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Resumen

La modelización de decisiones reales supone la interacción de dos elementos: un prob-
lema de optimización y un procedimiento para estimar los parámetros que definen dicho
modelo. Cualquier técnica de estimación requiere de la utilización de información mues-
tral disponible, la cual es aleatoriamente dada. Dependiendo de dicha muestra, los esti-
madores pueden variar ampliamente, y en consecuencia uno puede obtener soluciones muy
distintas del modelo. Concretamente, la incertidumbre de los estimadores que definen el
modelo resulta en decisiones inciertas.

El análisis del impacto de la incertidumbre de los parámetros en la optimización de
carteras es un área muy activo en estad́ıstica e investigación operativa. En esta tesis
tratamos el impacto de la incertidumbre de los parámetros en la optimización de carteras.
En concreto, estudiamos y caracterizamos la pérdida esperada de los inversores que usan
información muestral para construir sus carteras óptimas, y además proponemos nuevas
técnicas para aliviar dicha incertidumbre.

Primero estudiamos diferentes criterios de calibración para estimadores shrinkage en
el contexto de la optimización de carteras. En concreto consideramos diferentes métodos
de calibración para estimadores shrinkage del vector de medias, la matriz de covarianzas
y el vector de pesos. Para cada método de calibración damos expresiones expĺıcitas de la
intensidad óptima del shrinkage y además proponemos un nuevo enfoque no-paramétrico
para el cálculo de la intensidad de shrinkage de cada criterio de calibración. Finalmente
evaluamos el comportamiento de cada método de calibración con datos simulados y em-
ṕıricos.

En segundo lugar analizamos el impacto de la incertidumbre de los parámetros para un
inversor multiperiodo que se enfrenta a costes de transacción. Caracterizamos la pérdida
esperada del inversor multiperiodo y encontramos que dicha pérdida es igual al producto
de la perdida de un solo periodo y otro término que recoge los efectos multiperiodo en
la perdida de utilidad. Además proponemos dos carteras multiperiodo de tipo shrinkage
que ayudan a mitigar la incertidumbre de los parámetros. Finalmente analizamos el com-
portamiento de las carteras multiperiodo que proponemos y encontramos que el inversor
puede sufrir grandes pérdidas si ignora los costes de transacción, la incertidumbre de los
parámetros o ambos elementos.
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Abstract

Modeling every real-world decision involves two elements: an optimization problem and
a procedure to estimate the parameters of the model. Any estimation technique requires
the utilization of available sample information, which is random. Depending on the
given sample, the estimates may vary widely, and in turn, one may obtain very different
solutions from the model. Precisely, the uncertainty of the estimates that define the
parameters of the model results into uncertain decisions.

Analyzing the impact of parameter uncertainty in optimization models is an active area
of study in statistics and operations research. In this dissertation, we address the impact
of parameter uncertainty within the context of portfolio optimization. In particular,
we study and characterize the expected loss for investors that use sample estimators
to construct their optimal portfolios, and we propose several techniques to mitigate the
impact of parameter uncertainty.

First, we study different calibration criteria for shrinkage estimators in the context of
portfolio optimization. Precisely, we study shrinkage estimators for both the inputs and
the output of the portfolio model. In particular, we consider a set of different calibration
criteria to construct shrinkage estimators for the vector of means, the covariance matrix,
and the vector of portfolio weights. We provide analytical expressions for the optimal
shrinkage intensity of each calibration criteria, and in addition, we propose a novel non-
parametric approach to compute the optimal shrinkage intensity. We characterize the
out-of-sample performance of shrinkage estimators for portfolio selection with simulated
and empirical datasets.

Second, we study the impact of parameter uncertainty in multiperiod portfolio selection
with transaction costs. We characterize the expected loss of a multiperiod investor, and we
find that it is equal to the product between the single-period utility loss and a second term
that captures the multiperiod effects on the overall utility loss. In addition, we propose
two multiperiod shrinkage portfolios to mitigate the impact of parameter uncertainty. We
test the out-of-sample performance of these novel multiperiod shrinkage portfolios with
simulated and empirical datasets, and we find that ignoring transaction costs, parameter
uncertainty, or both, results into large losses in the investor’s performance.

vii



1. Introduction

The basic ideas of asset selection arose in 1952 with Markowitz’s paper Portfolio Selection,
published in The Journal of Finance. In his paper, Markowitz introduces a mathemat-
ical formulation to accomplish efficient investments based on risk and expected return.
Markowitz’s work founded the principles of risk diversification:

The basic concepts of portfolio theory came to me one afternoon in the li-
brary while reading John Burr Williams’s Theory of Investment Value. Williams
proposed that the value of a stock should equal the present value of its future
dividends. Since future dividends are uncertain, I interpreted Williams’s pro-
posal to be to value a stock by its expected future dividends. But if the investor
were only interested in expected values of securities, he or she would only be
interested in the expected value of the portfolio; and to maximize the expected
value of a portfolio one need invest only in a single security. This, I knew,
was not the way investors did or should act. Investors diversify because they
are concerned with risk as well as return. Variance came to mind as a mea-
sure of risk. The fact that portfolio variance depended on security covariances
added to the plausibility of the approach. Since there were two criteria, risk
and return, it was natural to assume that investors selected from the set of
Pareto optimal risk-return combinations.1

Markowitz defines the variance of asset returns as a measure of risk to construct an op-
timization problem that represents the fundamental investor’s challenge. In Markowitz’s
framework, the investor aims to find the optimal combination of assets that minimizes
the portfolio variance under a given expected portfolio return, which is known as the
mean-variance framework. This problem can be formulated as follows:

min
w

w′Σw (1.1)

s.t. w′ µ ≥ µ, (1.2)

w′ ι = 1, (1.3)

where µ is the vector of expected returns, Σ is the covariance matrix of returns, µ is
the target expected return, and ι is an appropriate vector of ones. This problem has an
equivalent formulation that admits an explicit solution:

max
w

µ′w − γ

2
w′Σw (1.4)

s.t. w′ ι = 1, (1.5)

1Quotation from Markowitz’s autobiography in:

http://nobelprize.org/nobel_prizes/economics/laureates/1990/markowitz-autobio.

html

1

http://nobelprize.org/nobel_prizes/economics/laureates/1990/markowitz-autobio.html
http://nobelprize.org/nobel_prizes/economics/laureates/1990/markowitz-autobio.html


1. Introduction

where γ is the investors risk-aversion parameter. The solution to this problem is obtained
directly by applying the first order conditions (FOCs):

w =
1

γ
Σ−1µ− λ

γ
Σ−1ι, (1.6)

where λ is the Lagrange multiplier of constraint (1.5) and is defined as λ = µ′Σι−γ
ι′Σ−1ι

.
Under the mean-variance framework, the investor obtains those portfolios on the so-

called efficient frontier, which contains the portfolios that provide an efficient trade-off
between risk and return. This is a paradigm of the concept of risk diversification, where
one can attain the lowest risk for a given expected return. Through diversification,
investors can remove the idiosyncratic risk, or risk inherent to each individual asset, and
thus the efficient portfolio is only affected by systemic risk.

1.1. Multiperiod portfolio optimization

The classical mean-variance framework does not account for possible changes in the in-
vestment opportunity set. Hence, today’s asset allocation decision is based on a static
problem where the investor is only concerned about tomorrow’s payoff and not about
future payoffs. However, investors trade actively and they periodically rebalance their
portfolios in accordance with the dynamics of market conditions. To model this realistic
situation, one may use dynamic programming. In the dynamic (multiperiod) setting, the
investor maximizes her expected utility accumulated along a finite or an infinite invest-
ment horizon.

To model an investment strategy, we must define the utility function that the investor
wants to maximize. For instance, we can assume that the investor aims to maximize a
concave utility defined by the accumulated wealth:

Wt+1 = Wt(w
′
tRt+1 + rft ), (1.7)

where Wt is the investor’s wealth at time t, wt is the investor’s portfolio at time t,
Rt is the vector of stock returns, and rft is the return of the risk-free asset at time t.
Expression (1.7) is also known as the budget constraint, and it has to be satisfied along
the multiperiod decision problem, which is defined as

V (τ,Wt, zt) = max
{ws}t+τ−1

s=t

Et[u(Wt+τ )] (1.8)

= max
wt

Et

[
max

{ws}t+τ−1
s=t+1

Et+1[u(Wt+τ )]

]
(1.9)

= max
wt

Et

[
V
(
τ − 1,Wt+1 = Wt(w

′
tRt+1 + rft ), zt+1

)]
, (1.10)

where τ is the investment horizon, and zt is a vector of state variables. Equation (1.10) is
known as the Bellman equation. In general, this problem can be solved numerically using
the system of nonlinear equations obtained from the First Order Conditions (FOCs). For
a better understanding, let us consider the particular example of an investor with constant
relative risk aversion (CRRA) preferences. In this specific context, the investor’s utility
is of the form u(Wt+τ ) = W 1−γ

t+τ /(1 − γ), where γ is the investor’s relative risk aversion

2



1. Introduction

coefficient. Then, the investment decision problem can be established as follows:

V (τ,Wt, zt) = max
wt

Et

[
max

{ws}t+τ−1
s=t+1

Et+1

[
W 1−γ
t+τ

1− γ

]]
(1.11)

= max
wt

Et

[
max

{ws}t+τ−1
s=t+1

Et+1

[
(Wt

∏t+τ−1
s=t (wTs Rs+1 + rfs ))(1−γ)

1− γ

]]
(1.12)

= max
wt

Et

W (1−γ)
t+1

1− γ
max

{ws}t+τ−1
s=t+1

Et+1

(t+τ−1∏
s=t+1

(wTs Rs+1 + rfs )

)(1−γ) (1.13)

= max
wt

Et [u(Wt+1)Ψ(τ − 1, zt+1)] . (1.14)

Therefore, the value function V (τ,Wt, zt) is equal to the product of the investor’s
utility at t+ 1, defined by the wealth at time t+ 1, and Ψ(τ − 1, zt+1) that represents the
discounted expected value function with an investment horizon of τ − 1. Note that when
τ = 1, we deal with the myopic portfolio selection problem.

In this thesis, we mainly focus on a mean-variance investor whose objective is to max-
imize her expected portfolio return penalized by the portfolio variability. In particular,
we study both a myopic investor (τ = 1) and a multiperiod/dynamic investor (τ > 1) in
Chapters 2 and 3, respectively.

1.2. Parameter uncertainty

One of the most important challenges in portfolio optimization is the impact of parameter
uncertainty in the investor’s performance. In general, investment decisions are formulated
as optimization problems where the investor maximizes the expected utility, which is
defined by a set of parameters that are unknown and the investor has to estimate them.
Portfolios constructed with sample estimates may result into suboptimal decisions, and
this effect worsens the investor’s expected performance.

