
A practical solution for functional reconfiguration of real-time service based
applications through partial schedulability

Marisol García Valls and Pablo Basanta Val
Departamento de Ingeniería Telemática

Universidad Carlos III de Madrid
Leganés, Madrid, Spain

{mvalls, pbasanta}@it.uc3m.es

Abstract— Timely reconfiguration in distributed real-time
systems is a complex problem with many sides to it ranging
from system-wide concerns down to the intrinsic non-robust
nature of the specific middleware software and the used
programming techniques. In an completely open distributed
system, it is not possible to achieve time-deterministic
functional reconfiguration; the set of possible target
configurations that the system can transition to could be
extremely large threatening the temporal predictability of the
reconfiguration process. Therefore, a set of bounds and
limitations to the structure of systems and to their open nature
need to be imposed. In this paper, we present the different
sides of the problem of reconfiguration. We provide a solution
for timely reconfiguration based on reducing the solution space
of solutions of partially closed applications; we have enhanced
the logic of a middleware for distributed soft real-time
applications with the proposed technique. As a result,
applications require a limited number of schedulability tests to
search for the valid target configuration. We present some
results on the actual reduction of the configuration space
achieved by our middleware.

Keywords-reconfiguration; distributed systems; middleware;
real-time

I. INTRODUCTION

Information and communication technologies are rapidly
driving the road to an enhanced distributed computing
paradigm where public, private, individual, and group's
resources can all be put in common to provide enhanced
processing power and an ultra connected sensation. In this
way, the resources needed and utilized by application users
are, in part, hosted remotely and provided from the outside.
This is one of the principles of cloud computing that allows
to make use of huge amounts of computational and storage
resources [1] by means of reduced computing power devices
as personal smart phones [2], tablets, etc. Users' applications
and data are executed on virtualized resources that are
potentially shared with large numbers of other users. At the
same time, this brings in interesting green properties as
energy savings that are of great importance to private
organizations and to the society in general.

The appearance of flexible software paradigms as Service
Oriented Architectures (SOA) and efficient communications
middleware technologies has been of paramount importance
for enabling ultra-connected environments and providing a

fertile soil for developing new applications with a flexible
structure. Still, support for real-time in such domains has not
progressed so fast as the technologies themselves. There are
a number of reasons for this. Firstly, real-time research has
not advanced at the same speed in the scheduling theory than
in the achievement of predictable software-most parts of
systems. The latter is still limited specially at the middleware
level that is sometimes taken as a black box on top of which
performance measurements are obtained. Middleware
technologies have not completely eliminated the uncertainty
points of such technology as the techniques for serialization,
address resolution, transport and Internet level details, etc.

Providing real-time guarantees in distributed computing
environments is a hard problem; it becomes extremely hard
if these are considered to be open systems with dynamic
behavior. However, these are characteristics of the emerging
applications; systems undergo changes that may require a
modification of their structure to adequately process and
react to events from the environment. In this work, we refer
to such changes as reconfigurations, i.e., it is the process of
transitioning from the current structure (or configuration) of
the system to the target structure.

Timely reconfiguration in distributed real-time systems is
not a trivial task. For open distributed systems with lack of
restrictions it is, in fact, not solvable with the available
techniques. A set of bounds and limitations to their structure
need to be imposed in order to reduce complexity by means
of limiting the size of the space of solutions; that is the
number of possible target configurations. In a previous work
[3][4], we have identified a set of phases for the complete
reconfiguration process which need to be time-bounded.
However, we did not further elaborate on the different sides
of the reconfiguration problems. In this paper, we provide a
high-level view of these, and we show how to reduce the
space of solutions by embedding extra logic in the
middleware. We provide some validation results that have
been obtained on the iLAND middleware reference
implementation [3][5].

In this paper, section 2 introduces the problems of
software reconfiguration. Section 3 presents the system
model. Section 4 describes a middleware-centric approach
for reconfiguration by illustrating the coordination scheme
and the logic for reduction of the space of configurations,
and it validates the presented concepts. Section 5 draws some
conclusions.

