
A Framework for Effective Placement of Virtual Machine Replicas for Highly

Available Performance-sensitive Cloud-based Applications

Kyoungho An, Faruk Caglar, Shashank Shekhar, Aniruddha Gokhale
Department of Electrical Engineering and Computer Science

Vanderbilt University

Nashville, TN 37235, USA

Email: {kyoungho.an, faruk.caglar, shashank.shekhar, a.gokhale}@vanderbilt.edu

Abstract—Applications are increasingly being deployed in
the Cloud due to benefits stemming from economy of scale,
scalability, flexibility and utility-based pricing model. Although
most cloud-based applications have hitherto been enterprise-
style, there is a new trend towards hosting performance-
sensitive applications in the cloud that demand both high
availability and good response times. In the current state-
of-the-art in cloud computing research, there does not exist
solutions that provide both high availability and acceptable
response times to these applications in a way that also optimizes
resource consumption in data centers, which is a key consid-
eration for cloud providers. This paper addresses this dual
challenge by presenting a design of a fault-tolerant framework
for virtualized data centers that makes two important contri-
butions. First, it describes an architecture of a fault-tolerance
framework that can be used to automatically deploy replicas
of virtual machines in data centers in a way that optimizes
resources while assures availability and responsiveness. Second,
it describes a specific formulation of a replica deployment
combinatorial optimization problem that can be plugged into
our strategizable deployment framework.

Keywords-fault-tolerance, cloud computing, framework,
availability and response times.

I. INTRODUCTION

Cloud computing is a large-scale distributed computing
paradigm based on the principles of utility computing that
offers a variety of resources such as CPU and storage,
systems software, and applications as services over the
Internet [1]. The primary driving force behind the success of
cloud computing is economy of scale. Traditionally although
the cloud has been used to support enterprise applications,
lately a class of performance-sensitive applications that
demand both high availability and good response times are
moving towards cloud-based hosting [2], [3].

Supporting performance-sensitive applications in the
cloud requires that the cloud infrastructure be able to meet
the response time, reliability and high availability require-
ments of these applications. A scrutiny of contemporary
solutions for cloud computing reveals that the algorithms
and mechanisms used to support applications in the cloud are
tailored to meet the performance and reliability requirements
of enterprise applications and not the performance-sensitive
applications. To address the more stringent quality of service

(QoS) requirements of these applications including good
response times and high availability, new algorithms and
techniques will need to be designed to manage the different
cloud platform entities, such as the service architecture, data
center network architecture, and virtualized resources.

Addressing the high availability and reliability concerns
of performance-sensitive applications will require redundant
virtual machines (VMs) and state synchronization among
replica VMs as well as migrations of VMs. Traditional
statically defined schemes of replication placement and
resource allocation will often not be applicable due to the
changing dynamics of a cloud environment. Thus, in this
paper we focus on a fault tolerance architecture in the
cloud geared to provide high availability and reliability
for performance-sensitive applications. Moreover, to assure
good response times to applications despite failures while
also optimally utilizing resources, we present an Integer
Linear Programming (ILP) formulation of a problem that
allocates VMs and their replicas to physical resources in
a data center that satisfies the QoS requirements of the
applications. This and many other VM replica allocation
algorithms can be designed and plugged into the framework
we are building.

The rest of this paper is organized as follows: Section II
describes relevant related work comparing it with our con-
tributions; Section III describes the system architecture that
provides high availability solutions to performance-sensitive
applications hosted in the cloud; Section IV presents the
ILP formulation; and Section V presents concluding remarks
alluding to future work.

II. RELATED WORK

This section presents related work and compares it with
our contributions. In particular, we organize the related work
along three dimensions as described below.

Autonomic Virtual Machine Placement: A related work
closest to ours appears in [4]. The authors present a pro-
totype of a VM placement system where an autonomic
controller dynamically manages the mapping of VMs onto
physical hosts according to policies specified by the user.
As in our case, they too suggest a system architecture

REACTION 2012 39



for autonomic virtual machine placement in accordance
with algorithms defined by users. However, our research
additionally considers dynamic allocation of VM replicas
with high-availability solutions to accomplish a fault-tolerant
cloud computing architecture. Therefore, our case takes a
different problem model.

