
UNIVERSIDAD CARLOS III DE MADRID

Departamento de Teoŕıa de la Señal y Comunicaciones

DOCTORAL THESIS

PARTICLE FILTERS FOR TRACKING

IN WIRELESS SENSOR NETWORKS

Author: KATRIN ACHUTEGUI RONCAL

Supervised by: JOAQUÍN MÍGUEZ ARENAS

September 2013

i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29404668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Tesis Doctoral: PARTICLE FILTERS FOR TRACKING
IN WIRELESS SENSOR NETWORKS

Autor: Katrin Achutegui Roncal

Director: D. Joaqúın Mı́guez Arenas

Fecha:

Tribunal

Presidente:

Vocal:

Secretario:

iii

iv

Acknowledgements
I would like to express my deep gratitude to my PhD supervisor, Joaqúın

Mı́guez Arenas for his patient guidance, enthusiastic encouragement and
useful critiques provided throughout the development of the thesis. There
is no doubt that Joaqúın is capable of producing great quality research
however he is capable of producing something, to my view, much more
difficult: researchers.

I would also like to thank Javier Rodas and Carlos Escudero for
their contribution with an extremely high quality work that lead to many
interesting results and publications. Without their contribution this thesis
would not be possible.

I would also like to thank Jesse Read for his important contribution
on distributed particle filters, for his encouragement and for the interesting
discussions we have had on particle filters, all which have lead to the defense
of practical implementations of particle filters as well as the development of
many great ideas. Maybe one day we will have enough time to try them all.

I would also like to thank everyone on our research group (all, current
and past) for the coffees, lunches and relaxing times that have made work
hours much more pleasant.

Finally, I would like to thank Edu for his support and encouragement
through my study.

v

vi

Abstract

The goal of this thesis is the development, implementation and
assessment of efficient particle filters (PFs) for various target tracking
applications on wireless sensor networks (WSNs).

We first focus on developing efficient models and particle filters for
indoor tracking using received signal strength (RSS) in WSNs. RSS is
a very appealing type of measurement for indoor tracking because of its
availability on many existing communication networks. In particular, most
current wireless communication networks (WiFi, ZigBee or even cellular
networks) provide radio signal strength (RSS) measurements for each radio
transmission. Unfortunately, RSS in indoor scenarios is highly influenced
by multipath propagation and, thus, it turns out very hard to adequately
model the correspondence between the received power and the transmitter-
to-receiver distance. Further, the trajectories that the targets perform in
indoor scenarios usually have abrupt changes that result from avoiding walls
and furniture and consequently the target dynamics is also difficult to model.

In Chapter 3 we propose a flexible probabilistic scheme that allows
the description of different classes of target dynamics and propagation
environments through the use of multiple switching models. The resulting
state-space structure is termed a generalized switching multiple model
(GSMM) system. The drawback of the GSMM system is the increase in the
dimension of the system state and, hence, the number of variables that the
tracking algorithm has to estimate. In order to handle the added difficulty,
we propose two Rao-Blackwellized particle filtering (RBPF) algorithms in
which a subset of the state variables is integrated out to improve the tracking
accuracy.

As the main drawback of the particle filters is their computational
complexity we then move on to investigate how to reduce it via de
distribution of the processing. Distributed applications of tracking are
particularly interesting in situations where high-power centralized hardware
cannot be used. For example, in deployments where computational
infrastructure and power are not available or where there is no time or
trivial way of connecting to it. The large majority of existing contributions
related to particle filtering, however, only offer a theoretical perspective or
computer simulation studies, owing in part to the complications of real-world
deployment and testing on low-power hardware.

In Chapter 4 we investigate the use of the distributed resampling

vii

with non-proportional allocation (DRNA) algorithm in order to obtain
a distributed particle filtering (DPF) algorithm. The DRNA algorithm
was devised to speed up the computations in particle filtering via the
parallelization of the resampling step. The basic assumption is the
availability of a set of processors interconnected by a high-speed network,
in the manner of state-of-the-art graphical processing unit (GPU) based
systems. In a typical WSN, the communications among nodes are subject
to various constraints (i.e., transmission capacity, power consumption or
error rates), hence the hardware setup is fundamentally different.

We first revisit the standard PF and its combination with the DRNA
algorithm, providing a formal description of the methodology. This includes
a simple analysis showing that (a) the importance weights are proper and
(b) the resampling scheme is unbiased. Then we address the practical
implementation of a distributed PF for target tracking, based on the DRNA
scheme, that runs in real time over a WSN. For the practical implementation
of the methodology on a real-time WSN, we have developed a software
and hardware testbed with the required algorithmic and communication
modules, working on a network of wireless light-intensity sensors.

The DPF scheme based on the DRNA algorithm guarantees the
computation of proper weights and consistent estimators provided that the
whole set of observations is available at every time instant at every node.
Unfortunately, due to practical communication constraints, the technique
described in Chapter 4 may turn out unrealistic for many WSNs of larger
size. We thus investigate in Chapter 5 how to relax the communication
requirements of the DPF algorithm using (a) a random model for the spread
of data over the WSN and (b) methods that enable the out-of-sequence
processing of sensor observations. The presented observation spread scheme
is flexible and allows tuning of the observation spread over the network
via the selection of a parameter. As the observation spread has a direct
connection with the precision on the estimation, we have also introduced
a methodology that allows the selection of the parameter a priori without
the need of performing any kind of experiment. The performance of the
proposed scheme is assessed by way of an extensive simulation study.

viii

Resumen

De formal general, el objetivo de esta tesis doctoral es el desarrollo y la
aplicación de filtros de part́ıculas (FP) eficientes para diversas aplicaciones
de seguimiento de blancos en redes de sensores inalámbricas (wireless sensor
networks o WSNs).

Primero nos centramos en el desarrollo de modelos y filtros de part́ıculas
para el seguimiento de blancos en entornos de interiores mediante el uso de
medidas de potencia de señal de radio (received signal strength o RSS) en
WSNs. Las medidas RSS son un tipo de medida muy utilizada debido a
su disponibilidad en redes ya implantadas en muchos entornos de interiores.
De hecho, en muchas redes de comunicaciones inalámbricas actuales (WiFi,
ZigBee o incluso las redes de telefońıa móvil), se pueden obtener medidas
de RSS sin necesidad de modificación alguna. Desafortunadamente,
las medidas RSS en entornos de interiores suelen distorsionarse debido
a la propagación multitrayecto por lo que resulta muy dif́ıcil modelar
adecuadamente la relación entre la potencia de señal recibida y la distancia
entre el transmisor y el receptor. Otra dificultad añadida en el seguimiento
de interiores es que las trayectorias realizadas por los blancos suelen tener
por lo general cambios muy bruscos y en consecuencia el modelado de las
trayectorias dinámicas es una actividad muy compleja.

En el Caṕıtulo 3 se propone un esquema probabiĺıstico flexible que
permite la descripción de los diferentes sistemas dinámicos y entornos
de propagación mediante el uso de múltiples modelos conmutables entre
śı. Este esquema permite la descripción de varios modelos dinámicos y
de propagación de forma muy precisa de manera que el filtro sólo tiene
que estimar el modelo adecuado a cada instante para poder hacer el
seguimiento. El modelo de estado resultante (modelo de conmutación
múltiple generalizado, generalized switiching multiple model o GSMM) tiene
el inconveniente del aumento de la dimensión del estado del sistema y, por
lo tanto, el número de variables que el algoritmo de seguimiento tiene que
estimar. Para superar esta dificultad, se proponen varios algoritmos de
filtros de part́ıculas con reducción de la varianza (Rao-Blackwellized particle
filtering (RBPF) algorithms) en el que un subconjunto de las variables de
estado, incluyendo las variables indicadoras de observación, se integran a fin
de mejorar la precisión de seguimiento.

Dado que la mayor desventaja de los filtros de part́ıculas es su
complejidad computacional, a continuación investigamos cómo reducirla
distribuyendo el procesado entre los diferentes nodos de la red. Las

ix

aplicaciones distribuidas de seguimiento en redes de sensores son de especial
interés en muchas implementaciones reales, por ejemplo: cuando el hardware
usado no tiene suficiente capacidad computacional, si se quiere alargar la
vida de la red usando menos enerǵıa, o cuando no hay tiempo (o medios)
para conectarse a la toda la red. La reducción de complejidad también es
interesante cuando la red es tan extensa que el uso de hardware con alta
capacidad de procesamiento la haŕıa excesivamente costosa.

La mayoŕıa de las contribuciones existentes ofrecen exclusivamente una
perspectiva teórica o muestran resultados sintéticos o simulados, debido en
parte a las complicaciones asociadas a la implementación de los algoritmos y
de las pruebas en un hardware con nodos de baja capacidad computacional.
En el Caṕıtulo 4 se investiga el uso del algoritmo distributed resampling
with non proportional allocation (DRNA) a fin de obtener un filtro de
part́ıculas distribuido (FPD) para su implementación en una red de sensores
real con nodos de baja capacidad computacional. El algoritmo DRNA fue
elaborado para acelerar el cómputo del filtro de part́ıculas centrándose en la
paralelización de uno de sus pasos: el remuestreo. Para ello el DRNA asume
la disponibilidad de un conjunto de procesadores interconectados por una
red de alta velocidad.

En una red de sensores inalábrica, las comunicaciones entre los nodos
suelen tener restricciones (debido a la capacidad de transmisión, el consumo
de enerǵıa o de las tasas de error), y en consecuencia, la configuración de
hardware es fundamentalmente diferente. En este trabajo abordamos el
problema de la aplicación del algoritmo de DRNA en una WSN real. En
primer lugar, revisamos el FP estándar y su combinación con el algoritmo
DRNA, proporcionando una descripción formal de la metodoloǵıa. Esto
incluye un análisis que demuestra que (a) los pesos se calculan de forma
adecuada y (b) que el paso del remuestreo no introduce ningún sesgo. A
continuación describimos la aplicación práctica de un FP distribúıdo para
seguimiento de objetivos, basado en el esquema DRNA, que se ejecuta
en tiempo real a través de una WSN. Hemos desarrollado un banco de
pruebas de software y hardware donde hemos usado unos nodos con sensores
que miden intensidad de la luz y que a su vez tienen una capacidad de
procesamiento y de comunicaciones limitada. Evaluamos el rendimiento
del sistema de seguimiento en términos de error de la trayectoria estimada
usando los datos sintéticos y evaluamos la capacidad computacional con
datos reales.

El filtro de part́ıculas distribúıdo basado en el algoritmo DRNA garantiza
el cómputo correcto de los pesos y los estimadores a condición de que
el conjunto completo de observaciones estén disponibles en cada instante

x

de tiempo y en cada nodo. Debido a limitaciones de comunicación esta
metodoloǵıa puede resultar poco realista para su implementación en muchas
redes de sensores inalámbricas de tamaño grande. Por ello, en el Caṕıtulo
5 investigamos cómo reducir los requisitos de comunicación del algoritmo
anterior mediante (a) el uso de un modelo aleatorio para la difusión de
datos de observación a través de las red y (b) la adaptación de los filtros para
permitir el procesamiento de observaciones que lleguen fuera de secuencia.
El esquema presentado permite reducir la carga de comunicaciones en la
red a cambio de una reducción en la precisión del algoritmo mediante la
selección de un parámetro de diseño. También presentamos una metodoloǵıa
que permite la selección de dicho parámetro que controla la difusión de
las observaciones a priori sin la necesidad de llevar a cabo ningún tipo
de experimento. El rendimiento del esquema propuesto ha sido evaluado
mediante un estudio extensivo de simulaciones.

xi

Contents

1 Introduction 1

1.1 Wireless sensor networks . 1

1.2 Localization in WSNs . 3

1.2.1 Physical measurements 4

1.2.2 Positioning . 4

1.2.3 Navigation and tracking 5

1.2.4 Bayesian filters . 6

1.3 Contributions . 7

1.3.1 Indoor tracking with RSS 8

1.3.2 Tracking with distributed particle filtering 8

1.4 Thesis organization . 9

2 Particle filters for target tracking 11

2.1 Notation . 11

2.2 Bayesian filtering for target tracking 12

2.2.1 State-space model representation 12

2.2.2 Bayesian filtering . 14

2.2.3 The Kalman filter and its extensions 16

2.3 Nonlinear filtering via sequential importance sampling 23

2.3.1 Exact Monte Carlo sampling 23

2.3.2 Importance sampling 25

2.3.3 Sequential importance sampling: particle filtering . . . 27

2.4 Improved particle filters . 30

2.4.1 SIS with optimal importance function 30

2.4.2 The auxiliary particle filter 32

2.4.3 The Rao-Blackwellized particle filter 33

2.4.4 Summary . 36

i

3 A multi-model sequential Monte Carlo methodology for
indoor tracking 39

3.1 Introduction . 40
3.2 System model . 43

3.2.1 Motion models . 43
3.2.2 Measurement models 45

3.2.3 Summary . 46
3.3 Construction of observation models 46

3.3.1 Experimental scenario and data 46
3.3.2 Polynomial observation sub-models 48

3.3.3 Logarithmic path-loss observation sub-models 51
3.4 Tracking algorithms . 54

3.4.1 A Rao-Blackwellized particle filter for multiple models 54
3.4.2 Evaluation of the weights 57

3.4.3 Importance functions 58
3.4.4 An auxiliary particle filter for multiple models 58

3.4.5 Computational complexity of the algorithms 60
3.5 Computer simulations results 62

3.5.1 Order of polynomial models 63
3.5.2 Tracking performance 66

3.5.3 Comparison with the interacting multiple model
methodology . 69

3.5.4 Gain from using multiple models 71

3.6 Experimental results . 71
3.7 Conclusions . 72

4 A distributed particle filter implementation 77

4.1 Introduction . 77
4.2 System model . 79

4.2.1 Motion model . 79
4.2.2 Measurement model 81

4.3 Experimental set-up and observation models 82
4.4 Distributed particle filtering 87

4.4.1 General structure . 87
4.4.2 Particle exchange . 88

4.4.3 Local processing . 89
4.4.4 Estimation . 90

4.4.5 Summary . 92
4.5 Simulations and experimental results 92

4.5.1 Setup . 92

ii

4.5.2 Computer simulations 94

4.5.3 Experimental results 97

4.5.4 Performance study . 97

4.5.5 Limitations and remarks 101

4.6 Conclusions . 101

5 A Distributed particle filter for wireless sensor networks
with stochastic observation exchange 103

5.1 Introduction . 104

5.2 System model . 104

5.2.1 Motion model . 105

5.2.2 Measurement model 105

5.3 Distributed tracking algorithm 106

5.3.1 General structure . 106

5.3.2 Observation spread model 107

5.3.3 Weight update . 112

5.3.4 Particle exchange step 112

5.3.5 Estimation . 116

5.3.6 Summary of the DPF scheme 1 (DPF-1) 117

5.3.7 Summary of the DPF scheme 2 (DPF-2) 117

5.4 Analysis . 119

5.4.1 Out-of-sequence measurement handling 119

5.4.2 Propagation of observation data 121

5.5 Simulation results . 123

5.5.1 Target prior parameters and example 124

5.5.2 Network connectivity and Markov chain parameter
selection . 125

5.5.3 Effect of the number of processing elements 126

5.5.4 Synchronized versus non-synchronized particle exchange127

5.5.5 Effect of the number of total jumps 130

5.5.6 Smoothed estimates 131

5.5.7 Effect of the number of intermediate jumps 132

5.5.8 Limitations and remarks 135

5.6 Conclusions . 137

6 Summary and Conclusions 139

6.1 Summary . 139

6.1.1 Indoor tracking with RSS measurements 139

6.1.2 A distributed particle filter implementation on a WSN 141

iii

6.1.3 Distributed particle filtering on a WSN with random
spread of the measurement data 142

6.2 Future research . 143
6.2.1 Multiple targets . 143
6.2.2 Convergence results 144
6.2.3 Suboptimal DPF schemes 145

A Recursive computation of the prior density 147

B Derivation of the likelihood 149

C Acronyms and abbreviations 151

D Notation 155

References 156

iv

List of Tables

2.1 Kalman filter (KF) . 18

2.2 Extended Kalman filter (EKF) 20

2.3 Unscented Kalman filter (UKF) 24

2.4 Sequential importance sampling (SIS) 28

2.5 Sequential importance resampling (SIR) with a prior
importance function. 31

2.6 Auxiliary particle filter for SIR (A-SIR) 34

2.7 Rao-Blackwellized particle filter. 37

3.1 Number of observations and number of different distances
to which we collected RSS data in order to construct the
polynomial and the logarithmic models. 50

3.2 Rao-Blackwellized particle filter for the GSMM system. . . . 59

3.3 Auxiliary RBPF algorithm for the GSMM system. 61

3.4 Algorithm and parameters table for the RBPF and A-RBPF
algorithms. 64

3.5 Mean absolute error of the position for different ordered
polynomial observation models 65

3.6 Mean absolute error of the position for Gaussian likelihood
functions . 68

3.7 Mean absolute error of the position for truncated Gaussian
likelihood functions . 68

3.8 Mean absolute error of the position for logarithmic path-loss
models . 76

4.1 Distributed particle filtering (DPF) algorithm. 93

4.2 DPF and model parameters. 94

v

4.3 The processing time (seconds) per timestep of the DPF
algorithm for various values of N . The total number of
particles is constant (M = 100); 100/N per PE. Note that
this time does not include network activity. 99

4.4 The network activity (in terms of packets and bytes) per
timestep for J motes comprised of N PEs and J − N SEs.
We a store each 4-dimensional state yt with its weight wt in
20 Bytes (4 Bytes for each number) and each observation yt
in 1 Byte. 100

4.5 Memory usage for M particles, a state size of d = 4, and N
PEs. Assuming 4 Bytes to store floating point values (as is
the case on the iMote2). 100

5.1 Random spread of the observation data for the proposed DPF
scheme. 111

5.2 Synchronized particle exchange process for the random spread
DPF. 115

5.3 Random spread DPF scheme (DPF-1). 118

5.4 Random spread DPF scheme without synchronized particle
exchange (DPF-2). 120

5.5 Mean absolute error of the position in meters for the CPF
and the DRNA scheme . 127

5.6 Average mean absolute error (MAE) and standard deviation
of the absolute error (SDE) of the DPF-2 algorithm for
different types of jumps. The %iMAE and %iSDE indicate
the percentage increase in the mean and standard deviation
of the errors with respect to the DRNA. 131

5.7 Average mean absolute error (MAE) and standard deviation
of the absolute error (SDE) of the DPF-2 algorithm for a
total of B ≈ 68 jumps and a range of intermediate jumps
L ≈ B/4, B/3, B/2, B. The %iMAE and %iSDAE indicate
the percentage increase in the mean and standard deviation
of the errors with respect to L = B, that is, when the total
jumps are performed in one time instant. 133

vi

5.8 Average mean absolute error (MAE) and standard deviation
of the absolute error (SDE) of the DPF-2 algorithm for a
total of B = 120 jumps and a range of intermediate jumps
L = B/4, B/3, B/2, B. The %iMAE and %iSDAE indicate
the percentage increase in the mean and standard deviation
of the errors with respect to L = B, that is, when the total
jumps are performed in one time instant. 134

vii

viii

List of Figures

3.1 Indoor wireless sensor network scenario. The plot in the left
shows the deployment of J = 9 sensors and their positions
in the 6 × 10 meter area and the plot in the right shows the
positions of the mobile sensor when taking static measurements. 49

3.2 Raw RSS data collected by the mobile sensor from anchor
sensors 1, 2, 3, 4, 5 and 6. The x-axis shows the transmitter-
receiver distance and the y-axis shows the RSS measured in
dBs. The title of each graph displays the specific sensor
identifier, j = 1, 2, 3, 4, 5, 6, and its position in the 6 × 10
meter area. Note the difference in the transmitted power
from the two sensor types: sensors 1, 3, 5 are XBee-Pro and
sensors 2, 4, 6 are XBee. 49

3.3 Raw RSS data collected from sensors 1, 2, 3, 4, 5 and 6
for the logarithmic models. The x-axis shows the distance
among nodes and the y-axis shows the RSS measured in dBs.
The title of each graph displays the specific sensor identifier,
j = 1, 2, 3, 4, 5, 6, and its position in the 6 × 10 meter area.
Note the difference in the transmitted power from the two
sensor types: sensors 1, 3, 5 are XBee-Pro and sensors 2, 4, 6
are XBee. 50

ix

3.4 Mean (solid line) and standard deviation (dashed line) of
sensor 1. The scattered dots represent the raw data. The
fitted mean comes from polynomials g11(d) and g12(d) and the
standard deviation has been taken from from polynomials
h11(d) and h12(d). Figure (a) corresponds to model m1,t = 1
and polynomial order n = 3, Figure (b) corresponds to model
m1,t = 2 and polynomial order n = 3, Figure (c) corresponds
to model m1,t = 1 and polynomial order n = 5, Figure (d)
corresponds to model m1,t = 2 and polynomial order n = 5,
Figure (e) corresponds to model m1,t = 1 and polynomial
order n = 7, Figure (f) corresponds to model m1,t = 2 and
polynomial order n = 7. 52

3.5 Mean and standard deviation of the logarithmic observation
model. Figure (a) corresponds to model m = 1 and Figure
(b) to model m = 2. We use the same pair of models for
every sensor in the network. 59

3.6 Average execution time per time step of the RBPF and the
A-RBPF algorithms. 64

3.7 Results of target tracking with three different reference
trajectories and four types of synthetic observation data,
each one created according to the four likelihood functions
described in Section 3.3.1. The simulated trajectories are
plotted in solid black lines, the estimated trajectories in solid
red lines and the sensors are depicted with dark squares. To
perform tracking we have used four different algorithms that
correspond to an A-RBPF algorithm of 200 particles that
uses the four different likelihood functions. In each column we
show the tracking performance of a different algorithm and in
each row we show the tracking capabilities of the algorithms
for a specific trajectory. 67

x

3.8 Tracking performance of the A-RBPF algorithm with
experimental data: results of target tracking with three
different reference trajectories and real RSS observations
collected in the experimental setup described in Section 3.3.1.
The real trajectories are plotted in solid black lines, the
estimated trajectories in solid red lines and the sensors are
depicted with dark squares. To perform tracking we have
used four different algorithms that correspond to an A-
RBPF scheme that uses the four different likelihood functions
we introduced. In each column we show the tracking
performance of a different algorithm and in each row we
show the tracking capabilities of the algorithms for a specific
trajectory. 73

3.9 Tracking performance of the A-RBPF algorithm of 200
particles and the IMM-UKF with experimental data. The
real trajectories are plotted in solid black lines, the estimated
trajectories in solid red lines and the sensors are depicted with
dark squares. All the algorithms use logarithmic observation
models with Gaussian likelihoods. The column in the left
shows the outcome of the IMM-UKF tracker and the column
in the right illustrates the performance of the A-RBPF
algorithm. 74

4.1 Tracking scenario of 3.2×6.0 meters (a bird’s-eye view). The
bold line indicates the light source (a window). There are
J = 10 motes equipped with light sensors are arranged around
the edges, indicated by squares. The entry to the scenario lies
at the bottom-right corner. 83

4.2 The detection zone of a sensor, labeled Z in the plot, is the
area enclosed by a triangle with one vertex at the sensor and
the other two vertices at the sides of the light source. 84

4.3 The solid line represents the light signal measured when
the target (a walking person) moves randomly outside the
detection zone. The dashed line is the signal when the target
moves randomly inside the detection zone. Rather than a
reduction in the light level, the presence of a target within the
detection zone causes a large variance in the sensor readings. 85

xi

4.4 Histogram of the position error in meters for both the
distributed and centralized versions of the PF (both with a
total of 100 particles) over 100 simulated trajectories. The
plot in the left corresponds to the results of a CPF whilst the
plot in the right displays the results obtained with the DPF
algorithm. In both cases the error is about half a meter on
average. 95

4.5 The simulated (black) paths for for simulations 1–4, and the
corresponding DPF-estimated paths (red); each over T = 18
time steps. 96

4.6 Results of the DPF algorithm (solid line, N = 4) tracking a
target walking a prescribed trajectory (dashed line). Of the
three straight lines making up the true path, each is walked
slightly faster than the previous one, with a pause of about
one second taken at the point where the direction is changed
(indicated by hollow circles). The path is walked in T = 18
timesteps (18 seconds in our setup). 98

5.1 Example of two dimensional target trajectory and associated
observation . 124

5.2 Network topology and observation spread probability. 126
5.3 Mean absolute error of the position in meters for the DPF-1

and the DPF-2 for a range of number of total jumps. 128
5.4 Average transmitting PEs per time instant in the particle

exchange step for the DPF-1. 128
5.5 Symmetric difference and normalized symmetric difference

between the sets of observations of sensor n = 7 and its
neighbors. 130

5.6 Average MAE of the position for the CPF, DRNA and
DPF-2 obtained with smoothed estimates. The estimation
has been performed at estimation instants of t − k where
k = 0, 1, 2, ..., 20 with observation up to t. 132

5.7 Average MAE of the position for the DPF-2 obtained with
smoothed estimates. These experiments have been performed
for a fixed number of total retransmissions of B = 68 (left)
and B = 180 (right). We have used K = 100 particles per PE. 135

xii

Chapter 1

Introduction

1.1 Wireless sensor networks

Wireless sensor networks (WSNs) are one of the most extensively researched
technologies of the past decade [59, 112]. The features that make them so
attractive is that they can perform monitoring tasks in an autonomous and
cheap manner for a long period of time compared to other technologies.
By definition a WSN is a group of spatially distributed nodes that have
sensing and computing capabilities. Its main goal is to monitor the physical
environment around it and, to do so, sensors may measure different physical
or environmental conditions (temperature, pressure, light, acceleration,
sound, humidity, images, etc.). Once sensors have taken measurements
they communicate with each other via a wireless technology (e.g. bluetooth,
ZigBee or WiFi) and then they fuse all the information. Due to the diversity
of types of physical measurements they can collect and process, there is a
wide variety of applications in which WSNs are used: military surveillance,
infrastructure security, environmental and habitat monitoring, industrial
sensing, traffic control, etc. [59].

As new applications arise and new, usually smaller, sensors are developed
engineers keep on searching for cheaper, faster and more robust WSNs.
Specifically, researchers are focusing on

• increasing the WSN life via reducing the battery usage of the nodes
[58, 107, 52],

• reducing the communication load in order to improve the reliability of
the network [119, 54, 82],

1

• increasing the reliability and robustness to node failures [59, 61, 43]
and

• reducing the size of the sensors and, thus, reducing costs [59, 119].

These trends (longer living, cheaper and more robust WSNs with reliable
communications) lead to algorithms that have specific, and sometimes
conflicting, requirements. For example, if we want the batteries of the
nodes to last for a longer period of time we have to design algorithms that
have a low computational complexity, where each node hardly makes any
processing and focuses on transmitting the information to a central node that
performs the main part of the computation. However, if we want to improve
robustness towards single node failure we need to avoid the dependence on
a central node, and we hence aim at distributing the processing over the
network. This setting, unfortunately, increases the communication load in
the WSN. Overall, the need for new algorithms that meet some of these
specific requirements has increased over the past few years.

In sensor networks, accurate localization of wireless devices is a
crucial requirement for many emerging location-aware systems [93, 103].
Fields of applications include search and rescue, medical care, intelligent
transportation, location-based billing, security, home automation, industrial
monitoring and control, location-assisted gaming, and social networking
[106, 74]. Further, many applications of WSNs require knowledge of the
position of objects or persons of interest, often termed “targets”. One
example of a “target tracking” application is the update of inventory in
supermarkets. Stores such as Wal-Mart have implemented RFID systems in
their warehouses in such a way that all items from various manufacturers
being stored have a tag attached to them [115]. Sensors discretely attached
to walls or embedded in doors and ceilings, track the location history and
use of items. The sensor network can automatically locate items, report
on those needing servicing and report unexpected large-scale movements of
items or significant changes in inventory levels. Some systems today (for
example, those based on bar-codes) provide inventory tracking; full sensor-
net based systems will eliminate manual scanning and provide more data
than simply location.

It has also been suggested [96] that planning trip itineraries could become
very simple if every vehicle in a large city has one or more attached sensors.
These sensors capable of detecting their location, traffic speed and densities,
road conditions and so on could exchange information summaries such as
which roads are highly congested and whether any alternate routes should

2

be chosen. We can also know about the driving conditions or pollution levels
and routes could be planned based on any social activities in the area as well.

During the last few years, there have been intensive research activities in
the field of WSN-based positioning and tracking and various solutions have
been investigated [111, 113]. The main trend now is toward the integration
of heterogeneous technologies to ensure global coverage and high accuracy
in all possible scenarios, leading to a seamless localization system available
anywhere anytime. This is often known as the localization problem in sensor
networks [93]. While satellite-based navigation is well consolidated for open
sky scenarios, localization in harsh environments (e.g., indoor or in urban
canyons) is still an open issue that requires the use of complementary WSN
technologies.

1.2 Localization in WSNs

Localization can be performed on static or moving objects. Usually,
localization performed on static objects is referred to as positioning
whilst tracking and navigation are terms associated to localization of
moving objects. The difference between tracking and navigation is purely
conceptual. In navigation, the goal is to estimate the position and velocity
of one’s own platform or vehicle, while in tracking, the position and velocity
of some other object or person is to be inferred.

The localization methodology changes drastically depending on the
environment (either indoor or outdoor), essentially due to the types of
technologies available in each case. For example, in outdoor scenarios very
often one can solve the localization problem with a satellite positioning
system (e.g. GPS) however this technology is not yet available in indoor
scenarios despite some recent efforts [73, 88, 21]. On the other hand, in
indoor scenarios it is easier to deploy WiFi or bluetooth nodes that are
not readily available in many outdoor settings. Additionally, the same
technology may behave differently depending on the environment. For
example, ZigBee motes1 have a specific radio signal strength decay in
outdoor environments, while in indoor scenarios the rays ricochet off the
walls and furniture creating reflected and diffracted versions [92, 46]. Due
to these reasons, indoor and outdoor localization are research areas of their
own and the type of algorithms one can use in each environment varies
greatly.

1A “mote” is understood here as a network node with combined sensing, communication
and processing capability.

3

In the sequel we briefly review the usual types of position-dependent data
that can be collected with various sensing technologies and then provide a
quick overview of positioning, navigation and tracking algorithms.

1.2.1 Physical measurements

Most of the physical measurements used for localization can be categorized
in two types: range measurements and bearing measurements. Localization
with range measurements is performed via the principle of trilateration and
localization with bearing measurements via triangulation [48].

Active radar and sonar sensors emit a pulse and measure the round trip
time for the returned pulse, which can be converted into range information.
This measurement is known as time of arrival (ToA). Passive radar and
sonar systems listen to the target’s own emission and then only the difference
between two pairs of sensors can be computed. This type of measurement
is known as time difference of arrival (TDoA). The power of radio, acoustic,
magnetic and seismic waves decays exponentially with distance, which also
provides a kind of range measurement. This type of measurement is denoted
received signal strength or RSS. Radar and similar sensors with directional
antennas assign bearing to detected targets. Vision sensors such as cameras
can provide two angles to objects, but no range data. Antenna arrays and
lobe forming techniques also give bearing in the form of angle of arrival
(AoA) information. Other sensors can measure the Doppler shift of signal
frequencies in order to estimate the relative velocity of a moving object with
respect to the sensor platform [33].

Among these measurement types, RSS is a specially popular type of
data because we can use the radio transmitter of the mote as a sensor itself.
Furthermore, other elements containing radio transmitters of other types,
such as WiFi, ZigBee or bluetooth, can become part of the WSN as required.
The behavior of the different types of RSS measurements, however, depends
on the specific technology.

The type of physical measurements available, and their mathematical
description, is very important as it strongly influences the type of localization
algorithm we can use.

1.2.2 Positioning

The positioning problem is that of estimating the position of a static
object given some measurements related to it. If we know the relationship
between the obtained measurement and the target (that is, if we know

4

the measurement function) and possibly the statistics of the observation
noise, the positioning problem reduces to a classical estimation problem. In
such a situation there are a variety of estimation methods that can solve
this problem. Some of the most used techniques are least squares (LS),
maximum likelihood (ML), nonlinear least squares (NLS), weighted least
squares (WLS), separable least squares (SLS), etc. [48].

Depending on the type of measurement function, namely, depending on
whether it is linear or nonlinear with respect to the position of the target, the
estimation problem may become hard. For example, in [83] the authors pose
the problem of positioning with a WSN as a soft convex feasibility problem
and they consider the well-known projection onto convex sets technique
to solve it. In [69] they propose a joint communication and positioning
system based on ML channel parameter estimation. The parameters of
the physical channel, needed for positioning, and the channel coefficients of
the equivalent discrete-time channel model, needed for communication, are
estimated jointly using a priori information about pulse shaping and receive
filtering. In [5], they propose two (ToA) estimators for ultra-wideband
(UWB) signals based on the phase difference between the discrete Fourier
transforms (DFT) of the transmitted and received signals

1.2.3 Navigation and tracking

In navigation and target tracking problems, the goal is to keep estimating
the position and velocity of a moving object over time. For such problems
it is most natural to represent the physical system of interest by means of a
dynamic model [12, 99] that describes, in a quantitative manner,

• how the target moves over the region monitored by the WSN and

• how the measurements collected by the WSN relate to the target
position and/or velocity.

A popular class of models that can appropriately provide this description is
that of random state-space models. State space models consist of a set of
differential or difference equations (depending on whether a continuous or
discrete time representation is sought) that describes a physical system.This
type of representation provides a convenient and compact way to model and
analyze systems with multiple inputs and outputs. Each model consists
of two parts: the state process and the observation process. The state
process is thought of as a hidden underlying stochastic process and its
evolution over time is described by a state equation. The observation process

5

is supposed to be accessible and is related to the state process via the
measurement or observation equation. In tracking applications the state
of the system contains all the relevant kinematic information regarding the
target (position, velocity, heading, etc.) and the observation process models
the measurements collected by the WSN.

Given the state equation and measurement equation in state-space form,
we are faced with a computational inference problem where we wish to
estimate the state process from the sequence of measurements obtained from
it. Furthermore, we wish to estimate the state at each time instant, given the
measurements up to and including that time instant. Due to the amount of
data that has to be processed, we aim at a sequential and recursive solution,
so that we do not have to recompute everything from the very beginning at
each time step.

Filtering (or stochastic filtering) is precisely the operation of extracting
the information about the systems state at a particular time instant by using
data up to that time instant. Specifically, it attempts to construct estimators
of the state conditional on the sequence of received measurements. There
are different types of filters that can solve this problem. The H∞ filter
can perform filtering without any assumption on the noise distribution [8].
Gaussian and recursive least squares (RLS) filters have also been widely used
[48]. We focus on Bayesian filters [44] in the sequel, because they provide
a solution that is often computationally appealing and mathematically
consistent for state-space models.

1.2.4 Bayesian filters

Given a prior probability distribution for the state process and a state-space
model, the optimal Bayesian filter computes the posterior distribution of
the state given the observations collected up to a given time instant [10].
Unfortunately, such computation can only be carried out exactly in a few
exceptional cases, including when the model is linear Gaussian (and the
solution is given by the well known Kalman filter [116]) or the state space
is discrete and finite.

In most practical situations however we are faced with highly nonlinear,
non-Gaussian and non-stationary problems with continuous valued target
states. As a consequence we cannot compute the optimal Bayesian filter and
instead we are forced to use approximations. One popular approach consists
in approximating the state-space equations with linear functions in order to
later on apply the Kalman filter (KF). This particular approach is called the
extended Kalman filter (EKF) [3]. Several other variants of the standard KF

6

have been proposed, including the popular unscented Kalman filter (UKF)
[65]. This filter that approximates the posterior pdf as a Gaussian which, in
turn, is represent by a set of deterministically chosen set points. The idea
behind the UKF is to propagate these points through the appropriate non
linear function rather than performing an analytical approximation to the
state-space model.

Another approach consists in the discretization of the possible target
values. This, in a sense, is a numerical approximation of the Bayesian
integral. The methods following this approach are called grid based methods
[99]. Another possible approach is to approximate the posterior pdf as a
mixture of Gaussians. This methods, called the Gaussian sum filters [3],
can pose severe difficulties if the number of Gaussians of the mixture is
unknown.

Over the past twenty years particle filters (PFs) [40, 41, 47, 77, 99, 35, 22]
have attracted interest from practitioners as an approximation to the
optimal Bayesian filter for target tracking [99, 7]. PFs perform sequential
Monte Carlo (SMC) estimation based on point mass representations of
the probability distribution of interest. The basic principle of the PFs is
the sequential application of the importance sampling methodology. Their
main advantage is their capability of representing nearly any probability
distribution and thus of handling any state-space model while their
disadvantage lays in their computational cost. However with the advent
of more powerful computers and the development of more efficient particle
filtering algorithms they now have earned an important place in the tracking
community (for example, there is an open source Matlab toolbox called PF
Toolbox that includes the SIR and SIS particle filters, as well as the extended
Kalman filter).

1.3 Contributions

This thesis is mainly concerned with two target tracking problems. The first
one is the problem of indoor tracking using received signal strength (RSS)
as a position-dependent data measurement. The second one is the problem
of devising a distributed particle filtering algorithm for tracking in WSNs.
Specifically, the main contributions of this work are the following.

1. A class of state-space models suitable for target tracking applications
in highly structured physical environments and a

2. family of efficient PF algorithms for this class of models.

7

3. Specific models fitted with experimental RSS indoor data and
experimental performance results for real-world time series.

4. An experimental demonstration of the applicability of a class of
distributed PFs on a WSN environment for target tracking with binary
data.

5. A novel distributed PF methodology with an stochastic mechanism for
data sharing among the nodes of a WSN.

1.3.1 Indoor tracking with RSS

Even though RSS is a very popular type of data for tracking, it is highly
influenced by multipath propagation and, therefore, it turns out very hard
to adequately model the correspondence between the received power and
the transmitter-to-receiver distance. Although various models have been
proposed in the literature, they often require the use of very large collections
of data in order to fit them and display great sensitivity to changes in the
radio propagation environment. We advocate the use of switching multiple
models that account for different classes of target dynamics and propagation
environments and propose a flexible probabilistic switching scheme. The
resulting state-space structure is termed a generalized switching multiple
model (GSMM) system. Within this framework, we investigate two types of
models for the RSS data: polynomial models and classical logarithmic path-
loss representations. The first model is more accurate, however it demands
an offline model-fitting step. The second one is less precise but it can be
fitted using a simple online procedure.

We have designed two tracking algorithms built around a Rao-
Blackwellized particle filter, tailored to the GSMM structure, and assessed
their performance both with synthetic and experimental measurements.

