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Abstract

An analysis of the structure of flame balls encountered under microgravity conditions, which are stable
due to radiant energy losses from H2O, is carried out for fuel-lean hydrogen-air mixtures. It is seen that,
because of radiation losses, in stable flame balls the maximum flame temperature remains close to the
crossover temperature, at which the rate of the branching step H + O2 ? OH + O equals that of the
recombination step H + O2+M ? HO2 + M. Under those conditions, all chemical intermediates have very
small concentrations and follow the steady-state approximation, while the main species react according to
the overall step 2H2 + O2 ? 2H2O; so that a one-step chemical-kinetic description, recently derived by
asymptotic analysis for near-limit fuel-lean deflagrations, can be used with excellent accuracy to describe
the whole branch of stable flame balls. Besides molecular diffusion in a binary-diffusion approximation,
Soret diffusion is included, since this exerts a nonnegligible effect to extend the flammability range. When
the large value of the activation energy of the overall reaction is taken into account, the leading-order anal-
ysis in the reaction-sheet approximation is seen to determine the flame ball radius as that required for radi-
ant heat losses to remove enough of the heat released by chemical reaction at the flame to keep the flame
temperature at a value close to crossover. The results are relevant to burning velocities at lean equivalent
ratios and may influence fire-safety issues associated with hydrogen utilization.
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1. Introduction

The increased interest in hydrogen usage
focuses attention on safety concerns such as the
possibility of sustained fires developing in systems
having very low concentrations of hydrogen in
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A. Universidad 30, Leganés 28911, Spain. Fax: +34 91
6249430.

E-mail address: eafernan@ing.uc3m.es (E. Fernán-
dez-Tarrazo).
air. Hydrogen deflagrations persist to much lower
concentrations than would be possible under
steady, planar conditions [1] because of hydrogen’s
strong propensity for diffusive-thermal instability.
Flame balls constitute limiting configurations in
which hydrogen combustion, dominated in this
case by its high diffusivity leading to higher flame
temperatures, can occur under the leanest possible
conditions [2]. Collections of flame balls can con-
tinue to burn for long periods of time in mixtures
with insufficient hydrogen for ordinary flame prop-
agation [3]. For these reasons, in considering fire
hazards, it is desirable to have accurate descriptions
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of flame-ball structures in very lean hydrogen-air
mixtures. The study reported here was performed
in an effort to improve such descriptions and to
be better able to understand and to calculate the
resulting flammability behavior.

Computational methods are sufficiently
advanced that flame-ball structures can be
addressed numerically [4,5]. While numerical
approaches can include many phenomena, they
often are not well suited to specifically identifying
the most important ones. Asymptotic and analytic
methods, on the other hand, can isolate the most
important effects, thereby increasing understand-
ing of the flame structures significantly. In addi-
tion, they often can yield formulas that are
readily applied to calculate quantities of interest
in applications. For these reasons, in the present
work a simplified analysis is derived for better
understanding of near-flammability combustion
and flame-ball burning.
2. Formulation

2.1. Starting equations

The problem to be addressed is flame-ball
combustion of lean hydrogen-air mixtures in a
gravity-free environment, which can be steady
and spherically symmetrical. Then the radial veloc-
ity of the fluid is zero, so that momentum conserva-
tion implies that the pressure p is constant. The
radial variation of the temperature and composi-
tion is obtained by integrating the conservation
equations for energy and chemical species

1

r2

d

dr
kr2 dT

dr

� �
¼ QR �

X
i

ho
i _mi ð1Þ

1

r2

d

dr
qDir2 dY i

dr
þ aiY i

T
dT
dr

� �� �
¼ _mi; ð2Þ

with boundary conditions

dT
dr
¼ dY i
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and

T � T1 ¼ Y i � Y i1 ¼ 0 as r!1; ð4Þ
where the subscript1 denotes ambient quantities,
r is the distance to the flame-ball center, and T, q
and k are the temperature, density and thermal
conductivity of the gas mixture. The composition
is determined in terms of the mass fraction Y i of
each species i, whose molecular diffusivity and en-
thalpy of formation are denoted by Di and ho

i ,
respectively.

