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Air surveillance radar tracking systems present a variety of known problems related to uncertainty and lack of accurately in radar
measurements used as source in these systems. In this work, we feature the theoretical aspects of a tracking algorithm based on
neural network paradigm where, from discrete measurements provided by surveillance radar, the objective will be to estimate
the target state for tracking purposes as accuracy as possible. The absence of an optimal statistical solution makes the featured
neural network attractive despite the availability of complex andwell-known filtering algorithms. Neural networks exhibit universal
mapping capabilities that allow them to be used as a control tool for capturing hidden information about models learned from a
dataset. We use these capabilities to let the network learn, not only from the received radar measurement information, but also
from the aircraft maneuvering context, contextual information, where tracking application is working, taking into account this
new contextual information which could be obtained from predefined, commonly used, and well-known aircraft trajectories. In
this case study, the proposed solution is applied to a typical air combat maneuvering, a dogfight, a form of aerial combat between
fighter aircraft. Advantages of integrating contextual information in a neural network tracking approach are demonstrated.

1. Introduction

Tracking algorithms have a widespread use and increased
sophistication in aerial control and surveillance systems
(both military and civilian) where current scenarios demand
a great capability on the tracking and surveillance of a large
number of objectsmoving across a vast aerial space.Measure-
ment data will be obtained from many and diverse sensors
generating information related to those objects. Tracking, in
the context of law enforcement or military activities, implies
also noncooperating parties whereas in commercial activities
usually leverages active exchanges among parties to facilitate
identification and minimize risks.

Inferring the value of a quantity of interest from a series
of indirect, inaccurate, and uncertain measurements is called
estimation [1]. Moreover it can be seen as the process of
selection of a point from a continuous multidimensional
space, the best estimate.

Figure 1 shows a typical flow chart depicting a state
estimation process. First two stages are usually black boxes
enclosing the underlying (hidden) true state of the system,
while the last stage is fed by statemeasurements where a noise
component is incorporated, causing uncertainty and lack
of accuracy which should be minimized by the estimation
process that conforms the estimation problem.

Estimation is used as a mechanism to reduce possible
uncertainty and inaccuracy, generating information that has
the following properties:

(i) quality (i.e., accuracy, reliability) higher in the esti-
mate than the raw measurements;

(ii) contain information not directly available in the
measurements.

Decision can be viewed as the selection of one of a set of
discrete alternatives, the best choice from a discrete space.
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Figure 1: State estimation scheme.

However, decision can also provide a metric to evaluate a
probability of various alternatives.

Tracking [1] is the process of estimation of the state of
a moving object. This is done using one or more sensors to
provide measurements.

Tracking is wider in scope than estimation. Tracking not
only uses all the tools from estimation but it also requires the
use of statistical decision theory to improve the description
of objects and inferring of future change in their properties.

More specifically, in the concrete case of air surveillance
systems, tracking consists of processing measurements to
gather and maintain precise knowledge on target state, phys-
ical properties (position and its derivatives) about moving
targets, as presented in Figure 2.

Themeasurements are always affected by error sources in
form of noise, derived from subtle variations of the process
dynamics, the underlying environment, or sensors impreci-
sion.Those phenomena alter the sensing andmeasurement of
an object position (usually distance, azimuth, and altitude).

Those measurements incorporate to tracking process
uncertainty (measurement association to targets, false
detections,. . .) and inaccuracy (target position error) [2].

The estimator can make use of a priori knowledge about

(i) physical system dynamics (evolution of the variable),
(ii) sensor characteristics (measurement system),
(iii) probabilistic models of certain random factors

(uncertainties) and the prior information, where
models about the target behavior could be considered.

Modeling the possible behavior with a priori knowledge
about the target movement can play a significant role in the
estimation process. To incorporate a priori knowledge to the
estimation process, significant difficultieswill be added to this
process.

An Optimal filter can be seen as an algorithm that
processes observations, providing estimate of a variable of
interest minimizing a certain error criterion (usually called
cost function). A possible weakness of these optimal filters is
their sensibility to errors existing in the models and excessive
computational cost preventing their use for real time object
tracking.