1.3.2 Tracking with distributed particle filtering

We also address the design of a particle filter (PF) that can be implemented
in a distributed manner over a network of wireless sensor nodes, each of
them collecting their own local data. This is a problem that has received
considerable attention lately and several methods based on consensus,
the transmission of likelihood information [56], the truncation and/or
the quantization of data have been proposed [30]. However, all existing
schemes suffer from limitations related either to the amount of required
communications among the nodes or to the accuracy of the filter outputs.

8

In this work we propose a mathematically sound distributed particle filter
for tracking in a real- world indoor wireless sensor network comprised of
low-power nodes. The algorithm is built around the distributed resampling
with non-proportional allocation (DRNA) algorithm [15] that guarantees the
properness of the particle approximations produced by the filter. We present
the results of both real-world experiments and computer simulations that use
models fitted with real data. In particular, we have carried out real-world
tests that show how the proposed distributed particle filter can successfully
track a moving target using a network of passive sensors (that provide
measurements of ambient light intensity). Additionally, a series of computer
simulations run with experimentally-fitted models show a precision of around
half a meter for the same scenario.

Even though the DRNA method has been shown to be both efficient and
accurate when compared with centralized PFs, it places stringent demands
on the communications among nodes that may turn out impractical for
large WSNs. We investigate how to reduce this communication load by
using (i) a random process for the spread of data over the WSN and (ii)
methods that enable the out-of-sequence processing of sensor observations.
A numerical illustration of the performance of the new algorithm compared
with a centralized PF is provided.

1.4 Thesis organization

This thesis is divided in six chapters, being Chapter 1 this Introduction:

Chapter 2 provides the necessary mathematical background required to
understand the rest of the thesis and it has three sections. The first section
poses the tracking problem, from a Bayesian point of view, describing its
solution for the linear filtering problem. The following section describes
the nonlinear tracking Monte Carlo numerical integration methodology and
its sequential version, i.e., the PF. The third section describes some of the
refined PF versions, which are used and modified in the rest of the thesis.

Chapter 3 is devoted to the engineering of system models and particle
filters that improve the tracking with RSS in indoor scenarios with multipath
effects. It is divided into six sections. We first introduce the generalized
switching multiple model as a general state space model proposed to describe
the behavior of both the target dynamics and the RSS observations in indoor
scenarios. Later on we devote a section to the fitting of observation functions
and noise variances to real experimental data. We then move on to describe
possible particle filtering algorithms that can both handle and exploit the

9

characteristics of the system model. The next sections provide a study based
on simulated and experimental results and there is a final section with some
concluding remarks.

Chapter 4 focuses on the design of a distributed particle filter for tracking
in WSNs and is divided into four sections. The first section describes the
system model of the tracking problem. The second section describes the
distributed resampling with non-proportional algorithm (DRNA) and gives
details on how it can be implemented as a fully decentralized PF for tracking
on a WSN. Subsequently, we show some simulated and experimental results
and conclude with a discussion of the advantages and disadvantages of the
method.

Chapter 5 is focused on a distributed algorithm that relaxes the
computational requirements of the DRNA procedure and is divided into
four sections. The first section describes the system model of the
tracking problem. The second section presents the random observation-
spread procedure that we propose in order to alleviate the communication
load implied by the DRNA scheme. We further describe the resulting
DRNA algorithm with the required modifications that handle the new
communication model. The next sections are devoted to a mathematical
analysis of the resulting algorithm in terms of communication propagation
speed and accuracy. Finally, we provide a numerical study with synthetic
data and some concluding remarks.

Chapter 6 summarizes the thesis contributions and presents some
possible future research lines.

10

Chapter 2

Particle filters for target
tracking

In this chapter we present some background material needed to understand
the rest of this work. In particular, we describe the solution to the target
tracking problem from a Bayesian filtering point of view. This, in turn,
takes us to the basic particle filter. We also describe some improved particle
filters that will be later used and modified for our specific applications.

2.1 Notation

Scalar magnitudes are denoted using regular face letters, e.g., x, while
matrices and vectors are written as bold-face upper-case and lower-case
letters, respectively, e.g., matrix X and vector x. We use letter p to denote
the true probability density function (pdf) of a random variable or vector.
This is an argument-wise notation, common in Bayesian analysis. For two
random variables x and y, p(x) is the true pdf of x and p(y) is the true
pdf of y, possibly different. The conditional pdf of x given y is written
p(x|y). Exactly the same notation is used for probability mass functions
(pmf’s). Note that a pmf can be formally handled in the same way as a pdf
by constructing it as a train of Dirac delta functions, denoted δ(.), centered
at the points where the probability masses are located.

11

2.2 Bayesian filtering for target tracking

2.2.1 State-space model representation

Using state-space notation we represent all the relevant information
regarding the moving target at time instant t ∈ N as a real-valued random
vector, xt ∈ R

nx, of dimension nx (note though that complex representation
is also possible). The measurements collected from the sensors at time
instant t are represented with vector yt ∈ R

ny , where ny is the dimension
of the measurement vector. We use notation x0:t and y1:t to refer to
the sequence of state vectors from time 0 to time t and the sequence of
measurement vectors from time 1 to time t respectively. We then model x0:t

and y1:t as two Markov stochastic processes in discrete time, namely,

xt = ht(xt−1,ut), (2.1)

yt = gt(xt, εt), (2.2)

where ht : R
nx → R

nx and gt : R
nx → R

ny are two vector-valued
functions which can be either fixed in time or time varying, ut represents
the dynamic noise of the process and εt represents the measurement noise.
Correspondingly, ht is often referred to as the state transition function and
gt as the observation or measurement function.

Depending on the type of target we are tracking (vehicle, person, robot,
etc.) and depending on the type of measurements we are handling (RSS,
AoA, TDOA, etc.) we design ht and gt so that they describe both the type
of movement of the target and the related measurements as accurately as
possible. In the sequel, we describe two commonly used models for target
tracking.

Example 1: Constant velocity model with received signal strength
(RSS) measurements.

One popular dynamic function is the so-called constant velocity (CV) model
[11]. This function represents the movement of a target in a two dimensional
region. The velocity is modeled as a discrete-time random walk, which
amounts to assuming that it is piece-wise constant in continuous time (hence
the name of the model). The target state vector contains the position,
rt = [r1,t, r2,t]

⊤, and the velocity, vt = [v1,t, v2,t]
⊤, in a two dimensional

region, hence we define the state vector as xt = [r⊤t ,v
⊤
t]

⊤, and the state

12

equation is defined as




r1,t
r2,t
v1,t
v2,t




︸ ︷︷ ︸
xt

=




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1




︸ ︷︷ ︸
A




r1,t−1

r2,t−1

v1,t−1

v2,t−1




︸ ︷︷ ︸
xt−1

+




1
2T

2 0 0 0
0 1

2T
2 0 0

0 0 T 0
0 0 0 T




︸ ︷︷ ︸
Q




u1,t
u2,t
u3,t
u4,t




︸ ︷︷ ︸
ut

,

(2.3)

where A is a transition matrix that depends on the time-discretization
period T , xt−1 represents the position and velocity in the previous time
step and ut is a 4 × 1 real-valued Gaussian vector with zero mean and
known covariance matrix, Σu. As a result, the noise term Qut is a 4 × 1
real Gaussian vector, with zero mean and covariance matrix QΣuQ

⊤, that
represents the effect of unknown accelerations.

We assume that we receive RSS measurements coming from a WSN
composed of J sensors. The measurement provided by the j-th sensor at
time t is denoted as yj,t and the collection of J observations are represented
as vector yt = [y1,t, y2,t, y3,t . . . yJ,t]

⊤. In order to describe the relationship
between the observed RSS at sensor j, yj,t, and the target position, rt, it is
common to use the logarithmic path-loss model [97]

yj,t = L0 + γj10 log10

(
d0
dj,t

)
+ εj,t, (2.4)

where dj,t = ||rt − sj || is the distance between the position of sensor j and
the target at time t; d0 is a known reference distance; L0 is the path loss at
the reference distance; γj is the path loss exponent and εj,t ∼ N (εj,t; 0, σ

2
εj)

is normally distributed, zero-mean noise with variance σ2
εj . Note that the

noise contributions are assumed independent across different sensors and
that the sensor positions, sj, j = 1, 2, . . . , J , are known.

Example 2: Coordinated turn model with angle of arrival (AoA)
measurements.

The coordinated turn (CT) model is a mathematical representation that
completely characterizes the dynamics of a target turning at an invariant

13

and known angle, ω [49]. The state equation then becomes




r1,t
r2,t
v1,t
v2,t




︸ ︷︷ ︸
xt

=




1 0 sin(ωT)
ω − cos(ωT)−1

ω

0 1 1−cos(ωT)
ω

sin(ωT)
ω

0 0 cos(ωT) − sin(ωT)
0 0 sin(ωT) cos(ωT)




︸ ︷︷ ︸
A(ω)




r1,t−1

r2,t−1

v1,t−1

v2,t−1




︸ ︷︷ ︸
xt−1

+




1
2T

2 0 0 0
0 1

2T
2 0 0

0 0 T 0
0 0 0 T




︸ ︷︷ ︸
Q




u1,t
u2,t
u3,t
u4,t




︸ ︷︷ ︸
ut

.

(2.5)

Compared to the CV model, the CT function has a transition matrix, A(ω),
that depends now on both the time-discretization period T and the turning
angle, ω.

If we assume that we receive a bearing angle or AoA measurement coming
from sensor j, the measurement equation becomes

yj,t = arctan

(
s2,j − x2,t
s1,j − x1,t

)
+ εj,t, j = 1, . . . , J, (2.6)

where εj,t ∼ N (εj,t; 0, σ
2
εj) is normally distributed, zero-mean noise with

variance σ2
εm and sj = [s1,j, s2,j]

⊤ is the position of the jth sensor in the two
dimensional region.

Once we have a generic state-space model, we can define the Bayesian
filtering problem where we seek filtered estimates of the state xt based on
the sequence of all available measurements up to time t, y1:t.

2.2.2 Bayesian filtering

Bayesian filtering is the process of recursively quantifying a degree of belief
in the state xt taking different values given the data, y1:t, up to time t. This
process amounts to recursively constructing the posterior pdf p(xt|y1:t) at
each time instant t [10]. In order to do so the Bayesian filter assumes
knowledge of three densities:

• p(x0), the a priori target state density,

• p(xt|xt−1), the state evolution or state transition density, and

14

• p(yt|xt), the likelihood function.

Given the system model (target state and observations) in a state-space
form, the transition density, p(xt|xt−1), is characterized by the state
equation (2.1) and the likelihood, p(yt|xt), is described by the measurement
equation (2.2). Note that, since the noise terms εj,t are assumed to be
independent across sensors, the observations y1,t, y2,t, y3,t . . . yJ,t become

conditionally independent given the state xt, i.e., p(yt|xt) =
∏J

j=1 p(yj,t|xt).
The process of filtering consists in two steps performed in a recursive

manner: prediction and update [99]. Assume that the posterior pdf at time
instant t− 1, p(xt−1|y1:t−1), is available. The prediction step involves using
knowledge of the state equation to obtain the predictive density

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (2.7)

At time instant t, when a new measurement, yt, becomes available, we
proceed to update the filter with new information using Bayes’ rule:

p(xt|y1:t) =
p(yt|xt,y1:t−1)p(xt|y1:t−1)

p(yt|y1:t−1)

∝ p(yt|xt)p(xt|y1:t−1) (2.8)

where the (omitted) normalizing constant is

p(yt|y1:t−1) =

∫
p(yt|xt)p(xt|y1:t−1)dxt. (2.9)

Once we have knowledge of the posterior density p(xt|y1:t), usually called
the filtering density, we can compute optimal estimates of the state with
respect to different criteria. For example, the minimum mean-square error
(MMSE) estimate is the conditional mean of xt,

x̂MMSE
t , E{xt|y1:t} =

∫
xtp(xt|y1:t)dxt (2.10)

where E{xt|y1:t} denotes the expected value of xt conditioned upon y1:t.
The maximum a posteriori (MAP) estimate, in the other hand, is the
maximum of p(xt|y1:t), i.e.,

x̂MAP
t , argmax

xt

p(xt|y1:t). (2.11)

The recurrence of (2.7) and (2.8) form the basis of the optimal Bayesian
solution to the recursive filtering problem. An algorithm is said to be

15

optimal, in Bayesian filtering, when it obtains a complete characterization of
p(xt|y1:t) in a recursive manner. However this solution is simply conceptual
in the sense that, in general, it cannot be determined analytically in closed
form. Only in a restrictive set of cases, namely, when the state equation
and the measurement equation are linear and Gaussian, or when the state
space is discrete and finite, can the posterior be computed analytically. In
the rest of the cases we have to resort to suboptimal techniques.

2.2.3 The Kalman filter and its extensions

The Kalman filter

When both the dynamic (2.1) and observation (2.2) models are linear and
Gaussian, the densities p(xt|y1:t), t = 1, 2, . . ., are also Gaussian and can be
exactly computed using the Kalman filter [99]. Specifically, in the Bayesian
formulation of the Kalman filter we assume that

• ut y εt are independent and have known Gaussian distributions,

• the dynamic model is a linear function of xt−1 and ut, and

• the observation model is a linear function of xt and εt.

Let us, thus, assume we have the linear state-space model

xt = Htxt−1 +Wtut, (2.12)

yt = Gtxt +Vtεt, (2.13)

where the noise sequences are mutually independent, zero mean, white
and Gaussian with identity covariance matrices, i.e., ut ∼ N (0, Inx) and
εt ∼ N (0, Iny) and Ht, Wt, Gt and Vt, are known matrices. Then, given
p(xt−1|y1:t−1) = N (xt−1;xt−1|t−1;Pt−1|t−1), the recursive formulae of (2.7)
and (2.8) yield

p(xt|y1:t−1) = N (xt;xt|t−1;Pt|t−1), (2.14)

p(xt|y1:t) = N (xt;xt|t;Pt|t), (2.15)

where the prediction step (2.14) involves the computation of [3]

x̂t|t−1 = Htx̂t−1|t−1

Pt|t−1 = HtPt−1|t−1H
⊤
t +WtW

⊤
t

(2.16)

16

and, for the update step, we compute

St = GtPt|t−1G
⊤
t +VtV

⊤
t

Kt = Pt|t−1G
⊤
t S

−1
t

x̂t|t = x̂t|t−1 +Kt(yt −Gtx̂t|t−1)

Pt|t = Pt|t−1 −KtGtPt|t−1

. (2.17)

Matrix Kt is often termed the Kalman gain, while St is the covariance
matrix of the innovation νt = yt − Gtx̂t|t−1. The recursive application
of these equations gives us the mean and covariance matrix of the
sequence of posterior probability distribution functions, namely p(xt|y1:t) =
N (xt; x̂t|t,Pt|t), for t = 1, 2,

Table 2.1 summarizes the Kalman filter algorithm for linear state-space
models.

The extended Kalman filter

Many important real world applications are nonlinear and/or non-Gaussian,
therefore the Kalman filter cannot be applied. A very popular approach to
surmount this problem is the linearization of the state space model in order
to later apply the Kalman filter to it. The main advantage of this so-called
extended Kalman filter (EKF) [116] resides in the simplicity of the linear
approximation. It consists in approximating ht and gt with a first-order
Taylor series expansion and evaluating the linearized function at the current
state estimate, either x̂t−1|t−1 or x̂t|t−1, respectively. To be specific, let us
assume a general state-space model

xt = ht(xt−1) +Wtut,

yt = gt(xt) +Vtεt,
(2.18)

where ht and gt are known differentiable nonlinear functions, the random
sequences ut and vt are mutually independent zero-mean white Gaussian
with identity covariance matrices, i.e., ut ∼ N (0, Inx) and εt ∼ N (0, Iny),
and matrices Wt and Vt are also known. The EKF prediction step involves
the computation of

x̂t|t−1 = ht(x̂t−1|t−1)

Pt|t−1 = ĤtPt−1|t−1Ĥ
⊤
t +WtW

⊤
t

(2.19)

17

Table 2.1: Kalman filter (KF)

At t = 0:

1. Assign a mean vector x̂0 and a covariance matrix P0 to the
first time instant t = 0, all taken from the prior distribution
p(x0; x̂0,P0).

For t > 0:

1. Compute the predicted state vector, x̂t|t−1, and predicted

covariance matrix, P̂t|t−1,

x̂t|t−1 = Htx̂t−1|t−1,

Pt|t−1 = HtPt−1|t−1H
⊤
t +WtW

⊤
t .

2. Collect a new observation yt.

3. Compute the covariance innovation matrix, St, the Kalman gain,
Kt and the posterior mean vector, x̂t|t and covariance matrix,
Pt|t,

St = GtPt|t−1G
⊤
t +VtV

⊤
t ,

Kt = Pt|t−1G
⊤
t S

−1
t ,

x̂t|t = x̂t|t−1 +Kt(yt −Gtx̂t|t−1),

Pt|t = Pt|t−1 −KtGtPt|t−1.

18

and the update step is

Kt = Pt|t−1Ĝ
⊤
t S

−1
t

St = Ĝt−1Pt|t−1Ĝ
⊤
t−1 +VtV

⊤
t

x̂t|t = x̂t|t−1 +Kt(yt − gt(x̂t|t−1))

Pt|t = Pt|t−1 −KtĜtPt|t−1

(2.20)

where Ĥt and Ĝt, are the Jacobian matrices of ht and gt, respectively,
evaluated at x̂t−1|t−1 and x̂t|t−1, i.e.,

Ĥt =




∂h1,t(x1,t−1)
∂x1,t−1

· · ·
∂h1,t(xnx,t−1)

∂xnx,t−1

...
. . .

...
∂hny,t(x1,t−1)

∂x1,t−1
· · ·

∂hny,t(xnx,t−1)

∂xnx,t−1




xt−1=x̂t−1|t−1

and

Ĝt =




∂g1,t(x1,t)
∂x1,t

· · ·
∂g1,t(xnx,t)

∂xnx,t

...
. . .

...
∂gny,t(x1,t)

∂x1,t
· · ·

∂gny,t(xnx,t)

∂xnx,t




xt=x̂t|t−1

Table 2.2 summarizes the Extended Kalman filter algorithm.
Even though the EKF produces a solution to the nonlinear problem

that is easy to use, it has some important drawbacks. Indeed, the analytical
linearization can produce highly unstable filters and for certain practical
situations it may be difficult to compute the Jacobian matrices [114].
In particular, note that ht and gt must be differentiable to apply the
approximation procedure. In general, the EKF tends to work well in systems
with sufficiently slow dynamics.

The unscented Kalman filter

The unscented Kalman filter (UKF) was first introduced in [114, 66] in
order to surmount the problems faced with the EKF and it has since
become a very popular technique. The same as the EKF, it approximates
the posterior density p(xt|y1:t) as a Gaussian. However it uses some
deterministically chosen sample points, {X i}N−1

i=0 , and associated weights,
{W i}N−1

i=0 , to characterize it. The main idea of the UKF is that, when
propagated through a nonlinear function, these sample points capture the
true mean and covariance. This is not necessarily true for the analytic
approximations performed by the EKF.

19

Table 2.2: Extended Kalman filter (EKF)

At t = 0:

1. Assign a mean vector x̂0 and a covariance matrix P0 to the
first time instant t = 0, all taken from the prior distribution
p(x0; x̂0,P0).

For t > 0:

1. Compute the Jacobian matrix of ht, denoted, Ĥt, and evaluate
it at xt−1 = x̂t−1|t−1.

2. Compute the predicted state vector, x̂t|t−1, and predicted
covariance matrix, Pt|t−1, as

x̂t|t−1 = ht(x̂t−1|t−1),

Pt|t−1 = ĤtPt−1|t−1Ĥ
⊤
t +WtW

⊤
t .

3. Compute the Jacobian matrix of gt, denoted, Ĝt, and evaluate it
at xt = x̂t|t−1.

4. Compute the covariance innovation matrix, St, and the Kalman
gain, Kt, as

St = Ĝt−1Pt|t−1Ĝ
⊤
t−1 +VtV

⊤
t ,

Kt = Pt|t−1Ĝ
⊤
t S

−1
t .

5. Collect the new observation yt.

6. Compute the filter mean, x̂t|t, and covariance matrix, Pt|t,

x̂t|t = x̂t|t−1 +Kt(yt − gt(x̂t|t−1)),

Pt|t = Pt|t−1 −KtĜtPt|t−1.

20

Specifically, given a set ofN deterministic samples X i
t−1 and their weights

W i, i = 0, . . . , N − 1, the prediction step involves the computation of

x̂t|t−1 =
N−1∑

i=0

W iht(X
i
t−1), (2.21)

Pt|t−1 = WtW
⊤
t +

N−1∑

i=0

W i
[
ht(X

i
t−1)− x̂t|t−1

] [
ht(X

i
t−1)− x̂t|t−1

]
.⊤ (2.22)

The sample points, X i
t−1, are then propagated through the nonlinear

function, ht, in order to obtain the predictive samples

X i
t|t−1 = ht(X

i
t−1), i = 1, . . . , N, (2.23)

which, in turn, are used to compute the predictive observation

ŷt|t−1 =

N−1∑

i=0

W igt(X
i
t|t−1). (2.24)

Finally, the update step is

x̂t|t = x̂t|t−1 +Kt(yt − ŷt|t−1)

Pt|t = Pt|t−1 +KtStK
⊤
t ,

(2.25)

where the Kalman gain, Kt, and the innovation covariance matrix, St, are
computed as

Kt = PszS
−1
t

St = VtV
⊤
t +Pzz

with

Pxz =
N−1∑

i=0

W i
(
X i
t|t−1 − x̂t|t−1

)(
gt(X

i
t|t−1)− ŷt|t−1

)⊤

(2.26)

and

Pzz =
N−1∑

i=0

W i
(
gt(X

i
t|t−1)− ŷt|t−1

)(
gt(X

i
t|t−1)− ŷt|t−1

)
.⊤

21

Selection of sample points
The selection of sample points is based on the unscented transform [102]
which is often used to represent probability distributions of random variables
resulting from nonlinear transformations. Consider propagating a random
variable xt with mean x̂t and covariance Pt through an arbitrary nonlinear
function gt : R

nx → R
ny to produce a random variable yt, i.e.,

yt = gt(xt). (2.27)

The first two moments of yt can be computed as follows. First, 2nx + 1
weighted sample points, (X i

t ,W
i
t), are chosen deterministically, so that they

completely describe the true mean, x̂t, and the true covariance, Pt, of xt.
A scheme to satisfy this requirement is [65]:

X 0
t = x̂t W0

t =
κ

(nx + κ)
i = 0

X i
t = x̂t +

(√
(nx + κ)Pt

)
i

W i
t =

1

2(nx + κ)
i = 1, . . . , nx

X i
t = x̂t −

(√
(nx + κ)Pt

)
i

W i
t =

1

2(nx + κ)
i = nx + 1, . . . , 2nx

where κ is a scaling parameter such that κ + nx 6= 0 and
(√

(nx + κ)Pt

)
i

is the ith row of the matrix L, that satisfies (nx + κ)Pt = L⊤L (the square
root of (nx + κ)Pt). The weights are normalized to yield

∑2nx

i=0 W
i
t = 1.

Next, each point is propagated through the nonlinear function gt to obtain

Y i
t = gt(X

i
t), i = 1, . . . , 2nx + 1. (2.28)

The first two moments of yt are then computed as

ŷt =

2nx∑

i=0

W i
tY

i
t ,

Py
t =

2nx∑

i=0

W i
t

[
Y i − ŷt

] [
Y i − ŷt

]
.⊤ (2.29)

The UKF algorithm has been broadly used in various applications of
nonlinear filtering [65] because it often provides an attractive trade-off
between accuracy and computational complexity. Improved UKFs have
also been proposed that introduce a scaling factor in the weights (known
as the scaled UKF) or where the state is redefined as the concatenation

22

of the original state and the noise variables in order to better capture
the uncertainty [114]. Note, however, that the same as other variants of
the original KF, the UKF relies on a Gaussian approximation of the true
posterior distribution, hence it is not suitable for problems where the latter
distribution can be multimodal.

Table 2.3 outlines the UKF algorithm.

2.3 Nonlinear filtering via sequential importance
sampling

In this section we consider the use of Monte Carlo (i.e. simulation-based)
methods for nonlinear filtering. When it is possible to draw exactly from the
distribution of interest, it is straight forward to approximate any complicated
integrals as empirical averages using i.i.d. samples. However, in the
context of nonlinear filtering, it is generally impossible to draw exactly from
the posterior distribution of interest. In order to surmount this problem
we introduce the importance sampling methodology [101]. This scheme
solves the problem of sampling from complicated distributions, however
it is computationally prohibitive when applied to the filtering problem
[41]. Hence, we move on to explain the sequential importance sampling
methodology that approximates the posterior distribution in a fast recursive
manner. Finally, we devote a section to describe some state-of-the-art
sequential Monte Carlo algorithms, also known as particle filters, used for
nonlinear tracking [22].

2.3.1 Exact Monte Carlo sampling

Assume we are interested in approximating an integral of the form∫
f(x)p(x)dx where f is an integrable function and p(x) is a pdf of interest.

If one can simulate M samples distributed exactly according to p(x), then
it is straightforward to approximate

I(f) =

∫
f(x)p(x)dx ≈

1

M

M∑

i=1

f(x(i)) (2.30)

and under mild assumptions [32], the sum converges to the integral as
M → ∞.

In the Bayesian target tracking problem, the aim is to estimate
recursively in time the distribution with pdf p(x0:t|y1:t), the marginal with

23

Table 2.3: Unscented Kalman filter (UKF)

At t = 0:

1. Assign a mean vector x̂0 and a covariance matrix P0 to the first time
instant t = 0, all taken from the prior distribution p(x0; x̂0,P0).

For t > 0:

1. Compute the predicted state vector, x̂t|t−1, and predicted covariance
matrix, Pt|t−1,

x̂t|t−1 =

N−1∑

i=0

W i
t−1ht(X

i
t−1),

Pt|t−1 = WtW
⊤
t

+

N−1∑

i=0

W i
t−1

[
ht(X

i
t−1)− x̂t|t−1

] [
ht(X

i
t−1)− x̂t|t−1

]⊤
.

2. Compute predicted samples,

X i
t|t−1 = ht(X

i
t−1).

3. Compute predicted measurement,

ŷt|t−1 =

N−1∑

i=0

W i
t−1gt(X

i
t|t−1).

4. Compute the covariance innovation matrix, St, and Kalman gain, Kt,

Pxz =

N−1∑

i=0

W i
t−1

(
X i

t|t−1 − x̂t|t−1

)(
gt(X

i
t|t−1)− ŷt|t−1

)⊤
,

Pzz =

N−1∑

i=0

W i
t−1

(
gt(X

i
t|t−1)− ŷt|t−1

)(
gt(X

i
t|t−1)− ŷt|t−1

)⊤
,

St = VtV
⊤
t +Pzz ,

Kt = PszS
−1
t .

5. Collect the new observation yt.

6. Compute the filter mean, x̂t|t, and covariance matrix, Pt|t,

x̂t|t = x̂t|t−1 +Kt(yt − ŷt|t−1),

Pt|t = Pt|t−1 +KtStK
⊤
t .

24

density p(xt|y1:t) and expectations of the form

I0:t(f) = Ep(x0:t|y1:t)(f(x0:t)) =

∫
f(x0:t)p(x0:t|y1:t)dx0:t, (2.31)

where f : R
(t+1)nx → R is a generic integrable function. In order to

apply exact Monte Carlo sampling to this problem, we should be able to

simulate M i.i.d random samples {x
(i)
0:t; i = 1, . . . M} according to the density

p(x0:t|y1:t). Then, an empirical estimate of the measure p(x0:t|y1:t)dx0:t is
given by

pM(dx0:t|y1:t) =
1

M

M∑

i=1

δ
x
(i)
0:t

(dx0:t), (2.32)

where δ
x
(i)
0:t
(x0:t) is a Dirac delta measure located at x

(i)
0:t. Given the

approximation of the joint distribution, one can approximate the integral
of (2.31) as

IM0:t(f) =

∫
f(x0:t)p

M (dx0:t|y1:t) =
1

M

M∑

i=1

f(x
(i)
0:t). (2.33)

It can be proven using the strong law of large numbers [32] that

lim
M→∞

IM0:t(f) = I0:t(f) (2.34)

almost surely (a.s.) under mild conditions [32]. Unfortunately, it is
impossible to draw exactly from p(x0:t|y1:t) in most practical cases (and
inefficient for large t in all cases).

2.3.2 Importance sampling

An alternative approach to the direct sampling from p(x0:t|y1:t) is the use
of the importance sampling (IS) methodology [101]. The core idea of IS
lies in using a sampling function different from the one of interest and then
measuring “how well” the samples describe the true distribution. The chosen
function must fulfill certain simple conditions and it is selected so that one
can easily draw from it.

Specifically, we choose a so-called importance function, π(x), that has
the same support as the density p(xt), i.e., π(x) > 0 whenever p(x) > 0.
This function is inserted in the integral of (2.30) as

I(f) =

∫
f(x)p(x)dx =

∫
f(x)p(x)dx∫
p(x)dx

=

∫
f(x)c p(x)

π(x)π(x)dx∫
c p(x)
π(x)π(x)dx

(2.35)

25

where c is an arbitrary constant. The advantage of this rearrangement is
that it is enough to be able to evaluate p(x) and π(x) up to an arbitrary (and
even unknown) proportionality constant c, as in the expression of (2.35) the
constants cancel out. If we simulate M samples distributed according to
π(x), then we can approximate the integral of (2.35) as

I(f) ≈
1
M

∑M
i=1 f(x

(i))w(i)∗

1
M

∑M
j=1w

(i)∗
=

M∑

i=1

f(x(i))
w(i)∗

∑M
j=1w

(j)∗
, (2.36)

where

w(i)∗ = c
p(x(i))

π(x(i))
(2.37)

is the unnormalized importance weight of the sample x(i).
Applied to the Bayesian tracking problem, we draw M samples from the

importance function π(x0:t|y1:t) and obtain an approximation of (2.33) as

IM0:t(f) =
M∑

i=1

f(x
(i)
0:t)

w
(i)∗
t∑M

j=1w
(j)∗
t

=
M∑

i=1

f(x
(i)
0:t)w

(i)
t (2.38)

where the unnormalized importance weights can be computed as

w
(i)∗
t =

p(y1:t|x
(i)
0:t)p(x

(i)
0:t)

π(x
(i)
0:t|y1:t)

,

∝
p(x

(i)
0:t|y1:t)

π(x
(i)
0:t|y1:t)

(2.39)

and {w
(i)
t , i = 1, . . . ,M} are normalized importance weights, i.e.,

w
(i)
t =

w
(i)∗
t∑M

j=1w
(j)∗
t

. (2.40)

The IS method provides a solution to the problem of sampling from
functions that do not have a closed form, however, it has a main drawback
for filtering applications. In order to compute the weights at time t, one has

to take into account the whole sequence of sample trajectories {x
(i)
0:t} when

we are truly interested in a sequential and recursive solution. In order to
avoid this problem there is a sequential version of the IS method that fits
nicely in the Bayesian filtering framework.

26

2.3.3 Sequential importance sampling: particle filtering

The sequential importance sampling (SIS) algorithm, is a recursive version
of the IS technique [41]. If we choose an importance function that can be
factorized as

π(x0:t|y1:t) = π(x0:t−1|y1:t−1)π(xt|x0:t−1,y1:t) (2.41)

where π(xt|x0:t−1,y0:t) is the importance function for xt conditioned upon
x0:t−1 and y1:t, then we can compute the importance function from time 0
to time t in a recursive manner.

If the factorization (2.41) holds, the weights can also be computed
recursively. If we expand (2.39) using Bayes’ rule and factorize the
importance function we obtain

w
(i)∗
t ∝

p(x
(i)
0:t|y1:t)

π(x
(i)
0:t|y1:t)

,

∝
p(yt|x

(i)
0:t)p(x

(i)
t |x

(i)
0:t−1,y1:t−1)

π(x
(i)
t |x

(i)
0:t−1,y1:t)

p(x
(i)
0:t−1|y1:t−1)

π(x
(i)
0:t−1|y1:t−1)

∝
p(yt|x

(i)
t)p(x

(i)
t |x

(i)
t−1)

π(x
(i)
t |x

(i)
0:t−1,y1:t)

w
(i)
t−1, (2.42)

where in order to reduce p(x
(i)
t |x

(i)
0:t−1,y1:t−1) to p(x

(i)
t |x

(i)
t−1) we have taken

into account the fact that the dynamic model specified by the state space
model in (2.1) is Markov. Note that this new equation to evaluate the
weights is recursive in the sense that it updates the weights with the new
information and does not require to reprocess data from time t = 0.

Table 2.4 describes the basic SIS algorithm. In this context, the

pair of sample and weight, {x
(i)
t , w

(i)
t }, is often termed “particle” and the

SIS algorithm a “particle filter” (PF). The numerical complexity of this
algorithm is O(M) [39], however note that it is completely parallelizable.
The estimation process is not included in the algorithm description as it is
not required for the algorithm to run, however at any time that an estimation
of I(f) is required it would be obtained as

IM0:t(f) =

M∑

i=1

f(x
(i)
0:t)w

(i)
t . (2.43)

27

Table 2.4: Sequential importance sampling (SIS)

At t = 0, for i = 1, . . . ,M :

1. Sample x
(i)
0 ∼ π(x0).

2. Set w
(i)
0 = 1

M .

For t > 0 and i = 1, . . . ,M :

1. Sample x
(i)
t ∼ π(xt|x

(i)
0:t−1,y1:t) and set x

(i)
0:t , (x

(i)
0:t−1,x

(i)
t).

2. Evaluate the weights up to a normalizing constant,

w
(i)∗

t = w
(i)
t−1

p(yt|x
(i)
t)p(x

(i)
t |x

(i)
0:t−1,y1:t−1)

π(x
(i)
t |x

(i)
0:t−1,y1:t)

.

3. Normalize the importance weights,

w
(i)
t =

w
(i)∗

t∑M
j=1w

(j)∗

t

.

28

Degeneracy of the algorithm

It is well known that the sequential application of the importance sampling
methodology with a finite number of samples, M < ∞, quickly leads to a
degenerate set of particles [41]. This problem is know as the degeneracy
problem of the SIS methodology and in practice translates to all but one
normalized weights having a value close to zero. This difficulty is commonly
overcome by adding a resampling step. Resampling is the process of
randomly discarding particle trajectories with low weights and replicating
particles with high weights [99]. Intuitively, it produces i.i.d samples from
the approximate discrete measure pM (dx0:t|y1:t) given by the particles. A
resampling step can be taken every time the approximate effective sample
size [39]

M̂eff =
1

∑M
i=1(w

(i)
t)2

(2.44)

falls below a user defined threshold. Since M̂eff ≤ M , typical threshold
values are λM for some 0 < λ < 1. The resulting algorithm
is commonly referred to as sequential importance resampling (SIR) or
sequential importance sampling with resampling (SIS/R).

In order to perform resampling it is necessary to process the weights of
all particles jointly in order to select the surviving particles. Unfortunately,
this means that the SIS with resampling is no longer paralellizable [45].
Recently, however, some novel resampling schemes that can be implemented
in a distributed manner have been suggested [14]. This will be the core of
our ideas for the distributed particle filters we propose in Chapters 4 and 5.

Selection of the importance function

The choice of importance function affects greatly the performance of the
algorithm. In fact, it characterizes so much the algorithm that some particle
filters have a specific name just due to the choice of importance function,
e.g., the auxiliary particle filter, the unscented particle filter, the gaussian
particle filter, etc.

The simplest choice of importance function is the prior distribution of
the state-space model. In this case we have π(xt|x0:t,y1:t) = p(xt|xt−1).
Even though this choice is inefficient as the state space is explored without
taking into account any knowledge of the observations, it leads to a simple
expression for the weights

w
(i)∗
t ∝ w

(i)
t−1p(yt|x

(i)
t), (2.45)

29

and thus is quite appealing for many practical applications.

If resampling is carried out at every time step, i.e., without regard of
the effective sample size, then the resulting procedure coincides with the
bootstrap filter, originally proposed in [47].

Table 2.5, describes an SIR algorithm whose selected importance

function is the prior. Note that the bar in x̄
(i)
t and w̄

(i)
t indicates that

the particles have not yet gone through the resampling step.

2.4 Improved particle filters

2.4.1 SIS with optimal importance function

The optimal importance function is defined in [41] as the density function
that minimizes the variance of the importance weights conditioned upon

x
(i)
t−1 and y1:t. For a Markov model with conditional independent

observations, it takes the form

π(xt|x0:t,y1:t) = p(xt|xt−1,yt). (2.46)

With this optimal proposal pdf, the computation of the weights reduces to

w
(i)∗
t ∝ w

(i)
t−1

p(yt|x
(i)
t)p(x

(i)
t |x

(i)
t−1)

p(xt|x
(i)
t−1,yt)

= w
(i)
t−1p(yt|x

(i)
t−1) (2.47)

where the equality is obtained from the relationship

p(xt|xt−1,yt) =
p(yt|xt)p(xt|xt−1)

p(yt|xt−1)
.

A distinctive feature of this approach is that the weight w
(i)∗
t does not depend

on x
(i)
t , but only on x

(i)
t−1.

The optimal importance function suffers from two major drawbacks,
though. It requires the ability to sample from p(xt|xt−1,yt) and to evaluate
(up to a proportionality constant) the integral

p(yt|x
(i)
t−1) =

∫
p(yt|xt)p(xt|x

(i)
t−1)dxt

which, in general, does not admit a closed form. An analytical evaluation
is only possible for the special class of partial linear and Gaussian state
space models, in which the state equation is Gaussian and the observation

30

Table 2.5: Sequential importance resampling (SIR) with a prior importance
function.

At t = 0, for i = 1, . . . ,M :

1. Sample x
(i)
0 ∼ π(x0).

2. Set w
(i)
0 = 1

M .

For t > 0, for i = 1, . . . ,M :

1. For i = 1, . . . ,M , sample x̄
(i)
t ∼ p(xt|x

(i)
t−1) and set x̄

(i)
0:t ,

(x
(i)
0:t−1, x̄

(i)
t).

2. For i = 1, . . . ,M , evaluate the weights up to a normalizing
constant,

w̄
(i)∗

t = w
(i)
t−1p(yt|x̄

(i)
t).

3. For i = 1, . . . ,M , normalize the importance weights,

w̄
(i)
t =

w̄
(i)∗

t∑M
j=1 w̄

(j)∗

t

.

4. Compute M̂eff .

5. If M̂eff ≤ Mthres resample:

- Draw indices k1, ..., kM ∈ {1, ...,M} according to the

probabilities w̄
(1)
t , ..., w̄

(M)
t .

- Set
(
x
(i)
t

)
=
(
x̄
(ki)
t

)
with probability w̄

(ki)
t , for i = 1,,M .

