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“Most people, if you describe a train of 
events to them will tell you what the result 
will be. There are few people, however that 
if you told them a result, would be able to 
evolve from their own inner consciousness 
what the steps were that led to that results. 
This power is what I mean when I talk of 
reasoning backward” 

 
Sherlock Holmes, 

A Study in Scarlet, Part 2, Chapter 7. 
Sir Arthur Conan Doyle (1887) 
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An inverse problem is a mathematical framework that is used to obtain info about a 

physical object or system from observed measurements. It usually appears when we wish to 

obtain information about internal data from outside measurements and has many 

applications in science and technology such as medical imaging, geophysical imaging, 

image deblurring, image inpainting, electromagnetic scattering, acoustics, machine 

learning, mathematical finance, physics, etc. 

The main goal of this PhD thesis was to use state-of-the-art inverse problem 

techniques to develop modern reconstruction methods for solving the fluorescence diffuse 

optical tomography (fDOT) problem. fDOT is a molecular imaging technique that enables 

the quantification of tomographic (3D) bio-distributions of fluorescent tracers in small 

animals.  

One of the main difficulties in fDOT is that the high absorption and scattering 

properties of biological tissues lead to an ill-posed inverse problem, yielding multiple non-

unique and unstable solutions to the reconstruction problem. Thus, the problem requires 

regularization to achieve a stable solution.  

The so called “non-contact fDOT scanners” are based on using CCDs as virtual 

detectors instead of optic fibers in contact with the sample. These non-contact systems 

generate huge datasets that lead to computationally demanding inverse problem. Therefore, 

techniques to minimize the size of the acquired datasets without losing image performance 

are highly advisable. 

The first part of this thesis addresses the optimization of experimental setups to 

reduce the dataset size, by using l2–based regularization techniques. The second part, based 

on the success of l1 regularization techniques for denoising and image reconstruction, is 



vi 

devoted to advanced regularization problem using l1–based techniques, and the last part 

introduces compressed sensing (CS) theory, which enables further reduction of the 

acquired dataset size. 

The main contributions of this thesis are:  

1) A feasibility study (the first one for fDOT to our knowledge) of the automatic U-

curve method to select the regularization parameter (l2–norm). The U-curve method has 

shown to be an excellent automatic method to deal with large datasets because it reduces 

the regularization parameter search to a suitable interval.  

2) Once we found an automatic method to choose the l2 regularization parameter for 

fDOT, singular value analysis (SVA) of fDOT forward matrix was used to maximize the 

information content in acquired measurements and minimize the computational cost. It was 

shown for the first time that large meshes can be reduced in the z direction, without any 

loss in imaging performance but reducing computational times and memory requirements.  

3) Dealing with l1–based  regularization techniques, we presented a novel iterative 

algorithm, ART-SB, that combines the advantage of Algebraic reconstruction method 

(ART) in handling large datasets with Split Bregman (SB) denoising, an approach which 

has been shown to be optimum for Total Variation (TV) denoising. SB has been 

implemented in a cost-efficient way to handle large datasets. This makes ART-SB more 

computationally efficient than previous TV-based reconstruction algorithms and most 

splitting approaches.  

4) Finally, we proposed a novel approach to CS for fDOT, named the SB-SVA 

iterative method. This approach is based on the analysis-based co-sparse representation 

model, where an analysis operator multiplies the image transforming it in a sparse one. 

Taking advantage of the CS-SB algorithm, we restrict the solution reached at each CS-SB 

iteration to a certain space where the singular values of the forward matrix and the sparsity 

structure combine in beneficial manner. In this way, SB-SVA forces indirectly the well-

conditioninig of the forward matrix while designing (learning) the analysis operator and 

finding the solution. Furthermore, SB-SVA outperforms the CS-SB algorithm in terms of 

image quality and needs fewer acquisition parameters. 

The approaches presented here have been validated with experimental data. 
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El problema inverso consiste en un conjunto de técnicas matemáticas para obtener 

información sobre un fenómeno físico a partir de una serie de observaciones, medidas o 

datos. Dicho problema aparece en muchas aplicaciones científicas y tecnológicas como 

pueden ser imagen médica, imagen geofísica, acústica, aprendizaje máquina, física, etc. 

El principal objetivo de esta tesis doctoral fue utilizar la teoría del problema inverso 

para desarrollar nuevos métodos de reconstrucción para el problema de tomografía óptica 

difusiva por fluorescencia (fDOT), también llamada tomografía molecular de fluorescencia 

(FMT). fDOT es una modalidad de imagen médica que permite obtener de manera no-

invasiva la distribución espacial 3D de la concentración de sondas moleculares 

fluorescentes en animales pequeños in-vivo.  

Una de las dificultades principales del problema inverso en fDOT, es que, debido a 

la alta difusión y absorción de los tejidos biológicos, es un problema fuertemente mal 

condicionado. Su solución no es única y presenta fuertes inestabilidades, por lo que el 

problema debe ser regularizado para obtener una solución estable. 

Los llamados escáneres fDOT “sin contacto” se basan en utilizar cámaras CCD 

como detectores virtuales, en vez de fibras ópticas en contacto con la muestras. Estos 

sistemas, necesitan un volumen de datos muy elevado para obtener una buena calidad de 

imagen y el coste computacional de hallar la solución llega a ser muy grande. Por esta 

razón, es importante optimizar el sistema, es decir, maximizar la información contenida en 

los datos adquiridos a la vez que minimizamos el coste computacional. 

La primera parte de esta tesis se centra en optimizar el sistema de adquisición, 

reduciendo el volumen de datos necesario usando técnicas de regularización basadas en la 

norma l2. La segunda parte se inspira en el gran éxito de las técnicas de regularización 
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basadas en la norma l1 para la reconstrucción de imagen, y se centra en regularizar el 

problema fDOT mediante dichas técnicas. El trabajo finaliza introduciendo la técnica de 

“compressed sensing” (CS), que permite también reducir el número de datos necesarios sin 

por ello perder calidad de imagen. 

Las contribuciones principales de esta tesis son: 

1) Realización de un estudio de viabilidad, por primera vez en fDOT, del método 

automático U-curva para seleccionar el parámetro de regularización (norma l2). U-curva 

mostró ser un método óptimo para problemas con un volumen elevado de datos, ya que 

dicho método ofrece un intervalo donde encontrar el parámetro de regularización.  

2) Una vez encontrado el método automático de selección de parámetro de 

regularización se realizó un estudio de la matriz del sistema de fDOT basado en el análisis 

de valores singulares (SVA), con la finalidad de maximizar la información contenida en los 

datos adquiridos y minimizar el coste computacional. Por primera vez se demostró que el 

uso de un mallado con menor densidad en la dirección perpendicular al plano obtiene 

mejores resultados que el uso convencional de una distribución isotrópica del mismo.  

3) En la segunda parte de esta tesis, usando técnicas de regularización basadas en la 

norma l1, se presenta un nuevo algoritmo iterativo, ART-SB, que combina la capacidad de 

la técnica de reconstrucción algebraica (ART) para lidiar con problemas con muchos datos 

con la efectividad del método Split Bregman (SB) para reducir ruido en la imagen 

mediante su variación total (TV). SB fue implementado de forma eficiente para procesar un 

elevado volumen de datos, de manera que ART-SB es computacionalmente más eficiente 

que otros algoritmos de reconstrucción presentados previamente en la literatura, basados en 

la TV de la imagen y que la mayoría de las técnicas llamadas de “splitting”.  

4) Finalmente, proponemos una nueva aproximación iterativa a CS para fDOT, 

llamada SB-SVA. Esta aproximación se basa en el llamado modelo analítico co-disperso 

(co-sparse), donde un operador analítico multiplica la imagen convirtiéndola en una 

imagen dispersa.  Este método aprovecha el método SB para CS (CS-SB) para restringir la 

solución alcanzada en cada iteración a un espacio determinado, donde los valores 

singulares de la matriz del sistema y la dispersión (“sparsity”) de la solución en dicha 

iteración combinen beneficiosamente; es decir, donde valores singulares muy pequeños no 

estén asociados a valores distintos de cero de la solución “sparse”. SB-SVA mejora el mal 

condicionamiento de la matriz del sistema a la vez  que diseña el operador apropiado a 

través del cual la imagen se puede representar de forma dispersa y soluciona el problema de 
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CS. Además, SB-SVA mostró mejores resultados que  CS-SB en cuanto a calidad de 

imagen, requiriendo menor número de parámetros de adquisición. 

Todas las aproximaciones que presentamos en esta tesis fueron validadas con datos 

experimentales





xi 

    

List of SymbolsList of SymbolsList of SymbolsList of Symbols    
 

 

 

Symbol  

  

Ω  Domain/Space 

aµ  Absorption term 

sµ  Scattering term 

A Forward matrix of a general problem 

x Image/Model of a general problem 

truex , exactx  True image/model or target of a general problem 

b Data of a general problem 

exactb  Data without errors of a general problem 

l2, 2
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f Image of fDOT problem/Fluorescent concentration of fDOT problem 

truef  Target of fDOT problem 

d Data of fDOT problem 

TM  Transpose of a matrix M 

1M −  Inverse of a matrix M 
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Motivation and ObjectivesMotivation and ObjectivesMotivation and ObjectivesMotivation and Objectives    

    
 Inverse problems appear in many applications in science and technology, whenever 

we want to recover “hidden” information about a system from measurements of related 

variables. Most inverse problems have many particular features that make it advisable a 

specific study. 

Fluorescence diffuse optical tomography (fDOT), also called fluorescence 

molecular tomography (FMT), is a molecular imaging technique able to retrieve the three 

dimensional distribution of the concentration of extrinsic fluorophores in small animals, 

non-invasively and in-vivo. This technique facilitates the detection and quantification of 

important biological processes, and is being increasingly employed in pre-clinical research 

and drug development. 

Mathematically, fDOT can be modelled as a linear system and its inverse problem 

focuses on finding the fluorescence concentration at each voxel given the data and the 

forward matrix. 

The high degree of absorption and scattering of light through biological tissues 

turns fDOT into a highly ill-posed problem that yields multiple non-unique and unstable 

solutions to the reconstruction problem. Therefore, small perturbations in acquired data 

may lead to arbitrarily large changes in the reconstructed images. Regularization techniques 

are required to achieve well-defined and stable approximated solutions. 

The so called “non-contact fDOT scanners” are based on using CCDs as virtual 

detectors instead of optic fibers in contact with the sample. Besides, these non-contact 

fDOT systems generate huge datasets by using CCDs as a virtual detectors, that leads to 
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computationally demanding inverse problem. One alternative, explored in this thesis, is to 

try to minimize the size of the acquired datasets, without losing image quality. 

The main goal of this PhD-thesis is to exploit state-of-the-art inverse problem 

techniques to develop modern reconstruction methods for solving the fDOT problem. With 

this aim, the specific objectives of this thesis were: 

1) To demonstrate the feasibility of the U-curve method to select the best l2–based 

regularization parameter for fDOT. The U-curve has been shown to be an excellent 

automatic method to deal with large datasets because it allows restricting the search of the 

regularization parameter to a desirable interval.  

2) To study the effect of different settings of the acquisition parameters (distribution 

of mesh points, density of sources and detectors) of a parallel-plate non-contact fDOT 

system, in order to achieve the best possible imaging performance, understood as 

maximizing the information content in acquired measurements while minimizing the 

computational cost by using the singular value analysis. 

3)  To develop a novel efficient reconstruction method based on TV regularization 

and Split Bregman methods to reach solutions with improved resolution compared to 

classical methods. The method combines and exploits recent advances on l1–based 

regularization techniques for image denoising and reconstruction, and takes advantage of 

the high sparsity of the fDOT reconstructed images. 

4) To apply Compressed Sensing (CS) theory to develop a new algorithm to fDOT. 

The iterative algorithm developed, named Split Bregman-Singular value Analysis (SB-

SVA), is based on the existing Split Bregman algorithm for CS (CS-SB), but it restricts the 

solution reached at each CS-SB iteration to a certain subspace where the singular values of 

the forward matrix and the sparsity structure combine in beneficial manner. Indirectly, SB-

SVA induces a well-conditioning of the forward matrix, while design/learn the analysis 

operator and finding the solution. 

 

This thesis was developed in the framework of one of the research lines carried out 

in the Department of Bioengineering and Aerospace Engineering, University Carlos III of 

Madrid and the Hospital General Universitario Gregorio Marañón. One important source of 

motivation for this work was the real need for better and more efficient reconstruction 

techniques to be applied to the biological experimentation carried out by the group. 
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The author was awarded with a FPI (fellowship of Spanish Personnel Research Training 

Program for PhD students) by the Spanish Ministry of Economy and Competitiveness 

(reference: BES-2009-024463, associated with the project TEC2008-06715-C02-01). 

 

Structure of Structure of Structure of Structure of the the the the thesisthesisthesisthesis    

The first part of this thesis addresses the optimization of experimental setups to 

reduce the dataset size, by using l2–based regularization techniques. The second part, based 

on the success of l1 regularization techniques for denoising and image reconstruction, is 

devoted to advanced regularization using l1–based techniques. Finally, compressed sensing 

(CS) theory is applied to enable a further reduction of the acquired dataset size. 

 In summary, the thesis is structured as follows: 

▪ Chapter 1 introduces the linear inverse problem and discusses why ill-posedness can 

be challenging when solving an inverse problem. Finally, it presents the fluorescence 

diffuse optical tomography (fDOT). 

 

- First part: 

▪ Chapter 2 introduces the theoretical principles of l2–based regularization techniques. 

▪ Chapter 3 presents an automatic method that provides a suitable selection of the 

regularization parameters for l2–based techniques. 

▪ In chapter 4 we exploit the singular value decomposition of the forward matrix to 

study the effect of different fDOT system settings, such as the distribution of mesh points 

or the density of sources and detectors.  

 

- Second part: 

▪ Chapter 5 introduces the theoretical principles of l1–based regularization techniques 

and a brief review about l1–norm regularization techniques used in fDOT. 

▪ In chapter 6 we present a novel iterative algorithm for fDOT, based on Total Variation 

(TV) techniques, the ART-SB (Algebraic Reconstruction Technique - Split Bregman) 

method. 

▪ Chapter 7 includes a brief presentation of the CS theory and the sparse synthesis and 

cosparse analysis models, shows the incoherence of the fDOT forward matrix and proposes 

a novel CS-based approach for fDOT, named the SB-SVA method.  
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▪ Finally, chapter 8 summarizes the conclusions and the main contributions of this 

thesis. 

▪ A list of author’s publications is included after chapter 8. 
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Chapter 1Chapter 1Chapter 1Chapter 1    

Introduction Introduction Introduction Introduction     

    
Inverse problems research concentrates on the mathematical theory and practical 

interpretation of indirect measurements. That is, on estimating certain parameters based on 

indirect measurements of these parameters. The inverse problems arise in many 

applications in science and technology such as medical imaging, geophysical imaging, 

electromagnetic scattering, acoustics, machine learning, physics, astronomy, mathematical 

financial, etc. 

This chapter starts with a brief theoretical review of the linear inverse problem. 

Afterwards, it discusses why ill-posedness can be challenging when solving an inverse 

problem. Finally, it introduces a molecular medical imaging technique, fluorescence 

diffuse optical tomography (fDOT), also called fluorescence molecular tomography (FMT) 

and the ill-posed inverse problem of its reconstruction (the main interest of this thesis). 

 

1.1.1.1.1.1.1.1. Forward and Forward and Forward and Forward and iiiinverse problemnverse problemnverse problemnverse problemssss    

In 1976 Keller (Keller 1976) formulated the following very general definition of 

inverse problems, which is often cited in the literature: 

“We call two problems inverses of one another if the formulation of each involves 

all or part of the solution of the other. Often, for historical reasons, one of the two problems 

has been studied extensively for some time, while the other is newer and not so well 

understood. In such cases, the former problem is called the direct/forward problem, while 

the latter is called the inverse problem”. 
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Fig. 1.1. General inverse problem diagram 
 

To summarize, a forward problem is to deduce consequences (data) of a cause 

(model/image), while the inverse problems is to find the causes of a known consequence. 

Mathematically, given a linear problem Ax = b, the forward problem consists on computing 

the data (output) vector, b, given the system/forward matrix, A, and the model/image 

(input) vector, x. On the other hand, the inverse problem consists on computing the 

model/image vector, x, or the forward matrix, A, given the other two quantities, usually 

when the known data, b, have errors.  

 

1.2.1.2.1.2.1.2. IllIllIllIll----posed problems and uncertainty of solutionposed problems and uncertainty of solutionposed problems and uncertainty of solutionposed problems and uncertainty of solution    

One problem is called ill-posed (or ill-conditioned) in the Hadamard sense 

(Hadamard 1902) when it does not satisfy at least one of the three conditions required for 

being well-posed (or well-conditioned) 

1) Existence of the solution 

2) Uniqueness of the solution 

3) Stability of the solution; that is, continuous dependence of the solution on the 

data. 

Note that we can refer to the non-uniqueness of a problem as the ambiguity of the 

problem. 

The need of the third requirement has important consequences for the solution of 

ill-posed problems modelling physical situations, where the existence of noise or errors in 

the data may imply the presence of numerical instabilities in the solution. 

Inverse problems are very often ill-posed problems (Hadamard 1902). 
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Without prior knowledge, ill-posed problems have several solutions (not necessary 

understandable/stable ones). Mathematically, this process of using prior knowledge to 

well-condition the problem is called regularization. More details about regularization will 

be provided in chapters 2 and 5 and throughout this thesis. 

 

1.3. 1.3. 1.3. 1.3. Fluorescence diffuse optical tomography (fDOT)Fluorescence diffuse optical tomography (fDOT)Fluorescence diffuse optical tomography (fDOT)Fluorescence diffuse optical tomography (fDOT)    

Fluorescence diffuse optical tomography (fDOT) is a technique that enables the 

quantification of tomographic (3D) bio-distributions of fluorescent tracers. fDOT technique 

is also called fluorescence molecular tomography (FMT) in some studies (Lorenzo 2012; 

Ntziachristos et al. 2002). Most fluorescent tracers in fDOT emit light in the NIR (Near 

Infrared, 600nm-900nm) spectrum. 

fDOT has several interesting advantages as compared to other molecular imaging 

techniques (PET, SPECT), such as the use of non-ionizing radiation, or the lower price of 

the experimental setup. 