REACTION 2012 21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29404877?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. EXPOSING THE PROBLEMS OF SOFTWARE

RECONFIGURATION

Supporting dynamic behavior in modern real-time
applications opens up new possibilities for providing more
powerful and added value to final users. Achieving dynamic
behavior in real-time, however, challenges temporal
predictability at the different architectural layers, from
system-wide design down to the operating system and I/O
drivers concerns. Still, in some application domains with soft
real-time requirements (e.g., intelligent video surveillance)
high utility levels can be achieved by imposing a set of
bounds and limitations to the actual dynamics.

We have investigated in different sides of software
reconfiguration in distributed systems with real-time
requirements. In this paper, we provide an approach to this
problem based on single-threaded services that enable
application dynamics. Following, a general description of the
challenges and approaches to reconfiguration is provided.

A. Challenges to reconfiguration
 In most current distributed applications, achieving real-

time behavior is an evident added-value; some of these
applications have different degrees of tolerance to deadline
misses resulting only in a degraded but acceptable operation
(e.g., real-time video processing in intelligent co-operative
nodes). The latter are, then, referred to as soft real-time
systems. Specially current distributed soft real-time systems
must be designed in order to react to the occurrence of events
that may require some adaptation (or reconfiguration) of the
system in terms of: (i) application/functional structure where
some parts of the functionality may be removed, replaced, or
newly added, or (ii) internal processing configuration where
the same functionality may continue to be provided but
adaptation of the processing parameters is performed. An
example of a reconfiguration event is one generated by an
unexpected movement in some high-security perimeter as a
sign of a possible intrusion detected by a sensor; it may
require that a different camera set be activated
instantaneously and higher resolution images are captured
and sent at the same time.

Reconfiguration events can be triggered either internally,
i.e., due to the self monitoring, or externally, i.e., requested
by an outside entity, e.g., the user. Moreover, reconfiguration
triggers may arrive:
• Synchronously; at a specified time when the system is

able to process it.
• Asynchronously; with an unknown arrival pattern and

modeled as a periodic task with a release time greater
than zero.

To adequately process reconfiguration events, real-time
systems require that the transition either to a new functional
structure or a new internal processing configuration is time
bounded. There are different important threats to preserving
temporal predictability in the presence of dynamic behavior
such as software reconfiguration:
• Dynamic versus static entity membership. There are

two types of systems: static size system and dynamic
size systems. The former does not allow any

modification of the system services at run-time, whereas
the latter does allow the spontaneous appearance of new
active software units in the system at any time.

• Size of the space of solutions. Upon a reconfiguration
event, the reconfiguration protocol logic decides on the
target system configuration to make the transition to.
There is a number of possible target configurations,
named space of solutions, where the final target
configuration is selected from. For a system of dynamic
size, the space of solutions can be unlimited; so, there is
no feasible solution to derive a time-bounded
reconfiguration strategy.

• Network effects and schedulability. In a distributed
system, the distributed coordination of the entities may
incur in network delays. There are some solutions that
bound this problem as the real-time traffic scheduling
and the synchronous communications [6]. Also, there
are some approaches as the worm whole [7]¡Error! No
se encuentra el origen de la referencia. that allot space
for both synchronous and asynchronous traffic. The
existence of central entities for coordination also limits
the unpredictability of the distributed real-time
transition.

• Virtual platforms. In virtualized execution
environments, hardware is buried; some parts of the
application code do not have direct access to the
hardware. Temporal predictability is threatened, and it
depends on the existence of real-time hypervisors that
capture and transform the interrupts into software ones
with appropriate priorization; this is a basic tool to
prioritize the execution among different virtual
machines and, in the end, applications. Such
environments can be modeled by means of virtual
resources and virtual processors.