In the mean-variance framework, parameter uncertainty has an important relevance for
two main reasons:

1. The mean-variance framework is very sensitive to changes affecting the inputs of the
problem and small distortions may provide extremely different optimal portfolios.
Thus, small errors affecting the inputs within the mean-variance framework can
give very suboptimal results. Consequently, the mean-variance framework is known
as an error maximizer ; see Michaud (1989).

2. The fragility of the mean-variance framework to changes in the inputs of the model
provide very extreme portfolios which may result into prohibitive transaction costs
for active managers.

Mean-variance investors that want to mitigate the impact of parameter uncertainty
have to take into account the aforementioned problems. We now provide a small review
of some of the methods considered in the literature to reduce the drawbacks that arise
from the mean-variance model.

3



1. Introduction

1.2.1. Factor models

One possibility to reduce the impact of parameter uncertainty in portfolio optimization is
to reduce the dimensionality of the problem and in turn, reduce the number of parameters.
We can do that using factor models; see Chan et al. (1999).

When we deal with a portfolio of N assets, there are N(N+1)
2

parameters to be estimated
only in the covariance matrix. Using a factor model to describe the dynamics of assets
returns we can considerably reduce the number of parameters of the covariance matrix.
For a general K-factor model, we describe the dynamics of asset returns as:

rit = αi + β′ift + εit, (1.15)

where αi is known as the manager’s ability coefficient, βi is the vector of factor loadings,
ft is the vector of factor realizations and εit is the error term. If the considered factors
are distributed as N(µf ,Σf ) and the error term follow a N(0,Σε), then we obtain that
the estimates for the unconditional mean and covariance matrix are:

µ̂ = α̂ + B̂′µ̂f (1.16)

Σ̂ = B̂Σ̂f B̂
′ + Σ̂ε, (1.17)

where B is the N × K matrix of factor loadings. Therefore, the number of parameters
in the covariance matrix reduces to K +N(K + 1) terms when factors are uncorrelated.
Specifically, a 3-factor model only requires to estimate 2, 003 parameters to construct the
covariance matrix of a portfolio with N = 500 assets, in comparison with the 125, 250
parameters that we estimate using the sample covariance matrix.2

1.2.2. Resampling methods

Another method to combat the impact of parameter uncertainty is to use resampling
methods. With this technique, the investor considers different scenarios and the general
solution is obtained by averaging the solutions for each of the considered scenarios. This
is an alternative technique popularized by Michaud (1998) that tries to provide more
diversified portfolios, unlike the original mean-variance framework which gives extreme
portfolio weights.

Resampling the original dataset, we provide an approximation of the different possi-
ble scenarios. In particular, we can use bootstrap techniques to construct the different
scenarios: (µ1,Σ1), . . .,(µB,ΣB), where B corresponds with the number of all bootstrap
estimates for µ and Σ. Then, we construct our mean-variance portfolio by averaging all
the optimal portfolios constructed for all different B bootstrap scenarios:

wresampled
m =

1

B

B∑
b=1

wb, (1.18)

where wb is the optimal mean-variance portfolio in (1.6) for the bth bootstrap scenario.

2If factors are correlated, the number of parameter that we estimate to construct the covariance matrix
are N(K + 1) +K(K + 1)/2, where K is the number of factors.
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1.2.3. Robust portfolio selection

Under this approach, µ and Σ belong to uncertainty sets and the investor maximizes her
utility for the worst-case scenario within the uncertainty sets.3 For expository reason, we
present the simplest case where the mean is defined within an uncertainty set and the
covariance matrix is known. In particular, we define the uncertainty set for the mean as:

Ω = {µ : (µ− µ̂)′Σ−1(µ− µ̂) ≤ k2}, (1.19)

where µ̂ is the sample mean and k determines the size of the uncertainty set. Therefore,
the robust formulation for this problem takes the form:

max
w

min
µ∈Ω

{
µ̂′w − γ

2
w′Σw

}
(1.20)

s.t. w′ι = 1. (1.21)

We can provide an alternative and tractable formulation of problem (1.20)-(1.21) in
order to obtain the optimal solution of the robust formulation. This is as follows; see
Garlappi et al. (2007):

max
w

µ̂Tw − γ

2
wTΣw − k‖Σ−1/2w‖ (1.22)

s.t. wT ι = 1. (1.23)

This tractable formulation takes the form of a Second Order Cone Programming
(SOCP) problem, which can be solved efficiently. This problem provides a more con-
servative solution compared with the classical mean-variance approach because it gives
a higher weight to the portfolio variability with the new term −k‖Σ−1/2w‖. In general,
robust formulations give more conservative solutions.

1.2.4. The Black-Litterman model

The Black-Litterman (BL) model was first published by Fisher Black and Robert Litter-
man in an internal paper of Goldman Sachs in 1990. It was subsequently published in the
Journal of Fixed Income as the article Asset Allocation: Combining Investor Views with
Market Equilibrium. The Black-Litterman model is a Bayesian model applied to portfolio
selection which takes into consideration the uncertainty in the vector of expected returns.
This is a flexible model that incorporates the views of investors into the portfolio decision
problem.

In the Black-Litterman model, and according with the CAPM model, the prior distri-
bution for the vector of means is defined as follows:

P (µ) ∼ N(Π, φΣ), (1.24)

where Π is the vector of mean excess returns in equilibrium, Σ is the covariance matrix
of asset returns and φ is a parameter that determines the uncertainty on µ.

3See Goldfarb and Iyengar (2003) for an extensive application of this methodology in portfolio opti-
mization.
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The views of the investor are incorporated in the conditional distribution as follows:

P (X|µ) ∼ N(V −1Q, [V ′ΩV ]−1), (1.25)

where X is the sample of investor’s views, V is the matrix of the asset weights within
each view, Q is the matrix of returns for each view and Ω is the covariance matrix for
the views of the investor.

From (1.24) and (1.25), we can construct the posterior distribution of returns using
the Bayes’ rule. Accordingly, Black and Litterman define a normal posterior distribution
which allows to incorporate the views of the investors in the mean-variance model.

1.2.5. Minimum-variance

From Merton (1980), it is well known that estimating the vector of means is more difficult
than estimating the covariance matrix. In particular, Merton (1980) shows that the
variation in the realized market returns is much larger than the variation in the variance
rate. That is why disregarding the vector of means helps mitigate the impact of parameter
uncertainty on the portfolio model. In turn, one can solve the minimum-variance portfolio
problem, which is as follows:

min
w

w′Σ̂w (1.26)

s.t. w′ ι = 1. (1.27)

This model can be solved explicitly, which results into the following optimal portfolio:

w =
Σ−1ι

ι′Σ−1ι
. (1.28)

Although the error affecting the covariance matrix is lower than the vector of means,
this element, however, also suffers from estimation risk and this may provide large losses.
In the following section, we give details of a statistical technique that reduces the esti-
mation error on Σ.

1.2.6. Shrinkage estimators

There is a large literature of shrinkage estimators within the context of portfolio selection.
Among others, Ledoit and Wolf (2003) and Ledoit and Wolf (2004a) develop shrinkage
estimators for the covariance matrix and they give empirical evidences of their good
performance in portfolio selection. In general, they propose estimators for the covariance
matrix that result from an optimal combination between the sample covariance matrix
and a target covariance matrix:

Σ̂Shrink = δ̂ F + (1− δ̂)Σ̂, (1.29)

where F represents a target matrix, and δ̂ is a value between 0 and 1 that corresponds
with the shrinkage intensity.

The basic idea of this methodology is that those estimated coefficients in the sample
covariance matrix that are extremely high or extremely low tend to contain large estima-
tion error. Thus, it is optimal to push those extreme values to most centered values in
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order to reduce estimation error.
As a result, parameter δ is the key element and it determines the performance of these

estimators. In Ledoit and Wolf (2003) and Ledoit and Wolf (2004a), the authors propose
a quadratic loss function to compute parameter δ. In particular, the aim is to find the
optimal value of δ that minimizes the following loss function:

min
δ
E
(
‖δF + (1− δ)Σ̂− Σ‖F

)
, (1.30)

where Σ is the population covariance matrix.

1.2.7. Constrained minimum-variance

Imposing short-selling constraints is another mechanism to diminish the estimation error
into the variance-covariance matrix. Jagannathan and Ma (2003) show that constraining
short-selling demands has an effect on the covariance matrix similar to that of shrinkage
estimators. The optimization problem with short-selling constraints and upper bounds
is:

min
w

w′Σ̂w (1.31)

s.t. w′ι = 1 (1.32)

wi ≥ 0, i = 1, . . . , N (1.33)

wi ≤ w, i = 1, . . . , N, (1.34)

where w is the upper bound of the portfolio weights.
Jagannathan and Ma (2003) show that the effect of portfolio constraints on the sample

covariance matrix is equivalent to estimate the sample covariance matrix as:

Σ̃ = Σ̂ + (δι′ + ιδ′)− (λι′ + ιλ′), (1.35)

where δ is the vector of Lagrange multipliers for the upper bound constraints and λ
is the vector of Lagrange multipliers for the short-selling constraints. Each Lagrange
multiplier is positive when the corresponding constraint is active and zero otherwise.
Expression (1.35) basically shows that when the short-sell constraint of stock i is active
(λi ≥ 0) and the upper limit constraint is not active (δ = 0), the covariance is reduced to
σ̃i,j = σ̂i,j − λi − λj. Overall, the covariance matrix of a constrained minimum-variance
problem acts as a shrinkage estimator.

1.2.8. Norm-constrained model

DeMiguel et al. (2009) provide a general framework where portfolio weights are norm-
constrained. Accordingly, the norm of portfolio weights must be smaller than a given
threshold. This framework includes in formulation (1.26)-(1.27) the additional constraint
of the norm of the portfolio weights:

min
w

wT Σ̂w (1.36)

s.t. wT ι = 1 (1.37)

‖w‖N ≤ δ, (1.38)
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where ‖w‖N is any norm of portfolio weights. DeMiguel et al. (2009) show that when
the norm-constraint is the 1-norm,‖w‖1 =

∑N
i=1 |wi|, with δ = 1 the model gives the

same result as the short-constrained minimum-variance. Moreover, they show that the A-
norm minimum-variance problem gives the same portfolio as the unconstrained minimum-
variance problem with the shrinkage estimator of Ledoit and Wolf when with Σ̂LW =
(1− ν)Σ̂ + νA.4 Finally, they show that when A = I, the A-norm is simply the 2-norm,
‖w‖2 =

∑N
i=1w

2
i . In that specification, if the threshold parameter δ is equal to 1

N
, the

solution of the problem is exactly the equally weighted portfolio.

