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Abstract— Timely reconfiguration in distributed real-time 
systems is a complex problem with many sides to it ranging 
from system-wide concerns down to the intrinsic non-robust 
nature of the specific middleware software and the used 
programming techniques. In an completely open distributed 
system, it is not possible to achieve time-deterministic 
functional reconfiguration; the set of possible target 
configurations that the system can transition to could be 
extremely large threatening the temporal predictability of the 
reconfiguration process. Therefore, a set of bounds and 
limitations to the structure of systems and to their open nature 
need to be imposed. In this paper, we present the different 
sides of the problem of reconfiguration. We provide a solution 
for timely reconfiguration based on reducing the solution space 
of solutions of partially closed applications; we have enhanced 
the logic of a middleware for distributed soft real-time 
applications with the proposed technique. As a result, 
applications require a limited number of schedulability tests to 
search for the valid target configuration. We present some 
results on the actual reduction of the configuration space 
achieved by our middleware. 

Keywords-reconfiguration; distributed systems; middleware; 
real-time 

I.  INTRODUCTION 

Information and communication technologies are rapidly 
driving the road to an enhanced distributed computing 
paradigm where public, private, individual, and group's 
resources can all be put in common to provide enhanced 
processing power and an ultra connected sensation. In this 
way, the resources needed and utilized by application users 
are, in part, hosted remotely and provided from the outside. 
This is one of the principles of cloud computing that allows 
to make use of huge amounts of computational and storage 
resources [1] by means of reduced computing power devices 
as personal smart phones [2], tablets, etc. Users' applications 
and data are executed on virtualized resources that are 
potentially shared with large numbers of other users. At the 
same time, this brings in interesting green properties as 
energy savings that are of great importance to private 
organizations and to the society in general. 

The appearance of flexible software paradigms as Service 
Oriented Architectures (SOA) and efficient communications 
middleware technologies has been of paramount importance 
for enabling ultra-connected environments and providing a 

fertile soil for developing new applications with a flexible 
structure. Still, support for real-time in such domains has not 
progressed so fast as the technologies themselves. There are 
a number of reasons for this. Firstly, real-time research has 
not advanced at the same speed in the scheduling theory than 
in the achievement of predictable software-most parts of 
systems. The latter is still limited specially at the middleware 
level that is sometimes taken as a black box on top of which 
performance measurements are obtained. Middleware 
technologies have not completely eliminated the uncertainty 
points of such technology as the techniques for serialization, 
address resolution, transport and Internet level details, etc.  

Providing real-time guarantees in distributed computing 
environments is a hard problem; it becomes extremely hard 
if these are considered to be open systems with dynamic 
behavior. However, these are characteristics of the emerging 
applications; systems undergo changes that may require a 
modification of their structure to adequately process and 
react to events from the environment. In this work, we refer 
to such changes as reconfigurations, i.e., it is the process of 
transitioning from the current structure (or configuration) of 
the system to the target structure. 

Timely reconfiguration in distributed real-time systems is 
not a trivial task. For open distributed systems with lack of 
restrictions it is, in fact, not solvable with the available 
techniques. A set of bounds and limitations to their structure 
need to be imposed in order to reduce complexity by means 
of limiting the size of the space of solutions; that is the 
number of possible target configurations. In a previous work 
[3][4], we have identified a set of phases for the complete 
reconfiguration process which need to be time-bounded.  
However, we did not further elaborate on the different sides 
of the reconfiguration problems. In this paper, we provide a 
high-level view of these, and we show how to reduce the 
space of solutions by embedding extra logic in the 
middleware. We provide some validation results that have 
been obtained on the iLAND middleware reference 
implementation [3][5]. 

