast process.

10.2.3 3-Dimensional Fast Marching Square

Since the FM2 algorithm is based on the standard FMM, it is extensible to more
than 2 dimensions. Due to the fact that a grasping task is carried out in a 3 dimen-
sional space, 3D FM2 algorithm is applied. The algorithm is exactly the same as
explained before but, in this case, the front wave becomes a spatial curve.

All the properties of the FM2, such as smoothness or safeness, remain in a
N−dimensional environment. This is the main fact that leads researchers to use
this algorithm as path planner. Figure 10.5 represents an example of a path ob-
tained in 3D for a given environment using FM2.

10.2.4 Geometry of the Hand as a Robot Formation

For the purpose of this experiment, a hand is modeled as a kinematic chain so that
simulations can be performed. The model used is based on the kinematic char-
acteristics of Gifu Hand III, which is shown in Figure 10.6. This model has been
chosen because it is a five-finger hand and is very similar to a human one. In the
structure, the lengths of the links between different joints (palm, finger separation

10.2. Fast Marching and Path Planning 205

Figure 10.5: Example of a 3D path result of the 3D FM2 algorithm. The path is crossed
three times passing through small wholes. The path must be considered smooth
and safe.

and proximal/inter/distal phalanges) are constant, while the angles between these
links (α, β and γ) are variable. These angles are limited by software following the
specifications of the Gifu Hand III [35].

It is important to notice that, as in a human hand, the fourth joint of each finger
engages with the third one linearly, as Kawasaki proposed in [225]. The same idea
is applied for the thumb (although in the Gifu Hand III these joints in the thumb
are independent). In order to consider the hand as a robot formation, mobile robots
are located at the position of the joints and the fingertips of the hand. The hand is
considered as a leader-followers formation in which the followers will change their
location while performing the grasping process depending on their position in the
environment. For each phase of the algorithm, the configuration of the formation
is changed so that the different objectives can be achieved.

10.2.5 Robot Formation Control with Fast Marching Square

In order to perform a precision grasp the problem is divided into two phases. In
the first one, a path towards the object to be grasped is computed and covered un-
til a position from where the grasping points can be reached. In the second one,
a path for each fingertip towards the corresponding grasping point is computed

206 Chapter 10. Affordance experiment

α

x

y

z

 XZ phalanx
projection

γ

β

Thumb

Index Finger
Middle Finger

Ring Finger
Little Finger

Figure 10.6: Gifu Hand III. Kinematic model of the Gifu Hand III.

and covered until contact is detected. In both phases the concept of robot forma-
tion control based on FM2 explained in Garrido et al. [226], Gómez et al. [227] is
applied in order control the configuration of the hand in the different stages. By ap-
plying this concept, a reduction on the complexity of the problem is reached, since
the configuration of a complex kinematic chain with a high number of degrees of
freedom, like the hand presented before, is controlled using the information com-
puted for the FM2 path planning algorithm, as presented by Álvarez et al. in [214].

While the performing the path, the configuration of the hand changes to make
the next phase easier. For this purpose the hand is first opened to ensure that the
grasping can be done and later the configuration closes slowly so that the grasping
process is shorter. In the second phase, the given precision grasp points must be
reached by the fingertips of the hand. In this case a path for every fingertip must
be calculated. These paths are covered just moving the fingers of the hand and
the palm remains in the same pose. In this experiment an algorithm for each of
these phases is presented, both of them based on FM2 path planning method and
its application to the control of a robot formation in a 3D environment.

In both phases leader-followers formations are created to apply this concept. In
the first part of the algorithm the purpose is to get the hand close to the object that
is going to be grasped. In this phase, a leader for the formation is placed in the

10.3. Experimental Results 207

center of the palm of the hand. While covering the path, the configuration of the
hand evolves in order to ensure the grasping of the object. As an addition to the
algorithm in [214], the orientation of the hand is also controlled.

For this purpose, the concept of the Frenet frame applied to the analysis of
curves in Euclidean space is used. In a three-dimensional space, this analysis pro-
vides a coordinate system at each point of the path composed of the normal, tan-
gent of curvature and bi-normal vectors [228]. Since the framework presented in
this work applies to on the table scenes, most grasping configurations are limited
to overhead grasps. When an overhead grasping is going to be performed, the
normal vector of the palm of the hand has the opposite direction than the normal
vector of table. At the same time, the approximation movement of the hand to the
object is done above the table, which leads to a path in which the tangent vector is
opposite to the normal vector of the table. Therefore, the leader of the formation
follows the orientation of the tangent vector at every point of the path in order to
have the right orientation to execute the grasping.

10.3 Experimental Results

In the following section the results of the complete architecture will be presented.
The experiment was performed in the labs of Robotics Lab in Madrid. MANFRED-
2 was positioned inside an unexplored scenario (see Figure 10.7). The robot was
primaryly asked to move forward until a supporting plane was found within a
distance below 60 cm. to the 3D sensor location in the z−axis. The robot was
equipped with a navigation module that ensures that there is no collision of the
robot with the environment while moving the base. This is done by tracking the
odometry and running a SLAM algorithm in the background. In case the robot
found an obstacle during the base movement, it would try to keep away from it by
finding other alternatives to move in forward direction.

The speed of the wheels is adjusted dynamically by the PMAC but maximum
speed and maximum torque factors can be set before the path is executed. The 3D
sensing device begins the evolutionary plane fitting algorithm from the beginning.
As it would find several planes in random directions, including the walls and the
floor, an extra condition has been introduced in the perception module to control
the false positives. In this case, a distance condition has been applied in such a way
that any plane whose distance to the origin (3D sensor) overpasses 50cm will be
rejected. In this way, most of the plane candidates get rejected straightforwardly.
In addition to these conditions, the geometric and outlier filtering explained in 4.3

208 Chapter 10. Affordance experiment

Figure 10.7: Images of the global experiment. The robot was positioned in an un-
explored scenario and was asked to move forward until a supporting plane was
found within a distance below 60 cm.

is still applied. This state is maintained until a horizontal plane is correctly fitted.

As soon as the robot locates a valid supporting plane, it will stop immediately.
In that moment, the plane fitting process will halt and the Euclidean Clustering al-
gorithm will start analyzing the observed 3D point cloud as shown in Figure 10.8.
A maximum cluster tolerance of 2 cm has been establish for this experiment. Each
cluster is then represented in a different color. As a default rule, the robot will
show interest in the object that is located in the rightmost. In this case, the object is
mug-robotics-white.

Once the bounding box is processed for each clusters (and obstacles) lying on
the table, the classification algorithm will start up. The first stage consists on ex-
tracting the three features required by the meta-classifier to operate: the VFH de-
scriptor of the observed surface, the boundary dimensions of the object and finally
the HSV histogram. This information is stored and normalized as needed (HSV

10.3. Experimental Results 209

Figure 10.8: Result of the Euclidean Clustering algorithm. After the extraction of the
supporting plane. Each object is marked with a different colour. For this project,
red mug will be chosen as grasping target.

histogram and VFH descriptors are normalized as they will be classified by us-
ing a divergence metric). The size of the database is the same as the previous
experiments: 300 individual point cloud views formed by 15 different objects. The
selected target (see Figure 10.9) is rendered and meshed using Poisson reconstruc-
tion to be processed by the upcoming module: the path planner.

Rough approximation

After the clusters are labeled as target or obstacles, a voxelization process is per-
formed before the path planner is executed. Within this process, each pixel in the
space will turn into one of the three possible states: occupied, unoccupied and
target. As mentioned before, the last objective of MANFRED-2 is to grasp objects
with the Gifu Hand III anthropomorphic hand. Since it has not been installed yet
in the robotic arm, path planner will choose the barycenter of the target as the final
destination of the arm. Then, once the arm reaches the object barycenter, a simula-
tion of the finger affordance using a robot formation in a 3D environment will be
performed.

Since the first step of the path planning is rough and the target is simply to ap-
proach the robot end tool to the target’s barycenter, each voxel of the workspace
is defined with a 3D space resolution of 1 cm3. The complete workspace is then
enclosed in an empty cube of 1 m3, so it is possible to expand a wave in the 3D

210 Chapter 10. Affordance experiment

Figure 10.9: 3D Mesh. Render and mesh generation using Poisson reconstruction
for a single point cloud view.

space. Figure 10.10 represents the path planning calculation stage. All the bound-
ing boxes of the objects in the environment are labeled as explained and repre-
sented as dark tetrahedrons lying on the supporting plane. The initial position of
the hand has been already fixed. As the path planning is computed from the hand
position, a 3D transformation is executed between the 3D sensor device and the
hand.

The frames shown in Figure 10.10 represent consecutive stages of the path plan-
ner algorithm. The real movements of the robotics arm are on the right and central
column while on the left side the computed path planning estimation is displayed.
Furthermore, the path for the approach stage is represented in blue color and it
turns progressively into red as soon as the hand reaches it.

The center of the hand palm is set as the leader of the formation for covering
the complete path. Note that the 16-DOF of the hand are managed with the same
path planning strategy, so the computation complexity is highly reduced for the
experiment.

10.3. Experimental Results 211

Figure 10.10: Rough hand approximation. Representation of the voxelized environ-
ment with the bounding boxes of each obstacle. Left column shows the path plan-
ning and the hand during the approaching phase. Red path means portion of the
path covered by the hand up to now. Center and right columns show the experi-
ment from the robot point of view and from an external observer.

212 Chapter 10. Affordance experiment

Fine approximation

Once the hand is positioned close enough so that the grasping points are inside
the finger’s workspace, the second path planning phase is started. Figure 10.11
represents the path for each finger in red to achieve the grasping point as it is in
the database. For the second path planning phase, the resolution is increased 64
times the previous one so each voxel has a 3D space resolution of 2.5 mm3. The
execution time for both path calculations are presented in Table 10.1. It contains
the time spent by FM2 for the fingers at different resolutions.

FINE PATH PLANNING
Resolution time [s]

0.419789
0.431052

1 cm3 0.418900
0.408478
0.443023
5.628340
5.618100

64 cm3 5.550387
5.568807
5.561760

Table 10.1: Time intervals for the 5 fingers path planning at different voxel resolu-
tions. As long as resolution is increased, the elapsed time to compute the fine path
planning increases exponentially.

As it is stated, the elapsed time of the complete pipeline increases exponentially
as long as the resolution is increased during the fine approximation. For the fingers
path planning the high resolution alternative will be selected in order to obtain a
good geometrical representation of the target object. This will lead to a better per-
formance for the precision grasp. Table 10.2 contains the time intervals consumed
by each part of the pipeline, including perception steps and path planning.

Analyzing the previous results, the most expendable time consuming is made
by the fingers path planning of the grasping step. This is not directly caused by
FM2 but by of the high resolution required during the finger grasping. For a better
understanding of the algorithm an example of its performance has been published
online 18.

18Visit http://www.youtube.com/watch?v=GPWQh6pb6u0

10.3. Experimental Results 213

Figure 10.11: Fine fingers approximation. Evolution of the finger’s path planning
moving to the grasping point positions for the target object.