1.2.9. The naive strategy

The naive strategy does not use any statistical tool to construct the investor’s portfo-
lio and it simply allocates the same budget proportion to every risky asset. Although
this is not a very sophisticated technique, the naive portfolio has a good out-of-sample
performance because is not affected by estimation risk. In turn, DeMiguel et al. (2009)
conclude that the gain associated to optimal and well diversified portfolios is smaller than
the loss coming from estimation error.

1.3. Our contribution

In thesis, we deal with the impact of parameter uncertainty in portfolio optimization.
In a broad sense, we contribute to the literature in two main areas: First, we focus on
the single-period portfolio problem and we study a wide variety of shrinkage methods for
portfolio selection. We propose new different calibration criteria and we extensively test
their out-of-sample performance in an empirical application. Second, we deal with the
impact of parameter uncertainty for multiperiod investor that also suffers from transac-
tion costs. We analytically characterize the investor’s expected loss and we propose two
multiperiod shrinkage portfolios that considerably improve the investor’s out-of-sample
performance.

Specifically, in Chapter 2 we carry out a comprehensive investigation of shrinkage
estimators for asset allocation, and we find that size matters—the shrinkage intensity
plays a significant role in the performance of the resulting estimated optimal portfolios.
We study both portfolios computed from shrinkage estimators of the moments of asset
returns (shrinkage moments), as well as shrinkage portfolios obtained by shrinking the
portfolio weights directly. We make several contributions in this field. First, we propose
two novel calibration criteria for the vector of means and the inverse covariance matrix.
Second, for the covariance matrix we propose a novel calibration criterion that takes the
condition number optimally into account. Third, for shrinkage portfolios we study two
novel calibration criteria. Fourth, we propose a simple multivariate smoothed bootstrap
approach to construct the optimal shrinkage intensity. Finally, we carry out an extensive
out-of-sample analysis with simulated and empirical datasets, and we characterize the
performance of the different shrinkage estimators for portfolio selection.

In Chapter 3, we study the impact of parameter uncertainty in multiperiod portfolio
selection with trading costs. We analytically characterize the expected loss of a multi-
period investor, and we find that it is equal to the product of two terms. The first term

4The A-norm is defined as ‖w‖A = (w′Aw)1/2 with A ∈ RN×N is a positive matrix
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corresponds with the single-period utility loss in the absence of transaction costs, as char-
acterized by Kan and Zhou (2007), whereas the second term captures the multiperiod
effects on the overall utility loss. To mitigate the impact of parameter uncertainty, we
propose two multiperiod shrinkage portfolios. The first multiperiod shrinkage portfolio
combines the Markowitz portfolio with a target portfolio. This method diversifies the
effects of parameter uncertainty and reduces the risk of taking inefficient positions. The
second multiperiod portfolio shrinks the investor’s trading rate. This novel technique
smooths the investor trading activity and it helps to reduce the impact of parameter
uncertainty. Finally, we test the out-of-sample performance of our considered portfolio
strategies with simulated and empirical datasets, and we find that ignoring transaction
costs, parameter uncertainty, or both, results into large losses in the investor’s perfor-
mance.

We conclude and summarize the main findings of this thesis in Chapter 4, and we also
give a short description of possible research lines in Chapter 4.2.
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2. Size Matters: Optimal Calibration of
Shrinkage Estimators for Portfolio
Selection

2.1. Overview

The classical mean-variance framework for portfolio selection proposed by Markowitz
(1952) formalizes the concept of investment diversification, and it is widely used nowadays
in the investment industry. To compute mean-variance portfolios, one needs to estimate
the mean and covariance matrix of asset returns. One possibility is to replace these
quantities with their sample estimators, but these are obtained from historical return data
and contain substantial estimation error. As a result, mean-variance portfolios computed
from sample estimators perform poorly out of sample; see, for instance, Jobson and
Korkie (1981); Best and Grauer (1991); Broadie (1993); Britten-Jones (1999); DeMiguel,
Garlappi, and Uppal (2009).

One of the most popular approaches to combat the impact of estimation error in portfo-
lio selection is to use shrinkage estimators, which are obtained by “shrinking” the sample
estimator towards a target estimator.1 The advantage is that while the shrinkage tar-
get is usually biased, it also contains less variance than the sample estimator. Thus it
is possible to show under general conditions that there exists a shrinkage intensity for
which the resulting shrinkage estimator contains less estimation error than the original
sample estimator; see James and Stein (1961). The key then is to characterize the op-
timal trade-off between the sample estimator (low bias), and the target (low variance).
In other words, shrinkage estimators can help reduce estimation error, but the shrinkage
intensity (size) matters.

In this chapter, we make an extensive investigation of shrinkage estimators for portfolio
selection. We study both portfolios computed from shrinkage estimators of the moments
of asset returns (shrinkage moments), as well as shrinkage portfolios obtained by shrinking
directly the portfolio weights computed from the original (un-shrunk) sample moments.

Constructing shrinkage estimators is a three-step procedure. First, define the shrinkage
target. Second, choose the calibration criterion that determines the shrinkage intensity.
Third, use the available data to estimate the shrinkage intensity that optimizes the cal-
ibration criteria. Our work contributes mainly to the last two steps by proposing new
calibration criteria, and providing parametric and nonparametric approaches to compute

1Other approaches proposed to combat estimation error in portfolio selection include: Bayesian meth-
ods (Barry (1974), Bawa et al. (1979)), Bayesian methods with priors obtained from asset pricing
models (MacKinlay and Pastor (2000), Pastor (2000), Pastor and Stambaugh (2000)), robust op-
timization methods (Cornuejols and Tutuncu (2007), Goldfarb and Iyengar (2003), Garlappi et al.
(2007), Rustem et al. (2000), Tutuncu and Koenig (2004)), Bayesian robust optimization (Wang
(2005)), robust estimation methods (DeMiguel and Nogales (2009)), and imposing constraints (Best
and Grauer (1992), Jagannathan and Ma (2003), and DeMiguel et al. (2009)).
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the shrinkage intensity. The shrinkage targets we consider are in general similar to those
considered in the existent literature.

We consider three shrinkage estimators of the moments of asset returns. First, we
consider a shrinkage estimator of the vector of means similar to those considered before
by Jorion (1986) or Frost and Savarino (1986). Unlike these authors, however, we define
our estimator a priori as a convex combination of the sample mean and a target element,
and we calibrate the shrinkage intensity to minimize the expected quadratic loss—a cri-
terion that distinguishes our work from that of the aforementioned papers. We provide a
closed-form expression for the optimal shrinkage intensity under the assumption that re-
turns are independent and identically distributed (iid), but without imposing any further
assumptions on the return distribution. Second, we consider the shrinkage covariance
matrix proposed by Ledoit and Wolf (2004b), and we implement the same calibration
criterion, the expected quadratic loss. Unlike Ledoit and Wolf (2004b), however, we
provide a closed-form expression of the optimal shrinkage intensity for finite samples by
assuming that returns are iid normal. Third, we consider a shrinkage estimator of the
inverse covariance matrix that is a convex combination of the inverse of the sample co-
variance matrix and the identity matrix. This estimator is similar to those considered by
Frahm and Memmel (2010) and Kourtis et al. (2012), but our contribution is to consider
a different calibration criterion for the shrinkage intensity: the expected quadratic loss.
Moreover, under iid normal returns, we provide a closed-form expression of the true opti-
mal shrinkage intensity that minimizes the expected quadratic loss. Finally, we propose a
new calibration criterion for the shrinkage covariance matrix that takes into account not
only the expected quadratic loss but also its condition number. The condition number
gives a bound for the sensitivity of the computed portfolio weights to estimation errors
in the mean and covariance matrix of asset returns, and thus calibrating the shrinkage
covariance matrix so that its condition number is relatively small helps to reduce the
impact of estimation error in portfolio selection. Indeed, our experiments with simulated
and empirical data demonstrate the advantages of using this criterion for the construction
of minimum-variance portfolios.

We investigate three different shrinkage portfolios. The first is obtained by shrinking
the sample mean-variance portfolio towards the sample minimum-variance portfolio and
it is closely related to the three-fund portfolio of Kan and Zhou (2007); the second is
obtained by shrinking the sample mean-variance portfolio towards the equally-weighted
portfolio as in Tu and Zhou (2011); and the third is obtained by shrinking the sample
minimum-variance portfolio towards the equally-weighted portfolio, similar to DeMiguel,
Garlappi, and Uppal (2009). We contribute to the literature by considering, in addition
to the utility and variance criteria, two novel calibration criteria: the expected quadratic
loss minimization criterion, and the Sharpe ratio maximization criterion. We study the
expected quadratic loss criterion because of its good performance in the context of shrink-
age covariance matrices (see Ledoit and Wolf (2004a)); and we consider the Sharpe ratio
criterion because it is a particular case of the expected utility criterion and it is a relevant
performance measure for investors.

For both types of shrinkage estimators, moments and portfolio weights, we propose a
multivariate nonparametric smoothed bootstrap approach to estimate the optimal shrink-
age intensity. This approach does not impose any assumption on the distribution of asset
returns. To the best of our knowledge, this is the first work to consider such a nonpara-
metric approach for shrinkage estimators within the context of portfolio optimization.

Finally, we evaluate the out-of-sample performance of the portfolios obtained from
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shrinkage moments, as well as that of the shrinkage portfolios on the six empirical datasets
listed in Table 2.1. For portfolios computed from shrinkage moments, we identify two
main findings. First, the shrinkage estimator of the vector of means calibrated with our
proposed criterion improves the out-of-sample performance of the resulting mean-variance
portfolios. Second, taking the condition number of the estimated covariance matrix into
account improves the quality of its shrinkage estimators. For shrinkage portfolios we iden-
tify two main findings. First, we find that for those shrinkage portfolios that make use of
the sample mean, the best calibration criterion is the portfolio variance minimization cri-
terion. Second, for shrinkage portfolios that ignore the sample mean, the best calibration
criterion is to minimize the expected quadratic loss. Finally, for both shrinkage moments
and shrinkage portfolios, we find that the nonparametric bootstrap approach to estimate
the optimal shrinkage intensity tends to work better than the parametric approach based
on normality.

Summarizing, we contribute to the literature of shrinkage estimators for portfolio se-
lection in the following aspects: first, we propose new calibration criteria for shrinkage
estimators of moments of asset returns. Second, we consider new calibration criteria for
shrinkage portfolios. Concretely, we consider a expected quadratic loss minimization cri-
terion, as well as a Sharpe ratio maximization criterion. Third, we study a multivariate
nonparametric approach to compute the optimal shrinkage intensity when returns are iid.
Finally, we carry out a comprehensive empirical investigation of shrinkage estimators for
portfolio selection on six empirical datasets.