A number of tracking algorithms have been reported in
the literature [3–7] over the years eachmainly differing in the
way a dynamical system model of maneuvering target being
tracked is obtained.

The classical purely statistical algorithms, derived upon
stochastic filtering, like𝛼-𝛽-𝛾 [8, 9] filter or state-model filters
like Kalman [7, 9, 10] filters, cannot always perform well
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Figure 2: Tracking problem scheme.

when the model is error prone, unrealistic, or there is high
noise in the measurement process, even when the possible
target movement modeling has not been taken into account
in benefit of other typical cases. So that, while both of the
above approaches have certain strong points and can deliver
good tracking performance in specific scenarios, there are
some shortcomings as well. Some of them are computational
complexity and difficulty in accurately modeling faster-
turn and coordinated-turn maneuvers and the difficulty in
including additional input features for the estimation process.

This computational complexity is considered critical in
typical cases of air control centers where tracking system
must estimate hundreds of targets (aircraft) with thousands
of measurements in a short period of time, 3–10 seconds,
in close coordination with other multiple functions related
to this [11]. Accordingly this deadline is passed, and results
obtained are considered obsolete.

Alternate approaches that can deliver improved tracking
performance are of particular interest.

Artificial neural networks (NN) can generate arbitrary
mappings allowing the identification of complex or unknown
processes andprediction of future values, one step ahead, cap-
turing complex behaviors when rule-based systems cannot be
used or are not available. This property is especially useful
when it is required to work in environments where prediction
rules cannot be easily defined or where uncertainty or
inaccuracy data are used.

Specifically in the case of a radar tracking system, NN
training information can be set up from data extracted
directly from the provided radar measurements, but also this
information can be augmented by contextual information,
deriving knowledge from a domain expert from context
situation where tracking algorithm is being executed.

In this work, such contextual information can not only
enclose multiple sensor data but also know expected patterns
in air maneuvering which probably will define the target
behavior.

The ability to efficiently fuse information of different
forms for facilitating intelligent decision making is one of
the major capabilities of trained multilayer NN that is being
recognized in recent times [12–14].

Such approach results in an overall nonlinear tracking
filter which has several advantages over the popular efforts
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at designing nonlinear estimation algorithms for tracking
applications, the principal one being the reduction of mathe-
matical and computational complexities.

As a case of application it is proposed to consider and
augment contextual information with a common case of
dogfight, fighter air combat maneuvers used fromWorldWar
I, allowing the NN to estimate future position values for
complex trajectories, especially those that arise when two or
more fighter aircraftsare in close combat.

In a tracking system, these dogfight techniques are hard
to incorporate to classical statistical filters or particle filters,
basically because these algorithms do not incorporate con-
textual information beyond pure statistical variables.

In this document, a proposal of neural network tracking
algorithm (in a scope of radar air surveillance) dealing
with this contextual information, in addition to the classical
radar measurement information considered in this kind of
algorithms, will be presented.

2. Contextual Real Time Neural Tracking

2.1. Framework. The scheme shown below tries to mimic the
general workflow used by experts of the domain (i.e., air
traffic controllers) while trying to infer a proper estimate of
actual position for an unknown aerial mobile object based on
radar surveillance data acquired on a regular basis.

(i) Taking into account the last measurements, estimat-
ing velocity (speed and direction), a prediction of the
next approximate position, is inferred for the tracked
object (predicted estimation).

(ii) From this predicted estimation, considering contextual
information (i.e., trajectory followed by this target,
relative positions between close radar targets, and
existence and location of a possible enemy,. . .), along
with a priori knowledge such as modeling of basic
maneuverings, combat tactics [15] and other available
data in the field, like Rules of Engagement (RoE,
rules or directives to military forces that define the
circumstances, conditions, degree, and manner in
which force or actions which might be construed as
provocative,), may be applied which will allow us to
make corrections to the initial predicted estimation,
getting a filtered estimation [16].

As an example of basic maneuvering model, in this applica-
tion case, we will use a specific dogfight pursuit curves [17]
scenario.