In this paper, section 2 introduces the problems of 
software reconfiguration. Section 3 presents the system 
model. Section 4 describes a middleware-centric approach 
for reconfiguration by illustrating the coordination scheme 
and the logic for reduction of the space of configurations, 
and it validates the presented concepts. Section 5 draws some 
conclusions.  
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II. EXPOSING THE PROBLEMS OF SOFTWARE 

RECONFIGURATION 

Supporting dynamic behavior in modern real-time 
applications opens up new possibilities for providing more 
powerful and added value to final users. Achieving dynamic 
behavior in real-time, however, challenges temporal 
predictability at the different architectural layers, from 
system-wide design down to the operating system and I/O 
drivers concerns. Still, in some application domains with soft 
real-time requirements (e.g., intelligent video surveillance) 
high utility levels can be achieved by imposing a set of 
bounds and limitations to the actual dynamics. 

We have investigated in different sides of software 
reconfiguration in distributed systems with real-time 
requirements. In this paper, we provide an approach to this 
problem based on single-threaded services that enable 
application dynamics. Following, a general description of the 
challenges and approaches to reconfiguration is provided. 

A. Challenges to reconfiguration 
  In most current distributed applications, achieving real-

time behavior is an evident added-value; some of these 
applications have different degrees of tolerance to deadline 
misses resulting only in a degraded but acceptable operation 
(e.g., real-time video processing in intelligent co-operative 
nodes). The latter are, then, referred to as soft real-time 
systems. Specially current distributed soft real-time systems 
must be designed in order to react to the occurrence of events 
that may require some adaptation (or reconfiguration) of the 
system in terms of: (i) application/functional structure where 
some parts of the functionality may be removed, replaced, or 
newly added, or (ii) internal processing configuration where 
the same functionality may continue to be provided but 
adaptation of the processing parameters is performed. An 
example of  a reconfiguration event is one generated by an 
unexpected movement in some high-security perimeter as a 
sign of a possible intrusion detected by a sensor; it may 
require that a different camera set be activated 
instantaneously and higher resolution images are captured 
and sent at the same time.  

Reconfiguration events can be triggered either internally, 
i.e., due to the self monitoring, or externally, i.e., requested 
by an outside entity, e.g., the user. Moreover, reconfiguration 
triggers may arrive: 
• Synchronously; at a specified time when the system is 

able to process it. 
• Asynchronously; with an unknown arrival pattern and 

modeled as a periodic task with a release time greater 
than zero. 

To adequately process reconfiguration events, real-time 
systems require that the transition either to a new functional 
structure or a new internal processing configuration is time 
bounded. There are different important threats to preserving 
temporal predictability in the presence of dynamic behavior 
such as software reconfiguration: 
• Dynamic versus static entity membership.  There are 

two types of systems: static size system and dynamic 
size systems. The former does not allow any 

modification of the system services at run-time, whereas 
the latter does allow the spontaneous appearance of new 
active software units in the system at any time.  

• Size of the space of solutions. Upon a reconfiguration 
event, the reconfiguration protocol logic decides on the 
target system configuration to make the transition to. 
There is a number of possible target configurations, 
named space of solutions, where the final target 
configuration is selected from. For a system of dynamic 
size, the space of solutions can be unlimited; so,  there is 
no feasible solution to derive a time-bounded 
reconfiguration strategy.  

• Network effects and schedulability. In a distributed 
system, the distributed coordination of the entities may 
incur in network delays. There are some solutions that 
bound this problem as the real-time traffic scheduling 
and the synchronous communications [6]. Also, there 
are some approaches as the worm whole [7]¡Error! No 
se encuentra el origen de la referencia. that allot space 
for both synchronous and asynchronous traffic. The 
existence of central entities for coordination also limits 
the unpredictability of the distributed real-time 
transition. 

• Virtual platforms. In virtualized execution 
environments, hardware is buried; some parts of the 
application code do not have direct access to the 
hardware. Temporal predictability is threatened, and it 
depends on the existence of real-time hypervisors that 
capture and transform the interrupts into software ones 
with appropriate priorization; this is a basic tool to 
prioritize the execution among different virtual 
machines and, in the end, applications. Such 
environments can be modeled by means of virtual 
resources and virtual processors. 