The first demonstration that the NIR light can be used to monitor the state of 

cortical tissues non-invasively through the skull was presented by Jöbsis in 1977 (Jobsis 

1977). 

In 1988, Patterson et al. (Patterson, Chance, and C. 1989) experimentally showed 

that the propagation of light through biological tissues can be modelled by the diffusion 

equation. 

The investigation on images produced by light propagation through tissues also 

attracted considerable attention (Boas 1996; Ntziachristos et al. 2000; O'Leary 1996).  

The first in-vivo diffuse optical tomography study of the human breast after contrast 

agent administration was presented by Ntziachristos in 2000 (Ntziachristos et al. 2000). 

During the last twenty years, a better understanding of photon propagation through 

tissues has allowed the researchers to gain a deeper understanding of the correlation 

between physiological internal changes and optical changes. This, together with the 

continuous development of NIR fluorescent probes for a wide variety of biological 

applications, has positioned fDOT as an emerging biomedical imaging technique. fDOT 

can three-dimensionally resolve markers that can be helpful in many fields: drug discovery 

(Lorenzo 2012; Ntziachristos, Leroy-Willig, and Tavitian 2007), carcinogenesis, protein 
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expression, protease activity, and receptor regulation (Garofalakis et al. 2007; Graves et al. 

2004; Martin et al. 2008; Ntziachristos et al. 2007; Ntziachristos et al. 2004) . 

 

1.3.11.3.11.3.11.3.1. . . . EEEExperimental setupxperimental setupxperimental setupxperimental setup    

    

In this thesis all the experimental data were acquired with a non-contact parallel-

plate system developed in our laboratory (Aguirre 2012). In the non-contact parallel-plate 

configuration the sample under study is gently compressed between two parallel anti-

reflective transparent plates, thus achieving a slab-like geometry. This slab geometry is 

often assumed in optical mammography and small animal imaging (Graves et al. 2003; 

Ntziachristos et al. 2000; Schulz, Ripoll, and Ntziachristos 2004). In this thesis we focused 

on fDOT problems with slab geometry. 

With our setting the excitation laser beam enters the sample perpendicularly 

through the first plate, and the transmitted light emerging through the opposite plate is 

recorded with a CCD camera. The light emerging from a constant-intensity laser diode is 

focused onto the sample at the desired points (source locations) using two mirrors moved 

by galvanometers, thus making it possible to choose the number and spatial distribution of 

sources. The laser emitter wavelength is set at 675 5±  nm, and the power delivered to the 

sample is controlled by means of a TTL signal that modulates the laser duty cycle. Typical 

power values are in the 1-mW range. All the components of the set-up are placed inside a 

light-shielded box. The acquisition process is controlled by in-house software hosted on a 

PC workstation. 

Figure1.2 shows our non-contact parallel-plate fDOT experimental setup. 

 

Fig. 1.2. fDOT non-contact parallel-plate experimental setup. 
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Emission fluorescence images are recorded by placing a 10-nm bandwidth filter 

centered at 720 nm in front of the camera lens, while for transmission excitation images a 

10-nm bandwidth filter centered at 675 nm is used. These filters are placed in front of the 

camera using a motorized wheel (see Fig. 1.2). The acquired images are normalized by 

their respective laser power. 

For each source, a variable number and distribution of detectors can be defined over 

the CCD sensor field of view (FOV), thus making it possible to retrieve the fluorescent and 

excitation average intensity at the desired points on the sample surface.  

 

1111.3..3..3..3.2.2.2.2. P P P Phantomshantomshantomshantoms    

 

In order to perform the experimental testing of our algorithms, we studied how to 

build phantoms that simulate the optical properties of biological media. In (Firbank, and 

Delpy 1993) the authors described how to prepare an agar-based phantom using India ink 

and intralipid. The India ink mimics the absorption while the intralipid simulates the 

scattering. The role of the agar is just to solidify the phantom. 

The needed concentration of agar for different concentrations of intralipid can be 

found in (Firbank, and Delpy 1993).  

We also built agar-based phantoms using India ink and TiO2. In these phantoms 

TiO2 simulates the scattering.  

However, agar dissipates in less than twenty-four hours, making the life of this kind 

of phantoms very short and compromising the repetitiveness of the studies. For this reason, 

we also developed polyester resin-based phantoms with India ink and TiO2. The necessary 

amounts of the components are described in (Boas 1996).  

In this thesis we used both type of phantoms. It should be emphasized, however, 

that the results are largely independent of the type of phantom used.  

 

1.3.31.3.31.3.31.3.3. . . . FFFForward problemorward problemorward problemorward problem    

 

A theoretical model (forward problem) that predicts photon propagation through the 

diffusive medium is needed before trying to solve fDOT inverse problems. 
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At NIR wavelengths, scattering of photons is a more significant attenuation 

component than absorption (Ripoll et al. 2008). In order to model the forward problem, we 

take into account that, in highly scattering media where light scattering dominates over 

absorption, light propagation complies with the diffusion equation (Ishimaru 1978)  

 ( ) ( ) ( )'aD r S rµ φ−∇ ∇ + = , (1.1) 

where ( ) ( ) ( )( )
1

', 3 , ,a sD r r rλ µ λ µ λ
−

 = +
 

 is the diffusion coefficient for a wavelength λ  at 

position r in a domain Ω , ( )' ,s rµ λ  the reduced scattering term, ( ),a rµ λ  the absorption 

term, ( )rφ  the average intensity, and ( ')S r the source term at position r’. 

In fDOT, the excitation intensity ( ),ex exrφ λ  at excitation wavelength exλ and 

emission intensity ( ),em emrφ λ  at emission wavelength emλ  are given by a pair of diffusion 

equations (Abascal et al. 2012; Graves et al. 2003; Hyde et al. 2009; Lorenzo 2012; 

Ntziachristos, and Weissleder 2001). 

The excitation intensity is emitted by an external source ( )0 sq r  at a location sr ∈ Ω , 

and the emission comes from a fluorescent region characterized by a fluorescence 

yield ( )flf r , which accounts for its quantum efficiency, its absorption parameter, and its 

concentration of fluorescence. 

Assuming that the presence of the fluorophore does not affect the absorption 

coefficient and that we are working on the steady-state regime, excitation and emission 

intensities are given by 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0, , , ,

, , , , ,

ex ex ex a ex ex ex s

em em em a em em em fl ex ex

D r r r r q r

D r r r r f r r

λ φ λ µ λ φ λ

λ φ λ µ λ φ λ φ λ

−∇ ∇ + =

−∇ ∇ + =
 .    (1.2) 

These diffusion equations can be solved using Green’s function for a homogeneous 

medium and canonical geometries (Abascal et al. 2012; Graves et al. 2003; Hyde et al. 

2009; Lorenzo 2012; Ntziachristos, and Weissleder 2001). 

Generalizing, we define a Green function that solves the heterogeneous problem 

 [ ] ( ) ( )( ) ( ) , ' 'aD r r G r r r rµ δ−∇ ∇ + = − . (1.3) 
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Using this function, the average intensity–solving equations (1.2) become  

 

( ) ( )

( ) ( ) ( ) ( )

' '
0

'

, ' ( )

, ' ' '

ex

em ex

r dr G r r q r

r dr G r r f r r

φ

φ φ

=

=

∫
∫ .

 (1.4) 

The normalized Born approximation (Born, and Wolf 1999), defined as the quotient 

between the fluorescence measurement and the excitation measurement for each source-

detector pair, is applied to the data, as follows: 

( ) ( )
( )

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

' , ' ' ' ' , ' ' '' ', '' ''

' , ' ' ' , ' '

meas
d ex dem d

b d meas
d dex d

dr G r r f r r dr G r r f r dr G r r q rr
d r

dr G r r q r dr G r r q rr

φφ

φ
= = =∫ ∫ ∫

∫ ∫ .
 (1.5) 

To compute the matrix of the linear system, W, we first differentiate the emission 

average intensity with respect to f and discretize the integral as a sum of all finite 

elements jΩ . The variation of emission average intensity is given by 

( ) ( ) ( ) ( ) ( )
~

, , , ,
j j

em d j d j ex j s j j j d ex j s j
j j

r dr G r r r r f dr r r r r fδφ φ δ φ φ δ
Ω Ω

= =∑ ∑∫ ∫
,

 (1.6) 

where ( ),ex j sr rφ  is excitation average intensity at jr  induced by a source at sr , ( )
~

,j dr rφ  is 

the adjoint field at jr  given by a source 
~

0q  located at the detector position dr , taking into 

account the reciprocity of the Green function. The adjoint field solves the equation 

 ( ) ( ) ( ) ( )
~ ~

0a dD r r r q rµ φ−∇ ∇ +  =  .
 (1.7) 

The element ij of the forward matrix ijW  relates each measurement ( )b id  (where i 

denotes each source-detector pair) to the concentration of fluorophore at element jΩ  and 

can be written as 

 
( )

( )
( ) ( )

~

, ,
1

,
j

b i
ij j j d ex j smeas

j ex d s

d
W dr r r r r

f r r
φ φ

φ Ω

∂
= =

∂ ∫
.

 (1.8) 
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Combining the MxN elements of the matrix W , the fDOT linear system can be 

expressed as  

 

( )

( )

,
· · ·1 1 111 1
·· ·

·· ·

·· ·

· · ·1,

nBd r rs d f rW W N

W W f rnB MNM Nd r rs dM M

  
          

    
    =
    
    
                . (1.9) 

Another way to solve the diffusion equations described by equations (1.2) is using a 

Garlekin finite element approach. For this latter option we adapted TOAST, a finite 

elements toolbox for DOT (Schweiger 1994; Schweiger et al. 1995), to fDOT.  

 

1.3.41.3.41.3.41.3.4. . . . Simulated dataSimulated dataSimulated dataSimulated data    

 

We also used the TOAST toolbox (Schweiger 1994; Schweiger et al. 1995) adapted 

for fDOT (introduced in precedent section) to simulate excitation and fluorescent photon 

densities and construct the forward matrix. Sources are modelled as isotropic point sources 

(located at a depth 1 / 'sµ  below the surface) using Dirichlet boundary conditions. This 

setting resembles a collimated laser as described in (Schweiger et al. 1995). Measurements 

were modelled by a Gaussian kernel centered at the detector location and computed as a 

linear operator M  acting on the photon density at the boundary of the domain. Thus, 

measured excitation and emission photon densities at the detector position, dr , become 

( ) ( )meas
ex d exr M rφ φ=  and ( ) ( )meas

em d emr M rφ φ= . Afterwards, similarly to equations (1.5), we 

calculated the normalized data component ( )
( )
( )

meas
em d

b d meas
ex d

r
d r

r

φ

φ
=

 
 
 

 and finally solved the 

linear system matrix as described in equations (1.6-1.9). 

 

1.4. 1.4. 1.4. 1.4. Solving Solving Solving Solving the the the the fDOT inverse problemfDOT inverse problemfDOT inverse problemfDOT inverse problem    

The fDOT inverse problem focuses on finding the fluorescence concentration at 

each voxel given the acquired data and the forward matrix. 
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1.4.1. 1.4.1. 1.4.1. 1.4.1. fDOT, an illfDOT, an illfDOT, an illfDOT, an ill----posed problemposed problemposed problemposed problem    

 

One of the main issues of fDOT is that the high degree of absorption and scattering 

of light through the biological tissues leads to a severely ill-posed inverse problem, and 

reduces the accuracy of the localization of fluorescent targets (Arridge, and Schotland 

2009; Dutta et al. 2012; Egger, Freiberger, and Schlottbom 2010; Lorenzo 2012; Markel, 

and Scothland 2002). Furthermore, fDOT problems involve a large number of unknowns 

together with a limited set of measurements (Arridge, and Schotland 2009).  

The fDOT inverse problem yields multiple non-unique and unstable solutions to the 

reconstruction problem.  

Although the data at our disposal may contain a remarkable amount of information, 

the ill-posedness of the problem combined with the presence of noise implies that solving 

the inverse problem is not trivial. Thus, the image reconstruction is highly susceptible to 

the effects of noise and numerical errors, in which case appropriate priors or penalties are 

needed to stabilize the reconstruction images. 

 

1.4.2. 1.4.2. 1.4.2. 1.4.2. NonNonNonNon----contact fDOT, large datacontact fDOT, large datacontact fDOT, large datacontact fDOT, large datasetssetssetssets    

 

Initial fDOT systems worked delivering laser light with optical fibers to different 

points of the surface of the sample under study (sources). The laser was selected at a 

wavelength appropriate to excite a fluorescent contrast agent. For each source, the outgoing 

excitation and fluorescent intensity were separately collected, placing fiber-optics detectors 

at several points around the surface of the sample.  

Once the nature of the diffuse light travelling from the sample to a separated 

detector was better understood and modelled, fDOT setups evolved towards non-contact 

geometries, using CCD cameras as detectors in a setup described in section 1.3.1. This 

arrangement retrieves the average light intensity at different points on the surface of the 

animal (virtual detectors), and also allows us to focus the excitation laser beam directly 

into different points of the sample. Such systems generate datasets that are orders of 

magnitude larger than those acquired with fiber-based systems, leading to significant 

computational challenges for image reconstruction  (Arridge, and Schotland 2009).  
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The size of the forward matrix is mxn, where m is the product of number of 

detectors (Nd) by number of sources (Ns), and n is the number of elements of mesh. For 

contact geometries, this number ranges between 2 310 10− , whereas for non-contact fDOT 

setups the size of the forward matrix can easily reach 7 910 10− . 

 

1.4.3. 1.4.3. 1.4.3. 1.4.3. Reconstruction methodsReconstruction methodsReconstruction methodsReconstruction methods    

  

Different methods have been proposed to solve the fDOT inverse problem. We can 

classify them into two large categories: linear and non-linear methods. The first group 

comprises methods such as Tikhonov, Newton method, Landwever and Steepest descent, 

Krylov methods, and Kaczmark methods. The second group includes methods such as 

Gauss-Newton, Levenberg-Marquardt, and non-linear Kaczmarz methods, amongst others 

(Arridge, and Schotland 2009; Egger et al. 2010).  

Another way to classify the different reconstruction algorithms is according to the 

need of a regularization functional. In this case we would have: a) methods on which a 

regularization functional can be included explicitly in the minimization term, and b) 

methods that do not include a regularization functional. The first group (a) comprises 

methods such as direct linear Tikhonov regularization (which might require extensive 

computational resources in terms of creation and storage of forward matrix), or non-linear 

gradient-based methods, such as Gauss Newton (which may be unfeasible in terms of 

Hessian matrix calculus when dealing with large datasets). The second group (b) includes 

methods such as iterative Kaczmarz methods, or free-matrix methods (Arridge, and 

Schotland 2009; Egger et al. 2010). 

When a regularization functional can be explicitly included in the minimization 

term, it can be introduced in terms of l2-based norms, l1-based norms, total variation or 

combinations of them. The choice of regularization is discretionary and reflects a prior 

knowledge about the system. 
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Chapter 2Chapter 2Chapter 2Chapter 2    

Linear Linear Linear Linear llll2222 r r r regularization egularization egularization egularization 

reconstruction reconstruction reconstruction reconstruction methodsmethodsmethodsmethods    

    
One of the difficulties of ill-posed problems is that there is not a single and well-

behaved solution. In order to obtain a stable solution which is not too sensitive to the 

perturbations that approximate the desired solution, the problem must be regularized. 

In this chapter we first introduce the need for regularization of a general problem. 

Afterwards, we present the singular value decomposition (SVD) of a forward matrix to 

finally introduce some l2 regularization reconstruction methods such as truncated singular 

value decomposition (TSVD) or Tikhonov regularization. 

This chapter is mainly based on references (Hansen 2010; Vogel 2002). 

    

2222.1. The need for regularization .1. The need for regularization .1. The need for regularization .1. The need for regularization     

Given a linear system Ax b= , a larger condition number of A, ( )cond A , indicates that 

the system is sensitive to perturbations of right-hand side, b. Discrete ill-posed problems 

are characterized to have coefficient matrices with large condition numbers. 

Let’s suppose that we have the exact solution from an ill-posed problem Ax b= , and 

we name it, exactx . Suppose that exactx  and x  satisfy exact exactAx b=  and exactAx b b ε= = + , 

where ε  designates the perturbation or error. In this case we have  
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( ) ( )2 2 2 2

2 2 2 2

,  i.e., 
exact

exact exact exact exact

x x x b
cond A cond A

x b x b

ε− ∆ ∆
≤ ≤

 , (2.1) 

being x∆  and b∆  the data (x) perturbation and the right-hand side (b) perturbation, 

respectively.  

If cond(A) is large, x  can be very far from exactx , even when the perturbation is 

small (
2 2exactbε ≪ ) (Hansen 2010; Vogel 2002). In these cases we need regularization 

methods to obtain less sensitive and stable solutions (good approximations to exactx ) . 

  

2222.2.2.2.2. Singular Value Decomposition . Singular Value Decomposition . Singular Value Decomposition . Singular Value Decomposition     

Singular Value Decomposition (SVD) is a powerful tool for analyzing discrete 

inverse problems.  

2222.2.2.2.2.1. The r.1. The r.1. The r.1. The role of SVDole of SVDole of SVDole of SVD    

If we have a linear system 

 Ax b=  , (2.2) 

where A is an invertible matrix, we can express the solution x in terms of SVD as 

 
1

Tn
i

i
ii

u b
x v

σ=

= ∑ . (2.3) 

Furthermore, the l2-norm of a matrix A can be expressed in terms of SVs as 

max2
A σ= , where maxσ  denotes the maximum of the SVs of A.  Similarly, we can express 

the l2-norm of inverse matrix of A  ( 1A− ), as 1 1
min

2
A σ− −= , where minσ  denotes the 

minimum of the SVs of A . Thus, it follows that the condition number (CN) of A  is given 

by the ratio between the largest and the smallest nonzero singular value (Hansen 2010; 

Vogel 2002), 

 ( ) 1 max
2 2 min

cond A A A
σ
σ

−= = . (2.4) 
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2222.2.2.2.2.2.2.2.2.... SVD for ill SVD for ill SVD for ill SVD for ill----posed problemposed problemposed problemposed problemssss        

 

For any linear system Ax b= , the subspace of b that can be calculated by x is called 

the column space or range of A  (Rang(A)). In other words, we can define Rang(A) as the 

subspace spanned by the columns of A , 

 }{ { }1( ) ,..., | ,m n
nRang A span a a b b Ax x= = ∈ = ∈ℝ ℝ . (2.5) 

When dealing with ill-posed problems, we say that A  is a singular matrix, that is, a 

part of the vector x projects to zero. This part is called the null space or kernel of A  

(Ker(A)), 

 { }( ) | 0nKer A x Ax= ∈ =ℝ . (2.6) 

If ( )Ker A exists, the solution of the system Ax b=  is not unique, and its solutions are 

a combination of the general solution with some linear combinations of its null space. 