Table 10.2: Time intervals for each part of the pipeline

FINE PATH PLANNING
Pipeline stage elapsed time [ms]

Normal Estimation 24
Supporting Plane 67

Euclidean Clustering 52
FPFH Extraction 327

Matching + Pose est. 46
Velocities map approximation 42
Path planning approximation 1272

Velocities map fingers 116
Path planning fingers 27925
total execution time 29871

10.3.1 Finger Simulation

To conclude the experiment, a final simulation of the fine grasping has been per-
formed using Graspit!, a software developed by Department of Computer Science
in Columbia University, New York. [229]. This tool is quite common in grasping
research presented by Miller et al. in [230]. It has been used in several researches

214 Chapter 10. Affordance experiment

such as Rusu et al. in [231] where it was applied to model an object as a set of
shape primitives, such as spheres, cylinders, cones and boxes; It has been updated
since its first release in 2003 [232]. Figure 10.12 represents the affordance planning
of the GIFU Hand model grasping the reconstructed model of the target object
mug-robotics-white.

10.3. Experimental Results 215

Figure 10.12: Fine affordance for the 5 fingers of the anthropomorphic hand. Different
perspectives of the affordance simulation using Graspit! simulator.

Chapter 11
Conclusions and future developments

217

11.1. Supporting Plane Fitting 219

Three different contributions related to the 3D perception challenges in mobile
manipulators have been addressed in this dissertation. These algorithms solve the
following difficulties: plane fitting, object reconstruction and object recognition.
The foremost highlight conclusions and the particular results of each part are de-
scribed in this chapter. Finally, a list of future developments and extension lines
will be provided for a short and long term researches.

11.1 Supporting Plane Fitting

A novel plane fitting algorithm for 3D scenarios based on evolutionary algorithms
has been presented in this document. It has been designed to segment and detect
supporting planes in unexplored scenarios yielding the four parameters that con-
stitute the general equation of that particular plane. It is based on DE, which is a
particle-based evolutionary algorithm that evolves with time to the solution that
returns the lowest cost function value. The proficiency of this method to strongly
accomplish the expected task is corroborated and the comparison with the state of
the art algorithm RANSAC is also considered.

As it has been exposed by the results obtained in the experiments, DE offers a
better performance execution with a small average error nonetheless with a higher
variation degree when it is compared with RANSAC iterative method. However,
the most interesting results obtained during these researches arise when the ob-
served plane is contaminated with multiple objects. The enlargement of noise in
the measurements entails with a lack of information about the inliers, preventing
the fitting process to yield the same accuracy. In these terms, it has been demon-
strated that DE fitting algorithm proposed in this thesis becomes more robust than
RANSAC for cluttered scenarios. Since the plane fitting model proposed grants a
reasonable estimation error, it not necessary to introduce a tracking component in
order to follow the plane during the time.

As the final intention of this perception challenge is to provide the manipulator
robot with grasping dexterity, the clustering output based on the proposed plane
equations for both estimators has been discussed. Point cloud clusters populated
from the evolutionary plane fitting solution presented richer information at the
base of the clusters.

220 Chapter 11. Conclusions and future developments

11.2 Evolutionary Model Reconstructor

A DE-based model reconstructor has been implemented for 3D objects. Taking ad-
vance of the optimization vantage of evolutionary algorithms, a 6 DOF scan match-
ing process has been carried out satisfying six requirements: robustness against
abrupt rotations, multi-dimensional optimization, feature extensibility, compati-
ble with other scan matching techniques, management of uncertain information
and an initialization process.

The reconstructor presented in this thesis has been designed to deal with 3D
point clouds and the local accuracy is suitable enough to be used in manipulation
tasks. The reconstructor is divided into four stages: while the first phase extracts
relevant information from the point cloud, such as 3D descriptors and normal
maps, the second stage makes use of a novel probabilistic curvature extension for
hole filling. This extension has been proved to increase the correspondence level
during the registration procedure. The third step is a yaw initialization process
that has been demonstrated to increase the convergence speed of the scan match-
ing optimizing the initial transformation of the point cloud.

The last contribution of this evolutionary model reconstructor is focused on the
design of the cost function of the DE optimizer for the registration procedure. It
has been detached into four interconnected errors that cover the local vicinity error,
a global distance error that measures the transformation from a collection point of
view, a normal alignment error that improves the stability of the algorithm, since it
represents the principal direction of the surfaces, and lastly an intensity correlation
error that includes information of the color and texture of the cluster.

11.3 3D Object Meta-classifier

An object classifier that measures the similarity of a single point cloud with respect
to a database of point cloud views has been developed. The suggested classifier
has to be able to differentiate successfully between 3D point clouds with a high de-
gree of similarity (confusable objects), extracting parameters such as 3D features
from the surface of the cluster, absolute geometrical boundaries and also color dis-
tributions.

The classifier has been designed to detect and populate the most similar object
from the database in three steps. Each step represents a filter with a very precise

11.3. 3D Object Meta-classifier 221

commitment. The first one is focused on the surface shape of the object, therefore
it will select from the database a narrow list of candidates whose surface form is
similar to the query. However, since this filter is based on VFH descriptors, which
are scale invariant, candidate objects may have similar shape but different size.
Therefore, the second stage of the classifier is a dimensional filter that will com-
pare the candidates dimensions with the query ones. At this stage, the classifier
will return objects with similar surface shape and also with similar dimensional
measures. However, confusable objects may have similar size and shape but dis-
similar textures. For this reason, the last filter finally segments the most probable
object keeping in mind also the color.

In order to compare between different descriptors, a distance metric compari-
son has been carried out. Kullback-Leibler divergence has been demonstrated to
be an efficient metric, while VFH descriptor matching and Jensen Shannon diver-
gence yield good performance while comparing HSV histograms for color corre-
spondence. Another conclusion has been extracted from the study of the classifier
performance with respect to the object depth. As the cluster size is reduced, the
information is lessened and the global performance is affected.

A deep study of the object recognition rates has been developed with a rep-
resentation of the confusion matrices. The classifier has been analyzed gradually
with the addition of the already mentioned filters. It has been demonstrated that
VFH-based filters are not accurate enough to distinguish between confusable ob-
jects. The introduction of a dimensional filter and a color filter boost the global
performance in conjunction with the metrics obtained in the earlier paragraph.

Finally, with the aim of making the classifier as autonomous and dynamic as
possible, an automatic learning program has been introduced that allows the robot
to acquire new models on the fly. For this purpose, a cost function that compares
iteratively observations has been designed. The algorithm has been prepared to
discard redundant information and it detects a close loop when the object is suffi-
ciently observed. The reliably and robustness of the system is enough to make the
robot push the detected object with no human intervention.

The last part of the thesis gathers a complete perception architecture intercon-
nected with a path planner that has been implemented in the mobile manipulator
platform. A real scenario has been considered, where the robot was asked to find
a table in the scenario. Then the robot detected and segment the different objects
lying on the table and recognized them individually. Afterwards one of the objects
was commanded to be grasped and the robot computed successfully a safe path

222 Chapter 11. Conclusions and future developments

planning for the robotic arm based on the coordinates given by the perception
module.

11.4 Future Developments

This thesis commends some challenges to be achieved in the near future:

• Improve the plane fitting performance by finding new strategies to reduce
time consumption and computational costs during the optimization process,
convergence speed and outlier filtering.

• Develop a deeper study of the state of the art iterative processes for paramet-
ric model estimators and compare them to the DE-based proposal taking into
account internal parameters such as crossover probability, selection method
and population initialization.

• Determine the best distance metric for the cost function of the evolutionary
plane fitting. Evaluate other cost functions, norms and problem formulation.

• Improve the actual Euclidean cluster extraction in order to segment touching
clusters by means of statistical densities, local surface analysis or graph cuts
optimization.

• Although the hole filling proposed improves the scan matching, a more ef-
ficient alternatives based on statistical patterns might be considered to be
introduced.

• An extensive research on the fitness function weights and its adaptivity may
be granted. The performance of the matching process and the convergence
speed are open to fresh proposals.

• The introduction of machine learning algorithms such as SVM or Bayesian
statistics must be examined for the classification problem. Although the pro-
posed meta-classifier yields promising results, the addition of new models
makes it necessary to introduce other alternatives.

• The versatility of the classifier allows a further analysis of the distance met-
rics during the descriptor comparison.

• The rapid release of new 3D sensing devices makes it interesting to introduce
new sensors and compare their performance in terms of accuracy, speed and
stability.

Appendix A
Differential Evolution

223

A.1. Optimization for Monomodal Functions 225

Differential Evolution is a practical approach to global numerical optimiza-
tion problems that involve constrained functions having many local minima and
mixed-type variables. The foremost advance of DE is that multi-modal problems are
successfully affronted because of its genetic algorithm nature. Differential Evolu-
tion was developed in 1995 by Keneth Price [233] and it is assorted as a metaheuris-
tic method in the way that it makes few or none assumptions about the problem it
is dealing with but as a result it does not certify an optimal solution.

Optimization can be defined as the minimization of the negative parameters
(or not desired) of a system at the same time that positive parameters (or desired)
are maximized. As a general rule, there exist D parameters in a function f(x) =
f(x0, x1, x2, . . . , xD−1) that alters its behavior during its minimization. That means
that somehow, in order to minimize f it must be necessary to understand and
interpret the rule of each variable within the global system.

A.1 Optimization for Monomodal Functions

Figure A.1 represents a simple quadratic function f(x, y) = Ω − e−(ψx2+ξ2). Those
functions with a unique minimum are named unimodal or monomodal. That is, if
for some value m = (mx,my) it is monotonically increasing for f(x, y) ≤ m and
monotonically decreasing for f(x, y) ≥ m. In that case, the maximum value of
f(x, y) is f(mx,my) and there are no other local maxima.

Monomodal functions contain exclusively a minimum identical to the global
solution and therefore the optimal solution, since there exist a unique solution.
This valuem can be resolved using traditional methods such as the simplest gradient-
based method, secant, Gauss-Newton, brute force search or even randomly.

A.1.1 Derivative-Based Optimization

Classic methods used for finding a minimum are based on derivative procedures.
A D−imensional parameter vector can be defined as

x =

x0

x1
...

xD−1

 =
(
x0 x1 . . . xD−1

)T (A.1)

226 Appendix A. Differential Evolution

f(x, y) = Ω− e−(ψx2+ξ2)

Figure A.1: Example of a monomodal or unimodal function. It contains only a local
minimum m(mx,my).

Nabla operator is represented as ∇ and is defined as

∇ =

∂/∂x0

∂/∂x1
...

∂/∂xD−1

 (A.2)

and therefore, gradient vector is defined as

g(x) = ∇ · f(x) =

∂f(x)
∂x0
∂f(x)
∂x1
...

∂f(x)
∂xD−1

 (A.3)

Hessian matrix can be defined as

g(x) = ∇2 · f(x) =

∂f(x)
∂x0∂x0

∂f(x)
∂x0∂x1

. . . ∂f(x)
∂x0∂xD−1

∂f(x)
∂x1∂x0

∂f(x)
∂x1∂x1

...
...

∂f(x)
∂xD−1∂x0

. ∂f(x)
∂xD−1∂xD−1

 (A.4)

A.1. Optimization for Monomodal Functions 227

The Taylor series for the objective function turns out to

f(x) = f(x0) +
∇f(x0)

1!
(x− x0) + (x− x0)T · ∇

2f(x0)

2!
(x− x0) + . . . =

f(x0) + g(x0) · (x− x0) + (x− x0)T · 1

2
g(x0) · (x− x0) + . . .

(A.5)

being x0 the point around which the function f(x) is evaluated. m will be a mini-
mum if and only if all partial derivatives at x = m are equal to zero.

g(m) = 0 (A.6)

Taking the first three terms of the Taylor expression in Equation A.5 and differ-
entiating them makes the gradient to be declared near the point x0 as

∇f(m) = g(x0) +G(x0) · (m− x0) = 0 (A.7)

that can be resumed as

m = −g(x0) +G−1(x0) + x0 (A.8)

and the path followed by the optimizer is represented for a second order monomodal
equation in Figure A.2, where the starting point is x0 and the end ism.

x2

x1

START

x0

m

Figure A.2: Derivative-based optimization. Representation of the path x0 → m
(global minimum) if the objective function is quadratic and differentiable.