The computation of the mass rate of production
of species i, denoted by _mi, requires specification of
the chemical-reaction scheme, an appropriate
choice being the so-called San Diego Mechanism
[6] of 21 steps, whose accuracy in describing hydro-
gen-air combustion has been tested thoroughly [1].
In fuel-lean hydrogen-air flame balls, the thermal
conductivity is dominated by the values of nitrogen
and oxygen, so that the approximate expression

k=cp ¼ 2:58� 10�5ðT=298Þ0:7 kg=ðmsÞ; ð5Þ
suggested in [7] for methane-air flames, can be
used with excellent accuracy to compute k, with
the value of the specific heat at constant pressure
cp ¼

P
icpiY i evaluated with use made of NASA

polynomial fits for the temperature dependence
of each cpi. At the same level of approximation
[7], Di can be computed as the binary diffusion
coefficient of the species i into nitrogen according
to

qDi ¼ 2:58� 10�5ðT=298Þ0:7=Li; kg=ðmsÞ ð6Þ
with Li ¼ ð1:11; 0:30; 0:83Þ for (O2,H2,H2O),
respectively. Thermal diffusion is negligible for all
species, except for H and H2, for which the Soret
factors are given by aH ¼ �0:23 and aH2

¼ �0:29
[8]. A detailed description is also needed for the rate
of radiant energy loss per unit volume QR, which is
the divergence of the radiant-energy flux vector.
For instance, if a differential gray-gas approxima-
tion [9] is adopted, QR is a function of the mean
intensity of radiation I ¼ IA=ð4pÞ that can be ex-
pressed in the form QR ¼ �aaðIA � 4rT 4Þ, where
IA satisfies the equation

1

r2

d

dr
r2

3aa

dIA

dr

� �
¼ aaðIA � 4rT 4Þ ð7Þ

with boundary conditions dIA=dr ¼ 0 at r ¼ 0
and IA � 4rT 4

1 ¼ 0 as r!1. Here, r denotes
the Stefan–Boltzmann constant and aa ¼ jH2Op
ðW =W H2OÞY H2O is the gray mean value of
the absorption coefficient corresponding to the
main contributing species H2O, where W ¼P

iY i=W i

� ��1
is the mean molecular weight, com-

puted from the specific molecular weights W i of
the different chemical species i. The Plank-mean
absorption coefficient jH2O is a function of the
temperature, given for instance in [10], that in
the range of temperatures of interest (270 <
T < 1300 K) can be shown to be accurately repre-
sented by the expression jH2O ¼ 5:72� 10�4

ðT=298Þ�2 s2=kg.
The inverse of aa gives the characteristic value

of the absorption length, which can be estimated
from the above expressions to be of the order
a�1

a ’ 100 cm for characteristic flame-ball com-
bustion conditions (e.g., a�1

a ¼ 92 cm for T ¼
1000 K, p ¼ 1 atm, Y H2O ¼ 0:125), a quantity that
is therefore very large compared with the charac-
teristic flame-ball radius rf � 1 cm. According to
(7), in the optically thin limit of small Bouguer
numbers aarf � 1 that applies to flame-ball radi-
ation, the variations of IA from its boundary value
4rT 4

1 are of order ðaarf Þ24rT 4 and can be there-
fore neglected in the first approximation when
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computing the radiant energy loss per unit
volume; this leads to the familiar approximation

QR ¼ 4jH2OrpðW =W H2OÞY H2OðT 4 � T 4
1Þ; ð8Þ

to be employed in the analysis below.

2.2. Sample numerical results

The above equations were used to compute
hydrogen-air flame balls at atmospheric pressure
with T1 ¼ 300 K, giving the results shown in
Figs. 1–3. For given ambient conditions, the
flame-ball problem is known to possess two differ-
ent solutions for values of the equivalence ratio
within the flammability range. The plots show
results corresponding to the stable branch of large
flame balls, which begins at the flame-ball lean
limit /l ¼ 0:0735. Note that, because of the large
fuel diffusivity, this critical value /l ¼ 0:0735 is
much smaller than that of planar flames for the
same ambient conditions /l ¼ 0:251 [13,14].