If we decompose the matrix A  by SVD, every singular value close or equal to zero 

corresponds to a singularity of A . In this case, the rate of decrease of the SVs, σi's, is an 

indication of the ill-posedness of the problem. We say that a problem is ill-posed if both 

the following criteria are satisfied: 

1) The SVs of A decay gradually to zero. 

2) The ratio between the largest and the smallest nonzero singular value (CN) is 

large. 

If condition 2 is fulfilled, by examining equation 2.4 we can see that if there is only 

one singular value of A  close to zero, the CN of A  becomes very large and the system is 

ill-conditioned. Furthermore, the null space of A  is given by columns of V corresponding 

to the zero SVs and the range of A  is given by columns of U corresponding to the non-zero 

SVs (Vogel 2002). The columns of V corresponding to the zero SVs are vectors having 

several changes of sign that increase the instability of the solution.  

If A  is a singular matrix, when 0iσ =  (or close to zero), we have problems with 

1 iσ  and extremely large errors in the solution to equation 2.3 arise. 
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2222.3.3.3.3. T. T. T. Truncated singular value decompositionruncated singular value decompositionruncated singular value decompositionruncated singular value decomposition    

One straightforward regularization technique is the truncated singular value 

decomposition solution (TSVD) (Hansen 1987), also called selective singular value 

solution. The basic idea in TSVD is to include only the SVD components corresponding to 

the largest SVs, i.e., those which make significant contributions to the regularized solution. 

 To do this, we can set 1 0iσ − =  when 0iσ = ; that is, to reject the null space. 

Alternatively, we can sum all the components of the solution x in terms of SVD (equation 

2.3) for which the absolute value of the right-hand side of SVD coefficient ( T
iu b ) is above a 

certain threshold (τ ) (Vogel 2002)  

 
T
i

T
i

i
iu b

u b
x vτ

τ
σ

>

= ∑ .  (2.7) 

Although TSVD is a very intuitive regularization technique, it requires to calculate 

the SVD, or at least its τ  first components. In general, it is best to avoid this calculation for 

large problems, unless SVD gives us some interesting information, as we will see in 

chapters 4 and 7. 

 

2222....4444. Tikhonov Regularization. Tikhonov Regularization. Tikhonov Regularization. Tikhonov Regularization    

One of the most common regularization methods in the field of inverse problems is 

the Tikhonov regularization (Golub, and Matt 1997; Golub, and Van Loan 1996). It 

explicitly incorporates a regularization term, and its solution is given by the following 

functional minimization problem 

 { }2 2
min 2 2x

Ax b xα− +  , (2.8) 

where the first term 2
2Ax b−  is the least squares problem, which is equivalent to fitting the 

predicted data to real data, while the second term 2
2x  is a penalty term that stabilizes the 

solution forcing it to have a small l2-norm, being l2-norm the Euclidian norm 
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(
1/2

2
2

1

n

i
i

x x
=

 
=  

 
∑ ). The parameterα , termed the regularization parameter, achieves a 

balance between both terms. 

 Since the approximated solution is governed by high frequencies, the incorporation 

of the second term, 2
2x , has the aim of suppressing most of the large high frequency noise 

components. 

The Tikhonov solution, Tikx , is obtained by equalling to zero the gradient of 

equation 2.8, ( ) ( ) ( )( ) ( )2 2 2
2 2

0T T T TAx b x Ax b Ax b Ix x A A x A b Ixα α α∇ − + = ∇ − − + = − = . 

Then ( ) 12T T
Tikx A A I A bα

−
= +  and since TA USV= and TI VV= , we have 

( ) ( ) ( )
1 12 2 2...

TT T T T T T
Tikx USV USV VV VSU b V S VV SU bα α

− − 
= + = = + 

 
.  

In terms of the SVs, the solution can be expressed as 

 
2min( , ) min( , )

2 2 2 2
1 1

Tm n m n
Ti i i

Tik i i i
ii ii i

u b
x u bv v

σ σ
σσ α σ α= =

= =
+ +

∑ ∑  . (2.9) 

Note that Tikhonov regularization leaves the coefficients of the singular vectors that 

correspond to the large SVs almost unchanged, while it reduces the weight of the 

coefficients that correspond to the small SVs (noisy singular vectors).  

Thus, it is important to remark that Tikhonov regularization, as opposed to TSVD, 

takes into account all the available information.  

 

2.52.52.52.5. Dealing with fDOT. Dealing with fDOT. Dealing with fDOT. Dealing with fDOT    

As mentioned in section 1.4.1, due to the highly absorbing and scattering properties 

of biological tissues, the fDOT inverse problem is ill-posed (Arridge, and Schotland 2009; 

Dutta et al. 2012; Egger et al. 2010; Lorenzo 2012). 

An indication of the ill-possedness of the problem is the decay-rate of the SVs 

(section 2.2.2).  Figure 2.1 plots representative values of this singular value decay of 

forward fDOT matrices corresponding to the noise-free simulated data that will be 

presented later in section 6.2.3.2, and for the ex-vivo mouse data presented in section 

3.2.3.2. 
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Fig. 2.1.  SVs of forward fDOT matrices. (a) Noise-free simulated data presented in section 
6.2.3.2. (b) Ex-vivo mouse data presented in section 3.2.3.2. 

 
We can observe the ill-conditioning nature of fDOT problem, since both examples 

satisfy the two criteria of ill-posedness presented in section 2.2.2. Note that SVs of forward 

fDOT matrix for ex-vivo mouse data decay faster than those for the noise-free simulated 

data. fDOT forward matrices have a very high conditioning numbers (around 1710 ) that 

make image reconstruction highly susceptible to the effects of noise and numerical errors.  

The key to obtaining a meaningful solution is to reformulate the fDOT problem in 

such a way that the new solution is less sensitive to perturbations. This is achieved by 

adding appropriate priors or penalties to facilitate the stability of the reconstruction. In 

other words, the problem must be stabilized or regularized.  
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Chapter 3Chapter 3Chapter 3Chapter 3    

Choosing the regularization Choosing the regularization Choosing the regularization Choosing the regularization 

parameterparameterparameterparameter for  for  for  for llll2222 regularization  regularization  regularization  regularization 

reconstruction methodsreconstruction methodsreconstruction methodsreconstruction methods    
 

    
 When dealing with ill-posed problems such as fDOT, the choice of the 

regularization parameter is extremely important for computing a reliable l2 regularization 

reconstruction. Although the topic may seem trivial, it still receives high attention by 

researchers. Several automatic methods for the selection of the regularization parameter 

have been introduced over the years, but their performance highly depends on the particular 

inverse problem. Even we can say that there is no perfect choice for the regularization 

parameter, since each strategy has its advantages and disadvantages. 

 In this chapter, a U-curve-based algorithm for the selection of the regularization 

parameter has been applied for the first time to fDOT. Reducing the regularization 

parameter search to a validity interval increases the computational efficiency for large 

systems. Using both phantom and ex-vivo mouse data we will show that the U-curve 

provides a suitable choice of the regularization parameter in terms of Picard’s condition, 

image resolution and image noise. This chapter is organized as follows: First we present a 

brief review of the different methods for choosing the regularization parameter in the fDOT 

literature. Then, we introduce the U-curve-based method and the discrete Picard’s 
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condition. Afterwards, we show the feasibility of the U-curve-based method for fDOT 

experimental data. Finally, we summarize the discussion and present the main conclusions. 

    

3333.1. .1. .1. .1. Review of Current Review of Current Review of Current Review of Current Methods Methods Methods Methods     

In many implementations, the Tikhonov regularization problem (equation 2.8) is 

solved by manually selecting the regularization parameter,α . This is done using a sequence 

of regularization parameters and selecting the value that leads to best results, as judged by 

the user. Obviously, the procedure is highly subjective and time consuming. To overcome 

this problem, several automatic methods for selecting regularization parameters have been 

suggested over the years. We cite some examples classified into two groups: 

 

▪ Strategies based on the calculation of the variance of the solution, which requires 

prior knowledge of the noise: 

- The Unbiased predictive risk estimator method (UPRE) tries to minimize the 

unbiased predictive risk. Since the data noise is assumed to be random white noise 

of known variance, the precision achieved depends on the accuracy of the actual 

noise estimate. 

- The Discrepancy principle method (DP) selects the α  value for which data norm 

is equal to the data variance. 

 

▪ Strategies that do not need a-priori information: 

- Generalized cross-validation (GCV) is a statistical method whose goal is to find a 

value α such that Axα approximates the exact data exactb as well as possible.  The α  

provided by GCV criterion has to provide a solution, xα , that can fit the data using 

the smallest possible number of parameters, thereby minimizing the contribution for 

small singular values (SVs). 

- L-curve is a log-log plot of the regularization solution norm 2bα  versus the 

corresponding residual error norm
2

Ax bα − , for 0α > . It is named L-curve after the 

L-shape of the resulting plot. The key idea behind the L-curve criterion is to choose 

a value, Lα  , that corresponds to the corner of the L-curve, i.e., a point that 
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balances 2bα  and 
2

Ax bα −  . The corner is the point on the L-curve with 

maximum curvature (in log-log coordinates).  

 

More details of these methods can be found in a survey paper that describes some of 

them (Hanke, and Hansen 1993; Hansen, and O'Leary 1993), and in the chapter 7 of the 

book (Vogel 2002). As Vogel emphasized in his book, some methods may perform better 

than others depending on the particular inverse problem, and some methods may even fail 

completely. 

 

Regarding optical tomography (DOT, fDOT, time-resolved (fluorescence) diffuse 

optical tomography), the reported strategies for the selection of the regularization 

parameter have been: the manual selection (Graves et al. 2004), upon some acceptable 

reconstruction variability parameters (non-biased estimators: mean and standard deviation 

of the reconstruction) (Ducros et al. 2009); choosing from plots of the reconstruction 

spatial resolution versus estimator variance (Chaudhari et al. 2009); the L-curve method 

(Corlu 2007; Culver et al. 2003; Serdaroglu, Yazici, and Ntziachristos 2006); a variant of 

the L-curve method (Xu, Jin, and Bai 2009); and more recently, using a neighbourhood 

regularization method which yields similar results to L-curve when L-curve works and 

provides solutions where it fails (Li et al. 2012).  

L-curve method has been extensively analyzed (Hansen 1992; Hansen, and O'Leary 

1993) and applied to different areas. Recently, it has been reported that L-curve returns 

good regularization parameter values for electrical impedance tomography of the brain 

(Abascal et al. 2008) and for diffuse optical tomography (DOT) (Correia et al. 2009). In 

both studies several methods were compared arriving to the conclusion that in practice, 

selection methods without a-priori information, such as GCV and L-curve, were more 

robust and there was no significant difference between GCV and L-curve in terms of 

accuracy. The only relevant difference is that GCV is more computationally expensive than 

L-curve for large systems (Busby, and Trujillo 1997). 

Regarding DOT, one work (Culver et al. 2003) emphasized that the L-curve 

analysis yields overly-smooth solution in some cases. 
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3333.2.2.2.2. . . . Method proposedMethod proposedMethod proposedMethod proposed    

3.2.1. 3.2.1. 3.2.1. 3.2.1. UUUU----curve methodcurve methodcurve methodcurve method    

    

The U-curve is a plot of the sum of the inverse of the regularized solution norm 

2fα  and the corresponding residual error norm 
2

Wf dα − , for 0α >  on a log-log scale 

 1 1
U ( )

2 2
2 2

curve
Wf d f

α
α α

= +
−

. (3.1) 

The U-curve is a U-shaped function, where the sides of the curve correspond to 

regularization parameters for which either the solution norm or the residual norm 

dominates. The optimum value of α , uα , is the value for which the U-curve has a 

minimum. 

The regularized solution norm ( )2
fα  and the corresponding residual error norm 

( )2
Wf dα − are calculated numerically.  

The U-curve method has been proposed by (Krawczyk-StańDo, and Rudnicki 2007, 

2008; Krawczyk-Stańdo, Rudnicki, and Stańdo 2008) for the selection of the regularization 

parameter in inverse problems. The U-curve was tested on some numerical examples of the 

Fredholm integral equation of first kind (Krawczyk-StańDo, and Rudnicki 2007, 2008; 

Krawczyk-Stańdo et al. 2008) and super-resolution problems (Qiangqiang et al. 2010). 

3.2.1.1. Desirable interval of the regularization parameter 

It can be shown, as in (Krawczyk-StańDo, and Rudnicki 2007), that the function 

( )Ucurve α   is strictly decreasing in the interval ( )2/30, rα σ∈  and strictly increasing in the 

interval ( )2/3,0α σ∈ ∞ , where 0 1 ... 0rσ σ σ≥ ≥ ≥ >  are the SVs.  

For simplicity, we will call ( ) 2
2

E Wf dαα = − , the residual error norm, and 

( ) 2
2

R fαα = , the regularized solution norm. Thus, 
( ) ( )
1 1

U ( )curve
E R

α
α α

= +  and its first 

derivative is 
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( ) ( ) ( ) ( )

( ) ( )( )

2 2' * '
U '( )

2
*

E R R E
curve

E R

α α α α
α

α α

− −
= . 

Using the SVD of W  the residual error norm and the regularized solution norm can 

be expressed respectively as follows 

 ( )
( )

4 2

22 21

r
i

i
i

d
E

α
α

σ α=

=
+

∑  (3.2) 

 

( )
( )

2 2

2 2
1

r
i i

i i

d
R

σ
α

σ α=

=
+

∑
. (3.3) 

Regarding the sign of ( )U 'curve α  is equivalent to considering the factor 3 2
iα σ− , 

see demonstration below: 

 ▪ ( ) ( )2' 'E Rα α α= −   by (Hansen, and O'Leary 1993). 

 ▪ ( )U 'curve α  can be written as 
( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )

'
U '( )

2
*

R E R E R
curve

E R

α α α α α α α
α

α α

− + −
=  

where 
( ) ( ) ( )( )

( ) ( )( )

'
0

2
*

R E R

E R

α α α α

α α

− +
> . 

Thus, the sign depends only on ( ) ( )E Rα α α− ; i.e., it depends on  
( )

( )

2 3 2

22 21

r i i

i
i

dα α σ

α σ=

−

+
∑  

(equations 3.2 and 3.3), and 
( )

2

22 21

0
r

i

i
i

dα

α σ=

>
+

∑ .  

 Therefore, 

3 2 2/30i iα σ α σ− > ⇔ >  and 3 2 2/30i iα σ α σ− < ⇔ < . 

In conclusion,  

   ( )U ' 0curve α <  if ( )2/30, rα σ∈  and ( )U ' 0curve α >  if 

( )2/3 ,rα σ∈ ∞ and the function ( )Ucurve α  is strictly decreasing on the interval ( )2/30, rα σ∈  

and strictly increasing on the interval ( )2/3,0α σ∈ ∞ . 
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Expressing ( )Ucurve α  on SVD terms, it can be proven that the function ( )Ucurve α  

accomplishes ( )
0

lim Ucurve
α

α
→

= +∞  and ( )lim Ucurve
α

α
→+∞

= +∞  (Krawczyk-StańDo, and 

Rudnicki 2007).  

From these two results, it can be concluded that the function ( )Ucurve α  has a local 

minimum in the interval ( )2/3 2/3, 0rα σ σ∈ .   

The computation of the U-curve for values out of this interval is not necessary. 

Thus, the use of this interval can greatly increase the computational efficiency in selecting 

the regularization parameter.  

3.2.1.2. Unicity of U-curve solution 

Krawczyk-Stando (Krawczyk-StańDo, and Rudnicki 2007) pointed out that, if in 

the SVD there are one or more non-zero values, we can analytically calculate a unique 

0α >  for which the U-function will reach a minimum, and this would be the only 

minimum of the function.  

Finally, we can conclude that U-curve provides a desirable interval where the 

existence and unicity of a minimum can be proven (section 3.2.1.1.). This minimum 

corresponds to the optimum regularization parameter, uα  . 

 

3333.2.2.2.2.2.2.2.2. The role. The role. The role. The role of Discrete Picard’s condition  of Discrete Picard’s condition  of Discrete Picard’s condition  of Discrete Picard’s condition     

    

As commented in chapter 2, the rate of decrease of the SVs, σi’s, is an indication of 

the ill-posedness of the problem. The Discrete Picard’s condition (DPC) (Hansen 1990, 

2010) provides us with an objective assessment of this fact. 

The DPC is satisfied if the data space coefficients Tu bi , on average, decay to zero 

faster than the respective SVs, σi’s. 

The representation of  Tu bi  and σi in the same plot is known as Picard’s plot. 

To compute a satisfactory solution by means of the Tikhonov regularization, DPC 

has to be fulfilled (Hansen 1990, 2010), since it determines how well the regularized 

solution approximates the unknown, exact solution. 
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In ill-posed problems, there may be a point where the data become dominated by 

errors and the DPC fails. In these cases, a suitable regularization term should fulfill the 

DPC.  

Thus, the DPC itself can be used as a method for choosing the regularization 

parameter in Tikhonov regularization. Furthermore, it can be used as a tool to verify that 

other automatic methods provide a good choice for the Tikhonov regularization parameter. 

 

3333.2.3.2.3.2.3.2.3. . . . FFFFeasibility of the Ueasibility of the Ueasibility of the Ueasibility of the U----curve methodcurve methodcurve methodcurve method for fDOT for fDOT for fDOT for fDOT    

    

It is not possible to define a regularization parameter optimal for all the imaging 

applications, since the user may have different noise and resolution requirements according 

to each case.  In this section, we study the feasibility of the U-curve method for fDOT, and 

evaluate its performance with phantom and real ex-vivo fDOT experiments, acquired with 

the fDOT experimental setup presented in section 1.3.1. 