B. Approaches to reconfiguration
Researchers tackle the problem of reconfigurations from

different points of view and backgrounds. Mainly, we find:
• Software-based versus system-level schemes. Software-

based approaches focus on the specific programming-
level details as the software units (e.g. objects,
components, etc.) and their connectors and bindings to
make a transition to a new state. On the other hand,
system-level approaches take a more abstract view
dealing with a formalized system model and the
algorithms for selecting the target configurations that
meet the given system-level properties (e.g., timeliness,
quality values, or interface functionality).

• Non real-time versus real-time schemes. Non real-time
schemes work basically on efficient transition models,
but timeliness is not a primary issue; sometimes, it is not
considered at all. In real-time reconfiguration schemes,
the system must be temporally predictable not only
during normal operation but also during reconfiguration.

• Centralized versus distributed schemes. A centralized
perspective does not take into consideration the network
effects in the coordination of the reconfiguration;
whereas the distributed reconfiguration must account for
the schedulability model of the network, the effect of

REACTION 2012 22

possible communication delays, and the distributed
coordination problems.

• Closed versus open schemes. In closed schemes, all
possible system states and transitions are known a priori;
therefore the reconfiguration is performed at a given
time or synchronization point (i.e., when the system is in
a safe state). This is typical of mode changes in hard
real-time systems. In open reconfiguration schemes, all
possible system states are not known; therefore, extra
logic is needed to select the target system configuration
or state.

• Operational or task-level versus functional or system-
level. Operational deals with the low-level details of the
run-time execution and schedulability. It deals with the
compatibility of the execution model of tasks and the
required adjustments to their parameters (e.g., change of
activation period, priority, execution time refinements,
etc.). System level strategies deal with the changes in
the functional units from a system wide perspective and
how to replace these units by searching for new options
that keep the system run-time requirements.

III. SYSTEM MODEL

In our model, we consider that applications are extended
functionality made by the aggregation of a set of services.
Services are self contained software functionality pieces that
are realized by concrete and specific service
implementations. A service implementation is an active
software entity that provides the functionality of the specific
service. Service implementations communicate among
themselves only via message exchanges.

An application ai has different possible realizations, ai,j,
{ai,j: j=1,2,...} or internal structure possibilities. In the same
way, a service si can have different realizations {si,k:
k=1,2,...}. Also, ai has a specific set of services Si={sj:
j=1,2,...}. Therefore, a given application configuration ai,j is
made of a set of service implementations ai,j={ sk,l: k=1,2,...;
l=1,2,...}.

As a result, a reconfiguration is the replacement,
removal, or addition of one or more service implementations.
Reconfiguration refers to a change in the structure of the
active software units that are part of an application. In
general, a service can contain a number of threads or tasks;
in our model, we consider single-task services. A
reconfigurable system or application ai is, therefore, a
superset of n service implementations; in the end, ai = { τ1,
τ2, ..., τn }.

A reconfiguration occurs when the system or application
configuration ai,j is replaced by another one ai,k, such that the
target service implementation set is not equal to the orginal
Sk,l

init <>Sk,,l
target. Here, we use the terms system and

application interchangeably.
In a real-time environment, reconfigurations have to be

performed in a time bounded fashion. Therefore, the time
(tre) taken to complete the transition from Sk,l

init to Sk,,l
target has

to be bounded.
In the specific case of a real-time distributed system, we

must not neglect the effect of the operating system and

middleware threads. In our model, we account for such a
structure. Therefore, a system state is made of a set of
threads that are scheduled by the resource manager of the
operating system. The threads of the initial state are:

• asi={τi: i=1,...,n}; where n is the number of service
implementations that are running. This set is the
"payload" of the system; these tasks are functionality
providers for users.

• osi={τj: i=1,...,m}; where m is the number of
operating system tasks that are providing the basic
execution services and environment. This is the
actual run-time services.

• mwi={τz: z=1,...,p}; where p is the number of
middleware tasks that are actively providing the
communications logic and the extended functionality
that is typically contained in it (e.g. thread pools).