The simplest gradient-based method is named steepest descent. It turns into a
very useful technique for monomodal and differentiable functions. Taking in mind

228 Appendix A. Differential Evolution

Equation A.8 and supposing that G−1(x0) = I , where I represents the identity
matrix, this turns into

x1 = x0 − g(x0) (A.9)

The gradient will move at any step into a point closer to the minimum as long
as the descent is not too large. For this, a step size γ is provided as a measure of
control. Therefore, Equation A.9 turns into

xn+1 = x0 − γ · g(xn) (A.10)

Figure A.3 displays an example of this method to find out the minima m. As
can be noticed, there exist a problem regarding the step size γ that has to be solved
depending on each function performance.

x2

x1

START

x0

m

Figure A.3: Derivative-based optimization. Representation of the steepest descend
gradient path for an objective function that is quadratic and differentiable.

A.1.2 Brute Force Search

Brute search will visit all grid points in a bounded region while keeping the best
candidate in memory. Again, as it occurs in steepest descend gradient, there is a
problem of resolution or step size. Depending on the step size, the minimum m
will be found or a near point will be misled.

A.1. Optimization for Monomodal Functions 229

Furthermore, a curse of dimensionality happen: if the grid becomes too small be-
cause a grid with N points in D dimensions will have to evaluate NP candidates.
Figure A.4 contains a grid example to cover the whole space at a fixed step size γ

x2

x1

xmin2

xmax2

xmin1 xmax1

START

Figure A.4: Derivative-based optimization. The lack of knowledge about the objective
function makes brute force search useless for most cases.

A.1.3 Random Walk

One chance to avoid the curse of dimensionality implicit in the brute force search is
to evaluate candidates stochastically in the objective function. New candidates are
created adding a random deviation ∆x to a given base point x0 using a Gaussian
distribution as

p(∆xi) =
1

σi ·
√

2π
e
− (∆xi−µi)

2

2σ2
i (A.11)

with σi and µi the corresponding standard deviation and mean value for coordi-
nate i respectively. This method converges to a minimum if the selection of the
next candidate is done according to the condition

f(x0 + ∆x) ≤ f(x0) (A.12)

If this is true, x0 + ∆x becomes the new base point. Figure A.5 represents an
example of the behavior of the random walk over a monomodal function. As in
classical and brute force methods, the step size (standard deviations) is in this case

230 Appendix A. Differential Evolution

a problem that can not be easily solved.

x2

x1

START

SUCCESSFUL MOVE

UNSUCCESSFUL MOVE

x0

m

Figure A.5: Random Walk. A Gaussian distribution selects the candidates and the
one which falls closer to the minimum turns into the next candidate.

There exist other options to face the step size problem as the one proposed by
Hooke and Jeeves [234] that tries to create a pattern search exploring each coordi-
nate axis at every iteration, tunning the step size according to the results. If none
of the trial points enhance the objective function, the step size is reduced.

This method is much more effective than random walk or brute force but it is
still inefficient: if steps are smaller and smaller due to a valley in the objective func-
tion, once the valley is overtaken the expansion is extremely ineffective. However,
if the optimization process starts near the valley, the results will be adequate.

A.2 Optimization for Multimodal Functions

As a general rule, non-lineal systems bring up problems where the internal mech-
anisms are completely unknown. In those cases, it is pretty easy to face prob-
lems that admit more than one exclusive (local) solution, conceiving a new prob-
lem: local minima convergence. Figure A.6 represents the Schwefel’s function
f(x, y) = −x · sin

√
|x| − y · sin

√
|y|. It is a multimodal function with several

minima and only a global solution.

As the reader might notice, if there was an initialization problem for the monomodal

A.2. Optimization for Multimodal Functions 231

f(x, y) = −x · sin
√
|x| − y · sin

√
|y|

Figure A.6: Representation of Schwefel’s multimodal function. It contains several local
minima and only a global solution.

functions, the problem gets accentuated in a function where there exist local min-
ima. The algorithm performing the search must be ready for getting in and out the
valleys while finding the optimal solution. To do this, the optimization functions
are evaluated in multiple points, creating global searches, comparing the costs in
the whole surface and selecting the most representative (best) candidate for the
next iteration. This kind of algorithm requires high computational costs since the
solution demands multiple evaluations in order to converge. Some of the typical
functions used for benchmarking optimizers are found in [235].

Price et al. [233] outline several methods to solve the optimization problem in
multimodal functions carried out before genetic algorithms were created. Those
solutions are simpler but less potent and less precise:

• Simulated Annealing.- A heuristic search is performed evaluating the nearest
points on each iteration. Probabilistically, on each iteration it is decided if the
algorithm moves to a new state s′ or otherwise the system is maintained in
the original state s expecting a lower energy direction. This process is per-
formed until the energy is below a certain value established at the beginning
of the optimization method.

• Multi-Point, Derivative-Based methods.- Several candidates are evaluated in
parallel in the objective function. Local search is not necessarily derivative-
based and each aspirant might use any direct local search method to evaluate

232 Appendix A. Differential Evolution

its own path to the solution. The number of points is the principal disadvan-
tage for this method. The quantity of candidates can be estimated using a
clustering method.

• Multi-Point, Derivative-free methods.- Mimicking the Darwinian evolution,
those methods attempt to determine the solution combining and mutating
the candidates using the so-called evolutionary algorithms. Contrary to multi-
start approaches where each member is isolated, evolution strategies are in-
fluenced among them and new candidates spring up from previous ones,
introducing a new concept of improvement based on a global vision.

A.3 Differential Evolution

DE method is a population-based optimizer that solves the problem of initial point
location by means of several stochastic samplings in the objective function. Do-
main must be preset beforehand with the values xminm , xmaxm and Np vectors will be
generated which are indexed with a number from 0 → Np − 1 (see Figure A.7).a.
DE generates new points which are perturbations of existing points. This perturba-
tion is performed with the scaled difference of two randomly selected population
vectors (see Figure A.7.b). To produce the trial vector u0, DE adds the scaled ran-
domly selected difference to a third randomly selected population vector, as shown
in Figure A.7.c.

The trial vector already created competes against the population vector of the
same index (in Figure A.7.d the index is 2). The comparison between objective
function value returns the future member for the next generation that might be
the original or the trial vector, depending on which is lower. In Figure A.7.e the
trial vector loses, while in Figure A.7.f another new population vector is randomly
generated with index 3. Finally, in Figure A.7.g the new trial vector will replace
the actual population vector for index 3.

A.3.1 Population Composition

There exist three population vectors that will be changing in each iteration as
will be explained and defined next. The current population vector Px,g contains
Np D−dimensional vectors xi,g of real-valued parameters that have been found to

A.3. Differential Evolution 233

x2

x2

x2

x2

x2

x2

x1 x1

x1

x1

Figure A.7: DE procedure. Result of all the steps followed by DE in each iteration.

234 Appendix A. Differential Evolution

be acceptable either as initial points or by comparison with other vectors

Px,g = {xi,g} i = 0, 1, . . . , Np − 1, g = 0, 1, . . . , gmax
xi,g = {xi,j,g} j = 0, 1, . . . , D − 1

(A.13)

where the index g represents the generation to which the vector belongs, i indicates
the population element index and j the element in the population vector itself.
After the initialization of the algorithm, DE mutates generating an intermediately
population vector Pvg composed by mutant vectors vi,g such that

Pv,g = {vi,g} i = 0, 1, . . . , Np − 1, g = 0, 1, . . . , gmax
vi,g = {vi,j,g} j = 0, 1, . . . , D − 1

(A.14)

Then a recombination is produced so a vector Pug of Np trial vectors ui,g is created

Pu,g = {ui,g} i = 0, 1, . . . , Np − 1, g = 0, 1, . . . , gmax
ui,g = {ui,j,g} j = 0, 1, . . . , D − 1

(A.15)

A.3.2 Initialization

In order to create a first list of parameters and introduce them in a vector, it is
indispensable to define the boundaries of the search function. That is crucial as
those limits will focus each evolution iteration on a specific region of the solutions
space. Upper and lower bounds can be collected in two D−dimensional initializa-
tion vectors bU and bL so that a random number generator assigns each parameter
of every vector a value within the set range. The first generation (g = 0) of the
j−th parameter of the i−th vector is

xi,j,0 = bj,L + randomj(0, 1) · (bj,U − bj,L) (A.16)

The random function randomj(0, 1) represents a stochastic uniform number
generator within the range 0 ≤ randomj(0, 1) < 1 and a new random value for
each parameter j is created.

A.3.3 Mutation

DE has to mutate and recombine the population to produce a new population of
Np trial vectors. This mutation is done by mixing a scaled randomly selected dif-
ference of two vectors and summing it to a third one. The combination of those
three vectors is a mutant vector vi,g such as

vi,g = xr0,g + F · ((xr1,g)− xr2,g) (A.17)

A.3. Differential Evolution 235

where the scale factor F ∈ (0, 1+) represents a positive real number in charge of
controlling the population evolution rate. The are three vectors: one is the base
vector r0 and the other two are the difference vectors r1 and r2. The three of them
are chosen randomly and r0 must be always different from the target vector with
index i.

A.3.4 Crossover

A uniform crossover completes the DE search strategy. The discrete recombination
of two vectors creates a trial vector ui,g that is crossed with a mutant vector

ui,g = uj,i,g =

{
vj,i,g if(randomj(0, 1) ≤ Cr) or j = jrand
xj,i,g otherwise (A.18)

where the crossover factor 0 ≤ Cr ≤ 1 controls the proportion of parameter values
that will be taken from the mutant vector.

A.3.5 Selection

Finally, in case the trial vector ui,g yields a lower energy than its target vector xi,g,
it is replaced in the next iteration. Otherwise, the target vector is maintained for
one extra generation. The comparison of those two vectors represents the selection
step as

xi,g+1 =

{
ui,g if fitness(ui,g) ≤ fitness(xi,g)
xi,g otherwise (A.19)

A.3.6 Convergence

The ideal condition that makes the optimization process finalize is when all the
restrictions have been satisfied; but this not the general case since in most cases the
requirements are not accomplished at the same time. Furthermore, it is not easy to
assign a different significance to each condition of the optimization problem. The
most common finalizing criteria are listed below.

• Target reached.- This criteria is useful in cases were the maximum and min-
imum of the fitness function are known a priori. This is not quite common
as these values might vary for each case and the fitness function does not
require to be enclosed.

• Number of iterations.- As the bounds of the fitness function does not neces-
sarily have to be known, the optimization process may finish after a certain

236 Appendix A. Differential Evolution

number of iterations are reached. The selection of the threshold has to be de-
termined previously using a trial and error procedure since most of the times
it is an empirical value. The presence of death periods in DE is more com-
mon than in other evolutionary algorithms and for this reason the maximum
number of iterations may not have an excessive low value.

• Population statistics.- Another choice is to finish the process with the compli-
ance of any significant condition inside the population such as stop when
the difference between the best and the lowest population members are be-
low a certain value. This method can be ineffective since it can lead to a fast
convergence and conditions must be chosen accordingly.

• Time limit.- In some occasions time becomes decisive and therefore the limit
may be temporal rather than followed by quality terms. This is usual in real-
time applications such as production, manufacturing, navigation, space or
biomedicine.