- Set w
(i)
t = 1/M , for i=1, . . . , M.

6. Otherwise set
(
x
(i)
t

)
=
(
x̄
(i)
t

)
, for i=1, . . . , M. .

31

equation is both linear and Gaussian. In such cases, p(xt|xt−1,yt) is also
Gaussian and can be computed analytically. When this is not the case, an
alternative approach is to approximate the functions ht and gt by way of a
first order Taylor expansion around a suitable linearization point x̂t|t−1, in
order to approximate the optimal importance function.

2.4.2 The auxiliary particle filter

The auxiliary particle filter (APF) was originally proposed in [94] as an
extension of the bootstrap filter of [47]. The key element of the APF is an
importance function that generates samples in a state space extended with
one extra dimension. This dimension corresponds to a random index that
identifies the particles at time t− 1 that best “matches” the observations at
time t.

The bootstrap filter, though, is derived to approximate p(xt|y1:t)dxt.
We, on the other hand, work with the more general sequential importance
sampling/resampling (SIS/R) framework, which requires the APF to be
introduced in a different way. In particular, we propose an APF where the
use of auxiliary random indices is restricted to the resampling step. This is
not the only way in which an auxiliary SMC algorithm can be constructed
for our problem [94]. However, the proposed formulation is simple and does
not significantly increase the computational complexity.

To be specific, let {x̄
(i)
0:t}

M
i=1 be the particles available at time t before

resampling, with importance weights denoted w̄
(i)
t , i = 1, ...,M . We propose

to take into account the observation vector yt+1 in the resampling step at
time t. This is done by constructing normalized auxiliary weights of the
form

λ
(i)
t ∝ w̄

(i)
t p(yt+1|x

(i)
t+1|t), (2.48)

for i = 1, ...,M , where x
(i)
t+1|t is some characterization of x

(i)
t+1 given x̄

(i)
t .

This characterization could be a sample from the prior x
(i)
t+1|t ∼ p(xt+1|x̄

(i)
t)

or the predictive mean, x
(i)
t+1|t = E[xt+1|x̄

(i)
t]. Then, we perform importance

resampling according to the auxiliary weights, i.e., we draw

x
(i)
0:t = x̄

(k)
0:t (2.49)

with probability λ
(k)
t , for i = 1, ...,M and k ∈ {1, ...,M} (equivalently, we

generate M samples from the discrete distribution given by the probabilities

P
{
x̄
(k)
0:t ,
}

= λ
(k)
t , k = 1,,M). The resulting normalized importance

32

weights, after resampling, are

w
(i)
t ∝

w̄
(i)
t

λ
(i)
t

=
1

p(yt+1|x
(ki)
t+1|t)

, (2.50)

where ki ∈ {1, ...,M} is the index such that x
(i)
0:t = x̄

(ki)
0:t . The weights, w

(i)
t ,

and the resampled particles, x
(i)
0:t, i = 1, ...,M , are carried over to the next

iteration of the algorithm.

Table 2.6 describes the resulting algorithm.

2.4.3 The Rao-Blackwellized particle filter

In some state space models, it is possible to integrate out a subset of the state
variables using a (conditionally) optimal filter. This technique is known as
Rao-Blackwellization [25]. Assume that the state vector, xt, can be divided
into two subvectors, x1,t and x2,t, such that xt = [x⊤

1,t,x
⊤
2,t]

⊤, and assume
also that we can express the two sequences corresponding to the subvectors
separately, that is, xj,0:t = (xj,0, . . . xj,t), for j = 1, 2. In this case the
estimation of the integral of (2.31) can be rewritten as follows

I0:t(f) =

∫
f(x0:t)p(x0:t|y1:t)dx0:t

=

∫
f(x0:t)p(y1:t|x0:t)p(x0:t)dx0:t

=

∫ [∫
f(x1,0:t,x2,0:t)p(y1:t|x1,0:t,x2,0:t)

× p(x2,0:t|x1,0:t)dx2,0:t

]
p(x1,0:t)dx1,0:t

=

∫
g(x1,0:t)p(x1,0:t)dx1,0:t (2.51)

where

g(x1,0:t) ,

∫
f(x1,0:t,x2,0:t)p(y1:t|x1,0:t,x2,0:t)p(x2,0:t|x1,0:t)dx2,0:t. (2.52)

If we can solve the integral in (2.52) exactly, then x2,0:t is marginalized out.
The SMC algorithms that rely on this technique are commonly known as
Rao-Blackwellized particle filtering (RBPF) algorithms.

33

Table 2.6: Auxiliary particle filter for SIR (A-SIR)

At t = 0, for i = 1, . . . ,M :

1. Sample x
(i)
0 ∼ π(x0).

2. Set w
(i)
0 = 1

M .

For t > 0, and i = 1, . . . ,M :

1. Draw x̄
(i)
t from the pdf p(xt|x

(i)
t−1).

2. Update the weights, w̄
(i)
t ∝ w

(i)
t−1p(yt|x̄

(i)
t)

3. Compute predictions x
(i)
t+1|t, e.g. x

(i)
t+1|t = E[xt+1|x̄

(i)
t].

4. Resample always performing the following steps:

- Compute the unnormalized auxiliary weights λ
(i)∗
t =

w̄
(i)
t p(yt+1|x

(i)
t+1|t).

- Normalize the auxiliary weights,

λ
(i)
t =

λ
(i)∗
t∑M

j=1 λ
(j)∗
t

.

- Draw indices k1, ..., kM ∈ {1, ...,M} according to the

probabilities λ
(1)
t , ..., λ

(M)
t .

- Set x
(i)
0:t = x̄

(ki)
0:t with probability λ

(ki)
t , for i = 1,,M .

- Update the weights as w
(i)
t = 1

p(yt+1|x
(ki)

t+1|t
)
, for i = 1, ...,M .

34

Since it is handled analytically, a RBPF algorithm no longer needs to
sample the marginalized vector, x2,t. Therefore the posterior distribution
that the particle filter aims at approximating is

p(x1,0:t|y1:t) ∝ p(yt|x1,0:t,y1:t−1)p(x1,t|x1,0:t−1,y1:t−1)p(x1,0:t−1|y1:t−1), (2.53)

where the likelihood term, p(yt|x1,0:t,y1:t−1), and the prior density,
p(x1,t|x1,0:t−1,y1:t−1), are integrals with respect to the conditional posterior
of x2,0:t, namely

p(yt|x1,0:t,y1:t−1) =

∫
p(yt,x2,t|x1,0:t,y1:t−1)dx2,0:t, (2.54)

and

p(x1,t|x1,0:t−1,y1:t−1) =

∫
p(x1,t,x2,t−1, |x1,0:t−1,y1:t−1)dx2,t−1. (2.55)

Note that due to the fact that the likelihood and the prior are integrals over
x2,t and x2,t−1, now x1,t is not Markov and the observations yt−1 are not
conditionally independent anymore.

Given that we want to approximate (2.53) with a particle filter, the
weights of a RBPF algorithm can be computed as

w
(i)∗
t ∝

p(yt|x
(i)
0:t,y1:t−1)p(x

(i)
1,t|x

(i)
1,0:t−1,y1:t−1)

π(x
(i)
1,t|x

(i)
1,0:t−1,y1:t−1)

w
(i)
t−1 (2.56)

where the computation of p(x
(i)
1,t|x

(i)
1,0:t−1,y1:t−1) and p(yt|x

(i)
0:t,y1:t−1)

depends on the analytic solution obtained for p(x2,t|x
(i)
1,0:t,y1:t) and

π(x
(i)
1,t|x

(i)
1,0:t−1,y1:t−1) is the proposal function.

Table 2.7 describes the general steps of a RBPF algorithm. Note that
step 2 should be recursive as well if the method is to be practical. This

normally implies that some statistics characterizing p(x2,t|x
(i)
1,0:t,y1:t) have

to be stored.
One example of state space model that allows this type of marginalization

is the conditionally linear Gaussian state space model [41]. Let n1,x be the
dimension of x1,t and consider the model

x1,t = f(x1,t−1,vt)

x2,t = Ht(x1,t)x2,t−1 +Wt(x1,t)ut,

yt = Gt(x1,t)x2,t +Vtεt, (2.57)

35

where f is a possibly nonlinear function of the state variable x1,t and an
independent noise vector vt, Ht(x1,t), Wt(x1,t) and Gt(x1,t) are all known
matrices given x1,t, Vt is a known matrix and εt is an independent noise
vector with known Gaussian distribution. In this type of model, given
x1,0:t the conditional model describing the dynamics and the observations
for the subset of variables in x2,t is linear and Gaussian and the density
p(x2,t|x1,0:t,y1:t) can be computed analytically using the Kalman filter.
RBPF algorithms that use Kalman filters to marginalize a subset of state
variables of conditionally linear models are often known as mixture Kalman

filters (MKFs) [27]. In this case, for each particle x
(i)
t it is necessary to carry

over the mean vector and covariance matrix of p(x2,t|x
(i)
1,0:t,y1:t).

2.4.4 Summary

In this chapter we have introduced the Bayesian methodology for target
tracking, including the state space models required to describe the dynamics
of the target and the measurements related to the target state.

In particular, we have reviewed the most commonly used Bayesian
analytic filters for the problem of target tracking. We have presented the
Kalman filter (KF), the extended Kalman filter (EKF) and the unscented
Kalman filter. These filters are fast and efficient but only work for a subset
of state space models and, hence, only a limited number of applications.

We have then described the fundamentals of sequential importance
sampling as a numerical solution for the Bayesian filtering problem. The
resulting algorithms are often called particle filters. Even though PFs
are simulation based methods that provide only an approximate numerical
solution, they have the advantage that they can be used with virtually all
types of state space models.

We have reviewed some state-of-the-art PFs, including the sequential
importance resampling with optimal importance function, the auxiliary
particle filter (APF) and the Rao-Blackwellized particle filter.

In the following chapters we are going to make use of these filters in order
to solve some specific problems (indoor tracking with RSS and distributed
particle filtering).

36

Table 2.7: Rao-Blackwellized particle filter.

1. Initialization, at t = 0:

• For i = 1, . . . ,M , sample x
(i)
0 ∼ π(x0).

• For i = 1, . . . ,M , set w
(i)
0 = 1

M .

2. Recursive step, for t > 0:

• For i = 1, . . . ,M , sample x̄
(i)
1,t ∼ π(x1,t|x

(i)
1,0:t−1,y1:t) and set

x
(i)
1,0:t , (x

(i)
1,0:t−1, x̄

(i)
1,t).

• For i = 1, . . . ,M , compute x̄
(i)
2,t analytically conditioned upon x̄

(i)
1,t

and set x
(i)
2,0:t , (x

(i)
2,0:t−1, x̄

(i)
2,t).

• For i = 1, . . . ,M , evaluate the weights up to a normalizing
constant,

w̄
(i)∗

t = w
(i)∗

t−1p(yt|x̄
(i)
t).

• For i = 1, . . . ,M , normalize the importance weights,

w̄
(i)
t =

w̄
(i)∗

t∑M
j=1 w̄

(j)∗

t

.

• Compute M̂eff .

• If M̂eff ≤ Mthres resample:

– Draw indices k1, ..., kM ∈ {1, ...,M} according to the

probabilities w̄
(1)
t , ..., w̄

(M)
t .

– Set
(
x
(i)
t

)
=
(
x̄
(ki)
t

)
with probability w̄

(ki)
t , for i = 1,,M .

• Otherwise, set
(
x
(i)
t

)
=
(
x̄
(i)
t

)
.

37

38

Chapter 3

A multi-model sequential
Monte Carlo methodology
for indoor tracking

In this Chapter we address the problem of indoor tracking using RSS as
a position-dependent data measurement. Since RSS is highly influenced
by multipath propagation, it turns out very hard to adequately model the
correspondence between the received power and the transmitter-to-receiver
distance. Although various models have been proposed in the literature,
they often require the use of very large collections of data in order to fit
them and display great sensitivity to changes in the radio propagation
environment. In this work we advocate the use of switching multiple
models that account for different classes of target dynamics and propagation
environments and propose a flexible probabilistic switching scheme. The
resulting state-space structure is termed a generalized switching multiple
model (GSMM) system. Within this framework, we investigate two types
of models for the RSS data: polynomial models and classical logarithmic
path-loss representation. The first model is more accurate however it
demands an offline model fitting step. The second one is less precise but
it can be fitted in an online procedure. We have designed two tracking
algorithms built around a Rao-Blackwellized particle filter, tailored to the
GSMM structure and assessed its performances both with synthetic and
experimental measurements.

The remaining of the chapter is organized as follows. In Section 3.1
we present a literature review on the topic. In Section 3.2 we describe
the GSMM state space model that represents both the target dynamics

39

and the associated indoor RSS measurements. In Section 3.3 we give a full
account of the experimental setup for the collection of real RSS data and the
construction of the observation sub-models. In Section 3.4 we introduce the
RBPF and the auxiliary RBPF algorithms for the GSMM system. In Section
3.5 and 3.6 we show numerical and experimental results that illustrate the
performance of the method. The chapter is completed with some concluding
remarks in Section 3.7.

3.1 Introduction

The problem of indoor tracking has recently received a great deal of
attention. The reasons obviously include its many practical applications
(e.g., security, guidance, tourism, healthcare, etc [6, 86, 108, 19, 51, 64])
but also the availability of ubiquitous existing communication network
infrastructures that can be used for the positioning of mobile terminals.
In particular, most current wireless communication networks (WiFi, ZigBee
or even cellular networks) provide radio signal strength (RSS) measurements
for each radio transmission. The RSS depends on the transmitter-receiver
distance and, therefore, it can be used as ranging data for positioning if a
suitable model of this dependence is available.

Unfortunately, the construction of such models is far from trivial [18, 62].
Indeed, the RSS is strongly affected by radio propagation phenomena such
as scattering or multipath. As a result, RSS measurements are very unstable
in practical scenarios. Some authors approach this problem using a class of
methods known as fingerprinting [18, 9]. These methods are based on the
construction of a radio map that associates directly the RSS measurements
to positions on the area of interest. When tracking is performed, new
measurements are compared against the RSS values stored in the database,
the closest match is selected and the position in the map associated to this
match is chosen as the estimate of the target position. These methods
require a costly and lengthy calibration procedure and are strongly linked
to the specific physical environment. Therefore, if the scenario changes a
whole new radio map has to be built.

In order to avoid this burden, other approaches aim at fitting a
mathematical model of the data that yields an explicit expression of the
RSS measurements as a function of the transmitter-receiver distance. In
this case, the usual choice is the classical log-normal path-loss model with
attenuation factors that depend on the building floors or building materials
[97]. However it has also been shown that the distribution of the RSS

40

measurements can be non-Gaussian, left-skewed, device-dependent and even
multimodal depending on the physical environment [67]. Overall, there is
a need for flexible models that can be easily adapted to various kinds of
indoor scenarios and handle the effect of scattering or multipath propagation
properly.

The design of efficient target tracking algorithms not only requires a
proper selection of the model for the observed data, but also the dynamics
(i.e. the type of motion) of the target needs to be adequately dealt with
[50, 117]. Of special interest in this context is the combination of multiple
motion models that has been proposed and investigated in connection
with the problem of maneuvering target tracking (see, e.g., [80, 118] and
references therein). This type of representation of the target motion has
a characteristic switching structure, where a random sequence of indices
determines the dynamic regime adopted by the target at every time step [99].
One class of state-space dynamic systems that enables the incorporation of
multiple models both for the target motion and the collected observations is
the family of so-called jump Markov systems (JMS) [110, 70]. In JMS, the
random model indices are assumed to form a Markov chain and every index
value determines a model for the target dynamics and an associated model
for the observed data.

The assumption of multiple models for the dynamics of the target has
an important impact on the design of the tracking algorithm. Interacting
multiple model (IMM) algorithms [79] compute a set of estimates of the
target state, each one associated to a different dynamic model, and then
merge them with appropriate weights in order to obtain a global estimate.
Often, the estimates corresponding to each dynamic model are computed
using Kalman filters [118, 63]. Recently, however, the sequential Monte
Carlo (SMC) methodology (particle filtering) [47, 41, 40, 35] has received
considerable attention. In [13], an IMM particle filter is proposed to track
a non-Markovian jump system. Other multiple model particle filters have
also been proposed in the literature in order to track switching state-space
systems. In [20], for instance, each particle is propagated across all possible
dynamic models, the importance weights are computed and resampling is
performed to (randomly) select the fittest particles and keep their number
fixed. A particle filter, for switching observation models has been recently
proposed in [23] and exemplified with an outdoor navigation application.
Having a “ready-to-use” description of the different physical environments
where the tracker has to operate can be advantageous compared to
estimating any necessary parameters online. When the environment can
be described by sub-models and those are a priori available, the tracking

41

algorithm only has to detect that the physical scenario has changed and
quickly switch to the most useful sub-model. This is in contrast with
parameter-estimation based, online techniques, where the adaptation of the
parameters involves possibly long transients and also convergence issues1.

In this chapter, we propose a novel scheme for indoor tracking using RSS
that relies on

(a) the representation of both the mobile target dynamics and the resulting
RSS observations by means of multiple switching sub-models,

(b) a Rao-Blackwellized particle filter to recursively compute Bayesian
estimates of the target position and velocity and

(c) the construction of accurate observation sub-models using experimental
data collected by the WSN to be employed for tracking the target.

As for the structure of the state-space system, we introduce a GSMM
framework in order to adequately handle the uncertainty in both the
dynamics of the target and the RSS observations from the sensors separately,
in an indoor environment. In particular, we allow the representation of
the target motion and the RSS measurements at any time to be drawn
from two independent collections of candidate sub-models according to two
different indicator random processes (possibly multivariate). Although,
strictly speaking, a JMS can be used to represent the same system, using a
single indicator to determine the pair of motion and observation models, we
advocate the scheme in this paper, with independent indicators, because it
is a better fit with our physical intuition (the measurements of the RSS are
not necessarily dependent on the type of motion).

The main advantage of the GSMM scheme is that it is flexible enough to
encompass a broad range of indoor scenarios. Its main drawback is the need
to track the target in a higher dimensional state space (its actual dimension
depending on the number of switching sub-models used). We show, however,
that the SMC methodology is powerful enough to numerically compute
accurate state estimates within this setup. In particular, we propose a RBPF
algorithm [50, 27] in which a subset of the state variables, including the
observation indicator variables, is integrated out to improve the tracking
accuracy. We also propose an implementation of the RBPF algorithm
that uses auxiliary variables, in the vein of [94], to sample new particles
conditional on the most recent data. The computational complexity of

1See [4], Section 4 for a discussion of parameter estimation in the context of particle
filtering

42

the auxiliary RBPF scheme is only marginally higher than that of the
RBPF scheme with prior importance distribution and can attain a better
performance, specially when the number of particles in the filter is relatively
low.

Within the GSMM framework we have studied two types of observation
models: polynomial models and logarithmic path-loss models. The first
type yields a more precise representation, but requires a very flexible data
collection scheme. Its use is intended for offline model construction and
assumes that it is possible to collect experimental measurements related
to many different transmitter/receiver distances. The logarithmic path-loss
models are less accurate, but easier to adjust and require a lesser amount
of data. Therefore, we propose their use in an online model construction
procedure that can be carried out, automatically, during the startup of the
wireless network of sensors. We have fitted models of the two types using
a bank of experimental data collected from a network of wireless ZigBee
nodes. Then, we have assessed the performance of the proposed RBPF
trackers tailored to the resulting GSMM systems both with synthetic and
experimental RSS time-series.

3.2 System model

3.2.1 Motion models

Using a state-space formulation, we formally represent the target dynamic
state at time t ∈ N over a two dimensional region as a 5×1 real vector x5,t =
[ωt, r

⊤
t ,v

⊤
t]

⊤, where rt represents the target position, vt represents the target
velocity and ωt represents a change in the angle of the velocity. Specifically,
the position and the velocity contain two real scalars, rt = [r1,t, r2,t]

⊤ and
vt = [v1,t, v2,t]

⊤, which are the coordinates of the position, rt, and velocity,
vt in the x − y plane while ωt ∈ R denotes the variation, in radians, of
the angle of the velocity at time t + 1. The subscript ℓ in xℓ,t is used to
indicate the state vector dimension (this notation will prove useful as we later
introduce extended versions of the state vector that incorporate additional
variables). We use the “coordinated turn” model [118, 117] presented in
Section 2.2.1 to describe the dynamics of x5,t. Specifically, x5,t evolves with

43

time according to

ωt ∼ p(ωt|ωt−1)



r1,t
r2,t
v1,t
v2,t




︸ ︷︷ ︸
x4,t

=




1 0 sin(ωt−1T)
ωt−1

− cos(ωt−1T)−1
ωt−1

0 1 1−cos(ωt−1T)
ωt−1

sin(ωt−1T)
ωt−1

0 0 cos(ωt−1T) − sin(ωt−1T)
0 0 sin(ωt−1T) cos(ωt−1T)




︸ ︷︷ ︸
A(ωt−1)




r1,t−1

r2,t−1

v1,t−1

v2,t−1




︸ ︷︷ ︸
x4,t−1

+




1
2T

2 0 0 0
0 1

2T
2 0 0

0 0 T 0
0 0 0 T




︸ ︷︷ ︸
Q




u1,t
u2,t
u3,t
u4,t




︸ ︷︷ ︸
ut

,

(3.1)

whereA(ωt−1) is a transition matrix that depends on the time-discretization
period T and the turning angle, x4,t−1 represents the position and velocity
in the previous time step, the conditional pdf p(ωt|ωt−1) is known and ut is
a 4 × 1 real-valued Gaussian vector with zero mean and known covariance
matrix, Σu. As a result, the noise term Qut is a 4× 1 real Gaussian vector,
with zero mean and covariance matrix QΣuQ

⊤, that represents the effect
of unknown accelerations. Note that the difference between this model and
the coordinated turn model introduced in Section 2.2.1 lies in the dynamic
nature of the turning angle, ωt. In Section 2.2.1 the turning angle is fixed
in time whilst in this model the angle can vary with time.

By selecting different distributions for ωt one can devise different motion
sub-models. If the target may take any turn at any time, independently of
its previous state, then p(ωt|ωt−1) = p(ωt) = U([0, 2π)), where U(I) denotes
the uniform density in the interval I. For some vehicles, the turning angle
may be constrained to small angles, e.g., p(ωt|ωt−1) = p(ωt) = U([0, π/4])
or even restricted to discrete values, p(ωt|ωt−1) = p(ωt) = U({±π/2}). We
also note that in the degenerate case in which ωt = 0 for all t, (3.1) reduces
to the so-called “constant velocity” model [50, 117].

Let us assume that, at a given time t, the target of interest may move
according to one out of L motion sub-models, indexed by the integers
{1, 2, . . . , L}. Each motion sub-model corresponds to a different transition
pdf for the Markov process {ωt}t∈N. Therefore, in order to identify the
specific densities, we introduce an additional state variable, denoted at. This
is a discrete random indicator, at ∈ {1, . . . , L}, such that at−1 = l implies
that ωt is generated according to the l-th sub-model. Thus, we need to write

44

ωt ∼ p(ωt|ωt−1, at−1) to make this dependence explicit. The conditional pmf
p(at|at−1) is assumed known.

By incorporating the indicator at to the target state, we obtain the
6× 1 vector x6,t = [at, ωt, r

⊤
t ,v

⊤
t]

⊤ which evolves according to the switching
multiple model equation

at ∼ p(at|at−1),

ωt ∼ p(ωt|ωt−1, at−1),

x4,t = A(ωt−1)x4,t−1 +Qut.

(3.2)

3.2.2 Measurement models

We investigate a scheme where RSS observations are collected from J
sensors. The measurement provided by the j-th sensor at time t is denoted
as yj,t. The relationship between the observed RSS, yj,t, and the target
position, rt, depends on the physical environment (obstacles, building
materials, etc.) [98] and may change with time. In order to handle such
uncertainty, we again use a multiple model approach to model the data.
Specifically, we allow the observation yj,t to be represented using one out of
K different sub-models. This is written as

yj,t = fmj,t
(rt) + εmj,t

, (3.3)

where mj,t ∈ {1, ...,K} is a random index with known pmf p(mj,t) that
identifies the measurement sub-model at time t for the j-th sensor, fmj,t

is the function used to represent the propagation conditions in the mj,t-th
sub-model, that determine the received RSS, and εmj,t

∼ N(εmj
; 0, σ2

mj,t
)

is normally distributed, zero-mean noise with a variance σ2
mj,t

associated
to the mj,t-th sub-model and the j-th sensor. The noise contributions are
assumed independent across different sensors. The form of each element in
the collection of functions {f1, f2, . . . , fK} and the variances {σ2

1 , σ
2
2 , . . . , σ

2
K}

should be determined from field measurements collected in the scenarios
where the tracking system may have to operate (which can be significantly
different). See Section 3.3 for further details and examples. This RSS model
is very similar to the RSS model introduced in Section 2.2.1 however, in the
current model, the function, fmj,t

, and the noise, εmj,t
both depend on the

selected sensor model, mj,

We write the measurement-model indicators together in the J×1 vector
mt = [m1,t, . . . ,mJ,t]

⊤, hence the full target state has J + 6 components,
xJ+6,t = [m⊤

t , at, ωt, r
⊤
t ,v

⊤
t]

⊤. The observations are put together in the J×1

45

vector yt = [y1,t, . . . , yJ,t]
⊤. The indices in mt are assumed independent, but

not necessarily identically distributed.

3.2.3 Summary

The generalized switching multiple model (GSMM) state-space model that
comprises L possible switching sub-models in the state equation and K sub-
models in the observation equation is described by the set of relationships

mt ∼ p(mt),

at ∼ p(at|at−1),

ωt ∼ p(ωt|ωt−1, at−1),

x4,t = A(ωt−1)x4,t−1 +Qut,

yt = fmt(rt) + εmt ,

(3.4)

where fmt(rt) =
[
fm1,t(rt), fm2,t(rt), . . . , fmJ,t

(rt)
]⊤

and εmt =

[εm1,t , . . . , εmJ,t
]⊤, together with the prior pdf’s p(ω0), p(r0) and p(v0) and

the pmf p(a0). Note that the described system model is similar to a jump
Markov system [99] however in a JMS the dynamic and the observation
equations are controlled by the same model whilst in our description each one
is governed by a different model indicator variable (at and mt) that evolves
in time according to a different function. In the specific case where at = mj,t

for all j = 1, . . . , J , our model would become a JMS. For the indoor tracking
application, of interest in this paper, the goal is to accurately estimate the
sequence of target positions, r0:t = {r0, r1, . . . , rt}, as time evolves.

3.3 Construction of observation models

3.3.1 Experimental scenario and data

We have carried out experiments in a network consisting of nine nodes
located at fixed positions (denoted anchors), acting as RSS sensors, and
one extra node acting as the moving target (mobile). There is always direct
line of sight (LOS) between all pairs of nodes (both anchor-to-anchor and
mobile-to-anchor). All the nodes of the wireless sensor network (anchors
and mobile) consist of an Arduino board (with an open source prototyping
platform) and an XBee (series 1) radio module from Digi, plugged in a
daughterboard. The series 1 of XBee are sold as IEEE 802.15.4 OEM
modules, as they only support the communication layers, not the upper
ZigBee layers from the ZigBee Alliance. We have used two different versions

46

of these modules, one of them is called XBee and the other one XBee-PRO.
The main difference between them is the transmission power range. The
XBee sensors are low power modules and their transmission power ranges
from −10 to 0 dBm, while the XBee-PRO transmission power varies from
10 to 18 dBm. For our experiments, the XBee nodes were set to 0 dBm and
the XBee-PRO nodes to 10 dBm, both of them with an extra added 2 dBi
for the omnidirectional antennas to transmit.

The reason for using two kinds of nodes was to observe the influence of
the transmission power in real indoor tracking systems. In principle, low
power nodes should be more precise for short range tracking whilst high-
power nodes should be better for higher ranges. As indoor scenarios are
very sensitive to multi-path propagation, we conjectured that mixing the
modules would reduce the effect over the whole scenario.

Figure 3.1 illustrates the indoor scenario where we deployed the nine-
anchor-node network. The plot on the left shows the deployment of J = 9
sensors and their positions in the 6×10 meter area and the plot on the right
shows the positions of the mobile sensor when taking static measurements.
There are 5 XBee-PRO nodes (depicted in black circles) and 4 XBee nodes
(depicted as white circles) and the area covered by the network is of 60 m2.
The positions of the J = 9 sensors are (0, 0), (3, 0), (6, 0), (0, 5), (3, 5), (6, 5),
(0, 10) (3, 10) and (6, 10), where (x, y) denotes horizontal (x) and vertical
(y) coordinates, in meters.

All the nodes were configured within the same PAN (personal area
network) ID and, to avoid interference with WiFi networks, we set all the
nodes in the same channel, number 15, one of the Wi-Fi non-overlapping
channels [85]. We used the “IEEE 802.15.4. without ACKs” MAC mode
to avoid retransmissions and, consequently, to minimize packet collisions.
With this particular transmission mode there is no guarantee that all
packets are delivered correctly but, as we configured a small period for
packet transmission, we transmitted a sufficiently large number of packets to
guarantee the tracking of the mobile node. We assumed that the maximum
velocity of the mobile node is 1.3 m/s [17] (simulating a walking person).

In order to build our observation models we collected a large number
(≈ 65, 000) of RSS measurements from each node j ∈ {1, 2, . . . J} at each
anchor position. This way we created a database of RSS measurements for
each sensor associated to many different anchor-mobile distances. Due to the
disposition of each sensor we have a different number of distances for which
we have data for each sensor, that is, for sensor j = 1 we have measurements
at 163 different distances, dj1, d

j
2, . . . , d

j
163, ranging from a minimum of 0.5

m to a maximum of 11.4127 m, whilst for sensor j = 5 we have data at 80

47

different distances ranging from a minimum of 0.5 m to a maximum of 5 m.
As an example, Figure 3.2 shows the raw RSS data collected from sensors

1, 2, 3, 4, 5 and 6. Note the different distances for which we have information
and also the difference in the transmitted power from the two sensor types:
XBee-Pro (sensors 1, 3, 5) and XBee (sensors 2, 4, 6).

We have used all the data collected in the experiments, as shown in
Figure 3.2, to construct the polynomial models as they require to collect
data related to many different transmitter/receiver distances. Using these
data we have constructed K = 2 observation sub-models per sensor.

For the construction of the logarithmic path-loss models, on the other
hand, we only use RSS measurements corresponding to the transmission
between pairs of anchor nodes during a short period of time, therefore
we only collect data for a small number of different transmitter receiver
distances. Figure 3.3 shows the amount of data used in order to build the
logarithmic models. For this type of models we have constructed only K = 2
sub-models for the entire network.

Table 3.1 displays the total number of measurements used and the
number of different distances for which we collected RSS data in order to
construct each of the observation models. Note that the average number of
observations collected for each sensor in order to construct the polynomial
models is ≈ 65, 000 whilst the average number of observations collected for
the logarithmic models is ≈ 9, 000 per sensor.

3.3.2 Polynomial observation sub-models

In order to construct the K = 2 polynomial observation sub-models for each
sensor j we have taken the following steps:

1. We have used a k-means algorithm [104] to separate the observations
for each distance, dji of every sensor, j, into K = 2 clusters, where
recall that i is the index used to identify each of the 163 different
distances, to which we have data.

2. We have written Sj
i,1 and Sj

i,2 to denote the sets of observations
assigned to cluster 1 and to cluster 2, respectively, related to the
distance dji of sensor j. We have computed the sample mean of each

cluster, Sj
i,k, denoted µj

i,k, and the sample variance, denoted σj2

i,k.

3. We have fitted polynomials of several degrees, n = 3, 5 and 7, denoted

gj1(u) =

n∑

l=0

αj
l,1u

l and gj2(u) =

n∑

l=0

αj
l,2u

l, to the experimentally

48

1 3

5

7 98

64

2

1m

1 32

5 64

7 98

Figure 3.1: Indoor wireless sensor network scenario. The plot in the left
shows the deployment of J = 9 sensors and their positions in the 6 × 10
meter area and the plot in the right shows the positions of the mobile sensor
when taking static measurements.

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 1 (0 , 0)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 2 (3 , 0)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 3 (6 , 0)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 4 (0 , 5)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 5 (3 , 5)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 6 (6 , 5)

Figure 3.2: Raw RSS data collected by the mobile sensor from anchor sensors
1, 2, 3, 4, 5 and 6. The x-axis shows the transmitter-receiver distance and
the y-axis shows the RSS measured in dBs. The title of each graph displays
the specific sensor identifier, j = 1, 2, 3, 4, 5, 6, and its position in the 6× 10
meter area. Note the difference in the transmitted power from the two sensor
types: sensors 1, 3, 5 are XBee-Pro and sensors 2, 4, 6 are XBee.

49

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 1 (0 , 0)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 2 (3 , 0)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 3 (6 , 0)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 4 (0 , 5)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 5 (3 , 5)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

 Distance [m]

 R
S

S
 [

dB
]

Sensor 6 (6 , 5)

Figure 3.3: Raw RSS data collected from sensors 1, 2, 3, 4, 5 and 6 for the
logarithmic models. The x-axis shows the distance among nodes and the
y-axis shows the RSS measured in dBs. The title of each graph displays
the specific sensor identifier, j = 1, 2, 3, 4, 5, 6, and its position in the 6× 10
meter area. Note the difference in the transmitted power from the two sensor
types: sensors 1, 3, 5 are XBee-Pro and sensors 2, 4, 6 are XBee.

Sensor Pol. Pol. Log. Log.
ID # observations # distances # observations # distances

1 66,653 163 9,523 8

2 65,205 113 8,463 5

3 66,642 163 9,318 8

4 65,579 77 8,695 5

5 68,774 49 8,315 3

6 65,699 77 8,549 5

7 66,762 163 9,427 8

8 65,533 113 8,652 5

9 66,963 163 9,421 8

Table 3.1: Number of observations and number of different distances to
which we collected RSS data in order to construct the polynomial and the
logarithmic models.

50

obtained sequences of sample means {µj
i,1}

Ij
i=1 and {µj

i,2}
Ij
i=1, where

Ij denotes the number of different distances at which measurements
where collected for sensor j. Similarly, we have fitted polynomials

of a range of degrees n = 3, 5 and 7, denoted hj1(u) =

n∑

l=0

βj
l,1u

l and

hj2(u) =

n∑

l=0

βj
l,2u

l, to the sequences of sample variances, {σj
i,1

2
}
Ij
i=1 and

{σj
i,2

2
}
Ij
i=1.

With these elements, a preliminary choice of the observation function
for the k-th sub-model and the j-th sensor is f j

k(rt) = gjk(dj,t), where
dj,t = ‖rt − sj‖ is the distance between the target position, rt, and the
j-th node location, sj , while the observation noise is Gaussian with zero

mean and variance hjk(dj,t).
Figure 3.4 shows the fitted mean and standard deviation of sensor 1

for models 1 and 2, together with the points from which they are fitted.
The depicted polynomials g11(d) and g12(d) that describe the mean and the
polynomials h11(d) and h12(d) that describe the variance (depicted here as
standard deviation) are polynomials of order n = 3, 5 and 7.

With these observation functions, the likelihood of rt for each of the
individual observations can be defined as

p(yj,t|rt,mj,t) = N
(
yj,t; g

j
m(dj,t), h

j
m(dj,t)

)
. (3.5)

As the algorithm is intended for indoor application, which limits the tracking
area considerably, we have decided to incorporate this information by way
of an alternative (truncated) likelihood model,

p(yj,t|rt,mj,t) ∝

{
N
(
yj,t; g

j
m(dj,t), h

j
m(dj,t)

)
, if rt ∈ A

0, if rt /∈ A
(3.6)

where A is the region where the mobile node is allowed to move.
In Section 3.5 we show performance results using polynomial models for

the two different likelihood definitions of Eqs.(3.5) and (3.6).

3.3.3 Logarithmic path-loss observation sub-models

The approach to model construction of Section 3.3.2 has some drawbacks.
First, we have used a large amount of data, collected prior to the network
normal operation by measuring the received power at a fine grid of selected

51

0 1 2 3 4 5 6 7 8 9 10 11 12
−60

−50

−40

−30

−20

−10

 Distance [m]

 R
S

S
 [

dB
]

Mean of sensor 1 for model 1

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12
−60

−50

−40

−30

−20

−10

 Distance [m]

 R
S

S
 [

dB
]

Mean of sensor 1 for model 2

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12
−60

−50

−40

−30

−20

−10

 Distance [m]

 R
S

S
 [

dB
]

Mean of sensor 1 for model 1

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12
−60

−50

−40

−30

−20

−10

 Distance [m]

 R
S

S
 [

dB
]

Mean of sensor 1 for model 2

(d)

0 1 2 3 4 5 6 7 8 9 10 11 12
−60

−50

−40

−30

−20

−10

 Distance [m]

 R
S

S
 [

dB
]

Mean of sensor 1 for model 1

(e)

0 1 2 3 4 5 6 7 8 9 10 11 12
−60

−50

−40

−30

−20

−10

 Distance [m]

 R
S

S
 [

dB
]

Mean of sensor 1 for model 2

(f)

Figure 3.4: Mean (solid line) and standard deviation (dashed line) of sensor
1. The scattered dots represent the raw data. The fitted mean comes from
polynomials g11(d) and g12(d) and the standard deviation has been taken from
from polynomials h11(d) and h12(d). Figure (a) corresponds to model m1,t = 1
and polynomial order n = 3, Figure (b) corresponds to model m1,t = 2 and
polynomial order n = 3, Figure (c) corresponds to model m1,t = 1 and
polynomial order n = 5, Figure (d) corresponds to model m1,t = 2 and
polynomial order n = 5, Figure (e) corresponds to model m1,t = 1 and
polynomial order n = 7, Figure (f) corresponds to model m1,t = 2 and
polynomial order n = 7.

52

points. As a consequence, the model construction procedure is inherently
offline and requires some “manual” work.

For a practical implementation we may a prefer a collection of simpler
sub-models that can be automatically constructed when the network is
started, with a minimum of human intervention. In this section we propose
an automatic procedure to construct K = 2 observation sub-models using
only RSS measurements associated to the messages that are exchanged by
the nodes during the network startup. This feature limits considerably the
number of different distances for which measurements are available.

Let us consider the automatic definition of K = 2 logarithmic
observation sub-models for the whole network. When the network is
started, the nodes exchange messages and it is possible to record an RSS
measurement for each message. Therefore, if there are m1 pairs of nodes
separated by a distance di and each pair exchanges m2 messages, we have
m1m2 measurements associated to the distance di. The first step in building
the logarithmic models is, again, to apply a k-means algorithm to the
complete set of observations available for each distance di. As a result, we
obtain two clusters of points, denoted Si,1 and Si,2, and we need to adjust
a parametric model for each cluster.