Placement Algorithms: Lee et al. [5] investigate the VM
consolidation heuristics to discover the assumptions on how
virtual machines operate when the VMs reside in the same
host machine. Additionally, they explore how the dimensions
of resource information such as CPU, memory, and network
bandwidth is in effect to augment the benefits of VM
consolidation. The work in [6] proposes a modified Best Fit
Decreasing (BFD) algorithm as VM reallocation heuristics
for an efficient resource management. The evaluation in the
paper shows that the suggested heuristics minimize energy
consumption with providing high Quality of Service (QoS).
While our work may benefit from these prior works, we are
additionally concerned with placing replicas in a way that
after failover the applications will continue to obtain the
desired QoS.

High Availability Solutions: Our solution leverages the
continuous check-pointing based Remus [7] high availability
solution to achieve fault tolerance in cloud, which we have
explained later. However, there are several other solutions
available. VMware fault tolerance [8] is one of them which
runs primary and backup VMs in lock-step [9] using de-
terministic replay. This keeps both the VMs in sync but
it requires execution at both the VMs and needs network
connection of high quality.

Kemari [10] is another approach which takes advantage
of both lock-stepping and continuous check-pointing ap-
proaches. It synchronizes primary and secondary VMs just
before the primary VM has to send an event to devices such
as storage and networks. At this point, the primary VM
pauses and Kemari updates the state of secondary VM to
the current state of primary VM. Thus, VMs are synchro-
nized with less complexity compared to lock-stepping and
output latency of continuous check-pointing due to external
buffering mechanism is also avoided.

Another important work on high availability is Hy-
draVM [11]. It is storage based, memory efficient high
availability solution which does not need a passive memory
reservation for backups. It uses incremental check-pointing
like Remus, but it maintains a complete recent image of VM
in shared storage instead of memory replication. Thus, it re-
duces hardware costs for providing high availability support
and provides greater flexibility as recovery can happen on
any physical host having access to shared storage.

III. SYSTEM ARCHITECTURE FOR DELIVERING HIGH

AVAILABILITY AND RESPONSE TIMES

This section presents our high availability system archi-
tecture to support performance-sensitive applications in the

cloud data centers. We show how the architecture supports a
pluggable VM replica allocation mechanism that can be used
to utilize resources optimally while providing good response
times to applications despite failures.

A. Overview of Remus and ACE

We briefly cover Remus and ACE, which are two software
architectures we leverage in our work.

Remus [7] is a software system that provides OS- and
application-agnostic high availability on commodity hard-
ware. The choice of Remus is based on the fact that it
provides seamless failure recovery and does not require
lock step-based whole-system replication. The use of spec-
ulative execution [7] in the Remus approach ensures that
the performance degradation due to replication is kept to
a minimum. Speculative execution decouples the execu-
tion of the application from the synchronization issues.
Since Remus provides protection against single host fail-
stop failures only, if both the primary and backup hosts
fail concurrently, the failure recovery will not be seamless;
however, Remus ensures that the system’s data will be left
in a crash consistent state.

The ADAPTIVE Communication Environment
(ACE) [12] is an open-source object-oriented framework for
concurrent communication software. The ACE framework
supports the communication software tasks including event
demultiplexing and event handler dispatching, service
initialization, inter-process communication, shared memory
management, dynamic reconfiguration of distributed
services, and concurrent execution and synchronization. For
our work, we make use of the ACE Reactor framework [13]
for dispatching events, the ACE Service Configurator
framework for configuring software components, and
the ACE Common Data Representation (CDR) for
implementing the communication protocol between
remotely located software components.

B. System Architecture

The conceptual system design of our proposed system is
illustrated in Figure 1. The system of interest is the block
with blue dashed line, and comprises Local Fault Manager
(LFM) and Global Fault Manager (GFM) applications. The
inputs of the system to these manager entities are resource
information of physical hosts and VMs gathered directly
from a virtual machine hypervisor. CPU, memory, network,
storage, and processes are some of the resource information
used in our system. The LFM and GFM applications are
responsible for deploying VM replicas in data centers.

