
Abstract—This work proposes an architecture to enable the use

of data-centric real-time distribution middleware in partitioned

embedded systems based on a hypervisor. Partitioning is a

technique that provides strong temporal and spatial isolation,

thus allowing mixed-criticality applications to be executed in

the same hardware. The proposed architecture not only enables

transparent communication among partitions, but it also

facilitates the interconnection between partitioned and non-

partitioned systems through distribution middleware.

Preliminary results show that hypervisor technology provides

low overhead and a reasonable trade-off between temporal

isolation and performance.

Keywords—distributed systems; middleware; hypervisor; DDS;

real-time systems.

I.    INTRODUCTION
1

Partitioning is a widespread technique that enables the

execution of multiple applications in the same hardware

platform with strong temporal and space isolation, thus

allowing the coexistence of mixed-criticality applications,

which fulfils their different requirements (i.e. integrity,

security, timing, etc.). Although partitioned systems were

initially conceived for safety-critical contexts and do not

traditionally contemplate the use of distribution middleware

because of its complexity, this technique is becoming more

and more popular and it is starting to be applied in a

heterogeneous set of emerging applications [1].

The use of middleware technology can provide a set of

services that may be of interest for partitioned systems, such

as location transparency, abstraction of network services,

communication management or interoperability. As part of

modern model-driven software development techniques, it

also may help to resolve key challenges in the development

and validation of distributed systems [2] [3]. Over the last

years, the Data Distribution Service for Real-Time Systems

(DDS) standard [4] has been attracting an increasing interest

within the industry due to its flexibility and decoupling

capabilities, along with a rich set of Quality of Service (QoS)

parameters. These features make this standard suitable for

the development of distributed systems with real-time

requirements [5][6].

Our concern is to enable partitioned systems to take

advantage of common real-time distribution middleware in

several scenarios where a high level of criticality is not

required. Under these conditions, important design

objectives for partitioned systems include software reuse or

interoperability between partitioned and non-partitioned

systems. Both objectives can be fulfilled by integrating

distribution middleware into partitioned systems as shown in

[7], which presents an early experience dealing with RT-

CORBA [8] and Ada DSA [9] standards. Furthermore, there

is an initial attempt to extend DDS with a safety-critical

profile [10][11] suitable for partitioned systems such as

those defined by ARINC-653 (Avionics Application

Standard Software Interface) [12], which proposes this

standard as a suitable candidate to interconnect the next-

generation of partitioned distributed real-time systems. 

Therefore, this paper proposes a system architecture that

integrates the use of distribution middleware based on the

DDS standard within XtratuM [13], which is an ARINC-

653-like hypervisor especially designed for real-time

embedded systems. Additionally, a prototype has been

developed in order to provide a performance analysis that

estimates the overhead incurred when using the proposed

architecture. The trade-off between performance and

temporal/spatial isolation capabilities is also analysed.

To the best of our knowledge, few research papers have

dealt with the merging of DDS and virtualization technology.

For instance, the authors in [14] use DDS to interconnect

virtual resources on heterogeneous hypervisors.

Furthermore, the impact of using DDS in a general-purpose

virtualized scenario is addressed in [15]. However, our work

differs from these in the target systems, as XtratuM is

specially designed to be used in scenarios with hard real-

time requirements, in which safety-critical features can be

also considered. 

This document is organized as follows. Section II

introduces the basic characteristics of XtratuM and the DDS

standard. The architecture for integrating DDS middleware

with XtratuM is proposed in Section III. Section IV

describes a potential application as a proof of concept, while

Section V evaluates the performance of the proposed

architecture. Finally, Section VI draws the conclusions.1. This work has been funded in part by the Spanish Government and
FEDER funds under grant number TIN2011-28567-C03-02 (HIPARTES).
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II.    BACKGROUND 

A Overview of DDS

The Data Distribution Service (DDS) standard defines a

data-centric distribution middleware that supports the

development of distributed real-time systems [16] by

including a wide set of configurable parameters to provide

different degrees of QoS. The standard is based on the

publisher-subscriber paradigm, where publishers and

subscribers communication entities respectively write

(produce) and read (consume) data. All the communication

entities that share compatible QoS parameters may be

grouped in participants of a domain, and only entities

belonging to the same domain can communicate. 