Furthermore, we validated this method by confirming that Picard’s condition is 

fulfilled and inspecting the noise level of the reconstructed images to ensure that the U-

curve method yields a satisfactory regularized solution. 

3.2.3.1. Phantom experiment 

We prepared a slab-shaped agar-based phantom (8 x6x1.5 cm) using intralipid and 

India ink to obtain an absorption coefficient of approximately µa =0.3 cm-1 and a reduced 

scattering coefficient of µs=10 cm-1 (as described in section 1.3.2). A capillary with its tip 

filled with 6 µl at 30µM of Alexa Fluor 700 (Invitrogen, Carlsbad, California, USA) was 

inserted into the phantom, with the tip positioned at the center of the slab (figure 3.1.a).  

We built the fDOT forward matrix (as explained in section 1.3.3) based on 

20x20x10 mesh points for a 1.5x1.5x1.5-cm FOV and equally spaced 10x10 sources and 

12x12 detectors. The center of the mesh’s FOV was aligned with the center of the slab. 

Figure 3.1 shows the three-dimensional mesh FOV for the reconstruction and how the 

sources and detectors are located in an area of [1.5x1.5] on the front and back plates (figure 

3.1.b). 
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Fig. 3.1.  a) Geometrical configuration of the slab (black) and the mesh FOV (red). The capillary 
tip is represented by the black sphere. b) Detail of the mesh’s FOV. Sources are represented by 

black dots and detectors by black empty circles. 
 
 

3.2.3.2. Ex-vivo mouse experiment 

An euthanized mouse was imaged with a capillary inserted into the esophagus. The 

tip of the capillary (<1.5 mm thick) was filled with 6 µl at 30 µM of Alexa Fluor 700 

(Invitrogen, Carlsbad, California, USA).  

We constructed the fDOT forward matrix (as described in section 1.3.3) of with 

20x20x10 mesh points for a 1.4x1.4x1.5-cm FOV centered on the chest of the mouse. 

Equally spaced 6x6 sources and 10x10 detectors were selected. The mouse was gently 

compressed between two transparent anti-reflective plates to a thickness of 1.5 cm 

approximately, in order to conform its geometry as much as possible to that of a slab. We 

define the axis x of the FOV along the width of the mouse, the axis y along the length of 

the mouse and the axis z along the antero-posterior dimension of the mouse. 

 

3.2.3.3. Validation of the regularization parameter obtained by the U-curve method 

The forward matrix was decomposed by SVD, and the images were reconstructed 

using Tikhonov regularization (section 2.4) for different α  parameters in the 10-1 to 10-6 

range, which included the U-curve-based regularization parameter, uα . 

We measured resolution and noise of the images for each α value. To assess image 

resolution, we followed the procedure described in (Culver et al. 2003), assuming that the 

FWHM of the point spread function (PSF) of the capillary tip (that can be considered as a 

single isolated region) is directly related to the resolution performance of the system. The 
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noise present in the images was measured as the standard deviation in a region of the image 

with no signal.  

We have already explained in section 3.2.2, that fulfilment of the DPC is crucial for 

the existence of a meaningful solution to discrete ill-posed problems. To confirm that 

Picard’s condition was fulfilled, we plotted on the same graph the Tu di  coefficients, their 

corresponding SVs, and their quotient, using the Picard routine available in the Matlab 

Regularization Toolbox (Hansen 2007).  

 

3.33.33.33.3 Results Results Results Results    
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Figure 3.2 shows the U-curve plot on a log-log scale for the phantom experiment. 

 

 

Fig. 3.2. U-curve plots on log-log scale. (Minimum corresponds to 24.38*10uα −= ). 

 

In this case, the U-curve shows a minimum which corresponds to a regularization 

parameter uα = 4.38*10-2.  

Figure 3.3 shows the L-curve plot on a log-log scale provided using (Hansen 2007):  
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Fig. 3.3. L-curve plot on log-log scale. (Maximum curvature at 25.65*10Lα −= ). 
 

The L-curve did not exhibit a neat identifiable corner. The failure to find a sharp 

corner is due to the high ill-posedness of our problem. The value of Lα  was chosen as the 

point on the L-curve with maximum curvature. 

Figure 3.4 shows fDOT reconstructions for α  parameters in the 10-1 to 10-6 range 

and with uα = 4.38*10-2.  

 

Fig. 3.4. Coronal view of maximum intensity projection 3D render of the reconstructions obtained 

for the α parameter in the 110−  to  610−  range. The result for 24.38*10uα −=  (obtained from the  

U-curve) is showed at the bottom center. At the bottom right: drawing indicating the phantom 
fluorescence concentration. 
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The resolution versus noise is plotted in figure 3.5. This figure shows profiles taken 

in the x direction (corresponding to z=7.5 mm and y=7.5 mm) and the FWHM (Full width 

half maximum) versus noise.  

It has been shown in (Culver et al. 2003) that the general trend for resolution is to 

increase together with image noise while the regularization parameter decreases, and this 

trend can be seen clearly in figure 3.5.b. For α  values of 10-1, 4.38*10-2 ( uα ), and 10-2, the 

FWHM of the profiles decreases. For α =10-3 image noise begins to prevail, and for  

α <10-3 the reconstruction is noise only, and the object is no longer visible in the 

reconstructed images. According to these data, we observe a heuristic range of uα  values 

that produces reconstructed images with a reasonable amount of noise and resolution, 

namely, 1 310 10α− −≤ < . This range includes the optimum value obtained by the U-curve 

method. 

 

Fig. 3.5. a) Profiles taken in the x direction, corresponding to the line z=y=7.5 mm, for each 
regularization parameter. b) FWHM (mm) vs. noise (%) plot. 

 

To corroborate that the U-curve regularization parameter leads to a suitable solution we 

verified that it satisfies the DPC. To this end, in figures 3.6.a and 3.6.b, we plot the noisy 

SVD components of the solution and the right-hand side of the phantom study. One 
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interesting aspect is the severe ill-posedness of the problem, indicated by the fact that the 

SVs decay gradually to zero and the ratio between the largest and the smallest nonzero 

singular value is large, as explained in section 2.2.2 (figure 3.6.c). 

Figure 3.6.d illustrates Picard’s plot showing the maximum and minimum values of 

the heuristically acceptable range plotted as two horizontal dashed lines (10-1 and 10-3). 

Picard’s plot makes it possible to compare the SVD coefficients of the right-hand 

side with the SVs and their quotient. The data vector d is said to satisfy the DPC if the data 

space coefficients Tu di , on average, decay to zero faster than the SVs σi  (section 3.2.2) 

The blue line represents the decay of the SVs iσ , the green crosses correspond to 

T
iu d , and the red circles represent the quotient T

i iu d σ . 

 

 

Fig. 3.6. SVD components and Picard’s plot for the phantom experiment. (a) Noisy SVD 
components of the solution. (b) Noisy SVD components of the right-hand side. (c) Decay of the 

SVs. The regularization parameter provided by U-curve method ( 24.38*10uα −= ) is plotted as a 

horizontal dashed blue line. (d) Picard’s plot with the maximum and minimum parameter of the 

heuristic acceptable range plotted as two horizontal dashed black lines ( 110− and 310− ). 
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SVs below 10-3, on average, decay to zero faster than those of the respective 

Tu di coefficients. 

We can observe that the SVs above the heuristic acceptable range of parameters   

10-1 and 10-3, and particularly the SVs above the U-curve cut-off (4.38*10-2), fulfil Picard’s 

condition.   
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Figure 3.7 shows that the U-curve plotted on a log-log scale has a minimum at the 

regularization value uα =5.72*10-2. 

 
 

Fig. 3.7. U-curve plot in log-log scale. (Minimum corresponds to 
25.72*10uα −= ). 

 
The curve is not really U-shaped, indicating that fewer useful SVs remain when 

compared to the phantom experiment, because the problem for the ex-vivo mouse data 

experiment is more ill-posed than the problem for the phantom experiment. 

 

Figure 3.8 shows fDOT reconstructions with α  parameters in the 10-1 to 10-6 range 

and with uα =5.72*10-2. 
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Fig. 3.8. Coronal maximum intensity projection render of the reconstructions obtained for t α  

parameters in the 110− to 610−  range. The result for 25.72*10uα −=  (obtained from the U-curve) is 

shown at the bottom center. We used 6 lµ of Alexa Fluor 700 30 Mµ . 

 
Figure 3.9 shows a coronal view of a 3D render of the Tikhonov reconstruction or 

the regularization parameter obtained using the U-curve method. The reconstruction is 

merged with the white light image of the mouse. 

 

 
 

Fig. 3.9. Coronal of a maximum intensity projection render of the reconstruction for 
25.72*10uα −=  (obtained from U-curve). The white light image is shown for reference image. Dye 

concentration and volume were 6 lµ  at 30 Mµ  Alexa Fluor 700. 
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Figure 3.10.a shows profiles taken in the x direction, corresponding to z=8 mm and 

y=0.7 mm, and the FWHM (resolution) vs. noise plot, which outlines the behaviour of the 

resolution and image noise of the reconstructions depending on the regularization 

parameter. Again, we observe a range of α values that produce reconstructed images with a 

reasonable compromise between noise and resolution. The U-curve-based value falls 

within this range, which is 1 210 10α− −≤ ≤ .  

In this case, we can confirm that the U-curve value leads to the image with 

minimum noise while retaining the best resolution possible. 

 

 

Fig. 3.10. a) Profiles taken in the x direction, corresponding to the line z=8 mm, y=0.7 mm for 
each regularization parameter. b) FWHM (mm) vs. noise (%) plot. 

 
 

Figure 3.11 shows how SVs above the heuristic acceptable range of parameters, 

particularly the SVs above the U-curve cut-off, fulfill Picard’s condition. The blue line is 

the decay of the SVs, iσ ’s, the green crosses correspond to T
iu d , the red circles represent 

the quotient T
i iu d σ , and the two horizontal dashed lines represent the heuristic acceptable 

range (10-1 and 10-2). 



36     Chapter 3. Choosing the regularization parameter for l2 regularization reconstruction methods 

 

Fig. 3.11. Picard’s plot indicating the maximum and minimum values of the heuristic acceptable 
range (horizontal dashed black lines at 10-1 and 10-2. 

 
 

We can observe that, as in the case of figure 3.6.d, the SVs above the heuristic 

acceptable range of parameters 10-1 and 10-2, particularly the SVs above the U-curve cut-

off ( uα = 5.72*10-2), fulfill Picard’s condition. In this case the SVs decay to zero faster than 

for the phantom experiment (figures 3.6.c -3.6.d). Furthermore, the ratio between the 

largest and the smallest nonzero singular value (CN) is larger for the ex-vivo mouse data 

experiment (CN=1017) than for the phantom experiment (CN=1010), thus confirming that 

the problem for the ex-vivo experiment is more ill-posed than the one for the phantom 

experiment. 
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The U-curve-based method is here used for the first time to select the regularization 

parameter in Tikhonov regularization reconstruction of fDOT. It has been shown that it 

provides a suitable selection of the regularization parameters, in terms of Picard’s 

condition, image resolution and image noise. Results are shown both on phantom and 

mouse data. 

Choosing the correct regularization parameter is crucial for the reconstruction of 

DOT and fDOT data. Singular Value Analysis has been used to optimize experimental 

setups in optical tomography (Chamorro-Servent et al. 2010; Chamorro et al. 2009; Graves 

et al. 2004), and chapter 4 of this thesis, and the Tikhonov regularization has recently been 

used to introduce anatomical a priori information into fDOT reconstuctions. Therefore, an 
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automatic method that enables us to choose the regularization parameter is of paramount 

interest. 

To our knowledge, the L-curve method is the only automatic strategy, not requiring 

priori knowledge of the noise, that has been successfully applied to fDOT (Corlu 2007; 

Serdaroglu et al. 2006; Xu et al. 2009).  

Recently, it has been found that methods without a-priori information, such as L-

curve and GCV were robust in other fields (Abascal et al. 2008; Correia et al. 2009).  

It is noteworthy that the L-curve method presents several theoretical limitations and 

may fail to find a good regularization parameter when the solutions are very smooth 

(Hanke 1996), and examples of inverse problems where the L-curve does not converge 

have been found (Vogel 1996).  

In diffuse optical tomography applications, the authors of (Culver et al. 2003) 

emphasized that the L-curve analysis yielded an overly-smooth solution in some cases. 

Recently, (Jagannath, and Yalavarthy 2012; Li et al. 2012), in agreement with our results, 

also pointed out that L-curve may fail when there is no optimal turning point in the L-curve 

plot. 

The GCV method, on the other hand, is more computationally expensive than the 

L-curve for large systems (Busby, and Trujillo 1997). 

It can be seen that the L-curve calculated for the phantom experiment did not 

exhibit a neat corner (figure 3.3). However, the U-curve for the same experiment had a 

clear minimum (figure 3.2). Furthermore, this minimum was found in the interval given in 

the section 3.2.1.1 (thus not being necessary to calculate the U-curve for the α  parameters 

out of this interval). 

Besides, figures 3.6.d and 3.11 (Picard’s plots) show how the U-curve 

regularization parameter satisfies Picard’s condition and assure a satisfactory regularized 

solution. From figures 3.4 and 3.8 (reconstruction obtained for different α  parameters) and 

figures 3.5 and 3.10 (profiles and FWHM versus noise plot), we can choose values for the 

regularization parameter that are lower than the value at which the reconstructed image 

started to be noisy. Figures 3.6.d and 3.11 show that, for these lower values, Picard’s 

condition is satisfied, as the U-curve parameter is in this range. 

Simple observation of the Picard’s plot can reveal a valid regularization parameter; 

however, the choice is more subjective. An automatic selection of the threshold parameter 

may be simpler and more objective in most cases. Furthermore, in agreement with  (Culver 
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et al. 2003), we can see clearly in figures 3.5.b and 3.10.b (FWHM versus noise plot) that 

the general trend is for resolution to increase together with image noise while the 

regularization parameter decreases. 

It is interesting to remark that the resolution achieved for the ex-vivo experiment is 

better than for the phantom experiment (figure 3.10.b versus figure 3.5.b), due to the fact 

that the tip of the capillary is closer to the surface. As the resolution of DOT systems are 

depth-dependent, resolution improves when the object is closer to either side of the slab 

(Pogue et al. 1999). 

 We have reviewed the different methods used in the literature, focusing on their 

differences. 

Regarding the limitations of this study, we realize that the U-curve criterion may 

fail in some cases, but in our experience it works well for fDOT experiments in practice. 

Although only two experiments are presented in this chapter, when we used the U-curve 

method in other experiments with different aims, as for example the experiments described 

in chapter 4 or in references (Chamorro-Servent et al. 2010; Chamorro et al. 2009), we 

always obtained satisfactory reconstructions, both for mice and for phantoms.  

We expect the automatic U-curve method for selecting the regularization parameter 

to yield robust and useful results that can be applied to the reconstruction of fDOT images 

and studies of image performance by singular value analysis. 
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As described in section 1.4.2, non-contact fDOT setups generate very large datasets. 

For this reason, many works have used singular value analysis (SVA) of the forward matrix 

to find the optimal experimental parameters for rotating configurations of DOT and fDOT 

systems, in terms of number, arrangement and size of detectors, mesh density and field of 

view (FOV), and number of geometrical projections. 

To achieve good image quality it is necessary to determine the number of useful 

singular values (SVs) to retain. The work presented in this chapter exploits the U-curve 

automatic method, introduced in chapter 3, to appraise the effect of different settings of the 

acquisition parameters (distribution of mesh points, density of sources and detectors) of a 

parallel-plate non-contact fDOT (section 1.3.1), in order to achieve the best possible 

imaging performance. The idea is make use of the minimum number of SVs of the fDOT 

forward matrix in order to maximize the information content in acquired measurements 

while minimizing the computational cost. 

The results obtained from this study can guide the selection of optimum acquisition 

parameters for fDOT experiments. 

This chapter is organized as follows: First we present a quick introduction on the 

use of SVA as image performance tool, then, the phantom and real studies carried out, and 

finally, the results, discussion and conclusions of the work. 
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4444.1.1.1.1.... Introduction Introduction Introduction Introduction    

As explained in section 1.3.3, the collected data can be mathematically arranged as 

a system of equations d Wf= , where d is a vector that contains the measurements 

corresponding to each source detector pair,  f  is the unknown fluorophore concentration at 

each voxel of the subject, and W is the forward matrix that represents the contribution of 

each voxel to the measurement corresponding to each source-detector pair. 

The size of the matrix W is mxn, where m is the product of number of detectors (Nd) 

by number of sources (Ns) and n is the number of elements of the mesh. As remarked in 

section 1.4.2, this size ranges between 2 310 10−  for contact geometries, whereas for non-

contact fDOT setups it can easily reach 7 910 10− , leading to a computationally demanding 

inverse problem.  

  SVA has been shown to be a simple yet powerful tool (Culver et al. 2001; Graves 

et al. 2004; Graves et al. 2003; Lasser, and Ntziachristos 2007) to assess the usefulness of 

DOT setups (Culver et al. 2001). Several fDOT systems have been studied with this 

technique: Graves et al. (Graves et al. 2004; Graves et al. 2003) studied how FOV, number 

of the detectors and sources, and number of mesh elements affect the system performance, 

using 2D simulated data corresponding to a parallel plate system.  More recently, Lasser et 

al. (Lasser, and Ntziachristos 2007), using a phantom experiment with a parallel plate 

setup, studied the effect of varying the number of detectors with fixed number of sources 

and mesh points. 

In this chapter, we use the SVA technique to find the optimal experimental 

parameters for the fDOT experimental setup presented in section 1.3.1. 

 

We hypothesize that we will achieve better coupling between detected data and 

reconstructed image if the mesh point distribution is less dense in the direction 

perpendicular to the plates due to the poor depth information in the acquired data. We also 

verified that placing the detectors and sources closer than one transport mean free path 

leads to a slight increase in imaging performance. 
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4.24.24.24.2. . . . MethodsMethodsMethodsMethods    

Using the slab-shaped phantom described in section 3.2.3.1, we explored different 

combinations of density of sources and detectors, and distribution of mesh points. After 

that, we constructed the forward matrices of fDOT settings as explained in section 1.3.3 

and we decomposed them into their SVs.  