The chapter is organized as follows. Section 2.2 introduces all the considered shrink-
age estimators for portfolio selection. Section 2.3 characterizes the optimal shrinkage
intensities when asset returns are iid normal. Section 2.4 proposes a smoothed bootstrap
approach to approximate the optimal shrinkage intensities when asset returns are just iid.
Section 2.5 gives the results of the simulation experiment, and Section 2.6 compares the
performance of the different shrinkage estimators on six empirical datasets. Section 2.7
provides a summary of the chapter.

2.2. Shrinkage estimators for portfolio selection

In the classical mean-variance analysis proposed by Markowitz (1952) the investor aims
to maximize her risk-adjusted portfolio return. To formalize the investment problem,
one has to define the dynamics of asset returns Rt. It is common in the literature to
assume that asset returns, in excess of the risk-free asset, are independent and identically
distributed (iid) with vector of means µ and covariance matrix Σ. In this context, a
mean-variance investor who wants to invest in a set of N available risky assets solves the
following optimization problem:

max
w

w′µ− γ

2
w′Σw, (2.1)

where γ is the investor’s absolute risk aversion, and w is the vector of portfolio weights.
The above formulation can be solved in closed-form, and it takes the expression:

w =
1

γ
Σ−1µ. (2.2)
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An important challenge is that it is well known (Michaud (1989)) that the portfolio
given by (2.2) is very sensitive to even small estimation errors in µ and Σ. Shrinkage
estimators are one of the most effective approaches to mitigate the impact of estimation
error in portfolio optimization. One can apply shrinkage estimators to the estimates of
the inputs µ and Σ, and also in the output of the problem w. We consider shrinkage
estimators for both, the inputs and the output of the investor’s portfolio problem.

2.2.1. Shrinkage estimators of moments

We study shrinkage estimators for the sample estimates of the vector of means, the
covariance matrix, and the inverse covariance matrix. We consider the unbiased sample
vector of means, which is defined as µsp = (1/T )

∑T
t=1 Rt, and the unbiased sample

covariance matrix, which is Σsp = (1/(T − 1))
∑T

t=1 (Rt − µsp) (Rt − µsp)′, where T is the
sample size and subindex sp stands for sample estimator. All the considered shrinkage
estimators are defined as a convex combination between the sample estimator and a scaled
shrinkage target:

µsh = (1− α)µsp + ανµtg, (2.3)

Σsh = (1− α)Σsp + ανΣtg, (2.4)

Σ−1
sh = (1− α)Σ−1

sp + ανΣ−1
tg , (2.5)

where α is the shrinkage intensity and ν is a scaling parameter that we adjust to minimize
the bias of the shrinkage target. The shrinkage intensity α determines the “strength” with
which the sample estimator is shrunk towards the scaled shrinkage target, and it takes
values between zero and one. When the “strength” is one, the shrinkage estimator equals
the scaled shrinkage target, and when α is zero, the shrinkage estimator equals the sample
estimator.

We introduce the scaling parameter ν for two reasons. First, the scaling parameter
yields a more general type of combination between the sample estimator and the target
than just a convex combination. Second, we adjust the scaling parameter to reduce the
bias of the shrinkage target. In the case where the calibration criterion is the quadratic
loss, this results in a higher optimal shrinkage intensity α than that for the case without
the scaling parameter. This is likely to result in more stable estimators that are more
resilient to estimation error.

Shrinkage estimator of mean returns

Several Bayesian approaches proposed in the existent literature provide estimators of
mean returns that can be interpreted as shrinkage estimators. Frost and Savarino (1986)
assume an informative Normal-Wishart conjugate prior where all stocks have the same
mean, variance and covariances. The predictive mean turns out to be a weighted average
of the sample mean and a prior mean, defined as the historical average return for all
stocks.2 Jorion (1986) estimates the vector of means by integrating a predictive density

2For computational convenience, we do not consider this shrinkage estimator in the analysis as a bench-
mark. This shrinkage vector of means requires the definition of a parameter that determines the
strength of belief in the prior mean. Frost and Savarino (1986) propose to estimate this parameter
in an Empirical-Bayes fashion by maximizing the likelihood of the prior distribution. Since we do
not have closed-form expression for the shrinkage intensity, we do not consider it as a benchmark,
but rather we consider the shrinkage estimator proposed by Jorion (1986), which offers a closed-form
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function defined by an exponential prior which is only specified for the vector of means.
The resulting estimator is defined as a weighted average of the sample mean µsp and the
minimum-variance portfolio mean return.

We consider a shrinkage estimator of means similar to those proposed by Frost and
Savarino (1986) and Jorion (1986), but we propose a different calibration criterion. Con-
cretely, we consider a shrinkage estimator that is a weighted average of the sample mean
and the scaled shrinkage target νµtg = νι, where ι is the vector of ones and ν is a scal-
ing factor. We then calibrate ν to minimize the bias of the shrinkage target; that is,
νµ = argminν ‖νι− µ‖

2
2 = (1/N)

∑N
i=1 µi = µ, and we choose the shrinkage intensity α

to minimize the expected quadratic loss of the shrinkage estimator:

min
α

E
[
‖µsh − µ‖2

2

]
(2.6)

where ‖x‖2
2 =

∑N
i=1 x

2
i .

Our motivation to consider the expected quadratic loss minimization criterion is that
it has been shown that works well in the context of shrinkage estimators of the covariance
matrix for portfolio optimization (Ledoit and Wolf (2004a)), and hence we are interested
in studying whether the performance of this criterion for the vector of means is also good
in the context of portfolio optimization. Another advantage of using this criterion is that
we are able to provide closed-form expressions for the optimal shrinkage intensity without
imposing any assumption on the distribution of asset returns, other that they are iid.

The following proposition gives the true optimal value of the shrinkage intensity α.

Proposition 1. Assuming asset returns are iid, the shrinkage intensity α that minimizes
the expected quadratic loss is:

αµ =
E
(
‖µsp − µ‖2

2

)
E
(
‖µsp − µ‖2

2

)
+ ‖νµι− µ‖2

2

=
(N/T )σ2

(N/T )σ2 + ‖νµι− µ‖2
2

, (2.7)

where σ2 = trace (Σ) /N .

Note that the true optimal shrinkage intensity α is defined by the relative expected
loss of the sample vector of means with respect to the total expected loss, defined by the
expected loss of the sample vector of means plus the loss of the scaled vector of ones. We
observe that the shrinkage intensity increases with the number of assets N , and decreases
with the number of observations.

The main difference between the shrinkage estimator we consider and those proposed
by Frost and Savarino (1986) and Jorion (1986) is that we use the expected quadratic
loss as the calibration criterion. As a result, unlike the Bayes-Stein shrinkage intensity of
Jorion (1986), our shrinkage intensity does not depend on the inverse covariance matrix.
Accordingly, our optimal shrinkage intensity is easier to compute, particularly when there
is a large number of assets and thus constructing the inverse covariance matrix may be
computationally expensive.

Shrinkage estimator of the covariance matrix

We consider the shrinkage estimator of the covariance matrix defined by Ledoit and Wolf
(2004b), who propose shrinking the sample covariance matrix towards a scaled identity

expression of the shrinkage intensity.
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matrix; i.e. Σtg = I. These authors choose the scaling factor ν to minimize the bias of

the shrinkage target I; that is, νΣ = argminν ‖νI − Σ‖2
F = (1/N)

∑N
i=1 σ

2
i = σ2. Under

the assumption of iid observations, they propose choosing the shrinkage intensity α to
minimize the expected quadratic loss E

[
‖Σsh − Σ‖2

F

]
, where ‖X‖2

F = trace(X ′X). The
resulting optimal shrinkage intensity is

αΣ =
E
(
‖Σsp − Σ‖2

F

)
E
(
‖Σsp − Σ‖2

F

)
+ ‖νΣI − Σ‖2

F

. (2.8)

Similarly to the shrinkage estimator for the vector of means, the shrinkage intensity
for the covariance matrix is the relative expected loss of the sample covariance matrix
with respect to the expected loss of the sample covariance matrix and the scaled identity
matrix. Ledoit and Wolf (2004b) obtain an estimator of α by giving consistent estimators
of E(‖Σsp−Σ‖2

F ), ‖νΣI−Σ‖2
F and νΣ. We give on the other hand a closed-form expression

of E(‖Σsp −Σ‖2
F ) when asset returns are iid normal; see Section 2.3.1. This allows us to

better understand the impact of estimation error as a function of the number of assets
and observations. Furthermore, in Section 2.4 we propose an alternative nonparametric
bootstrap procedure to estimate α for the case of iid returns.

Shrinkage estimator of the inverse covariance matrix

The inverse covariance matrix is a key element to compute mean-variance and minimum-
variance portfolios. This is particularly of interest when the number of observations T
is not very large relative to the number of assets N , a common situation in portfolio
selection. In this case, the covariance matrix is nearly singular and estimation error
explodes when we invert it to construct the optimal portfolio weights.

We study a shrinkage estimator of the inverse covariance matrix where the target is the
identity matrix (that is, Σ−1

tg = I) and we choose the scaling factor ν to minimizes the bias

of the shrinkage target; that is, νΣ−1 = argminν ‖νI − Σ−1‖2
F = (1/N)

∑N
i=1 σ

−2
i = σ−2.

Then, we select the shrinkage intensity α that minimizes the expected quadratic loss

E(
∥∥Σ−1

sh − Σ−1
∥∥2

F
).

Similarly, Frahm and Memmel (2010) and Kourtis et al. (2012) also investigate shrink-
age estimators for the inverse covariance matrix. The main difference with our approach is
that while Frahm and Memmel (2010) and Kourtis et al. (2012) calibrate their estimators
to minimize the out-of-sample portfolio variance, we calibrate our estimator to minimize
the expected quadratic loss of the inverse covariance matrix. We select this calibration
criterion because Ledoit and Wolf (2004b) show that it results in good performance within
the context of the covariance matrix.