For simplicity, assume that we collect data corresponding to l different
distances and build a single set of observations Si = {si,n}

k
n=1 for each

distance di, i = 1, ..., l (independently of the sensors where the data are
collected). Let us then consider the problem of using these data to fit the
sub-model m,

yj,t = fm(rt) + εm = L0,m + γm10 log10

(
d0
dj,t

)
+ εm, (3.7)

where dj,t = ||rt − sj || is the distance between the position of sensor j, and
the target at time t; d0 is a known reference distance; L0,m is the path loss at
the reference distance; γm is the path loss exponent and εm ∼ N(εm; 0, σ2

εm)
is normally distributed, zero-mean noise with variance σ2

εm. The parameters
L0,m, γm and σ2

εm have to be fitted from the experimental data in S1, ..., Sl.
We propose to select the values of L0,m and γm that minimize the mean

square error, i.e.,

(
L̂0,m, γ̂m

)
= arg min

L0,m,γm

{
J (L0,m, γm) =

l∑

i=1

k∑

n=1

(si,n − L0,m − γmfi)
2

}
(3.8)

where fi = 10 log10

(
d0
di

)
. The cost function J (L0,m, γm) is quadratic and,

53

hence, the problem (3.8) admits a closed-form solution. In particular by
taking partial derivatives with respect to L0,m and γm and then equating
them to zero one finds that

γ̂m =

∑l
j=1

∑k
n=1 sj,nθj

k
∑l

j=1 fjθj
,

L̂0,m =
1

l

1

k

l∑

i=1

k∑

n=1

(
si,n − fi

∑k
n=1

∑l
j=1 sj,nθj

k
∑l

j=1 fjθj

)
,

(3.9)

where θj = fi −
1
l

∑l
i=1 fi. Finally, the variance σ̂2

ε can be computed as

σ̂2
ε =

1

l

1

k

l∑

i=1

k∑

n=1

(
si,n − L̂0,m − γ̂mfi

)2
. (3.10)

Figure 3.5 shows the fitted mean and standard deviation for models 1
and 2 together with the points from which they are fitted. Note that the
amount of data points used in this procedure is considerably less than the
amount used to fit the polynomial models (see Figure 3.4).

The simpler version of the likelihood of the logarithmic observation
models can be defined as

p(yj,t|rt,mt) = N(yj,t; fm(rt), σǫ,m), (3.11)

where fm(rt) is the function specified in (3.7) and the parameters L0,m, γm
and σ2

ε,m are selected as given by (3.9) and (3.10).
Similar to Section 3.3.2, we modify Eq.(3.11) in order to take into account

the area A where the target is allowed to move. Hence we obtain the
truncated Gaussian likelihood

p(yj,t|rt,mj,t) ∝

{
N(yj,t; fm(dj,t), σǫ,m), if rt ∈ A
0, if rt /∈ A.

(3.12)

3.4 Tracking algorithms

3.4.1 A Rao-Blackwellized particle filter for multiple models

For the estimation of r0:t, we aim at approximating the distribution with
pdf

p(r0:t, ω0:t, a0:t|y1:t) =
∑

m0:t

∫

v0:t

p(xJ+4,0:t|y1:t)dv0:t. (3.13)

54

Note that since we are interested in tracking rt alone, the natural choice
of our objective pdf of interest should have been p(r0:t|y1:t). However,
working with the latter marginal density leads to an exponential growth
(with t) in the complexity of the SMC algorithm, unless (possibly rough)
approximations are used. As our system model allows us to do so,
we use the Rao-Blackwellization technique explained in Section 2.4.3 to
integrate out v0:t and m0:t. Specifically, the system model describing the
dynamics and observations of vt is a conditionally linear Gaussian state-
space model, therefore vt can be marginalized out and its conditional
posterior distribution computed analytically using a Kalman filter (see the
Appendix A for details on the recursive computation of p(vt|r0:t−1,y1:t)).
On the other hand, the random model indicator mt is discrete and finite
and therefore can also be computed analytically (see Section 3.4.2).

The density of (3.13) cannot be obtained analytically and thus we
aim at numerically approximating it with a particle filter. Specifically,
we aim at building a point-mass approximation of the distribution with
density p(r0:t, ω0:t, a0:t|y1:t), using a set of M random samples in the space

of {r0:t, ω0:t, a0:t}, denoted {r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t}

M
i=1, and associated importance

weights, {w
(i)
t }Mi=1. The pairs

{(
r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t

)
, w

(i)
t

}
, i = 1, . . . ,M are

termed particles and we can use them to build the random measure

pM (r0:t, ω0:t, a0:t|y1:t) =

M∑

i=1

δi(r0:t, ω0:t, a0:t)w
(i)
t , (3.14)

where δi is the unit delta measure located at
(
r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t

)
and the weights

are assumed normalized, i.e.,
∑M

i=1w
(i)
t = 1. If the approximation is

properly constructed, meaning that the moments of pM (r0:t, ω0:t, a0:t|y1:t)
converge to those of p(r0:t, ω0:t, a0:t|y1:t) in some adequate sense [32, 72], then
it is straightforward to use (3.14) in order to approximate any estimators of
r0:t or rt. In particular, since

pM (rt|y1:t) =
∑

a0:t

∫

ω0:t

∫

r0:t−1

pM(r0:t, ω0:t, a0:t|y1:t)dr0:t−1dω0:t

=

M∑

i=1

δi(rt)w
(i)
t , (3.15)

where δi is the delta measure located at r
(i)
t , we readily calculate the

55

(approximate) minimum mean square error (MMSE) estimate of rt as

r̂mmse
t =

∫
rtpM (rt|y1:t)drt

=

M∑

i=1

r
(i)
t w

(i)
t . (3.16)

Particles can be generated with a variety of proposal distributions or
importance functions (as explained in Section 2.3.3) as long as the weights
are computed accordingly. If we choose an importance function that can be
factorized as

π(r0:t, ω0:t, a0:t) ∝ π(rt, ωt, at)π(r0:t−1, ω0:t−1, a0:t−1), (3.17)

we can implement the importance sampling methodology sequentially, with
a fixed complexity independent of time [41]. A straightforward application
of Bayes’ theorem yields the recursive decomposition

p(r0:t, ω0:t, a0:t|y1:t) ∝ p(yt|rt)p(rt|r0:t−1, ω0:t−1)p(ωt|ωt−1, at−1)

×p(at|at−1)p(r0:t−1, ω0:t−1, a0:t−1|y1:t−1). (3.18)

Proper importance weights can be computed as [77]

w
(i)
t =

p(r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t|y1:t)

π(r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t)

(3.19)

and substituting (3.17) and (3.18) into (3.19) yields the recursive update
rule,

w
(i)
t ∝ w

(i)
t−1

p(yt|r
(i)
t)p(r

(i)
t |r

(i)
0:t−1, ω

(i)
0:t−1)p(ω

(i)
t |ω

(i)
t−1, a

(i)
t−1)p(a

(i)
t |a

(i)
t−1)

π(r
(i)
t , ω

(i)
t , a

(i)
t)

.(3.20)

Moreover, (3.17) means that, at time t, we can draw

(
r
(i)
t , ω

(i)
t , a

(i)
t

)
∼ π(rt, ωt, at), i = 1, ...,M, (3.21)

and append the new samples to the existing streams, r
(i)
0:t−1, ω

(i)
0:t−1 and a

(i)
0:t−1

(which need not be modified), to build the sequences r
(i)
0:t, ω

(i)
0:t and a

(i)
0:t. Eqs.

(3.21) and (3.20) together yield a SIS type of algorithm for the construction
of pM (r0:t, ω0:t, a0:t|y1:t) [41]. Note that (3.18) holds for the system model
given in (3.4), where the observations yt are conditionally independent given

56

the position rt and the position rt is independent of the model indices a0:t−1

given the turning angles ω0:t−1.

In order to avoid the degeneracy of the algorithm (see Section 2.3.3 for
a discussion of the degeneracy of the SIS methodology), we compute the
effective sample size M̂eff = 1

∑M
i=1 w

(i)2

t

every time step and each time the

effective sample size, M̂eff , falls below the resampling threshold, Mthres

(where Mthres = λM for some 0 < λ < 1) we perform resampling.

3.4.2 Evaluation of the weights

In order to ensure that the weights of (3.20) can be computed for an
arbitrary importance function π(rt, ωt, at), we must be able to evaluate
the factors p(at|at−1), p(ωt|ωt−1, at−1), p(rt|r0:t−1, ω0:t−1) and p(yt|rt). The
transition densities p(at|at−1) and p(ωt|ωt−1, at−1) are part of the model,
hence known by assumption. The prior density of the position at time t,
p(rt|r0:t−1, ω0:t−1), is Gaussian and can be obtained in closed form for each

particle. Indeed, given r
(i)
0:t−1 and ω

(i)
0:t−1, the system




r
(i)
1,t

r
(i)
2,t

v1,t
v2,t


 =




1 0
sin(ω

(i)
t−1T)

ω
(i)
t−1

−
cos(ω

(i)
t−1T)−1

ω
(i)
t−1

0 1
1−cos(ω

(i)
t−1T)

ω
(i)
t−1

sin(ω
(i)
t−1T)

ω
(i)
t−1

0 0 cos(ω
(i)
t−1T) − sin(ω

(i)
t−1T)

0 0 sin(ω
(i)
t−1T) cos(ω

(i)
t−1T)







r
(i)
1,t−1

r
(i)
2,t−1

v1,t−1

v2,t−1


+Qut (3.22)

is linear and Gaussian, with known parameters, and all posterior pdf’s,

including p(rt|r
(i)
0:t−1, ω

(i)
0:t−1), are Gaussian and can be computed exactly

using a Kalman filter [27, 50]. In the sequel, we will denote

p(rt|r
(i)
0:t−1, ω

(i)
0:t−1) = N(rt; r

(i)
t|t−1,Σ

(i)
t|t−1). (3.23)

See the Appendix A for details on the recursive computation of the mean

r
(i)
t|t−1 and the covariance matrix Σ

(i)
t|t−1.

The pdf p(yt|rt) is usually referred to as the likelihood of rt. If we write
p(yj,t|rt) as a marginal of the joint density p(yj,t,mj,t|rt), then we obtain
the expression

p(yt|rt) =
J∏

j=1

p(yj,t|rt) =
J∏

j=1

K∑

mj,t=1

p(yj,t|rt,mj,t)p(mj,t), (3.24)

57

where both

p(yj,t|rt,mj,t) = N(yj,t; fmj,t
(rt), σ

2
mj,t

) (3.25)

and p(mj,t) are known from the model, for all j = 1, ..., J . See Appendix B
for the derivation of (3.24).

3.4.3 Importance functions

A good deal of the performance of the proposed algorithm depends on the
choice of the importance function. The simplest choice is the prior

π(rt, at, ωt) = p(rt|r0:t−1, ω0:t−1)p(ωt|ωt−1, at−1)p(at|at−1), (3.26)

which reduces the importance weight calculation to w
(i)
t ∝ w

(i)
t−1p(yt|r

(i)
t).

Table 3.2 shows a summary of the proposed RBPF tracking algorithm,
with prior importance function, for the GSMM state-space model.

3.4.4 An auxiliary particle filter for multiple models

As explained in Section 2.4, more sophisticated importance functions can
lead to more efficient algorithms. In this work we investigate the use of an
auxiliary SIR algorithm (as the one described in Section 2.4.2) for tracking
under the generalized switching multiple model regime. Since the A-SIR
filter was already introduced in Section 2.4.2 for a general state-space system,
we do not described it again in detail. Here we show how to adapt the A-SIR
to the GSMM framework, where we have integrated out some state variables
(namely, the observation sub-model indicators, m0:t, and the velocity, v0:t).

To be specific, let {r̄
(i)
0:t, ω̄

(i)
0:t, ā

(i)
0:t}

M
i=1 be the particles available at time t

before resampling, with importance weights denoted w̄
(i)
t , i = 1, ...,M . We

propose to take into account the observation vector yt+1 in the resampling
step at time t. This is done by constructing normalized auxiliary weights of
the form

λ
(i)
t ∝ w̄

(i)
t p(yt+1|r

(i)
t+1|t), (3.27)

for i = 1, ...,M , where r
(i)
t+1|t is the mean of the Gaussian pdf p(rt+1|r̄

(i)
0:t, ω̄

(i)
0:t),

equivalent to Eq. (3.23). Then, we perform importance resampling
according to the auxiliary weights, i.e., we draw

(
r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t

)
=
(
r̄
(k)
0:t , ω̄

(k)
0:t , ā

(k)
0:t

)
(3.28)

58

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

−10

 Distance [m]

 R
S

S
 [

dB
]

Model 1

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12
−80

−70

−60

−50

−40

−30

−20

−10

 Distance [m]

 R
S

S
 [

dB
]

Model 2

(b)

Figure 3.5: Mean and standard deviation of the logarithmic observation
model. Figure (a) corresponds to model m = 1 and Figure (b) to model
m = 2. We use the same pair of models for every sensor in the network.

Table 3.2: Rao-Blackwellized particle filter for the GSMM system.

1. Initialization, at t = 0:

• For i = 1, . . . ,M , draw a0, ω0 and r0 from the priors p(r0), p(ω0)

and p(a0), respectively. Set w
(i)
0 = 1

M .

2. Recursive step, for t > 0:

• For i = 1, . . . ,M , draw a
(i)
t ∼ p(at|a

(i)
t−1), ω

(i)
t ∼ p(ωt|ω

(i)
t−1, a

(i)
t−1)

as defined in (3.4) and draw r
(i)
t ∼ p(rt|r

(i)
0:t−1, ω

(i)
0:t−1) via the

Kalman filter equations given in the Appendix A.

• For i = 1, . . . ,M , update the weights, w
(i)
t ∝ w

(i)
t−1p(yt|r

(i)
t),

according to (3.24).

• Find the effective sample size M̂eff = 1/
∑M

k=1w
(k)2

t . If M̂eff <
λM then resample.

59

with probability λ
(k)
t , for i = 1, ...,M and k ∈ {1, ...,M} (equivalently, we

generate M samples from the discrete distribution given by the probabilities

P
{
r̄
(k)
0:t , ω̄

(k)
0:t , ā

(k)
0:t

}
= λ

(k)
t , k = 1,,M). The resulting normalized

importance weights, after resampling, are

w
(i)
t ∝

w̄
(i)
t

λ
(i)
t

=
1

p(yt+1|r
(ki)
t+1|t)

, (3.29)

where ki ∈ {1, ...,M} is the index such that (r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t) =

(r̄
(ki)
0:t , ω̄

(ki)
0:t , ā

(ki)
0:t) and r

(ki)
t+1|t is the mean of the Gaussian density

p(rt+1|r̄
(ki)
0:t , ω̄

(ki)
0:t). The weights, w

(i)
t , and the resampled particles,

(r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t), i = 1, ...,M , are carried over to the next iteration of the

algorithm.
Table 3.3 shows a summary of the proposed auxiliary RBPF (A-RBPF)

algorithm for the proposed GSMM system.

3.4.5 Computational complexity of the algorithms

The computational load of the (basic) RBPF and the A-RBPF algorithms is
very similar. From Tables 3.2 and 3.3 it is apparent that, for each particle,
the main operations to be carried out are the prediction and update steps of
the Kalman filters2 and the evaluation and multiplication of J Gaussian
densities for the computation of the weights. Hence, the complexity of
the particle filters, excluding the resampling step, is O(MJ), i.e., it grows
linearly with the number of particles and the number of sensors.

As for the resampling step, we have implemented a multinomial
resampling procedure (for both algorithms) which has complexity O(M2).
This complexity could be reduced to O(M logM) using, e.g., systematic
resampling (see, e.g., [24] and [38] for details). Overall, the (asymptotic)
computational complexity of the two PFs is O(M(M + J)).

The A-RBPF algorithm, however,
requires some additional computational effort compared to the basic RBPF
method. This is because the A-RBPF algorithm demands that resampling
is performed (unconditionally) at every time step, while in the basic RBPF
method resampling is only carried out when the effective sample size M̂eff

falls below a user-defined threshold. Once the filter is “locked” to the target,
M̂eff can possibly stay over the threshold for several time steps in a row.

2Note that the Kalman filters are run for a state space model with only two state
variables and two observations.

60

Table 3.3: Auxiliary RBPF algorithm for the GSMM system.

1. Initialization, at t = 0:

• For i = 1, . . . ,M , draw a0, ω0 and r0 from the priors p(r0), p(ω0)

and p(a0), respectively. Set w
(i)
0 = 1

M .

2. Recursive step, for t > 0:

• For i = 1, . . . ,M , draw ā
(i)
t ∼ p(at|a

(i)
t−1), ω̄

(i)
t ∼ p(ωt|ω

(i)
t−1, a

(i)
t−1)

as defined in (3.4) and draw r̄
(i)
t from the Gaussian pdf

p(rt|r
(i)
0:t−1, ω

(i)
0:t−1) computed via the Kalman filter equations

given in the Appendix A. Let r̄
(i)
0:t = {r̄

(i)
t , r

(i)
0:t−1}, ω̄

(i)
0:t =

{ω̄
(i)
t , ω

(i)
0:t−1} and ā

(i)
0:t = {ā

(i)
t , a

(i)
0:t−1}.

• For i = 1, . . . ,M , update the weights, w̄
(i)
t ∝ w

(i)
t−1p(yt|r̄

(i)
t)

according to (3.24).

• Compute the Gaussian predictive distributions p(rt+1|r̄
(i)
0:t, ω̄

(i)
0:t) =

N(rt+1; r
(i)
t+1|t,Σ

(i)
t+1|t) using Kalman filtering.

• Resampling:

– For i = 1, ...,M , compute the normalized auxiliary weights

λ
(i)
t = w̄

(i)
t p(yt+1|r

(i)
t+1|t).

– Draw indices k1, ..., kM ∈ {1, ...,M} according to the

probabilities λ
(1)
t , ..., λ

(M)
t .

– Set
(
r
(i)
0:t, ω

(i)
0:t, a

(i)
0:t

)
=
(
r̄
(ki)
0:t , ω̄

(ki)
0:t , ā

(ki)
0:t

)
with probability

λ
(ki)
t , for i = 1,,M .

– Update the weights as w
(i)
t = 1

p(yt+1|r
(ki)

t+1|t
)
, for i = 1, ...,M .

61

We have carried out a simple computer simulation to illustrate the effect
the of the different scheduling of the resampling steps on the execution time
of the RBPF and the A-RBPF algorithms. In particular, Figure 3.6 shows
the average execution time per time step of the two filters versus several
values of the number of particles M . For the experiment, the two filters were
coded in Matlab and we run eight independent simulations (each one with
a different number of particles, M , from 100 to 50, 000) using synthetically
generated observations from the J = 9 sensors and the two polynomial
observation sub-models per sensor. After each simulation, the execution
time was recorded and divided by the number of time steps (100 in all
simulations).

It can be seen that the execution time of the A-RBPF method is always
higher. The difference is negligible for small to medium values of M but
becomes significant when the number of particles grows (M ≥ 5, 000). This
is as expected, since the extra resampling steps carried out by the A-RBPF
scheme have complexity O(M2) as discussed above.

In the next section we show performance results (both with synthetic and
experimental data) for the two algorithms with the two proposed observation
models and likelihoods.

3.5 Computer simulations results

In order to illustrate the performance of the proposed methods we have
generated synthetic data for three specific test trajectories in an indoor
scenario of 6×10 m, shown in Figure 3.7. One of the trajectories is (almost)
linear whilst the other two are more irregular. From now on, we denote the
trajectory in the first row as Trajectory 1, the trajectory in the middle row
as Trajectory 2 and the trajectory in the bottom row as Trajectory 3.

We have also generated random trajectories using the state-space model
of (3.2) in order to assess the algorithm performance when we have a
complete match between the model and the filters. We have chosen L = 2
motion sub-models, corresponding to a CV model, which describes a linear
movement, and a CT model, which represents the kinematics of a turn.
Hence, the dynamic-model indicator can take two values, at ∈ {1, 2}. When
at = 1 the CV model is chosen and when at = 2 the CT model is chosen. As
the dynamics of a person in an indoor scenario can be described as mostly
linear except for some occasional maneuvers, the probability of the CV
model is always higher, specifically, we have chosen p(at = 1|at−1 = 1) = 0.8
and p(at = 1|at−1 = 2) = 1. The CV model is obtained by setting ωt = 0.

62

Therefore, the transition probability distribution for the angle ωt in
the CV model is, trivially, p(ωt = 0|ωt−1, at−1 = 1) = 1 for any ωt−1.
The values we allow the turning angle to take with the CT model are
ωt ∈ {±π

6 ,±
π
4 ,±

π
2 ,±

3π
4 ,±π} and the transition probabilities are uniform,

i.e., p(ωt|ωt−1, at−1 = 2) = 1
10 for all ωt and ωt−1.

We have then generated four synthetic data sets using the two suggested
type of models (the polynomial sub-models described in Section 3.3.2 and the
logarithmic sub-models described in Section 3.3.3) with the two suggested
likelihoods (the Gaussian likelihoods defined in (3.5) and (3.11), and the
truncated Gaussians defined in (3.6) and (3.12)), for all trajectories (the
three test trajectories and a random trajectory).

Note that the A-RBPF algorithm uses the truncated likelihoods of (3.6)
and (3.12) to compute the weights only. When computing the predictive

likelihood p(yt+1|r̄
(ki)
t+1|t) of (3.29) we have used the (simpler) functions of

(3.5) and (3.11)3.

Using these data, we have performed tracking with the two proposed
particle filters. Recall that the specific form of the particle filter depends
on the assumed model (which determines the likelihood), hence we have
run four algorithms. Table 3.4 lists the simulation and algorithm parameter
settings for the RBPF and the A-RBPF algorithms.

3.5.1 Order of polynomial models

In order to select a suitable polynomial order we have run 500 independent
simulations with both the RBPF and the A-RBPF algorithms with
polynomials of three different orders, n = 3, 5 and 7. For this particular
simulation, we have selected Gaussian likelihoods. We have then evaluated
the mean and standard deviation of the absolute error in the estimation of
the position with each algorithm. The results are displayed in Table 3.5,
where MAE stands for mean absolute error and SDE stands for standard
deviation of the error. We have applied the algorithms with M = 100 and
M = 500 particles.

When tracking a random trajectory, the RBPF algorithm with
polynomial order n = 5 achieves the lowest MAE and the polynomial of
order n = 3 achieves the lowest SDE. For the same trajectory, the A-RBPF
algorithm with polynomial order n = 7 achieves the lowest MAE whist the

3Note that, when r̄
(ki)

t+1|t /∈ A, the truncated likelihoods of (3.6) become a vector with

all zero entries and, as a consequence, the weights of Eq.(3.29) would not be properly
defined.

63

10
2

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 Number of particles

 E
xe

cu
tio

n
tim

e
[s

]

RBPF
A−RBPF

Figure 3.6: Average execution time per time step of the RBPF and the
A-RBPF algorithms.

Parameter Value Parameter Value

Total no. of particles, M 100/500 Sampling period, Ts 0.5

Resampling threshold, λ 0.2 Position noise variance, 1

Trajectory 1 simulation time, T1 60 s Velocity noise variance, 0.5

Trajectory 2 simulation time, T2 50 s Model 1 probability, p(mt=1) 0.4

Trajectory 1 simulation time, T3 85 s Model 2 probability, p(mt=2) 0.6

Polynomial orders, n 3, 5, 7 No. of independent simulations 500

!

σ
u, 34

2

σ
u,12

2

Table 3.4: Algorithm and parameters table for the RBPF and A-RBPF
algorithms.

64

Rnd. trajectory Trajectory 1 Trajectory 2 Trajectory 3

MAE SDE MAE SDE MAE SDE MAE SDE Algorithm
Pol.

order
M

[m] [m] [m] [m] [m] [m] [m] [m]

RBPF 3 100 0.673 0.682 0.493 0.299 0.509 0.312 0.521 0.322

pol. functions 3 500 0.512 0.362 0.474 0.282 0.487 0.298 0.494 0.301

A-RBPF 3 100 0.560 0.469 0.483 0.292 0.503 0.312 0.507 0.312

pol. functions 3 500 0.499 0.336 0.473 0.473 0.485 0.295 0.494 0.302

RBPF 5 100 0.656 0.732 0.441 0.281 0.490 0.313 0.482 0.315

pol. functions 5 500 0.466 0.354 0.416 0.261 0.465 0.292 0.452 0.292

A-RBPF 5 100 0.528 0.483 0.432 0.276 0.481 0.305 0.470 0.308

pol. functions 5 500 0.456 0.334 0.418 0.263 0.467 0.293 0.453 0.294

RBPF 7 100 0.704 0.847 0.434 0.282 0.482 0.307 0.465 0.309

pol. functions 7 500 0.460 0.370 0.409 0.260 0.454 0.285 0.436 0.283

A-RBPF 7 100 0.526 0.504 0.425 0.276 0.469 0.298 0.457 0.303

pol. functions 7 500 0.447 0.335 0.413 0.262 0.454 0.286 0.439 0.285

!

Table 3.5: Mean of 500 independent simulations for the mean absolute error
of the position, in units of meters, and standard deviation of the error for
the two proposed algorithms for a random trajectory and for the specified 3
trajectories. The first line corresponds to the results for M = 100 particles,
the second line for M = 500 particles. The used likelihoods are polynomial
models with n = 3, 5 and 7 polynomial orders.

65

polynomial of order n = 5 achieves the lowest SDE. When tracking the
three specific trajectories the errors obtained are similar. Overall, the gain
provided by a higher order polynomials is small. Therefore, in order to
avoid the risk of over-fitting the models, we have chosen to use polynomials
of order n = 3 for the rest of the simulations.

3.5.2 Tracking performance

Figure 3.7 illustrates the tracking capacity of the A-RBPF algorithm with
200 particles using the polynomial sub-models (with a polynomial order of
n = 3) and the logarithmic sub-models for the four test trajectories. All
of them have been simulated with Gaussian likelihoods and with truncated
Gaussian likelihoods. The true trajectories are shown in solid dark-colored
lines and the estimates provided by the particle filter are shown in solid red
lines. The locations of the sensors are depicted as black squares.

In each column we show the tracking performance of a different
algorithm, starting from the left: column 1 shows the tracking capabilities of
an A-RBPF algorithm that uses multiple switching logarithmic sub-models
whose likelihoods are Gaussians as the one described in (3.11), column 2
shows the tracking capabilities of an A-RBPF scheme that uses multiple
switching polynomial sub-models whose likelihoods are Gaussians as the
one described in (3.5), column 3 shows the tracking capabilities of an A-
RBPF scheme that uses multiple switching logarithmic sub-models whose
likelihoods are truncated Gaussians as the one described in (3.12) and
column 4 shows the tracking capabilities of an A-RBPF algorithm that uses
multiple switching polynomial sub-models whose likelihoods are truncated
Gaussians as the one described in (3.6). All of the algorithms have been
tried with 200 particles.

In each row we show the tracking capabilities of the algorithms for a
specific trajectory, that is, the first row shows tracking examples of all four
algorithms for Trajectory 1, the second row shows tracking examples for
Trajectory 2 and the third row shows tracking examples for Trajectory 3.

In order to numerically assess the performance of the proposed PFs we
have run 500 independent simulations with each class of observation model
(polynomial and logarithmic, Gaussian and truncated Gaussian) and we
have evaluated the mean and standard deviation of the absolute error in the
estimation of the position with each algorithm. The results for Gaussian
likelihoods are displayed in Table 3.6 and the results for truncated Gaussian
likelihoods are displayed in Table 3.7. We have applied the algorithms with
M = 100 and M = 500 particles.

66

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

Figure 3.7: Results of target tracking with three different reference
trajectories and four types of synthetic observation data, each one created
according to the four likelihood functions described in Section 3.3.1.
The simulated trajectories are plotted in solid black lines, the estimated
trajectories in solid red lines and the sensors are depicted with dark squares.
To perform tracking we have used four different algorithms that correspond
to an A-RBPF algorithm of 200 particles that uses the four different
likelihood functions. In each column we show the tracking performance
of a different algorithm and in each row we show the tracking capabilities of
the algorithms for a specific trajectory.

67

Algorithm M

Rnd. trajectory Trajectory 1 Trajectory 2 Trajectory 3

MAE SDE MAE SDE MAE SDE MAE SDE

[m] [m] [m] [m] [m] [m] [m] [m]

RBPF 100 1.123 0.813 0.994 0.611 1.075 0.653 1.059 0.648

log. functions 500 1.009 0.710 0.935 0.568 1.021 0.611 0.999 0.611

A-RBPF 100 1.057 0.757 0.969 0.599 1.051 0.632 1.037 0.632

log. functions 500 0.999 0.703 0.930 0.566 1.018 0.609 0.996 0.611

RBPF 100 0.734 0.859 0.459 0.282 0.460 0.294 0.502 0.325

pol. functions 500 0.483 0.352 0.441 0.269 0.444 0.283 0.473 0.295

A-RBPF 100 0.540 0.478 0.453 0.278 0.453 0.288 0.485 0.309

pol. functions 500 0.472 0.329 0.443 0.271 0.444 0.282 0.472 0.295

IMM-UKF

log. functions
 1.534 1.060 1.404 0.900 1.428 0.924 1.397 0.902

IMM-UKF

pol. functions
 0.686 0.400 0.609 0.360 0.620 0.380 0.620 0.374

!

Table 3.6: Mean of 500 independent simulations for the mean absolute error
of the position, in units of meters, and standard deviation of the error
for the two proposed algorithms and the two proposed observation models
for a random trajectory and for the specified 3 trajectories. The first line
corresponds to the results forM = 100 particles, the second line forM = 500
particles. The used likelihoods are Gaussians.

Rnd. trajectory Trajectory 1 Trajectory 2 Trajectory 3

MAE SDE MAE SDE MAE SDE MAE SDE Algorithm M

[m] [m] [m] [m] [m] [m] [m] [m]

RBPF 100 0.987 0.809 0.769 0.480 0.893 0.504 0.810 0.501

log. functions 500 0.868 0.555 0.741 0.470 0.857 0.482 0.767 0.474

A-RBPF 100 0.885 0.569 0.751 0.473 0.889 0.500 0.790 0.493

log. functions 500 0.857 0.534 0.737 0.469 0.855 0.481 0.766 0.473

RBPF 100 1.500 2.122 0.367 0.244 0.427 0.263 0.407 0.272

pol. functions 500 0.503 0.414 0.349 0.230 0.411 0.250 0.386 0.253

A-RBPF 100 0.503 0.424 0.362 0.236 0.420 0.256 0.400 0.266

pol. functions 500 0.422 0.276 0.350 0.232 0.411 0.250 0.387 0.254

!

Table 3.7: Mean of 500 independent simulations for the mean absolute error
of the position, in units of meters, and standard deviation of the error
for the two proposed algorithms and the two proposed observation models
for a random trajectory and for the specified 3 trajectories. The first line
corresponds to the results forM = 100 particles, the second line forM = 500
particles. The used likelihoods are truncated Gaussians.

68

We first note that the algorithms that use polynomial observation sub-
models perform better at estimating the position of the target than the
algorithms that use logarithmic observation sub-models (both for the RBPF
and the A-RBPF algorithms). In Table 3.6 we see that, for Trajectories
1, 2 and 3, the algorithms that use polynomial observation sub-models
achieve a MAE of ≈ 0.4 m, with a standard deviation of ≈ 0.25 m for
the position, whilst the algorithms that use logarithmic observation sub-
models achieve a MAE of ≈ 0.8 m, with a standard deviation of ≈ 0.5 m for
the position. These results are as a priori expected, since the polynomial
functions are much more elaborate: we employ m = 2 observation sub-
models per sensor and a larger amount of data has been used to fit these
models. The logarithmic functions, on the other hand, are obtained by a
simpler procedure, they involve only m = 2 observation sub-models for the
whole sensor network and they have been fitted with less data.

Tables 3.6 and 3.7 also show that algorithms that use truncated
Gaussian likelihoods obtain better results than algorithms that use Gaussian
likelihoods. Once again these results are as a priori expected, since we are
incorporating information regarding the area where the object is allowed to
move. However, in many cases such information may be unavailable or the
boundaries may be fuzzy. In that case, we can only resort to the use of
Gaussian likelihoods.

Finally, it should be noted that the A-RBPF method is more efficient
than the RBPF algorithm as it obtains better estimation accuracy with a
lesser number of particles. This is specially noticeable when the particle
number is small (e.g., M = 100). Therefore, if the algorithm should run
with few samples (due to computational complexity constraints), the A-
RBPF algorithm should be the technique of choice. If a larger number of
particles can be afforded, then both methods achieve a similar performance
but the resampling and weight update step of the RBPF scheme are simpler.

3.5.3 Comparison with the interacting multiple model
methodology

Table 3.6 also shows a comparison of the proposed RBPF algorithms with
a state-of-the-art interacting multiple model (IMM) algorithm [79, 63] that
uses a bank of unscented Kalman filters (UKFs) [65, 114].

A brief explanation regarding the structure and complexity of the IMM-
UKF tracker is necessary. In the considered GSMM setup, we have L = 2
motion sub-models, corresponding to a CV model and a CT model. The
latter can take up to 11 different possible turns. In the IMM scheme, this

69

translates to L̃ = 12 different dynamic models. Furthermore, we have K = 2
observation sub-models for each of the J = 9 sensors, therefore we have
KJ = 512 combinations of observation models for each time instant. As
a consequence, the IMM structure should account for L̃ × KJ = 6, 114
filters, each one matched to a different dynamic model and a combination
of observation models. Since such implementation is prohibitive for online
tracking, we have built a bank of twelve UKFs matched to the L̃ = 12
dynamic models. For each UKF, the combination of observation sub-models
for the sensors is fixed. In particular, we select it by solving the maximum
a posteriori estimation problem

m̂t = argmax
mt

p(mt|yt, r̂t),

where

p(mt|yt, r̂t) = p(yt, r̂t|mt)p(mt)

= N(yt; f(r̂t,mt),Σ
mt

ε)p(mt) (3.30)

is the posterior probability of the sub-model indices and r̂t is a prediction of
the target position. We obtain the latter as a weighted sum of the predictions
of each of the bank of UKFs,

r̂t =
L̃∑

l=1

µ
(l)
t−1r̂

(l)
t (3.31)

where {µl
t−1}

L̃
l=1 are the mixture weights of the L̃ dynamic models of the

IMM algorithm [99] and r̂
(l)
t is the prediction of rt produced by the l-th UKF

in the bank.
The last row of Table 6 displays mean errors (and standard deviations)

obtained by the IMM-UKF tracker under the same simulation setup
as the proposed RBPF algorithms with Gaussian likelihoods. When
using logarithmic observation sub-models, both the RBPF and the A-
RBPF algorithms clearly outperform the IMM-UKF tracker. When using
polynomial sub-models, the A-RBPF and the RBPF algorithms with 500
particles are also clearly superior to the IMM-UKF tracker. Only the
simplest particle filter (the RBPF algorithm) with 100 particles attains a
slightly worse performance.

This results are specially relevant if we notice that the IMM-UKF tracker
is computationally heavy (each UKF needs 35 σ-points and detects the J
model indices in mt at each time step). Therefore the A-RBPF tracker with
100 particles is both more accurate and computationally lighter than the
IMM-UKF in all the considered setups.

70

3.5.4 Gain from using multiple models

In order to assess the improvement in the accuracy that we attain with
the use of a multiple model description, we have also run simulations with
exactly the same settings as before but this time using a single logarithmic
observation model. To do so, we have constructed an extra observation
model following the steps described in Section 3.3.3 but skipping the
clustering step, that is, we avoid dividing the data into clusters to construct
the logarithmic model. Same as with the other observation models, we have
constructed a Gaussian likelihood and a truncated Gaussian likelihood.

Table 3.8 displays the empirical mean and standard deviation of the
absolute error in the estimation of the position obtained when we average 500
independent simulations using an RBPF and an A-RBPF algorithms with
a single logarithmic model (using both Gaussian and truncated Gaussian
likelihoods).

If we compare the results in Table 3.8 to those obtained with the multiple
switching logarithmic sub-models in Tables 3.6 and 3.7, we observe that
the GSMM approach yields a reduction in the MAE and the SDE of the
position of approximately 36% in all algorithms and all trajectories using
both types of likelihoods (Gaussians and truncated Gaussians). For example,
the average MAE of the position in the random trajectory using the RBPF
scheme with multiple switching logarithmic Gaussian sub-models is 1.123 m
whilst the RBPF scheme with a single logarithmic Gaussian model obtains
1.788 m. This means that we obtain a reduction in the MAE of the position
of 36%.

3.6 Experimental results

One major goal of this work is the experimental verification of the validity
of the GSMM scheme and the particle filtering algorithms. Hence, we
have also applied the same techniques (with exactly the same parameters)
to the three test trajectories using experimentally collected data. The
measurements were obtained with the same setup described in Section 3.3.1,
but independently from the observations used to fit the models.

One limitation of this experimental data set is that we do not know the
exact position of the target node at the time instants when the observations
were collected. As a consequence, it is not possible to calculate numerical
errors for the target position estimates. We do know the overall trajectory
of the target, however, and we can plot it together with the complete track
estimate for comparison.

71

Figure 3.8 shows the tracking performance of the A-RBPF algorithm
with 200 particles using polynomial observation models and logarithmic
observation models (both for Gaussian and truncated Gaussian likelihoods)
when fed with real data. The true trajectories are shown in solid black
lines, the estimated trajectories in solid red lines and the sensor positions
with black squares.

As we can observe, truncating the likelihood really improves the tracking
capabilities, as both observation models (polynomial and logarithmic)
improve considerably when using this type of likelihood. When the
boundaries of the area to be monitored are not known a priori (hence, there
is no possible truncation of the likelihood function), the algorithms that
use polynomial models clearly outperform those that employ logarithmic
functions (which is as expected, since they have been fitted with more data).

Figure 3.9 shows the tracking performance of the IMM-UKF tracker
and the A-RBPF algorithm with M = 200 particles and experimental
data. All the algorithms use logarithmic observation models with Gaussian
likelihoods. The column on the left shows the outcome of the IMM-
UKF tracker and the column on the right illustrates the performance
of the A-RBPF algorithm. It is observed that the IMM-UKF tracker
has difficulties following the three experimental trajectories and that the
estimated trajectories are noisier than those of the A-RBPF algorithm.