Appendix B
Jensen-Shannon divergence

237

239

Metric definition19

Let X be the discrete random variable which can have N different values ∈ ΩN =
{ω1, ω2 . . . , ωN}. An independent and identically distributed sample X̃ is drawn,
where each observation is drawn from one of two known distributions, P and Q.
Each of those is used with the same probability but it is not possible to recognize
which one is chosen. The incentive is to find the coding strategy that returns the
shortest average code length for the data representation. That is, the aim is to find
the most efficient distribution R.

The mentioned code is named κ. The code lengths are κi = − log ri, where
i = {1, . . . , N} and ri represents the probability of X = ωi under R. If ε(κ, P) rep-
resents the expectation of κ with respect to P , the average code length < κ > is
then 1

2
ε(κ, P) + 1

2
ε(κ,Q). By the very definition of entropy, the minimum < κ > is

obtained by setting R = 1
2
(P +Q), that is, < κ >= H(R).

An ideal observer, i.e, one who knows which distribution has been used to gen-
erate individual data could reach an even shorter average code length 1

2
H(P) +

1
2
H(Q). Hence the redundancy of κ is H(R)− 1

2
H(P)− 1

2
H(Q). The distance mea-

sure Jensen-Shannon is twice this redundancy:

D2
PQ = 2 ·H(R)−H(P)−H(Q)

=D(P‖R) +D(Q‖R) (B.1)

=
N∑
i=1

(
pi · log

2 · pi
pi + qi

+ qi · log
2 · qi
pi + qi

)
(B.2)

Since the Kullback-Leibler divergence presented in [147] can be interpreted as
the inefficiency of assuming that the true distribution is R, when it is really is P ,
D2
PQ can be understood as a minimum inefficiency distance.

The original publication of this distance metric for distributions was made by
Topsøe [236], introduced from an information-transmission point of view. The
proof of the metric properties of D2

PQ is listed in the following section.

19This demonstration has been fully extracted from Endres and Schindelin publication in [150].

240 Appendix B. Jensen-Shannon divergence

Proof of metric properties

In the following, R+ includes 0.

Definition I.- Let the function L(p, q) : R+ ×R+ → R+ be defined by

L(p, q) := p · log
2 · p
p+ q

+ q · log
2 · q
p+ q

(B.3)

This function can be taken to be any one of the summands of DPQ2 (see Equa-
tion B.2). By standard inequalities, it is assumed that L(p, q) ≥ 0, with equality
only for p = q.

Theorem I uses some properties of the partial derivative of L(p, q) and, to show
these, we introduce the function g : R+\{1} → R defined by

g(x) :=
log 2

1+x√
L(x, 1)

(B.4)

Lemma I.- Let g be defined as above. Then

1. limx→1∓ g(x) = ±1 i.e., g jumps from +1 to -1 at x = 1.

2. The derivative d
dx
g is positive for x ∈ R+\{1}.

A consequence of this lemma is that |g(x) ≤ 1|, with equality only at x = 1.
Also, it is easy to see that |g| is continuous, but not g.

Proof: First note that g changes sign at x = 1. A straightforward application of
L’Hôspital rule (differentiate twice) yields limx→1 g

2(x) = ±1.

By differentiation, one finds that d
dx
g is positive if and only if f < 0, where f is

given by

f(x) = log
2

1 + x
+ log

2 · x
1 + x

(B.5)

Straightforward differentiation shows up that f(1) = f ′(1) = 0 and that

f ′′(x) =
1

x2(1 + x)

(
log

2

1 + x
+ x2 log

2 · x
1 + x

)
(B.6)

Using the standard inequality log a ≥ 1 − 1
a
, it is found that f ′′ < 0, hence f is

concave. Combined with the first found facts, f < 0 for x 6= 1.

241

Theorem I.- LetFN be the set of all discrete probability distributions over ΩN , N ∈
N. The function D:

PQFN × FN → R+ is a metric.

Proof.- Recall that D(P‖Q) equals 0 for P = Q and strictly positive otherwise
(Demonstrated by [237]). Furthermore, D2

PQ is symmetric in P,Q and so is DPQ.
Therefore, only the triangle inequality hold has to be demonstrated.

Lemma II.- Let p, q, r ∈ R+. Then√
L(p, q) ≤

√
L(p, r) +

√
L(r, q) (B.7)

Proof: It is easy to see that this holds if any p, q, r are zero. Assuming that p ≤ q,
denote by rhs the right-hand side as a function of r, and show that

1. rhs has two minima: namely one at r = p and one at r = q.

2. Only one maximum somewhere between p and q.

This is shown using the derivative

∂rhs

∂r
=

log 2·r
p+r

2 ·
√
L(p, r)

+
log 2·r

p+r

2 ·
√
L(1, r)

(B.8)

With g as in Lemma I and x := p
q

and β · x := q
r

(β > 1), it yields that

2 ·
√
r · ∂rhs

∂r
= g(x) + g(β · x) (B.9)

With |g(x)| ≤ 1 with equality only at x = 1 and the fact that g jumps from +1 to
-1 at x = 1, as demonstrated in Lemma I, the derivative ∂rhs

∂r
indeed changes sign at

r = p, because then x = 1 and |g(x)| > |g(β · x)| is monotonic increasing and, as a
consequence, has at most one sign change.

Applying Minkowski’s inequality to the square root of the sum which defines
DPQ, the triangle inequality is fulfilled. Therefore, DPQ is a metric.

The generalization of this result to continuous random variables is straightfor-
ward. Let P and Q be the probability measures defined on a measurable space
(Ω, A) and let p = dP

dµ
, q = dQ

dµ
be their Radon-Nikodym derivatives with relation to

a dominating σ−finite measure µ. Then

DPQ =

√∫
Ω

(
p · log

2 · p
p+ q

+ q · log
2 · q
p+ q

)
dµ (B.10)

242 Appendix B. Jensen-Shannon divergence

is considered a metric as well. An alternative proof could be constructed using
the results presented in [238]. The maxima and minima of DPQ are analyzed. The
minimum is found in P = Q, as it yields DPQ = 0 . To find its maximum, Equation
B.3 is rewritten as

L(p, q) = (p+ q)log2︸ ︷︷ ︸
≥0

+ p · log
p

p+ q︸ ︷︷ ︸
≤0

+ q · log
q

p+ q︸ ︷︷ ︸
≤0

(B.11)

It follows that when P and Q are two distinct deterministic distributions, DPQ

assumes its maximum value
√

2 · log 2.

Bibliography

[1] A. Elfes, “Using occupancy grids for mobile robot perception and naviga-
tion,” Computer, vol. 22, pp. 46–57, June 1989.

[2] R. Lange and P. Seitz, “Solid-state Time-of-Flight Range Camera,” IEEE Jour-
nal of Quantum Electronics, vol. 37, pp. 390–397, Mar. 2001.

[3] M. Gong and Y. Yee-Hong, “Fast stereo matching using reliability-based dy-
namic programming and consistency constraints,” in Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on, pp. 610–617, IEEE, 2003.

[4] H. Wu-Chih, “Adaptive template block-based block matching for object
tracking,” in Intelligent Systems Design and Applications, 2008. ISDA’08. Eighth
International Conference on, vol. 1, pp. 61–64, IEEE, 2008.

[5] J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo:
a unifying framework for depth from triangulation.,” IEEE transactions on
pattern analysis and machine intelligence, vol. 27, no. 2, pp. 296–302, 2005.

[6] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the
OpenCV library. O’Reilly USA, 2008.

[7] A. Martı́n Clemente, “Generación de Mapas de Disparidad usando CUDA,”
Master’s thesis, Universidad Carlos III de Madrid, 2009.

[8] J. Liu, Y. Xu, R. Klette, H. Chen, and T. Vaudrey, “Disparity Map Computa-
tion on a Cell Processor,” Architecture, p. 2009.

[9] C. B. Boyer, “Early Estimates of the Velocity of Light,” The University Of
Chicago Press On Behalf Of The History Of Science, vol. 33, no. 1, pp. 24–40,
1941.

243

244 Bibliography

[10] A. Kolb, E. Barth, and R. Koch, “ToF-sensors: New dimensions for realism
and interactivity,” 2008 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, pp. 1–6, June 2008.

[11] R. Lange, 3D Time-of-Flight Distance Measurement with Custom Solid-State Im-
age Sensors in CMOS/CCD-Technology. PhD thesis, University of Siegen, 2000.

[12] S. Hussmann and T. Liepert, “Robot Vision System based on a 3D-TOF Cam-
era,” 2007 IEEE Instrumentation & Measurement Technology Conference IMTC
2007, pp. 1–5, May 2007.

[13] M. Böhme, M. Haker, T. Martinetz, and E. Barth, “Shading constraint im-
proves accuracy of time-of-flight measurements,” Computer vision and image
understanding, vol. 114, no. 12, pp. 1329–1335, 2010.

[14] S. Hussmann, T. Ringbeck, and B. Hagebeuker, “A Performance Review of
3D TOF Vision Systems in Comparison to Stereo Vision Systems,” Review
Literature And Arts Of The Americas, no. November, 2008.

[15] I. Moring, T. Heikkinen, R. Myllyla, and A. Kilpela, “Acquisition of three- di-
mensional image data by a scanning laser range finder,” Optical Engineering,
vol. 28, no. 8, pp. 897–902, 1989.

[16] G. Beheim and K. Fritsch, “Range finding using frequency-modulated laser
diode.,” Applied optics, vol. 25, p. 1439, May 1986.

[17] S. Hussmann, T. Ringbeck, and B. Hagebeuker, “A performance review of
3D ToF vision systems in comparison to stereo vision systems,” Stereo Vision,
pp. 103–120, 2008.

[18] R. Chung, “Correspondence stereo vision under general stereo camera con-
figuration,” in Robotics, Intelligent Systems and Signal Processing, 2003. Proceed-
ings. 2003 IEEE International Conference on, vol. 1, pp. 405–410, IEEE, 2003.

[19] T. Kahlmann, F. Remondino, and H. Ingensand, “Calibration for increased
accuracy of the range imaging camera swissrangertm,” ISPRS Commission V
Symposium Image Engineering and Vision Metrology, no. 4, pp. 136–141, 2006.

[20] A. Lindner, Marvin and Kolb, “Lateral and Depth Calibration of PMD-
Distance Sensors,” in Advances in Visual Computing, vol. 4292, pp. 524–533,
Springer Berlin Heidelberg, 2006.

[21] S. M. Fuchs and Stefan, “Calibration and Registration for Precise Surface
Reconstruction with ToF Cameras,” tech. rep., DLR, Institute of Robotics and
Mechatronics, 2007.

Bibliography 245

[22] M. Lindner, A. Kolb, and T. Ringbeck, “New insights into the calibration of
ToF-sensors,” 2008 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, pp. 1–5, June 2008.

[23] S. A. Gudmundsson, H. Aanaes, and R. Larsen, “Environmental Effects on
Measurement Uncertainties of Time-of-Flight Cameras,” in 2007 International
Symposium on Signals, Circuits and Systems, vol. 1, pp. 1–4, IEEE, July 2007.

[24] J. G. Bueno, P. J. Slupska, N. Burrus, and L. Moreno, “Textureless Object
Recognition and Arm Planning for a Mobile Manipulator,” in 53rd Interna-
tional Symposium ELMAR-2011, (Zadar, Croatia), pp. 59 – 62, 2011.

[25] N. Burrus, J. G. Bueno, L. Moreno, and M. Abderrahim, “3D Object Model
Acquisition and Recognition with a Time-Of-Flight Camera,” in 7th Wokshop
Robocity2030. Vision in robotics, pp. 77–91, 2001.