From the first-order optimality conditions, we obtain that the optimal shrinkage inten-
sity is

αΣ−1 =
E
(∥∥Σ−1

sp − Σ−1
∥∥2

F

)
− E

(
< Σ−1

sp − Σ−1, νΣ−1I − Σ−1 >
)

E
(∥∥Σ−1

sp − Σ−1
∥∥2

F

)
+ ‖νΣ−1I − Σ−1‖2F − 2E

(
< Σ−1

sp − Σ−1, νΣ−1I − Σ−1 >
) , (2.9)

where < A,B >= trace(A′B). Note that the optimal shrinkage intensity is given by the
relative expected loss of the inverse of the sample covariance matrix with respect to the
expected loss of the inverse of the sample covariance matrix and the scaled identity matrix.
In this case, the expected losses are smoothed by an element proportional to the bias of
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the inverse of the sample covariance matrix. Later, we give closed-form expressions for
the expectations in (2.9) under the assumption of iid normal returns, and we also study
a nonparametric approach to estimate these expectations assuming just iid returns.

Note that this shrinkage estimator may be very conservative because it is obtained
by first inverting the sample covariance matrix, and then shrinking it towards the scaled
identity matrix. If the sample covariance matrix is nearly singular, small estimation errors
affecting the sample covariance matrix become very large errors in the inverse covariance
matrix and this, in turn, results in very large shrinkage intensities (i.e. α ≈ 1). In this
situation, the shrinkage inverse covariance matrix might not capture valuable information
about the variances and covariances of asset returns. To address this problem, we propose
an alternative calibration criterion in the following section.

Shrinkage estimator of the covariance matrix considering the condition number

We propose an alternative calibration criterion for the covariance matrix that accounts
for both the expected quadratic loss and the condition number of the shrinkage covariance
matrix, which measures the impact of estimation error on the portfolio weights.3

To measure the expected quadratic loss we use the relative improvement in average
loss (RIAL); see Ledoit and Wolf (2004b):

RIAL (Σsh) =
E
(
‖Σsp − Σ‖2

F

)
− E

(
‖Σsh − Σ‖2

F

)
E
(
‖Σsp − Σ‖2

F

) . (2.10)

The RIAL is bounded above by one, and unbounded below. The maximum value is
attained when the expected quadratic loss of the shrinkage estimator Σsh is negligible
relative to the expected quadratic loss of the sample covariance matrix Σsp. The advantage
of using RIAL with respect to using plain expected quadratic loss is that the RIAL
is bounded above by one and thus it is easy to compare the RIAL and the condition
number of the shrinkage covariance matrix. Note that to characterize the RIAL (Σsh) it is
enough to characterize the expectation E

(
‖Σsp − Σ‖2

F

)
. In Section 2.3.1, we give a closed-

form expression for this expectation, whereas in Section 2.4 we provide a nonparametric
procedure to approximate it.

On the other hand, the condition number of the shrinkage covariance matrix Σsh is:

δΣsh =
(1− α)λmax + ανΣ

(1− α)λmin + ανΣ

, (2.11)

where λmax and λmin are the maximum and minimum eigenvalues of the sample covariance
matrix, respectively.4 The smallest (and thus best) condition number is one, which is
attained when α is one. In that case, the shrinkage covariance matrix coincides with the
scaled identity matrix.

3The condition number is a measure of the matrix singularity, and it provides a bound on the accuracy
of the computed solution to a linear system. Mean-variance and minimum-variance portfolios can be
interpreted as the solutions of a linear system and this is why the condition number of the estimated
covariance matrix matters on the investor’s portfolio. Some approaches have been already proposed
to deal with this problem by shrinking the eigenvalues of the sample covariance matrix (see Stein
(1975), Dey and Srinivasan (1985), Zumbach (2009)).

4See Ledoit and Wolf (2004b), equation (13), for the expression of the eigenvalues of the shrinkage
covariance matrix. We use that equation to obtain the expression for the condition number of the
shrinkage covariance matrix.
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Therefore, we propose the following problem to find an optimal shrinkage intensity that
accounts both for the expected quadratic loss and the condition number of the shrinkage
covariance matrix:

α = argmin {δΣsh − φRIAL (Σsh)} , (2.12)

where φ is a tuning parameter that controls for the trade-off between the RIAL and the
condition number. While the expected quadratic loss and the condition number reflect
different properties of the covariance matrix, it is interesting to consider both of them
in the calibration procedure. On the one hand, we want to compute portfolios using an
estimator of the covariance matrix that is on expectation as close as possible to the true
covariance matrix. This can be achieved by minimizing the expected quadratic loss of
the estimated covariance matrix. On the other hand, we also want to compute portfolios
that are not too sensitive to small changes in the estimated covariance matrix. This
can be done by accounting for the condition number of the covariance matrix. These
two criteria combined (RIAL and condition number) result in stable portfolios with low
expected quadratic loss.

This is a very flexible calibration criterion. In particular, if parameter φ = 0, the
objective is to minimize the condition number of Σsh. In that case, the optimal shrinkage
intensity would be one, since that value minimizes the condition number of Σsh. On the
other hand, the larger the value of φ, the more important the RIAL is. Then, if φ→∞,
the above formulation would be equivalent to minimize the expected quadratic loss of the
shrinkage matrix.

The parameter φ must be exogenously specified. In our empirical analysis, we set φ
as the value that minimizes the portfolio variance, i.e. φ = arg minφ σ

2
φ, where σ2

φ is the
portfolio variance of the minimum variance portfolio formed with the shrinkage covariance
matrix Σsh, calibrated by criterion (B.2). To compute the portfolio variance, we use the
nonparametric technique known as cross-validation (see Efron and Gong (1983)).5 Since
problem (B.2) is a highly nonlinear optimization problem, it is difficult to obtain a closed-
form solution. Instead, we solve the problem numerically.

2.2.2. Shrinkage estimators of portfolio weights

We now focus on shrinkage portfolios defined as a convex combination of a sample portfolio
and a scaled target portfolio:

wsh = (1− α)wsp + ανwtg, (2.13)

where wsp is the sample estimator of the true optimal portfolio wop, wtg is the target
portfolio, α is the shrinkage intensity, and ν is a scale parameter that we adjust to
minimize the bias of the target portfolio.

5For a given φ, we estimate the portfolio variance using cross-validation as follows. Let us define a
sample with T observations. Then, we first delete the i-th observation from our estimation sample.
Second, we compute the minimum-variance portfolio from the new sample with T − 1 observations.
This portfolio is computed with the shrinkage covariance matrix Σsh calibrated with the method
defined in (B.2). Third, we evaluate that portfolio with the i-th observation, which was dropped out
of the estimation sample. This is considered the i-th out-of-sample portfolio return. To compute the
portfolio variance, we repeat the previous steps with the whole sample, obtaining a time series of
T out-of-sample portfolio returns. We estimate the portfolio variance as the sample variance of the
out-of-sample portfolio returns.
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We consider three shrinkage portfolios obtained by shrinking the sample mean-variance
portfolio towards the sample minimum-variance portfolio, the sample mean-variance port-
folio towards the equally-weighted portfolio, and the sample minimum-variance portfolio
towards the equally-weighted portfolio. Variants of these three shrinkage portfolios have
been considered before by Kan and Zhou (2007), Tu and Zhou (2011), and DeMiguel,
Garlappi, and Uppal (2009), but there are two main differences between our analysis and
the analysis in these papers. First, we introduce an additional scaling parameter that we
adjust to minimize the bias of the target portfolio. The advantage of introducing this
scaling parameter is that by reducing the bias of the target, we also reduce the overall
quadratic loss of the resulting shrinkage portfolio, and our empirical results show that, in
general, this improves the out-of-sample performance of the shrinkage portfolios. Second,
unlike previous work, we also show how the optimal shrinkage intensity can be estimated
using nonparametric techniques.

We consider four different calibration criteria to compute the optimal shrinkage in-
tensity. In addition to the utility maximization criterion and the variance minimization
criterion, which are known from the literature, we study two new calibration criteria:
the expected quadratic loss minimization criterion, and the Sharpe ratio maximization
criterion. Mathematically, we define each method as follows:

Expected quadratic loss (eql): min
α

E (fql (wsh)) = min
α

E
(
‖wsh − wop‖22

)
, (2.14)

Utility (ut): max
α

E (fut (wsh)) = max
α

E
(
w′shµ−

γ

2
w′shΣwsh

)
, (2.15)

Variance (var): min
α

E (fvar (wsh)) = min
α

E
(
w′shΣwsh

)
, (2.16)

Sharpe ratio (SR): max
α

E (fSR (wsh)) = max
α

E (w′shµ)√
E
(
w′shΣwsh

) , (2.17)

where γ is the investor’s risk aversion parameter. The expected utility and Sharpe ratio
maximization criteria match the economic incentives of investors and thus the motivation
to use them is straightforward.6 The expected variance minimization criterion also has
an economic rationale because investors are often interested in finding those portfolios
that minimize the risk of their investments.7 We consider the expected quadratic loss
minimization criterion for two reasons. First, the expected quadratic loss criterion works
very well within the context of shrinkage estimators for the covariance matrix; see Ledoit
and Wolf (2004b). Thus it is interesting to explore whether it also results in shrinkage
portfolios with good performance. Second, the quadratic loss penalizes big errors over
small ones, and this in turn is likely to result in more stable portfolio weights with lower

6One may consider the Sharpe ratio as the expected value of the ratio between the out-of-sample port-
folio mean and the squared root of the out-of-sample portfolio variance; i.e. E

(
w′shµ/

√
w′shΣwsh

)
.

However, this expression is not tractable and to approximate it one needs to develop the Taylor ex-
pansion of the ratio inside the expectation. Hence, for tractability reasons we define the Sharpe ratio
as the ratio between the expected out-of-sample portfolio mean and the squared root of the expected
out-of-sample portfolio variance.

7In addition, it is knows from the literature that the estimation error in the mean is so large, that
it is often more effective to focus on minimizing the variance of portfolio returns; see, for instance,
Jagannathan and Ma (2003).
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turnover. Nevertheless, in practice the distribution of asset returns may vary with time,
which implies that the true optimal portfolio wop may also vary with time, and thus the
quadratic loss criterion might fail to provide stable shrinkage portfolios. Presumably,
the quadratic loss criterion may be more suitable for shrinkage portfolios that ignore the
vector of means, which is more likely to change with time than the covariance matrix.

Characterizing the optimal shrinkage intensity

The following proposition characterizes the optimal shrinkage intensity α for the four
calibration criteria. For the expected quadratic loss, utility, and variance criteria, the
optimal shrinkage intensity can be obtained in closed-form, whereas for the Sharpe ratio
criterion, the optimal shrinkage intensity is the maximizer to an optimization problem
and it has to be solved numerically.

