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Abstract—Virtualization technologies typically introduce ad-
ditional overhead that is specially challenging for specific domains
such as real-time systems. One of the sources of overhead are
the additional software layers that provide parallel execution
environments which reduce the effective performance given by
the infrastructure. This work identifies the factors to be analysed
by a benchmark for performance evaluation of a virtualized
middleware. It provides the set of benchmark tests that evaluate
empirically the overhead and stability on a trendy communication
middleware, DDS (Data Distribution System for Real-Time),
which enables message transmissions via publisher-subscriber
(P/S) interactions. Two different implementations, RTI and
OpenSplice, have been analysed over a general purpose virtual
machine monitor to evaluate their behavior on a client-server
application. Obtained results have provided initial execution clues
on the performance that a virtualized communication middleware
like DDS can exhibit.

I. INTRODUCTION

Communications middleware and virtualization technolo-

gies have been two main contributions to the development

and maintainability of software systems. On the one hand,

middleware brings in the capacity to abstract the low level

details of the networking protocols and the associated specifics

of the physical platforms (e.g. endianness, frame structure,

and packaging, among others). This augments the productivity

of systems development by easing the programmability and

debugging. More recently, virtualization technologies have

promoted a new technological trend that has fast penetrated

different domains due to the benefits that it brings about: a)

speed up of the customized system development and deploy-

ment to specific platforms; b) server consolidation and the

subsequent savings on energy, etc. ; c) reducing maintenance

and deployment costs and d) data availability any time and

anywhere.

Communication middleware and virtualization technology

originated for general purpose distributed applications, so

initially in a different perspective from that of real-time

environments where determinism is a key target. As science

evolves and new applications are envisioned and engineered,

real-time applications have progressively approached middle-

ware and virtualization technologies, facing the problem of

temporal predictability. The traditional focus of real-time and

middleware has been significantly different. Networked real-

time systems traditionally have focused on eliminating (or

minimizing) the sources of unpredictability by direct program-

ming of tasks in the real-time operating system or directly

in the hardware platform itself and using controlled medium

access protocols to develop real-time networks. Middleware

has typically been implemented for distributed systems over

non collision-free networks, and using software engineering

techniques that introduce additional software layers aiming

at easing programmability and interoperability. As a conse-

quence, communications middleware has appeared as a black

box, containing extra code that is difficult to analyse with

sufficient level of detail and guarantees as required by some

real-time applications.

Over the past decade, the OMG’s DDS standard [1] (Data

Distribution Service for Real-Time Systems) has appeared

with considerable success for distributed soft real-time appli-

cations. DDS provides an asynchronous interoperability via

a publish-subscribe paradigm that is data-centric. One of the

success factors of DDS is that it provides quality of service

(QoS) communication by means of specifying a collection of

diverse QoS parameters. There are different realizations of the

DDS standard that achieve different behaviors, mainly with

respect to performance and to the specific set of implemented

QoS parameters. In general, the level of temporal guarantees

provided by different implementations varies depending on

different factors such as the physical deployment, application

type, and middleware communication paradigm and fine-

tuning. There are not many public independent studies about

the performance achieved by the different implementations.

The performance of middleware can be essential for de-

termining if a specific real-time application can be migrated

to the cloud. This requires to analyse the timely behavior of

the middleware implementation and extract conclusions about

the suitability for specific physical deployments (i.e., software,

hardware, and network structure) and application types (e.g.

data intensive, sporadic short messages, etc.). Also, traditional

virtualization techniques can be a source of overhead and even

nondeterminism. Virtualization technology comes at the cost

of, in general, being more prone to suffering variations in per-

formance compared to bare machine execution, in general. The
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latter needs to be studied for the specific deployments since

technological developments, such as multicore systems, are

introducing new interesting properties derived from execution

on dedicated cores. In a previous work [3] [2], we have per-

formed an exploratory analysis of the performance evaluation

on virtualized environments extracting preliminary results. In

this paper, we deepen into the analysis of DDS in a virtu-

alized deployment, providing a benchmark for the analysis,

conducting further experiments, and elaborating conclusions

as comparison between the two most popular implementations.

We explore the overhead of virtualization in distributed DDS

communication stacks by black box benchmarking (with no

code fine-tuning), and we reason about the causes of virtual-

ization costs, communication latencies, communication jitter,

and execution nondeterminism.

The paper is structured as follows. Section 2 describes

related work. Section 3 presents the potential drawbacks of the

virtualization technology for timely behavior, and it describes

the benchmark elaborated for the experiments or specific

tests that have been carried out. In section 4, the proposed

virtual data-distribution scenario is defined (two main DDS

implementations running on VirtualBox) as well as the used

evaluation forms, i.e. processor and network intensive sce-

narios. Section 5 reports the evaluation results discussing the

minimum, maximum, and average response-times in different

setups. Finally, section 6 outlines the main conclusions and

future work.