The solid curves in the plots of Figs. 1 and 2
represent the variation with equivalence ratio
/ ¼ 8Y H21=Y O21 of the flame-ball radius rf and
of the peak temperature T max, with the former plot
including also results of experiments [11,12]. To
be consistent with the reduced-chemistry results
presented below, the value of rf is defined in the
numerical computations as the radial location
where the temperature takes its crossover value
(given approximately by T c ¼ 1000 K at atmo-
spheric pressure, as obtained from Eq. (10)),
although the values determined with a different
criterion (e.g., location of peak H2-consumption
rate or maximum H-atom concentration) would
be very similar, especially for the larger values of
r f
[m

]

0 0.10

0.01

Fig. 1. The variation with equivalence ratio of the hydrogen-a
obtained from experiments (hollow symbols: [11]; solid symbol
curve) and with one-step chemistry (dashed curve) and from t
rf corresponding to the stable branch away from
the lean flammability limit. Sample profiles of
main species and temperature are shown in
Fig. 3 for a flame ball with / ¼ 0:15. To exhibit
the existence of a concentrated reaction layer, to
be used in deriving the analytical results, the plot
includes also the local fuel burning rate (mass per
unit volume per unit time) as evaluated from the
rates of the different elementary reactions that
involve the H2 molecule.
2.3. One-step chemistry description

As seen in Fig. 2, the solutions of stable flame
balls corresponding to points along the upper
branch of the rf –/ curve exhibit moderate peak
temperatures not far from the crossover value.
As shown recently [13,14], under those conditions
all intermediates appear in very small concentra-
tions and can be assumed to follow a steady-state
description, whereas the main species react
according to the overall reaction 2H2 + O2 ?
2H2O, with a rate (moles per unit volume per unit
time) given by

x ¼ 1

GH
k1f

ak4f CM

� 1

� �
k2f k3f

k1b
ðqY H2

=W H2
Þ2; ð9Þ

as obtained from the seven elementary reactions
HþO2 �

1
OHþO, H2 þO �

2
OHþH, H2þ

OH �
3

H2OþH, HþO2 þM!4f
HO2 þM,

HO2 þH!5f
OHþOH, HO2 þH!6f

H2 þO2,
and HO2 þOH!7f

H2OþO2 by introducing stea-
dy state assumptions for the intermediaries H, O,
OH and HO2. As noted in [13], the rate (9) applies
with excellent accuracy at atmospheric and moder-
φ
0.2 0.3

ir flame-ball radius rf for p ¼ 1 atm and T1 ¼ 300 K as
s: [12]), from computations with 21-step chemistry (solid
he reaction-sheet analysis (dot-dahed curve).
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Fig. 2. The variation with equivalence ratio of the peak temperature T max for the hydrogen-air flame ball with p ¼ 1 atm
and T1 ¼ 300 K as obtained from computations with 21-step chemistry (solid curve) and with one-step chemistry
(dashed curve) along with the results of the reaction-sheet analysis (dot-dashed curves), including the leading-order
prediction T max ¼ T 0

c (thin curve) and the corrected value (thick curve).
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Fig. 3. Radial distributions of T=T max, Y H2
=Y H21 , Y O2

=Y O21 and Y H2O as obtained from numerical integrations with 21-
step chemistry for / ¼ 0:15, T1 ¼ 300 K and p ¼ 1 (solid curves); the dashed line shows the radial variation of the fuel
mass consumption rate.
ately elevated pressures, but for larger pressures
approaching the third explosion limit the descrip-
tion should be modified to account for H2O2 forma-
tion from HO2 and its regeneration of active
radicals. In the formulation, CM represents the
effective third-body concentration, which accounts
for the non-unity third-body chaperon efficiencies
of H2O and H2 associated with reaction 4f . The
subscripts f and b in (9) denote forward and back-
ward reaction-rate constants, while G, H and a
are functions of order unity of the composition
and temperature [13].