To enable the communication among entities, publishers

require to declare their intent to publish a specific topic (i.e.

the data type to share), while subscribers require to register

their interest in receiving particular topics. The example in

Figure 1 illustrates a distributed system which consists of

three participants in a single domain and two topics. Both

topics have a single publisher in charge of generating new

data samples. However, successive updates for topic # 1 will

only be received by one subscriber, whereas new samples for

topic # 2 will be received by two subscribers.

B Overview of XtratuM

XtratuM [13] is an open source hypervisor with

capabilities to meet real-time and integrity requirements.

Although it does not follow a specific standard, its design

follows the philosophy of the ARINC-653 avionics standard

[12]. This specification defines the interface of a partition-

based operating system that allows multiple applications to

execute in the same hardware platform, while maintaining

time and space isolation. The general architecture of a

system using XtratuM is shown in Figure 2, where the term

partition represents one or several applications executing

over a bare machine or an operating system. Each partition is

allocated one or several dedicated time windows during

which it may execute and thus multiple partitions can be

concurrently executed on the same core module (a hardware

platform with one or more processors or cores). Among the

facilities provided by XtratuM are the virtualization of the

basic resources of the system (clocks, timers, memory,

interrupts, etc.) and specific communication services.

Two different and complementary communication

services are defined in XtratuM: the ARINC-like

communication ports [12] or the XMIO communication

service based on Virtio [17]. The former was designed to

enable communication in high-integrity systems (e.g.,

systems with static workload and pre-configured

communication links), while the latter is aimed at non-

critical software systems with some kind of timing

requirements.

In XtratuM, the control and management of devices is left

to partitions. To this end, XtratuM provides a configuration

service to access the I/O ports, which must be configured at

compilation time. I/O ports can belong to only one partition,

which means that specific I/O partitions should be created

when more than one partition needs to access a particular

device. Furthermore, I/O partitions are responsible for

implementing the device drivers so devices shared among

several partitions should be managed in a special way, as

described in the next section.

III.    SYSTEM ARCHITECTURE 

This section aims to explore the possible architectures that

enable the use of data-centric distribution middleware in

partitioned systems in which a hypervisor is used to manage

the hardware. To guarantee the interoperability among non-

critical open subsystems, our proposal will rely on the DDS

distribution standard and the XMIO communication service.

The analysis for more restrictive scenarios, which may

require the use of the ARINC-like communication services

and/or a reduced set of the DDS features, is left for future

work. 

As XtratuM does not implement drivers at the hypervisor

level, sharing a device such as a network interface card

(NIC) among multiple partitions should focus on handling

Fig. 1 DDS architecture Fig. 2 XtratuM architecture
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the contention in order not to compromise both space and

time isolation capabilities. A common strategy is the use of

an I/O partition that has exclusive access to the network card.

Under this approach, the I/O partition is responsible for

redirecting messages from the remaining partitions within

the same core module to the communications network. To

this end, two design strategies could be followed:

• Designing an I/O partition exclusively aimed at

forwarding messages. In this case, messages are opaque

to the I/O partition, and they would be routed through

statically established connections. Therefore, each

partition should know the destination of each

communication link beforehand, which may not be

suitable for open systems with variable workload.

• Considering the use of DDS middleware in the I/O

partition. Thus, data-centric middleware will be

responsible for performing routing transparently (e.g.,

based on topics). In this case, messages are not opaque

and can be processed by the I/O partition. Moreover, this

option may enable the use of different domains for inter-

and intra-communication in core modules, as they may

need to maintain certain information contained within. 

Hence, each partition should implement data-centric

middleware in order to provide distribution facilities such as

location transparency, interoperability or connection

management, and to facilitate data routing in the case of the

I/O partition.

Figure 3 shows a system with three core modules

following the proposed architecture for integrating data-

centric middleware with a partitioned system using XtratuM.

Communications between partitions, belonging or not to the

same core module, are performed via DDS. As can be seen

in the figure, each core module provides: (1) a virtual

network (V-NETWORK) to enable the communication

among partitions within the core module, which denotes a

DDS domain; (2) a virtual network card (V-NIC) for each

partition; and (3) an I/O partition, with exclusive access to

the network card, which is responsible for routing the

messages received by the underlying communication

network, and which is part of another DDS domain. In this

case, we have defined three communication links that

interconnect partitions: link #1 defines one-to-many

communications (i.e., one publisher and several subscribers);

link #2 defines one-to-one communications within the same

core module; and link #3 defines one-to-one

communications between different core modules. 