3.7 Conclusions

We have proposed a generalized switching multiple-model (GSMM)
approach to the representation of the target dynamics and the radio signal-
strength (RSS) observations in an indoor scenario. The resulting class
of state-space models is very flexible and we claim that it may enable
the adequate formal representation of time-varying scenarios with highly
unstable RSS measurements. The drawback of the GSMM system is the
increase in the dimension of the system state and, hence, the number
of variables that the tracking algorithm has to estimate. To handle this
difficulty, we have introduced two Rao-Blackwellized particle filters that
jointly estimate the target trajectory and the additional state variables
needed to represent the switching models. The first filter is a standard
implementation using the prior importance function for the model. The
second algorithm is an auxiliary particle filter that includes observation data
in the resampling step. It yields an improvement in performance (especially
noticeable when only a small number of particles can be used) at the expense

72

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 Eje x [m]

 E
je

 y
 [

m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

Figure 3.8: Tracking performance of the A-RBPF algorithm with
experimental data: results of target tracking with three different reference
trajectories and real RSS observations collected in the experimental setup
described in Section 3.3.1. The real trajectories are plotted in solid
black lines, the estimated trajectories in solid red lines and the sensors
are depicted with dark squares. To perform tracking we have used four
different algorithms that correspond to an A-RBPF scheme that uses the
four different likelihood functions we introduced. In each column we show
the tracking performance of a different algorithm and in each row we show
the tracking capabilities of the algorithms for a specific trajectory.

73

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

−2 0 2 4 6 8
−2

0

2

4

6

8

10

12

 x−axis [m]

 y
−a

xi
s

[m
]

Figure 3.9: Tracking performance of the A-RBPF algorithm of 200 particles
and the IMM-UKF with experimental data. The real trajectories are plotted
in solid black lines, the estimated trajectories in solid red lines and the
sensors are depicted with dark squares. All the algorithms use logarithmic
observation models with Gaussian likelihoods. The column in the left shows
the outcome of the IMM-UKF tracker and the column in the right illustrates
the performance of the A-RBPF algorithm.

74

of little extra computational complexity.
We have provided numerical results that illustrate the performance of the

proposed methods with both synthetic and experimental RSS measurements.
The experimental setup to obtain the data for the assessment of the
algorithms consisted of a sensor network of nine IEEE 802.15.4 sensors
deployed in a 6 × 10 meter area. Using real data from this setup, we
have constructed two sets of observation sub-models. The first set involves
polynomials of high order fitted with a large amount of data. The second set
consists of (simpler) logarithmic sub-models. They involve few parameters
to adjust and only two sub-models for the whole network. The data for
model fitting is obtained from the messages transmitted at the network
startup, and hence the procedure can be made automatic. We have tried the
two observation model schemes with two types of likelihoods: a Gaussian
likelihood and a truncated Gaussian likelihood that incorporates a priori
information about the boundaries of the area where the target can move.
The numerical assessment of these two schemes shows that the polynomial
sub-models yield a considerable performance advantage with respect to
the logarithmic sub-models when the boundaries of the motion area are
unknown. However, when the latter information is available, the simpler
logarithmic models attain nearly the same performance as the polynomial
ones, and hence should be preferred.

Finally, note that a further performance improvement can be achieved
by constructing larger sets of observation sub-models (provided that
sufficiently rich data are available). However, handling more sub-models
also brings an increased computational complexity. In this paper we have
restricted ourselves to relatively simple configurations in order to show that
a practically meaningful performance can be achieved with a moderate
computational burden.

75

Algorithm M

Rnd. trajectory Trajectory 1 Trajectory 2 Trajectory 3

MAE SDE MAE SDE MAE SDE MAE SDE

[m] [m] [m] [m] [m] [m] [m] [m]

RBPF 100 1.788 1.258 1.539 0.945 1.870 1.094 1.715 1.076

Gauss log. 500 1.603 1.121 1.412 0.863 1.736 1.016 1.584 0.986

A-RBPF 100 1.759 1.265 1.530 0.951 1.864 1.095 1.714 1.100

Gauss log. 500 1.600 1.125 1.414 0.868 1.736 1.017 1.581 0.983

RBPF trunc. 100 1.444 0.844 1.280 0.718 1.364 0.760 1.307 0.751

Gauss log. 500 1.368 0.788 1.216 0.690 1.307 0.729 1.240 0.706

A-RBPF trc. 100 1.414 0.839 1.260 0.722 1.353 0.762 1.288 0.753

Gauss log. 500 1.362 0.788 1.215 0.691 1.307 0.731 1.238 0.707

!

Table 3.8: Mean of 500 independent simulations for the mean absolute error
of the position, in units of meters, and standard deviation of the error for
the two proposed algorithms and the single logarithmic observation model
for a random trajectory and for the specified 3 trajectories. The first
line corresponds to the results for M = 100 particles, the second line for
M = 500 particles. The first two rows display results with algorithms that
use Gaussian likelihoods and the bottom two rows display the results for the
algorithms that use truncated Gaussian likelihoods.

76

Chapter 4

A distributed particle filter
implementation

We propose a mathematically sound distributed particle filter for target
tracking in a real-world indoor WSN comprised of low-power nodes. We
provide formal and general descriptions of the methodology and then present
the results of both real-world experiments and computer simulations that use
models fitted with real data. In particular, we have carried out real-world
tests that show how the proposed distributed particle filter can successfully
track a moving target using a network of passive light sensors.

The chapter is organized as follows. In Section 4.1 we provide a brief
introduction to the methods that have been investigated in the distributed
target tracking literature. Section 4.2 describes the dynamic and observation
models we consider. Section 4.3 provides details of the specific deployment
for the experiments and the fitting of the observation models. In Section 4.4
we provide a formal description on the DRNA algorithm. Both numerical
and experimental results are presented and discussed in Section 4.5 and,
finally, Section 4.6 is devoted to the conclusions.

4.1 Introduction

Distributed applications of tracking in WSN are particularly interesting in
situations where high powered centralized hardware cannot be used. For
example, in deployments where computational infrastructure and power
are not available or where there is no time or trivial way of connecting
to it, or in situations where powerful processing hardware is too large or
expensive to consider for a practical deployment. In distributed target

77

tracking applications, signal processing tasks need to be shared by the
multiple nodes of the WSN. Note that many items in the literature often
refer to WSNs as being “distributed”, even when processing is centralized,
because they are merely referring to the physically distributed nature of
WSNs. See, for example [28, 42]. In this paper we refer to “distributed”
specifically with regard to processing, meaning that the computational tasks
are divided among a set of low-power devices in the WSN.

Stochastic filtering methods [10] are obvious candidates for distributed
tracking applications and so they have been researched by many authors
in the context of WSNs [87, 84, 37, 34]. Many works use consensus based
algorithms [68, 53], where local nodes transmit estimates to neighboring
nodes, in order to, in an iterative manner, fuse the information and reach
to an agreement about the global estimate on a local basis. Other popular
distributed approaches are based on diffusion (i.e., distributed cooperative)
techniques, [26], where local nodes exchange their estimates with neighbors
in order to improve their estimates and fuse the collected estimates .

Distributed particle filtering for target tracking in wireless sensor
networks has already attracted much attention [30, 105, 60, 55, 57]. In
[16], a fully decentralized particle filtering algorithm for cooperative blind
equalization is introduced. The technique is proper, in the sense that it
does not make any approximations in the computation of the importance
weights of the particles. However, the scheme is applicable only when the
state signal is discrete, and would be infeasible in terms of computation
and communication among nodes (the authors provide a simulation only)
in WSNs such as we consider. In [30], the communication load is reduced
using quantization and parametric approximations of densities. A similar
parametric approach is applied in [56] to further simplify communications.
In [15], on the other hand, methods for the parallelization of the resampling
step that speed up the PF while guaranteeing that the importance weights
assigned to the particles are proper are introduced [81]. Recently, a class of
interacting PFs has been proposed for multi-target tracking [36, 29]. This
class of algorithms relies on splitting the state-space into lower dimensional
subspaces in order to become computationally tractable, but does not
guarantee that the particles are assigned proper weights.

The large majority of existing contributions related to particle filtering,
however, only offer a theoretical perspective or computer simulation studies,
owing in part to the complications of real-world deployment and testing
on low-powered hardware. Deployments of physical sensor networks have
so far been purely centralized (from the computational point of view held
in this paper) or, when truly distributed versions are proposed, they

78

are approximations to the centralized PF whose convergence cannot be
guaranteed [30]. For example, [2] uses 25 acoustic sensors with a centralized
PF to track a remote-controlled car, while [1] uses the RSS measurements
to track an additional moving target node, also with a centralized PF.

In this work we investigate the use of the distributed resampling
with non-proportional allocation (DRNA) algorithm, that was originally
proposed in [15] for the parallelization of the SIS algorithm [41], for
the implementation of a distributed PF running on a WSN. The DRNA
was first introduced with the aim of speeding up the processing of the
PF via the parallelization of the resampling step (see also [81]). It
was therefore designed to be implemented on several processing elements
within a single board (i.e., similar to state-of-the-art graphics processing
cards [75, 109, 95]) where high-capacity communications between processing
elements are guaranteed. The method is very appealing because it ensures
that the importance weights of the particles are proper. Here, we tackle the
problem of implementing the DRNA algorithm in a practical WSN. We first
revisit the standard PF and its combination with the DRNA algorithm,
providing a formal description of the methodology. This includes a short
derivation showing that the DRNA procedure is unbiased.

For the practical implementation of the methodology on a real-time
WSN, we have developed a software and hardware testbed with the
required algorithmic and communication modules, working on a network
of wireless light-intensity sensors. We assess the tracking performance of
the resulting system in terms of the error obtained with both synthetic and
real data. Finally, we study the constraints in the real-time operation and
the communication capabilities (compared to a centralized PF) by way of
experiments with our testbed implementation.

4.2 System model

4.2.1 Motion model

We consider a four dimensional state-space vector xt = [r⊤t ,v
⊤
t]

⊤ ∈ R
4 that

describes the position rt = [r1,t, r2,t]
⊤ and velocity vt = [v1,t, v2,t]

⊤ of the
target at time t.

Assume that the region of surveillance is a rectangle defined by two
intervals, A1, A2 ⊂ R, such that a target is in the surveillance area if its
position, rt, fulfills r1,t ∈ A1 and r2,t ∈ A2. Then we model the target

79

dynamics as

xt = bA

(
f(xt−1, at) + ut

)
(4.1)

where

• {at}t≥1 is an i.i.d. sequence of indicator random variables with
probability mass function p(at = 1) = α1 = 0.1 (hence p(at = 0) =
1− α1 = 0.9),

• f(xt−1, at) is a vector-valued state transition function (specified
below),

• ut is the process noise, with density N(ut|0,Cu) and

Cu =

[
σ2
rI2 0
0 σ2

vI2

]
,

• and bA is a ‘wrapper’ function designed to keep the target motion
within the limits of the region A (also described below).

The indicator at determines the kind of motion of the target. If at = 0,
then ft(·, 0) yields a constant-velocity [11] model, namely

f(xt−1, 0) =




1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1







r1,t−1

r2,t−1

v1,t−1

v2,t−1




where Ts is the time discretization period. If, on the other hand, at = 1, then
f(·, 1) produces a sharp turn by generating a velocity vector independent of
the velocity at time t− 1, specifically

f(xt−1, 1) =




x1,t−1

x2,t−1

zt cos(ωt)
zt sin(ωt)




where zt is the modulus of the velocity at time t, drawn from the uniform
pdf p(zt) = U(0, Zmax), and ωt is the angle of the velocity at time t, drawn
from the uniform pdf p(ωt) = U(0, 2π). The maximum velocity is set to
Zmax = 1.5 m/s.

In simulations the target will reverse any of its velocity components when
moving out of the scenario bounds (intuitively, it will ‘bounce’ off the walls).

80

This reflects the fact that target motion is restricted by the bounds of an
indoor scenario. In particular, recalling that A = A1 × A2, we define the
wrapper function bA as

bA




r1,t
r2,t
v1,t
v2,t


 =




r1,t
r2,t

v1,t × (−1)I(r1,t /∈A1)

v2,t × (−1)I(r2,t /∈A2)




where the indicator function I(rd /∈ Ad) returns 1 if and only if rd falls
outside the interval Ad, d ∈ {1, 2}.

4.2.2 Measurement model

We assume we receive J sensor observations coming from a WSN comprised
of low-power nodes. Specifically, we assume that the sensors measure light
intensity. Light sensors provide an integer value proportional to the amount
of light they are receiving. We assume that light travels in straight lines and,
over short distances, scattering from suspended particles and air molecules
has a negligible effect on the amount of light reaching the sensor. Therefore,
any object geometrically enclosed in the region between a light sensor and a
light source can affect the values being read by that sensor. As light intensity
fluctuates greatly when reflecting off walls, static and dynamic objects it is
very difficult to model these type of observations as a sensor-target distance
measurement. Instead, the observation coming from sensor j at time t,
denoted yj,t, is modeled as a binary observation giving a 1 or a 0 depending
on the target position and some error probability.

We assume that the observations are conditionally independent across
the different sensors, given the target position. This is a rather common
assumption. Intuitively, it means that the observational noise at different
sensors is independent. Hence we define the likelihood as

p(yt|rt) =

J∏

j=1

p(yj,t|rt)

=

J∏

j=1

[p(yj,t = 1|rt)I(yj,t = 1) + p(yj,t = 0|rt)I(yj,t = 0)](4.2)

where rt is the target position, I(.) is the indicator function and the factors
p(yj,t = 1|rt) and p(yj,t = 0|rt) are computed as

p(yj,t = 1|rt) =

{
1− F+ if rt ∈ Zj

F+ if rt /∈ Zj
(4.3)

81

and

p(yj,t = 0|rt) =

{
1− F− if rt /∈ Zj

F− if rt ∈ Zj .
(4.4)

In the expression above, Zj is the two-dimensional detection zone enclosed
by the sensor j and the vertices of the light source and F+ and F− are the
false positive and false negative rates associated with the deployment (i.e.,
the probability of yj,t = 1 when the target is outside Zj , and the probability
of yj,t = 0 when the target is inside Zj, respectively). Full details on the
selection of the observation model parameters are given in Section 4.3.

4.3 Experimental set-up and observation models

In our deployment we use the Imote2. This mote hardware has a CPU set at
104 MHz, but it lacks native support for floating point operations which are,
as a result, relatively much slower. It has 256kB of SRAM, 32MB SDRAM,
and also 32MB of flash memory. It incorporates a radio transceiver with
a maximum transmission rate of 31,250 Bytes/seconds. Power comes from
three AAA batteries, enough to last from days to months depending on
usage (with network activity causing the biggest drain, followed by CPU
usage). Physically, the motes are about 6 × 4 × 2 centimeters (including
batteries). These motes are relatively powerful for sensor node hardware,
but they are still very modest as compared with a typical desktop or laptop
machine.

We use the simple light sensors that come with the Imote2’s basic sensor
board, which provide a simple positive integer reading between 0 and 65535
relative to the current light level (0 in complete darkness). This reading
can be converted into the standard measurement of lux, although this is
not necessary for our choice of observation model (recall from (4.2) that our
chosen measurement model is binary).

Our experimental scenario is depicted in Figure 4.1. It is a room with
J = 10 nodes (each equipped with a light sensor) enclosing an area of
3.2× 6.0 meters with a single source of natural light (a window). Although
there is little variation in artificial light, natural light comes more readily
from side-on, making it more practical to carry out indoor tracking without
modification to the existing setup of the room (by adding lamps, etc.).

Using light sensors for position estimation is fundamentally different
from using other types of observations such as RSS, sound waves, GPS
signals, etc., which are functions of the distance between the target and
the sensor. Light sensors, on the other hand, simply provide an integer

82

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

Figure 4.1: Tracking scenario of 3.2 × 6.0 meters (a bird’s-eye view). The
bold line indicates the light source (a window). There are J = 10 motes
equipped with light sensors are arranged around the edges, indicated by
squares. The entry to the scenario lies at the bottom-right corner.

83

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

Z

Figure 4.2: The detection zone of a sensor, labeled Z in the plot, is the
area enclosed by a triangle with one vertex at the sensor and the other two
vertices at the sides of the light source.

value proportional to the amount of light they are receiving. In a uniform
medium (such as it is, approximately, the air inside a room), light travels
in straight lines, and over short distances (e.g., several meters, as we are
considering) scattering from suspended particles and air molecules has a
negligible effect on the amount of light reaching the sensor. Therefore, any
object geometrically enclosed in the region between a light sensor and a light
source can affect the values being read by that sensor. If the source of light is
a window, in a top-down two-dimensional representation the detection zone
can be viewed as a triangle, as depicted in Figure 4.2 (i.e., the Z region).
See [71] for details.

Reflections and scattering from surfaces (such as walls), inanimate
objects (e.g., furniture) and the target itself can have a major effect on
the amount of light directed towards a sensor, but are far too complex to be
modeled, especially on our very limited hardware. Since it is very hard to
translate the disturbances caused by the target in the sensor readings into
distance measurements, we instead focus on obtaining binary observations:
1 if the target is inside the detection zone and 0 otherwise.

As the target keeps moving within the detection zone, it may block light

84

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

samples (one every 0.5 seconds)

le
ve

l o
f l

ig
ht

 m
ea

su
re

d

inside
outside

Figure 4.3: The solid line represents the light signal measured when the
target (a walking person) moves randomly outside the detection zone. The
dashed line is the signal when the target moves randomly inside the detection
zone. Rather than a reduction in the light level, the presence of a target
within the detection zone causes a large variance in the sensor readings.

or actually reflect light into the light sensor, thus causing the light level
reading to go either up or down. This effect is illustrated in Figure 4.3.
Furthermore, under natural light there is no base level for the measured
signal (when no target is present) due to changes in the weather or the time
of day. Therefore, it is very difficult to detect the target presence from the
mean or instantaneous amplitude of the light signal. Instead, the short-
term variance of light readings is very informative and becomes a reliable
indicator of the presence of moving objects in the detection zone.

In order to turn this intuition into a quantitative model, we propose
to process the light readings at every node in order to convert them into
binary data. Between the sequential steps at times t− 1 and t each sensor
j = 1, . . . , J collects L light readings (evenly spaced in time) to produce a
set Vt,j = {v1,t,j , . . . , vL,t,j} (with L = 5 in our experiments). For a given
threshold τ , the j-th sensor outputs the binary datum

yt,j =

{
1, if var(Vt,j) > τ
0, otherwise

(4.5)

85

where var(Vt,j) is the empirical variance of the sample Vt,j. Putting the
observations of all nodes together into a single J × 1 vector we obtain, for
every time step t, the full observation yt = [y1,t, . . . , yJ,t]

⊤.
For our experiments, we calibrated the threshold τ a priori (offline) from

a set of real-world data. Specifically, we instructed a person (acting as the
target) to walk following an arbitrary trajectory within the monitored area
during a period comprising T discrete time steps. At each time step t =
1, ..., T , each sensor j collected samples Vt,j = {v1,t,j , . . . , vL,t,j}, j = 1, . . . , J
(one set per sensor). With the data collected up to time T , we selected the
threshold τ as the average of the empirical variances of all sensors, i.e.,

τ =
1

JT

J∑

j=1

T∑

t=1

var(Vt,j).

The same threshold is then used by all nodes.
Recall from Section 4.2.2 that the likelihood is defined by Eqs. (4.3)

and (4.4), where we only need to fix the error rates F+ and F−. These are
calibrated empirically from a short supervised walk (T = 20 steps) in the
real-world scenario. Specifically, we set

F+ =
1

JT

J∑

j=1

T∑

t=1

I(yj,t = 0, rt ∈ Zj)

and

F− =
1

JT

J∑

j=1

T∑

t=1

I(yj,t = 1, rt /∈ Zj),

respectively, where each yt,j is given from Eq. (4.5) on the motes and I(a, b)
is an indicator function returning 1 if, and only if, both a and b are true,
and 0 otherwise. In our experimental setup, this supervised walk was an X-
shaped trajectory passing through all sensors’ detection zones at least once.
The error probabilities F+ and F− are constants in the model, and identical
for all PEs. The (supervised and a-priori known) walk used to calibrate F+,
F− is different from the (unsupervised and arbitrary) walk used to obtain
the threshold τ .

Note that the constants in the likelihood model (i.e., τ , F+ and F−) are
the same for all nodes. It is possible to select a unique threshold τj (and,
hence, unique error rates F+

j and F−
j) for every sensor by using supervised

trajectories in and out of the detection zones Z1, ..., ZJ . This is intuitively
quite appealing from the point of view of trying to maximize the accuracy

86

of the observation model. However, we found that in real-world tests this
approach leads to worse performance than a single general model for all
nodes. This is probably due to the greater possibilities of introducing errors
when manually aligning sensor readings with the true trajectory (necessary
for a supervised walk), and from inadvertently obtaining overly ‘sterile’
data by choreographing the target’s movements too precisely, as well as
overfitting the data (the target used for training will not be the same one
for testing). Moreover, manually aligning the binary sensor readings for
the true trajectory is a very intensive task, impractical for many real-world
deployments. In light of this, we decided to calibrate a single observation
model, common to all sensors.

4.4 Distributed particle filtering

4.4.1 General structure

We look at the DRNA algorithm introduced in [15]. This algorithm was
originally proposed to speed up the processing time of PFs by making them
suitable for multi-processor devices endowed with high-speed communication
networks. In this paper, we propose to apply a DRNA scheme to implement
a distributed PF on a WSN, whose nodes can operate as processing elements
(PEs). Let us remark that this framework is rather different from the one
assumed in [15] or [81]. In particular, the PEs are low-powered devices that
have to perform sensing, computation and radio communication tasks while
running on batteries. Moreover, the schemes of [15, 81] are based on the
assumption that all observations can be readily made available to all PEs
in the system. Such capacity cannot be taken for granted in a WSN, where
the observations are collected locally by the nodes and communications are
necessarily constrained because of energy consumption. In the following we
describe the method using, essentially, the notation of [81].

Assume we have N processing nodes (or PEs) in the network; each is
capable of running a separate particle filtering algorithm with K particles
(we ignore any non-processing nodes for now since they do not run particle
filters). The total number of particles distributed over the network is
M = NK. In particular, after the completion of a full recursive step
of the distributed PF at time t − 1, the n-th PE should hold the set{
x
(n,k)
t−1 , w

(n,k)∗
t−1 ,W

(n)∗
t−1

}
k=1,...,K

, where

• x
(n,k)
t−1 is the k-th particle at the n-th PE,

87

• w
(n,k)∗
t−1 is the corresponding unnormalized importance weight, and

• W
(n)∗
t−1 =

∑K
k=1w

(n,k)∗
t−1 is the unnormalized aggregated weight of the

n-th PE.

Each PF run locally in a node involves the usual steps of drawing new
samples, computing weights and resampling. In particular, resampling is
carried out only locally, without interaction with the particles in other PEs.
In order to avoid the degeneracy of the local sets of particles (e.g., when K
is very low), the DRNA scheme includes a particle exchange step in which
neighbor PEs (those connected directly, in a single jump, in the WSN)
interchange subsets of their particles and unnormalized weights. This step
involves the update of the aggregated weights, but each individual particle
preserves its unnormalized importance weight, no matter its location in the
network.

In the following, we describe the algorithm steps in detail, including the
computation of state estimators, and finally provide a complete outline of
the method.

4.4.2 Particle exchange

The particle set in the n-th PE is said to degenerate when its aggregated

weight W
(n)∗
t becomes negligible compared to the aggregated weights of

the other nodes. Note that having W
(n)∗
t ≈ 0 means that the particles

in the n-th set hardly contribute to the approximation of the posterior
probability distribution of interest, hence the computational effort invested
in propagating them becomes a waste.

In order to keep the aggregated weights balanced, neighboring nodes can
exchange subsets of particles and local unnormalized weights [81]. Assume
that, at the beginning of the t-th time step, the n-th PE holds the weighted

particles {x
(n,k)
t−1 , w

(n,k)∗

t−1 }k=1,...,K (note the unnormalized weights). The n-th
node will receive weighted particles from a certain set of PEs and transmit
particles to another (possibly different) set of PEs. To be specific, let us
denote

• N in
n ⊆ {1, 2, ..., N}, the set of indices corresponding to the nodes that

are expected to transmit a subset of their particles toward the n-th
PE, and

• N out
n ⊆ {1, 2, ..., N}, the set of indices corresponding to the nodes that

expect to receive a subset of the particles generated at the n-th PE.

88

For regularity, assume that each PE transmits disjoint subsets of Q particles
to each of its designated neighbors. In particular, let

Mn,s
t =

{
x
(n,isr)
t−1 , w

(isr)∗
t−1

}
r=1,...,Q

be the particles and weights transmitted from node n to node s ∈ N out
n .

The indices is1, ..., i
s
Q ∈ {1, ...,K} can be selected in any desired way (even

randomly) as long as the messages Mn,s
t are disjoint, i.e., Mn,s

t ∩Mn,r
t = ∅

for any pair s, r ∈ N out
n , s 6= r.

The information held by the n-th PE after the particle exchange at time

t is given by {x̃
(n,k)
t−1 , w̃

(n,k)∗

t−1 }Kk=1 where

{

x̃
(n,k)
t−1 , w̃

(n,k)∗
t−1

}K

k=1
=




{x

(n,k)
t−1 , w

(n,k)∗
t−1 }Kk=1

︸ ︷︷ ︸

initial

\
(
∪s∈N out

n
Mn,s

t

)

︸ ︷︷ ︸

transmitted




∪




∪s∈N in

n
Ms,n

t
︸ ︷︷ ︸

received




 , (4.6)

and we assume that

∣∣∪s∈N out
n
Mn,s

t

∣∣ =
∣∣∣∪s∈N in

n
Ms,n

t

∣∣∣ ,

for every PE n ∈ {1, ..., N}, so that the number of particles per PE remains
constant, K = M/N . The new aggregated weight for the n-th node becomes

W̃
(n)∗

t−1 =
∑K

k=1 w̃
(n,k)∗

t−1 . Let us remark that the overall sets of particles and
weights before and after the particle exchange are identical, i.e.,

∪N
n=1

{
x
(n,k)
t−1 , w

(n,k)∗
t−1

}
k=1,...,K

= ∪N
n=1

{
x̃
(n,k)
t−1 , w̃

(n,k)∗
t−1

}
k=1,...,K

,

while, in general, the aggregated weights are different, W
(n)∗
t−1 6= W̃

(n)∗
t−1 .

4.4.3 Local processing

Immediately after the particle exchange at time t, the weighted particle set at

the n-th PE is {x̃
(n,k)
t−1 , w̃

(n,k)∗
t−1 }k=1,...,K. The generation of new particles, the

update of the importance weights and the resampling step are taken strictly
locally, without interaction among different nodes. To be specific, assume
that the transition pdf of model (2.1) is used as an importance function and
that the observation vector yt is available at every node1. Then, at the n-th
PE, and for k = 1, ...,K,

1The availability of the observations, which are typically collected locally in a WSN,
involves communications among the nodes.

89

1. x̄
(n,k)
t is drawn from the pdf p(x

(n,k)
t |x̃

(n,k)
t−1), and

2. the corresponding unnormalized weight is computed as

w̄
(n,k)∗
t = w̃

(n,k)∗
t−1 p(yt|x̄

(n,k)
t).

Hence the information stored by the n-th node at this point becomes

{x̄
(n,k)
t , w̄

(n,k)∗
t }k=1,...,K and the aggregated weight is W

(n)∗
t =

∑K
k=1 w̄

(n,k)∗
t .

Next, a resampling step is taken locally by each PE. Assuming a
multinomial resampling algorithm2, we assign, for k = 1, ...,K,

x
(n,k)
t = x̄

(n,j)
t , with probability w̄

(n,j)
t and j ∈ {1, ...,K},

where

w̄
(n,j)
t =

w̄
(n,j)∗
t∑K

l=1 w̄
(n,l)∗
t

, j = 1, ...,K,

are the locally normalized importance weights. After resampling, the

particles at the n-th PE are equally weighted, namely w
(n,k)∗

t =
W

(n)∗
t

K .

Trivially note that W
(n)∗
t =

∑K
k=1 w̄

(n,k)∗
t =

∑K
k=1w

(n,k)∗
t , i.e., the

resampling step keeps the aggregated weights invariant.

4.4.4 Estimation

Assume we are interested in the estimation of moments of the posterior
distribution, e.g.,

(f, µt) =

∫
f(xt)µt(dxt),

where f is some function of the state vector at time t, µt(dxt) = p(xt|y1:t)dxt

is the filter probability measure and we introduce the shorthand (f, µt) to
denote the integral of the function f with respect to the measure µt.

We can obtain local estimates of (f, µt) at any node. To be specific, we
can build discrete random approximations of the measure µt as

µ̄n,K
t (dxt) =

K∑

k=1

w̄
(n,k)
t δ

x̄
(n,k)
t

(dxt),

2This can be substituted by any other procedure without affecting the rest of the
algorithm.

90

before the resampling step, and

µn,K
t (dxt) =

1

K

K∑

k=1

δ
x
(n,k)
t

(dxt),

after the resampling step, where w̄
(n,k)
t = w̄

(n,k)∗
t /W

(n)∗
t , k = 1, ...,K, are the

locally normalized importance weights. These choices of discrete measures
lead to the approximations

(f, µ̄n,K
t) =

K∑

k=1

w̄
(n,k)
t f(x̄

(n,k)
t) and (f, µ

(n,K)
t) =

1

K

K∑

k=1

f(x
(n,k)
t)

of the posterior expectation (f, µt).
Global estimates can be easily computed by a linear combination of the

local estimates. If W
(n)
t = W

(n)∗
t /

∑N
i=1W

(i)∗
t is the globally normalized

aggregated weight of the n-th node, then we can build the discrete random
measures

µ̄N,K
t (dxt) =

N∑

n=1

W
(n)
t µ̄n,K

t (dxt), µN,K
t (dxt) =

N∑

n=1

W
(n)
t µn,K

t (dxt),

using the local approximations either before or after resampling, respectively.
The resulting global estimates are

(f, µ̄N,K
t) =

N∑

n=1

W
(n)
t (f, µ̄n,K

t), (f, µN,K
t) =

N∑

n=1

W
(n)
t (f, µn,K

t). (4.7)

The resampling operation carried out locally at the N nodes is globally
unbiased in the sense defined in, e.g., [31, 38, 81]. To make this
explicit, consider the sigma algebra generated by the random weights before

resampling, i.e., Gt = σ − (w̄
(n,k)∗
t , x̄

(n,k)
t ;n = 1, ..., N ; k = 1, ...,K). Since

the aggregated weights W
(n)∗
t are Gt-measurable, for any integrable function

f the conditional expectation of the estimator (f, µN,K
t) given Gt is

E{(f, µN,K
t)|Gt} =

N∑

n=1

W
(n)
t E{(f, µn,K

t)|Gt} (4.8)

and, since the local normalized weights w̄
(n,k)
t and particles x̄

(n,k)
t are also

Gt-measurable,

E{(f, µn,K
t)|Gt} =

K∑

k=1

w̄
(n,k)
t f(x̄

(n,k)
t) = (f, µ̄n,K

t). (4.9)

91

Substituting (4.9) into (4.8) yields

E{(f, µN,K
t)|Gt} = (f, µ̄N,K

t),

i.e., the DRNA procedure is unbiased.

4.4.5 Summary

Table 4.1 summarizes the DPF algorithm investigated in this paper. Note
that in order to apply this technique, we assume that all the observations
in the vector yt are available at every node at time t. This assumption
is fairly natural in the parallel computation setup of [15] and [81], but
not necessarily in the WSN framework of interest here. This issue will be
specifically addressed in the subsequent sections.

In order to obtain a global estimate of (f, µt), each node n in the
network should transmit its local estimate (f, µn,K

t) and its aggregated

weight W
(n)∗
t to a prescribed node (working as a fusion center) where

(f, µ̄N,K
t) =

∑N
n=1 W

(n)
t (f, µ̄n,K

t) can be computed.

4.5 Simulations and experimental results

We illustrate the validity of our approach by applying the proposed
DPF algorithm in a real-world WSN for target tracking using the binary
observation model described in Section 4.3. We first describe the dynamic
model for the target, then show results both for synthetic and experimental
(real-world) observations. We conclude the section with a brief discussion
of the advantages and disadvantages of the proposed scheme.

4.5.1 Setup

The prior distribution of the target state p(x0) is (multivariate) Gaussian.
In particular, r0 and v0 are a priori independent and

p(r0) = N(r0|r̄0, σ
2
r,0I2) and p(v0) = N(v0|v̄0, σ

2
v,0I2),

where I2 is the 2× 2 identity matrix and

• the mean prior position is r̄0 = [2.5, 0.4]⊤, i.e., the target enters
through the bottom-right corner of the area of interest sketched in
Figure 4.1,

92

Table 4.1: Distributed particle filtering (DPF) algorithm.

1. Initialization, at t = 0, for n = 1, ..., N :

• Draw x
(n,k)
0 , for k = 1, . . . ,K, from the prior pdf p(x0).

• Assign equal weights to the samples, w
(n,k)∗

0 = 1
K for every k, and

set W
(n)∗
0 = 1.

• Build the set {x
(n,k)
0 , w

(n,k)∗
0 ,W

(n)∗
0 }Kk=1.

2. Recursive step, for t > 0, start from the set {x
(n,k)
t−1 , w

(n,k)∗
t−1 ,W

(n)∗
t−1 }Kk=1.

Then, for n = 1, ..., N :

• Exchange particles with neighbor PEs in N in
n and N out

n , as

described in Section 4.4.2, to obtain the sets {x̃
(n,k)
t−1 , w̃

(n,k)∗

t−1 }Kk=1.

• Sampling: Draw x̄
(n,k)
t from p(xt|x̃

(n,k)
t−1), for k = 1, . . . ,K.

• Weight update: Compute w̄
(n,k)∗
t = w̃

(n,k)∗
t−1 p(yt|x̄

(n,k)
t).

• Estimation: When needed, compute (f, µ̄n,K
t) as explained in

Section 4.4.4.

• Resampling: Perform resampling locally to obtain the set

{x
(n,k)
t , w

(n,k)∗
t ,W

(n)∗
t }, where w

(n,k)∗
t = W

(n)∗
t /K for every k =

1, ...,K.

93

Variable Symbol Value (unit)

No. of PEs N 4†

No. of nodes J 10
Total no. of particles M 100
No. of particles / PE K M/N
No. of exchanged particles Q 1

No. of timesteps T 18
Sampling Period Ts 1.0 (seconds)
Position variance σ2

p 0.5 (square meters)

Velocity variance σ2
v 0.004 (square meters)

Maximum velocity Vmax 1.5 (meters/second)
† varied for some experiments

Table 4.2: DPF and model parameters.

• the mean prior velocity is v̄0 = [−0.2, 0.2]⊤, i.e., the target is initially
expected to move toward the middle of the area of interest, and

• the prior variances are σ2
r = 0.5 and σ2

v = 4× 10−3.

Table 4.2 displays the values of the relevant simulation and algorithm
parameters. Note that the number of PEs N is the only variable which
we change directly in our experiments. For example, we use N = 1 as
the equivalent to a centralized PF (for comparison). However, changing N
affects other variables, such as the number of particles per PE (K = M/N).
The sampling period, Ts, is set to one second. This means that each node
produces one binary observation (yj,t) per second.

Note that the number of particles transmitted by each PE in the particle
exchange step is Q = 1. Also recall that the exchange is carried out in
a circular manner. Local resampling is carried out at each step, which
keeps the computational load even for all t and eliminates the overhead of
checking if resampling is necessary. We use systematic resampling [24] which
is significantly faster than, e.g., multinomial resampling schemes.

4.5.2 Computer simulations

In order to compare the proposed DPF scheme with a standard CPF,
we generated 100 random and independent target trajectories x0:T , with
associated synthetic data y1:T drawn from the probability mass function
p(yt|xt) specified in Section 4.3. Then we applied both the CPF (N = 1)
and the DPF scheme (with N = 4 PEs) with the same total number of

94

−0.5 0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

40

45

50

error (m)
−0.5 0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

40

45

50

error (m)

Figure 4.4: Histogram of the position error in meters for both the distributed
and centralized versions of the PF (both with a total of 100 particles) over
100 simulated trajectories. The plot in the left corresponds to the results
of a CPF whilst the plot in the right displays the results obtained with the
DPF algorithm. In both cases the error is about half a meter on average.

particles M to track each sample trajectory from the associated sequence of
synthetic observations.

Figure 4.4 displays the empirical distribution of errors, and the average
error, for 100 simulated paths. For a sequence of position estimates
p̂t = [x̂1,t, x̂2,t]

⊤, t = 1, . . . , T , the absolute error at each step t is

ǫt =
√

(x1,t − x̂1,t)2 + (x2,t − x̂2,t)2

The mean absolute error (MAE) for a trajectory is

ǭ =
1

T

T∑

t=1

ǫt.

It is observed in Figure 4.4 that the performance loss in the DPF scheme is
minimal.

Figure 4.5 plots a selection of these paths along with the path estimated
by the DPF algorithm. Overall, there is only about half a meter of error.
We also see that there is practically no difference between the performance
of the CPF and the DPF algorithm. The discrepancies between true and
estimated location tend to occur when the target moves between detection
zones. As the observations are binary and zone-based, rather than distance-
based, there are ‘gaps’ around the edges (see for example the final points
of Run 4 in Figure 4.5). Accuracy also tends to be higher nearer the light
source where more detection zones overlap (see for example, Run 1).

95

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

(a) Run 1

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

(b) Run 2

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

(c) Run 3

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

(d) Run 4

Figure 4.5: The simulated (black) paths for for simulations 1–4, and the
corresponding DPF-estimated paths (red); each over T = 18 time steps.

96

4.5.3 Experimental results

Using the parameter values in Table 4.2 we carried out the following
experiment to track a person walking across the monitored region.

1. The person was instructed to walk a prescribed path through our
real-world scenario; specifically, between four points (dashed line in
Figure 4.6) with each segment being slightly faster than the last. The
trajectory lasts T = 18 seconds. Each node generated one observation
per second, yj,t, j = 1, . . . , 10, t = 1, . . . , 18.

2. As the person walked, we run the DPF algorithm with N = 4 PEs
in real-time to process the vectors of observations yt, t = 1, . . . , T ,

and produce filtered estimates x̂t =
∑N

n=1W
(n)
t

∑K
k=1 x

(n,k)
t w̄

(n,k)
t ,

t = 1, . . . , T , of the target trajectory.

Figure 4.6 shows both the real trajectory the person was asked to walk
and the path estimated by the DPF algorithm. The true path can only be
drawn approximately, although we expect the path depicted in the figure to
be accurate to within a fraction of a meter. Time points are unavailable, as
we have no way of accurately synchronizing the target movements with the
scenario, but we know the target walked each of the three segments slightly
faster than the previous one and the full path took 18 seconds to complete.
As we expected, the target made brief pauses of about one second at the
point where the direction changed (the pauses reflected the time necessary
to stop and change direction, rather than a scripted break).