Proposition 2. If asset returns are iid, then the shrinkage intensities for the optimal
combination between the sample portfolio and the scaled target portfolio are:

αeql =
E
(
‖wsp − wop‖2

2

)
− τsp−tg

E
(
‖wsp − wop‖2

2

)
+ E

(
‖νwtg − wop‖2

2

)
− 2τsp−tg

, (2.18)

αut =
E
(
σ2
sp

)
− νE (σsp,tg)− 1

γ
(E(µsp)− νE(µtg))

E
(
σ2
sp

)
+ ν2E

(
σ2
tg

)
− 2νE (σsp,tg)

, (2.19)

αvar =
E
(
σ2
sp

)
− νE (σsp,tg)

E
(
σ2
sp

)
+ ν2E

(
σ2
tg

)
− 2νE (σsp,tg)

, (2.20)

αSR = arg max
α

(1− α)E(µsp) + ανE(µtg)√
(1− α)2E

(
σ2
sp

)
+ α2ν2E

(
σ2
tg

)
+ 2(1− α)ανE (σsp,tg)

, (2.21)

where τsp−tg = E
(
(wsp − wop)′ (νwtg − wop)

)
, E
(
σ2
sp

)
= E

(
w′spΣwsp

)
is the expected sam-

ple portfolio variance, E
(
σ2
tg

)
= E

(
w′tgΣwtg

)
is the expected target portfolio variance,

E (σsp,tg) = E
(
w′spΣwtg

)
is the expected covariance between the sample portfolio and the

target portfolio, E (µsp) = E
(
w′spµ

)
is the expected sample portfolio mean return, and

E (µtg) = E
(
w′tgµ

)
is the expected target portfolio mean return.

A couple of comments are in order. First, note that, roughly speaking, the optimal
shrinkage intensity is the ratio of the error of the sample portfolio, in terms of the specific
calibration criterion, divided by the total error of the sample portfolio and the scaled
target portfolio.

Second, from (2.19) and (2.20), we observe that the optimal shrinkage intensities of the
utility and variance criteria satisfy:

αut = αvar −
1
γ

(E(µsp)− νE(µtg))

E
(
σ2
sp

)
+ ν2E

(
σ2
tg

)
− 2νE (σsp,tg)

.

This implies that when the expected return of the sample portfolio is larger than the
expected return of the scaled target portfolio (E(µsp) > νE(µtg)), the utility criterion
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results in a smaller shrinkage intensity than the variance criterion. This is likely to occur
when the sample portfolio is the mean-variance portfolio because it is (theoretically) more
profitable than the minimum-variance and the equally-weighted portfolios. Under these
circumstances, the utility criterion results in more aggressive shrinkage estimators (closer
to the sample portfolio) than the variance criterion. This property of the utility crite-
rion may backfire in practice as it is notoriously difficult to estimate mean returns from
historical return data. Our empirical results in Section 2.6 confirm this by showing that,
when the sample portfolio is the sample mean-variance portfolio, the variance criterion
produces better out-of-sample performance than the utility criterion.

2.3. Parametric calibration

In this section, we characterize in closed-form the expectations required to compute the
optimal shrinkage intensities under the assumption that returns are iid normal. The
closed-form expressions give better insight about the impact of estimation error as a
function of the number of assets and observations.

2.3.1. Parametric calibration of the shrinkage moments

We now provide closed-form expressions for the expectations required to calibrate the
shrinkage estimators for the covariance and inverse covariance matrices under the as-
sumption that returns are iid normal.

Proposition 3. Assume that asset returns are iid normal and T > N + 4. Moreover,
let us define the estimated inverse covariance matrix as Σ−1

u = T−N−2
T−1

Σ−1
sp , which is the

unbiased estimator of the inverse covariance matrix. Hence, the expected quadratic losses
of the estimated covariance and inverse covariance matrices are:

E
(
‖Σsp − Σ‖2

F

)
=

N

T − 1

(
trace (Σ2)

N
+N

(
σ2
)2
)

(2.22)

E
(∥∥Σ−1

u − Σ−1
∥∥2

F

)
= trace (Ω)− trace

(
Σ−2

)
, (2.23)

and

E
(
< Σ−1

u − Σ−1, νΣ−1I − Σ−1 >
)

= 0, (2.24)

where σ2 = trace (Σ) /N and Ω = (T−N−2)
(T−N−1)(T−N−4)

(trace (Σ−1) Σ−1 + (T −N − 2)Σ−2).

Note that the expected quadratic loss of the sample estimators increases with the
number of assets and decreases with the number of observations. Also, note that we have
modified the expression of the estimated inverse covariance matrix to obtain an unbiased
estimator. This transformation can only be applied under the normality assumption.
However, for the nonparametric approach studied in Section 2.4, we estimate the inverse
covariance matrix as the inverse of the sample covariance matrix.

Notice that in order to compute the true optimal shrinkage intensity, we need the
population moments of asset returns. In our empirical tests in Section 2.6 we instead
use their sample counterparts to estimate the shrinkage intensity, which should also bear
some estimation risk. Regardless of the estimation error within the estimated shrinkage
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intensity, (Tu and Zhou, 2011, Table 5) show that this error is small in the context of
shrinkage portfolios, and therefore the estimated optimal shrinkage may outperform the
sample portfolio. Our empirical results show that it is also the case for shrinkage moments
applied in the context of portfolio optimization.

2.3.2. Parametric calibration of shrinkage portfolios

We now give closed-form expressions for the expectations required to compute the optimal
shrinkage intensities given in Proposition 2 for the three shrinkage portfolios and four
calibration criteria. In Section 2.5 we exploit these closed-form expressions to improve
our understanding of how the impact of estimation error depends on the number of assets
N and the number of observations T .

Proposition 4. Assume returns are independent and normally distributed with mean µ
and covariance matrix Σ, and let T > N + 4. Assume we use the following unbiased esti-
mator of the inverse covariance matrix Σ−1

u = T−N−2
T−1

Σ−1
sp , and let us construct the sample

mean-variance portfolio as wmvsp = (1/γ)Σ−1
u µsp, and the sample minimum-variance port-

folio as wminsp = Σ−1
u ι. Then, the expectations required to compute the optimal shrinkage

intensities are given by the following closed-form expressions:
The expected quadratic loss of the sample mean-variance portfolio:

E
(∥∥wmvsp − wmvop ∥∥2

2

)
=

a

γ2

[
trace

(
Σ−1

)((T − 2)

T
+ µ′Σ−1µ

)
+ (T −N − 2)µ′Σ−2µ

]
− 1

γ2
µ′Σ−2µ. (2.25)

The expected quadratic loss of the sample minimum-variance portfolio with respect to
the true mean-variance portfolio:

E
(∥∥νwminsp − wmvop

∥∥2

2

)
= ν2a

[
trace

(
Σ−1

)
ι′Σ−1ι+ (T −N − 2)ι′Σ−2ι

]
+

1

γ2
µ′Σ−2µ

− 2
ν

γ
ι′Σ−2µ. (2.26)

The expected quadratic loss of the sample minimum-variance portfolio:

E
(∥∥wminsp − wminop

∥∥2

2

)
= a

[
trace

(
Σ−1

)
ι′Σ−1ι+ (T −N − 2)ι′Σ−2ι

]
− ι′Σ−2ι. (2.27)

The expected value of the sample mean-variance portfolio variance:

E
(
σ2
mv

)
= E

(
wmv

′

sp Σwmvsp

)
=

1

γ2

(
a(T − 2)

(
N

T
+ µ′Σ−1µ

))
. (2.28)

The expected value of the sample minimum-variance portfolio variance:

E
(
σ2
min

)
= E

(
wmin

′

sp Σwminsp

)
= a(T − 2)ι′Σ−1ι. (2.29)

The expected value of the covariance between the sample mean-variance and sample
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minimum-variance portfolios:

E (σmv,min) = E
(
wmv

′

sp Σwminsp

)
= a(T − 2)

1

γ
µ′Σ−1ι. (2.30)

The term τ 2
mv−min:

τmv−min = E
((
wmvsp − wmvop

)′ (
νwminsp − wmvop

))
= ν

(
a

γ

[
trace

(
Σ−1

)
µ′Σ−1ι+ (T −N − 2)µ′Σ−2ι

]
− 1

γ
µ′Σ−2ι

)
, (2.31)

where a = (T−N−2)
(T−N−1)(T−N−4)

. Moreover, when asset returns are normally distributed, terms

τmv−ew and τmin−ew are equal to zero, E(wmvsp )′µ = (wmvop )′µ, and E(wminsp )′µ = (wminop )′µ.

Proposition 2 shows that, across every calibration criterion, the shrinkage intensity is
higher when the expected quadratic loss or the expected portfolio variance of the sam-
ple portfolio are high. Proposition 4 shows that this is likely to occur when the sample
covariance matrix is nearly singular. To see this, note that Σ−1 and Σ−2 appear in the ex-
pressions for the quadratic loss and variance of the mean-variance and minimum-variance
portfolios, and a nearly singular covariance matrix results in large inverse covariance
matrices.

Furthermore, we also see that the expected quadratic loss or the expected portfolio
variance of the sample portfolio might be high when we have a low number of observations
T compared with the number of assets N . On the other hand, we observe that a small
ratio N/T reduces the expected quadratic loss and the portfolio variance. For instance,
equation (2.25) converges to zero when the ratio N/T converges to zero. Also, formula
(2.28) converges to the true variance of the mean-variance portfolio when the ratio N/T
converges to zero.

2.4. Nonparametric calibration of shrinkage estimators

In this section, we describe an alternative nonparametric bootstrap procedure to estimate
the optimal shrinkage intensities. We assume that stock returns are iid, but we do not
impose any other assumptions on the distribution. Efron (1979) introduces the bootstrap
to study the distributional properties of any statistic of interest. Similarly, we use the
bootstrap to approximate those expected values of the loss functions required to construct
the optimal shrinkage intensities.8

This methodology is very intuitive: we generate B bootstrap samples by drawing ob-
servations with replacement from the original sample. Then, for each bootstrap sample,
we compute the statistic of interest. Finally, we take the sample average among the B
bootstrap statistics as an approximation to the expected value.

Contrary to the “simplest” version of bootstrap, we add an error term for each drawn
observation. This is what is called smoothed bootstrap. We use the multivariate version
of the smoothed bootstrap proposed by (Efron, 1979, page 7), such that each extracted

8Notice that we do not apply this technique to estimate the shrinkage intensity of the shrinkage vector of
means. This is because our proposed technique in Section 2.2.1 is already a nonparametric technique
that makes no assumption on the return distribution.
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observation is defined as follows:

X̃∗i = µsp + (I + ΣZ)−1/2 [X∗i − µsp + Σ1/2
sp Zi

]
, (2.32)

where I is the identity matrix, X∗i is the i-th randomly drawn observation from X ∈
RT×N , µsp is the sample vector of means of X, Σsp is the sample covariance matrix of
X, and Zi is a multivariate random variable having zero vector of means and covariance
matrix ΣZ . In the empirical analysis, we set Zi as a multivariate normal distribution with
zero mean and covariance matrix Σsp, where Σsp is the sample covariance matrix. The
algorithm to compute the optimal shrinkage intensities with the bootstrap analogue is:

Step 1. Construct a bootstrap sample [X∗1 , X
∗
2 , . . . , X

∗
T ] by drawing random observations

with replacement from the original sample.