The reaction rate (9) applies for temperatures
larger than a crossover value T c for which

k1f ¼ ak4f CM; ð10Þ
whereas at temperatures T < T c our one-step
approximation predicts x ¼ 0 due to the disap-
pearance of the radicals. The value of T c is very
dependent on the local H2 content through a,
4



which equals one for Y H2
¼ 0 but decreases rapidly

towards a ¼ 1=6 when evaluated with the small
nonzero values of Y H2

typically found in the reac-
tion zone. Because of the relatively large activation
temperature of reaction 1f , T a1f ¼ 8590 K, the
overall rate (9) is very sensitive to changes in tem-
perature through the term k1f =ðak4f CMÞ appearing
in the cutoff factor. The associated value of the
dimensionless activation energy b ¼ T a1f =T þ n1f

�n4f þ 1, written with account taken of the addi-
tional algebraic temperature dependences T n1f

and T n4f�1 of k1f and k4f CM, where n1f ¼ �0:7
and n4f ¼ �1:4, is found to be of order 10 at tem-
peratures of the order of the crossover temperature
T c. Therefore, changes in the reaction rate by a fac-
tor of order unity occur with small temperature
increments of the order ðT � T cÞ=T c � b�1, which
are enough to accommodate the changes in burn-
ing rate per unit surface found for increasing /
in the branch of stable flame balls, as explained be-
low. It is of interest that, although the rate (9) was
derived in connection with lean premixed deflagra-
tions close to the flammability limit, it applies in
general provided heat losses are strong enough to
keep the flame temperature close to the crossover
value.

In this one-step approximation, only three
chemical species (H2, O2 and H2O) need to be
considered. An additional simplification follows
from noting that dY H2

þ aH2
Y H2

dT=T ¼ T�aH2 d
ðT aH2 Y H2

Þ which allows the thermal diffusion and
molecular diffusion terms to be incorporated in a
single Fickian-like diffusion term written as a
function of the modified fuel mass fraction

Y ¼ ðT=T1ÞaH2 Y H2
ð11Þ

and with a modified diffusivity

D ¼ ðT=T1Þ�aH2 DH2
: ð12Þ

The new transport operator, which is particularly
useful for the analysis of convection-free steady
configurations, can be used in (2) to write

1

r2

d

dr
qDO2

W O2

r2 dY O2

dr

� �
¼ � 1

r2

d

dr
qDH2O

2W H2O

r2 dY H2 O

dr

� �

¼ 1

r2

d

dr
qD

2W H2

r2 dY
dr

� �
¼ x ð13Þ

for the stoichiometry of the global reaction
2H2 + O2 ? 2H2O, whereas the energy equation
reduces to

1

r2

d

dr
kr2 dT

dr

� �
¼ QR � 2W H2

qx; ð14Þ

where q ¼ �ho
H2O=W H2

¼ 1:21� 105 kJ=kg is the
amount of heat released per unit mass of fuel con-
sumed. Results obtained with this one-step
description by integrating Eqs. (13) and (14) with
boundary conditions dT=dr ¼ dY i=dr ¼ 0 at
r ¼ 0 and T � T1 ¼ Y � Y H21 ¼ Y O2

� Y O21 ¼
Y H2O ¼ 0 as r!1 are indicated by the dashed
curves in Figs. 1 and 2, with the flame-ball radius
in Fig. 1 defined as the location where the temper-
ature reaches its crossover value. As can be seen,
the resulting curves are practically indistinguish-
able from those obtained with the 21-step mecha-
nism, indicating that the steady state is an
excellent approximation for all chemical inter-
mediates.