II. RELATED WORK

Virtualization technology for cloud computing, such as

hypervisors and/or virtual machine monitors, can challenge

the temporal properties of soft real-time applications due to the

possible introduction of higher latencies and communication

jitter. Still, the deadlines for the soft real-time domain may

be respected (or tolerably lost) by the new high performance

cloud computing platforms that provide very efficient network-

ing by using specific technology as InfiniBand [4].

Predictable hypervisors exist that achieve temporal and

spatial isolation such as the academic initiatives of [26] [21],

among others in the industrial domain1, for real-time domains.

In the hard real-time domain, predictability offered by real-

time hypervisors is obtained at the cost of having to recompile

the execution environment. This is not desired for the case of

soft real-time applications and mainstream domains that are

likely to be interested in using existing binaries, and they may

even suffer run-time migration.

There are a few studies and analysis of the performance

of both, virtualization technology and virtualized environ-

ments with varying quality results. Diverse applications have

been used as payload to evaluate virtualization performance.

These can refer to low-level services [10], function-specific

applications (e.g. MapReduce [19] [16], storage solutions

[20]), and middleware systems [18]. Some works report [17]

significant delays due to the virtualization layer in contexts

1WindRiver Hypervisor, WMWare ESX, etc.

where applications are in execution within virtual machines.

In contrast, other empty scenarios (i.e., without applications

or virtual machines) report that the execution is similar to the

results obtained on the physical platform [24] [25].

For this purpose, other virtualization technologies exist that

do not offer temporal isolation but statistical guarantees with

the advantage of allowing functional additions at run-time.2

The different implementations of DDS were not originally

designed for virtualized environments. As a result, they can

exhibit a significant different behavior either in a virtualized

or in a bare machine with operating system. There are some

previous experiences of using DDS in a virtual context offering

good average communication times, such as the one reported

in the iLAND reference implementation [6] [15] that uses

a bi-dimensional QoS model [14] that can be mapped to

DDS QoS properties. Possible sources of this behavior are the

efficient resource management policies at node level inspired

on [12] using QoS resource brokers such as [9]; timeliness

was preserved even in the event of system reconfigurations that

required real-time service composition [13] [32]. However, no

benchmarking was performed in this context and only average

times were reported.

Mainstream and traditional individual parallel applications

or benchmarks have been applied to evaluating the perfor-

mance of virtual machines. Benchmarks are being modified to

adequately model the operation of virtual machines such as

the industry benchmarks VMark [11], vConsolidate [10], and

SPEC committee [22] that are virtualization benchmarks that

can be used for consistent and repeatable server performance

analysis. There are interesting studies applying vConsolidate

in specific VM performance modeling such as [27]. Released

two weeks prior to the submission of this work, [22] simulates

a world-wide company with an IT infrastructure with varied

requests that enables specifying deadlines for service requests

(from few to hundreds of ms, and supports multiple run con-

figuration for analysing bottlenecks at multiple layers (from

hardware to application layer).

The execution of communication middleware in a virtual

environment is not supported by a specific benchmark. Conse-

quently, we have identified a set of specific tests for devising

the behavior of the system to identify possible bottlenecks,

reasoning about the possible sources of the problems.

III. BENCHMARKING VIRTUALIZED MIDDLEWARE

The behavior of the system is analysed in terms of usage of

physical resources, stability of the execution, and load of the

servers is considered as an initial step to analyse the system.

Considered resources are: Processor, network bandwidth, and

memory consumption. The stability is measured by analysing

the behavior of specific communications in the presence of

interference and without interference. Different load levels for

the servers are also experimented by executing operations that

require various resource usage levels, from light weight to

2Popular virtualization technologies that provide applications execution
environments include Citrix Xen, VMWare, KVM [19], Oracle VirtualBox,
SPLPAR, MS Virtual Server and Solaris Container [23].
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heavy operations. Other interesting measures are derived such

as throughput (i.e., number of requests per unit of time), and

latencies.

A. Potential performance drawbacks in the virtualization

The execution risks of a virtualized communication mid-

dleware are the following:

• Overhead of the virtualization. Virtual machines are in-

terfered by the execution of other VMs. This may affect

the use of visible shared resources (e.g. the same physical

core or memory capacity) and invisible shared resources

(e.g., cache space, memory bandwidth, etc.). These can

be visible or invisible depending on the implementation

of the host operating system and virtualization monitor.

• Overhead of the communication middleware abstractions.