B. Approaches to reconfiguration  
Researchers tackle the problem of reconfigurations from 

different points of view and backgrounds. Mainly, we find: 
• Software-based versus system-level schemes. Software-

based approaches focus on the specific programming-
level details as the software units (e.g. objects, 
components, etc.) and their connectors and bindings to 
make a transition to a new state. On the other hand, 
system-level approaches take a more abstract view 
dealing with a formalized system model and the 
algorithms for selecting the target configurations that 
meet the given system-level properties (e.g., timeliness, 
quality values, or interface functionality). 

• Non real-time versus real-time schemes. Non real-time 
schemes work basically on efficient transition models, 
but timeliness is not a primary issue; sometimes, it is not 
considered at all. In real-time reconfiguration schemes, 
the system must be temporally predictable not only 
during normal operation but also during reconfiguration. 

• Centralized versus distributed schemes. A centralized 
perspective does not take into consideration the network 
effects in the coordination of the reconfiguration; 
whereas the distributed reconfiguration must account for 
the schedulability model of the network, the effect of 
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possible communication delays, and the distributed 
coordination problems. 

• Closed versus open schemes. In closed schemes, all 
possible system states and transitions are known a priori; 
therefore the reconfiguration is performed at a given 
time or synchronization point (i.e., when the system is in 
a safe state). This is typical of mode changes in hard 
real-time systems. In open reconfiguration schemes, all 
possible system states are not known; therefore, extra 
logic is needed to select the target system configuration 
or state. 

• Operational or task-level versus functional or system-
level. Operational deals with the low-level details of the 
run-time execution and schedulability. It deals with the 
compatibility of the execution model of tasks and the 
required adjustments to their parameters (e.g., change of 
activation period, priority, execution time refinements, 
etc.). System level strategies deal with the changes in 
the functional units from a system wide perspective and 
how to replace these units by searching for new options 
that keep the system run-time requirements. 

III. SYSTEM MODEL 

In our model, we consider that applications are extended 
functionality made by the aggregation of a set of services. 
Services are self contained software functionality pieces that 
are realized by concrete and specific service 
implementations. A service implementation is an active 
software entity that provides the functionality of the specific 
service. Service implementations communicate among 
themselves only via message exchanges.  

An application ai has different possible realizations, ai,j, 
{ai,j: j=1,2,...} or internal structure possibilities. In the same 
way, a service si can have different realizations {si,k: 
k=1,2,...}. Also, ai has a specific set of services Si={sj: 
j=1,2,...}. Therefore, a given application configuration ai,j is 
made of a set of service implementations ai,j={ sk,l: k=1,2,...; 
l=1,2,...}. 

As a result, a reconfiguration is the replacement, 
removal, or addition of one or more service implementations. 
Reconfiguration refers to a change in the structure of the 
active software units that are part of an application. In 
general, a service can contain a number of threads or tasks; 
in our model, we consider single-task services. A 
reconfigurable system or application ai is, therefore, a 
superset of n service implementations; in the end,  ai = { τ1, 
τ2, ..., τn }.   

A reconfiguration occurs when the system or application 
configuration ai,j is replaced by another one ai,k, such that the 
target service implementation set is not equal to the orginal 
Sk,l

init <>Sk,,l
target.  Here, we use the terms system and 

application interchangeably. 
In a real-time environment, reconfigurations have to be 

performed in a time bounded fashion. Therefore, the time 
(tre) taken to complete the transition from Sk,l

init to Sk,,l
target has 

to be bounded. 
In the specific case of a real-time distributed system, we 

must not neglect the effect of the operating system and 

middleware threads. In our model, we account for such a 
structure. Therefore, a system state is made of a set of 
threads that are scheduled by the resource manager of the 
operating system. The threads of the initial state are: 

• asi={τi: i=1,...,n}; where n is the number of service 
implementations that are running. This set is the 
"payload" of the system; these tasks are functionality 
providers for users. 

• osi={τj: i=1,...,m}; where m is the  number of 
operating system tasks that are providing the basic 
execution services and environment. This is the 
actual run-time services. 