A service implementation si,k is specified by its

functionality fi (all si,k have a common fi), it execution time
Ci,k, its release period Ti in our real-time model (see [9]
execution priority Pi,k, the response deadline Di,k, the quality
value it offers Qi,k (an application-related utility value), and
the ∆ is the dependency list with respect to other service
implementations.

Services are also considered to be activated by periodic
messages, and they can be scheduled according to a
utilization based model [10] that also accounts for the
operating system and middleware tasks. Figure 1 shows the
expression for calculation of the utilization assuming that
tasks are independent. This is in practice a limitation.

∑∑∑
∈∈∈

++
mwk k

k

osj j

j

asi i

i

T
C

T

C

T
C

Fig. 1. Utilization based model

All tasks in our model are contemplated in the
schedulability analysis of the system. Therefore, the whole
task set to be considered in the analysis is {asi, osi, mwi} with
different priority level values that determine the pre-emption
and execution mode privileges. Priority assignment also
plays a major role; we use a simple priority assignment
technique based on priority bands [11].

IV. A MIDDLEWARE-BASED APPROACH

One of the approaches to reconfiguring a distributed real-
time system consists of including extra logic in the
middleware to undertake the needed operations for adapting
to the environment, correcting execution time problems, or
adjusting to a controlled and limited level of changing user
requirements.

Besides including the basic real-time communication
facilities for timely message exchange among services (e.g.
provided by DDS or RT-CORBA among others),
middleware supporting real-time reconfiguration must
include logic for:
• Detection of reconfiguration events. The middleware

should recognize what is a source of reconfiguration;

REACTION 2012 23

false positives should be avoided since it may cause
instability.

• Selection the target system configuration. Among all
possible target configurations, the middleware should
decide on a feasible one that meets the application
requirements and it is schedulable.

• Transitioning to the target system configuration, i.e, the
sequence of steps to perform a run-time transition to the
target configuration in bounded-time.

iLAND follows a system-level reconfiguration scheme;
transitions are not completely closed, and a controlled
degree of freedom is left for application transitions.

A. iLAND approach

iLAND [3][5] follows the classical principles of a
layered middleware (see figure 2) with enhanced logic for
supporting reconfiguration of distributed service-based real-
time applications. The Core Functionality Layer (CFL)
contains most of the key added-value functionality
(management of services, and time-deterministic
composition and reconfiguration). Communications are
timely with two different levels of temporal predictability:
• Real-time communications are supported by defining

the complete network protocol stack, i.e., time-triggered
level 2 media access control networks that enable
network traffic scheduling.

• QoS-aware communications are supported through the
usage of an underlying DDS communication backbone.
In fact, any other asynchronous (publish-subscribe) or
synchronous backbone middleware can be used since
iLAND defines a common communication bridge for
adjusting to communication paradigms that is provided
inside the Communication Backbone and Resource
Management Layer (CBL).

Fig. 2. iLAND middleware architecture

The Communication Backbone and Resource
Management Layer (CBL) also contain the QoS Resource
Manager component aimed at QoS-based resource
management that arbitrates resource assignment among the
different service implementations (i.e., threads) of the

system. Scheduling for multi-resource management lies
inside this component that follows the HOLA-QoS [12]
architecture and budget scheduling [11].

The Control Manager component (or ReCoM -
Reconfiguration Control Manager) contains the logic for
coordinating the transition upon a reconfiguration event is
detected; it performs high-level monitoring of the
application, and it controls the reconfiguration times and
sequence to be time-deterministic [4]. Reconfiguration time
slots are scheduled as part of the overall timing analysis of
the system [9], and real-time dynamic resource management
algorithms based on dynamic priorities are embedded in this
middleware component [10].

B. Reducing the complexity
It is impossible to achieve real-time behavior in the

reconfiguration of a completely open distributed real-time. In
iLAND, we require that systems are checked a priori to
determine the size of the solution space and schedulability of
their solutions. This is done by means of a priori system
profiling tools [4][5] that allow the pre-visualization of the
different possible system states and transitions.

Figure 3 illustrates the high-level view of the
reconfiguration logic aiming at reducing the complexity of
the solution space.