[26] S. Jamtsho and D. Lichti, “Modelling scattering distortion in 3D range cam-
era,” International Archives of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, vol. 38, no. 5, pp. 299–304, 2010.

[27] L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using color
structured light and multi-pass dynamic programming,” in 3D Data Pro-
cessing Visualization and Transmission, 2002. First International Symposium on,
pp. 24–36, IEEE, 2002.

[28] L. Cruz, D. Lucio, and L. Velho, “Kinect and RGB-D images: Challenges and
applications,” in Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2012
25th SIBGRAPI Conference on, pp. 36–49, IEEE, 2012.

[29] J. Kramer, N. Burrus, F. Echtler, H. Daniel, and M. Parker, Hacking the Kinect.
Apress, 2012.

[30] G. Gerig, “Structured Lighting,” Carnegie Mellon University. 3D Computer Vi-
sion subject, 2012.

[31] B. Pan, Q. Guan, X. Wang, and S. Y. Chen, “Strategies of Real-Time 3D Recon-
struction by Structured Light,” in 2010 Chinese Conference on Pattern Recogni-
tion (CCPR), pp. 1–5, IEEE, Oct. 2010.

[32] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of Kinect depth
data for indoor mapping applications,” Sensors (Basel, Switzerland), vol. 12,
pp. 1437–1454, Jan. 2012.

246 Bibliography

[33] J. F. C. Rascon and L. M. Lorente, Localización Global 2D de Robots Móviles us-
ando Evolución Diferencial dentro del Framework ROS. PhD thesis, Universidad
Carlos III de Madrid, 2012.

[34] F. M. Monar, Evolutionary-based global localization and mapping of three dimen-
sional environments. PhD thesis, Universidad Carlos III de Madrid, 2012.

[35] T. Mouri, H. Kawasaki, K. Yoshikawa, J. Takai, and S. Ito, “Anthropomorphic
Robot Hand: Gifu Hand III,” International Conference on Control, Automation
and Systems, pp. 1288–1293, 2002.

[36] R. Dillmann, “Stereo-based 6D object localization for grasping with hu-
manoid robot systems,” 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 919–924, Oct. 2007.

[37] R. B. Rusu, A. Holzbach, R. Diankov, G. Bradski, and M. Beetz, “Percep-
tion for mobile manipulation and grasping using active stereo,” in 2009 9th
IEEE-RAS International Conference on Humanoid Robots, pp. 632–638, IEEE,
Dec. 2009.

[38] M. Zuliani, “RANSAC for Dummies,” 2012.

[39] S. Hinterstoisser, S. Holzer, C. Cagniart, S. Ilic, K. Konolige, N. Navab, and
V. Lepetit, “Multimodal templates for real-time detection of texture-less ob-
jects in heavily cluttered scenes,” in 2011 International Conference on Computer
Vision, pp. 858–865, IEEE, Nov. 2011.

[40] A. Cherian, V. Morellas, and N. Papanikolopoulos, “Accurate 3D ground
plane estimation from a single image,” 2009 IEEE International Conference on
Robotics and Automation, pp. 2243–2249, May 2009.

[41] A. Milella, G. Reina, J. Underwood, and B. Douillard, “Combining radar and
vision for self-supervised ground segmentation in outdoor environments,”
in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 255–260, IEEE, Sept. 2011.

[42] A. G. Linarth, M. Brucker, and E. Angelopoulou, “Robust ground plane es-
timation based on particle filters,” 2009 12th International IEEE Conference on
Intelligent Transportation Systems, pp. 1–7, Oct. 2009.

[43] B. Enjarini and a. Graser, “Planar segmentation from depth images using
gradient of depth feature,” 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 4668–4674, Oct. 2012.

Bibliography 247

[44] J. G. Bueno, P. J. Slupska, N. Burrus, L. Moreno, and M. Abderrahim, “Ro-
bust Pedestrian Detection using a Time-Of-Flight Camera,” in 8th Wokshop
Robocity2030. Robots de exteriores, pp. 60–76, 2010.

[45] G. Klein and D. W. Murray, “Full-3D Edge Tracking with a Particle Filter,”
Procedings of the British Machine Vision Conference 2006, pp. 1119–1128, 2006.

[46] E. Wahl and G. Hirzinger, “Cluster-based point cloud analysis for rapid
scene interpretation,” Pattern Recognition, pp. 160–167, 2005.

[47] J. Stuckler and S. Behnke, “Combining depth and color cues for scale-
and viewpoint-invariant object segmentation and recognition using Random
Forests,” 2010 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 4566–4571, Oct. 2010.

[48] J. Strom, A. Richardson, and E. Olson, “Graph-based segmentation for col-
ored 3d laser point clouds,” in Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pp. 2131–2136, IEEE, 2010.

[49] A. Golovinskiy and T. Funkhouser, “Min-cut based segmentation of point
clouds,” in Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th In-
ternational Conference on, pp. 39–46, IEEE, 2009.

[50] Fang Yuan, Zeng-Hui Meng, Hong-Xia Zhang, and Chun-Ru Dong, “A new
algorithm to get the initial centroids,” in Proceedings of 2004 International Con-
ference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), vol. 2,
pp. 1191–1193, IEEE, 2004.

[51] D. Napoleon and P. G. Lakshmi, “An efficient K-Means clustering algorithm
for reducing time complexity using uniform distribution data points,” Trendz
in Information Sciences & Computing(TISC2010), pp. 42–45, Dec. 2010.

[52] D. Liu and J. Yu, “Otsu Method and K-means,” 2009 Ninth International Con-
ference on Hybrid Intelligent Systems, no. 2, pp. 344–349, 2009.

[53] S. Na, L. Xumin, and G. Yong, “Research on k-means Clustering Algorithm:
An Improved k-means Clustering Algorithm,” 2010 Third International Sym-
posium on Intelligent Information Technology and Security Informatics, pp. 63–67,
Apr. 2010.

[54] B. Hong-tao, H. Li-li, O. Dan-tong, L. Zhan-shan, and L. He, “K-Means on
Commodity GPUs with CUDA,” 2009 WRI World Congress on Computer Sci-
ence and Information Engineering, pp. 651–655, 2009.

248 Bibliography

[55] T. K. Dey and J. A. Levine, “Delaunay Meshing of Isosurfaces,” IEEE Interna-
tional Conference on Shape Modeling and Applications 2007 (SMI ’07), pp. 241–
250, June 2007.

[56] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Surface
reconstruction from unorganized points,” Proceedings of the 19th annual con-
ference on Computer graphics and interactive techniques - SIGGRAPH ’92, pp. 71–
78, 1992.

[57] R. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in Human
Living Environments,” KI-Künstliche Intelligenz, vol. 4, no. 24, pp. 345–348,
2010.

[58] D. G. Muja, Marius and Lowe, “Fast approximate nearest neighbors with au-
tomatic algorithm configuration,” International Conference on Computer Vision
Theory and Applications (VISAPP’09), pp. 331—-340, 2009.

[59] C. A. Hoare, “Quicksort,” The Computer Journal, vol. 5, no. 1, pp. 10–16, 1962.

[60] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen, Introduction to algo-
rithms. The MIT press, 2001.

[61] R. E. Bellman, Dynamic Programming. Princeton: Princeton University Press,
2010.

[62] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An
optimal algorithm for approximate nearest neighbor searching fixed dimen-
sions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923, 1998.

[63] D. Meagher, “Geometric modeling using octree encoding,” Computer Graph-
ics and Image Processing, vol. 19, no. 1, pp. 129–147, 1982.

[64] Y. M. Kim, C. Theobalt, J. Diebel, J. Kosecka, B. Miscusik, and S. Thrun,
“Multi-view image and ToF sensor fusion for dense 3D reconstruction,” in
2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV
Workshops, pp. 1542–1549, IEEE, Sept. 2009.

[65] Y. Cui, S. Schuon, D. Chan, S. Thrun, and C. Theobalt, “3D shape scanning
with a Time-of-Flight camera,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 1173–1180, IEEE, June 2010.

[66] M. Krainin, P. Henry, X. Ren, and D. Fox, “Manipulator and object tracking
for in-hand 3D object modeling,” The International Journal of Robotics Research,
vol. 30, pp. 1311–1327, July 2011.

Bibliography 249

[67] G. Tam, C. Zhi-Quan, L. Yu-Kun, L. Frank, L. Yonghuai, A. Marshall, R. Mar-
tin, X. Sun, and P. Rosin, “Registration of 3D Point Clouds and Meshes: A
Survey From Rigid to Non-Rigid,” IEEE transactions on Visualization and Com-
puter Graphics, vol. 19, pp. 1199–1217, July 2013.

[68] K. N. Kutulakos and S. M. Seitz, “A Theory of Shape by Space Carving,”
International Journal of Computer Vision, vol. 38, pp. 199–218, July 2000.

[69] Y. Yemez and C. Wetherilt, “A volumetric fusion technique for surface re-
construction from silhouettes and range data,” Computer Vision and Image
Understanding, vol. 105, pp. 30–41, Jan. 2007.

[70] G. Walck and M. Drouin, “Progressive 3D reconstruction of unknown objects
using one eye-in-hand camera,” in Proceedings of the 2009 IEEE International
Conference on Robotics and Biomimetics, pp. 971–976, IEEE Press, Dec. 2009.

[71] Y. Yemez and F. Schmitt, “3D reconstruction of real objects with high resolu-
tion shape and texture,” Image and Vision Computing, vol. 22, no. 13, pp. 1137–
1153, 2004.

[72] J.-S. Franco and E. Boyer, “Fusion of multiview silhouette cues using a space
occupancy grid,” in Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, vol. 2, pp. 1747–1753 Vol. 2, IEEE, 2005.

[73] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D sur-
face construction algorithm,” ACM SIGGRAPH Computer Graphics, vol. 21,
pp. 163–169, Aug. 1987.

[74] K. Grauman, G. Shakhnarovich, and T. Darrell, “A Bayesian approach to
image-based visual hull reconstruction,” in 2003 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2003. Proceedings., vol. 1,
pp. 187–194, IEEE Comput. Soc, 2003.

[75] N. Burrus, M. Abderrahim, J. Garcia, and L. Moreno, “Object reconstruction
and recognition leveraging an RGB-D camera,” in 12th IAPR Conference on
Machine Vision Applications, (Nara, Japan), pp. 132–135, 2011.

[76] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,” in
Eurographics Association, pp. 61–70, June 2006.

[77] G. Kordelas, J. D. Agapito, J. M. H. Vegas, and P. Daras, “State-of-the-art
Algorithms for Complete 3D Model Reconstruction,” Summer School Engage.
University of Geneva, 2010.

250 Bibliography

[78] M. Sainz, N. Bagherzadeh, and A. Susin, “Hardware Accelerated Voxel
Carving,” in 1st Iberoamerican Symposium in Computer Graphics, pp. 289–297,
2002.

[79] C. Zach, K. Karner, B. Reitinger, and H. Bischof, “Space carving on 3D graph-
ics hardware,” Algorithms, vol. 14, p. 7, 2004.

[80] H. Zhao, S. Oshery, and R. Fedkiwz, “Fast surface reconstruction using the
level set method,” in Variational and Level Set Methods in Computer Vision,
2001. IEEE Workshop on, pp. 194–201, 2001.

[81] S. Daniel and G. Taubin, An Energy Minimization Approach to Surface Recon-
struction. PhD thesis, Brown Computer Science, 2009.