The DPF implementation tracked the target quite closely. As we saw in
the computer simulations, the PF can have some difficulty near the edges,
where there are fewer detection zones (such as the corners), but quickly
catches up when the target crosses the detection zones again. This particular
trajectory in the experiment is challenging because three of the four points
are right on the edge (if not slightly outside) the detection zones. At the
final point, where several detection zones overlap, the target is estimated
within centimeters.

4.5.4 Performance study

The speed (and also the accuracy) of the DPF scheme is influenced by a
trade off between processing and network communications. We study both
of these factors separately.

Table 4.3 displays the average processing time per timestep of DPF
algorithms with N = 1, 2, 4, 8 (N = 1 corresponding to the CPF) and a

97

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

Figure 4.6: Results of the DPF algorithm (solid line, N = 4) tracking a
target walking a prescribed trajectory (dashed line). Of the three straight
lines making up the true path, each is walked slightly faster than the previous
one, with a pause of about one second taken at the point where the direction
is changed (indicated by hollow circles). The path is walked in T = 18
timesteps (18 seconds in our setup).

98

CPF (N = 1) DPF N = 2 DPF N = 4 DPF N = 8

3.37 1.51 0.73 0.26

Table 4.3: The processing time (seconds) per timestep of the DPF algorithm
for various values of N . The total number of particles is constant (M = 100);
100/N per PE. Note that this time does not include network activity.

constant number of particles M = 100 shared among all PEs (K = M/N
each3) on the earlier-described real-world trajectory. We see that halving
N approximately doubles the running time. It is clear that 3.37 seconds
per timestep as obtained by the CPF (N = 1) is not adequate for real-time
tracking. Over a run of 18 seconds, this only allows for five steps through
the PF. Note that a CPF simulated on an Intel Xeon 3.16GHz CPU runs
at 0.0008 seconds per timestep (over 4000 times faster); a clear indication
of the hardware limitations we are dealing with, as well as the efficiency of
our implementation.

Table 4.4 shows how the network communication load increases with
more PEs. All DPF algorithms in this layout send only one more packet
per timestep than a CPF, since all nodes must broadcast their observations
at each timestep (to the CPF’s single PE). On the other hand, the number
of bytes per timestep increases linearly with respect to the number of PEs
(N), as particles must be shared among them. With N = 4 this equates to
90 Bytes (or 178 if needing to broadcast a global estimate) at each timestep,
for which we have up to Ts − 0.73 = 0.27 seconds (refer to Table 4.2, and
Table 4.3 for N = 4). As iMote2s have a maximum bandwidth of 31,250
Bytes/second, this is easily doable (even if we take into account a real-world
scenario where this maximum is not achievable, packet overhead, time taken
to resend dropped packets, etc., we are still left with a ‘comfortable’ margin).

Table 4.5 shows the main memory usage by the DPF implementation.
In our model with M = 100 particles and N = 4 PEs (K = 25 particles per
PE) we use up to 4196 Bytes per mote, a tiny fraction of the 32 Megabytes
available on the iMote2. Hence, our PF implementation does not require
much memory and would be suitable for deployment on motes with a lot less
memory than the iMote2 (which actually has much more than is typical).

In the implementation we have presented, some optimization is still
possible for faster performance. For example storing the state as integers
with only 2 Bytes instead of 4, and using a single bit to store individual
observations (and only broadcasting it if it is 1). This would reduce

3Or as close to it as possible: for N = 8 we round down to K = 12.

99

CPF (N = 1) DPF N ≥ 2 DPF N ≥ 2 with global est.

No. of Packets J − 1 J J
No. of Bytes J − 1 J + 20N J + 40N + 8⋆

⋆ we are only interested in estimating the position-coordinates of the state (2× 4

Bytes).

Table 4.4: The network activity (in terms of packets and bytes) per timestep
for J motes comprised of N PEs and J − N SEs. We a store each 4-
dimensional state yt with its weight wt in 20 Bytes (4 Bytes for each number)
and each observation yt in 1 Byte.

Variable Memory (Bytes)

Weights 4M
Normalized Weights 4M
States 4dM
States-buffer (used in resampling) 4dM
Estimations (local, global, norm. const.) 4d+ 4dN + 4N
Layout, Observation, Constants, Misc. 100 (approx.)

Table 4.5: Memory usage for M particles, a state size of d = 4, and N
PEs. Assuming 4 Bytes to store floating point values (as is the case on the
iMote2).

100

network traffic (in terms of packet size) and perhaps also computational
time. However, we did not wish to present an over-optimized system for a
single scenario, but rather a generic one that is suitable for deployments in
a variety of environments.

4.5.5 Limitations and remarks

Due to the huge range of potential applications, there are many aspects
which we can not directly address. Here we remark upon some of the most
important ones, that we leave for future work.

We have not considered multiple targets. Single-target is common
throughout the literature, although there is nothing about our deployment
that prohibits multi-target tracking algorithms.

In our deployment, if the target remains motionless it will become
invisible to the DPF tracker, since the light sensors will no longer note
a disturbance (i.e., the variance of light readings will stabilize). However,
once the target starts moving again, the particles should quickly ‘find’ it.

We have not measured battery consumption directly (due to the difficulty
in doing so with the specific hardware we have available). Although we can
say that we have not needed to replace the batteries throughout several
hours of testing, clearly the network we present could not run continuously
for weeks on end, as it requires a relatively large amount of processing and
radio traffic as compared to many other WSN applications. Nevertheless, it
would be trivial to put the network in a sleep mode while no activity was
detected by any sensors.

Our study has shown that the application of a mathematically-sound
DPF scheme in a WSN is indeed feasible on very low-powered hardware,
and this gives way to many potential real-world applications.

4.6 Conclusions

We have described the implementation of a distributed particle filter for
target tracking in a WSN. Unlike other works in the literature, our method
guarantees that the particle weights are constructed properly, and hence
also the state estimators. We have carried out a series of simulations using
models fitted with real light intensity data that show a tracking precision
of around half a meter. In this respect, the performance difference between
the proposed distributed particle filter and a centralized filter with the same
total number of particles is less than two centimeters, whereas only the
distributed version is fast enough for real-world deployment on the hardware

101

we consider. To support this claim we have implemented a real-world WSN
to track a moving target in a 3.2 × 6.0 meter indoor scenario using only
light-intensity measurements; accuracy is also to within about half a meter
on average.

The distributed particle filter with four processing nodes is over four
times faster than an equivalent centralized version, meaning equivalently
that the same performance can be obtained on less powerful hardware. A
greater proportion of processing nodes does imply more reliance on efficient
communications, but applications are mainly limited only by the overall
size of the network. In our network all nodes must make their observations
available to all processing nodes at each time step; hence the communications
load grows directly with the total number of nodes in the network, and
proportionally to the dimensionality of these observations. Adaptations
to this filter are needed to scale up to much larger networks with higher
dimension observations; for example, only requiring observations from an
active area, or working with out-of-sequence observations. We have no
reason to believe that such adaptations are not possible (we partially address
this issue in Chapter 5), and we have shown that a DRNA-based particle
filter is already suitable to WSN scenarios, on hardware thousands of times
slower than a typical desktop machine.

102

Chapter 5

A Distributed particle filter
for wireless sensor networks
with stochastic observation
exchange

In this chapter we introduce a novel distributed PF for target tracking
in multi-hop, possibly large, WSNs. The methodology is built around
the DRNA algorithm. The DRNA technique guarantees the properness
of the particle approximations produced by the filter, but it places
stringent demands on the communication between nodes that make its
implementation impractical for large WSNs. We investigate how to relax
the communication load by using (i) a random model for the spread of data
over the WSN and (ii) methods that enable the out-of-sequence processing
of sensor observations.

The rest of the chapter is organized as follows. Section 5.1 describes
existing distributed particle filtering methods for multi-hop WSNs and we
discuss their advantages and disadvantages. In Section 5.2 we present the
signal and observation models that we assume for the tracking problem.
The proposed DPF is introduced in Section 5.3. Section 5.4 is devoted
to the analysis of the relationship between the communication load in the
WSN and the accuracy of the proposed method, as well as the handling of
out-of-sequence measurements. Some illustrative computer simulations are
reported in Section 5.5 and, finally, a brief discussion of the obtained results
and open issues is presented in Section 5.6.

103

5.1 Introduction

As explained in Chapter 4, the problem of implementing PFs in a distributed
fashion has drawn considerable attention in the past few years. Depending
on the application, the goals of a DPF may be to speed up the the processing
of data by sharing the computational load among several sites [15, 81] or to
reduce the communication burden when the relevant data are available at
different nodes [30, 56].

The DPF based on the DRNA algorithm guarantees the computation
of proper weights and consistent estimators provided that the whole set of
observations y1:t is available at every node at time t. We have explored this
approach in Chapter 4, where not only a DRNA-based PF has been derived
but we have also shown experimental results of its physical implementation
on a WSN of relatively small size with binary observations. Unfortunately,
due to practical communication constraints, the technique, as described so
far, may turn out unrealistic for many WSNs of larger size or WSNs that
produce larger volumes of data.

In this chapter, we investigate how to spread the observations over
the network using (i) a random model for the spread of data over the
WSN and (ii) methods that enable the out-of-sequence processing of sensor
observations. The transmission of data over the network is carried out using
stochastic Markov chain models, akin to the scheme of [76] but we focus on
spreading the observations instead of spreading all the particles and their
weights over the network. A numerical illustration of the performance of
the new algorithm compared to a centralized PF and the DPF based on the
DRNA algorithm of Chapter 4 is also provided.

5.2 System model

We consider the problem of tracking a target that moves along a 2-
dimensional region and transmits a radio signal. We assume that N = 16
sensors are uniformly placed in fixed positions in a 60× 60 m area forming
a mesh. The closest distance between two sensors is, thus, 15 meters and
the furthest distance is 63.63 meters. Each sensor measures the RSS of the
signal transmitted by the target.

The CV motion model and the RSS observation model adopted for
this problem both were introduced in Section 2.2.1. That section, though,
explained the models in a generic manner without setting any parameters.
A similar observation model was also used in Section 3.3.3, however the

104

parameters settings for that model were adapted to an indoor scenario, which
resulted in a specific characterization of the RSS measurements. Here we
discuss a setup which is more suited to outdoor applications.

For clarity purposes we briefly describe again the models here and we
include the values adopted for the parameters (such as the variances, the
observation period, etc.).

5.2.1 Motion model

The state signal consists of the position and velocity of the target along
each dimension, i.e., the 4 × 1 vector, xt = [r1,t, r2,t, v1,t, v2,t]

⊤ ∈ R
4, where

[r1,t, r2,t]
⊤ denotes the target position and [v1,t, v2,t]

⊤ denotes its velocity,
both in a 2-dimensional space. The state vector has a known Gaussian prior,
p(x0) = N(x0|µ0,Σ0), and evolves with time according to the stochastic
difference equation [50]

xt = Axt−1 +Qut, (5.1)

where A =

[
I2 TsI2
02 I2

]
and Q =

[
1
2T

2
s I2 02
02 TsI23

]
are known, I2 is a

2 × 2 identity matrix, 02 is the 2 × 2 all-zero matrix, Ts = 0.25 is the
observation period and ut is Gaussian noise of zero mean and covariance

matrix Σu =

[
σ2
rI2 02
02 σ2

vI3

]
, with the variance parameters σ2

r = 0.5 and

σ2
v = 0.1.

5.2.2 Measurement model

The measurement collected by the j-th sensor at time t is denoted as yj,t
and its relationship with the target position, rt, is described by the outdoor
path-loss model [98]

yj,t = 10 log10

(
η +

P0

dγj,t

)
+ εj,t, (5.2)

where P0 = 1mW is the power that the target transmits; η = 10−7mW is
the minimum power that an RSS sensor can measure; γ = 3 is the path loss
exponent, dj,t = ‖rt − sj‖ is the distance between the position of the j-th
sensor, sj , and the position of the target at time t, rt; and εj,t ∼ N(εj,t; 0, σ

2
ε)

is normally distributed, zero-mean noise with known variance σ2
ε = 2.

105

5.3 Distributed tracking algorithm

5.3.1 General structure

The general structure of the proposed random spread DPF is similar to that
of the DPF scheme presented in Chapter 4. We assume we have N PEs in
the network, each running a separate particle filter with K particles. The
total number of particles distributed over the network is therefore M = NK.

Each local PF performs the usual steps of drawing new samples,
computing weights and resampling. After the completion of a full recursive
step of the local PF at time t − 1, the n-th PE should hold the set{
x
(n,k)
t−1 , w

(n,k)∗
t−1 ,W

(n)∗
t−1

}
k=1,...,K

, where

• x
(n,k)
t−1 is the k-th particle at the n-th PE,

• w
(n,k)∗
t−1 is the corresponding unnormalized importance weight, and

• W
(n)∗
t−1 =

∑K
k=1w

(n,k)∗
t−1 is the unnormalized aggregated weight of the

n-th PE.

Between two local PF iterations, the DPF based on the DRNA technique
of Chapter 4 would spread the whole set of observations along the network
and then perform a particle exchange step. In a multi-hop WSN as the
one we investigate here this step may easily turn out impractical unless the
target WSN has a small number of nodes.

Unlike the scheme used in Chapter 4, where the observations were
broadcast, here the communications are performed exclusively between
neighbors. Given this constraint, we propose to spread the observations
collected in the sensors over the network in a random manner, jumping from
one node to another. The maximum number of allowed retransmissions is
fixed a priori and it may be relatively large so that the time taken to make
all the retransmissions spans over more than one PF iteration.

Sampling and resampling are performed the same way as in the standard
DRNA algorithm (see Sections 4.4.1 and 4.4.3 for details) and thus these
operations are not going to be described again in this chapter. The particle
exchange step, in the other hand, is affected by the observation spread
scheme and requires a more detailed study. As some observations may
arrive to a PE at a later stage1, the weight update step and the estimation
procedure also need to be revisited.

1The observation yj,t collected in sensor j at time t may only reach sensor i 6= j at a
later time t+m (m > 0).

106

In the following we describe the algorithm steps that are different from
the DPF based on the DRNA scheme of Chapter 4: the observation spread
scheme, the weight update, the particle exchange and the estimation. Then
we provide a summary of the complete algorithm.

Throughout this chapter we keep on using the notation of Chapter 4

where: the ∗ superscript in w
(n,k)∗
t denotes non-normalized weights, the

bar in x̄
(n,k)
t indicates that the particles have not yet gone through the

resampling step, the tilde in x̃
(n,k)
t indicates that the particles at node n and

time t have undergone a particle exchange step.

5.3.2 Observation spread model

The transmission of observations over the network is performed
stochastically. At each time step, each observation performs L “jumps” over
the network. To each observation we attach a retransmission counter that
indicates how many jumps have been needed to take the observation from
the node where it was originally measured to the present node. This counter
has to be transmitted together with the measurement and it is denoted cs,τ
for the observation ys,τ , where s is the sensor index and τ the time instant
when ys,τ was collected.

There is an upper bound on the number of times an observation can
be retransmitted, possibly over several time steps, denoted B. Therefore,
the observation ys,τ keeps being transmitted from one node to another
(neighboring) node until cs,τ = B. Specifically, the observations are going
to be retransmitted over B/L iterations of the PF, L times per iteration.

Intuitively, B can be seen as the parameter that tunes the precision of
the filter in exchange for communication load. The higher B is set, the more
likely it is for the whole set of observations to reach all of the PEs in the
WSN. When all the observations have reached all the PEs, the new DPF
scheme becomes the DPF scheme based on the standard DRNA technique
presented in Chapter 4 and obtains its best possible precision.

As the observation spread over the network is critical for the precision
and we want to fix B a priori, we provide an analysis, in Section 5.4.2, of
the relation between B and the probability that an observation collected at
a node reaches each one of the remaining nodes in the WSN.

The number of jumps per times step, L, on the other hand, can be seen as
the parameter that controls the speed of convergence towards the precision
determined by B (in practice, however, this parameter also influences the
precision of the filter, as it is shown in Section 5.5.7).

107

In order to perform the observation exchange five control and data sets
are needed in each PE:

• In
t , is the set of the latest (from t − d to t, where d is fixed to

d = B/L− 1) indices of observations processed at node n and time t,

• An
t , is the set of the latest (from t− d to t) observations collected at

node n and time t (note that these observations are collected during
the observation exchange step and they may be generated at node n
or any other node in the network),

• Bn
t , is the set of observations to be processed at node n and time t,

• Yn
t (ℓ), is the set of observations pending retransmission at node n, at

time t and “jump” ℓ, and

• Rn
t (ℓ), is the set of observations received at node n, at time t and

“jump” ℓ.

Next we describe each one of them as we describe the observation
exchange process.

The set of indices of processed observations, In
t

Every node needs to keep track of the latest locally processed observations,
either collected by itself or received from a different node. Specifically, at
time t, node n maintains a set with the indices (node and time of origin)
of each observation that has been processed from t − d (where d is fixed
to d = B/L − 1) up to time t, denoted In

t ⊆ {1, . . . , N} × {t − d, . . . , t}.
The elements of In

t are pairs of the form (s, τ) and (s, τ) ∈ In
t if, and only

if, the observation ys,τ has been received and processed at node n, and τ
lies between t − d and t. Obviously, (n, τ) ∈ In

t for every τ ∈ {t − d, ..., t}
(the observations yn,t−d:t obtained locally at the site of node n have been
processed at node n). Note that in order to keep the amount o memory low,
every pair (s, τ) ∈ In

t , with τ < t− d is erased from the set.

These sets, In
t for n = 1, . . . , N , are needed each time a weight of a

particle needs to be updated. This way we avoid incorporating a likelihood
more than once into a weight. These sets are specifically used in the
observation exchange step and the particle exchange step (as it is later shown
in Section 5.3.4).

108

The set of observations pending retransmission, Yn
t (ℓ)

The set of observations pending retransmission, Yn
t (ℓ), contains all the

observations that are going to be transmitted from node n to its neighbors
at time t and “jump” index ℓ. Note that the ℓ index here refers to the
“jump” index in the retransmission step and that for ℓ = 1, . . . , L the PF
discrete time index t is fixed.

Before we start the observation exchange at time t, the set Yn
t−1(L) is

available. Note that ys,τ ∈ Yn
t−1(L) if, and only if, ys,τ was received from

a neighbor node r ∈ Nn at time t − 1 and “jump” L, and cs,τ < B. First,
an observation is collected at the local node n and added to the local set of
pending retransmission, i.e.,

Yn
t (0) = Yn

t−1(L) ∪ {(yn,t, cn,t = 0)},

and the jump index is reset, i.e., ℓ = 0. Then, for each observation available
in node n, ys,τ ∈ Yn

t (ℓ), a neighbor r ∈ Nn is chosen randomly with a uniform
probability 1

Nn
, where Nn is the cardinality of Nn. Before the observation

(ys,τ , cs,τ) ∈ Yn
t (ℓ) is transmitted to the neighboring node r, the “jump”

counter is updated, cs,τ = cs,τ + 1.

The set of received observations, Rn
t (ℓ)

The union of all the received pairs of observation and counter, (ys,τs , cs,τs),
from each of the neighbors s ∈ Nn at time t and jump ℓ, makes up the set
of received observations at node n, i.e.,

Rn
t (ℓ) = ∪s∈Nn{(ys,τs , cs,τs)}.

Then, the pair of indices, (s, τs) belonging to each pair of observation and
counter in Rn

t (ℓ) is compared to the set of indices of observations processed
at the local node, In

t .

The set of observations to process, Bn
t

The set of observations to process, Bn
t contains all the observations that have

reached node n at time t that were not processed before in node n. The
set of observation contained in Bn

t are later used in the weight update step.
The set is initialized at time t and jump ℓ = 0 as Bn

t = {(yn,t, cn,t = 0)},
then in each jump ℓ it is updated adding the new information only.

Specifically, following the comparison of Rn
t (ℓ) and In

t , if a received
observation, ys,τs ∈ Rn

t (ℓ), was not processed before, (s, τs) /∈ In
t , it is

109

added to the set of observations to process in node n, i.e.,

Bn
t = Bn

t ∪ {ys,τs ∈ Rn
t (ℓ) : (s, τs) /∈ In

t }.

Then the corresponding pairs of node index and time instant are added to
the set of latest processed observations, In

t = In
t ∪ {(s, τs)}.

The fact that the indices are stored as processed when they have not yet
been processed may be slightly confusing, however, any observation in the
set of observations to process, Bn

t is later used in the weight update step.
Adding the indices to In

t immediately avoids repeated entries in Bn
t that

could happen if the observations have not yet been processed but have gone
through the the same node more than one time during the retransmission
process.

The set of available observations, An
t

Next, the retransmission counter, cs,τ , of each of the observations in the
set of received observations, ys,τ ∈ Rn

t (ℓ), is checked. If the retransmission
counter of a received observation has not reached its limit, i.e., if cs,τ < B,
then the received observation is added to the set of pending retransmissions,
that is,

Yn
t (ℓ+ 1) = {ys,τ ∈ Rn

t (ℓ) : cs,τ < B}

so that the observation is available for the next “jump”.

This stochastic random jump process is repeated L times and once the
final L-th iteration has finished, we update the set of available observations
as,

An
t = {ys,τ ∈ An

t−1 : τ ≥ t− d} ∪ Bn
t .

The set of available observations, An
t , collects all the unique observations

that have gone through node n, from t − d to t. This set is required for
the particle exchange step but it needs to be updated in the observation
exchange step.

Summary

Table 5.1 describes the observation exchange step produced at each time
t > 0 and node n for the proposed DPF scheme. Note though, that at t = 0,
the sets, In

t , A
n
t and Yn

t (L) need to be initialized to In
0 = ∅, An

0 = ∅ and
Yn
0 (L) = ∅.

110

Table 5.1: Random spread of the observation data for the proposed DPF
scheme.

1. Initialization, at each t > 0, and given Yn
t−1(L), I

n
t−1 and An

t−1:

• Collect the new data, yn,t, at local node n and add it to

– the retransmission set, Yn
t (0) = Yn

t−1(L) ∪ {(yn,t, cn,t = 0)},

– the set of observations to process, Bn
t = {(yn,t, cn,t = 0)}.

• Update processed observation set, In
t = In

t−1 ∪ {(n, t)}.

2. Stochastic jump iterations, for ℓ = 1, . . . , L:

• For each observation pending retransmission at node n, ys,τ ∈
Yn
t (ℓ), choose randomly a neighbor node r ∈ Nn with uniform

probabilities 1
Nn

.

• Update the transmission counter cs,τ = cs,τ +1 and transmit the
observation (ys,τ , cs,τ) to node r.

• Receive one pair (ys,τs , cs,τs) from each neighbor node s ∈
Nn and generate the received observation set Rn

t (ℓ) =
∪s∈Nn{(ys,τs , cs,τs)}.

• If a received observation, ys,τs ∈ Rn
t (ℓ), was not processed before,

i.e., (s, τs) /∈ In
t ,

– add it to the set of observations to process, Bn
t = Bn

t ∪{ys,τs ∈
Rn

t (ℓ) : (s, τs) /∈ In
t }, and

– update processed observation set, In
t = In

t ∪ {(s, τs)}.

• Let Yn
t (ℓ + 1) = {ys,τ ∈ Rn

t (ℓ) : cs,τ < B} be the new set of
observations pending retransmission.

3. Let An
t = {ys,τ ∈ An

t−1 : τ ≥ t− d} ∪ Bn
t be the new of set of available

observations.

111

5.3.3 Weight update

In the weight update step, for each observation in the set of observations to
process, ys,τ ∈ Bn

t , we compute the likelihood of the particles of the local

node, {x
(n,k)
τ }Kk=1, and multiply it by the weights of node n, i.e.,

w̄
(n,k)∗

t ∝ w
(n,k)∗

t−1 p(ys,τ |x
(n,k)
τ), k = 1, ...,K. (5.3)

Note that the weights at time t are updated with observations collected at
time τ and these two may not be equal, that is, the observations ys,τ may
arrive at node n out-of-sequence. This means that we need to store locally

the particle trajectories, x
(n,k)
t−d:t, from t− d up to time t, in order to have the

particle sample, x
(n,k)
τ , associated to time instant τ .

5.3.4 Particle exchange step

As the spread of the observation data over the network is performed in
a random manner, the standard particle exchange scheme, as defined in
Section 4.4.2, may not be proper. Neighboring nodes indeed have a high
probability of receiving a very similar set of observations, however these sets
are not necessarily identical. One consequence of this is that particles of
neighboring nodes may have weights built with different sets of observations.
Therefore, an exchange of particles between neighbors may lead to the
nodes holding particles whose weights have been computed from different
observations.

Note that if the weights of a subset of particles are built with a different
set of observations the normalization procedure prior to the estimation and
resampling steps becomes incorrect. Due to the difficulty of computing all
the normalization constants (see Section 2.3.2 for details) the algorithm
works with unnormalized weights and performs the local normalization

w̄
(n,k)
t =

w̄
(n,k)∗
t∑K

j=1 w̄
(n,j)∗
t

(5.4)

when needed. The soundness of this normalization procedure relies on the
constants of each weight being the same (even if unknown to us). If the
weights have been built up with different sets of observations the constants
would be different and (5.4) would no longer be a correct normalization.

If we want the normalization to be proper, particle weights need to be
“synchronized”, that is, weights with missing likelihood information need to

112

be updated during the particle exchange step. In order to do so, PEs use
the information provided by the set of processed observation indices In

t and
the set of available observations An

t .

Particle synchronization

The synchronized particle exchange is performed as follows. At time t, node
n transmits its indices of processed observations In

t to all of its neighbors,
r ∈ Nn, and receives in exchange the sets of indices of processed observations
from its neighbors, {Ir

t ; r ∈ Nn}. The n-th PE then compares for every
r ∈ Nn the indices of the sets Ir

t with its own In
t .

If In
t ⊆ Ir

t then neighbor r is chosen as a receiver. Let us denote
N out

n,t ⊆ {1, 2, . . . , N} as the set of indices corresponding to the nodes
that, at time t, expect to receive a subset of the particles generated
at the n-th PE. Following the comparison of indices, the set is built as
N out

n,t = {r ∈ Nn;I
n
t ⊆ Ir

t }.

If on the other hand Ir
t ⊆ In

t then neighbor r will not receive particles
from node n, but will send particles to node n. Let us denote N in

n,t ⊆
{1, 2, . . . , N} as the set of indices corresponding to the nodes that, at time
t, expect to transmit a subset of their particles to the n-th PE. Then this
set is built as N in

n,t = {r ∈ Nn;I
r
t ⊆ In

t }.

If N out
n,t 6= ∅, node n transmits

∣∣N out
n,t

∣∣ disjoint subsets of Q particles to
each of its designated neighbors. In particular, let

Mn,r
t =

{
x̄
(n,irs)
t−d:t , w̄

(n,irs)∗
t−d:t

}
s=1,...,Q

(5.5)

be the particles transmitted from node n to node r ∈ N out
n,t . The

indices ir1, ..., i
r
Q ∈ {1, ...,K} can be selected in any desired way (even

randomly) as long as the messages Mn,r
t are disjoint, i.e., Mn,r

t ∩Mn,s
t = ∅

for any pair r, s ∈ N out
n,t , r 6= s. Note that instead of transmitting

particle instances, {x̄
(n,irs)
t , w̄

(n,irs)∗
t }s=1,...,Q, we transmit particle trajectories,{

x̄
(n,irs)
t−d:t , w̄

(n,irs)∗
t−d:t

}
s=1,...,Q

in order to provide the samples from t − d to t to

the neighbor and to be able to compute any likelihood with observations
that come out-of-sequence within that time window.

If N in
n,t 6= ∅, node n receives

∣∣N in
n,t

∣∣ messages that may need
synchronization. If the processed observation index set of a neighbor
r ∈ N in

n,t, satisfies, Ir
t ⊂ In

t , then we retrieve the observations from the
set of available observation at node n, {ys,τs ∈ An

t ; (s, τs) /∈ Ir
t }, and we

113

synchronize the weights as

w̄
(n,irs)

∗

t ∝ w̄
(n,irs)

∗

t p(ys,τ |x̄
(n,irs)
τ), ir1, ..., i

r
Q, (5.6)

where the indices ir1, ..., i
r
Q do not necessarily satisfy ir1, ..., i

r
Q ∈ {1, ...,K}

anymore. We denote the synchronized message as M̂r,n
t .

If the set of processed observations corresponding to a neighbor, r ∈
N in

n,t, satisfies Ir
t = In

t then the corresponding message is untouched, i.e.,

M̂r,n
t = Mr,n

t .
The information held by the n-th PE after the synchronized particle

exchange at time t is given by {x̃
(n,k)
t−d:t, w̃

(n,k)∗

t−d:t }
Pn

k=1 where

{
x̃
(n,k)
t−d:t, w̃

(n,k)∗
t−d:t

}Pn

k=1
=


{x̄

(n,k)
t−d:t, w̄

(n,k)∗
t−d:t }

K
k=1︸ ︷︷ ︸

initial

\
(
∪r∈N out

n,t
Mn,r

t

)

︸ ︷︷ ︸
transmitted


 ∪


∪r∈N in

n,t
M̂r,n

t︸ ︷︷ ︸
received


 , (5.7)

and Pn is the number of particles in node n after the particle exchange step.
As the particle exchange depends on the fulfillment of the conditions

of Ir
t ⊆ In

t or In
t ⊆ In

t , it may happen that exchange is performed in
one direction but not in the other direction, i.e., the number of neighbors
that transmit to node n may be different from the number of neighbors
it receives from,

∣∣N out
n,t | 6= |N in

n,t

∣∣. Consequently, the number of particles in
node n before and after the particle exchange step may be different. It could
be that Pn < K, Pn > K or Pn = K.

If neither of the conditions is fulfilled, i.e., if
∣∣N out

n,t

∣∣ =
∣∣N in

n,t

∣∣ = ∅ then the
n-th PE would remain exactly with the same particles before and after the
particle exchange step. Let us remark though that the number of particles
in the whole network M = K ×N before and after the particle exchange is,
under all circumstances, equal.

Having a varying number of particles in a node and having a different
number of particles in each node leads to various practical problems (in
terms of memory and processing power allocation, etc.). This issue is
solved performing the particle exchange before the resampling step. In
the resampling step, particles are replicated and deleted randomly using
the probabilities given by the weights however the final number of replicas
desired can be fixed a priori.

Table 5.2 summarizes the synchronized particle exchange process
performed by the random spread DPF scheme.

114

Table 5.2: Synchronized particle exchange process for the random spread
DPF.

1. Simultaneously in the whole network:

• Each node n transmits indices of processed observations, In
t , to its

neighbors r ∈ Nn.

• Each node n receives indices of processed observations, Ir
t , from its

neighbors r ∈ Nn.

2. For n = 1 to N :

• Compare the received indices of processed observations, Ir
t , for r ∈ Nn,

with own, In
t .

• Build a new set containing indices of neighbors to transmit particles to:
N out

t,n = {r ∈ Nn; In
t ⊆ Ir

t }.

• Build a new set containing indices of neighbors to receive particles from:
N in

t,n = {r ∈ Nn; Ir
t ⊆ In

t }.

• If N out
t,n 6= ∅, build messages Mn,r

t as defined in (5.5) with disjoint
subsets of Q particles for each of the designated neighbors.

3. Simultaneously in the whole network:

• If N out

t,n 6= ∅, each node n transmits messages Mn,r
t to the neighbors

that can receive information r ∈ N out

t,n .

• If N in

t,n 6= ∅, each node n receives messages Mr,n
t from the neighbors

that can transmit information r ∈ N in

t,n.

4. For n = 1 to N :

• For every received message, Mr,n
t , if Ir

t ⊂ In
t then

– find the observations that fulfill {ys,τs ∈ An
t ; (s, τs) /∈ Ir

t },

– synchronize received particle weight with (5.6) and

– rename the synchronized message to M̂r,n
t .

• For every received message, Mr,n
t , if Ir

t = In
t then set M̂r,n

t = Mr,n
t .

• Update the particle set according to (5.3.4) adding and subtracting
received and transmitted particles.

• Update the aggregated weight of the PE with the new weights, W̃
(n)∗

t =∑Pn

k=1 w̃
(n,k)∗

t .

115

5.3.5 Estimation

Recall from Section 4.4.4 that we are interested in the estimation of moments
of the posterior distribution, e.g.,

(f, µt) =

∫
f(xt)µt(dxt),

where f is some function of the state vector at time t, µt(dxt) = p(xt|y1:t)dxt

is the filter probability measure and we introduced the shorthand (f, µt) to
denote the integral of the function f with respect to the measure µt.

With the described observation spread scheme, however, we can only
guarantee that the observations generated at the two furthest nodes at time
instant t have reached one another at time t + d (where d = B/L − 1)
with a prescribed probability (details on how to compute this probability
are given in Section 5.4.2). Consequently, it can be expected that more
accurate estimates can be obtained for the fixed-lag smoothing measure
µt|t−d(dxt) = p(xt−d|y1:t)dxt−d. In particular, we can approximate integrals
of the form

(f, µt|t−d) =

∫
f(xt−d)µt|t−d(dxt−d),

where f is some function of the state vector at time t− d.

The discrete random approximation of the measure µt|t−d in the n-th
PE is built as

µn,K
t|t−d(dxt−d) =

K∑

k=1

w̄
(n,k)
t δ

x
(n,k)
t−d

(dxt−d),

where we use the weights at time t to approximate the smoothing measure of
time instant t−d. With this approximation the local estimation is computed
as

(f, µn,K
t|t−d) =

K∑

k=1

w̄
(n,k)
t f(x

(n,k)
t−d).

Global estimates are computed as before using the aggregated weights.

Specifically, defining W
(n)
t = W

(n)∗
t /

∑N
i=1 W

(i)∗
t as the globally normalized

aggregated weight of the n-th node, we build the discrete random measure
as

µN,K
t|t−d(dxt−d) =

N∑

n=1

W
(n)
t µn,K

t|t−d(dxt−d),

116

using the local approximations and the resulting global estimate is

(f, µN,K
t|t−d) =

N∑

n=1

W
(n)
t (f, µn,K

t|t−d). (5.8)

Note that the fusion of local estimates in order to obtain a global estimate
can also be done in a hierarchical manner, that is, updating the information
across the network from a local node to another, in order to avoid all nodes
transmitting at the same time. Also, as the algorithm does not depend on
the estimation step, the estimation can be performed offline.

5.3.6 Summary of the DPF scheme 1 (DPF-1)

Table 5.3 summarizes the proposed DPF scheme with the random spread of
the observation data and the synchronized particle exchange. From now on
we denote this algorithm as DPF-1.

5.3.7 Summary of the DPF scheme 2 (DPF-2)

The synchronized particle exchange process of DPF-1 has some
disadvantages compared to the particle exchange step used in the DPF
scheme of Chapter 4. First, it requires more processing power a) for the
comparison between the sets of observations, b) in order to build the sets
of neighbors to transmit to, and c) to update weights of received messages.
Second, it requires more memory allocation as we need to store the set of
available observations, An

t , just for the particle exchange step. Third, it
depends on some specific conditions being fulfilled in order for the exchange
to happen and these may not be fulfilled every time instant, leading to a poor
information spread. Fourth, it needs more communications as we need to
transmit the sets of processed observations indices, as well as the messages.

We thus propose an alternative DPF scheme (denoted DPF-2) that
performs the algorithm steps the same way as the DPF-1 except from
the particle exchange step. For the DPF-2 we simply propose the
particle exchange process of Section 4.4.2. This step would be performed
immediately before the observation spread step.

Note, though, that with this particle exchange process there may be
some distortion of the approximations induced by the weights, which are not
necessarily proper anymore. Such distortion can be expected to be small,
however, as shown by our computer simulations (to be shown in Section
5.5).

117

Table 5.3: Random spread DPF scheme (DPF-1).

1. Initialization at t = 0, for each node, n = 1, . . . , N :

• Draw x
(n,k)
0 , for k = 1, . . . ,K, from the prior pdf p(x0).

• Assign equal weights, w
(n,k)∗

0 = 1
K for every k and set W

(n)∗
0 = 1.

• Build the set {x
(n,k)
0 , w

(n,k)∗

0 ,W
(n)∗
0 }Kk=1.

• Initialise the sets: In
0 = ∅, An

0 = ∅ and Yn
0 (L) = ∅.

2. Recursive step, for t > 0, and given {x
(n,k)
t−1 , w

(n,k)∗

t−1 ,W
(n)∗
t−1 }Kk=1, for

n = 1, ..., N , and given Yn
t−1(L), I

n
t−1 and An

t−1:

• Perform the observation spread as described in Table 5.1.

• Sampling: Draw x̄
(n,k)
t , from p(xt|x

(n,k)
t−1), for n = 1, ..., N and

k = 1, . . . ,K.

• Weight update: For each ys,τ ∈ Bn
t (L), update weights using

Eq. (5.3).

• Normalization: of weights as w̄
(n,k)
t = w̄

(n,k)∗

t /
∑K

j=1 w̄
(n,j)∗

t .

• Estimation: When needed, compute (f, µn,K
t|t−d).

• Perform the particle exchange as described in Table 5.2.

• Resampling: Perform resampling locally to obtain the set

{x
(n,k)
t , w

(n,k)∗
t ,W

(n)∗
t }, where w

(n,k)∗
t = W

(n)∗
t /K for every k =

1, ...,K..

118

Table 5.4 summarizes the proposed DPF-2 scheme with the random
spread of the observation data, using the alternative particle exchange
scheme.

5.4 Analysis

5.4.1 Out-of-sequence measurement handling

As it was explained in Section 5.3.3 some observations may arrive at the
nodes out-of-sequence, that is, at time t and node n we receive an observation
related to node j taken at time instant t − m where m > 0. Because of
the assumed conditional independence of the observations, however, it is
straightforward to show that the update equation of (5.3) guarantees that
the weights remain proper.

Let us remember that given the assumed model of (5.2), where each
observation is independent given the state, the likelihood of a particle in a
PE is computed as

p(yt|x
(n,k)
t) =

J∏

j=1

p(yj,t|x
(n,k)
t), (5.10)

where J is the number of observations collected in the WSN which, in the
proposed scenario, equals the number of PEs, J = N .

Recall also that if we use the prior importance function, we can

approximate the particle weights in a sequential manner as w̄
(n,k)∗

t ∝

w
(n,k)∗

t−1 p(yt|x
(n,k)
t). More generally though, we can approximate the weight

of a particle as

w̄
(n,k)∗

t ∝ w
(n,k)∗

0

t∏

ℓ=1

p(yℓ|x
(n,k)
ℓ). (5.11)

If we substitute (5.10) on (5.11) we then obtain

w̄
(n,k)∗

t ∝ w
(n,k)∗

0

t∏

ℓ=1

J∏

j=1

p(yj,ℓ|x
(n,k)
ℓ). (5.12)

As we can see from (5.12), the weights of time instant t, are the product of
the likelihoods of each time instant from 0 to t that, in turn, are the product
of the likelihoods computed with each individual observation, j = 1, . . . , J .
Thus, any time an out-of-sequence observation reaches a node, we only need

119

Table 5.4: Random spread DPF scheme without synchronized particle
exchange (DPF-2).