Fig. 3. Main components that participate in the
reconfiguration process

We are able to perform a prune of the A set, i.e., the
complete space of solutions, to obtain at the end the B set,
i.e., the selected target configuration. The control manager
coordinates the process in the following way shown in
algorithm 1.

There are two mandatory operations for obtaining the
target configuration to transition to:
• Construction of the possible target configurations done

with respect to a quality value that depends on the
application.

• Temporal check of the possible target configurations
applying schedulability analysis.

REACTION 2012 24

The search and checking of the solutions of A can be
done in two ways:
• Exhaustive schedulability check by checking of all

solutions to determine if they are schedulable.
• Partial schedulabiltiy test of a subset of solutions. It is a

hybrid model where the solution space is first reduced in
size, and then a schedulability test is applied. Therefore,
first a subset of A is selected/obtained and then, it passes
the schedulability test. This uncouples the reduction of
the space of solutions from the schedulability analysis
technique used.

Algorithm 1. Reconfiguration logic

Require: qsys is the minimum quality of the target state
1: for all i ϵ A do
2: if representative(i, A) == true
3: i ϵ AR

4: σ = AR
5: for all j ϵ σ do
6: if schedulable(j) == true

7: j ϵ σ S
8: φ = σ S
9: for all k ϵ φ do
10: if check_quality(k) ≥ qsys

11: B = { qsys }
12: return true
13: else
14: B = Ø

For time-bounded reconfiguration, it is not necessary to
search for the optimum solution. Instead, we aim at finding
one feasible solution that is valid, i.e., it is schedulable and
close to the application-desired quality value. Therefore, it is
not necessary to check the feasibility of all possible solutions
or target configurations. Moreover, undertaking a
schedulability analysis of the complete A set (the global
solution space) can be highly inefficient specially depending
on the technique that is used; a utilization-based algorithm
will typically yield a better performance than response time
analysis, depending on the number of tasks and the values of
their real-time parameters.

As a consequence, we extract a representative subset of A
containing a variety of solutions that are a valid summary of
A. This is performed by function representative(i,A) that
decides whether solution i (or target state i) is a
representative solution of the whole space of solutions of A.
With all selected i solutions, we create subset σ.

Results have been collected to compare between different
inputs. In table 1, we present experimental results collected
to compare the reduction of the initial solution space, A. We
shown different complexities of A.

Table 1. Experimental results for the reduction of the solution space
Service

Implementations

[s1,s2,s3,s4]

Sets Red. factor
(%) A σσσσ φφφφ

[3,3,3,3] 81 8 4 95,06
[6,5,4,7] 840 18 12 98,57
[3,3,3,3] 81 8 4 95,06
[6,5,4,7] 840 12 8 99,05

For the four different states of the space reduction
process, table 1 shows the number of solutions that are
contained in the different sets. A is the initial space of

solutions, σ is achieved after the pruning of the initial A and
keeping only the solutions that are representative of the
complete A set. This process is a complex algorithmic
development that has been developed in iLAND middleware
and that is out of the present work. φ is obtained after the
QoSRM performs the admission test.

These initial results assume a negligible effect of the
operating systems and middleware tasks. Therefore, it is
evidenced how the reduction factor achieved by the
reduction process is considerably high (above 90%) for all
cases, and over 98% for all cases of a graph with four initial
services that contains over 840 solutions at the A stage. The
reduction factor describes the number of solutions that are
eliminated from the original A set. The main reduction of the
number of solutions happens in two important algorithmic
steps that are based on the placement of service
implementations in the different nodes of the distributed
systems and the distance to the desired QoS value of the
application.

For all cases, the final φ set contains over 90% less
solutions than those contained in the A set; as a consequence,
the number of possible solutions sent to the admission
control for schedulability analysis is dramatically decreased.
Therefore, it shows the efficiency of the whole idea and, as
the ultimate goal, of the reconfiguration of the system.