As previously mentioned, for / > 0:0735 there
exists a branch of unstable solutions, not depicted
in Figs. 1 and 2, corresponding to flame balls that
are smaller and hotter than those of the stable
branch described herein. The flame balls along
this unstable branch are sufficiently small for radi-
ation to have a negligible effect. As the mixture
becomes leaner, the decreasing reaction rate
requires a larger flame-ball radius to ensure an
adequate conduction-reaction balance in Eq.
(14). For conditions such that the peak tempera-
ture T max approaches T c the reaction rate given
by (9) becomes very small and the flame-ball
radius of the conduction-reaction solution
increases rapidly. With an increasing radius, the
effect of radiant energy loss takes over and pro-
duces the transition to the branch of stable solu-
tions through the turning point shown in Figs. 1
and 2. Because of the large value of the activation
energy present in x, the peak temperature T max of
the resulting solutions cannot be far from the
crossover value (i.e., if T max � T c were much larger
than b�1T c, the associated increase in chemical
reaction would be so large that it could not be bal-
anced by radiation losses). Therefore, for increas-
ing equivalence ratios, the resulting flame-ball
radius for the branch of stable solutions increases
in such a way that radiant energy losses can bal-
ance the chemical heat release while keeping the
flame temperature at a value not far from T c, a
condition that determines at leading order the
flame-ball structure, as seen below.
3. The thin reaction-layer description

For large nondimensional activation energies
b� 1, the reaction occurs, as shown in Fig. 3,
in a thin layer, where the fuel mass fraction and
the temperature variations from the crossover
value are of order Y H2

=Y H21 � ðT � T cÞ=T c �
b�1 � 1; then, a reaction-sheet approximation
can be used for describing the solution.

3.1. Relationships between the chemical species

For simplicity, we shall use the assumption,
not strictly necessary, of equal temperature depen-
dence of the diffusivities D, DO2

and DH2O. Then,
the first two equations in (13) can easily be inte-
grated, with the boundary conditions (3) and (4),
to yield the two simple relations
5



Y H2O ¼ 2
W H2O

W O2

DO2

DH2O

ðY O21 � Y O2
Þ

¼ W H2O

W H2

D
DH2O

ðY H21 � Y Þ ð15Þ

giving the mass fractions of water vapor and oxy-
gen in terms of the modified fuel mass fraction Y.
In this approximation, the effect of thermal diffu-
sion is incorporated by using in evaluating Eq.
(15) an averaged increased diffusivity D=DH2

¼
1:154, yielding

Y H2Or

Y H21

¼ W H2O

W H2

D
DH2O

¼ 28:73 ð16Þ

and

Y O2r

Y O21

¼ 1� 1

2

W O2

W H2

D
DO2

Y H21

Y O21

¼ 1� /=0:234; ð17Þ

for the water vapor and oxygen mass fractions in
the reaction zone, obtained from (15) with Y ¼ 0.
In view of this last equation, it is clear that the
lean regime of flame balls is restricted to configu-
rations with / < DO2

=D ’ 0:234, such that
Y O2 r

> 0, a result of the differential diffusion first
pointed out by Joulin [15]. Note that this limiting
equivalence ratio, corresponding to the effective
stoichiometric conditions for which both reactants
are simultaneously depleted in the reaction sheet,
is clearly affected by thermal diffusion, which,
according to the approximation D=DH2

¼ 1:154
employed in evaluating the water vapor and oxy-
gen at the flame, increases the transport rate of
hydrogen by approximately 15%, thereby also
influencing the corresponding limiting value at
the lean flammability limit. For larger equivalence
ratios / > 0:234, oxygen becomes the deficient
reactant at the reaction layer. Then, because of
the lower molecular diffusivity of O2, the flame-
ball temperature drops rapidly from the value
achieved when the much more diffusive species
H2 is the limiting reactant, as shown in Fig. 2.

3.2. The dimensionless formulation

For given ambient conditions, the computa-
tion of T max and rf requires integration of the last
equation in (13) together with the energy equation
(14) with the boundary conditions given above.
The problem can be formulated in dimensionless
form by scaling the variables according to
h ¼ T=T max, y ¼ Y =Y H21 and g ¼ r=rf to give

1

g2
ðhmg2h0Þ0 ¼ eð1� yÞ h

4 � h4
1

h2
� QX; ð18Þ

1

g2
ðhcg2y0Þ0 ¼ X; ð19Þ

with the prime 0 denoting differentiation with re-
spect to the coordinate g. The exponents for the
temperature dependence of the transport coeffi-
cients are m ¼ 0:85 and c ¼ 0:99 as dictated by
Eqs. (5), (6) and (12), with cp assumed in Eq. (5)
to be only a function of the temperature with a
weak dependence cp / T 0:15, as corresponds
approximately to air. Here,