[82] Y. Duan, L. Yang, H. Qin, and D. Samaras, “Shape Reconstruction from 3D
and 2D Data Using PDE-Based Deformable Surfaces,” in ECCV 2004 Lec-
ture Notes in Computer Science, vol. 3023, pp. 238–251, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004.

[83] H. Jin, S. Soatto, and A. J. Yezzi, “Multi-View Stereo Reconstruction of Dense
Shape and Complex Appearance,” International Journal of Computer Vision,
vol. 63, pp. 175–189, Apr. 2005.

[84] G. Slabaugh, R. Schafer, and M. Hans, “Multi-resolution space carving us-
ing level set methods,” in International Conference on Image Processing, vol. 2,
pp. 545–548, IEEE, 2002.

[85] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCal-
lum, and T. R. Evans, “Reconstruction and representation of 3D objects with
radial basis functions,” in 28th Annual Conference on Computer Graphics and
Interactive Techniques - SIGGRAPH ’01, (New York, USA), pp. 67–76, ACM
Press, Aug. 2001.

[86] J. P. Pons, R. Keriven, and O. Faugeras, “Multi-View Stereo Reconstruction
and Scene Flow Estimation with a Global Image-Based Matching Score,” In-
ternational Journal of Computer Vision, vol. 72, pp. 179–193, July 2006.

[87] N. Ahuja, “SDG Cut: 3D Reconstruction of Non-lambertian Objects Using
Graph Cuts on Surface Distance Grid,” in 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognitio CVPR’06, vol. 2, pp. 2269–2276,
IEEE, 2006.

[88] Y. Boykov, “Computing geodesics and minimal surfaces via graph cuts,” in
International Conference on Computer Vision, pp. 26–33, 2003.

Bibliography 251

[89] A. Hornung, E. Hornung, and L. Kobbelt, “Hierarchical Volumetric Multi-
view Stereo Reconstruction of Manifold Surfaces Based on Dual Graph Em-
bedding,” in IEEE Conference on Computer Vision and Pattern Recognition,
pp. 503–510, 2006.

[90] J. Shi, M. Wan, X.-C. Tai, and D. Wang, Curvature Minimization for Surface
Reconstruction with Features, vol. 6667 of Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[91] A. Bienert and H.-G. Maas, “Methods for the automatic geometric registra-
tion of terrestrial laser scanner point clouds in forest stands,” in Laser Scan-
ning, vol. 38, (Paris), pp. 93–98, 2009.

[92] I. Stamos, L. Liu, C. Chen, G. Wolberg, G. Yu, and S. Zokai, “Integrating
Automated Range Registration with Multiview Geometry for the Photoreal-
istic Modeling of Large-Scale Scenes,” International Journal of Computer Vision,
vol. 78, pp. 237–260, Nov. 2007.

[93] Chen Chao and I. Stamos, “Semi-Automatic Range to Range Registration: A
Feature-Based Method,” in Fifth International Conference on 3-D Digital Imag-
ing and Modeling (3DIM’05), pp. 254–261, IEEE, 2005.

[94] J. Jiang, J. Cheng, and X. Chen, “Registration for 3D point cloud using
angular-invariant feature,” Neurocomputing, vol. 72, no. 16, pp. 3839–3844,
2009.

[95] A. Sappa, A. Restrepo-Specht, and M. Devy, “Range Image Registration by
using an Edge-based Representation,” in 9th International Symposium on In-
telligent Robotic Systems SIRS, pp. 167–176, 2001.

[96] O. Faugeras and M. Hebert, “The Representation, Recognition, and Locating
of 3D Objects,” The International Journal of Robotics Research, vol. 5, pp. 27–52,
Sept. 1986.

[97] J. Vanden Wyngaerd and L. Van Gool, “Automatic Crude Patch Registration:
Toward Automatic 3D Model Building,” Computer Vision and Image Under-
standing, vol. 87, no. 1, pp. 8–26, 2002.

[98] S. Yamany, M. N. Ahmed, and A. A. Farag, “A New Genetic-Based Technique
for Matching 3D Curves and Surfaces,” Pattern Recognition, vol. 32, pp. 1817–
1820, 1999.

[99] C. S. Chua and R. Jarvis, “3d free-form surface registration and object recog-
nition,” International Journal of Computer Vision, vol. 17, no. 1, pp. 77–99, 1996.

252 Bibliography

[100] A. Johnson and M. Hebert, “Using spin images for efficient object recogni-
tion in cluttered 3D scenes,” Pattern Analysis and Machine Intelligence, vol. 21,
pp. 433–449, May 1999.

[101] G. Sharp, S. Lee, and D. Wehe, “ICP registration using invariant features,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 1,
pp. 90–102, 2002.

[102] X. Qian, I. Horváth, T. Kim, Y. Seo, S. Lee, Z. Yang, and M. Chang, “Simulta-
neous registration of multiple views with markers,” Computer-Aided Design,
vol. 41, no. 4, pp. 231–239, 2009.

[103] D. Akca, “Full automatic registration of laser scanner point clouds,” ETH,
Swiss Federal Institute of Technology Zurich, Institute of Geodesy and Photogram-
metry, pp. 1–8, 2003.

[104] C. Chua and R. Jarvis, “Point signatures: A new representation for 3D object
recognition,” International Journal of Computer Vision, vol. 25, no. 1, pp. 63–85,
1997.

[105] C. K. Chow, H. T. Tsui, and T. Lee, “Surface registration using a dynamic
genetic algorithm,” Pattern Recognition, vol. 37, pp. 105–117, Jan. 2004.

[106] A. S. Mian, M. Bennamoun, and R. Owens, “Three-dimensional model-based
object recognition and segmentation in cluttered scenes.,” IEEE transactions
on pattern analysis and machine intelligence, vol. 28, pp. 1584–1601, Oct. 2006.

[107] A. Makadia, A. Patterson, and K. Daniilidis, “Fully Automatic Registration
of 3D Point Clouds,” in 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06), vol. 1, pp. 1297–1304, IEEE, June
2006.

[108] S. B. Kang and I. Katsushi, “The Complex EGI: A New Representation for
3D Pose Determination,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 15, no. 7, pp. 707–721, 1993.

[109] I. Okatani and A. Sugimoto, “Registration of range images that preserves lo-
cal surface structures and color,” in 2nd International Symposium on 3D Data
Processing, Visualization and Transmission (3DPVT ’04), pp. 789–796, IEEE,
2004.

[110] G. H. Bendels, P. Degener, R. Wahl, M. Körtgen, and R. Klein, “Image-Based
Registration of 3D-Range Data Using Feature Surface Elements,” in 5th In-
ternational Symposium on Virtual Reality, Archaeology and Cultural Heritage,
pp. 115–124, 2004.

Bibliography 253

[111] K. Qian, X. Ma, F. Fang, and H. Yang, “3D environmental mapping of mo-
bile robot using a low-cost depth camera,” in Mechatronics and Automation
(ICMA), 2013 IEEE International Conference on, pp. 507–512, 2013.

[112] Z. Zhang, “Iterative point matching for registration of free-form curves and
surfaces,” International Journal of Computer Vision, vol. 13, pp. 119–152, 1994.

[113] M. Greenspan and G. Godin, “A nearest neighbor method for efficient ICP,”
in 3D Digital Imaging and Modeling, Third International Conference on, pp. 161–
168, IEEE Comput. Soc, 2001.

[114] P. J. Besl, N. D. McKay, and H. McKay, “A method for registration of 3D
shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 2, pp. 239–256, 1992.

[115] G. Godin, D. Laurendeau, and R. Bergevin, “A Method for the Registration
of Attributed Range Images,” in Third International Conference on 3D Digital
Imaging and Modeling 3DIM, pp. 179–186, 2001.

[116] E. Trucco, A. Fusiello, and V. Roberto, “Robust motion and correspondence
of noisy 3D point sets with missing data,” Pattern Recognition Letters, vol. 20,
pp. 889–898, Sept. 1999.

[117] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small AR
Workspaces,” in 2007 6th IEEE and ACM International Symposium on Mixed
and Augmented Reality, pp. 225–234, IEEE, Nov. 2007.

[118] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “DTAM: Dense tracking
and mapping in real-time,” in International Conference on Computer Vision,
pp. 2320–2327, IEEE, Nov. 2011.

[119] Byung-Uk Lee, Chul-Min Kim, and Rae-Hong Park, “An orientation relia-
bility matrix for the iterative closest point algorithm,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1205–1208, 2000.

[120] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton,
D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon, “KinectFusion: Real-
time dense surface mapping and tracking,” 10th IEEE International Sympo-
sium on Mixed and Augmented Reality, pp. 127–136, Oct. 2011.

[121] S. Izadi, A. Davison, A. Fitzgibbon, D. Kim, O. Hilliges, D. Molyneaux,
R. Newcombe, P. Kohli, J. Shotton, S. Hodges, and D. Freeman, “KinectFu-
sion: Real-time 3D Reconstruction and Interaction Using a Moving Depth

254 Bibliography

Camera,” in 24th annual ACM symposium on User interface software and tech-
nology (UIST ’11), (New York, USA), p. 559, ACM Press, Oct. 2011.

[122] H. Roth and M. Vona, “Moving volume kinectfusion,” in Proceedings of the
British Machine Vision Conference, pp. 112.1–112.11, BMVA Press, 2012.

[123] J. R. Shewchuk, “Delaunay refinement algorithms for triangular mesh gen-
eration,” Computational Geometry, vol. 22, no. 1, pp. 21–74, 2002.

[124] S. Yamany and A. Farag, “Free-form surface registration using surface sig-
natures,” in Seventh IEEE International Conference on Computer Vision, vol. 2,
pp. 1098–1104 vol.2, IEEE, 1999.

[125] C. Schutz, T. Jost, and H. Hugli, “Multi-feature matching algorithm for free-
form 3D surface registration,” in Fourteenth International Conference on Pattern
Recognition (Cat. No.98EX170), vol. 2, pp. 982–984, IEEE Computer Society,
1998.

[126] T. Masuda and N. Yokoya, “A Robust Method for Registration and Segmen-
tation of Multiple Range Images,” Computer Vision and Image Understanding,
vol. 61, no. 3, pp. 295–307, 1995.

[127] K. Brunnstrom and A. Stoddart, “Genetic algorithms for free-form surface
matching,” in 13th International Conference on Pattern Recognition, vol. 4,
pp. 689–693, IEEE, 1996.

[128] M. Salomon, G.-R. Perrin, and F. Heitz, “Differential Evolution for Medi-
cal Image Registration,” in International Conference on Artificial Intelligence,
pp. 201–207, 2001.

[129] C. Robertson and R. B. Fisher, “Parallel Evolutionary Registration of Range
Data,” Computer Vision and Image Understanding, vol. 87, no. 1, pp. 39–50,
2002.

[130] L. Silva, O. R. Bellon, and K. L. Boyer, “Precision range image registration
using a robust surface interpenetration measure and enhanced genetic algo-
rithms.,” IEEE transactions on pattern analysis and machine intelligence, vol. 27,
pp. 762–776, May 2005.

[131] G. Dalley and P. Flynn, “Range image registration: A software platform and
empirical evaluation,” in Third International Conference on 3D Digital Imaging
and Modeling, pp. 246–253, IEEE Computer Society, 2001.

Bibliography 255

[132] G. Olague, B. Hernandez, and E. Dunn, “Hybrid evolutionary ridge regres-
sion approach for high-accurate corner extraction,” in IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 744–749,
IEEE Computer Society, 2003.