• mwi={τz: z=1,...,p}; where p is the number of 
middleware tasks that are actively providing the 
communications logic and the extended functionality 
that is typically contained in it (e.g. thread pools). 

 
A service implementation si,k is specified by its 

functionality fi (all si,k have a common fi), it execution time 
Ci,k, its release period Ti in our real-time model (see [9] 
execution priority Pi,k, the response deadline Di,k, the quality 
value it offers Qi,k (an application-related utility value), and 
the ∆ is the dependency list with respect to other service 
implementations.  

Services are also considered to be activated by periodic 
messages, and they can be scheduled according to a 
utilization based model [10] that also accounts for the 
operating system and middleware tasks.  Figure 1 shows the 
expression for calculation of the utilization assuming that 
tasks are independent. This is in practice a limitation. 
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Fig. 1. Utilization based model 

All tasks in our model are contemplated in the 
schedulability analysis of the system. Therefore, the whole 
task set to be considered in the analysis is {asi, osi, mwi} with 
different priority level values that determine the pre-emption 
and execution mode privileges. Priority assignment also 
plays a major role; we use a simple priority assignment 
technique based on priority bands [11].  

IV. A MIDDLEWARE-BASED APPROACH 

One of the approaches to reconfiguring a distributed real-
time system consists of including extra logic in the 
middleware to undertake the needed operations for adapting 
to the environment, correcting execution time problems, or 
adjusting to a controlled and limited level of changing user 
requirements. 

Besides including the basic real-time communication 
facilities for timely message exchange among services (e.g. 
provided by DDS or RT-CORBA among others), 
middleware supporting real-time reconfiguration must 
include logic for: 
• Detection of reconfiguration events. The middleware 

should recognize what is a source of reconfiguration; 
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false positives should be avoided since it may cause 
instability. 

• Selection the target system configuration. Among all 
possible target configurations, the middleware should 
decide on a feasible one that meets the application 
requirements and it is schedulable.  

• Transitioning to the target system configuration, i.e, the 
sequence of steps to perform a run-time transition to the 
target configuration in bounded-time. 

iLAND follows a system-level reconfiguration scheme; 
transitions are not completely closed, and a controlled 
degree of freedom is left for application transitions.  

A. iLAND approach  

iLAND [3][5]  follows the classical principles of a 
layered middleware (see figure 2) with enhanced logic for 
supporting reconfiguration of distributed service-based real-
time applications. The Core Functionality Layer (CFL) 
contains most of the key added-value functionality 
(management of services, and time-deterministic 
composition and reconfiguration). Communications are 
timely with two different levels of temporal predictability: 
• Real-time communications are supported by defining 

the complete network protocol stack, i.e., time-triggered 
level 2 media access control networks that enable 
network traffic scheduling.  

• QoS-aware communications are supported through the 
usage of an underlying DDS communication backbone. 
In fact, any other asynchronous (publish-subscribe) or 
synchronous backbone middleware can be used since 
iLAND defines a common communication bridge for 
adjusting to communication paradigms that is provided 
inside the Communication Backbone and Resource 
Management Layer (CBL). 
 

     

Fig. 2. iLAND middleware architecture 

The Communication Backbone and Resource 
Management Layer (CBL) also contain the QoS Resource 
Manager component aimed at QoS-based resource 
management that arbitrates resource assignment among the 
different service implementations (i.e., threads) of the 

system. Scheduling for multi-resource management lies 
inside this component that follows the HOLA-QoS  [12] 
architecture and budget scheduling [11]. 

The Control Manager component (or ReCoM - 
Reconfiguration Control Manager) contains the logic for 
coordinating the transition upon a reconfiguration event is 
detected; it performs high-level monitoring of the 
application, and it controls the reconfiguration times and 
sequence to be time-deterministic [4]. Reconfiguration time 
slots are scheduled as part of the overall timing analysis of 
the system [9], and real-time dynamic resource management 
algorithms based on dynamic priorities are embedded in this 
middleware  component [10].  