A pursuit curve depicts trajectories followed by two
objects, the “rabbit” that tries to escape from the action radius
of the “fox” that tries to catch the former. These trajectories
imply two factors.

(1) The fox moves always in the direction of the rabbit,
trying to catch it.

(2) The fox varies its speed accordingly (proportional) to
the rabbit.

This trajectory is commonly known as “pure pursuit” in
the dogfight argot, and it is used when the pursuer wants

to maintain aiming of its weapons directly at the pursued
aircraft. Both aircraft move on a similar path based on the
premise of trying to hit and avoiding to be shot.

The pursuer trajectory will be conditioned to the pur-
sued trajectory, taking into account the factors previously
described.

This information of how threatened aircraft responds can
be used as a priori knowledge while attempting to estimate
future values of position and velocity for both type of aircraft
(pursued and pursuer).

A common characteristic of many tracking systems, in
context of air surveillance, is to consider them as real time
systems: their requirements specification includes timing
restrictions in the form of deadlines. Informally, a safety real
time system can be defined as one in which the damage
incurred by amissed deadline is greater as time passes beyond
the deadline [11, 18]. These real time systems are needed in a
number of application domains including air traffic control.

In a real-time system timely availability [19] of the results
is as important as accuracy. Future actions depend on both,
but it is even more important to have result in time to allow
the system to react to event than having too accurate results
but too late, when the environment has changed. This will
condition the proposed solution as an attempt of getting an
optimum relation “time of response/quality of response”.

To guarantee proper operation of a real-time system we
need to predict (to some extent) the general conditions to
meet with a real time constrains in order to ensure the system
will be responsible in the stated terms for the whole time of
operation [20].

2.2. Neural Tracking: State of the Art. Open literatures on
target maneuvering estimation from noisy position data
from radar data are very scanty. A detailed literature survey
has been carried out by Ananthasayanam et al. [21] and
Amoozegar [22].

Different tracking algorithms have been developed as 𝛼-
𝛽 filter, 𝛼-𝛽-𝛾 filter [8, 9] and Kalman filter [7, 9, 10]. Due
to the faster computing speed of current computers, more
and more systems use Kalman filter to track the target. In
practical systems there are many factors originating from the
tracked targets and the tracking system that lead to target
loss (i.e., a sudden maneuver of a target implies a tracking
system that it is accelerating unexpectedly, causing a bias in
the measurement sequence, will result in a target loss).

Though the Kalman filtering is a fundamental building
block for target maneuvering estimation, the NN techniques
have also been used by some researchers to improve the
estimation accuracy of Kalman estimates. In several cases [23,
24] a neural network-aided Kalman filter tracker has been
proposed to improve the accuracy of EK-estimated position
and velocity. Improvement in estimation using NN in planar
situation has been demonstrated. It has been also reported
that by aiding NN with Kalman filter, estimation accuracy in
both position and velocity improves considerably.

So, NN techniques (several along with fuzzy techniques)
were been used to maneuver detection or system variance
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Figure 3: “Pursuit curves” (in blue pursued, in red pursuer).

adjustment of the filter [25] which help to improve the
estimation obtained by a Kalman filter.

Chin [23] employed the backpropagation neural network
to aid the Kalman filter to reduce the estimation error. The
output of a trained NN is used to compensate the state
estimation. This algorithm does not change the structure or
parameter of the standard Kalman filter.

The defect for these approaches is that they will not
be easy to compensate well enough when large errors are
generated by the Kalman filter state.

Sundareshan [12] demonstrates the ability of a NN-based
tracking solution to realize improved tracking under
maneuver conditions using additional data, collected from
a diverse set of sensors. In this case the tracking solution

is improved using information which is possible to extract
from the measurements from imaging sensors (such as laser
radar, infrared sensor, or a sensor operating in the visible
frequency ranges).

Kong et al. [26] test whether a NN can be used to replace
the function of Kalman filter. After some modifications have
beenmade to the input/output vectors of theNN, the problem
of the radar tracking system using only measured data is
solved. No additional information is used in this solution.