IV.    USAGE SCENARIO: VIDEO-SURVEILLANCE SYSTEMS 

This section describes a video-surveillance system as a

proof of concept in which the use of the proposed

architecture can be advantageous. Built-in video-

surveillance applications will probably become common in

the near future, for example in vehicles for recording

unexpected situations (accidents, thefts, etc.). A key feature

for this kind of systems resides in the reliability of the

recording application, as it must keep recording data

continuously, so it can benefit from strong isolation

capabilities and can be executed together with other

applications. In our example, a distributed application with

multiple display monitors may request video captures from

the recording application. The architecture for the proposed

system is depicted in Figure 4 and it is composed of:

• One core module with two partitions: the

Video_Recorder partition which is responsible for

obtaining data from the attached video cameras and

serving the requested video captures to other partitions,

and the Routing_Service partition which is in charge of

Fig. 3 Proposed architecture for integrating DDS with XtratuM
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routing the data from/to other core modules spread

across the distributed systems.

• A variable number N of core modules that may request

the current live video stream or a previous recording (i.e.

the monitoring subsystem). These nodes or core module

may or may not be partitioned systems. 

The use of DDS enables the interoperability among the

video recorder and the monitoring subsystems, regardless of

whether they are partitioned or not. Furthermore, it also

enables the interconnection among the partitions within the

same core module (e.g., Video_Recorder and

Routing_Service partitions). The Routing_Service partition

also relies on DDS to control the information that flows in

and out of the core module by providing data distribution

between domains. Finally, third-party applications can be

easily integrated into the system without compromising the

security and data integrity of the Video_Recorder partition,

as they are isolated in terms of space and time.

V.    PERFORMANCE METRICS 

This section aims to obtain preliminary performance

metrics and assess the interoperability capabilities of using

data-centric middleware in partitioned systems by simulating

the video-surveillance scenario described in the previous

section. In this evaluation, the distributed application

consists of two nodes: the video recorder partitioned

subsystem and one monitoring non-partitioned subsystem.

The hardware platform consists of two single core 2.8 GHz

nodes connected through an isolated Gigabit switch in which

internal traffic has been disabled (for instance, network

packets coming from the Spanning Tree or ARP protocols).

We have adapted and integrated in a software platform: RTI

Connext DDS1 as distribution middleware, a fully pre-

emptive Linux kernel 2.6.30.5 as the operating system and

XtratuM as the hypervisor. Furthermore, a DDS add-on

included in the RTI toolsuite1 has been used to implement

the routing service.

In the case of partitioned systems, the optimal

configuration of partitions to maximize the processor’s

utilization is not a trivial problem, and it is even harder with

inter-partitions dependencies. Thus, an I/O partition should

be executed with sufficient regularity to fulfil the I/O

requirements of other partitions. In our example, it is

expected that the execution time of middleware operations

will be similar to the ones associated with the routing

operations, as both rely on DDS middleware. Hence, the

video-surveillance application has been configured to have a

dedicated time window of 800μs for the Routing_Service,

and 700μs for the Video_Recorder partition, resulting in a

scheduling plan repeated every 1,500μs. 

The test will measure the execution time of a remote

operation that publishes the requested video frames. We

measure the operation carried out from the time when the

request of a video capture is made until the image is

returned. This operation is executed 10,000 times, and the

average, maximum, and minimum times are estimated,

together with the standard deviation and the 99th percentile

(i.e., the value below which 99 percent of the measurements

are found). To avoid additional overheads in the

measurements, the test is executed without requiring

network fragmentation (i.e., the payload is bounded to 1

kilobyte). The performance analysis includes two case-

studies. 

The first case study, which is called the overhead test,

aims to estimate the overhead added by XtratuM when it is

used as hypervisor. Three scenarios have been defined for

this case study: 

1. RTI-DDS toolsuite is available at http://www.rti.com

Fig. 4 Scheme of a video-surveillance system
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• Network, which estimates the temporal cost of using the

network (transmitting and receiving a message of 1

kilobyte) by implementing the test over UDP in

isolation.

• Traditional DDS, which measures the performance of

the video-surveillance application using DDS over two

non-partitioned nodes.

• Single DDS Partition, which measures the performance

of the video-surveillance application when the node

under analysis is partitioned with XtratuM. In this case,

the core module only holds one partition that executes

the application and has exclusive access to the network

device. Therefore, this scenario estimates the overhead

of using XtratuM.

The second case-study (performance test) evaluates the

performance of the proposed system architecture, that is,

with one partition dedicated to the I/O operations. To

perform a fairer comparison, this case is contrasted with the

traditional distributed application in which a routing service

has been added. Therefore, two scenarios have been defined:

• Traditional DDS with Routing, which measures the

performance of the video-surveillance application using

DDS over two non-partitioned nodes. One of the nodes

also executes a routing application to enable the

communication between domains.