B. Reducing the complexity 
It is impossible to achieve real-time behavior in the 

reconfiguration of a completely open distributed real-time. In 
iLAND, we require that systems are checked a priori to 
determine the size of the solution space and schedulability of 
their solutions. This is done by means of a priori system 
profiling tools [4][5] that allow the pre-visualization of the 
different possible system states and transitions.   

Figure 3 illustrates the high-level view of the 
reconfiguration logic aiming at reducing the complexity of 
the solution space. 

     

Fig. 3. Main components that participate in the 
reconfiguration process 

We are able to perform a prune of the A set, i.e., the 
complete space of solutions, to obtain at the end the B set, 
i.e., the selected target configuration. The control manager 
coordinates the process in the following way shown in 
algorithm 1. 

There are two mandatory operations for obtaining the 
target configuration to transition to: 
• Construction of the possible target configurations done 

with respect to a quality value that depends on the 
application.  

• Temporal check of the possible target configurations 
applying schedulability analysis.  
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The search and checking of the solutions of A can be 
done in two ways: 
• Exhaustive schedulability check by checking of all 

solutions to determine if they are schedulable. 
• Partial schedulabiltiy test of a subset of solutions.  It is a 

hybrid model where the solution space is first reduced in 
size, and then a schedulability test is applied. Therefore, 
first a subset of A is selected/obtained and then, it passes 
the schedulability test.  This uncouples the reduction of 
the space of solutions from the schedulability analysis 
technique used. 

Algorithm 1. Reconfiguration logic 

Require: qsys is the minimum quality of the target state 
1: for all i ϵ A do 
2:    if representative(i, A) == true 
3:       i ϵ AR 

4:  σ = AR  
5: for all j ϵ σ do 
6:    if schedulable(j) == true 

7:       j ϵ σ S 
8: φ = σ S 
9: for all k ϵ φ do 
10:    if check_quality(k) ≥ qsys 

11:       B = { qsys } 
12:       return true 
13:    else 
14:       B = Ø       

For time-bounded reconfiguration, it is not necessary to 
search for the optimum solution. Instead, we aim at finding 
one feasible solution that is valid, i.e., it is schedulable and 
close to the application-desired quality value. Therefore, it is 
not necessary to check the feasibility of all possible solutions 
or target configurations. Moreover, undertaking a 
schedulability analysis of the complete A set (the global 
solution space) can be highly inefficient specially depending 
on the technique that is used; a utilization-based algorithm 
will typically yield a better performance than response time 
analysis, depending on the number of tasks and the values of 
their real-time parameters.  

As a consequence, we extract a representative subset of A 
containing a variety of solutions that are a valid summary of 
A. This is performed by function representative(i,A) that 
decides whether solution i (or target state i) is a 
representative solution of the whole space of solutions of A. 
With all selected i solutions, we create subset σ. 

Results have been collected to compare between different 
inputs. In table 1, we present experimental results collected 
to compare the reduction of the initial solution space, A. We 
shown different complexities of A.  

Table 1. Experimental results for the reduction of the solution space 
Service 

Implementations 

[s1,s2,s3,s4] 

Sets Red. factor 
(%) A σσσσ    φφφφ    

[3,3,3,3] 81 8 4 95,06 
[6,5,4,7] 840 18 12 98,57 
[3,3,3,3] 81 8 4 95,06 
[6,5,4,7] 840 12 8 99,05 

For the four different states of the space reduction 
process, table 1 shows the number of solutions that are 
contained in the different sets. A is the initial space of 

solutions, σ is achieved after the pruning of the initial A and 
keeping only the solutions that are representative of the 
complete A set. This process is a complex algorithmic 
development that has been developed in iLAND middleware 
and that is out of the present work. φ is obtained after the 
QoSRM performs the admission test.  