On the other hand, NN have been used for learning
air combat maneuvers, not with the aim of solving a track-
ing problem but also to improve air combat maneuvering
strategies, providing training value to the users of simulators
[27].
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Schvaneveldt et al. [28] explore the applicability of NN
models in the domain of air combat maneuvering, incorpo-
rating in these models knowledge about air combat maneu-
vers and components of maneuvers as well as rudimentary
knowledge about maneuver planning and situational aware-
ness. The authors provide a review of Air Combat Expert
Simulation, a presentation of the implementation and testing
of the NN models and an overview of a software system
developed.

It is very usual to develop tracking systems, especially
applied to visual scope, which employ contextual information
as inputs to neural networks to address specific problems and
improve their performance [29, 30].

The main contribution of this paper is to integrate in
a tracking algorithm based on NN technique the available
knowledge on air combatmaneuvering strategies. In this way,
data from the environment, taken as contextual information,
which should be decisive in the trajectory decision for an
aircraft implied in a combat, are fused in a NN architecture
to obtain a new state estimation. The considered data are
derived, not only from the own radar measurements for the
target, but also from the overall global situationwhere combat
is taken place.

2.3. Proposed Neural Tracking Algorithm. In order to achieve
the objective of our case study, we separated estimation
and contextual enhancement into two different stages, both
using artificial neural networks as a basis to mapping and
information fusion.

(i) Basic estimation neural network (prediction NN). This
network operates as a classic particle filter allowing
inferring an initial rough estimate (predicted state)
of a tracked aircraft, where approximately our target
might be found.

(ii) Enhancement neural network (smoothing NN) [31,
32]. This second network augments previous esti-
mate with a priori information modeled upon basic
maneuvering, contextual informationwhichwill allow
us to obtain a more accurate estimate.

The artificial neural network used in this study is the well-
known multilayer perceptron (Figure 4) with a supervised
training framework based on the technique of error back-
propagation [33], and the number of input elements of both
networks is constrained to the bare minimum number of
neurons needed to characterize the input space and the
desired output while the number of layers will be constrained
to three using a unique hidden layer to connect input with
output space.

In our case study, as a simplification of the problem, the
input space considered will be 2D. So, radar measurements,
generally referenced to its own position, will be range and
azimuth to the detected target. It is usual to transform those
coordinates into Cartesian ones (𝑋,𝑌), related again to the
sensor (radar) ground position. In our case, we will use these
Cartesian coordinates.
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Figure 4: Multilayer perceptron network. 𝑖, 𝑗, 𝑘: layers, 𝑊
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weights.

In the proposed solution, different NNs, with the same
scheme but different training, will be applied independently
to coordinates𝑋 and 𝑌.

For an “ideal” situation of air space using, considering
the target as an independent statistical variable, where no
previous condition exists on its movement, the NN used
for the components 𝑋 and 𝑌 would be exactly the same,
insomuch as its behavior in the NN will be exactly the same.

Nevertheless, in a real world, taking into account that an
aircraft trajectory is influenced by diverse external items (i.e.,
its takeoff point), it can be observed that different instances
of NN must be used for each component.

We set the position measured from the radar data at time
𝑡 as

𝑦 (𝑡) = 𝑥 (𝑡) + V (𝑡) , (1)

where 𝑦(𝑡) is obtained from the “true” 𝑥(𝑡) position that
should be ideally measured plus additive noise V(𝑡) from a
known probability distribution.

As input to the prediction NN which is used the last
samples provided from the sensor (radar), using Cartesian
coordinates: 𝑦(𝑡), 𝑦(𝑡 − 1), 𝑦(𝑡 − 2), 𝑦(𝑡 − 3), . . . 𝑋 or 𝑌
component [𝑦𝑥(𝑖), 𝑦𝑦(𝑖)]will be used each one in its ownNN.

Using absolute coordinates for 𝑋 and 𝑌 components
makes trajectories that look almost equal to be very different
when they start from far locations. Thus it makes training to
be very slow.