The LFM retrieves the resource information from a VM,
and passes that information periodically to the GFM. The
GFM employs a pluggable deployment algorithm framework
and a replication manager to decide where the replica of a
VM should reside. Replication manager is the core compo-
nent of the GFM and is responsible to run the deployment

REACTION 2012 40







Table I
NOTATION AND DEFINITION OF THE ILP FORMULATION

Notation Definition

xij Boolean value to determine the ith VM to
the jth physical host mapping

x′

ij Boolean value to determine the replication
of the ith VM to the jth physical host
mapping

yj Boolean value to determine usage of the
physical host j

ci CPU usage of the ith VM

c′i CPU usage of the ith VM’s replica

mi Memory usage of the ith VM

m′

i Memory usage of the ith VM’s replica

bi Network bandwidth usage of the ith VM

b′i Network bandwidth usage of the ith VM’s
replica

Cj CPU capacity of the jth physical host

Mj Memory capacity of the jth physical host

Bj Network bandwidth of the j th physical
host

We now present the ILP problem formulation with defined
constraints that need to be satisfied to find an optimal
allocation of VM replicas.

minimize

m∑

j=1

yi (1)

subject to

m∑

j=1

xij = 1 ∀i (2)

m∑

j=1

x′

ij = 1 ∀i (3)

n∑

i=1

cixij +
n∑

i=1

c′ix
′

ij ≤ Cjyj ∀j (4)

n∑

i=1

mixij +
n∑

i=1

m′

ix
′

ij ≤ Mjyj ∀j (5)

n∑

i=1

bixij +
n∑

i=1

b′ix
′

ij ≤ Bjyj ∀j (6)

n∑

i=1

xij +
n∑

i=1

x′

ij = 1 ∀j (7)

xij = {0, 1}, x′

ij = {0, 1}, yj = {0, 1} (8)

The objective function of the problem is to minimize
the number of physical hosts by satisfying the requested
resource requirements of VMs and their replicas. Constraints
(2) and (3) ensure every VM and VM’s replica is deployed
in a physical host. Constraints (4), (5), (6) guarantee a

total capacity of CPU, memory, and network bandwidth
of deployed VMs and VMs’ replicas are packed into an
assigned physical host, respectively. Constraint (7) checks
that a VM and its replica is not deployed in the same
physical host since the physical host may become a single
point of failure, which must be prevented.

V. CONCLUSION

As performance-sensitive applications move to the cloud,
it becomes important for cloud platforms to implement
algorithms that provide the QoS properties (e.g., timeliness,
high availability, reliability) of these applications. In turn
this implies providing algorithms and mechanisms for effec-
tive fault tolerance and assuring application response times
while simultaneously utilizing resources optimally. Thus, the
desired solutions require a combination of algorithms for
managing and deploying replicas of virtual machines on
which the performance-sensitive applications are deployed
in a way that optimally utilizes resources, and algorithms
that ensure timeliness and high availability requirements.

This paper presented our preliminary work in this area
describing a framework we are developing. The paper
presented the architectural details of a framework for a
fault-tolerant cloud computing infrastructure that can au-
tomatically deploy replicas of VMs according to flexible
algorithms defined by users. Finding an optimal placement
of VM replicas in data centers is an important problem
to be resolved because it determines the QoS delivered to
performance-sensitive applications running in the cloud. To
that end this paper presents an instance of an online VM
replica placement algorithm we have formulated as an ILP
problem.

The work presented in this paper is not sufficient to
address the vast number of challenges. For example, schedul-
ing of virtual machines (VMs) on the host operating system
(OS) and in turn scheduling of applications on the guest OS
of the VM in a way that assures application response times
is a key challenge that needs to be resolved. Scheduling
alone is not sufficient; the resource allocation problem must
be addressed wherein physical resources including CPU,
memory, disk and network must be allocated to the VMs
in a way that will ensure that application QoS properties
are satisfied. In doing so, traditional solutions used for hard
real-time systems based on over-provisioning are not feasible
because the cloud is an inherently shared infrastructure,
and operates on the utility computing model. Autoscaling
algorithms used in current cloud computing platforms must
be such that response times are not adversely impacted when
resources are scaled up or down, and applications must be
migrated.