1. Initialization at t = 0, for each node, n = 1, . . . , N :

• Draw x
(n,k)
0 , for k = 1, . . . ,K, from the prior pdf p(x0).

• Assign equal weights, w
(n,k)∗

0 = 1
K for every k and set W

(n)∗
0 = 1.

• Build the set {x
(n,k)
0 , w

(n,k)∗

0 ,W
(n)∗
0 }Kk=1.

• Initialise the sets: In
0 = ∅, and Yn

0 (L) = ∅.

2. Recursive step, for t > 0, and given {x
(n,k)
t−1 , w

(n,k)∗

t−1 ,W
(n)∗
t−1 }Kk=1, for

n = 1, ..., N and given Yn
t−1(L) and In

t−1:

• Perform the particle exchange as described in Section 4.4.2.

• Perform the observation spread as described in Table 5.1.

• Sampling: Draw x̄
(n,k)
t , from p(xt|x̃

(n,k)
t−1), for n = 1, ..., N and

k = 1, . . . ,K.

• Weight update: For each ys,τ ∈ Bn
t (L), update weights as

w̄
(n,k)∗

t ∝ w̃
(n,k)∗

t−1 p(ys,τ |x̄
(n,k)
τ), for k = 1, . . . ,K. (5.9)

• Normalization: of weights as w̄
(n,k)
t = w̄

(n,k)∗

t /
∑K

j=1 w̄
(n,j)∗

t .

• Estimation: When needed, compute (f, µn,K
t|t−d).

• Resampling: Perform resampling locally to obtain the set

{x
(n,k)
t , w

(n,k)∗
t ,W

(n)∗
t }, where w

(n,k)∗
t = W

(n)∗
t /K for every k =

1, ...,K..

120

to compute its likelihood and multiply it by the local weights. The downfall
of this approach is that we perform local resampling steps using weights
that have been built with a vector of observations that may be incomplete.
As resampling reduces the diversity of the particle sample, we may loose
some particle trajectories that would have survived with weights built with
the complete set of observations. However, the approach is proper in the
sense that, as long as we compute the likelihood of the missing observations
and multiply it by the weights, even if at a later stage, the weights of the
surviving particles are computed correctly.

Note that the out-of-sequence problem we have described here is different
from that termed in literature as out-of-sequence measurements (OOsM)
[91, 78, 90, 89]. In the OOsM case, not only has the observation not been
processed but also the whole time instant, t − m, has not been processed
at all by the filter, i.e., there has not been any sampling, weight update or
resampling of particles, therefore the challenge resides in obtaining particle
samples for the missing time instant in order to compute the weights with
the newly arrived information. In our scenario, at time instant, t −m, we
have sampled particles, we have computed the associated weights and we
have resampled the particles, however the vector of observations used for
the weight update is incomplete.

5.4.2 Propagation of observation data

Consider a Markov chain Xt, t = 0, 1, . . ., taking values in the discrete space
{1, , J} with conditional probabilities given by the J×J transition matrix P.
Using the classical theory of Markov chains [100], it is easy to compute the
probability that the chain moves from one state to another in n transitions.
Specifically, the probability of moving from state i to state j is given by the
entry in the i-th row and the j-th column of matrix P, which we denote
here as Pij . In order to compute the probability of moving from state i to
state j in n jumps we simply compute the n-th power of the matrix, and
then we select the i-th row and the j-th column entry, i.e., (Pn)ij [100].

On the other hand, in graph theory, the adjacency matrix A of a graph
is defined as the matrix with entries Aij = 1 if, and only if, the i-th and
j-th nodes are connected, while Aij = 0 otherwise. We can also define
the connectivity matrix C of a graph as the normalized adjacency matrix,
i.e. Cij 6= 0 if, and only if, the i-th and j-th nodes are connected and∑n

j=0Cij = 1. Therefore, Cij can be interpreted as the probability of moving
from node i to node j.

If we relate the connectivity matrix of a graph or network, C, with the

121

transition matrix of a Markov chain, P, and if we identify an observation
generated at a node, i, as a Markov chain starting in a state i, we can
numerically compute the probability of reaching node or state j in n jumps.

Specifically, it is possible to compute the probability of moving from
node i to node j in exactly n jumps. In particular, this is

(Pn)ij =

n∑

k=1

(Pn−k)ijf
k
i,j, for i 6= j, (5.13)

where fn
i,j is the probability of reaching node j from node i in n steps for

the first time.
If we rearrange the equation and try for different values of n,

f1
i,j = (P1)ij , for n = 1,

f2
i,j = (P2)ij − (P)jjf

1
i,j, for n = 2,

f3
i,j = (P3)ij − (P2)jjf

1
i,j − (P1)jjf

2
i,j, for n = 3,

we find that for an arbitrary n, the probability of reaching node j from node
i in n steps for the first time can be computed as

fn
i,j = (Pn)ij − (Pn−1)jjf

1
i,j − (Pn−2)jjf

2
i,j − . . . − (P1)jjf

n−1
i,j .

Finally, if we add the probabilities of reaching node j from node i for the
first time in n or less jumps, we can compute the probability reaching node
j from node i in at most n specific jumps,

Fn
i,j =

n∑

k=1

fk
i,j. (5.14)

With equation (5.14) we can compute the probability of, starting from a
specific node, reaching each of the nodes in the network in a specific number
of jumps. A more practical measure of the connectivity of a node with
respect to the rest of the nodes of a WSN may be to find out, when starting
in node i which node in the WSN has the lowest probability of being visited
in no more than n jumps, in other words

mn
i = argmink∈{1,2,...,N}F

n
i,k. (5.15)

Furthermore, a more general idea of the whole WSN may be given by the
pair

(inmin, j
n
min) = argmini,j∈{1,2,...,N}F

n
i,j , (5.16)

122

which is the pair of nodes, i and j, for which the probability of reaching j
from i in no more than n jumps is the smallest one over the whole set of
nodes in the network. Intuitively, these nodes should be far apart in the
network and we should observe a relation between low probability and high
distance.

In order to better understand this metric, let us define a distance, dn(i, j),
that is related to the probability that an observation starting at node i
reaches node j in at most n jumps. Specifically, for three different nodes, i,
j, and k, dn(i, j) > dn(i, k) if, and only if, Fn

i,j < Fn
i,k. Note that, as these

distances depend on the probabilities, Fn
i,k, and the probabilities, in turn,

depend on the number of jumps, n, the relationship between these distances
may vary with the number of total jumps, n.

When selecting the number of total jumps, B, that an observation makes
in the WSN (introduced in Section 5.3.2), we propose to proceed as follows

1. determine the network topology and its connectivity matrix, C,

2. set P = C,

3. compute Fn
i,j , using (5.14), for i, j ∈ {1, 2, . . . , N}, where N is the

number of nodes in the network, and for n = 1, 2, 3, . . . , Z, where
Z is the number of maximum jumps for which the probabilities are
computed,

4. find the pair of nodes, (inmin, j
n
min), using (5.16), for n = 1, 2, 3, . . . , Z,

5. select a specific jump, n = ntot, associated with the minimum desired
probability, Fntot

i,j , for (intot

min, j
ntot

min), and

6. set the number of maximum jumps for the observations to B = ntot.

The maximum number of jumps, ntot, is equal to the number of maximum
jumps for the observations, B, introduced in Section 5.3.2. The choice
B = ntot ensures that an observation collected at an arbitrary node i of
the WSN will be available at any other node j after B retransmissions with
probability greater than, or at least equal to, Fntot

i,j . For a numerical example
please see 5.5.2.

5.5 Simulation results

In this section we present an example of a target tracking problem using
the system model of Section 5.2. We then perform a series of simulations to
analyze the performance of the algorithm for the selected tracking example.

123

5.5.1 Target prior parameters and example

We assume that the prior density of the state variable is Gaussian, p(x0) =
N(x0;µ0,Σ0), where the mean vector is µ0 = [0, 0, 0.1, 0.1]⊤ and the
covariance matrix is Σ0 = diag(0.5, 0.5, 0.1, 0.1). With a period of Ts =
0.25s we have simulated 3000 runs of 200 discrete time steps each using (5.1)
and we have then generated the associated synthetic observations according
to (5.2).

Figure 5.1 shows one of the target trajectory runs. The figure on the left
shows the 60×60 meter surveillance area, the sensor positions (depicted with
squares) and the target trajectory. The beginning of the trajectory is the
centre of the surveillance area heading north-east. The target then performs
a turn and heads south-west passing near the sensors colored in yellow and
blue. The figure on the right shows the sensor readings associated with that
particular trajectory were the colors of the observations match the colors
of the sensors positions in the left plot. As the observations are related to
distance we can observe that the two highest peaks are colored in yellow
and blue.

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

 y
−a

xi
s

[m
]

 x−axis [m]

Target trajectory example

0 50 100 150 200
−60

−50

−40

−30

−20

−10

 time steps

 R
S

S
 [d

B
]

RSS observations

Figure 5.1: Example of two dimensional target trajectory and associated
observations. The plot in the left shows the surveillance area with the
sensors (depicted in squares) and the target trajectory. The plot in the
right shows the sensor readings associated with that particular trajectory,
where the colors of the observations match the colors of the sensor positions
in the left.

124

5.5.2 Network connectivity and Markov chain parameter
selection

Figure 5.2 left illustrates the topology of the network. The squares in the
area indicate the positions of the sensors (which for this example coincide
with the PEs) whilst the dashed lines indicate the connections between PEs.
We have also included the PE indices for future reference. As we see the
sensors are connected in such a way that the links of the whole WSN form
the shape of a two dimensional square mesh. Thus, the sensors in the four
corners are connected to 2 neighbors, the nodes in the sides are connected
to 3 neighbors and the nodes in the centre of the grid are connected to 4
neighbors. We have assumed this topology for simplicity purposes, although
the proposed DPF schemes would work in any topology. Note also that
the topology affects the speed at which the information is spread over the
network (however this aspect is not explored in the current work).

The links between nodes specify the set of neighbors of each node, Nn

for each n = 1, . . . , N , needed in the observation exchange step described in
Section 5.3.2 and the particle exchange step described in Section 5.3.4. They
also determine the transition matrix P of the Markov chains of Section 5.4.2.
We assume the probability of transmission to each neighbor to be uniform,
therefore the connectivity matrix of the network, C, has non zero entries
Cn,j =

1
Nn

if the n-th and j-th node are connected, where Nn is the number
of neighbors of the n-th node.

Using the methodology of Section 5.4.2, and using the connectivity
matrix, C, described above, we have numerically computed the probability
that an observation generated at node i reaches each one of the rest of the
nodes of the network for a range of values of B.

Figure 5.2 (right) shows for each of the N = 16 possible nodes of origin
(depicted in different line colors and types) the probability of reaching the
furthest node of the network. Note that the furthest node is the node with
the highest distance, dBi,j , as defined in Section 5.4.2 (i.e. the node with

lowest probability, FB
i,j). Also note that more than one node can be at the

furthest distance if their probability is the lowest.

If we consider the worst case scenario (magenta line of the right plot of
Figure 5.2) we can select the minimum amount of jumps required to obtain
a specific probability. For example, for a probability of π = min

i,j
FB
i,j = 0.8

we require B = 68 jumps and for a probability of π = min
i,j

FB
i,j = 0.99 the

minimum number of jumps is B = 180.

125

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

 y
−a

xi
s

[m
]

 x−axis [m]

Network topology

1 2 3 4

11 12109

65 7 8

13 14 15 16

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

 p
ro

b.

 # of jumps

 Probability of reaching furthest nodes

Figure 5.2: Network topology and observation spread probability.

5.5.3 Effect of the number of processing elements

In order to analyze the performance of the distributed structure provided
by the DRNA scheme (i.e. the performance when all the observations are
available at every node) we have performed some simulations with the CPF
and the DRNA algorithm alone.

Table 5.5.3 displays the average mean absolute error (MAE) and
standard deviation of the error (SDE) for the position estimates obtained
with the CPF and the DRNA algorithm for different numbers of particles.
Note that we compare the performance of a CPF that has M = 3200, 8000
and 16000 particles with a DRNA scheme that has K = 200, 500 and 1000
particles per PE, and thus, we are comparing filters with the same number
of particles in the whole network.

We have selected the number of particles to be exchanged to be 5, that
is, each PE transmits Q = 5 particles to each of its neighbors at each
discrete time step, where the connections between the PEs (and thus the
neighbors) are defined by the topology (for these experiments, a mesh). Note
also that when the number of particles is incremented the computational
cost increases, however we keep the number of transmitted particles fixed,
Q = 5, and consequently the communication cost in the particle exchange
step remains the same.

As expected, the best error performance is attained by the CPF, yet the
difference between the two algorithms is very small (a maximum of 0.12%
increased mean and 0.06% increased standard deviation on the position
error) and thus we can conclude that the effect of dividing the processing
among several nodes is negligible, when all the observations are present in

126

all nodes at all times and the number of exchanged particles is Q = 5.

Algorithm # particles MAE [m] SDE [m]

CPF 3200 0.4043 0.2266
DRNA 200/PE 0.4044 0.2268

CPF 8000 0.4023 0.2256
DRNA 500/PE 0.4028 0.2257

CPF 16000 0.4017 0.2253
DRNA 1000/PE 0.4018 0.2254

Table 5.5: Average mean absolute error (MAE) in meters and standard
deviation of the absolute error (SDE), also in meters, of the CPF and the
DRNA scheme for different numbers of particles.

5.5.4 Synchronized versus non-synchronized particle
exchange

In order to compare the performance between the two proposed distributed
schemes (the DPF-1 and the DPF-2) we have performed simulations with a
varying number of total jumps B. For these experiments we have fixed the
number of intermediate jumps to the number of total jumps, that is, L = B
for all the different values of B.

Figure 5.3 shows the average MAE of the position in meters obtained for
both algorithms when setting the total number of jumps to B = 68, B = 94
and B = 180, which correspond to probabilities of π = 0.8, π = 0.9 and
π = 0.99. The number of exchanged particles is again Q = 5. Note, though,
that the DPF-2 performs a particle exchange step every time instant whilst
the DPF-1 performs the exchange whenever the differences between the sets
of observations allow it (see Section 5.3.4). Results show that for all the
different number of jumps tried, the DPF-2 algorithm attains lower error
results than the filter with synchronized particle exchange (DPF-1).

As explained in Section 5.3.4, the distributed scheme of DPF-1 can only
perform particle exchange steps between nodes if some specific conditions
are fulfilled. Specifically, node n can only send particles to node r at time
t if the condition In

t ⊆ Ir
t is fulfilled. In order to analyze how frequently

this condition is fulfilled we have computed the mean number of PEs that
transmit particles to al least one of their neighbors.

Figure 5.4 shows the total number of PEs that perform in average at

127

3200 8000 16000
0.4

0.45

0.5

0.55

0.6

0.65

 total # particles

 p
os

. e
rr

or
 [m

]

Position estimation error

DPF−2 68 jumps
DPF−1 68 jumps
DPF−2 94 jumps
DPF−1 94 jumps
DPF−2 180 jumps
DPF−1 180 jumps

Figure 5.3: Average mean absolute error of the position in meters of the
DPF-1 and the DPF-2 for different number of total jumps, B.

least one particle exchange with a neighbor per time instant when using
the DPF-1 scheme. We have fixed the number of intermediate jumps to
L = 30 and we have plotted the results for a varying number of total jumps
B = 30, 60, 90 and 120. The number of particles used for these experiments
is of K = 200 per PE. As we can observe, the number of processors that
perform the particle exchange is relatively low (maximum of 9 out of 16 for
B = 30) and further, it reduces as the number of retransmissions increase.

30 60 90 120
6

6.5

7

7.5

8

8.5

9

9.5

 #
 tr

an
sm

it.
 P

E
s/

tim
e

st
ep

 total # jumps

Mean # of transmit. PEs

Figure 5.4: Average transmitting PEs per time instant in the particle
exchange step for the DPF-1. The number of total jumps selected are
B = 30, 60, 90 and 120 with a fixed number of intermediate jumps of L = 30.

Our intuition, originally, was that neighboring PEs would have similar

128

sets of observations, even more so if the observations are retransmitted,
and consequently that the number of PEs transmitting would increase
as the number of retransmissions increased. This intuition turns out in
contradiction with numerical results, though. In order to understand this
behavior we have, thus, analyzed the differences between sets of collected
observations, An

t , (as defined in Section 5.3.2) between PE n = 7 and its
neighbors Nn = 6, 8, 13, 11. We have selected sensor n = 7 because it is
positioned in the middle of the network and has 4 neighbors (see Figure 5.2
left).

Figure 5.5 (left) shows the average symmetric difference between the
sets of collected observations of PE n = 7 and the sets of its neighbors
Nn = 6, 8, 13, 11. The symmetric difference has been computed for one
simulation run and has been averaged over the length of the simulation in
order to compute the difference per time instant, i.e.,

1

T

T∑

t=1

|(An
t \ Ar

t) ∪ (Ar
t \ A

n
t)|

where An
t , is the set of observations of n-th PE at time instant t, Ar

t is the
set of observations of the r-th PE at time instant t, |An

t | is the number of
elements in the set An

t , and T is the length of the simulation.
Figure 5.5 (right), in the other hand, shows the normalized symmetric

difference. This is computed using the ratio of the symmetric difference and
the total number of observations of both sets, i.e.,

1

T

T∑

t=1

|(An
t \ Ar

t) ∪ (Ar
t \ A

n
t)|

|(An
t ∪ Atr)|

.

As we can observe, indeed the percentage of observations that are different
reduces as the observations are retransmitted (Figure 5.5 (right)) however
the absolute numbers increase slightly (Figure 5.5 (left)).

The issue is that even if the sets of observations between neighbors are
very similar they are hardly ever identical. When there is one difference
between the sets, the exchange can happen only in one way (from one
processor to another), further if there is one difference in each of the sets
the particle exchange step cannot happen at all. We believe that the fact
that the particle exchange does not happen very often in the DPF-1 is the
main reason for its worse performance with respect to the DPF-2 filter.

In the following sections we focus on the results of the DPF-2 filter as
not only it attains better error results but also it is more practical as it

129

does not require the memory or the processing power needed for the particle
synchronization.

30 60 90 120
2

3

4

5

6

7

8

9

 total # jumps

 #
 o

f d
iff

er
en

t o
bs

er
.

Mean symmetric diff. of Node 7

 vs. Node 6
 vs. Node 8
 vs. Node 3
 vs. Node 11

30 60 90 120

0.04

0.08

0.12

0.16

 total # jumps

Normalized symmetric diff. of Node 7

 vs. Node 6
 vs. Node 8
 vs. Node 3
 vs. Node 11

Figure 5.5: Symmetric difference and normalized symmetric difference
between the sets of observations of sensor n = 7 and its neighbors.

5.5.5 Effect of the number of total jumps

In order to see the relation between the total number of jumps, B, and the
error performance we have computed a series of simulations with the DPF-2
filter for a varying number of total jumps.

Table 5.5.5 displays the average mean absolute error (MAE) obtained
for the position using the DPF-2 algorithm for a varying number of total
particles, M . We have selected B = 68, 94, 120, 180 total jumps because they
correspond to the probabilities π = 0.8, 0.9, 0.95, 0.99 that the observation
coming from one of the least connected nodes has reached its furthest node
in the network. For these experiments the parameter of the intermediate
jumps equals the number of total jumps, i.e., L = B. The table also includes
the percentage increase in the mean and deviation error (labelled %iMAE
and %iSDE) with respect to the DRNA.

As we observe, there is indeed a correspondence between the total
number of jumps and the error performance. The percentage of error
induced with the number of jumps is also influenced by the number of
particles, for example, with K = 200 particles per PE and B = 68 jumps
(thus a probability π = 0.8 for the observation spread) the mean error
augments in 23% with respect to the DRNA whilst using K = 1000 particles
the mean error increase is of 11%.

130

part./PE jumps prob. π MAE [m] % iMAE SDE [m] %iSDE

68 0.8 0.5002 23.68 0.2864 26.38
94 0.9 0.4548 12.44 0.2584 14.04

200
120 0.95 0.4303 6.39 0.2433 7.37
180 0.99 0.4087 1.04 0.2293 1.17

68 0.8 0.4659 15.67 0.2643 17.11
94 0.9 0.4395 9.11 0.2480 9.89

500
120 0.95 0.4214 4.61 0.2374 5.20
180 0.99 0.4057 0.72 0.2280 1.03

68 0.8 0.4483 11.56 0.2534 12.43
94 0.9 0.4258 5.96 0.2396 6.31

1000
120 0.95 0.4164 3.62 0.2340 3.81
180 0.99 0.4049 0.77 0.2272 0.81

Table 5.6: Average mean absolute error (MAE) and standard deviation of
the absolute error (SDE) of the DPF-2 algorithm for different types of jumps.
The %iMAE and %iSDE indicate the percentage increase in the mean and
standard deviation of the errors with respect to the DRNA.

Also it is observed the percentage error increase is quite similar for both
the mean and the standard deviation.

5.5.6 Smoothed estimates

In order to analyze the improvement obtained with the observation
retransmission scheme (where we select the number of intermediate jumps
to be less than the number of total jumps, i.e., L < B) we have analyzed
the error we obtain when we compute smoothed estimates. Before analyzing
the retransmission scheme, though, we have computed smoothed estimates
of the simulated trajectories where we have set L = B, that is, where there
are no observation retransmissions. With these experiments we seek to find
what is the improvement obtained with the smooth estimation alone.

Figure 5.6 displays the average MAE obtained with smoothed estimates
of (f, µt|t−k), for a varying lag k = 0, 1, 2, . . . , 20, from the three algorithms.
These experiments have been performed for a total number of M =
3200, 8000 particles for the CPF and K = 200, 500 for the DRNA and the
DPF-2. The number of total jumps of the DPF-2 has been set to B = 180
(corresponding to a probability π = 0.99) and the number of intermediate
jumps to L = B.

131

0 5 10 15 20
0.2

0.25

0.3

0.35

0.4

0.45

 lag [k], for estimation at t−k

 p
os

. e
rr

or
 [m

]

Smooth estimation error

CPF 3200
DRNA 200/PE
DPF−2 200/PE
CPF 8000
DRNA 500/PE
DPF−2 500/PE

Figure 5.6: Average MAE of the position for the CPF, DRNA and DPF-2
obtained with smoothed estimates. The estimation has been performed at
estimation instants of t− k where k = 0, 1, 2, ..., 20 with observation up to t.

The three algorithms reduce their error considerably (nearly to a half of
the original error) as the delay of the smoothed estimate is increased. This
reduction in the error reaches a threshold which is obtained approximately
at the smoothed estimate of (f, µt|t−10) and then the obtained errors flatten.

5.5.7 Effect of the number of intermediate jumps

The total number of jumps B is associated with the observation spread
over the network, and thus determines the precision, whilst the number of
intermediate number of jumps, L, was originally associated with the speed
of convergence towards the associated precision. In order to see the influence
of this parameter we have computed a series of simulations where we have
fixed the number of total jumps, B, and we have performed simulations for
a varying number of intermediate jumps, L.

Recall, that when we fix B and L we can only guarantee with a
probability π that the observations generated at time t coming from the
two furthest nodes have reached one another at t + k, where the lag, k, is
k = B/L−1. This means that when we want to compare the results obtained
between algorithms whose intermediate jumps are different from the number
of total jumps, we have to compute smoothed estimates with different lags.
For example, when L = B/3 we are going to estimate (f, µt|t−2), and when
L = B/4, we are going to estimate (f, µt|t−3).

Table 5.7 and Table 5.8 display the MAE obtained for the position using
the DPF-2 algorithm for a varying number of particles, M = 200, 500 and

132

1000. For these experiments we have fixed the total number of jumps to
B ≈ 68 for Table 5.7 and to B = 120 for Table 5.8, which correspond
to the probabilities π = 0.8 and π = 0.95 respectively. In each of the
tables we show the results obtained for a varying number of intermediate
jumps, L ≈ B/4, B/3, B/2, B. Note that the smoothed estimates for
the retransmission scheme of L 6= B are computed for (f, µt−k), where
k = B/L− 1. In order to make this explicit we have added an extra column
indicating the lag associated with the smoothed estimate.

particles jumps lag [k]

per PE B/L (f, µt−k)
MAE % iMAE SDE % iSDE

68/17 3 0.4871 -1.51 0.2938 5.19
69/23 2 0.4839 -2.16 0.2850 2.04

200
68/34 1 0.4867 -1.59 0.2823 1.07
68/68 0 0.4946 N/A 0.2793 N/A

68/17 3 0.4192 -8.92 0.2447 -5.00
69/23 2 0.4242 -7.84 0.2450 -4.89

500
68/34 1 0.4411 -4.17 0.2511 -2.52
68/68 0 0.4603 N/A 0.2576 N/A

68/17 3 0.3868 -12.82 0.2244 -9.55
69/23 2 0.3994 -9.98 0.2292 -7.61

1000
68/34 1 0.4187 -5.63 0.2355 -5.07
68/68 0 0.4437 N/A 0.2481 N/A

Table 5.7: Average mean absolute error (MAE) and standard deviation of
the absolute error (SDE) of the DPF-2 algorithm for a total of B ≈ 68 jumps
and a range of intermediate jumps L ≈ B/4, B/3, B/2, B. The %iMAE
and %iSDAE indicate the percentage increase in the mean and standard
deviation of the errors with respect to L = B, that is, when the total jumps
are performed in one time instant.

As we observe the results obtained for the algorithm with no
retransmissions, i.e. when B = L, and when we transmit the total number
of jumps in several iterations, i.e. when L < B, are very similar. For
example, the results obtained for the scheme, B = 68 and L = 17 and
K = 200 particles/PE are just %1.5 percent different to those obtained for
B = L = 68. Similarly, the results obtained for the scheme, B = 120 and
L = 30 for K = 200 particles/PE are %3.78 percent different from those
obtained for B = L = 120. The results are not only very similar but slightly
better for the schemes with the retransmissions (thus the negative increased

133

particles jumps lag [k]

per PE B/L (f, µt−k)
MAE % iMAE SDE % iSDE

120/30 3 0.4097 -3.78 0.2404 1.00
120/40 2 0.4088 -3.99 0.2360 -0.84

200
120/60 1 0.4142 -2.72 0.2347 -1.38
120/120 0 0.4258 N/A 0.2380 N/A

120/30 3 0.3686 -11.64 0.2124 -8.56
120/40 2 0.3791 -9.13 0.2175 -6.37

500
120/60 1 0.3929 -5.82 0.2220 -4.43
120/120 0 0.4172 N/A 0.2323 N/A

120/30 3 0.3509 -14.83 0.2030 -11.27
120/40 2 0.3651 -11.38 0.2087 -8.78

1000
120/60 1 0.3828 -7.08 0.2160 -5.59
120/120 0 0.4120 N/A 0.2288 N/A

Table 5.8: Average mean absolute error (MAE) and standard deviation of
the absolute error (SDE) of the DPF-2 algorithm for a total of B = 120
jumps and a range of intermediate jumps L = B/4, B/3, B/2, B. The
%iMAE and %iSDAE indicate the percentage increase in the mean and
standard deviation of the errors with respect to L = B, that is, when the
total jumps are performed in one time instant.

134

percentage). The reason for this is the fact the we use smoothed estimates.
As we saw in Figure 5.6 even without retransmissions we do improve the
estimation just by computing smoothed estimates. All in all, this means
that schemes where the number of total jumps are performed in several
iterations are comparable in terms of estimation performance when we use
smoothed estimates.

Figure 5.7 displays the average MAE obtained with smoothed estimates
from the DPF-2 with a fixed number of total retransmissions B ≈ 68 (left)
and B = 180 (right). The intermediate number of retransmissions has been
set to L ≈ B/4, B/3, B/2, B. These experiments have been performed for a
total number of K = 200 particles per PE.

0 5 10 15 20
0.2

0.3

0.4

0.5

0.6

0.7

 lag [k], for estimation at t−k

 p
os

. e
rr

or
 [m

]

Smooth estimation error

DRNA
DPF−2 − 17/68
DPF−2 − 23/69
DPF−2 − 34/68
DPF−2 − 68/68

0 5 10 15 20
0.2

0.25

0.3

0.35

0.4

0.45

0.5

 lag [k], for estimation at t−k

 p
os

. e
rr

or
 [m

]

Smooth estimation error

DRNA
DPF−2 − 45/180
DPF−2 − 60/180
DPF−2 − 90/180
DPF−2 − 180/180

Figure 5.7: Average MAE of the position for the DPF-2 obtained with
smoothed estimates. These experiments have been performed for a fixed
number of total retransmissions of B = 68 (left) and B = 180 (right). We
have used K = 100 particles per PE.

As expected, results show that the algorithms with the retransmissions
in several steps, i.e., the algorithms with, L < B, perform worse than
the algorithms whose total jumps are performed in one iteration, L = B.
Note however that smoothed estimates of the DPF-2 scheme are similar to
instantaneous estimates of the DRNA scheme. In fact, the performance
of the DPF-2 scheme with B = L = 180 number of total jumps (and
intermediate jumps) is very close to the DRNA scheme.

5.5.8 Limitations and remarks

The results show that the two proposed distributed algorithms, the DPF-2
and DPF-1, perform close to the CPF and the DRNA scheme when the

135

number of retransmissions for the observations is sufficiently large.
Note that the proposed retransmission scheme, where the number of

intermediate jumps, L, is less than the number of total jumps, B, does
not reduce the communication load with respect to a setting were B = L.
As N new observations are generated every time instant, which need to be
retransmitted up to B times, the communication bottleneck in the network
ends up being N ×B, no matter what L is set to. The advantage of setting
L < B resides in reducing the algorithm processing times. As we wait for the
observations to arrive the algorithm can carry on performing its sampling,
weight update and resampling steps.

The cost of speeding up the processing, when setting L < B, is payed
with the loss of precision in the instantaneous estimates. However, if
smoothed estimates are used the results of performing the number of total
jumps in several iterations are very similar to those obtained when all the
retransmissions are performed in one iteration.

DPF-1 algorithm, which performs a synchronized particle exchange,
exhibits a higher error than the DPF-2. The main reason for this is that the
particle exchange step most of the time cannot happen due to the differences
between the sets of observations of neighboring nodes. The issue is that even
if the sets of observations between neighbors are very similar they are hardly
ever identical. When there is one difference between the sets, the exchange
can happen only in one way (from one processor to another), further if
there is one difference in each of the sets the particle exchange step cannot
happen at all. We believe that the fact that the particle exchange does not
happen very often in the DPF-1 is the main reason for its worse performance
with respect to the DPF-2 filter. Intuitively, not exchanging particles means
reducing the number of particles of the total filter, where, in the worst case
scenario, a particle filter of M particles can transform into a particle filter
of K = M/16.

With the proposed retransmission scheme where the number of total
jumps that an observation makes takes several algorithm iterations, it
is necessary to compute smoothed estimates. The downfall of smoothed
estimates is that it is required to store particle trajectories (and thus requires
more memory storage per particle) whose length is linked to the smoothed
lag or delay. The error decrease obtained, however, allows for a reduction
in the number of particles as compensation.

For example, if the number of retransmissions is set to B = L = 60,
a DPF-2 with K = 100 particles per PE with a smoothed estimate of
x̂t−2 obtains the same error as the DPF-2 with K = 1000 particles per
PE and instantaneous estimation x̂t. And if the filter parameters make

136

it more accurate, for example, if the number of retransmissions is set to
B = L = 90, the error obtained with a DPF-2 with K = 100 particles per
PE with a smoothed estimate of x̂t−1, is comparable to that of a DPF-2
with instantaneous estimate but with K = 1000 particles per PE.

Even if the memory storage of the smoothed estimate of x̂t−2 with
K = 100 particles would be of 3 × 100, that would still be far less than
the memory requirements of a filter of K = 1000. Further, the processing
required for the sampling, weight update or resampling would still be of
K = 100.

This characteristic improvement when using smoothed estimates is
present in all filters (CPF, DRNA scheme, DPF-2 and DPF-1), even more
so if the filters are more accurate, therefore the improvement of the CPF or
the DRNA scheme will always be better than the improvement obtained in
the DPF-2. However, the error obtained with the smoothed estimates given
by the DPF-2 scheme can be compared to that of the DRNA scheme in
many cases, so one could have the flexibility of the communication scheme
of the DPF-2 with the accuracy of the DRNA.

5.6 Conclusions

We have introduced a distributed particle filtering scheme for target tracking
in multi-hop wireless sensor networks. The proposed algorithm is built
around the DRNA algorithm of [15, 81], but modifying the communication
requirements. We have presented a random model for the spread of data over
the WSN where the transmission of data over the network is carried out using
stochastic Markov chain models. The presented observation spread scheme
is flexible and allows tuning of the observation spread over the network
via the selection of a parameter. We have also presented a methodology
for the selection of the parameter that controls the observation spread
that only requires the network connectivity information and, thus, can be
performed off-line without performing any experiments. Within this scheme
two parameters can be selected, the number of total retransmissions, B, and
the number of intermediate retransmissions, L.

Within this random observation scheme we have presented two
algorithms, one that requires a synchronization procedure of the particle
weights during the particle exchange (DPF-1) and a more simple algorithm
that ignores the synchronization requirements during the particle exchange
step (DPF-2). The performance of the resulting distributed particle filters
have been illustrated by way of computer simulations for a target tracking

137

problem in two dimensions in a network of 60× 60 meters.
The results show that the two proposed distributed algorithms, the DPF-

1 and DPF-2, perform close to the CPF and the DRNA scheme when the
number of retransmissions for the observations is sufficiently large. The
DPF-1 algorithm, which performs a synchronized particle exchange, exhibits
a higher error than the DPF-2 scheme. The main reason for this has
been shown to be that the particle exchange step cannot happen in many
time instants due to the differences between the sets of observations of the
neighboring nodes. The DPF-2 filter, in the other hand, has shown to attain
good results even though the computation of the weights may not be fully
correct for some particles.

The proposed retransmission scheme, where the number of intermediate
jumps, L, is less than the number of total jumps, B, allows reducing the
algorithm processing times. As we wait for the observations to arrive
the algorithm can carry on performing its sampling, weight update and
resampling steps. With the proposed retransmission scheme where the
number of total jumps that an observations makes takes several algorithm
iterations, it is necessary to compute smoothed estimates. The downfall
of smoothed estimates is that it is required to store particle trajectories
(and thus requires more memory storage per particle) whose length is
linked to the smoothed lag or delay. The error decrease obtained, however,
allows for a reduction in the number of particles as compensation. Also, if
smoothed estimates are used the results of performing the number of total
jumps in several iterations are very similar to those obtained when all the
retransmissions are performed in one iteration.

This characteristic improvement when using smoothed estimates is
present in all filters (CPF, DRNA scheme, DPF-2 and DPF-1), even more
so if the filters are more accurate, therefore the improvement of the CPF or
the DRNA scheme will always be better than the improvement obtained in
the DPF-2. However, the error obtained with the smoothed estimates given
by the DPF-2 scheme can be compared to that of the DRNA scheme in
many cases, so one could have the flexibility of the communication scheme
of the DPF-2 with the accuracy of the DRNA scheme.

138

Chapter 6

Summary and Conclusions

6.1 Summary

The aim of this work has been the design, implementation and assessment
of efficient particle filters (PFs) for various specific tracking applications on
wireless sensor networks (WSNs).

6.1.1 Indoor tracking with RSS measurements

The first part of the work has been focused on developing efficient models
and particle filters for indoor tracking using received signal strength (RSS)
in WSNs. Specifically, we have proposed a generalized switching multiple-
model (GSMM) approach to the representation of the target dynamics and
the radio signal-strength (RSS) observations in an indoor scenario. The
resulting class of state-space models is very flexible and we claim that it
may enable the adequate formal representation of time-varying scenarios
with highly unstable RSS measurements. The drawback of the GSMM
scheme is the increase in the dimension of the system state and, hence,
the number of variables that the tracking algorithm has to estimate. To
handle this difficulty, we have introduced two Rao-Blackwellized particle
filters that jointly estimate the target trajectory and the additional state
variables needed to represent the switching models. The first filter is a
standard implementation using the prior importance function for the model.
The second algorithm is an auxiliary particle filter that includes observation
information in the resampling step. It yields an improvement in performance
(especially noticeable when only a small number of particles can be used)
at the expense of little extra computational complexity.

We have provided numerical results that illustrate the performance of the

139

proposed methods with both synthetic and experimental RSS measurements.
The experimental setup to obtain the data for the assessment of the
algorithms consisted of a sensor network of nine IEEE 802.15.4 sensors
deployed in a 6 × 10 meter area. Using real data from this setup, we
have constructed two sets of observation sub-models. The first set involves
polynomials of high order fitted with a large amount of data. The second set
consists of (simpler) logarithmic sub-models. They involve few parameters to
adjust and only two sub-models for the whole network. The data for model
fitting is obtained from the messages transmitted at the network startup,
and hence the procedure can be made automatic. We have evaluated the
two observation model schemes with two types of likelihoods: a Gaussian
likelihood and a truncated Gaussian likelihood that incorporates a priori
information about the boundaries of the area where the target can move.
The numerical assessment of these two schemes shows that the polynomial
sub-models yield a considerable performance advantage with respect to
the logarithmic sub-models when the boundaries of the motion area are
unknown. However, when the latter information is available, the simpler
logarithmic models attain nearly the same performance as the polynomial
ones, and hence should be preferred.

Even though some of the following articles have been references in the
thesis it has to be noted that early works on Chapter 3 lead to the publishing
of the following conference articles,

• K. Achutegui, L. Martino, J. Rodas, Carlos J. Escudero and J. Mı́guez.
”A Multi-Model Particle Filtering algorithm for indoor tracking of
mobile terminals using RSS data.” In Control Applications,(CCA) &
Intelligent Control,(ISIC), 2009 IEEE, pp. 1702-1707. IEEE, 2009.

• K. Achutegui, J. Rodas, Carlos J. Escudero and J. Mı́guez. ”A model-
switching sequential Monte Carlo algorithm for indoor tracking with
experimental RSS data.” In Indoor Positioning and Indoor Navigation
(IPIN), 2010 International Conference on, pp. 1-8. IEEE, 2010.

Finally, the following journal article can be regarded as a summary of
Chapter 3

• K. Achutegui, J. Rodas, Carlos J. Escudero and J. Mı́guez. ”A
multi-model sequential Monte Carlo methodology for indoor tracking:
Algorithms and experimental results.” Signal Processing 92, no. 11
(2012): 2594-2613.