Step 2. Apply formula (2.32) to each drawn observation.

Step 3. Replace the population moments with the original sample moments and compute
the corresponding loss function with the bootstrap sample.9

Step 4. Repeat Steps 1–3 B times.

Step 5. Average the B bootstrap loss functions to approximate the expected value of the
considered loss function.

A positive feature of this technique is that X∗i is a random variable which has mean µsp
and covariance matrix Σsp under the empirical distribution F̂ . Another advantage of using
the smoothed bootstrap is that we draw observations from a continuous density function,
instead of drawing from the set of sample observations, and in turn the probability of
having repeated observations is zero. The advantage is that in this manner we avoid the
singularity in the estimated covariance matrix, which is likely to occur when there are
many repeated observations.

Finally, we have also tested other nonparametric methods like the Jackknife or the d-
Jackknife,10 but we find that the results are not as good as those from using the smoothed
bootstrap, and we do not report the results to conserve space.

2.5. Simulation Results

To understand the properties of the shrinkage moments and the shrinkage portfolios, we
run a simulation experiment with return data generated by simulating from an iid multi-
variate normal distribution with sample moments calibrated to those of the 48 industry
portfolio dataset from Ken French’s website. Under iid normal returns, we can compute

9Imagine that we want to approximate E
(
‖Σsp − Σ‖2F

)
. Then, for each bootstrap sample, we compute∥∥Σbsp − Σsp

∥∥2
F

where Σbsp is the sample covariance matrix of the b bootstrap sample. Finally, we

approximate E
(
‖Σsp − Σ‖2F

)
' (1/B)

∑B
b=1

∥∥Σbsp − Σsp
∥∥2
F

. Notice that we are replacing Σsp with

Σbsp, and Σ with Σsp.
10For a detailed treatment of Jackknife techniques see Efron and Gong (1983) and Efron and Tibshirani

(1993). For an application in finance see Basak et al. (2009).
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the true optimal shrinkage intensities using the closed-form expressions introduced in Sec-
tion 2.3. We then use simulated data to characterize the Sharpe ratio of those portfolios
computed with shrinkage moments or shrinking the portfolio weights.11

Figure 2.1 shows how the true optimal shrinkage intensities for the moments and the
Sharpe ratios of the portfolios obtained from these shrinkage moments change with the
number of observations. Panel (a) depicts the shrinkage intensities for the Jorion (1986)
vector of means and the shrinkage vector of means considered in Section 2.2.1. We observe
that the shrinkage intensity of our considered estimator is larger than that of Jorion’s
estimator. The shrinkage intensity in both estimators represents a measure of the suit-
ability (inadequacy) of the shrinkage target (sample estimator). Although the shrinkage
intensities are obtained under different criteria,12 based on the meaning of shrinkage in-
tensity, we can conclude that the scaled shrinkage target studied in Section 2.2.1 is more
suitable than the shrinkage target of Jorion (1986).

Panel (b) in Figure 2.1 gives the shrinkage intensities for the covariance and inverse
covariance matrices. This panel shows the optimal shrinkage intensities for both matrices:
the shrinkage intensity that minimizes the expected quadratic loss, together with the
optimal shrinkage intensity for the covariance matrix that we calibrate by considering
both the expected quadratic loss and the condition number. Our first observation is that
when we take the condition number into account, we obtain a larger shrinkage intensity
than when we focus solely on the expected quadratic loss. Our second observation is
that the shrinkage intensity for the inverse covariance matrix is quite large, specially in
small samples. This is because for small samples, the sample covariance matrix is nearly
singular, and thus the impact of estimation error explodes when we invert the sample
covariance matrix. Consequently, the expected quadratic loss criterion results in very
large shrinkage intensities.

Panel (c) in Figure 2.1 depicts the Sharpe ratios for the mean-variance portfolios formed
with the Jorion (1986) vector of means, and our considered shrinkage estimator of means.
For the data simulated from a multivariate normal distribution, the Sharpe ratio of the
mean-variance portfolio with the Jorion (1986) vector of means is larger than the Sharpe
ratio of the mean-variance portfolio formed with our considered shrinkage estimator of
means. The reason for this is that our proposed estimator results in a larger shrinkage
intensity, and hence the scaled target has a greater importance in the resulting esti-
mated mean. In turn, the obtained mean-variance portfolio exploits less the difference
of expected returns across assets, which gives a less profitable portfolio. However, this
method may help to provide more stable mean-variance portfolios when the sample vector
of means is difficult to estimate. Indeed, our results in Section 2.6 show that this conser-
vative approach works well when applied to the empirical data due to the instability of
the sample vector of means.

Panel (d) in Figure 2.1 depicts the simulated Sharpe ratios for the minimum-variance
portfolios formed with the shrinkage estimators of the covariance matrix and the inverse

11We simulate 5,000 samples of length T , and for each sample we compute all the considered shrinkage
estimators using the true optimal shrinkage intensities. We compute the desired portfolio and we
compute the out-of-sample portfolio return and the out-of-sample portfolio variance of each portfolio.
We approximate the expected portfolio return and the expected portfolio variance with the sample
average among the 5,000 generated values. We use the estimated expected portfolio return and the
estimated expected portfolio variance to compute the Sharpe ratios.

12The shrinkage intensity of the Jorion (1986) vector of means is obtained from an empirical-Bayes
approach, whereas our studied estimator chooses the shrinkage intensity to minimize the expected
quadratic loss.
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covariance matrix. We observe that the minimum-variance portfolio formed with the
shrinkage covariance matrix that accounts for both the expected quadratic loss and the
condition number attains the largest Sharpe ratio. This suggests that even for a sample
size of T = 250 observations, it is important to take into account the singularity of
the sample covariance matrix, and thus the condition number matters to calibrate the
shrinkage intensity. On the other hand, we observe that the minimum-variance portfolio
formed with the shrinkage inverse covariance matrix attains the lowest Sharpe ratio.
As mentioned before, minimizing the expected quadratic loss of the shrinkage inverse
covariance matrix gives a very large shrinkage intensity that results in a portfolio too
close to the equally-weighted portfolio.

Figure 2.2 depicts the shrinkage intensities and Sharpe ratios for the shrinkage port-
folios calibrated with the methods described in Section 2.2.2. Panels (a) and (b) give
the shrinkage intensities for the mv-min and mv-ew shrinkage portfolios, obtained by
shrinking the sample mean-variance portfolio towards the minimum-variance and equally-
weighted portfolios, respectively. For both shrinkage portfolios, the variance minimization
criterion provides the largest shrinkage intensity. The reason for this is that, for both
portfolios, the shrinkage targets are low-variance portfolios. Because the variance mini-
mization criterion is not a utility-maximizing criterion, the portfolios calibrated with this
criterion attain the lowest Sharpe ratios, as shown in panels (d) and (e).

Panel (c) depicts the shrinkage intensities for the min-ew shrinkage portfolio, obtained
by shrinking the minimum-variance portfolio towards the equally-weighted portfolio.
Since the expected quadratic loss minimization criterion seeks the stability of portfolio
weights (see Section 2.2.2), and the equally weighted portfolio is a rather stable portfolio,
this calibration criterion provides the largest shrinkage intensity. The stability of portfo-
lio weights does not guarantee low portfolio variance and/or high expected return, as this
is more dependent on market conditions. Therefore, this calibration criterion provides a
slightly lower Sharpe ratio than the other calibration criteria, as we observe in panel (f).

Comparing panels (d), (e), and (f) in Figure 2.2, we see that among the shrinkage port-
folios, the mv-min shrinkage portfolio obtains the worst Sharpe ratio for small samples.
This is because this shrinkage portfolio is obtained from the sample mean-variance and
sample minimum-variance portfolios, which contain substantial estimation error for small
samples. Moreover, we see that there always exists a combination which beats the sam-
ple portfolio in terms of Sharpe ratio, although for large samples the difference becomes
smaller.
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Figure 2.1.: Shrinkage intensities and Sharpe ratios of portfolios computed with shrinkage
moments

These plots show the evolution of the true optimal shrinkage parameters for the shrinkage es-
timators of µ, Σ and Σ−1, as well as the Sharpe ratios of portfolios formed with the shrinkage
moments. Plot (a) depicts the evolution of the shrinkage intensities for the vector of means of
our studied shrinkage mean vector of returns (solid line) and the Jorion (1986) mean vector
of returns (dot-dashed line). Plot (b) depicts the shrinkage intensities of the shrinkage covari-
ance studied in Section 2.2.1 (solid line), the shrinkage inverse covariance matrix studied in
Section 2.2.1 (dot-dashed line), and the shrinkage covariance matrix studied in Section 2.2.1
(dashed line). Plot (c) depicts the simulated Sharpe ratios of the mean-variance portfolios
constructed with our studied shrinkage mean vector of returns (solid line), and the Jorion
(1986) mean vector of returns (dot-dashed line). Plot (d) depicts the simulated Sharpe ratios
of the minimum-variance portfolios constructed with the shrinkage covariance matrix studied
in Section 2.2.1 (solid line), the shrinkage inverse covariance matrix studied in Section 2.2.1
(dot-dashed line), and the shrinkage covariance matrix studied in Section 2.2.1 (dashed line).
To carry out the simulation, we use the sample moments of a dataset formed by 48 industry
portfolios (48IndP) as the population moments of a multivariate normal distribution. The
shrinkage estimator for the covariance matrix accounting for its expected quadratic loss and its
condition number establishes φ = 100. The experiment is made considering an investor with a
risk aversion parameter of γ = 10.
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(a) Shrinkage intensity of µsh
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(b) Shrinkage intensity of Σsh and Σ−1sh
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(c) Sharpe ratio of wmvsp formed with µsh
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(d) Sharpe ratio of wminsp formed with Σsh and Σ−1sh
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Figure 2.2.: Shrinkage intensities and Sharpe ratios of shrinkage portfolios
These plots show the evolution of the true optimal shrinkage parameters for the shrinkage portfolios, as well as their Sharpe ratios.
For each shrinkage portfolio, we compute the corresponding considered value (the shrinkage intensity or the Sharpe ratio) under
every calibration criterion, where EQL, Utility, Variance and SR stand for the expected quadratic loss minimization criterion (solid
line), utility maximization criterion (dot-dashed line), variance minimization criterion (dashed line), and Sharpe ratio maximization
criterion (dotted line), respectively. On the other hand, Mv and Min, in plots (d)-(f), stand for the Sharpe ratios of the sample
mean-variance portfolio and the sample minimum-variance portfolio, respectively. To carry out the simulation, we use the sample
moments of a dataset formed by 48 industry portfolios (48IndP) as the population moments of a multivariate normal distribution.
The experiment is made considering an investor with a risk aversion parameter of γ = 10.
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(a) Shrinkage parameter evolution for mv-min
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(b) Shrinkage parameter evolution for mv-ew
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(c) Shrinkage parameter evolution for min-ew
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(d) Sharpe ratio of mv-min
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(e) Sharpe ratio of mv-ew
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We also study the case where the number of observations is lower than the number of
assets.13 This case is relevant in practice for portfolio managers who deal with a large
number of assets when the number of return observations that are relevant to the prevail-
ing market conditions is small. We assume that returns follow an iid multivariate normal
distribution defined with the sample moments of the 48IndP dataset. We again charac-
terize the Sharpe ratios for the minimum-variance portfolios computed with the shrinkage
covariance matrix calibrated by the expected quadratic loss minimization criterion, and
also the calibration criterion that takes into account both the expected quadratic loss and
the matrix condition number.