To overcome this limitation, in our prediction NN, we
use incremental sampling [26] [Δ𝑦(𝑡) = 𝑦(𝑡) − 𝑦(𝑡 −
1)]. Therefore the network will infer also estimates as an
increment [Δ𝑦𝑥𝑝𝑒(𝑡 + 1), Δ𝑦𝑦𝑝𝑒(𝑡 + 1)], instead of absolute
locations (Figure 5). This allows greater convergence rates
andmakes estimates invariant to absolute positions, being the
response given by the NN conditioned only by the maneuver
previously learnt, where Δ𝑦𝑥𝑝𝑒(𝑡 + 1) will be the component
𝑋 predicted for the measurement that should be received in
time 𝑡 + 1.
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Figure 5: Prediction NN.

Training data for this stage, using coordinates 𝑋, 𝑌
in different NN, can be generated upon simulated pursuit
trajectories, where sampling incorporates additive gaussian
noise V(𝑡) to mimic real data as those gathered from real
devices or from actual data provided by a real radar.

While it is desirable to have a proper output data to
validate network results, generally aircraft real position 𝑥(𝑡)
is impossible to know. Yet, considering an off-line training for
ourNNs, we can try two different approaches to this problem.

(1) Simulated data make possible to know this informa-
tion as we can store samples (𝑥(𝑡)) before noise (V(𝑡))
addition just to use them for validation.

(2) Using an off-line processing with an optimal filtering
algorithm, without real time requirements, accurate
enough to get estimates from a set of measurements
that could be used as a validating source during the
training phase.

In this study, option 1 was chosen as the good enough
alternative given the current scope of this work.

For the next stage, smoothing NN, the previous estimate is
adjusted using a second network where contextual informa-
tion extracted from the relative aerial situation of aircraft is
used as inputs to this NN. It means that estimated features,
location, or speed components of an aircraft status will be
estimated to be conditioned by this contextual information.
This is the great advantage of using this NN for track-
ing in maneuvers previously leant, considering contextual
information that in other case (classical algorithms) will be
impossible, or at least computationally very expensive, to be
taken into account.

In dogfight-pursuit case, a key factor for the pursuer will
be the angle to be maintained between it and the pursued.
In close combat scenarios, viability of weapons is restricted
to short-range defensive guns. Modern fighters have only
a forward firing fixed gun that can be used in short-range
dogfight. Thus pursuit trajectories are usually one of “lead
pursuit” “pure pursuit” and “lag pursuit” designed to position
the attacker in the optimal firing position while avoiding
overshooting the other aircraft and risk being exposed to
shooting instead.

This angle between pursuer and pursued trajectories, as
well as other features as relative distance, relative speed, and
so forth. can be incorporated as inputs to the smoothing

NN, and therefore consider this information as contextual
information that will be used in the tracking process.

In the same way that in prediction NN, the smoothing
NNwill receive as inputs the previously predicted increments
Δ𝑦𝑥𝑝𝑒(𝑡), Δ𝑦𝑦𝑝𝑒(𝑡) (by prediction NN) and trajectory form
being tracked, but we augment the information the network
will use with the components for distance between both
aircraft (𝛿𝑥𝑝(𝑡) and 𝛿𝑦𝑝(𝑡)), a key feature that will allow the
network to make a better estimate for a pure pursuit style.
𝛿𝑥𝑝(𝑡) and 𝛿𝑦𝑝(𝑡) will be calculate as the difference in

absolute position (𝑋 or 𝑌 component) between the pursuer
and pursued estimated position (it is an evidence that
tracking algorithm does not know actual position for pursuer
and pursued).

Absolute position (𝑋 or 𝑌 component) will be obtained
adding the successive Δ𝑦𝑥𝑠(𝑡), Δ𝑦𝑦𝑠(𝑡) increments to the
previously absolute position of the target (track initialization
is not considered in this paper), where Δ𝑦𝑥𝑠(𝑡) is obtained as
the output of smoothing NN (Figure 6).

This contextual information has been considered as use-
ful in this kind of trajectories, by the proper definition of these
curves. Nevertheless, in other trajectories, the contextual
information to be applied must be considered, taking into
account its appropriate parameterization to be used as a
proper input for smoothing NN. In fact, the inputs in the
smoothingNN should be defined according to this contextual
information used in this tracking process.