A virtualization infrastructure adds extra costs in the

response time of distributed applications since requests

traverse the software layers; requests may be queued

at different levels. This overhead affects main statistical

metrics (i.e. minimum, average, and maximum response

times), increasing jitter and overhead. That refers to the

cost of serializing and deserializing parameters sent in

different communications. Notice that part of this serial-

ization cost may be alleviated using virtual machines that

run similar virtualized operating systems and hardware

infrastructures.

• Coexistence issues. Other particular inefficiencies

stemmed from the integration of two different

software stacks: the virtualization software and complex

middleware. Depending on the particular middleware-

virtualizer combination, different inefficiencies may

appear (e.g. unnecessary copies from virtualized buffers

to middleware buffers).

B. Benchmark description

In order to produce a meaningful set of tests for virtual-

ized middleware, a benchmark should take into account the

following key aspects:

• Application nature. Different types of applications exhibit

distinct performance patterns that are, mainly, of two

types: (i) network intensive applications and (ii) CPU in-

tensive applications. Network-intensive applications make

heavy use of I/O operations and peripheral actions, and

their processor computations are minimum as compared

to the network I/O activity. CPU intensive are dedicated

to intra-node activity rather than in communication or

information exchange.

• Middleware communication paradigm. The supported in-

teraction paradigms of the middleware (e.g. its publish-

subscribe (P/S), synchronous remote invocations, etc.)

influence its internal implementation and synchronization

aspects which directly affects the performance of the re-

mote execution and, as a result, also influence virtualized

environments. Other influencing aspects to be taken into

account are the marshalling (and unmarshalling) tech-

niques which typically represent a considerable source

of overhead in middleware infrastructures.

• Virtualization software characteristics. The type of vir-

tual machine monitor (VMM) or hypervisor and the

virtualization technique, and guarantees (either real-time

or statistical) over the temporal and spatial isolation of

virtual machines influence the performance of the system.

Next section illustrates a practical evaluation via a specific

set of tests that consider the above mentioned concepts in a

general scenario: i) a client-server application, which is ii)

running on DDS, which iii) is virtualized using VirtualBox

over Linux. This soft real-time scenario has been chosen

because it reduces development and deployment costs (i.e. the

time require to develop a virtualized application). Real-time

virtualizers would produce better performance results, requir-

ing additional resources (CPU, or additional infrastructure)

too.

IV. ANALYSIS OF DDS EXECUTING IN VIRTUAL MACHINES

This section describes the set of tests carried out in a

client-server application installed on a DDS infrastructure.

Such applications are typical of many distributed systems and

require the server to block, waiting for a response from the

client. In essence, the benchmarked application carries out the

following operations:

• The client sends information packed in an array that is

transferred to a server node. Internally, the communica-

tion with the server is carried out using a DDS topic.

• Then, the server which is another node running DDS,

reads the data, processes the data, and sends back a

response to the client node. In the specific implementation

of the test, this action is supported with a different DDS

topic that sends data back to the client.

• After receiving the information, the client to server com-

munications stops so the client-server interaction ends.

A. Experimental setting

The physical deployment comprises two machines, one

acting as a server and another as a client (see Table I). Both

machines are connected via a local isolated Switched Ethernet

network that connects to Linux nodes. Client and server

run in a Ubuntu Linux 12.04 virtualized (with Virtualbox)

image that communicates via one of two alternative DDS

implementations: The first is the OpenSplice 5.5 DDS, and

the second is the professional RTI 5.0 implementation.

Since the hosting operating system, the virtualization soft-

ware and the virtualized operating systems are non real-

time infrastructures, the tests carried out focus on average

performance that may be suitable in some best-effort real-time

applications. A worst-case scenario requires to use a real-time

virtualizer and real-time operating system, which are not the

focus of this evaluation scenario.

In this particular, the following evaluation goals were

pursued:
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TABLE I
HARDWARE AND SOFTWARE STACK USED IN THE EVALUATION

HW/SW Item Description

Server machine: CPU Core2Duo E4500 @2.2 Ghz
Server machine: Memory 6 Gigabyes

Client machine: CPU Core2 6320 @1.86 Ghz
Client machine: memory 3 Gigabyes

Network 100 Mbps switched Ethernet

Hosting OS Ubuntu 12.04
Virtualization software Virtualbox 4.2
Hosted OS Ubuntu 12.04

First DDS middleware: OSPL Community v5.5.1
Second DDS middleware RTI Connext Professional 5.0

Small size data sets: 64 bytes
Medium size data sets: 512 bytes

Processing time at server: From 0 to 100 µs

• To measure the absolute performance of client-server

applications from different DDS middleware vendors.

• To evaluate the overhead introduced by the virtualiza-

tion infrastructure in different DDS implementations. To

assess the differences in costs introduced by the virtual-

ization process.