V. RELATED WORK

In distributed systems, we currently face two types of
reconfiguration approaches: those centered at the network
level providing traffic scheduling integrated with the task
scheduling at the nodes or real-time middleware approaches
that offer a higher-level view of the many problems faced by
the communication software that tries to provide real-time
interaction for distributed applications.

In distributed systems, the local and remote tasks as well
as the messages over the network must be properly
scheduled and synchronized to meet the deadlines of the
application. This is not a simple task since the future arrivals
of tasks and requests is typically not known in an complex
open system. Some approaches only consider synchronous
communication real-time networks as [6] that eases the
schedulability analysis cost.

Dynamic scheduling was also addressed by some
contributions that aimed at providing guarantees to the
distributed processes communicating via synchronous
primitives, combining off-line and on-line scheduling [13].

New applications have appeared over the years
introducing more dynamic requirements. New solutions have
provided resource management techniques for adapting the
resource assignments to applications tasks according to their
instant computation needs [14][15].

The middleware level has also been improved by the
addition of efficient characteristics at very specific levels. As
an example, distributed protocols executing in unpredictable
environments as the Internet or ambient computing, have
shown their need for dynamically adapting to environment
changes while preserving the Quality of Service (QoS)

REACTION 2012 25

[15][16]. Some solutions have also appeared from the
dependable computing community such as [17][18].

One of the drawbacks perceived by the real-time
community with respect to middleware is that it decreases
the robustness of the system. Often middleware is seen as a
black box over which only performance tests are carried out.
However, the appearance of middleware technologies such
as DDS, ICE, or RT-CORBA, etc., have provided a
powerful, flexible, and versatile development push. One of
most interesting characteristic is the abstraction of the
network details to the business-level logic. However, when
providing real-time guarantees, programmers must specify
the required application properties in the pertinent
middleware hooks that must be traceable across the software
layers.

The problem of combining distribution middleware and
real-time is even harder if we try to support dynamic
reconfiguration. Some work is already available although it
typically targets mainstream distributed systems. For
instance, in [15], an algorithm for dynamic reconfiguration
of applications is provided that keeps the structural integrity
and system states consistency, but it is silent about
timeliness. Other approaches, mainly focus on the
reconfiguration of the software components at the level of
binding and re-binding of the component connectors such as
[16]. More recently, the iLAND middleware [3][5] has
appeared as a framework to support time-bounded dynamic
functional reconfiguration of distributed real-time
applications. In this paper, we present additional
reconfiguration issues and problems to the time-bounded
property related to the reduction of the space of solutions.

VI. CONCLUSIONS

We have presented the different sides of the functional
reconfiguration problems for distributed real-time systems
that are partially open. In this paper, we have described a
system model and approach based on the integration of
reconfiguration coordination logic in an enhanced
communications middleware. We describe a solution to the
problem of computational complexity due to large solution
spaces; we provide a high-level view on how to reduce the
space of solutions by selecting only a representative subset
of configurations; as a result, a decrease in the number of
schedulability analysis is performed. Finally, we present
empirical results on a real implementation of iLAND
middleware reference implementation that validate the
proposed ideas.

ACKNOWLEDGEMENTS

This work has been partly supported by the iLAND project (ARTEMIS-
JU 100026) funded by the ARTEMIS JTU Call 1 and the Spanish Ministry
of Industry (www.iland-artemis.org), ARTISTDesign NoE (IST-2007-
214373) of the EU 7th Framework Programme, and by the Spanish national
project REM4VSS (TIN 2011-28339).

REFERENCES

[1] D. Williams, E. Elnikety, M. Eldehiry, H. Jamjoom, H. Huang, and
H. Weatherspoon. "Unshakle the Cloud! "Appears in Proceedings of
the 3rd USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud), June 2011, Portland, CA.

[2] J. Andrus, C. Dall, A. Van't Hof, O. Laadan, J. Nieh. "Cells: A
Virtual Mobile Smartphone Architecture". In Proc. of 23rd ACM
Symposium on Operating Systems Principles (SOSP'11). Cascais,
Portugal. October 2011.