The combined two stages for neural tracking (Figure 6)
make final estimates more accurate and robust than trying
to make the combined work into a single neural network.
Also training times showed to be lower than using a single
network.

Starting from actual radar measurements, a neural-based
tracking algorithm has been defined to incorporate typical
noise as well as define contextual information useful in this
case of dogfight pursuit curves.

In simulation results for this case of study (Section 3
of this paper), it is observed that considering the last four
measurements received from radar and using a single hidden
layer with five neurons, the estimates obtained from this
tracking system considerably improves the estimates for the
𝛼-𝛽 filter [8, 9].

Since the structure of both neural networks is clearly
defined (previous paragraph), the computational cost for
this approach can be perfectly dimensioned and evaluated
according to the requirements proper of a real time system.
The time deadline for each execution of this tracking process
is totally bounded, and so it can be real time scheduled,
enabling us to evaluate if reacting to data received will
be within time intervals dictated by the environment [34].
Taking into account that training is executed offline, the
training time must not be considered for these real time
requirements.

3. Simulation Results

To train neural networks used in this case, a set of pursuit
curves, with random errors added to the measurements
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Figure 6: Dual stage neural tracking (𝑋 component position).

obtained for each curve, are used. This set of pursuit curves
includes different curves (Figure 3) and similar curves chang-
ing parameters in their definition.Nevertheless randomnoise
is generated for each specific case, so that no case is equal to
other, even when the same curve has been taken as reference.

To validate the trained neural networks new pursuit
curves are designed, with different mathematical definition
or changing parameters in curves previously defined. As it
was said before, in any curve definition new random noise
is added to this curve so that the data for any new curve will
always be different in each new case.

In any case, to train and to validate neural networks data
with random noise will be used, using “perfect” data (without
noise) only to compare the result curve with the “optimal”
estimate.

In Figure 7, results obtained by the NN tracking algo-
rithm proposed in this document are shown as representative
graphical examples. Previously NNs have been trained with a
certain set of pursuit curves (Figure 3), defined by different
parameters. Any case, the curves used and defined for
training and validation are always affected by a randomnoise.

Along with estimated curve, other useful curves are
presented. Next, what each curve, depending on its color,
represents is explained.

(i) Blue. Trajectory for the pursued plane. In this path
no error has been added. It is not used in tracking
process.

(ii) Black. Trajectory for the pursuer plane. In this path no
error has been added. This trajectory is conditioned
by a pursuit curve determined by the pursued plane
(blue trajectory). It is used as reference position to
calculate errors in estimate positions and not used in
tracking process.

(iii) Red. Trajectory for the pursuer plane considering
white noise added to the previous trajectory. It simu-
lates the actual radar detection. This trajectory, as the
previous one, is conditioned by a pursuit curve deter-
mined by the pursued plane (blue trajectory). This
data together with pursued data (affected by noise,
blue line plus noise) are used to calculate contextual
information to consider in tracking process.

(iv) Magenta. Estimated trajectory obtained by tracking
process from red trajectory according only to the
predicted increases by the prediction NN.

(v) Green. Final estimated trajectory by the smoothing
NN, obtained by tracking process from red trajectory
incorporating context information considered in the
estimation.This is the final estimation of the proposed
NN tracking algorithm.

(vi) Yellow. Estimated trajectory by 𝛼-𝛽 filter (g-h filter,
𝛼 = 0.5) [8, 9], classical filter. It is used as comparative
data.

Samples shown in Figure 7 have been obtained from a unique
trained neural network tracking entity (prediction NN and
smoothing NN for 𝑋 and 𝑌 component, four trained neural
networks).

Axis incorporates a scale to be able to compare the dif-
ferent results obtained in the tracking process. Measurement
units are not relevant, but considering a typical fighter-to-
fighter combat each unit could be considered as one tenyh of
nautical miles. Nevertheless, the same curves for helicopters
combat would imply different scale and therefore different
units.

Once the tracking NNs (prediction NN and smoothing
NN) has been trained, subjecting the NN architecture to a set
of validation data the following results are observed.