 
TW USV= , (4.1)  

where U and V are orthonormal matrices ( 1 TU U− = , 1 TV V− = ) and S is a diagonal matrix 

containing the SVs of W. 

 Finally, regarding the minimum number of SVs required, we assessed the influence 

on the imaging performance of the density of sources and detectors, and the influence of 

the number of the mesh points and their spatial distribution, using the U-curve method 

presented in chapter 3. 

Note that equation (4.1) can be written as: 

 
T TU d SV f= , (4.2) 

where the columns of U can be seen as the detector-space of W and the columns of V as the 

image-space of W.  The SVs of W couple the image-space and the corresponding detector-

space as can be seen in figure 4.1. 

 

Fig. 4.1. : Image and detector-spaces in terms of SVD of matrix W. 
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Using SVA, we assessed: 

▪ The influence of the density of sources and detectors on the imaging performance, 

using a 2x2x1.5 cm volume of interest (VOI), 20x20x10 mesh points, and source 

and detectors square FOVs of 2x2 cm (Study 1). 

▪ The influence of the number of the mesh points and their spatial distribution, for a 

mesh VOI of 1.5x1.5x1.5cm, using 12x12 detectors and 10x10 sources equally 

spaced in their respective FOVs of 1.5x1.5 cm, as depicted in figure 4.2.a (Study 2). 

Due to the fact that the mesh VOI is cubic, for each number of mesh points, 

n, three anisotropic distributions were constructed: dx=dy=2dz, 2dx=dy=dz, and 

dx=2dy=dz, where dx, dy, and dz denote the spacing for the mesh points coordinates 

x, y and z respectively (figure 4.2. b, c, d). Afterwards, the anisotropic distribution 

giving best imaging performance was compared with an isotropic mesh distribution, 

dx=dy=dz. 

 

Fig. 4.2. (a) Diagram of the mesh, detector and sources FOV perspective view for the second 
study. The big black sphere represents the target object (the tip of the capillary). Figures (b), (c) 

and (d) represent the different views of the mesh points arrangement corresponding to the 
distribution dz=2dx=2dy, respectively. 
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4444.3.3.3.3. . . . ResultsResultsResultsResults    

4444.3.1.3.1.3.1.3.1.... Results  Results  Results  Results on on on on density of sources and detectorsdensity of sources and detectorsdensity of sources and detectorsdensity of sources and detectors    

    

Figures 4.3, 4.4 and 4.5 show the influence on imaging performance of the density 

of sources and detectors, based on the study of the number of useful SVs. 

 

Fig. 4.3. SVA of the influence on the imaging performance: (a) of the density of sources for a 
fixed number of detectors, (b) of the density of detectors for a fixed numbers of sources. 
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We can see (figure 4.3.a) that for a fixed number of sources, the number of useful 

SVs as a function of the detectors density quickly increase at the beginning but steadies 

when detectors get closer than the average mean free path (density of 1 mm2). Similar 

results appear (figure 4.3.b) when fixing the number of detectors and varying the source 

density. 

Figure 4.4 shows, for small fixed number of sources, that increasing the density of 

detectors to distances shorter than 1 mm leads to slight improvements in image quality 

while increasing computational burden. 

 

Fig. 4.4.  SVA of the influence on the imaging performance of the density of detectors for a fixed 
numbers of sources. 

 

Figure 4.5 depicts the reconstructions of the phantom presented in section 3.2.3.1, 

corresponding to the different densities of detectors used during the data acquisition.  

 

Fig. 4.5. Axial views (x direction) of 5 reconstructed images corresponding to different detectors 
densities for a fixed numbers of sources (10x10). 
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We can observe that the tip of the capillary is better defined when the detectors are 

at a distance of about 1 mm. This conclusion agrees with the results provided by SVA in 

figures 4.3 and 4.4, and with those reported in (Graves et al. 2004).  

We can conclude that we should not increase detectors/sources density at distances 

shorter than the average mean free path (1 mm).   

 

4444.3.2.3.2.3.2.3.2.... Results Results Results Results    on the mesh spatial distribution on the mesh spatial distribution on the mesh spatial distribution on the mesh spatial distribution     

 

Regarding the influence of the number of voxels and their spatial distribution,  

 

Fig. 4.6. SVA analysis of imaging performance: (a) changing the different voxel anisotropies. (b) 
isotropic voxel distribution versus anisotropic voxel distribution. 
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We can see (figure 4.6.a and table 1) that a mesh density dx=dy, dz=2dx gives 

better results in terms of imaging performance than dx=2dz, dy=dz or dx=dz, dy=2dz. 

Comparing an anisotropic distribution of voxels (dx=dy, dz=2dx), against the isotropic 

distribution (dx=dy=dz)  (figure 4.6.b and Table 4.1) we can see that the anisotropic 

distribution achieves better performance than  the isotropic one. 

The number of useful SVs quickly increase at the beginning with the number of 

mesh points but steadies for large numbers of elements, similarly to what happened in 

figures 4.3-4.5. 

 

Table 4.1.  Study of the number of useful singular values depending on the number of voxels and 
their distribution 

 
 

Isotropic mesh density (dx=dy=dz) 

 

Anisotropic mesh density (dx=dy, dz=2dx) 

 

Mesh 

Elements 

 

 

Size 

(mm) 

 

Number of 

useful SVs 

 

Mesh 

elements 

 

Size (mm) 

 

Number of 

useful SVs 

8x8x8 (512) 1.87 304 10x10x5 (500) 1.5x1.5x3 312 

11x11x11 (1331) 1.36 542 14x14x7 (1372) 1.07x1.07x2.14 584 

13x13x13 (2197) 1.15 687 16x16x8 (2048) 0.94x0.94x1.87 721 

15x15x15 (3375) 1 832 18x18x9 (2916) 0.83x0.83x1.66 845 

16x16x16 (4096) 0.94 907 20x20x10 (4000) 0.75x0.75x1.5 964 

18x18x18 (5832) 0.83 1026 22x22x11 (5324) 0.68x0.68x1.36 1092 

19x19x19 (6859) 0.79 1090 24x24x12 (6912) 0.63x0.63x1.2 1201 

 

In Table 4.1, note that a similar number of useful SVs was necessary for the 

isotropic distribution 19x19x19 (1090 SVs) than for the anisotropic distribution 22x22x11 

(1092 SVs). However, the first distribution used 6859 voxels while the second one used 

only 5324 voxels. These numerical results point out that an anisotropic mesh achieves 

better performance than an isotropic mesh. 

Since these results show that an anisotropic distribution of voxels (dx=dy, dz=2dx) 

achieves better performance than an isotropic one, we studied to what extent density in z 

direction could be reduced without losing information. Table 4.2 shows the result of using 

different z-voxel sizes for a similar number of mesh points, n. 
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Table 4.2.  Number of useful singular values for an anisotropic distribution of voxels 

(dx=dy, dz=cdx), where c denotes a integer constant number varying between 1 and 7, that 

corresponds to varying dz between 1 4mm mm∼ . 

 

 

Mesh 

Elements 

 

 

Size  

(mm) 

 

Number of 

useful SVs 

 

Number 

total of mesh 

points (n) 

15x15x15 (c=1) 1,1,1 832 3375 

18x18x9 (c=2) 0.83x0.83x1.66 845 2916 

21x21x7 (c=3) 0.71x0.71x2.14 913 3087 

25x25x5 (c=5) 0.6x0.6x3 953 3125 

28x28x4 (c=7) 0.53x0.53x3.7 954 3136 

 

We can observe that for a similar number of mesh points (n), the number of useful 

SVs increases with dz and stabilizes for dz larger than 3mm. 

 

4444.4.4.4.4. . . . Discussion and ConclusionDiscussion and ConclusionDiscussion and ConclusionDiscussion and Conclusionssss    

In this chapter we studied the effect of different settings of the acquisition 

parameters (distribution of mesh points, density of sources and detectors) of a non-contact 

parallel-plate fDOT.  

Analyzing the SVA of our forward matrix for different source and detector 

configurations, we found that any increase in the number of sources and detectors at 

distances shorter than the average mean free path leads to slight improvements in image 

quality but increases computational burden (figures 4.3-4.5).   

Besides, the use of a mesh with lower density in the direction perpendicular to the 

plates (figure 4.6, and table 4.1) achieves better performance than the usual isotropic mesh 

point distribution used in most fDOT experimental studies. Moreover, these results 

confirm (table 4.2) that a suitable spacing for the mesh points in the direction perpendicular 

to the plates is around 3mm, in agreement with the fDOT resolution in z direction (3 mm). 

To our knowledge, it is the first time that this result has been obtained using SVA 

for a non-contact parallel-plate fDOT. 

This finding is especially interesting to optimize the image reconstruction, which is 

largely a function of the number of points in the reconstruction mesh. Large meshes can be 
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compressed in the z direction without any loss in imaging performance, but reducing 

computational times and memory requirements. 

One drawback of this methodology is the high computational cost required by SVD. 

Besides, we would like to remark that our results correspond to a non-contact parallel-plate 

fDOT phantom and a mouse experiment using a laser whose emitter wavelength is 675 5±  

nm; and the forward matrix was modelled using Green functions as explained in section 

1.3.3.  Although most of the results provided are in broad agreement with other works 

previously presented in the literature, it would be advisable to confirm the study for 

different laser wavelengths, sample dimensions or even when the forward matrix is 

modelled differently. 

In conclusion, our findings can serve as a guide for the selection of optimum 

acquisition parameters for a non-contact parallel-plate fDOT experiment, as the one 

presented in section 1.3.1.  
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Chapter 5Chapter 5Chapter 5Chapter 5    

llll2222----normnormnormnorm alternatives alternatives alternatives alternatives enforcing  enforcing  enforcing  enforcing 

sparsitysparsitysparsitysparsity of the solution of the solution of the solution of the solution    

    
Traditionally, image reconstruction is formulated using a regularized scheme in 

which l2-norms are used to assess both the data misfit and the penalization term. However, 

there is an increasing interest in the use of l1-norm as a regularization term for image 

reconstruction, derived from a tendency in the inverse problem community to solve many 

inverse problems with a sparse solution. 

Near-infrared (NIR) tracers used in fDOT are designed to be specific and 

accumulate particular organs or regions. For this reason, most of the fluorophore is usually 

located within a volume of interest (i.e. a determined number of voxels) of the 

reconstructed image, making these images highly sparse.  

The second part of this thesis and this chapter centre their attention on 

reconstruction techniques that enforce sparsity, such as l1 and Total Variation (TV) 

penalties, as an alternative to regularization based on l2-norm. 

The chapter is organized as follows: First, we introduce the concepts of sparse 

solutions, l0 and l1-norm and TV. Afterwards, we introduce the different formulations of the 

optimization problem and present some algorithms to solve them. Finally, we briefly 

review the alternatives to l2-norm regularization reconstruction techniques used in fDOT. 

 



50                            Chapter 5. l2-norm alternatives enforcing sparsity of the solution    

5555.1. .1. .1. .1. Sparse solutionsSparse solutionsSparse solutionsSparse solutions    

A solution or image x is sparse if most of its entries are zero. That is, we minimize  

 2
2 1

Ax b xα− + . (5.1) 

If x is not sparse, we assume that we can find an orthogonal transformation basis T 

where x is sparse. Then, we can write 

 2
2 1

Ax b Txα− +  . (5.2) 

5555.1.1.1.1.1.1.1.1. . . . llll0000----normnormnormnorm    and and and and llll1111----normnormnormnorm    

 

Amongst the most popular norms used in functional analysis are the so-called p-

norms (p > 0). If ( )1,..., nx x x= is a vector, its p-norm is 

 ( )
1/

1

pn
p
ip

i

x x
=

 
=   

 
∑  . (5.3) 

Thus, the l1-norm is the sum of the absolute values of the components of a vector, 

while the l2-norm presented in previous chapters is the Euclidian norm. 

Another popular norm is the most fundamental sparsity metric, the l0-norm. The l0-

norm of a vector x is denoted by 
0
x and defined as the number of non-zero terms of x. 

Thus, this norm can be used to measure the sparsity level of a vector. Nevertheless, this 

norm is not convex. The advantage of convex problems over non-convex problems is that a 

global optimum can be computed. 

Regarding the p-norm definition (equation 5.3), the smallest value for which 

convexity is retained is p=1. The l1-norm is a convex relaxation of l0-norm and it is often 

used to enforce sparsity in images. This is the reason why the l1-norm has received 

significant interest in the context of compressed sensing (CS). However, this regularization 

is neither linear nor differentiable, and is more difficult to implement than the classical l2-

based regularization.  
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An interesting equivalence between l1-norm and l2-norm penalizing techniques was 

described by Kees van den Doel et al. (van den Doel, Ascher, and Haber 2012). These 

authors showed the equivalence between minimizing the problem described in equation 5.2 

and the TSVD method (see section 2.3) when TT V= , being TV the transpose of a matrix 

having as columns the right singular vectors resulting from SVD of the forward matrix. 

 Remember that the null space of W ( )( )Ker W  is given by columns of 

V corresponding to the zero SVs (section 2.2.2). Thus, being TT V= , through 0T
trueV x ≠  we 

select the non-zero SVs, which is equivalent to the TSVD method. We will return to this 

theorem in chapter 7, but dealing with other transformations that enable CS. 

In terms of Bayesian statistics, the l1 regularization usually corresponds to setting a 

Laplacian prior on the regression coefficients when taking a maximum a posteriori 

hypothesis. Similarly, the l2 regularization corresponds to Gaussian prior on the regression 

coefficients when taking a maximum a posteriori hypothesis. Laplace (l1) tends to better 

tolerate very large or small values of coefficients than Gaussian (l2). 

 

5555.1.2.1.2.1.2.1.2. . . . Total VTotal VTotal VTotal Variationariationariationariation    

    

Total Variation (TV) has shown large potential in image restoration and image 

reconstruction since it was introduced by Rudin, Osher and Fatemi (Rudin, Osher, and 

Fatemi 1992). Since most images have slowly varying pixel intensities (except at the 

edges), its discrete gradient will be sparse. 

The TV of an image x in a domain Ω  is defined as the l1-norm of the gradient of the 

image. As mentioned before, by using the l1-norm we are promoting the sparsity of the 

solution. By penalizing its TV we are preserving local smoothness and piecewise constancy 

(by promoting sparsity in the gradient of the solution). 

 
1

( )TV x x xdr
Ω

= ∇ = ∇∫ . (5.4) 

The non-differentiability of the absolute functional can be overcome by using 

regularization approximations of TV. Some of these approximations are Huber 

regularization, TV weight regularization or Perona Malik (PM) regularization (Correia et 

al. 2011).  
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Summarizing, l2-norm regularization produces in practice the minimum energy 

solution, suppressing most of the large noise components, while l1-norm and TV-norm 

regularization enforce sparsity. This latter option, furthermore, preserves local smoothness 

and piecewise constancy.  

 

5.2. Formulation of the optimization problem5.2. Formulation of the optimization problem5.2. Formulation of the optimization problem5.2. Formulation of the optimization problem    

In this section we use the term l1-norm (
1
x ) to denote l1-norm and TV-norm 

regularization indistinctly. 

The optimization problem which addresses the reconstruction problem (finding x  

from a linear system Ax b= ) while enforcing sparsity of solution can be formulated in a 

number of equivalent ways including: 

• Basis pursuit (BP) or linear programming, where the l1-norm appears in the cost 

function and the l2 data-fitting term appears in the constraint as equality: 

 
1

min  such that 
x
x b Ax=  . (5.5) 

• Basis pursuit denoising (BPDN) or quadratically constrained linear program, where 

the l1-norm appears in the cost function and the l2 data-fitting term appears in the 

constraint as a noise-dependant inequality: 

 2
1 2

min  such that 
x
x b Ax δ− ≤  . (5.6) 

• Least absolute shrinkage and selection operator (commonly referred to as LASSO 

problem or quadratic program), where the l2 data-fitting term appears in the cost 

function and the l1-norm appears in the constraint: 

 2
2 1

min  such that 
x

b Ax x ε− ≤ .  (5.7) 

• L1-penalized least squares (LS+L1) also known by some authors as first-order 

Tikhonov (Arridge, and Schotland 2009), or l1-Tikhonov (Egger et al. 2010), where 
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the l1-norm penalty weighted by a regularization parameter is added to the l2 data-

fitting term to construct the cost function: 

 2
2 1

1
min

2x
b Ax xλ− +  . (5.8) 

 The use of one or another formulation depends on the prior information available. If 

we have prior knowledge about the noise behaviour (related to δ ) we would use the BPDN 

formulation, whereas if we have prior information about the sparsity of the solution 

(related to ε ) we would prefer the LASSO formulation. BP works only for undetermined 

systems while LASSO is more suitable for overdetermined systems. LS+L1 is the most 

general formulation but has the difficulty of the appropriate choice of the regularization 

parameter, λ . In summary, the choice of one or other formulation depends on the nature of 

problem to be solved. 

 

5.3. Looking for an algorithm5.3. Looking for an algorithm5.3. Looking for an algorithm5.3. Looking for an algorithm    

As l1-norm regularization-based problems are non-linear, the choice of an algorithm 

for solving this kind of problems may become crucial because computational cost can be 

excessively large when using classical gradient-based approaches. 

Different works have pursued the goal of developing efficient algorithms. In 

(Theodoridis et al. 2012), the authors present a review on the most commonly used and 

cited algorithms focusing on schemes that have low computational burden and that scale 

well to very large problem sizes. With this aim, they categorize the algorithms into three 

groups: greedy-type algorithms, iterative shrinkage schemes and convex optimization 

techniques, and stress that drawing definite conclusions about which are the most efficient 

algorithms is unrealistic. 

Regarding 3D reconstruction problems, some examples of algorithms efficient in 

terms of convergence and stability are: the SPGL1 algorithm (van den Berg, and 

Friedlander 2007), which solves BP and LASSO problems with l1-norm penalty; the 

TVReg method (Jensen et al. 2012), for LS+TV problems; the CVX scheme (Grant, Boyd, 

and Ye 2008), which solves LS+L1, BP and LASSO problems; and the Split Bregman 

algorithm (Goldstein, and Osher 2009), appropriate for LS+L1 and LS+TV problems. The 
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first three algorithms are based on optimization techniques while the last one is based on 

iterative shrinkage schemes. 