• Partitioned DDS with Routing, which measures the

performance of the video-surveillance application when

the proposed partitioned architecture is applied to one

node. In this case, the core module holds two partitions:

(1) the Video_Recorder partition, and (2) the

Routing_Service partition to enable the communication

between domains.

The results of the analysis for the overhead test are shown

in Table 1. As can be observed, the DDS example adds a

minimum overhead to the network test which makes it

suitable for developing our approach, as it requires a

lightweight middleware implementation in each partition.

Likewise, the maximum overhead of using the distributed

application on top of XtratuM is less than 60μs. Taking these

metrics into account, it is shown that using hypervisor

technology with data-centric middleware is highly efficient. 

Table 2 shows the results of the measurements taken for

the performance test, in which the proposed system

architecture adds complexity by integrating a routing service

into the distributed application. As shown in Table 2, the

distributed operation for the DDS with routing scenario takes

a maximum of 1,632μs, while this value is 4,157μs for the

partitioned system. This variation in performance depends

on the nature of the partitioned systems and their time

window configuration (e.g., a network message received

during the execution of the Video_Recorder partition has to

wait until the next time window corresponding to the

Routing_Service partition). In our example, we use a time

window configuration that allows Linux partitions to be

executed properly, as the optimization of time windows for

this particular application is beyond the scope of this paper.

In any case, the increase in the response times corresponds to

a reasonable number of measurements for less critical

applications (see the 99th percentile).

To complete the study, an additional test has been carried

out to evaluate the impact of the proposed architecture with

different workloads. Figure 5 depicts the results obtained for

the same experiment but using different image sizes.

Similarly to the results obtained in Table 1 and Table 2, it is

shown that the hypervisor adds a minimum overhead to the

traditional DDS scenario regardless of the payload, and the

maximum response times are appreciably higher for the

partitioned system due to the inherent effect produced by the

temporal partitioning. As a consequence of these results, a

significant improvement is expected when using a

Table 1: Measurements of response times for the overhead test (in 

μsecs)

MIN AVG MAX STD PER99

NETWORK 154 206 262 20 249

TRADITIONAL DDS 218 286 415 29 383

SINGLE DDS PARTITION 262 331 467 28 409

Table 2: Measurements of response times for the performance 

test (in μsecs)

MIN AVG MAX STD PER99

TRADITIONAL DDS WITH 

ROUTING

662 764 1632 36 876

PARTITIONED DDS WITH 

ROUTING

1028 1858 4157 539 3346
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Fig. 5 Maximum response times for different image sizes (in μsecs)
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multiprocessor approach that allows, for example, one core

to be dedicated to communications, which could avoid the

extra delays inherent to the time window configuration. This

approach is planned for future work.

VI.    CONCLUSIONS AND FUTURE WORK

An increasingly important trend in many domains, such as

the automotive, energy distribution or industrial control

ones, is support for mixed-criticality applications within the

same hardware platform. In this kind of applications, there is

also a need to address the integration with the underlying

communication subsystem. The proposed integration of

DDS data-centric middleware into partitioned systems

provides important benefits such as (1) the transparent

invocation of services allocated in partitions, independently

of whether they are in the same processor (or core) or in

different ones; (2) the abstraction of network services which

allows the application code to be simplified while

maintaining it independent from the communication

subsystem; and (3) interoperability between partitioned and

non-partitioned systems, or between two or more

heterogeneous partitions, e.g., with different levels of

criticality or using different data representations (e.g.,

endianness).

As a consequence of the response times obtained in the

performance analysis, it can be observed that the overhead of

using data-centric middleware together with a partitioned

system could be reasonable for a wide range of applications

with soft real-time requirements. However, a significant

improvement is expected when using the hypervisor

technology adapted to multiprocessor systems, as it may

partially mitigate the delays associated with the

configuration of time windows. Anyway, it has been shown

that this configuration is not a trivial problem and it

represents a key step in the design of distributed applications

with a partitioned architecture. 

Although this integration can facilitate the use of

partitioned systems with DDS, further investigation is

required to fully determine which features of the standard

can be applied, i.e., the applicability of some QoS

configurations. Furthermore, it could be interesting to

explore other approaches such as the use of the ARINC-like

communication services for the incoming safety-critical

profile of DDS.
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