X ¼
2W H2

r2
f h

c
1

ðqDÞ1Y H21

x and

Q ¼
qY H21

h1þm�c
1

T1k1=ðqDÞ1
ð20Þ

are the dimensionless reaction rate and its corre-
sponding heat release. In the dimensionless for-
mulation, the original unknowns T max and rf

have been replaced with the ambient-to-flame
temperature ratio

h1 ¼ T1=T max ð21Þ
and with the value of the ratio of the characteristic
values of the local volumetric heat losses by radi-
ation and conduction in the hot flame region

e ¼ 4jH2Or rpðW air=W H2OÞY H2Or T
3
maxr2

f =kr; ð22Þ

calculated with Y H2Or , as given in Eq. (16), with
the reaction-zone values jH2Or and kr evaluated
at T ¼ T max, and with the constant molecular
weight of air W air replacing W, a reasonably accu-
rate approximation for the lean conditions ex-
plored herein. Eqs. (18) and (19) are to be
integrated with boundary conditions h0ð0Þ ¼ y0

ð0Þ ¼ 0 and hð1Þ � h1 ¼ yð1Þ � 1 ¼ 0. The
additional conditions that the peak value of h be
h ¼ 1 and that h ¼ ðT c=T1Þh1 at g ¼ 1 are
needed to determine the unknowns h1 and e.

3.3. Solution with the reaction-sheet approximation

For large values of the nondimensional activa-
tion energy b, the reaction-rate terms in (18) and
(19) can be replaced by dirac-delta functions
located at g ¼ 1 that cause the gradients of tem-
perature and reactant to have a discontinuity at
the flame according to

h0f� � h0fþ ¼ Qy0fþ: ð23Þ

The inner-side gradient y0f� can be neglected
above since y remains constant for g < 1. In fact,
it takes a value y ¼ 0, because the temperature
gradient on the inner side of the flame sheet
h0ð1Þ ¼ h0f� is not large enough to freeze the reac-
tion, so that for 0 < g < 1 the mixture is in near
equilibrium with y ¼ 0. Integration of Eq. (18)
for 0 < g < 1 with X ¼ 0 and y ¼ 0, and with
boundary conditions h0ð0Þ ¼ 0 and hð1Þ ¼ 1 gives
the temperature distribution inside the flame ball,
including the value of h0f�. Similarly, integration
of Eqs. (18) and (19) with X ¼ 0 for g > 1 with
boundary conditions hð1Þ � 1 ¼ yð1Þ ¼ 0 and
hð1Þ � h1 ¼ yð1Þ � 1 ¼ 0 determines the distri-
6



butions of hðgÞ and yðgÞ in the outer frozen
region, including the gradients of temperature
and fuel mass fraction outside the flame
h0ð1Þ ¼ h0fþ and y 0ð1Þ ¼ y0fþ, whose variation with
e as well as that of h0f� are given in Fig. 4 for two
representative values of h1.

For b� 1, in the leading-order approximation
corresponding to the limit b!1, the reaction
layer appears as infinitesimally thin, and the peak
temperature and the crossover temperature take
the same leading-order value T c ¼ T max ¼ T 0

c ,
where T 0

c is the crossover temperature obtained
for a given equivalence ratio / by solving (10) with
use made of the reaction-zone composition given in
(16) and (17) and with a ¼ 1, as corresponds to tak-
ing Y H2

¼ 0 in the reaction zone, giving the results
shown in Fig. 2 as a thin dot-dashed curve. The
corresponding value of h0

1 ¼ T1=T 0
c can be used

in computing the gradients h0f�, h0fþ, and y0fþ as
functions of e, to be substituted into (23) to provide
an implicit relation that can be solved for e. These
leading-order results can be used in (22) to deter-
mine the corresponding flame-ball radius rf , which
is plotted in Fig. 1.