• To evaluate the impact of different virtualized DDS

middleware implementations from the point of view of

a real-time application (considering different deadlines).

• To determine the absolute overhead introduced by the

DDS infrastructure when compared against an ideal in-

frastructure. The ideal infrastructure refers to a minimum

distributed system based on ICMP messages that do not

pay serialization/deserialization costs.

B. Results and analysis

The first experiment refers to the time required for the

whole client-server interaction under different setups. The

different setups refer to the following choices:

• The experiment is executing (i) inside the virtual machine

or (ii) in the host with no VM intermediation.

• The experiment is running (i) on an ideal ICMP scenario,

(ii) on OSPL or on (iii) RTI stacks.

• In the experiment the data sent to the server has to be

processed. The processing at the server ranges from 0 to

100 µs.

The obtained results (see Figure 1) show the expected

performance patterns. In all cases, the execution costs increase

with the amount of data sent to the server. They also increase

as they are virtualized, i.e. the costs in the non virtualized

environment are less than in the virtualized one, ranging from

800µs to few milliseconds with medium size data sets.

A remarkable result is the gap between the ideal middle-

ware setting (represented in the evaluation with ICMP) and

DDS. It is due to the multiple abstractions that are supported

by the DDS programming model, mainly due to serialization

overhead, and to the use of topics and multiple I/O buffers,

that manifest (i.e., are paid for) in the ICMP stack.

Fig. 1. Absolute end-to-end response time results with server and without
server processing time

Figure 2 complements the previous results with informa-

tion on the extra cost paid by the virtualization process. For

the given scenarios, the extra cost ranges from a minimum

of 120% to a maximum of almost 300%. In practical terms,

the virtualized application has reductions in performance that

may leave the available utilization in almost 25% of the time

consumed in a non virtualized environment equivalent. Notice

that this time is, to some extent, the maximum penalty; this

could be alleviated by using optimized virtualizers that take

into account the host infrastructure. The virtualizer used in this

experiment does not take advantage of this feature to improve

performance.

It is also remarkable that the virtualization may require

up to 50% of the total available time for small response

time applications (i.e., applications with a 10ms deadline).

This cost is reduced to less than 5% (i.e. a more moderated

and admissible penalty) when deadlines are in the 100ms
range. As operational deadlines increase, this margin reduces

to 1% for applications with deadlines that are in the range of

milliseconds.

The last set of experiments refers to the overhead in-

troduced by a middleware like DDS. Different middleware

implementations introduce an overhead when they compare

against an idealized communication middleware that do not

require to perform general application serialization, copying

data from different multilevel buffer, nor other middleware-
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Fig. 2. Virtualization overhead main results with and without server process-
ing time

level overhead. As in the previous cases, the evaluation has

been carried out in small (see Figure 3) and medium (see

Figure 4) data sizes.

The following are remarkable outcomes:

• In most cases, the overhead introduced by the stacks

represents an important amount of the available time.

This extra overhead takes into account the amount of time

required for serialization and deserialization processes.

• For the given virtualization scenarios (and under the

described evaluation conditions), the use of OSPL sup-

port outperforms an RTI equivalent stack. In average

performance terms, the virtualized RTI requires and 50%
amount of CPU time to offer an OSPL-equivalent perfor-

mance.

• Lastly, it should be noticed that for both implementations,

the overhead of the virtualization dominates over the

overhead introduced by the middleware abstraction. In

all tests (see Figure 3 and Figure 4), the cost of the

middleware abstraction is typically 30% of the total time,

while the the cost of the virtualization may represent

72% of the total time. In practice, this effect is shown

in the graphs with the two virtualized DDS-middlewares

as virtualized implementations consume more resources

than their non virtualized equivalents.

Fig. 3. Overhead introduced by virtualized middleware technology (small
size data)

V. CONCLUSION

The work describes a benchmarking process to obtain

information on the performance of virtual machines containing

applications that communicate via publish-subscribe (data cen-

tric) middleware. Precisely, we have analysed the behavior of

DDS for its two most popular implementations (Open Splice

and RTI). Initially, we have identified the important aspects

to consider in the design of a benchmark for performance

analysis of virtualized middleware, including the identification

of the potential bottlenecks to search for, and the consid-

erations with respect to the software stack to be analysed.

Lastly, we have describe the benchmark tests executed for

applications that make intensive use of the network and the

processor. Results have shown the comparison and impact on

both implementations of the virtualization software.

Future work will include the execution of just released

industrial benchmarks for virtual machines that simulate a real

environment based on scenarios described in [28], [29] and

[30].
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Fig. 4. Overhead introduced by virtualized middleware technology (medium
size data)
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