Although we have tested the four above cited algorithms obtaining satisfactory 

solutions, the work presented in this thesis focuses on the Split Bregman (SB) method 

(Goldstein, and Osher 2009). SB is a simple and efficient algorithm for solving l1 

regularization-based problems, and is particularly effective for problems involving TV 

regularization.  Its efficiency derives from its possibility of splitting the minimization of l1 

and l2 functionals. Applying the SB method to TV, or Rudin, Osher and Fatemi (ROF) 

image denoising and compressed sensing the authors in (Goldstein, and Osher 2009) 

showed that SB was computationally efficient, because the SB formulation leads to a 

problem that can be solved using Gauss-Seidel and Fourier transform methods.  

 From now on, we will denote by SB the Split Bregman method applied to TV/ROF 

denoising and by CS-SB the Split Bregman method applied to CS.  

 

5555....4444. . . . A bA bA bA brief rrief rrief rrief review of eview of eview of eview of sparsesparsesparsesparse regularization reconstruction  regularization reconstruction  regularization reconstruction  regularization reconstruction 

techniques aptechniques aptechniques aptechniques applied to fDOTplied to fDOTplied to fDOTplied to fDOT    

In the context of fDOT reconstruction, several sparsity-enforcing alternatives to l2-

norm for regularization have been proposed. Arridge and Schotland (Arridge, and 

Schotland 2009) and Egger et al. (Egger et al. 2010) introduced l1 and TV-based 

regularizations in their respective reviews about forward and inverse problems in optical 

tomography. Baritaux et al. (Baritaux, Hassler, and Unser 2010) designed a reconstruction 

algorithm that incorporates a general regularization application of general constraints to 

fDOT, combined with an efficient matrix-free strategy that enables the algorithm to deal 

with large reconstruction problems at reduced memory and computational cost. Freiberger 

et al. (Freiberger, Clason, and Scharfetter 2010) introduced an alternating direction 

minimization method to solve l1 regularization; this method splits the reconstruction 

problem for simulated fDOT data into two subproblems: an l2 stage, solved using a Gauss-

Newton (GN) step, and an l1 regularization stage, solved by thresholding (or shrinkage). 

Later, Baritaux et al. (Baritaux, and Unser 2011) presented an l2-l1-mixed-norm 

penalization for incorporating a structural prior in fDOT image reconstruction. In the same 

paper they proposed other sparsity penalizations, such as l1–norm and TV-norm, and tested 
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them with synthetic and experimental data. Correia et al. (Correia et al. 2011) introduced 

an operator splitting method with nonlinear anisotropic diffusion and edge priors in fDOT 

reconstructions of simulated, phantom, and ex- vivo data. In one paper from our group 

(Abascal et al. 2011) we reconstructed fDOT focusing on the use of Split Bregman method 

to solve the optimization problem by imposing a non-negativity constraint; the image was 

updated using a nonlinear GN step, based on the computation of first and second 

derivatives of the nonlinear total variation functional. Dutta et al. (Dutta et al. 2012) 

applied a combination of l1 and TV penalties to the fDOT inverse problem to 

simultaneously encourage properties of sparsity and smoothness in the reconstructed 

images; they concluded that using l1 or TV regularization, in combination or separately, 

clearly led to improvements in localizing fluorescent sources in fDOT. Qualitatively, the 

joint l1-TV images showed the most natural appearance in simulation and phantom studies 

but the quantitative studies did not identify a clear winner. Behrooz et al. (Behrooz et al. 

2012) compared l2–regularization methods and algebraic reconstruction technique (ART) 

with TV-reconstruction methods inspired in R.O.F. (see section 5.1.2) and CS-SB; they 

implemented a preconditioned conjugate gradient method at each iteration of CS-SB. They 

remarked in their paper that this can lead to slow convergence in some cases and that TV 

regularization has the potential of offering higher resolution and robustness compared to 

conventional l2–regularization algorithms and ART.  
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Chapter 6Chapter 6Chapter 6Chapter 6    

Use of Split Bregman denoisingUse of Split Bregman denoisingUse of Split Bregman denoisingUse of Split Bregman denoising    

for iterative reconstructionfor iterative reconstructionfor iterative reconstructionfor iterative reconstruction    

    
The algebraic reconstruction technique (ART) is an extensively applied and cost-

efficient reconstruction method that yields fast and stable reconstructions for large datasets, 

as is the case of experimental DOT and fDOT studies. The useful results yielded by more 

advanced l1-regularized techniques for signal recovery and image reconstruction, together 

with the recent availability of the Split Bregman (SB) procedure, led us to propose a novel 

iterative algorithm for fDOT image reconstruction in diffusive media, ART-SB. This new 

algorithm has application in a wide range of areas, in particular in in-vivo imaging. This 

method alternates a cost-efficient reconstruction step (an ART iteration) with a denoising 

filtering step based on the minimization of total variation (TV) of the image using the SB 

method, which can be solved efficiently and quickly. We applied this approach to 

simulated and experimental fDOT data, and we found that ART-SB provides substantial 

benefits over conventional ART without increasing the computation time. 

The organization of this chapter is as follows. Section 6.1 introduces the chapter. 

Section 6.2 presents the well-known ART algorithm and describes the proposed ART-SB 

method. Then, it describes data acquisition and data simulation, and presents the tools used 

to compare ART with ART-SB. Section 6.3 presents the reconstructions and comparative 

results of simulated and experimental data. Finally, section 6.4 presents the discussion and 

conclusions. 
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6666.1.1.1.1. . . . IntroIntroIntroIntroductionductionductionduction    

DOT and fDOT image reconstruction are commonly carried out by means of 

iterative methods such as the algebraic reconstruction technique (ART) (Arridge, and 

Schotland 2009; Intes et al. 2002; Zacharopoulos et al. 2009).  

However, based on the success of l1 regularization techniques for denoising and 

image reconstruction, new iterative image reconstruction procedures have been proposed in 

the fields of computed tomography and positron emission tomography (Johnston, Johnson, 

and Badea 2010; Pan et al. 2010; Sawatzky et al. 2008). These procedures alternate an 

iterative method (such as simultaneous ART or the expectation-maximization algorithm) 

with a TV-denoising step. To minimize the TV functional, the two first works cited above  

(Johnston et al. 2010; Pan et al. 2010) used a standard gradient descent method, while the 

third one applied a dual optimization algorithm (Sawatzky et al. 2008). Consequently, the 

choice of technique for solving l1 regularization–based problems may become crucial, as l1 

is non-linear; therefore, the computational burden can increase significantly using classic 

gradient-based methods. 

In our work we focus on the Split-Bregman (SB) method because it is a simple and 

efficient algorithm for solving l1 regularization-based problems, and is particularly 

effective for problems involving TV regularization. Its efficiency derives from the splitting 

of the minimization of l1 and l2 functionals. 

SB was recently applied to fluorescence tomography reconstruction (Abascal et al. 

2011; Behrooz et al. 2012). From our group, Abascal et al. (Abascal et al. 2011) used SB to 

solve the optimization problem by imposing a non-negativity constraint. The image was 

updated using a non-linear Gauss-Newton step (Arridge, and Schotland 2009) based on the 

computation of first and second derivatives of the non-linear TV functional. Behrooz et al. 

(Behrooz et al. 2012) compared l2 regularization methods and ART with TV reconstruction 

methods. In the last work cited, the authors implemented a preconditioned conjugate 

gradient method (Arridge, and Schotland 2009) in each iteration of SB that led to slow 

convergence in some cases. To validate the method and compare reconstructions, they used 

a non-contact constant-wave trans-illumination fluorescence tomography system and 

concluded that TV regularization has the potential to offer higher resolution and robustness 

than conventional l2 regularization algorithms and ART.  
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This chapter presents a new approach to the fDOT inverse problem that alternates 

the Algebraic Reconstruction Technique (ART) with a denoising step based on the 

minimization of TV, solved by means of the Split Bregman (SB) method. This approach, 

named ART-SB, has been optimized and thoroughly studied. It has also been validated 

with real experimental fDOT data, in contrast to most other reports making use of 

shrinkage algorithms (Douiri et al. 2007; Freiberger et al. 2010), and resulted in substantial 

benefits over conventional ART without increasing the computation time.  

 

6666.2. .2. .2. .2. MethodsMethodsMethodsMethods    

6.2.1. 6.2.1. 6.2.1. 6.2.1. The aThe aThe aThe algebraic reconstrlgebraic reconstrlgebraic reconstrlgebraic reconstruction uction uction uction techniquetechniquetechniquetechnique (ART) (ART) (ART) (ART)    

    

The Kaczmarz’s method, known in computed tomography as algebraic 

reconstruction technique (ART) (Kak 1979) is one of the most widespread iterative 

methods in image reconstruction. 

Iterative regularization methods begin with an initial 0f   (often a zero vector) and 

then iterate different solutions 1 2, ,...f f  until converging. In some way, the role of the 

regularization parameter is played by the number of iterations. 

ART recalculates each solution by projecting from one to another hyperplane, 

defined by each row of the system Wf d= , as: 
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∑
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, (6.1) 

where it
if  is the it-th estimate of the it-th row contribution to the output f, id  the it-th 

component of the right-hand side, iw the it-th row vector of the system matrix, and λ  the 

relaxation parameter that adjusts the projection step at each iteration. 

ART with low values of the relaxation parameter approximates a weighted least 

square solution that leads to over-smoothed images. On the contrary, high relaxation 

parameter values lead to high resolution images with noise and artifacts. 
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It can be shown that ART is equivalent to applying Gauss-Seidel iterations to the 

problem ,  T Tf W y WW y d= =  (Hansen 2010). 

As proved in (Herman, and Meyer 1993), one advantage of ART when dealing with 

non-singular matrices is that the residual norm does not increase. 

The selection of an appropriate access order to the data (such as randomized access 

order) has been shown to speed up the iterative algorithm and generate a better output 

(Hansen 2010; Intes et al. 2003). 

It is known that ART exhibits semiconvergence (Hansen 2010). It means that 

during the first iterations, the iterates kf  follows the correct trend approximating truef , but 

at some stage they start to diverge from truef  to converge to the named “naïve solution”, 

1W d− . More details can be found in (Hansen 2010).  

    

6666....2.22.22.22.2. The two. The two. The two. The two----step reconstruction methodstep reconstruction methodstep reconstruction methodstep reconstruction method: ART: ART: ART: ART----SB SB SB SB     

    

The first step corresponds to the minimization problem  

 
~

2~

2
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f

f W f d= −  (6.2) 

solved by ART (section 6.2). 

The second step corresponds to the denoising problem. For every z-projection 
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where µ  is the weighting parameter for the fidelity term 
2^

2

itf f−  and TV is an anisotropic 

TV given by 
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The solution 
~
f  constitutes the estimate for the next ART iteration. Note that 

0~
[0,···,0] nf = ∈ℝ  is used as initial guess in the first ART call. 

The SB method (Goldstein, and Osher 2009) that solves (equation 6.3) is based on 

splitting the problem into two subproblems that are easier to solve. To this end, the original 

unconstrained problem (equation 6.3) is transformed into an equivalent constrained 

problem 

 
^

2^ ^

1 1
2, , 

min  such that 
2

x y

it
x y i i

f D D

D D f f D f
µ

+ + − = ∇ . (6.5) 

The constraint condition of equation (6.5) is enforced by applying the Bregman 

iteration (Goldstein, and Osher 2009; Yin et al. 2008)  
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where the values of k
ib  above correspond to the Bregman iteration 

(
^

1

k

k k k
i i i ib b f D−

 
 = + ∇ −
 
 

) and β is the denoising parameter. 

The l1 and l2 components of this functional can be split and efficiently solved by SB 

(Goldstein, and Osher 2009), which iteratively minimizes 
^
f and iD  separately: 
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Note that SB decouples 
^
f  from the l1 portion of the problem, thus making 

^
f  

differentiable. To optimally solve 
^
f  in a cost efficient manner, we used the Gauss-Seidel 

method, as proposed in (Goldstein, and Osher 2009)  
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Furthermore, since there is no coupling between elements of D, we can use 

shrinkage operators to compute separately the optimal values of xD  and yD  
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Further details about shrinkage operators can be found in (Goldstein, and Osher 

2009; Setzer 2009). A pseudocode of the ART-SB algorithm is presented in Table 6.1. 

 

Table 6.1. ART-SB algorithm. 

ART-SB algorithm 
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    1st step (ART iteration loop): 
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    2nd step (SB for each z-projection): 
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end (end of while) 
 

6666....2.32.32.32.3. . . . Experimental and simulatedExperimental and simulatedExperimental and simulatedExperimental and simulated data data data data    

6.2.3.1. Experimental phantom data 

A 10-mm thick slab-shaped phantom was built using a resin base and adding 

titanium dioxide and India ink to provide a reduced scattering coefficient of 

1' 0.8mmsµ −= and an absorption coefficient of 10.01mmaµ −= (as described in section 

1.3.2). The phantom had a 5-mm diameter cylindrical hole filled with a fluid that matched 

the optical properties of the resin (Cubeddu et al. 1997) mixed with Alexa fluor 700 1 µM 

(Invitrogen, Carlsbad, California, USA). The fDOT fluorescence and excitation data were 

acquired with the non-contact parallel plate fDOT scanner presented in section 1.3.1, using 

9x9 source positions and 9x9 detector positions over a 12x12 mm2 surface. 

6.2.3.2. Simulated data 

Simulated data were calculated for a numerical phantom designed to have the same 

optical properties than those in the real phantom. For the simulation of the excitation and 

fluorescent average intensity, and for the construction of the forward matrix we used an in-

house version of the TOAST toolbox (Schweiger 1994; Schweiger et al. 1995) introduced 

in section 1.3.4, adapted for fDOT. Sources and measurements were modelled as explained 

in section 1.3.4. The number of sources, number of detectors, and the surface covered by 

them were equal to those used with the experimental data. The phantom was simulated 

using a fine finite element mesh (145000 nodes). The average intensity for the forward 

matrix was reconstructed on a coarser finite element mesh (55000 nodes) and mapped into 

a uniform mesh of 20x20x10 voxels. 
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The simulation was perturbed with different levels of additive Gaussian noise: 1%, 

3%, 5% and 10%. 

The target, truef , corresponding to the physical slab geometry phantom with a 

cylindrical region filled with fluorophore was modelled using the same finite element mesh 

used for the simulated data and subsequently mapped into a uniform mesh of 20x20x10 

voxels. 

 

6666....2222....4444....    CCCComparomparomparomparison betweenison betweenison betweenison between ART  ART  ART  ART and and and and ARTARTARTART----SBSBSBSB    

 

To assess the effect of choosing different ART-SB algorithm parameters, we 

reconstructed both acquired and simulated data, for a range of relaxation parameters, 

( )0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1λ =  and a range of weighting parameters, 

( )0.01,0.05,0.1,0.2,0.3,0.4,0.5µ = .  

The stop criterion for ART and ART-SB was a change in the relative solution error 

norm lower than 0.1% from the previous iteration. 

6.2.4.1. Simulated data 

ART and ART-SB reconstructions were compared in terms of convergence, signal-

to-noise ratio (SNR), and image profiles. 

Convergence was assessed by visualizing the relative solution error norm against 

the number of iterations. The relative solution error norm (with respect to the target) was 

calculated as 

 
( ) 2

2

true
rel

true

f f
E f

f

−
=

, (6.10) 

where truef  is the target solution projected onto the reconstruction mesh. 

We compared the contrast of ART and ART-SB reconstructions using horizontal 

profiles drawn at the center of the image. The profiles were normalized by the average of 

highest voxel values in the corresponding reconstructions within a region of interest (2x2 

mm) around fluorescent target. 
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SNR was calculated as 

 2
10

2

20log
signal

SNR
noise

= . (6.11) 

6.2.4.2. Experimental phantom data 

For experimental data only an approximate estimate of the solution target can be 

estimated. For this reason, ART and ART-SB were only compared in terms of SNR and 

image profiles, as described above. 
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6666....3333.1. Selection of parameters.1. Selection of parameters.1. Selection of parameters.1. Selection of parameters    

 

6.3.1.1. Selection of relaxation parameter for ART 

Figure 6.1 shows the relative solution error norm versus the different λ ’s tested for 

simulated data with 1% Gaussian noise.  

 

Fig. 6.1.: Relative solution error norm of ART reconstruction for every different value of λ . 
Simulated data with 1% Gaussian noise. 
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All reconstructions converged approximately to the same relative solution error 

norm (< 0.05% maximum difference) but requiring a different number of iterations, 

ranging from 22 to 435. 

Figure 6.1 confirms that the role of the regularization parameter is now played by 

the number of iterations and it demonstrates that ART is robust in terms of solution error 

norm for a wide range of relaxation parameters. 

6.3.1.2. Selection of weighting and denoising parameters of ART-SB 

Once established that, the figure 6.2 shows the minimum solution error norm 

achieved with ART-SB reconstructions of simulated data with 1% additive normal noise, 

for different weighting parameters, µ  ( 2  and =0.9β µ λ= ). The relative solution error norm 

achieved by ART for the same relaxation parameter 0.9λ =  is represented by a horizontal 

dashed-line.  

 

Fig. 6.2.  Relative solution error norm of reconstruction of simulated data by ART-SB taking 
2β µ= , and varying the weighting parameters, µ, for a relaxation parameter 0.9λ = . The dashed-

line indicates the relative solution norm of ART with 0.9λ = . Results correspond to simulated data 
with 1% additive normal noise. 

 

Figure 6.2 shows a noticeable improvement of relative solution error norm of ART-

SB over ART, even at low noise level (1%). Furthermore, figure 6.2 illustrates that there is 

a value of µ  above which the relative solution error norm stagnates ( 2µ ≥  in the figure 

6.2).  

After splitting the problem in equation 6.7,  
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we can see that the choice of β  affects to D and f subproblems, while the choice of µ  

determines how much the image is regularized (f subproblem corresponding to equation 

6.8). Besides, in the D subproblem (corresponding to equation 6.9), the solution D is equal 

to ( )f b∇ +  after shrinking its vector magnitude by 1 / β  (equation 6.9); this effect is more 

dramatic when β  is small. Thus, once fixed 2β µ= , lower values of µ  lead to smoother 

reconstructions. 