As additional information, like a magenta trajectory, it is
shown in the chart the first NN stage output, the prediction
NN, where no contextual information is considered. This
incremental values are the input for the second NN stage,
the smoothing NN, which provide us the final result (green
trajectory).

As training data for both neural networks a set of
trajectories, always with random noise generated for each
measurement, has been used. Each trajectory is compound
by 100 data. Three different training data sets have been
considered:

(a) a set of 10 trajectories (100 data per trajectory),
(b) a set of 20 trajectories,
(c) a set of 50 trajectories.

Once both neural networks were trained (a, b, or c),
a validation data set of 20 trajectories (again 100 data per
trajectory) was considered.The tracking process result for the
neural tracking algorithmproposed in this paper is compared
with classical 𝛼-𝛽 filter (g-h filter, 𝛼 = 0.5) [8, 9].

To compare the results between neural filter and classical
filter the following metrics are calculated for each tracked
trajectory.
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Table 1: Numerical results for different training cases (with 20 trajectories for validation).

NT MSE-X CT MSE-X NTMSE-Y CT MSE-Y CV X CV Y
TS = 50

Average 0,00434596 0,011301885 0,004514052 0,0115171 0,854828377 0,83420158
Minimum 0,003265019 0,009954887 0,003731276 0,00888355 0,746030615 0,64807045
Maximum 0,005497492 0,01299676 0,005526362 0,01324728 0,998696361 1,0484481

TS = 35
Average 0,00489405 0,01234154 0,00475068 0,01115477 0,85303732 0,85359688
Minimum 0,00397036 0,01076685 0,00359512 0,00806498 0,75620495 0,74105283
Maximum 0,00588607 0,0142457 0,00568751 0,01382003 0,96719392 1,06696146

TS = 20
Average 0,00479757 0,01202544 0,004705733 0,01126898 0,87205893 0,83188561
Minimum 0,00398021 0,01077879 0,003563132 0,00927324 0,69621001 0,67934719
Maximum 0,00574476 0,01397357 0,005927035 0,01349507 1,06844267 1,00220355

TS = 15
Average 0,00549193 0,01214101 0,00544172 0,01199342 0,87569316 0,83879903
Minimum 0,00380993 0,01011885 0,0041497 0,00983185 0,76183417 0,68802747
Maximum 0,00683425 0,01452005 0,00631471 0,01356212 1,00188802 0,9665112

TS = 10
Average 0,005817 0,01196749 0,005719515 0,0112769 0,89183096 0,8069522
Minimum 0,00470605 0,01021932 0,005033928 0,00887119 0,784827 0,64173938
Maximum 0,00753874 0,01393356 0,006757601 0,01438699 1,04596164 0,95789102

Table 2: Average results for different training cases (with 20 trajectories for validation).

TS NT MSE-X NTMSE-Y CT MSE-X CT MSE-Y CV X CV Y
10 0,005817 0,005719515 0,01196749 0,0112769 0,89183096 0,8069522
15 0,00549193 0,00544172 0,01214101 0,01199342 0,87569316 0,83879903
20 0,00479757 0,004705733 0,01202544 0,01126898 0,87205893 0,83188561
35 0,00489405 0,004750675 0,01234154 0,01115477 0,85303732 0,85359688
50 0,00434596 0,004514052 0,01130189 0,0115171 0,85482838 0,83420158
TS: training set size (number of trajectories); NT MSE-X: MSE component X neural tracking; NT MSE-Y: MSE component Y neural tracking; CT MSE-X:
MSE component X classical tracking; CTMSE-Y: MSE component Y classical tracking; CV X: CV component X for Neural Tracking; CV Y: CV component Y
for neural tracking.

(i) Mean square error (MSE) for each Cartesian com-
ponent (𝑋,𝑌), to quantify the difference between
values implied by a filter (neural or classical) and the
true values (ideal optimal estimate). For any different
[training set (a, b, c), validation set (20 trajectories),
and filter (neural, classical)] simulation minimum,
maximum, and average values are calculated.