[133] R. Dony, “Differential Evolution with Powell’s direction set method in med-
ical image registration,” in 2nd IEEE International Symposium on Biomedical
Imaging: Macro to Nano (IEEE Cat No. 04EX821), vol. 2, pp. 732–735, IEEE,
2004.

[134] E. R. Smith, B. J. King, C. V. Stewart, and R. J. Radke, “Registration of com-
bined range–intensity scans: Initialization through verification,” Computer
Vision and Image Understanding, vol. 110, pp. 226–244, May 2008.

[135] F. Martı́n, C. Gonzalez Uzcátegui, L. Moreno, and D. Blanco, “Accelerated
Localization in Noisy 3D Environments using Differential Evolution,” in
Proceedings of the International Conference on Genetic and Evolutionary Methods,
(Las Vegas, USA), pp. 166–172, 2010.

[136] L. Moreno, S. Garrido, F. Martı́n, and M. L. Muñoz, “Differential Evolution
approach to the grid-based localization and mapping problem,” in Interna-
tional Conference on Intelligent Robots and Systems (IROS’07) IEEE/RSJ, (San
Diego, USA), pp. 3479–3484, 2007.

[137] A. R. Vahdat, N. NourAshrafoddin, and S. S. Ghidary, “Mobile robot global
localization using differential evolution and particle swarm optimization,”
in Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pp. 1527–
1534, IEEE, 2007.

[138] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces,” Journal of Global
Optimization, vol. 11, pp. 341–359, Dec. 1997.

[139] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed iterative
closest point algorithm,” in 16th International Conference on Pattern Recogni-
tion, vol. 3, pp. 545–548, IEEE, 2002.

[140] D. Chetverikov, D. Stepanov, and P. Krsek, “Robust Euclidean alignment of
3D point sets: the trimmed iterative closest point algorithm,” Image and Vi-
sion Computing, vol. 23, no. 3, pp. 299–309, 2005.

[141] Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” in IEEE International Conference on Robotics and Automation,
pp. 2724–2729, IEEE Computer Society Press, 1991.

256 Bibliography

[142] C. Dorai, J. Weng, and A. Jain, “Optimal registration of object views using
range data,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, no. 10, pp. 1131–1138, 1997.

[143] E. Wahl, U. Hillenbrand, and G. Hirzinger, “Surflet-pair-relation histograms:
a statistical 3D-shape representation for rapid classification,” in Fourth Inter-
national Conference on 3D Digital Imaging and Modeling (3DIM 2003), pp. 474–
481, IEEE, 2003.

[144] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model globally, match locally:
Efficient and robust 3D object recognition,” in Conference on Computer Vision
and Pattern Recognition, pp. 998–1005, IEEE, June 2010.

[145] R. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (FPFH) for
3D registration,” Robotics and Automation (ICRA’09). IEEE International Con-
ference on, pp. 3212–3217, 2009.

[146] T. Fiolka, J. Stückler, D. A. Klein, D. Schulz, and S. Behnke, “SURE: Sur-
face Entropy for Distinctive 3D Features,” in Spatial Cognition VIII, pp. 74–93,
Springer, 2012.

[147] S. Kullback, “Letter to the Editor: The Kullback–Leibler distance,” The Amer-
ican Statistician, vol. 41, no. 4, pp. 340–341, 1987.

[148] Kai-Kuang Ma and Junxian Wang, “Color distance histogram: a novel de-
scriptor for color image segmentation,” in 7th International Conference on Con-
trol, Automation, Robotics and Vision (ICARCV ’02), vol. 3, pp. 1228–1232, 2002.

[149] N. Kyriakoulis and A. Gasteratos, “Light-invariant 3D object’s pose estima-
tion using color distance transform,” in International Conference on Imaging
Systems and Techniques, pp. 105–110, IEEE, July 2010.

[150] D. Endres and J. Schindelin, “A new metric for probability distributions,”
IEEE Transactions on Information Theory, vol. 49, pp. 1858–1860, July 2003.

[151] M. Rusu, R. B., Marton, Z. C., Blodow, N., Holzbach, A., & Beetz, “Model-
based and learned semantic object labeling in 3D point cloud maps of kitchen
environments,” In Intelligent Robots and Systems (IROS 2009). IEEE/RSJ Inter-
national Conference on, pp. 3601–3608, 2009.

[152] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun., “Using EM to
learn 3D models of indoor environments with mobile robots,” in International
Conference on Machine Learning (ICML), pp. 329–336, IEEE, 2001.

Bibliography 257

[153] S. Rusinkiewicz, O. Hall-Holt, and M. Levoy, “Real-time 3D model acqui-
sition,” ACM Transactions on Graphics (TOG ’02), vol. 21, no. 3, pp. 438–446,
2002.

[154] R. Beserra Gomes, B. M. Ferreira da Silva, L. K. Rocha, R. V. Aroca, L. C.
Velho, and L. M. Gonçalves, “Efficient 3D object recognition using foveated
point clouds,” Computers & Graphics, vol. 37, pp. 496–508, Aug. 2013.

[155] A. P. Ashbrook, R. B. Fisher, C. Robertson, and N. Werghi, “Finding Surface
Correspondance for Object Recognition and Registration Using Pairwise Ge-
ometric Histograms,” in Computer Vision-ECCV’98, pp. 674–686, Springer-
Verlag, June 1998.

[156] A. Johnson and M. Hebert, “Surface matching for object recognition in com-
plex three-dimensional scenes,” Image and Vision Computing, vol. 16, no. 9,
pp. 635–651, 1998.

[157] A. E. Johnson, Spin-images:A representation for 3D surface matching. PhD thesis,
Carnegie Mellon University, 1997.

[158] P. Hough V C, “Pattent: Method and means for recognizing complex pat-
terns,” Dec. 1962.

[159] A. S. Mian, M. Bennamoun, and R. A. Owens, “A Novel Representation and
Feature Matching Algorithm for Automatic Pairwise Registration of Range
Images,” International Journal of Computer Vision, vol. 66, pp. 19–40, 2006.

[160] J. W. Tangelder and R. C. Veltkamp, “A survey of content based 3D shape
retrieval methods,” Multimedia Tools and Applications, vol. 39, pp. 441–471,
Dec. 2007.

[161] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition and
pose using the viewpoint feature histogram,” in Intelligent Robots and Systems
(IROS), IEEE/RSJ International Conference on, pp. 2155–2162, IEEE, 2010.

[162] A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R. B. Rusu, and
G. Bradski, “CAD-model recognition and 6DOF pose estimation using 3D
cues,” in 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops), pp. 585–592, IEEE, Nov. 2011.

[163] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms
for local surface description,” in Computer Vision ECCV 2010, pp. 356–369,
Springer, 2010.

258 Bibliography

[164] G. Hetzel, B. Leibe, P. Levi, and B. Schiele, “3D object recognition from range
images using local feature histograms,” in Computer Vision and Pattern Recog-
nition (CVPR ’01), vol. 2, pp. 394–399, IEEE Computer Society, 2001.

[165] R. Rusu, N. Blodow, Z. Marton, and M. Beetz, “Aligning Point Cloud Views
using Persistent Feature Histograms,” in International Conference on Intelligent
Robots and Systems (IROS ’08), pp. 3384–3391, IEEE, Sept. 2008.

[166] H. Chen and B. Bhanu, “3D free-form object recognition in range images
using local surface patches,” Pattern Recognition Letters, vol. 28, no. 10,
pp. 1252–1262, 2007.

[167] F. Tombari and L. Di Stefano, “Object Recognition in 3D Scenes with Oc-
clusions and Clutter by Hough Voting,” in Fourth Pacific-Rim Symposium on
Image and Video Technology, pp. 349–355, IEEE, Nov. 2010.

[168] A. Mian, M. Bennamoun, and R. Owens, “On the Repeatability and Qual-
ity of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered
Scenes,” International Journal of Computer Vision, vol. 89, pp. 348–361, Sept.
2009.

[169] Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3D object
recognition,” in 12th International Conference on Computer Vision Workshops,
ICCV Workshops, pp. 689–696, IEEE, Sept. 2009.

[170] C. Papazov and D. Burschka, “An efficient RANSAC for 3D object recogni-
tion in noisy and occluded scenes,” in Computer Vision (ACCV ’10), pp. 135–
148, Springer, 2011.

[171] A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl,
R. Rusu, S. Gedikli, and M. Vincze, “Tutorial: Point Cloud Library: Three-
Dimensional Object Recognition and 6 DOF Pose Estimation,” IEEE Robotics
& Automation Magazine, vol. 19, pp. 80–91, Sept. 2012.

[172] M. Blum, J. Wulfing, and M. Riedmiller, “A learned feature descriptor for
object recognition in RGB-D data,” in International Conference on Robotics and
Automation (ICRA ’12), pp. 1298–1303, IEEE, May 2012.

[173] W. Wohlkinger, A. Aldoma, R. B. Rusu, and M. Vincze, “3DNet: Large-scale
object class recognition from CAD models,” in International Conference on
Robotics and Automation (ICRA ’12), pp. 5384–5391, IEEE, May 2012.

Bibliography 259

[174] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view RGB-
D object dataset,” in International Conference on Robotics and Automation (ICRA
’11), pp. 1817–1824, IEEE, May 2011.

[175] W. Wohlkinger and M. Vincze, “Shape-based depth image to 3D model
matching and classification with inter-view similarity,” in International Con-
ference on Intelligent Robots and Systems (IROS ’11), pp. 4865–4870, IEEE, Sept.
2011.

[176] R. Palmer, M. Borck, G. West, and T. Tan, “Intensity and Range Image
based Features for Object Detection in Mobile Mapping Data,” International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. 39, no. September, pp. 315–320, 2012.

[177] S. Rusinkiewicz and M. Levoy, “Efficient Variants of the ICP Algorithm,” in
Third International Conference on 3D Digital Imaging and Modeling, pp. 145–152,
2001.

[178] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional SIFT descriptor and its
application to action recognition,” in 15th International Conference on Multi-
media, pp. 357–360, ACM, 2007.

[179] J. Knopp, M. Prasad, G. Willems, R. Timofte, and L. Van Gool, “Hough trans-
form and 3D SURF for robust three dimensional classification,” in Computer
Vision (ECCV ’10), pp. 589–602, Springer, 2010.

[180] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded Up Robust Features,”
Computer Vision (ECCV ’06), pp. 404–417, 2006.

[181] W. Steder, B., Rusu, R. B., Konolige, K., & Burgard, “NARF: 3D range image
features for object recognition,” Workshop on Defining and Solving Realistic
Perception Problems in Personal Robotics at the IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS ’10), vol. 44, 2010.

[182] B. Steder, G. Grisetti, M. Van Loock, and W. Burgard, “Robust on-line model-
based object detection from range images,” International Conference on Intelli-
gent Robots and Systems (IROS ’09), pp. 4739–4744, Oct. 2009.

[183] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” in
Alvey Vision Conference, pp. 147–152, 1988.

[184] E. Michaelsen, W. V. Hansen, M. Kirchhof, J. Meidow, and U. Stilla, “Esti-
matting the Essential Matrix: GOODSAC versus RANSAC,” in Symposium
on Photogrammetric Computer vision (PCV ’06), 2006.

260 Bibliography

[185] B. Steder, Feature-Based 3D Perception for Mobile Robots. PhD thesis, Albert-
Ludwigs Freiburg University, 2013.

[186] D. Skiff, Autonomous Generation, Segmentation, and Categorization of Point
Clouds. PhD thesis, Cornell University, 2012.