 

6666....3.23.23.23.2. Comparison between ART and ART. Comparison between ART and ART. Comparison between ART and ART. Comparison between ART and ART----SBSBSBSB    

 

In figure 6.1, we demonstrated that all reconstructions converged approximately to 

the same relative solution error. However, as commented in section 6.2.1, ART using a low 

relaxation parameter approximates a weighted least square solution leading to over-

smoothed images. On the contrary, high relaxation parameters lead to high-resolution 

images with noise and artefacts.   

In ART-SB method, ART was used to fit the data while SB filtered the noise in the 

reconstructed image. In view of the above, we compared ART with ART-SB using two 

relaxation parameter values: 0.9λ = and 0.5λ = .  

 6.3.2.1. Simulated data 

• Convergence: 
 

The faster convergence of ART-SB compared with ART can be observed in a plot 

of the relative solution error norm versus iteration number, for simulated data (figure 6.3) 
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Fig. 6.3.  Relative solution error norm against iteration number to show the convergence of ART 
and ART-SB for two different relaxation parameter values (simulated data with 1% additive 

normal noise). 
 

Note that the mean CPU time for performing the SB denoising for each ART 

iteration (Intel®-Core™ 2 Quad CPU, 2.40GHz, 4 GB de RAM, Windows Vista) was 

0.021 seconds. Therefore, considering that we need about 120-160 iterations for the 

examples in figure 6.3, less than 4 seconds are necessary for SB denoising. 

 
• SNR: 
 

ART-SB led to consistently higher SNR than ART with simulated data (figure 6.4)  

 

Fig. 6.4.  SNR (dB) plotted against iteration number for ART and ART-SB with relaxation 
parameter 0.9λ = and denoising parameter 2β µ= , where 0.1µ =  (simulated data with different levels 

of additive Gaussian noise). 
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• Image reconstruction: 
 

The figure 6.5 shows a comparison of z-slices of ART reconstruction of simulated 

data with the lowest noise level tested (1%) versus the same z-slices of ART-SB 

reconstructions with different noise levels (1%, 3% , 5% and 10%). 

 

 

 

Fig. 6.5. Left: Finite element model corresponding to the simulated phantom. Right: 1 mm z-slices 
(y-x planes) of a) target solution. b) ART reconstruction (1% additive noise). c) ART-SB 

reconstruction (1% additive noise) with 0.3µ = . d) ART-SB reconstruction (3% additive noise) 

with 0.1µ = . e) ART-SB reconstruction (5% additive noise) with 0.1µ = . f) ART-SB reconstruction 

(10% additive noise) with 0.1µ = . In all of these cases, the relaxation parameter and the denoising 

parameter were 0.9λ =  and 2β µ= , respectively. 

 

Figure 6.5 illustrates that even the ART reconstruction for simulated data with the 

lowest noise level tested (1%) is worse than ART-SB reconstruction for simulated data 

with higher noise levels. 

 

• Image profiles: 
 

In the Y-profiles drawn over ART and ART-SB reconstructed images (figure 6.6) 

we can see that the ART-SB profiles are closer to the target than those obtained with ART. 
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Figure 6.6.  Y-profiles of central z-slice from ART and ART-SB reconstructions provided in 
previous figure. 

 

6.3.2.2. Experimental phantom data 

• SNR: 
 

Similarly to the simulated data case, the plot of SNR against iteration number for 

ART-SB and ART reconstructions shows a higher SNR for ART-SB. 

 

 
 

Fig. 6.7.  SNR (dB) plotted against iteration number of ART and ART-SB with relaxation 
parameter 0.9λ = and denoising parameter 2β µ= , where 0.5µ = . 
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• Image reconstruction: 
 

The figure 6.8 shows a comparison of z-slices from ART and ART-SB 

reconstructions of experimental data. We can observe that ART-SB improved the 

localization against ART that is accompanied by a loss of resolution along the z-axis. 

 

 
 

Fig. 6.8.  Left: Image of the experimental phantom used. Right: 1 mm z-slices (y-xplanes) of 
experimental data study. a) ART reconstruction. b) ART-SB reconstruction with denoising 

parameter 2β µ= , where 0.5µ = . In both ART and ART-SB the relaxation parameter was 0.9λ = . 

 
 

• Image profiles: 
 

Figure 6.9 shows Y-profiles over the ART and ART-SB reconstructions. The peak-

to-valley ratio of ART-SB reconstruction doubled that of ART (ART-SB: 19.326; ART: 

9.0427). 

 

Fig. 6.9.  Y-profiles of ART and ART-SB reconstructions 

 



72           Chapter 6. Use of Split Bregman denoising for iterative reconstruction    
6666....4444. Discussion and Conclusion. Discussion and Conclusion. Discussion and Conclusion. Discussion and Conclusionssss    

In this chapter we propose a novel iterative algorithm, ART-SB, which alternates a 

cost-efficient reconstruction method (ART) with a denoising step based on the 

minimization of TV using SB, which is also solved in a cost-efficient way. Although ART-

SB is a state-of-the-art “shrinkage methodology” (Correia et al. 2011; Douiri et al. 2007; 

Freiberger et al. 2010; Johnston et al. 2010; Pan et al. 2010; Sawatzky et al. 2008) it 

provides a novel approach to the solution of l1-regularized problems, minimizing TV by 

means of the SB method introduced by (Goldstein, and Osher 2009).  

In contrast to (Abascal et al. 2011; Behrooz et al. 2012), we used the SB denoising 

formulation, which is solved efficiently, without computing first and second derivatives of 

the TV functional. SB denoising using Gauss-Seidel and shrinkage has a relatively small 

memory footprint compared with second-order methods that require explicit 

representations of the Hessian matrix (Goldstein, and Osher 2009). In (Goldstein, and 

Osher 2009) it was shown that this way of solving SB denoising improves the speed of 

convergence compared with a gradient descent algorithm or dual formulation of the Rudin 

Osher Fatemi functional. Thus, ART-SB is a practical method for solving large dataset 

problems, because ART does not need to hold the system matrix in memory and our 

implementation of SB denoising does not require an explicit representation of the Hessian 

matrix. 

We compared ART-SB and ART in terms of convergence, SNR, and quality of 

image profiles for simulated data, and in terms of SNR and image profiles for experimental 

data. The results indicate that ART-SB enhanced the quality of reconstructions with lower 

noise and faster convergence than ART. Convergence of ART (figures 6.1 and 6.3) is fast 

during the first few iterations, after which it stagnates, in agreement with (Hansen 2010).  

ART-SB provided significantly improved localization and sharpened edges. ART 

shows more blurred reconstructions and a loss of resolution along the z-axis (figures 6.5 

and 6.8; y-profiles figures 6.6 and 6.9). Furthermore, ART deteriorates with increased 

noise levels (Hansen 2010), while ART-SB is more robust (see z-slices in figures 6.5 and 

6.8 and y-profiles in figures 6.6 and 6.9). These findings are in agreement with the 

conclusions of other works on two-step reconstruction algorithms for computed 

tomography and positron emission tomography (Johnston et al. 2010; Pan et al. 2010; 

Sawatzky et al. 2008) that, as we pointed out in 6.1, combined simulated algebraic 
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reconstruction technique or expectation maximisation method with TV-denoising solved 

by gradient based methods requiring high computational burden.  

In section 6.3.1.2 we described that lower values of 2β µ=  lead to smoother 

reconstructions. Since the shrinkage operators (only depending on β ) are evaluated at each 

iteration, the number of required iterations for convergence depends on the β  value 

(further details can be found in (Goldstein, and Osher 2009). Thus, lower values of 2β µ=  

increase the number of iterations before reaching convergence.  

A limitation of our study is that, although we assessed the effect of a range of λ  

and µ  parameters, we did not explore other values of β than 2β µ= , as suggested in 

(Goldstein, and Osher 2009). A further study about different choices of β  is warranted. 

Another limitation is that we tested the algorithm with simple phantom geometries 

only. It remains still unknown whether the improvements are maintained when dealing 

with real anatomical structures (smoother regions without sharp edges) or not. 

One possible future line would be to test whether 3D-SB denoising 

implementations could lead to even better results.  

In conclusion, in this chapter we show that the combination of a cost-efficient linear 

iterative technique (ART) with a denoising method (anisotropic SB) is well suited for large 

datasets (such as those involved in DOT and fDOT) and significantly improves the 

reconstruction of phantom fDOT data.
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Compressed SensingCompressed SensingCompressed SensingCompressed Sensing in fDOT in fDOT in fDOT in fDOT    

    
Compressed Sensing (CS) is an increasingly popular technique due to its ability to 

speed up data acquisition in many modalities. As we pointed out in chapter 5, 

regularization methods based on the l1-norm and total variation (TV) have gained interest 

as a result of CS theory. 

However, most of the CS theory is devoted to undetermined problems and there are 

few contributions that apply it to ill-conditioned problems. In this chapter we present a CS 

method for reconstruction of the ill-posed problem of fluorescence diffuse optical 

tomography (fDOT), based on the analysis co-sparse representation model, where an 

analysis operator multiplies the image and the outcome is a sparse image. This method 

combines a Split Bregman algorithm to solve CS (CS-SB) problems with a theorem about 

the effect of ill-conditioning on l1 regularization, stating that l1 regularization problem 

depends on how the sparsity of the true solution and the singular values (SVs) of the 

forward matrix relate. Our method, SB-SVA restricts the solution reached at each CS-SB 

iteration to a determined space where the SVs of the forward matrix and the non-zero 

values of the solution in each iteration combine in a beneficial manner. In this way, SB-

SVA forces indirectly the well-conditioning of the forward matrix while designing 

(learning) the analysis operator and reconstructing the image. We tested the method with 

fDOT simulated and experimental data, and found beneficial improvement with respect to 

the results of standard CS-SB algorithm without the restriction cited above.   
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This chapter is organized as follows: we first introduce mathematical basics of CS 

applied to undetermined systems in section 7.1; afterwards, in section 7.2, we present a 

short review on CS applied to the ill-posed problem of fDOT, highlighting the incoherence 

of fDOT forward matrix itself. Finally, we present a novel CS approach for fDOT, named 

Split Bregman-Singular Value Analysis (SB-SVA) method in section 7.3 and we show the 

results in section 7.4. To close, section 7.5 presents the discussion and conclusions.  

 

7777.1. .1. .1. .1. Mathematical Mathematical Mathematical Mathematical basicsbasicsbasicsbasics    

If we consider an image vector nx∈ℝ , a measurement vector mb∈ℝ  and a matrix 

mxnA∈ℝ  that relates x  and b  in a linear way, b Ax= , being m n≤ . 

The Sparse Synthesis Model 

 2
2 1

,  b Az z z Dxλ− + = ,  (7.1) 

states that this signal could be described as x Dz= , where nxpD∈ℝ  is a redundant 

dictionary ( p n≥ ), and pz∈ℝ a sparse representation of the signal. The model assumes that 

any image could be described as a linear combination of few columns from the dictionary 

D. As its name suggests, the synthesis model describes a way to synthesize the image. In 

this case, we expect the number of non-zeros in z to be smaller than p. The non-zero entries 

of z is named support of x. 

The Co-sparse Analysis Model  

 
2
2 1

b Ax Txλ− +
 , (7.2) 

states that the analysed vector Tx  is expected to be sparse, where txnT ∈ℝ  is a possible 

redundant analysis operator ( t n≥ ).   
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In this case, we consider an image x that minimizes 
1

Tx . Here, we care about the 

zeros of Tx  (also named co-support of x) (Candes et al. 2011; Elad, Milanfar, and 

Rubinstein 2007; Nam et al. 2013; Theodoridis et al. 2012).  

 

7.1.1. S7.1.1. S7.1.1. S7.1.1. Sparse sparse sparse sparse synthesis modelynthesis modelynthesis modelynthesis model    

 

The uniqueness of the synthesis model solution is commonly verified by studying 

the spark of system matrix (Donoho, and Tanner 2009), the mutual coherence (Mallat, and 

Zhang 1993) or the Restricted Isometry Property (RIP) condition (Candes, and Romberg 

2005). We will now introduce these concepts. 

In this section, for the sake of simplicity, mxnA∈ℝ will be termed the sensing matrix 

with m n≤  and nx∈ℝ  itself sparse (i.e. D=I). Note that, if nx∈ℝ  is sparsified using a 

dictionary D , then AD  is the sensing matrix. 

7.1.1.1. The spark of a matrix 

The ( )spark A  is defined as the smallest number of linear dependent columns. Note 

that the spark can only be obtained with a combinatorial search of all possible 

combinations of the columns of the respective matrix. This means that, when the matrix is 

large, calculating the spark can be expensive in terms of computational burden. 

If a linear system of equations Ax b=  has a solution that satisfies 
0

1
( )

2
x spark A<  

then this is the sparsest possible solution. This is, necessarily, the unique solution of l0-

minimizer (Donoho, and Elad 2003; Gribonval, and Nielsen 2003). 

 

7.1.1.2. The mutual coherence 

The mutual coherence of a matrix A  is defined by 

 
( )

1
max

T
i j

i j n i j

A A
A

A A
µ

≤ < ≤
=

,  (7.3) 

where iA , 1,2,...,i n=  denotes the columns of A .   
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Normalized mutual coherence is bounded, 0 1µ≤ ≤ . It provides a measure of the 

worst similarity between the matrix columns. Note that the sensing matrix A  relates to the 

unknown vector x  and the measurement vector b ; i.e., b  is the result of a combination of 

the columns of A , each one weighted by a different component of x . Then, if the columns 

of A  are independent as much as possible,  the information regarding each component of x  

is contributed by a different direction making its recovery easier (Theodoridis et al. 2012). 

In conclusion, the columns of A  should be as orthogonal as possible.  

Mutual coherence is also a powerful tool to find the optimal dictionaries, based on 

the knowledge that sensing matrices need to have the smallest possible mutual coherence. 

A different way to understand mutual coherence is by considering the Gram matrix, 

TG A A= , given that the off-diagonal entries in G  are the inner products that appear in 

equation 7.3 (Elad 2007).  

 

7.1.1.3. l0 and l1 -minimizer solutions 

The concept of mutual coherence contributes to find a correspondence between l0 

and l1-minimizer solutions. Given Ax b= , if a solution exists and satisfies 

 
( )0

1 1
1

2
x

Aµ

 
< +  

 
,  (7.4) 

then this is the unique solution of both the l0 and l1-minimizers (Donoho, and Elad 2003; 

Gribonval, and Nielsen 2003).  

 

7.1.1.4. The Restricted Isometry Property (RIP)  

The isometry constant kδ  of matrix A  for each integer is defined as the smallest 

number such that 

 ( ) ( )2 2 2
2 2 2

1 1k kx Ax xδ δ− ≤ ≤ +  (7.5) 

holds true for all k-sparse vectors x .  
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A matrix obeys RIP of order k if kδ  is not close to one. As we remarked in 

subsection 7.1.1.2, the columns of A  should be as orthogonal as possible. Note that, if kδ  is 

closed to zero, the subsets of k columns of A  are orthonormal. 

When RIP holds the Euclidian norm of x  is approximately preserved after 

projecting onto the rows of A . That is, it preserves Euclidean distances between k–sparse 

vectors (Theodoridis et al. 2012). 

As in the case of mutual coherence, RIP also relates to the Gram matrix, and more 

exactly to its condition number (CN). In (Candes, and Romberg 2005) it was stressed that 

if rA  denotes the matrix resulting of considering only r columns of A , then RIP is 

equivalent to requiring that the SVs of respective Gram matrix, T
r r rG A A= , are within the 

interval [ ]1 ,1k kδ δ− + . If A is ill-conditioned, the subspace taking the r columns of A  will 

have very likely zero or close to zero SVs. Then, well-conditioning A , removing the zero 

or close to zero SVs, is desirable. 

 

7.1.2. Co7.1.2. Co7.1.2. Co7.1.2. Co----sparse analysis modelsparse analysis modelsparse analysis modelsparse analysis model    

 

Note that the analysis model in equation 7.2 can also be written as 

 
0

Ab
x Mx

TΛ

  
= =  

   
 (7.6) 

where Λ denotes the co-support of x. 

To verify the uniqueness of the analysis model solution,  mxnA∈ℝ  and txnT ∈ℝ  must 

be mutually independent (Nam et al. 2013). Furthermore, it can be shown that when the co-

support ( Λ ) is known, the null space of M must to be 0 to be able to uniquely identify x. 

That is,  

 ( ) ( ) ( ) ( ) { }0TKer T Ker A Range T Ker A
⊥

Λ Λ∩ = ∩ =   (7.7) 

Giryes et al. (Giryes et al. 2011) redefined the RIP condition for the analysis model 

(equation 7.5). The only difference with the RIP condition for the sparse synthesis is that x 
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is k-sparse in D in the synthesis model while x is l-cosparse with respect to T in the analysis 

model. 

Besides, the quality of the reconstruction for the different methods based on 

analysis model highly depends on the right choice of suitable operator, and  different works 

have focused on developing methods to learn the analysis operators (Hawe, Kleinsteuber 

and Diepold 2013; Nam et al. 2013; Rubinstein, Peleg and Elad 2011; Yaghoobi et al. 

2013).  

 

7.2. CS applied to the fDOT ill7.2. CS applied to the fDOT ill7.2. CS applied to the fDOT ill7.2. CS applied to the fDOT ill----posed problem posed problem posed problem posed problem     

7.2.1. Brief7.2.1. Brief7.2.1. Brief7.2.1. Brief review review review review    

 

Although most of the CS theory is devoted to undetermined systems (section 7.1), a 

few authors applied it to highly ill-posed problems. 

If the selected submatrices of the sensing matrix are highly ill-posed, there are SVs 

close (or equal) to zero, kδ  becomes arbitrarily close to one and the RIP property is 

violated. Something similar happens with mutual coherence, which is linked to the CN of 

submatrices of the sensing matrix. Since RIP and mutual coherence are sufficient but not 

necessary conditions, their violation does not mean that we cannot obtain the solution. 

When dealing with undetermined systems, many studies make use of RIP and 

mutual coherence to create appropriated sensing matrices (Elad 2007; Theodoridis et al. 