These initial results assume a negligible effect of the 
operating systems and middleware tasks. Therefore, it is 
evidenced how the reduction factor achieved by the 
reduction process is considerably high (above 90%) for all 
cases, and over 98% for all cases of a graph with four initial 
services that contains over 840 solutions at the A stage. The 
reduction factor describes the number of solutions that are 
eliminated from the original A set. The main reduction of the 
number of solutions happens in two important algorithmic 
steps that are based on the placement of service 
implementations in the different nodes of the distributed 
systems and the distance to the desired QoS value of the 
application.  

For all cases, the final φ set contains over 90% less 
solutions than those contained in the A set; as a consequence, 
the number of possible solutions sent to the admission 
control for schedulability analysis is dramatically decreased. 
Therefore, it shows the efficiency of the whole idea and, as 
the ultimate goal, of the reconfiguration of the system. 

V. RELATED WORK 

In distributed systems, we currently face two types of 
reconfiguration approaches: those centered at the network 
level providing traffic scheduling integrated with the task 
scheduling at the nodes or real-time middleware approaches 
that offer a higher-level view of the many problems faced by 
the communication software that tries to provide real-time 
interaction for distributed applications. 

In distributed systems, the local and remote tasks as well 
as the messages over the network must be properly 
scheduled and synchronized to meet the deadlines of the 
application. This is not a simple task since the future arrivals 
of tasks and requests is typically not known in an complex 
open system. Some approaches only consider synchronous 
communication real-time networks as [6] that eases the 
schedulability analysis cost.  

Dynamic scheduling was also addressed by some 
contributions that aimed at providing guarantees to the 
distributed processes communicating via synchronous 
primitives, combining off-line and on-line scheduling [13].  

New applications have appeared over the years 
introducing more dynamic requirements. New solutions have 
provided resource management techniques for adapting the 
resource assignments to applications tasks according to their 
instant computation needs [14][15]. 

The middleware level has also been improved by the 
addition of efficient characteristics at very specific levels. As 
an example, distributed protocols executing in unpredictable 
environments as the Internet or ambient computing, have 
shown their need for dynamically adapting to environment 
changes while preserving the Quality of Service (QoS) 
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[15][16]. Some solutions have also appeared from the 
dependable computing community such as [17][18].  

One of the drawbacks perceived by the real-time 
community with respect to middleware is that it decreases 
the robustness of the system. Often middleware is seen as a 
black box over which only performance tests are carried out. 
However, the appearance of middleware technologies such 
as DDS, ICE, or RT-CORBA, etc., have provided a 
powerful, flexible, and versatile development push. One of 
most interesting characteristic is the abstraction of the 
network details to the business-level logic. However, when 
providing real-time guarantees, programmers must specify 
the required application properties in the pertinent 
middleware hooks that must be traceable across the software 
layers.  

The problem of combining distribution middleware and 
real-time is even harder if we try to support dynamic 
reconfiguration. Some work is already available although it 
typically targets mainstream distributed systems. For 
instance, in [15], an algorithm for dynamic reconfiguration 
of applications is provided that keeps the structural integrity 
and system states consistency, but it is silent about 
timeliness. Other approaches, mainly focus on the 
reconfiguration of the software components at the level of 
binding and re-binding of the component connectors such as 
[16]. More recently, the iLAND middleware [3][5] has 
appeared as a framework to support time-bounded dynamic 
functional reconfiguration of distributed real-time 
applications. In this paper, we present additional 
reconfiguration issues and problems to the time-bounded 
property related to the reduction of the space of solutions. 

VI. CONCLUSIONS 

We have presented the different sides of the functional 
reconfiguration problems for distributed real-time systems 
that are partially open. In this paper, we have described a 
system model and approach based on the integration of 
reconfiguration coordination logic in an enhanced 
communications middleware. We describe a solution to the 
problem of computational complexity due to large solution 
spaces; we provide a high-level view on how to reduce the 
space of solutions by selecting only a representative subset 
of configurations; as a result, a decrease in the number of 
schedulability analysis is performed. Finally, we present 
empirical results on a real implementation of iLAND 
middleware reference implementation that validate the 
proposed ideas. 
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