140

6.1.2 A distributed particle filter implementation on a WSN

As the main drawback of the particle filters is their potentially high
computational complexity we have then focused on reducing their
computational complexity via de distribution of their processing over the
nodes that comprise the WSN. We have investigated the use of the
distributed resampling with non-proportional allocation (DRNA) algorithm,
for the implementation of a distributed PF running on a WSN. We first
revisit the standard PF and its combination with the DRNA algorithm,
providing a formal description of the methodology. This includes a short
derivation showing that the DRNA procedure is unbiased.

We have carried out a series of simulations using models fitted with real
light intensity data that show a tracking precision of around half a meter.
In this respect, the performance difference between the proposed distributed
particle filter and a centralized filter with the same total number of particles
is less than two centimeters, whereas only the distributed version is fast
enough for real-world deployment on the hardware we consider. To uphold
this claim we have implemented a real-world WSN to track a moving target
in a 3.2×6.0 meter indoor scenario using only light-intensity measurements;
accuracy is also to within about half a meter on average.

The distributed particle filter with four processing nodes is over four
times faster than an equivalent centralized version, meaning equivalently
that the same performance can be obtained on less powerful hardware. A
greater number of processing nodes does imply more reliance on efficient
communications, but applications are mainly limited only by the overall
size of the network. In our framework, network time and processing time
can be traded off with each other by varying the number of nodes; but the
network bottle-neck is the handling of observational data. In our network
all nodes must make their observations available to all processing nodes at
each time step; hence, the communications load grows directly with the total
number of nodes in the network, and proportionally to the dimensionality
of these observations. For the specific application we have implemented,
though, where the light intensity readings are locally transformed into
binary data indicating whether a target is detected by the sensor or not,
the communication traffic over the WSN can be managed efficiently even
with simple hardware.

It has to be noted that the work presented in Chapter 4 has been
submitted to the following journal

• J. Read, K. Achutegui and J. Mı́guez, . ”A Distributed Particle Filter
for Nonlinear Tracking in Wireless Sensor Networks.” submitted to

141

Signal Processing

6.1.3 Distributed particle filtering on a WSN with random
spread of the measurement data

The DPF based on the DRNA algorithm guarantees the computation of
proper weights and consistent estimators provided that the whole set of
observations is available at every node and time instant. Unfortunately,
due to practical communication constraints, the technique may turn out
unrealistic for many WSNs of larger size. We have therefore investigated
how to relax the communication requirements using (i) a random model for
the spread of data over the WSN and (ii) methods that enable the out-of-
sequence processing of sensor observations.

The presented observation spread scheme is flexible and allows tuning of
the observation spread over the network via the selection of two parameters.
As the observation spread has a direct connection with the precision on
the estimation, we have also introduced a methodology for the selection
of the associated parameters. This methodology only requires the network
connectivity information and, thus, can be used off-line without performing
any experiments. Within this scheme two parameters can be selected,
the number of total retransmissions, B, and the number of intermediate
retransmissions, L, for each item of locally-collected observations.

Within this random observation scheme we have investigated two
algorithms, one that requires a synchronization procedure of the particle
weights during the particle exchange stage (named DPF-1) and a more
simple algorithm that ignores the synchronization requirements (named
DPF-2). The performance of the resulting distributed particle filters has
been illustrated by way of computer simulations for a target tracking
problem in two dimensions, for a WSN covering an area of 60 × 60 meters
in an outdoor scenario.

The results show that the two proposed distributed algorithms, the DPF-
1 and DPF-2, perform close to the centralized particle filter (CPF) and
the standard DRNA scheme when the number of retransmissions for the
observations is sufficiently large. The DPF-1 algorithm, which performs
a synchronized particle exchange, exhibits a higher error than the DPF-2
scheme. The main reason for this has been shown to be that the particle
exchange step cannot be carried out in many time instants due to the
differences between the sets of observations of the neighboring nodes. The
DPF-2 algorithm, on the other hand, has shown to attain good results even
though the computation of the weights may not be proper for some particles.

142

The proposed retransmission scheme, where the number of intermediate
jumps, L, is less than the number of total jumps, B, allows reducing the
algorithm processing times. As we wait for the observations to arrive
the algorithm can carry on performing its sampling, weight update and
resampling steps. The downfall of selecting L < B, is that it is necessary to
compute smoothed estimates. Smoothed estimates require to store particle
trajectories (and thus require more memory storage per particle) and the
length of the particle trajectory is linked to the smoothed lag or delay. The
error decrease obtained, however, allows for a reduction in the number of
particles as compensation. Also, if smoothed estimates are used the results of
performing the number of total jumps in several iterations are very similar to
those obtained when all the retransmissions are performed in one iteration.

This characteristic improvement when using smoothed estimates is
present in all filters (CPF, DRNA scheme, DPF-2 and DPF-1), even more
so if the filters are more accurate, therefore the improvement of the CPF or
the DRNA scheme will always be better than the improvement obtained in
the DPF-2. However, the error obtained with the smoothed estimates given
by the DPF-2 scheme can be compared to that of the DRNA scheme in
many cases, so one could have the flexibility of the communication scheme
of the DPF-2 with the accuracy of the standard DRNA scheme.

Early works on Chapter 5 were published in the conference article

• K. Achutegui and J. Mı́guez. ”A parallel resampling scheme and
its application to distributed particle filtering in wireless networks.”
In Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), 2011 4th IEEE International Workshop on, pp. 81-84.
IEEE, 2011.

Whilst a summary of Chapter 5 has been submitted to the following
journal

• K. Achutegui and J. Mı́guez. ”A Distributed particle filter for wireless
sensor networks with stochastic observation exchange.” submitted to
Signal Processing.

6.2 Future research

6.2.1 Multiple targets

A natural extension of the single target tracking research, is the study and
analysis of multiple target tracking.

143

Multi-target tracking consists of sequentially estimating the states of
several targets from noisy data. It is encountered in many applications, e.g.,
aircraft tracking from radar measurements or football player tracking in a
video sequence. Solutions of this problem using PFs have been proposed
in the past ten years. Two problems are generally faced, namely the high
dimension of the system (the state vector gathers all target states and its
size increases with the number of targets) and the data association problem
(often, each available measurement may correspond either to a target or to
a false alarm and, conversely, each target may have been either detected or
missed). An added difficulty is the modeling of the dynamics, including the
possibility of a varying state dimension as targets appear and dissapear.

Classical multi-target tracking theory has focused on the second
issue: the multiple hypothesis tracker (MHT) is based on filtering a
set of detections or thresholded measurements using Kalman-filter-type
algorithms, and the joint probabilistic data association (JPDA) filter is also
classical approach to tackle the data association problem. Interestingly, this
approach also solves the dimensional problem since it effectively resorts to
one filter per target. For a small number of targets and measurements, this
approach is very efficient. However, the number of possible associations
combinatorially grows with the number of targets and measurements.

The independent partition particle filter (IPPF) considers multi-
target tracking via particle filtering from a purely Bayesian perspective.
Measurement-to-target association is not done explicitly; it is implicit within
the Bayesian framework. Recently, a new approach to multi-target tracking
has been developed based on random sets called finite-set statistics (FISST).
FISST has also been combined with particle filtering methods for multi-
target tracking.

To date, the implementation of MTT have been limited to small-scale
problems for computational reasons and, thus, new methods are needed.

In order to handle the added computational complexity we propose the
use of DPF schemes based on the DRNA algorithm in views of sharing the
computational load among many nodes.

6.2.2 Convergence results

Another future line of research is to extend the convergence results published
for the standard particle filter, e.g., the methodology of [32], to demonstrate
the convergence of the DPFs based on the DRNA algorithm. The analysis
should demonstrate what is the effect in the performance of the different
steps of a DPF scheme in comparison with a CPF. For example, regarding

144

the particle exchange step, we should analyze how much precision is lost
with it and what conditions are necessary in order to guarantee that the
scheme works.

6.2.3 Suboptimal DPF schemes

The study of DPF schemes still allows for improvements. If we aim at
reducing of the computational complexity, we can focus on the design of
new suboptimal algorithms with more efficient importance functions. A
possible efficient importance function could be an approximate optimal
importance function obtained via diffusion methods. Another possibility
would be to investigate the implementation of efficient particle filters, such
as the auxiliary particle filter or the unscented particle filter, under the
DRNA scheme.

On the other hand, if we aim at reducing the communication load, we
could focus the research on new observation spread techniques, where, for
example, we can prioritize the observations collected from sensors that are
placed close to the target.

145

146

Appendix A

Recursive computation of
the prior density

In order to compute the weights in Tables 3.2 and 3.3, we need to evaluate

the predictive density of the position at time t, p(rt|r
(i)
0:t−1, ω

(i)
0:t−1). Given

r
(i)
0:t−1 and ω

(i)
0:t−1, the dynamic model defined in (3.1) is linear and, therefore,

the predictive density is Gaussian and can be obtained in closed form using
a Kalman filter.

Consider the linear Gaussian state-space model

[
v1,t
v2,t

]

︸ ︷︷ ︸
vt

=

[
cos(ω

(i)
t−1T) − sin(ω

(i)
t−1T)

sin(ω
(i)
t−1T) cos(ω

(i)
t−1T)

]

︸ ︷︷ ︸
H

(i)
t

[
v1,t−1

v2,t−1

]

︸ ︷︷ ︸
vt−1

+T I2

[
u3,t
u4,t

]
(A.1)

[
∆1,t

∆2,t

]

︸ ︷︷ ︸
∆t

=




sin(ω
(i)
t−1T)

ω
(i)
t−1

−
cos(ω

(i)
t−1T)−1

ω
(i)
t−1

1−cos(ω
(i)
t−1T)

ω
(i)
t−1

sin(ω
(i)
t−1T)

ω
(i)
t−1




︸ ︷︷ ︸
G

(i)
t

[
v1,t−1

v2,t−1

]

︸ ︷︷ ︸
vt−1

+
1

2
T 2I2

[
u1,t
u2,t

]
,

(A.2)
where the velocity of the target, vt, is the system state, the changes in the

position ∆1,t = r1,t− r
(i)
1,t−1 and ∆1,t = r2,t− r

(i)
2,t−1 are the observations and

ui,t ∼ N(ui,t; 0, σ
2
u) is Gaussian noise, for i = 1, . . . , 4.

If we define the matrices W = σu

[
T 0
0 T

]
and V = σu

[
1
2T

2 0
0 1

2T
2

]
,

then we can recursively apply the Kalman filter [27] to the model of (A.1)

147

and (A.2) at each time instant, to obtain

P
(i)
t = H

(i)
t−1Σ

(i)
t−1H

(i)
t−1

⊤
+WW⊤,

S
(i)
t = G

(i)
t P

(i)
t G

(i)
t

⊤
+VV⊤,

µ
(i)
t = H

(i)
t µ

(i)
t−1 +P

(i)
t G

(i)
t

⊤
S
(i)
t

−1 (
∆t −G

(i)
t H

(i)
t µ

(i)
t−1

)
,

Σ
(i)
t = P

(i)
t −P

(i)
t G

(i)
t

⊤
S
(i)
t

−1
G

(i)
t P

(i)
t , (A.3)

where P
(i)
t is the prior covariance matrix of vt; S

(i)
t is the covariance of

∆t given ∆
(i)
0:t−1; µ

(i)
t is the posterior mean of vt given r

(i)
0:t and Σ

(i)
t is the

posterior covariance of vt given r
(i)
0:t.

In addition, the predictive distribution of ∆t is

p(∆t|∆
(i)
0:t−1) ∼ N(∆t;G

(i)
t H

(i)
t µ

(i)
t−1,S

(i)
t). (A.4)

Therefore, we can obtain the prior distribution for the position, rt, as

p(rt|r
(i)
0:t−1, ω

(i)
0:t−1, a

(i)
0:t−1) ∼ N(rt; r

(i)
t|t−1,Σ

(i)
t|t−1) (A.5)

where r
(i)
t|t−1 = G

(i)
t H

(i)
t µ

(i)
t−1 + r

(i)
t−1 and Σ

(i)
t|t−1 = S

(i)
t .

148

Appendix B

Derivation of the likelihood

Since the model indices m1,t, . . . ,mJ,t are statistically independent (as
assumed in Section 3.2.2) Eq.(5.2) implies that the observations y1,t, . . . , yJ,t
are conditionally independent given the target position rt, i.e.

p(yt|rt) =
J∏

j=1

p(yj,t|rt). (B.1)

Each likelihood factor p(yj,t|rt) can be written as a marginal of the joint
probability function p(yj,t,mj,t|rt),

p(yj,t|rt) =
K∑

mj,t=1

p(yj,t,mj,t|rt)p(mj,t), (B.2)

where we have used the independence of rt and mj,t. Finally substituting
(B.2) into (B.1) yields

p(yt|rt) =
J∏

j=1

K∑

mj,t=1

p(yj,t|rt,mj,t)p(mj,t). (B.3)

149

150

Appendix C

Acronyms and abbreviations

• AoA: angle of arrival.

• APF: auxiliary particle filter.

• A-RBPF: auxiliary Rao-Blackwellized particle filtering.

• A-SIR. auxiliary sequential importance resampling.

• CPF: centralized particle filter.

• CPU: central processing unit.

• CT: coordinated turn.

• CV: constant velocity.

• DFT: discrete Fourier transform.

• DPF: distributed particle filter.

• DRNA: distributed resampling with non-proportional allocation.

• e.g.: exempli gratia (for instance).

• EKF: extended Kalman filter.

• fps: false positive rate.

• fnr: false negative rate.

• GPS: global positioning system.

151

• GSMM: generalized switching multiple model.

• i.e.: id est (that is).

• i.i.d.: independent and identically distributed.

• IMM: interacting multiple model.

• IMM-UKF: interacting multiple model unscented Kalman filter.

• IS: importance sampling.

• JMS: jump Markov system.

• KF: Kalman filter.

• LS: least squares.

• MAE: mean absolute error.

• MAP: maximum a posteriori.

• MKF: mixture Kalman filter.

• ML: maximum likelihood.

• MMSE: minimum mean-square error.

• NLS: nonlinear least squares.

• OOsM: out-of-sequence measurement.

• PAN: personal area network.

• PE: processing element.

• PF: particle filter.

• pdf: probability density function.

• RBPF: Rao-Blackwellized particle filtering.

• RFID: radio frequency identification.

• RSS: received signal strength.

• r.v.: random variable.

152

• RLS: recursive least squares.

• SDE: standard deviation of error.

• SE: sensing element.

• SIR: sequential importance resampling.

• SIS: sequential importance sampling.

• SIS/R: sequential importance sampling with resampling.

• SLS: separable least squares.

• SMC: sequential Monte Carlo.

• SMM: switching multiple models.

• TDoA: time difference of arrival.

• ToA: time of arrival.

• UKF: unscented Kalman filter.

• WLS: weighted least squares.

• WSN: wireless sensor networks.

153

154

Appendix D

Notation

• x: scalar magnitudes are denoted using lower case regular face letters.

• x: vectors are displayed as lower case bold-face letters.

• X: matrices are displayed as upper case bold-face letters.

• x = [x1, ..., xn]: the scalar coordinates of a row vector in n-dimensional
space are denoted with square brackets.

• x = [x1, ..., xn]
⊤: a column vector is described a the transpose of a

row vector.

• x, x or X: random variables are denoted using upper or lower case
and regular or bold face letters according to their dimension.

• x ∈ R: sample space of random variable x is the set of real numbers.

• x ∈ R2: random variable x is of dimension 2 and its sample space is
the set of real numbers.

• x ∼ p(x): means that a random variable or a sample x has the
indicated distribution.

• p(·): (lower case letter) probability density function (pdf) of a random
variable or vector.

• p(x|y): the conditional pdf of x given y.

• Prob{·}: the probability of an event.

• U([a, b]): uniform distribution in the interval between a and b.

155

• N (µ, σ2): normal distribution with mean µ and variance σ2.

• N (x;µ, σ2): evaluation of the normal pdf with mean µ and variance
σ2 in x.

• {x(i)}Ni=1: set of N samples.

• x(i): i-th sample of a set {x}Ni=1.

• xt: sample related to time instant t.

• x
(i)
t : i-th sample related to time instant t.

156

Bibliography

[1] K. Achutegui, L. Martino, J. Rodas, C.J. Escudero, and J. Miguez. A
multi-model particle filtering algorithm for indoor tracking of mobile
terminals using RSS data. IEEE Control Applications, (CCA) and
Intelligent Control, (ISIC), 2009.

[2] Nadeem Ahmed, Yifei Dong, tatiana Bokareva, Salil Kanhere, Sanjay
Jha, Travis Bessell, Mark Rutten, Branko Ristic, and Neil Gordon.
Detection and tracking using wireless sensor networks. In 5th
international conference on Embedded networked sensor systems,
SenSys ’07, pages 425–426. ACM, 2007.

[3] B. D. O. Anderson and J. B. Moore. Optimal Filtering. Englewood
Cliffs, 1979.

[4] C. Andrieu, A. Doucet, S. S. Singh, and V. B. Tadić. Particle Methods
for Change Detection, System Identification and Control. Proceedings
of the IEEE, 92(3):423–438, March 2004.

[5] Pau Closas Anup Dhital and Carles Fernández-Prades. Bayesian
filtering for indoor localization and tracking in wireless sensor
networks. EURASIP Journal on Wireless Communications and
Networking, 2012.

[6] M. Arikawa, S. Konomi, and K. Ohnishi. Navitime: Supporting
Pedestrian Navigation in the Real World. IEEE Pervasive Computing,
6(3):21–29, 2007.

[7] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Klapp. A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking.
IEEE Transactions Signal Processing, 50(2):174–188, February 2002.

157

[8] A.H. Sayed B. Hassibi and T. Kailath. Linear estimation in
Krein spaces-Part II: applications. IEEE Transactions on Automatic
Control, 41(1):34–49, 1996.

[9] P. Bahl and V. Padmanabhan. Radar: An In-Building RF Based User
Location and Tracking System. IEEE Computer and Communications
Societies (INFOCOM 2000), pages 775–784, March 2000.

[10] Alan M. Bain and Dan Crisan. Fundamentals of stochastic filtering.
Springer, 2008.

[11] Y. Bar-Shalom and X. R. Li, editors. Estimation with Applications to
Tracking and Navigation. Wiley & sons, 2001.

[12] Yaakov Bar-Shalom, X Rong Li, and Thiagalingam Kirubarajan.
Estimation with applications to tracking and navigation: theory
algorithms and software. John Wiley & Sons, 2004.

[13] H. A. P. Blom and E. A. Bloem. Exact Bayesian and particle
filtering of stochastic hybrid systems. IEEE Transactions Aerospace
and Electronic Systems, 43(1):55–70, 2007.

[14] M. Bolić, P. M. Djurić, and S. Hong. New Resampling Algorithms for
Particle Filters. In Proceedings of the IEEE ICASSP, April 2003.

[15] M. Bolić, P. M. Djurić, and S. Hong. Resampling Algorithms and
Architectures for Distributed Particle Filters. IEEE Transactions
Signal Processing, 53(7):2442–2450, July 2005.

[16] Claudio J. Bordin and Marcelo G. S. Bruno. Cooperative Bling
Equalization of Frequency-Selective Channels in Sensor Networks
using Decentralized Particle Filtering. 42nd Asilomar Conference on
Signals, systems and computers, pages 1198 – 1201, October 2008.

[17] D. C. Brogan and N. L. Jhonson. Realistic Human Walking
Paths. Proceedings of CASA, International Conference on Computer
Animation and Social Agents, May 2003.

[18] M. Brunato and R. Battiti. Statistical learning theory for location
fingerprinting in wireless LANs. Computer Networks, 47:825–845,
April 2005.

[19] E. Bruns, B. Brombach, T. Zeidler, and O. Bimber. Enabling mobile
phones to support large-scale museum guidance. IEEE Multimedia,
14(2):16–25, 2007.

158

[20] M. F. Bugallo, S. Xu, and P. M. Djurić. Performance comparison of
EKF and particle filtering methods for maneuvering targets. Digital
Signal Processing, 17:774–786, October 2007.

[21] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low-cost outdoor
localization for very small devices. Personal Communications, IEEE,
7(5):28–34, 2000.

[22] Olivier Cappé, Simon J Godsill, and Eric Moulines. An overview
of existing methods and recent advances in sequential Monte Carlo.
Proceedings of the IEEE, 95(5):899–924, 2007.

[23] F. Caron, M. Davy, E. Duflos, and F. Vanheeghe. Particle Filtering
for Multisensor Data Fusion with Switching Observation Models:
Application to Land Vehicle Positioning. IEEE Transactions Signal
Processing, 55(6):2703–2719, June 2007.

[24] J. Carpenter, P. Clifford, and P. Fearnhead. Improved particle filter for
nonlinear problems. IEE Proceedings - Radar, Sonar and Navigation,
146(1):2–7, February 1999.

[25] G. Casella and C. P. Robert. Rao-Blackwellisation of sampling
schemes. Biometrika, 83(1):81–94, 1996.

[26] Federico S. Cattivelli and Ali H. Sayed. Diffusion LMS strategies
for distributed estimation. Trans. Sig. Proc., 58(3):1035–1048, March
2010.

[27] R. Chen and J. S. Liu. Mixture Kalman filters. Journal of the Royal
Statistics Society B, 62:493–508, 2000.

[28] Daizhan Cheng, Bijoy Ghosh, and Xiaoming Hu. Distributed Sensor
Network for Target Tracking. In 17th International Symposium on
Mathematical Theory of Networks and Systems, 2006.

[29] P. Closas and M.F. Bugallo. Iterated multiple particle filtering. In 4th
IEEE International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), pages 89–92, December 2011.

[30] M. Coates. Distributed particle filters for sensor networks. In
Proceedings of ACM IPSN, April 2004.

[31] D. Crisan. Particle Filters - A Theoretical Perspective. In A. Doucet,
N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods
in Practice, chapter 2, pages 17–42. Springer, 2001.

159

[32] D. Crisan and A. Doucet. A Survey of Convergence Results on Particle
Filtering. IEEE Transactions Signal Processing, 50(3):736–746, March
2002.

[33] Digant P. Davé and Thomas E. Milner. Doppler-angle measurement
in highly scattering media. Opt. Lett., 25(20):1523–1525, Oct 2000.

[34] A. Dhital, P. Closas, and C. Fernández-Prades. Bayesian filtering for
indoor localization and tracking in wireless sensor networks. EURASIP
Journal on Wireless Communications and Networking, 2012.

[35] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. F.
Bugallo, and J. Mı́guez. Particle filtering. IEEE Signal Processing
Magazine, 20(5):19–38, September 2003.

[36] P. M. Djurić, Ting. Lu, and M. F. Bugallo. Multiple particle filtering.
In 32nd IEEE ICASSP, April 2007.

[37] P. M. Djuric, M. Vemula, and M. F. Bugallo. Target tracking by
particle filtering in binary sensor networks. IEEE Transactions on
Signal Processing, 56:2229–2238, June 2008.

[38] R. Douc, O. Cappé, and E. Moulines. Comparison of resampling
schemes for particle filtering. In Proceedings of the 4th International
Symposium on Image and Signal Processing and Analysis, pages 64–
69, September 2005.

[39] A. Doucet. On sequential simulation-based methods for Bayesian
filtering. Tech. Report, Univ. of Cambridge, Dept. of Engineering,
CUED-F-ENG-TR310, 1998.

[40] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte
Carlo Methods in Practice. Springer, New York (USA), 2001.

[41] A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo
Sampling methods for Bayesian filtering. Statistics and Computing,
10(3):197–208, 2000.

[42] D.P. Eickstedt and M. R. Benjamin. Cooperative target tracking in
a distributed autonomous sensor network. In OCEANS 2006, pages
1–6, September 2006.

[43] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish
Kumar. Next century challenges: scalable coordination in sensor

160

networks. In Proceedings of the 5th annual ACM/IEEE international
conference on Mobile computing and networking, MobiCom ’99, pages
263–270, New York, NY, USA, 1999. ACM.

[44] D. Fox, Jeffrey Hightower, Lin Liao, D. Schulz, and G. Borriello.
Bayesian filtering for location estimation. Pervasive Computing,
IEEE, 2(3):24–33, 2003.

[45] S. Godsill, A. Doucet, and M. West. Monte Carlo smoothing for
nonlinear time series. Journal of the American Statistical Association,
99(465):156–168, March 2004.

[46] G. Goncalo and S. Helena. Indoor location system using ZigBee
technology. In Sensor Technologies and Applications, 2009.
SENSORCOMM ’09. Third International Conference on, pages 152–
157, 2009.

[47] N. Gordon, D. Salmond, and A. F. M. Smith. Novel approach
to nonlinear and non-Gaussian Bayesian state estimation. IEE
Proceedings-F, 140:107–113, 1993.

[48] F. Gustafsson. Statistical Sensor Fusion. Studentlitteratur, 2010.

[49] F. Gustafsson and F. Gunnarsson. Mobile positioning using wireless
networks. IEEE Signal Processing Magazine, 22(4):41–53, July 2005.

[50] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund. Particle filters for positioning,
navigation and tracking. IEEE Transactions Signal Processing,
50(2):425–437, February 2002.

[51] M. Haller, M. Billinghurst, and B. Thomas. Emerging Technologies of
Augmented Reality: Interfaces and Design. IGI Global, 2007.

[52] M.A. Hanson, H.C. Powell, A.T. Barth, K. Ringgenberg, B.H.
Calhoun, J.H. Aylor, and J. Lach. Body area sensor networks:
Challenges and opportunities. Computer, 42(1):58–65, 2009.

[53] Y. Hatano and M. Mesbahi. Agreement over random networks.
In Decision and Control, 2004. CDC. 43rd IEEE Conference on,
volume 2, pages 2010–2015 Vol.2, 2004.

[54] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-
efficient communication protocol for wireless microsensor networks.

161

In System Sciences, 2000. Proceedings of the 33rd Annual Hawaii
International Conference on, page 10 pp. vol.2, 2000.

[55] O. Hlinka, P.M. Djuric, and F. Hlawatsch. Time-space-sequential
distributed particle filtering with low-rate communications. In Signals,
Systems and Computers, 2009 Conference Record of the Forty-Third
Asilomar Conference on, pages 196–200, 2009.

[56] O. Hlinka, O. Sluciak, F. Hlawatsch, P. Djuric, and M. Rupp.
Distributed Gaussian particle filtering using likelihood consensus. In
Proceedings of IEEE ICASSP, pages 3756–3759, May 2011.

[57] O. Hlinka, O. Sluciak, F. Hlawatsch, P. M. Djuric, and M. Rupp.
Likelihood Consensus and Its Application to Distributed Particle
Filtering. IEEE Transactions on Signal Processing, 60:4334–4349,
August 2012.

[58] Heng-Chih Huang, Yueh-Min Huang, and Jen-Wen Ding. An
implementation of battery-aware wireless sensor network using ZigBee
for multimedia service. In Consumer Electronics, 2006. ICCE ’06.
2006 Digest of Technical Papers. International Conference on, pages
369–370, 2006.

[59] Y. Sankarasubramanian I. F. Akyildiz, W-Su and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks: The International
Journal of Computer and Telecommunications Networking, 38(4):393–
422, March 2002.

[60] Garrick Ing and Mark J. Coates. Parallel particle filters for tracking
in wireless sensor networks. In in Proc. SPAWC, 2005.

[61] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin.
Directed diffusion: a scalable and robust communication paradigm
for sensor networks. In Proceedings of the 6th annual international
conference on Mobile computing and networking, MobiCom ’00, pages
56–67, New York, NY, USA, 2000. ACM.

[62] R. Jan and Y. Lee. An indoor geolocation system for wireless LANs.
International Conference on Parallel Processing Workshops, pages 29–
34, October 2003.

[63] L.A. Jhonston and V. Krishnamurthy. An improvement to the
interacting multiple model (IMM) algorithm. IEEE Transactions on
Signal Processing, 46(2):2909–2903, 2001.

162

[64] B. Jit, D. Zhang, G. Qiao, V. Foo, Q. Qiu, and P. Yap. A system
for activity monitoring and patient tracking in a smart hospital.
International Conference on Smart Homes and Health Telematics
(ICOST’06), pages 196–263, 2006.

[65] S. J. Julier and J. Uhlmann. Unscented filtering and nonlinear
estimation. Proceedings of the IEEE, 92(2):401–422, March 2004.

[66] Simon J. Julier and Jeffrey K. Uhlmann. New extension of the Kalman
filter to nonlinear systems. In Proc. AeroSense: 11th Int. Symp.
Aerospace/Defense Sensing, Simulation and Controls, pages 182–193,
1997.

[67] K. Kaemarungsi. Distribution of WLAN received signal strength
indication for indoor location determination. International Symposium
on Wireless Pervasive Computing, pages 6–11, January 2006.

[68] S. Kar and J.M.F. Moura. Distributed consensus algorithms in sensor
networks with imperfect communication: Link failures and channel
noise. Signal Processing, IEEE Transactions on, 57(1):355–369, 2009.

[69] Rebecca Adam Kathrin Schmeink and Peter A Hoeher. Joint
communication and positioning based on soft channel parameter
estimation. EURASIP Journal on Wireless Communications and
Networking, November 2011.

[70] C. J. Kim and C.R. Nelson. State-Space Models With Regime
Switching. MIT Press, 1999.

[71] N. Kumar. Comprehensive Physics XII. Laxmi Publications, 2008.

[72] H. R. Künsch. Recursive Monte Carlo filters: Algorithms and
theoretical bounds. The Annals of Statistics, 33(5):1983–2021, 2005.

[73] A.M. Ladd, K.E. Bekris, A.P. Rudys, D.S. Wallach, and E.E. Kavraki.
On the feasibility of using wireless ethernet for indoor localization.
Robotics and Automation, IEEE Transactions on, 20(3):555–559,
2004.

[74] Koen Langendoen and Niels Reijers. Distributed localization in
wireless sensor networks: a quantitative comparison. Elsevier
Computer Networks, 43:499–518, November 2003.

163

[75] A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes. On
the utility of graphics cards to perform massively parallel simulation
of advanced Monte Carlo methods. Journal of Computational and
Graphical Statistics, 19(4):769–789, 2010.

[76] Sun Hwan Lee and Matthew West. Markov Chain Distributed Particle
Filters (MCDPF). 48th Conference on Decision and Control and 28th
Chinese Control Conference, pages 5496–5501, December 2009.

[77] J. S. Liu, R. Chen, and W. H. Wong. Rejection control and sequential
importance sampling. Journal of the American Statistical Association,
93(443):1022–1031, September 1998.

[78] T. Kirubarajan M. Mallick and S. Arulampalam. Out-of-sequence
measurements processing for tracking ground target using particle
filters. In Proceedings of IEEE Aerospace Conference, volume 41, pages
1809–1818, 2002.

[79] E. Mazor, A. Averbuch, and Y. Bar-Shalom. Interacting multiple
model methods in target tracking: A survey. IEEE Transactions
Aerospace and Electronic Systems, 34(1):103–123, 1998.

[80] S. McGinnity and G. W. Irwin. Manoeuvring target tracking using
a multiple-model bootstrap filter. In A. Doucet, N. de Freitas, and
N. Gordon, editors, Sequential Monte Carlo Methods in Practice,
chapter 23, pages 479–496. Springer, 2001.

[81] J. Mı́guez. Analysis of parallelizable resampling algorithms for particle
filtering. Signal Processing, 87(12):3155–3174, 2007.

[82] Aleksandar Milenkovi, Chris Otto, and Emil Jovanov. Wireless
sensor networks for personal health monitoring: Issues and an
implementation. Computer Communications, 29(13-44):2521 – 2533,
2006. Wirelsess Senson Networks and Wired/Wireless Internet
Communications.

[83] Erik G Strm Mohammad R Gholami, Henk Wymeersch and Mats
Rydstrm. Wireless network positioning as a convex feasibility problem.
Eurasip Journal on Wireless Communications and Networking,
November 2011.

[84] E. J. Msechu, A. Ribeiro, S. I. Roumeliotis, and G. B. Giannakis.
Distributed iteratively quantized Kalman filtering for wireless sensor

164

networks. IEEE Transactions Signal Processing, 56:3727–3741,
August 2008.

[85] R. Musaloiu and A. Terzis. Minimising the effect of WiFi interference
in 802.15.4 wireless sensor networks. International Journal of Sensor
Networks, 3(1):43–54, 2008.

[86] M. O’Connor, T. Bell, G. Elkaim, and B. Parkinson. Automatic
steering of farm vehicles using GPS. 3rd International Conference
on Precision Agriculture, pages 767–778, June 1996.

[87] R. Olfati-Saber. Distributed Kalman filtering for sensor networks. In
46th IEEE Conference on Decision and Control, pages 5492 – 5498,
December 2007.

[88] Eric A. Olsen, Chan-Woo Park, and Jonathan P. How. 3D formation
flight using differential carrier-phase GPS sensors, 1998.

[89] U. Orguner and F. Gustafsson. Storage efficient particle filters for the
out of sequence measurement problem. 11th International Conference
on Information Fusion, pages 1–8, July 2008.

[90] M. Orton and A. Marrs. Particle filters for tracking with out-
of-sequence measurements. IEEE Transactions on Aerospace and
Electronic Systems, 41:693–702, April 2005.

[91] Matthew Orton and Alan Marrs. A Bayesian approach to multi-
target tracking and data fusion with out-of-sequence measurements.
Proceedings of IEE Conference on Target Tracking: Algorithms and
Applications, 1:1–5, 2001.

[92] Cheolhee Park and T.S. Rappaport. Short-range wireless
communications for next-generation networks: UWB, 60 Ghz
millimeter-wave WPAN, and ZigBee. Wireless Communications,
IEEE, 14(4):70–78, 2007.

[93] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses,
and N. S. Correal. Locating the nodes. IEEE Signal Processing
Magazine, 22(4):54–69, July 2005.

[94] M. K. Pitt and N. Shephard. Auxiliary variable based particle filters.
In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential Monte
Carlo Methods in Practice, chapter 13, pages 273–293. Springer, 2001.

165

[95] T. Preis, P. Virnau, W. Paul, and J. J. Schneider. GPU accelerated
Monte Carlo simulation of the 2D and 3D Ising model. Journal of
Computational Physics, 228(12):4468–4477, 2009.

[96] H. Qi and F. Wang. Optimal itinerary analysis for mobile agents in ad
hoc wireless sensor networks. In Proceedings of IEEE ICC 01, pages
147 –153, 2001.

[97] T. S. Rappaport. Wireless Communications. Prentice-Hall, Upper
Saddle River, NJ (USA), 1996.

[98] T. S. Rappaport. Wireless Communications: Principles and Practice
(2nd edition). Prentice-Hall, Upper Saddle River, NJ (USA), 2001.

[99] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter.
Artech House, Boston, 2004.

[100] Sheldon M Ross. Applied probability models with optimization
applications. Courier Dover Publications, 1970.

[101] D. B. Rubin. A noniterative sampling/importance resampling
alternative to the data augmentation algorithm for creating a few
imputations when fractions of missing information are modest: the
SIR algorithm. Journal of the American Statistical Association,
82:543–546, 1987.

[102] J. Uhlmann S. J. Julier and H. F. Durrant-Whyte. A new method for
the non linear transformation of means and covariances in filters and
estimators. IEEE Transactions Automatic Control, 3:477–482, March
2000.

[103] C. Savarese, J.M. Rabaey, and J. Beutel. Location in distributed
ad-hoc wireless sensor networks. In Acoustics, Speech, and
Signal Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE
International Conference on, volume 4, pages 2037–2040 vol.4, 2001.

[104] Robert J. Schalkoff. Pattern Recognition. John Wiley & Sons, Inc.,
New York, 1991.

[105] X. Sheng, Yu-Hen Hu, and P. Ramanathan. Distributed particle
filter with GMM approximation for multiple targets localization
and tracking in wireless sensor network. In Fourth International
Symposium on Information Processing in Sensor Networks (IPSN),
pages 181– 188, April 2005.

166

[106] M. L. Sichitu and V. Ramadurai. Locatino of wireless sensor networks
with a mobile beacon. In IEEE International Conference on Mobile
Ad-hoc and Sensor Systems, pages 174– 183, October 2004.

[107] F. Simjee and P.H. Chou. Everlast: Long-life, supercapacitor-operated
wireless sensor node. In Low Power Electronics and Design, 2006.
ISLPED’06. Proceedings of the 2006 International Symposium on,
pages 197–202, 2006.

[108] R. Simon, P. Frohlich, and H. Anegg. Beyond location based -
the spatially aware mobile phone. Web and Wireless Geographical
Information Systems, pages 12–21, 2006.

[109] M. A. Suchard, Q. Wang, C. Chang, J. Frelinger, A. Cron,
and M. West. Understanding GPU programming for statistical
computation: Studies in massively parallel massive mixtures. Journal
of Computational and Graphical Statistics, 19(4):419–438, 2010.

[110] D. D. Sworder and J. Boyd. Estimation Problems in Hybrid Systems.
Cambdridge University Press, 1999.

[111] Su-Won Yoon Tae-Hong Shin, Sangyoon Chin and Soon-Wook Kwon.
A service-oriented integrated information framework for RFID/WSN-
based intelligent construction supply chain management. Elsevier
Automation in Construction, 20(20):706–715, October 2011.

[112] J. Lygeros Th. Arampatzis and S. Manesis. A Survey of Applications
of Wireless Sensors and Wireless Sensor Networks. In Proceedings of
the 13th Mediterranean Conference on Control and Automation, pages
719–724, June 2005.

[113] F. Viani, P. Rocca, G. Oliveri, D. Trinchero, and A. Massa.
Localization, tracking, and imaging of targets in wireless sensor
networks: An invited review. Radio Science, 46(5):n/a–n/a, 2011.

[114] Eric A. Wan and Rudolph van der Merwe. The unscented Kalman
filter for nonlinear estimation. In Proceedings of the IEEE Symposium
on Adaptive System, Signal Processing and Communication Control,
October 2000.

[115] R. Weinstein. RFID: a technical overview and its application to
enterprise). IT Proffesional, Sponsored by IEEE Computer Society,
7:27–33, June 2005.

167

[116] G. Welch and G. Bishop. An introduction to the Kalman filter. UNC-
Chapel Hill, http://www.cs.unc.edu, 2000.

[117] X.R. Li Y. Bar-Shalom. Estimation and Tracking Principles,
Techniques and Software. Artech House, 1993.

[118] Y. Bar-Shalom y W. D. Blair, editor. Multitarget-multisensor tracking:
Applications and advances. Volume III. Artech House, Norwood (MA,
USA), 2000.

[119] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless
sensor network survey. Computer Networks, 52(12):2292 – 2330, 2008.

168