2012). However, this cannot be extrapolated when considering an ill-posed problem 

without first well-conditioning it, that is, eliminating near-zero SVs.  

In a recent paper (van den Doel et al. 2012), the authors formulated a theorem 

stating that the efficiency of an l1 regularization problem depends on how the sparsity of 

the true solution and the SVs of the forward matrix relate. This is particularly important 

when considering ill-posed problems, on which near-zero SVs are involved. 

Some authors have applied compressing techniques to fDOT, DOT and fDOT X-

ray computed tomography (fDOT-CT). We can divide these works into two categories. The 

first one includes works based on Fourier or wavelet transformations to sparsify 

measurements, Born-normalized measurements or the reconstruction images (Ducros et al. 

2012; Ripoll 2010; Süzen, Giannoula, and Durduran 2010). The second category groups 
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works based on preconditioning the forward matrix or submatrices (Cao et al. 2012; Jin et 

al. 2012; Mohajerani and Ntziachristos 2013) by using the measurements or image 

redundancy. 

Regarding the first group, Ripoll (Ripoll 2010) presented an approach that 

combines Fourier and real space functions to encode the CCD measurements of DOT. 

Süzen et al. (Süzen et al. 2010) compared CS using the discrete Fourier transform basis 

function with SVD reconstruction of DOT simulated data. They concluded that CS 

improves significantly in terms of contrast, contrast-to-noise ratio, normalized root mean 

square error and localization error. However, as they pointed out, measurement noise was 

not considered in their simulations, nor was a study of optimal sparse expansion of the 

investigated signal. Ducros et al. (Ducros et al. 2012) presented an approach consisting of 

illuminating the medium with only a few wavelet patterns and compressing the acquired 

images by means of a wavelet transform, thus reducing acquisition and reconstruction 

times without sacrificing the reconstruction quality. They investigated the compression 

ability of different wavelets for the acquired fluorescence images and concluded that 

Battle-Lemarie functions achieve good compression of fluorescent images with the least 

degradation, as compared to other bases (Haar, Daubechies, Coiflet, Symlets). 

Regarding the second group of techniques, Jin et al. (Jin et al. 2012), focused their 

research on reducing the coherence of the fDOT forward matrix, based on the fact that 

sparse signals can be recovered exactly from an undetermined system when the underlying 

forward matrix is incoherent (Elad 2007). Thus, indirectly, they were well-conditioning the 

forward matrix. Cao et al. (Cao et al. 2012) considered the correlations of source-detector 

maps from the same projection and used principal component analysis (PCA) to reduce the 

dimension of the weight matrix by discarding the less relevant components. Mohajerani 

and Ntziachristos (Mohajerani and Ntziachristos, 2013) made use of intersource signal 

dependencies to reduce the size of the fDOT-XCT reconstruction, that is, using PCA they 

removed the correlation among optical measurements obtained at different sources between 

adjacent projection angles for 360º rotation geometry of fDOT-XCT. 

Nevertheless, the methods presented in this second group are based on the 

preconditioning (well-conditioning) of the forward matrix.  
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7.2.2. Incoherence of the fDOT forward matrix 7.2.2. Incoherence of the fDOT forward matrix 7.2.2. Incoherence of the fDOT forward matrix 7.2.2. Incoherence of the fDOT forward matrix     

 

Given that most of the fluorophore tracers are designed to label specific tissues, the 

fluorophore concentration itself is often sparse in the imaging domain. Keeping this in 

mind, we evaluated the cumulative coherence of the forward matrix of fDOT simulated 

data, to show that is actually incoherent.  

Simulations were done using TOAST (section 1.3.3), keeping constant the mesh 

volume of interest (VOI) (1.4x1.4x1cm), the detectors FOV (0.8x0.8cm) and the sources 

FOV (0.8x0.8cm) as shown in figure 7.1. 

 

 

Fig. 7.1.  Mesh volume of interest. Left: Sources distribution (case 8x8 sources). Right: Detectors 
distribution (case 8x8 detectors). Note that measurements in the image are given in mm. 

 
  We calculated the different forward matrices, W , for each distribution of sources 

and detectors as explained in section 1.3.3. After that, we considered the Gram matrix 

TG W W= after normalizing its columns. The off-diagonal entries in G are the inner products 

of equation 7.3. The mutual coherence was calculated by taking the off-diagonal entries 

ijg with the largest magnitude. 

 Due to the high computational complexity of this calculation, similarly to (Süzen et 

al. 2010) the normalized cumulative coherence was calculated for an order of up to 

max 18k = . That is, the number of columns of the forward matrix W (number of voxels) was 

chosen to be N=3x3x2. 

 Figure 7.2 shows the normalized cumulative coherence against scaled k-sparsity 

order (that is, k/N, where k=2,3,…,17 and N=18), using different distribution of source-
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detector pairs: from 6x6 sources and 6x6 detectors (0.45 sources/mm2 and 0.45 

detectors/mm2) to 12x12 sources and 12x12 detectors (0.1 sources/mm2 and 0.1 

detectors/mm2). 

 

 

Fig. 7.2.  Normalized cumulative coherence of fDOT forward matrix against several scaled orders 
(k/N, k=2,3,…,17, N=18) using different combinations of sources-detector pairs. N is the number 

of image voxels. 
 

 

Figure 7.3 shows the normalized cumulative coherence against scaled k-sparsity 

order (k/N), using different distributions of source-detectors. 

  

Fig.  7.3. Normalized cumulative coherence of fDOT forward matrix for several scaled orders (i.e. 
k/N, k=2,…,17, N=18) using different combinations of source-detectors. N is the number of image 

voxels. 
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Both plots show that, independently of the number of sources/detectors, the 

increasing trend of the normalized cumulative coherence is always slow, supporting the 

hypothesis that the fDOT forward matrix is itself incoherent. Thus, finding a basis 

incoherent with the fDOT forward matrix can be a difficult task. 

 

7.3. A novel approach to 7.3. A novel approach to 7.3. A novel approach to 7.3. A novel approach to CS for fDOT: the SBCS for fDOT: the SBCS for fDOT: the SBCS for fDOT: the SB----SVA methodSVA methodSVA methodSVA method    

The goal of this section is to present a novel approach, SB-SVA, that solves the analysis-

based co-sparse representation model of fDOT reconstruction problem. The novelty of this 

approach is that it designs (learns) the analysis operator (different to identity matrix) while 

indirectly forcing the well-conditioninig of the forward matrix.   

 

7.3.1. 7.3.1. 7.3.1. 7.3.1. The Split Bregman (SB) approach to CSThe Split Bregman (SB) approach to CSThe Split Bregman (SB) approach to CSThe Split Bregman (SB) approach to CS    

 

As we mentioned in chapter 5, it has been shown that the SB method for denoising 

and CS is computationally efficient (Goldstein and Osher 2009), because the SB 

formulation leads to a problem that can be solved using Gauss-Seidel and Fourier 

transforms methods. 

In this work, we use SB to solve the co-sparse analysis model problem  

 

 22

2 2,
min

2 2 t
f t
t Wf d t Tf b

µ λ
+ − + − −   (7.8) 

where W is the fDOT forward matrix, f is a vector representing the concentration of 

fluorophore at each voxel, d is a vector containing the acquired measurements, T represents 

an analysis operator that provides a sparse representation for f, Tf t→  and tb  represents the 

Bregman iteration that imposes the respective constraint (Goldstein 2009). 

In our case T was chosen as Battle-Lemarie wavelet transform, based on the results 

of (Ducros et al. 2012). The Battle-Lemarie is a spline wavelet transform; it is symmetric, 

orthonormal and smooth. 
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7.3.2. 7.3.2. 7.3.2. 7.3.2. The SBThe SBThe SBThe SB----SVA methodSVA methodSVA methodSVA method    

 

The SB-SVA method is based on the combination of an SB algorithm to solve the 

co-sparse analysis model problem presented in equation (1) with a theorem about the effect 

of ill-conditioning on l1 regularization, presented in (van den Doel et al. 2012). This 

theorem states that in the highly ill-conditioned case and in presence of significant noise, as 

it is the case of fDOT problems, no small SVs of W can be tolerated in the set 0trueTf ≠ , 

being truef  the true solution. 

Thus, at each SB iteration we update the co-support in two steps: 

1) We find the location of the largest entries (in absolute value) of 0itTf =  and regard them 

as not belonging in the co-support, similarly to the Greedy Analysis Pursuit algorithm 

presented in (Nam et al. 2013). 

 
:  max ,  where  and  a certain threshold

\

it it
i j

j

it it it

L i th Tf th

L

α α α
  = ≥ = 
  

Λ = Λ

 (7.9) 

2) Once selected the co-support itΛ , with the goal to well-conditioning our inverse problem, 

we restrict the solution, it
f , to the subspace where the “sparsity of itTf  and SVs of 

W combine in a beneficial manner”, not allowing small SVs of W in the set 0itTf ≠ . 

Therefore, being Ω  the image space and KerNzΩ  the subset of the null-space of 

W ( )( )Ker W corresponding to the complementary set of the co-support of itf  (set 0itTf ≠  or 

( )it
TRange T

⊥

Λ
), we restricted the transformation T  to the space \ KerNzΩ Ω  as follows: 

 
  if  \

0  if   

it
j j j j KerNz

it
j j j KerNz

T T T f

T T f

 = ∈ Ω Ω


= ∈ Ω
,  (7.10) 

where the subscript 1,...,j n=  indicates voxel indices.  

Note that, indirectly, we impose the uniqueness condition introduced in equation 

(7.7) taking advantage from the fact that in every iteration we know the co-support of it
f .  
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When T  is a wavelet transformation, like in our case, we scale samples of wavelet 

transforms following a geometric sequence of ratio two. We have to take this into account 

when restricting the transformation T  to the space \ KerNzΩ Ω . Note that for these cases we 

are making a slight abuse of notation defining the spaces. 

We tested our algorithm using the simulated and experimental fDOT data presented 

in sections 6.2.3. 

 

7.4. Results 7.4. Results 7.4. Results 7.4. Results     

Figures 7.3 and 7.4 show z-slices of simulated and experimental data reconstructed 

with SB and SB-SVA using a Battle-Lemarie wavelet transform. 

 

 

Fig 7.3. (a) Target, (b) Reconstruction of no-noise data by CS-SB, (c) Reconstruction of no-noise 
data by SB-SVA, (d) Reconstruction of 3% noise data by SB-SVA, (e) Reconstruction of 5% noise 

data by SB-SVA. (f) Reconstruction of 10% noise data by SB-SVA. All of them using Battle-
Lemarie wavelet transform as initial transformation and for simulated data. 
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Fig 7.4.Reconstructions of experimental data using Battle-Lemarie wavelet transform: (a) by CS-
SB, (b) by SB-SVA. 

 
 The improvement of SB-SVA versus SB is noticeable for both simulated and 

experimental phantom data. Furthermore, the solution given by SB-SVA is sparser than the 

solution given by SB. For example, in the case of no-noise simulated data, the resulting 

SB-SVA image (given its restriction to \ KerNzΩ Ω  space) is 11.5% sparser than the SB 

solution. 

In order to compare CS-SB with SB-SVA methods, we also obtained y-profiles. In 

simulated data, profiles were normalized by the average of highest voxel values in the 

corresponding reconstructions within a region of interest around fluorescent target. 

 

 

Fig. 7.5:  y-profiles of reconstructions of simulated data using Battle-Lemarie wavelet transform. 
Target (red) and CS-SB (green) for different level of noise (blue). 
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Fig. 7.6:  y-profiles of reconstructions of experimental data using Battle-Lemarie wavelet 
transform. Target (red) and CS-SB (blue). 

 
Profiles of both simulated and experimental phantom data showed a significant 

improvement provided by SB-SVA versus CS-SB. Furthermore, considering profiles of 

simulated data, no noticeable differences appear between different noise values. 

 

7.5. Discussion and Conclusions 7.5. Discussion and Conclusions 7.5. Discussion and Conclusions 7.5. Discussion and Conclusions     

In this chapter, we propose a novel CS reconstruction method, named SB-SVA, for 

ill-posed fDOT problems that makes use of a co-sparse representation model. The method 

is based on the CS-SB algorithm and a theorem about the effect of ill-conditioning on l1 

regularization (van den Doel et al. 2012). At each iteration of CS-SB, we restrict the 

solution to a subspace where the SVs of forward matrix and the sparsity of the iterative 

solution combine in a beneficial way. 

The redundant analysis operator chosen was the Battle-Lemarie wavelet transform. 

Note that the wavelet coefficients are sparse, however is well-known that low-pass wavelet 

coefficients of an image (“scaling” coefficients at the lowest resolution scale) are often not 

sparse. The analysis model does not depend on low-pass coefficients and is therefore not 

adversely affected when they are not regularized, in contrast to the synthesis model. Thus, 

the choice of analysis or synthesis model can make substantial differences in the results, in 

accordance with (Selenick and Figuereido  2009). 
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Regarding our algorithm, SB-SVA improved reconstruction in terms of image 

quality and imaging profiles compared with CS-SB (figures 7.3-7.6), even using fewer 

voxels than SB. 

An important fact to point out is that SB-SVA is, indirectly, well-conditioning the 

sensing matrix while finding the solution due to our restriction to \ KerNzΩ Ω  space of the 

solution in each iteration. Note that this restriction is, somehow, eliminating some of the 

columns of analysis operator T  corresponding to ( )Ker W . Thus, indirectly: 

- It detects the desired co-support at each SB iteration. This step is similar to the 

idea of greedy algorithms for co-sparse analysis models, such as the Greedy analysis 

pursuit algorithm (GAP) presented in (Nam et al. 2013) that aims to detect the 

elements outside the set Λ  (detecting the desired co-support).  

-  It reduces the co-support through the iterations, reducing the similarity between 

the columns of T and W, that is, the mutual coherence (section 7.1.1.2). 

- It well-conditions the forward matrix (reducing its CN). Besides, the compression 

of the forward matrix is achieved by maintaining only a few components with large 

SVs. 

- It performs a designing/learning of the analysis operator, T. 

Note that if we change the transformation T in SB-SVA, the singular value 

decomposition of the forward matrix does not require recalculation.  

SB-SVA is a simple and efficient algorithm since it is based on SB that has been 

shown its effectiveness for solving l1-based regularization problems making it possible to 

split the minimization of l1 and l2 functionals. 

Although SB-SVA provides significant improvements in terms of image quality for 

ill-posed fDOT reconstruction problem, there are some limitations that need further study. 

The reconstruction along the z-dimension, is not optimal with either SB nor SB-SVA. This 

poor localization is due to the low resolution of fDOT in the axis perpendicular to the 

plates (z). Besides, the number of wavelet coefficient to keep in order to select the co-

support, was heuristically chosen.  An automated and optimized approach would be 

desirable. 

To conclude, dealing with ill-conditioned problems, as fDOT problem, SB-SVA 

improves SB reconstructions in terms of image quality while it provides simultaneous well-

conditioning of the forward matrix and designs the analysis operator. 
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Chapter 8Chapter 8Chapter 8Chapter 8    

Conclusions Conclusions Conclusions Conclusions     
 

 

 

The main goal of this PhD-thesis was to make use of state-of-the-art inverse 

problem techniques to develop novel reconstruction methods for solving the fluorescence 

diffuse optical tomography (fDOT) problem. 

The first part of this thesis addressed the optimization of experimental setups to 

reduce the dataset size, by using l2–based regularization techniques. The second part, based 

on the success of l1 regularization techniques for denoising and image reconstruction, was 

devoted to advanced problem regularization using l1–based techniques, to finish 

introducing compressed sensing (CS) theory, which enabled further reduction of the 

acquired dataset size. 

To summarize, the main conclusions of this work are: 

1) Regarding l2-based regularization techniques, a U-curve-based method was 

utilized for the first time to select the regularization parameter in l2 regularization fDOT 

reconstruction. Since the performance of automatic methods for the selection of this 

parameter depends on the particular inverse problem, the U-curve method was studied in 

depth in terms of fulfilment of the Picard’s condition, image resolution and image noise. 

Results showed that the U-curve approach may constitute a good alternative in cases where 

the well-known L-curve method yields unsatisfactory results. Furthermore, the U-curve 

method provides an interval for the optimal regularization parameter. This fact increases 

the computational efficiency of the method in selecting the regularization parameter, and 
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increases its interest for the study of image performance by singular value analysis (SVA), 

particularly when dealing with large datasets, as it is the case of fDOT. 

2) We proposed a procedure for the selection of optimum acquisition parameters for 

any specific fDOT experiment, based on the SVA of the fDOT forward matrix for different 

distributions of the acquisition parameters (mesh points, density of sources and density of 

detectors). We found that any increase in the number of sources and detectors at distances 

shorter than the average mean free path leads to slight improvements in image quality 

while increasing computational burden. Besides, regarding the number of mesh elements 

and their distribution, we showed for the first time in fDOT that large meshes can be 

reduced in the z direction without any loss in imaging performance but decreasing 

computational time and memory requirements. 

3) Regarding l1-based regularization techniques, we presented a novel iterative 

algorithm for image reconstruction in diffusive media, with application to a wide range of 

areas, particularly in-vivo imaging. The approach, named ART-SB, alternates the ART 

method with a denoising step based on the minimization of TV, solved by using the Split-

Bregman (SB) method. SB has been implemented in a cost-efficient way to handle large 

datasets. ART-SB provides better results than conventional ART and it is computationally 

more efficient than previous TV-based reconstruction algorithms and most splitting 

methodologies. This methodology is particularly well suited for handling large datasets in 

fDOT biomedical imaging.   

4) Regarding the Compressed Sensing (CS) techniques, we proposed a novel 

approach for fDOT reconstruction, named Split Bregman-Singular Value Analysis (SB-

SVA) method, that takes advantage of the existing SB for CS (CS-SB) algorithm, 

restricting the solution given in each CS-SB iteration to a space where the singular values 

of forward matrix and the sparsity structure of the solution combine in beneficial manner. 

Thus, SB-SVA is, indirectly, well-conditioning the forward matrix (reducing its CN) while 

designing/learning the analysis operator and finding the solution. Dealing with ill-

conditioned fDOT reconstruction problem, we demonstrate the existence of improvement 

as compared to CS-SB algorithm in terms of image performance, and number of voxels 

required. 
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