Relative corrections to T max, of order b�1, can
be obtained by analyzing the quasi-planar reac-
tion layer; the analysis will also provide the value
of the fuel mass fraction Y c � b�1Y H21 at the
crossover point where reaction (9) freezes, to be
employed in evaluating the function a < 1 in
(10), which in turn determines the corrected cross-
over temperature T c. The amount of fuel burnt
per unit time can be determined by integrating
(19) across the reaction layer with the reaction
rate X evaluated with the equilibrium mass frac-
ε
0 0.5 10

0.5

1

1.5

θ’f-

y’f+

-θ’f+

Fig. 4. The variation with e of y 0fþ, h0f�, and h0fþ for
h1 ¼ 0:25 (solid curves) and h1 ¼ 0:30 (dashed curves)
as obtained from integrations of Eqs. (18) and (19) as
described in the text.
tions of water vapor and oxygen given in Eqs.
(16) and (17). In the integration, the temperature
must be computed in terms of Y as dictated by

1� h ¼ Qy � h0f�ðg� 1Þ; ð24Þ

obtained by integrating twice the chemistry-free
equation obtained by adding (18) to the product
of (19) times Q. The solution is greatly simplified
when the effect of heat losses is neglected by dis-
carding the last term in (24), an approximation
that is justified by the relatively small values of
h0f� seen in Fig. 4. Under those conditions, inte-
gration of (19) after multiplication by dy=dg yields
ðy0fþÞ

2 ¼ 2
R yc

0
Xdy, which can be written as

ðy0fþÞ
2
=

4W H2
r2

f h
c
1

ðqDÞ1Y H21

 !
¼
Z Y c

0

xdY ; ð25Þ

where y 0fþ, rf , and h1 can be evaluated in terms of
the leading-order results, and the integral on the
right-hand side can be performed with use made
of (24) expressed in the simplified form
1� T=T max ¼ QY =Y H21 . Solving simultaneously
the three Eqs. (10), (25) and 1� T c=T max ¼
QY c=Y H21 determines the corrected values of
T max and T c as well as the fuel mass fraction at
the crossover point Y c. The resulting value of
T max is shown in Fig. 2 as a thick dot-dashed curve.

As can be seen in Figs. 1 and 2, the analytical
solution describes with remarkable accuracy the
whole branch of stable solutions. Errors in the
flame-ball radii are typically smaller than 10%.
On the other hand, the leading-order prediction
for the peak temperature T max ¼ T 0

c contains
errors on the order of 100 K, but these errors
reduce considerably when the first-order correction
is introduced by accounting for the solution within
the reaction layer, yielding overpredictions of peak
temperatures that are always below 30 K. Note
that the approximations used for the analytical
results necessarily limit their accuracy, both for
small flame balls approaching extinction, where
the reaction region can be anticipated to extend
all the way to the center of the flame ball, thereby
invalidating the flame-sheet approximation, and
also for very large flame balls with significant radi-
ation; these are such that the temperature gradient
appearing on the inner side of the flame sheet may
quench the chemical reaction there, producing sig-
nificant fuel leakage, a higher-order effect not
accounted for in the present analysis, which
neglects the last term in Eq. (24). The associated
departures are however small, so that the reac-
tion-sheet description is satisfactory, as demon-
strated by the plots in Figs. 1 and 2.
4. Conclusions

While steady, freely propagating planar flames
in hydrogen-air mixtures at normal atmospheric
7



conditions exist only for equivalence ratios above a
lean flammability limit /l ¼ 0:251 [13,14], deter-
mined by the condition that the flame temperature
equals the crossover temperature T c, nonpropagat-
ing flames in the form of flame balls exist under
microgravity conditions for much lower values of
the equivalence ratio due to the high diffusivity of
hydrogen enhanced by Soret effects. These flame
balls are stable due to radiation, with a radius that
increases in such a way that radiant heat losses keep
the peak temperature at a value that barely exceeds
T c. Under those conditions, the one-step chemistry
recently developed for near-limit hydrogen-air
deflagrations [13,14] can be used to describe with
excellent accuracy the whole branch of stable flame
balls. As may be seen in Fig. 1, while different the-
oretical results agree well with each other, experi-
mental results for flame-ball radii exhibit a
considerable amount of scatter, possibly due to
unsteady effects in the flame-initiation stage.
Further well-controlled microgravity flame-ball
experiments therefore would appear to be
worthwhile.
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