[187] S. Grzonka, B. Steder, and W. Burgard, “3D Place Recognition and Ob-
ject Detection using a Small-sized Quadrotor,” in Robotics: Science and Sys-
tems (RSS), Workshop on 3D Exploration, Mapping, and Surveillance with Aerial
Robots, IEEE, 2011.

[188] D. G. Lowe, “Object Recognition from Local Scale-Invariant Features,”
in Seventh International Conference on Computer Vision (ICCV’99), vol. 2,
pp. 1150–1157, 1999.

[189] N. Zhang, M. Li, and B. Hong, “Active Mobile Robot Simultaneous Local-
ization and Mapping,” in Robotics and Biomimetics (ROBIO’06). IEEE Interna-
tional Conference on, pp. 1676–1681, IEEE, Dec. 2006.

[190] D. Schleicher, L. M. Bergasa, R. Barea, E. López, M. Ocaña, and J. Nuevo,
“Real-time wide-angle stereo visual SLAM on large environments using
SIFT features correction,” in International Conference on Intelligent Robots and
Systems (IROS ’07), pp. 3878–3883, IEEE, Oct. 2007.

[191] A. Alguacil Gómez, “Aplicaciones del operador SIFT al reconocimiento de
objetos,” Master’s thesis, Universidad Carlos III Madrid, 2009.

[192] W. Cheung and G. Hamarneh, “n-SIFT: n-dimensional Scale Invariant Fea-
ture Transform.,” IEEE transactions on Image Processing : A Publication of the
IEEE Signal Processing Society, vol. 18, pp. 2012–2021, Sept. 2009.

[193] X. Jiang, “Face Recognition Using SIFT Features,” in 16th International Con-
ference on Image Processing (ICIP ’09), pp. 3313–3316, IEEE, Nov. 2009.

[194] T. R. Lo and J. P. Siebert, “Local Feature Extraction and Matching on Range
Images: 2.5D SIFT,” Computer Vision and Image Understanding, vol. 113,
pp. 1235–1250, Dec. 2009.

[195] C. Maes, T. Fabry, J. Keustermans, D. Smeets, P. Suetens, and D. Vander-
meulen, “Feature detection on 3D face surfaces for pose normalisation and
recognition,” in Fourth IEEE International Conference on Biometrics: Theory, Ap-
plications and Systems (BTAS’10), pp. 1–6, IEEE, Sept. 2010.

Bibliography 261

[196] L. He, S. Wang, and T. N. Pappas, “3D surface registration using Z-SIFT,” in
18th IEEE International Conference on Image Processing, pp. 1985–1988, IEEE,
Sept. 2011.

[197] J. G. Bueno, C. M. Alejandro Iván, L. Moreno, and C. Balaguer, “Distinguish-
ing between Similar Objects based on Geometrical Features in 3D Percep-
tion,” in RoboCity2030 12th Workshop: Robótica Cognitiva, pp. 46–58, 2013.

[198] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Shape distributions,”
ACM Transactions on Graphics, vol. 21, pp. 807–832, Oct. 2002.

[199] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotation Invariant
Spherical Harmonic Representation of 3D Shape Descriptors,” in Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing (SGP’03), pp. 156–
164, Eurographics Association, June 2003.

[200] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson, “Skeleton Based Shape
Matching and Retrieval,” in Shape Modeling International, (SMI ’03), p. 130,
IEEE Computer Society, May 2003.

[201] Y. Makihara, M. Takizawa, Y. Shirai, J. Miura, and N. Shimada, “Object
recognition supported by user interaction for service robots,” in 16th Inter-
national Conference on Pattern Recognition, vol. 3, pp. 561–564, IEEE, 2002.

[202] B. Bustos, D. A. Keim, D. Saupe, T. Schreck, and D. V. Vranić, “Feature-based
similarity search in 3D object databases,” ACM Computing Surveys, vol. 37,
pp. 345–387, Dec. 2005.

[203] M. Heczko, D. Keim, D. Saupe, and D. Vranic, “Methods for similarity search
on 3D databases.,” Datenbank-Spektrum, vol. 2, no. 2, pp. 54 – 63, 2002.

[204] D. Vranic and D. Saupe, “Description of 3D-shape using a Complex Function
on the Sphere,” in International Conference on Multimedia and Expo (ICME’02),
vol. 1, pp. 177–180, IEEE, 2002.

[205] J. Song and F. Golshani, “3D Object Retrieval by Shape Similarity,” in 13th
International Conference on Database and Expert Systems Applications (DEXA
’02), pp. 851–860, Springer-Verlag, Sept. 2002.

[206] T. Ansary, J. Vandeborre, S. Mahmoudi, and M. Daoudi, “A Bayesian frame-
work for 3D models retrieval based on characteristic views,” in 2nd Interna-
tional Symposium on 3D Data Processing, Visualization and Transmissio (3DPVT
’04), pp. 139–146, IEEE, 2004.

262 Bibliography

[207] D. Vranic, D. Saupe, and J. Richter, “Tools for 3D-object Retrieval: Karhunen-
Loeve Transform and Spherical Harmonics,” in Fourth Workshop on Multime-
dia Signal Processing (Cat. No.01TH8564), pp. 293–298, IEEE, 2001.

[208] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology matching
for fully automatic similarity estimation of 3D shapes,” in 28th annual con-
ference on Computer graphics and interactive techniques (SIGGRAPH ’01), (New
York, USA), pp. 203–212, ACM Press, Aug. 2001.

[209] N. Gagvani and D. Silver, “Parameter-Controlled Volume Thinning,” Graph-
ical Models and Image Processing, vol. 61, no. 3, pp. 149–164, 1999.

[210] K. Lai, L. Bo, X. Ren, and D. Fox, “Detection-based Object Labeling in 3D
Scenes,” in Robotics and Automation (ICRA ’12) IEEE International Conference
on, pp. 1330–1337, IEEE, 2012.

[211] J. G. Bueno, M. G. Fierro, L. Moreno, and C. Balaguer, “Facial Gesture Recog-
nition using Active Appearance Models based on Neural Evolution,” in Con-
ference on Human-Robot Interaction (HRI 2012), (Boston, USA), 2012.

[212] J. G. Bueno, M. G. Fierro, L. M. Lorente, and C. Balaguer, “Facial Emotion
Recognition and Adaptative Postural Reaction by a Humanoid based on
Neural Evolution,” International Journal of Advanced Computer Science, vol. 3,
no. 10, 2013.

[213] M. G. Fierro, J. G. Bueno, C. Balaguer, and L. Moreno, “A Complete 3D Per-
ception and Path Planning Architecture for a Humanoid,” in Robocity2030
11th Workshop: Social Robots, pp. 98–114, 2013.

[214] D. Álvarez, A. Lumbier, J. V. Gómez, S. Garrido, and L. Moreno, “Precision
Grasp Planning Based on Fast Marching Square,” in 21st Mediterranean Con-
ference on Control and Automation, 2013.

[215] J. V. Gómez, D. Álvarez, S. Garrido, and L. Moreno, “Kinesthetic Teaching
via Fast Marching Square,” in International Conference on Intelligent Robots and
Systems (IROS ’12), pp. 1305–1310, IEEE, Oct. 2012.

[216] C. Arismendi, D. Álvarez, S. Garrido, and L. Moreno, “Adaptive evolving
strategy for dextrous robotic manipulation,” Evolving Systems, June 2013.

[217] “The largest 3D sensing development framework and community,” in
http://www.openni.org, 2013.

Bibliography 263

[218] A. Sahbani, S. El-Khoury, and P. Bidaud, “An Overview of 3D Object Grasp
Synthesis Algorithms,” Robotics and Autonomous Systems, vol. 60, pp. 326–
336, Mar. 2012.

[219] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Nu-
merische Mathematik, vol. 1, pp. 269–271, Dec. 1959.

[220] D. Adalsteinsson and J. A. Sethian, “A Fast Level Set Method for Propagating
Interfaces,” Journal of Computational Physics, vol. 118, no. 3, pp. 269–277, 1994.

[221] J. A. Sethian, “A Fast Marching level Set Method for Monotonically Advanc-
ing Fronts,” in National Academy of Sciences, vol. 93, pp. 1591–1595, Feb. 1996.

[222] S. Osher and C. Shu, “High-Order Essentially Nonoscillatory Schemes for
Hamilton-Jacobi Equations,” SIAM Journal on Numerical Analysis, vol. 28,
pp. 907–922, Aug. 1991.

[223] S. Garrido, L. Moreno, M. Abderrahim, and D. Blanco Rojas, “A Real-time
Sensor-based Feedback Controller for Mobile Robots,” International Journal
of Robotics and Automation, vol. 24, no. n. 1, pp. 48–65, 2009.

[224] L. Yatziv, A. Bartesaghi, and G. Sapiro, “O(N) implementation of the fast
marching algorithm.” 2006.

[225] H. Kawasaki, T. Komats;, M. Suda, and K. Uchiyama, “Development of an
Anthropomorphic Robot Hand Driven by Built-in Servo-motors,” in Proceed-
ings of the 3rd Int. Conf. On ICAM, pp. 215–220, 1998.

[226] S. Garrido, L. Moreno, and P. Lima, “Robot Formation Motion Planning us-
ing Fast Marching,” Robotics and Autonomous Systems, vol. 59, no. 9, pp. 675–
683, 2011.

[227] J. V. Gómez, A. Lumbier, S. Garrido, and L. Moreno, “Planning robot forma-
tions with fast marching square including uncertainty conditions,” Robotics
and Autonomous Systems, vol. 61, no. 2, pp. 137–152, 2013.

[228] E. Kreyszig, Differential Geometry. New York, NY: Dover Publications, 1991.

[229] A. Miller and P. Allen, “GraspIt!,” IEEE Robotics & Automation Magazine,
vol. 11, pp. 110–122, Dec. 2004.

[230] A. Miller, S. Knoop, H. Christensen, and P. Allen, “Automatic grasp plan-
ning using shape primitives,” in International Conference on Robotics and Au-
tomation (ICRA ’03), vol. 2, pp. 1824–1829, IEEE, 2003.

264 Bibliography

[231] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-range Scene Seg-
mentation and Reconstruction of 3D Point Cloud Maps for Mobile Manip-
ulation in Domestic Environments,” in International Conference on Intelligent
Robots and Systems (IROS ’09), pp. 1–6, IEEE, Oct. 2009.

[232] A. Miller and H. Christensen, “Implementation of multi-rigid-body Dy-
namics within a Robotic Grasping Simulator,” in International Conference on
Robotics and Automation (ICRA ’03), vol. 2, pp. 2262–2268, IEEE, 2003.

[233] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient Adap-
tative Scheme for Global Optimization Over Continuous Spaces,” tech. rep.,
TR-95-012, 1995.

[234] R. Hooke and T. A. Jeeves, “Direct Search Solution of Numerical and Statis-
tical Problems,” Journal of the ACM, vol. 8, pp. 212–229, Apr. 1961.

[235] M. Molga and C. Smutnicki, “Test functions for optimization needs,” tech.
rep., Bioinformatics Laboratory. University of Amsterdam., 2005.

[236] F. Topsoe, “Some inequalities for information divergence and related mea-
sures of discrimination,” IEEE Transactions on Information Theory, vol. 46,
pp. 1602–1609, July 2000.

[237] T. M. Cover and J. A. Thomas, Elements of Information Theory. 2012.

[238] P. Kafka, F. Österreicher, and I. Vincze, “On powers of f -divergences defin-
ing a distance,” Studia Sci, vol. 26, pp. 415–422, 1991.