[3] M. García-Valls, I. Rodríguez-López, L. Fernández-Villar. “iLAND:
An Enhanced Middleware for Real-Time Reconfiguration of Service
Oriented Distributed Real-Time Systems”. IEEE Transactions on
Industrial Informatics, DOI 10.1109/TII.2012.2198662 Accepted for
publication. 2012.

[4] M. García-Valls, R. Castro-Fernández, I. Estévez-Ayres, P. Basanta-
Val, I. Rodríguez-López. "A Time-Bounded Service Composition
Algorithm for Service Based Distributed Real-Time Systems". In
IEEE Conference on Embedded Software and Systems. Liverpool,
UK. June 2012.

[5] iLAND project. "iLAND Reference Implementation Installation &
User Guide". http://sourceforge.net/projects/iland-project/ Available
on-line. September 2012.

[6] H. Kopetz, G. Bauer. "The Time-Triggered Architecture".
Proceedings of the IEEE, vol. 91(1), pp. 112-126. 2002.

[7] P. Verissimo. "Travelling through wormholes: a new look at
distributed systems models". SIGACT News, vol.37(1), pp. 66-81.
2006.

[8] A. Nogueira, M. Calha. "Predictability and efficiency in
contemporary Hard RTOS for multiprocessor systems". In Proc. of
17th IEEE Int'l Conference on Embedded and Real-Time Computing
Systems and Applications. Japan, 2011.

[9] M. García-Valls, P. Basanta-Val, P., I. Estévez-Ayres. "Real-time
reconfiguration in Multimedia Embedded Systems". IEEE
Transactions on Consumer Electronics, Vol. 57, No. 3, pp. 1280-
1287. August 2011.

[10] C. L. Liu and J. W. Layland. "Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment". Journal of the
Association of Computing Machinery, vol. 20(1), pp. 46-61. January
1973.

[11] M. García-Valls, A. Alonso, and J.A. de la Puente. "A Dual-Band
Priority Assignment Algorithm for QoS Resource Management".
Future Generation Computer Systems, vol. 28(6), pp. 902-912. June
2012.

[12] M. García Valls, A. Alonso Muñoz, F. Ruíz Martínez, A. Groba. “An
Architecture of a QoS Resource Manager for Flexible Multimedia
Embedded Systems”. In Proc. of Int'l Workshop on Software
Engineering and Middleware. LNCS vol. 2596. 2003.

[13] M. Di Natale, J. A. Stankovic. “Dynamic End-to-End Guarantees in
Distributed Real-Time Systems”. In Proc. of IEEE Real-Time
Systems Symposium. Dec. 1994.

[14] L. Palopoli, T. Cucinotta, G. Liperi, G. Buttazzo. "AQuoSA -
Adaptive Quality of Service Architecture". Software: Practice and
Experience.

[15] A. Rasche and A. Polze. "ReDAC - Dynamic Reconfiguration of
distributed component-based applications with cyclic dependencies".
In Proc. of the 11th IEEE Int'l Symposium on Object and Component-
oriented Real-Time Distributed Computing (ISORC), pp. 322-330.
Orlando (FL), USA. May 2008.

[16] V. Vanneschi, L. Veraldi. "Dynamicity in distributed applications:
issues, problems, and the ASSIST approach". Parallel Computing,
vol. 33(12), pp. 822-845, Elsevier. December 2007.

[17] M. Dixit, A. Casimiro, P. Lollini, A. Bondavalli, and P. Verissimo.
"Adaptare: Supporting automatic and dependable adaptation in
dynamic environments", ACM Transactions on Autonomous and
Adaptive Systems". 2011.

[18] A. Kangarlou, S. Gamage, R. Kompella, and D. Xu. vSnoop:
Improving TCP throughput in virtualized environments via
acknowledgement offload. In Proc. of ACM/IEEE SC. New Orleans,
USA. Nov. 2010.

REACTION 2012 26