(ii) Coefficient of variation (CV), again for each Carte-
sian component (𝑋,𝑌), as a normalized measure of
dispersion, independent of the unit in which the
measurement has been taken, applied to the differ-
ence between estimation error in neural tracking
and classical tracking (in each cartesian component).
Distributions with CV < 1 will be considered with
low variant. For any different [training set (a, b, c) or
validation set (20 trajectories)] simulationminimum,

maximum, and average values are calculated for
neural filter.

Numerical results for these metrics are shown in Table 1 for
the different considered training set size cases (validation
with 20 trajectories).

In each table, average, maximum and minimum, MSE
values are obtained from MSE calculated from the set of 20
estimated curves, comparing each estimated curve with the
ideal optimal solution, the real trajectory, without error.

The values shown in Table 2 are obtained as the average
results for the 20 validation trajectories considered in each
training case.

In Figure 8 it can be observed that MSE for neural
tracking decreases slowly as training set size is increased.

In the results introduced in Figure 8 it can be observed
that the trajectory estimated by the NN architecture, where
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Figure 7: Examples of estimated curves with one trained neural network tracking architecture.

contextual information is considered, shown in Figure 7 like
green trajectory, greatly improves the tracking performance
obtained with a classical tracking algorithm (𝛼-𝛽, 𝛼 = 0.5)
(Figure 9) (yellow trajectory in Figure 7). It is clearly reflected
in MSE values obtained.

Checking the CV for neural tracking (Figure 10) it can
be said that our neural filter provides estimation with low
variance (CV < 1) in both components𝑋 and 𝑌, or what it is
the same, the error in the provided estimation remains steady.
This data can be verified checking maximum and minimum
MSE values shown in Table 1 and comparing these values
with the obtained for the classical algorithm. So, clearly the

dispersion is improved comparing these data with the data
obtained for classical tracking algorithm.

In Figure 10, it can be seen that as the training set
size increase the CV both component equal, decreasing the
difference in variance between them.

The estimated trajectory fairly accurately fits the
trajectory free of error (black trajectory), removing much of
the noise that might contain the measurements provided as
input data.

The results presented in this paper must be taken as
purely experimental results, which have allowed us to study
the feasibility of the proposal outlined here, considering the
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Figure 9: MSE for classical tracking (Series 1 = 𝑋, series 2 = 𝑌).

case previously exposed as a concrete case study. For each
considered case, a verification and validation scheme for the
NN implemented must be developed [35].

4. Conclusions

In this case study the objective is to document a proposal to
incorporating contextual information, which can be found in
certain aircraft maneuvers, to a typical estimation and track-
ing process running on any air surveillance radar system.

The aim of incorporate this contextual information is to
decrease the uncertainty and imprecision that accompany any
radarmeasurementwhich is used to feed this kind of systems.

This contextual information must be considered for the
maneuvers to be estimated: it is completely different to
estimate a fighter-to-fighter combat curve than to estimate a
fighter air-to-ground attack. In our case, the study is adapted
to a specific fighter-to-fighter combat maneuvering.

The idea of incorporating contextual information to an
air target estimation/tracking algorithm in the scope of
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Figure 10: CV for neural tracking (Series 1 = 𝑋, series 2 = 𝑌).

radar surveillance, taking into account the own requirements
of this real time systems, implementing this on a neural
network architecture, which will allow us to ignore the
complexity of formulating the rules for the integration of this
information with the information directly contained into the
radar measurements provided as inputs to the system, allows
us to use this solution as an alternative to the traditional
tracking algorithms, with a purely statistical approach.

The implemented NN architecture, with a set of NNs,
gives the system a more robust behavior against a possible
implementation on a single network, where all information
used in this estimation process could be incorporated.

The results presented for the simulations are likely to
preclude the use of this proposal which would be accepted
as a possible tracking algorithm to be used under certain
conditions, improving the results obtained in these specific
cases.

The dependence of the used NNs to the conditions
presented, as well as the need to achieve convergence in
the estimation results against the expected results, makes
advisable to use a set of NNs, connected with a certain
architecture, where the contextual information applied to
each case would be dependent on the own curve definition
to be estimated.
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