The gamut of the problem space described above is
vast. Addressing these needs forms the bulk of our future
work. Our ongoing research is focusing on implementing the

REACTION 2012 43



proposed architecture, and providing a framework that en-
ables pluggability of VM placement algorithms. Additional
dimensions of future work involves validating our approach
on a variety of performance-sensitive applications hosted in
the cloud. To that end we are leveraging a private cloud
testbed we have deployed at our institution where we have
access to a variety of latest hardware and network switches,
as well as a variety of open-source cloud infrastructure
platforms, such as OpenStack and OpenNebula as well as
hypervisors, such as Xen and KVM.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation NSF SHF/CNS Award CNS 0915976 and NSF
CAREER CNS 0845789. Any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A View of Cloud Computing,” Communications
of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] A. Corradi, L. Foschini, J. Povedano-Molina, and J. Lopez-
Soler, “DDS-enabled Cloud Management Support for Fast
Task Offloading,” in IEEE Symposium on Computers and
Communications (ISCC ’12), Jul. 2012, pp. 67–74.

[3] T. M. Takai, “Cloud Computing Strategy,” Department
of Defense Office of the Chief Information
Officer, Tech. Rep., Jul. 2012. [Online]. Available:
http://www.defense.gov/news/DoDCloudComputingStrategy.pdf

[4] C. Hyser, B. McKee, R. Gardner, and B. Watson, “Auto-
nomic virtual machine placement in the data center,” Hewlett
Packard Laboratories, Tech. Rep. HPL-2007-189, 2007.

[5] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubrahmanian,
K. Talwar, L. Uyeda, and U. Wieder, “Validating heuristics for
virtual machines consolidation,” Microsoft Research, MSR-
TR-2011-9, 2011.

[6] A. Beloglazov and R. Buyya, “Energy efficient allocation of
virtual machines in cloud data centers,” in Cluster, Cloud and
Grid Computing (CCGrid), 2010 10th IEEE/ACM Interna-
tional Conference on. Ieee, 2010, pp. 577–578.

[7] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield, “Remus: High Availability via Asynchronous
Virtual Machine Replication,” in Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Im-
plementation. USENIX Association, 2008, pp. 161–174.

[8] D. J. Scales, M. Nelson, and G. Venkitachalam, “The design
of a practical system for fault-tolerant virtual machines,”
Operating Systems Review, vol. 44, no. 4, pp. 30–39, 2010.

[9] T. C. Bressoud and F. B. Schneider, “Hypervisor-Based Fault
Tolerance,” ACM Trans. Comput. Syst., vol. 14, no. 1, pp.
80–107, 1996.

[10] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: Vir-
tual machine synchronization for fault tolerance,” In USENIX
2008 Poster Session, 2008.

[11] K.-Y. Hou, M. Uysal, A. Merchant, K. G. Shin, and S. Sing-
hal, “Hydravm: Low-cost, transparent high availability for
virtual machines,” HP Laboratories, Tech. Rep., 2011.

[12] D. C. Schmidt, “The ADAPTIVE Communication Environ-
ment: An Object-Oriented Network Programming Toolkit for
Developing Communication Software,” in Proceedings of the
12

th Annual Sun Users Group Conference. San Jose, CA:
SUG, Dec. 1993, pp. 214–225.

[13] ——, “Reactor: An Object Behavioral Pattern for Concurrent
Event Demultiplexing and Event Handler Dispatching,” in
Pattern Languages of Program Design 1, J. O. Coplien and
D. C. Schmidt, Eds. Reading, Massachusetts: Addison-
Wesley, 1995, pp. 529–545.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[15] J. Berkey and P. Wang, “Two-dimensional finite bin-packing
algorithms,” Journal of the operational research society, pp.
423–429, 1987.

REACTION 2012 44