Figure 2.3.: Sharpe ratios of portfolios formed with shrinkage covariance matrices
This plot shows the evolution of the Sharpe ratios for the minimum-variance portfolios composed
with the shrinkage covariance matrix studied in Section 2.2.1 (dashed line with rhombus) and
the shrinkage covariance matrix studied in Section 2.2.1 (dot-dashed line). For the sake of
comparison, we also plot the results of the equally-weighted portfolio (solid line). To compute
the shrinkage covariance matrix studied in Section 2.2.1, we use φ = 100, as in the previous
simulations. To carry out the simulation, we use the sample moments of a dataset formed by 48
industry portfolios (48IndP) as the population moments of a multivariate normal distribution.
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Figure 2.3 depicts the results of the experiment. When the sample size is very small, e.g.
T = 10, the expected quadratic loss of the covariance matrix is very large. Consequently,
the shrinkage intensity that minimizes the expected quadratic loss is high. Therefore,
the resulting shrinkage estimator of the covariance matrix has a reasonable condition
number. This is why, for very small samples, both shrinkage methods provide similar
shrinkage intensities and, in turn, similar Sharpe ratios.14 On the other hand, when the
sample size is bigger than 20 observations, the Sharpe ratios of the minimum-variance
portfolios computed with the shrinkage estimators from Sections 2.2.1 and 2.2.1 diverge.
This is because for larger sample sizes (T > 20), the expected quadratic loss of the
sample covariance matrix is lower and therefore, the shrinkage intensity that minimizes

13For this part of the analysis, we only study minimum-variance portfolios computed from shrinkage
covariance matrices, which are not singular.

14Notice that these results depend on parameter φ, which establishes the trade-off between expected
quadratic loss and condition number.
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2. Size Matters: Optimal Calibration of Shrinkage Estimators for Portfolio Selection

the quadratic loss is relatively small. As a result, although this shrinkage intensity is
sufficient to reduce the quadratic loss, it is not large enough to keep the condition number
small. Hence, by taking the condition number explicitly into consideration we therefore
can improve the performance of the resulting portfolios for large samples.

In general, we observe that the minimum-variance portfolios formed with the shrinkage
covariance matrix studied in Section 2.2.1 with φ = 100 have larger Sharpe ratios than
the minimum-variance portfolio formed with the shrinkage covariance matrix studied
in Section 2.2.1, specially for sample sizes larger than 20 observations. Therefore, we
conclude that it is always beneficial to account for the matrix condition number, which
is specially useful for managers dealing with large number of assets.

Finally, to study the robustness of our results with respect to the number of assets, we
repeat our simulations for the case where the number of observations is fixed to T = 150,
but the number of assets changes. The robustness check analysis is made across five
different datasets (5IndP, 10IndP, 38IndP, 48IndP and 100FF) listed in Table 2.1. We
observe from the results, which we do not report to conserve space, that the insights from
our experiment are robust to the number of assets.

2.6. Empirical Results

Table 2.1 lists the six datasets considered in the analysis. We consider 4 industry portfolio
datasets from Ken French’s website. These are portfolios of all stocks from NYSE, AMEX
and NASDAQ grouped in terms of their industry. We use datasets with stocks grouped
into 5, 10, 38, and 48 industries (5IndP, 10IndP, 38IndP, 48IndP). We also consider a
dataset of 100 portfolios formed from stocks sorted by size and book-to-market ratio
(100FF), downloaded from Ken French’s website. The last dataset (SP100) is formed by
100 stocks, randomly chosen the first month of each new year from the set of assets in
the S&P500 for which we have returns for the entire estimation window, as well as for
the next twelve months.

Table 2.2 lists all the portfolios considered. Panel A lists the portfolios from the existing
literature that we consider as benchmarks. The first benchmark portfolio is the classi-
cal mean-variance portfolio of Markowitz (1952).15 The second portfolio is the classical
mean-variance portfolio composed with the shrinkage vector of means proposed by Jorion
(1986). The next three portfolios are mixtures of portfolios proposed in the literature; the
first one is the mixture of the mean-variance and minimum-variance portfolio of Kan and
Zhou (2007); the second is the mixture of the mean-variance and equally-weighted port-
folios studied by Tu and Zhou (2011); the third is the mixture of the minimum-variance
and equally-weighted portfolio of DeMiguel, Garlappi, and Uppal (2009). The sixth port-
folio is the minimum-variance portfolio. The seventh portfolio is the minimum-variance
portfolio formed with the shrinkage covariance matrix of Ledoit and Wolf (2004b), which
shrinks the sample covariance matrix to the identity matrix. The eighth portfolio is the
minimum-variance portfolio formed with the shrinkage covariance matrix of Ledoit and
Wolf (2003), which shrinks the sample covariance matrix to the sample covariance ma-
trix of a single-index factor model. The ninth portfolio is the equally-weighted portfolio.
Panel B lists the portfolios constructed with the shrinkage estimators studied in Sec-
tion 2.2.1. The first portfolio in Panel B is the mean-variance portfolio with the shrinkage
vector of means studied in Section 2.2.1. The second portfolio is the minimum-variance

15For our empirical evaluation, we set the risk aversion coefficient γ = 5
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Table 2.1.: List of Datasets

This table list the various datasets analyzed, the abbreviation used to identify each dataset, the
number of assets N contained in each dataset, the time period spanned by the dataset, and the source
of the data. The dataset of CRSP returns (SP100) is constructed in a way similar to Jagannathan
and Ma (2003), with monthly rebalancing: in January of each year we randomly select 100 assets as
our asset universe for the next 12 months.a
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

b CRSP, The Center for Research in Security Prices

# Dataset Abbreviation N Time Period Source

1 5 Industry Portfolios repre-
senting the US stock market

5Ind 5 01/1972-06/2009 K. Frencha

2 10 Industry Portfolios rep-
resenting the US stock mar-
ket

10Ind 10 01/1972-06/2009 K. French

3 38 Industry Portfolios rep-
resenting the U.S stock mar-
ket

38IndP 38 01/1972-06/2009 K. French

4 48 Industry Portfolios rep-
resenting the U.S. stock
market

48Ind 48 01/1972-06/2009 K. French

5 100 Fama and French Port-
folios of firms sorted by size
and book to market

100FF 100 01/1972-06/2009 K. French

6 100 randomized stocks from
S&P 500

SP100 100 01/1988-12/2008 CRSPb

portfolio formed with the shrinkage covariance matrix studied in Section 2.2.1. The third
portfolio is the minimum-variance portfolio formed with the shrinkage inverse covariance
matrix proposed in Section 2.2.1. The fourth portfolio is the minimum-variance portfo-
lio formed with a shrinkage covariance matrix calibrated by accounting for the expected
quadratic loss and the condition number. The shrinkage covariance matrices of the last
three portfolios are calibrated under the parametric approach, assuming normality, and
under the bootstrap nonparametric approach. Panel C lists the shrinkage portfolios pro-
posed in Section 2.2.2. In the empirical analysis, we calculate the shrinkage intensities
of these portfolios using the four calibration methods defined in Section 2.2.2. Again,
we compute the shrinkage intensities under a parametric approach, and also under a
bootstrap nonparametric approach.16

2.6.1. Out-of-sample performance evaluation

We compare the out-of-sample performance of the different portfolios with two different
criteria: (i) out-of-sample portfolio Sharpe ratio adjusted with transaction costs, and (ii)
out-of-sample portfolio standard deviation.17 We use the “rolling-horizon” procedure to

16For the nonparametric approach, we generate B=500 bootstrap samples. We have also run the empir-
ical application with B=1000 and B=2000 bootstrap samples, but the results are similar to the case
of B=500 samples.

17We also computed the turnover but because the Sharpe ratio is adjusted with transaction costs,
we do not report the results for the turnover to conserve space. These results are provided in a
Supplementary Appendix.
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Table 2.2.: List of portfolio models

This table lists the various portfolio strategies considered in the empirical study. Panel A lists the existing
portfolios from the literature. Panel B lists portfolios where the moments are shrunk with the methods
proposed in Section 2.2. Panel C lists the shrinkage portfolio. The third column gives the abbreviation that
we use to refer to each strategy.

# Policy Abbreviation

Panel A: Benchmark portfolios
1 Classical mean-variance portfolio mv
2 Bayes-Stein mean-variance portfolio bs
3 Kan-Zhou’s (2007) three-fund portfolio kz
4 Mixture of mean-variance and equally-weighted (Tu and Zhou

(2011))
tz

5 Mixture of minimum-variance and equally-weighted DeMiguel et.al.
(2009))

dm

6 Minimum-Variance portfolio min
7 Minimum-variance portfolio with Ledoit and Wolf (2004) shrinkage

covariance matrix, which shrinks the sample covariance matrix to
the identity matrix

lw

8 Minimum-variance portfolio with Ledoit and Wolf (2003) shrinkage
covariance matrix, which shrinks the sample covariance matrix to
the sample covariance matrix of a single-index factor model

lw-m

9 Equally-weighted portfolio 1/N or ew
Panel B: Portfolios estimated with new calibration procedures to shrink moments
Shrinkage mean-variance portfolio
10 Mean-variance portfolio formed with the shrinkage vector of means

defined in Section 2.2.1
f-mv

Shrinkage minimum-variance portfolio
11 Formed with Ledoit and Wolf (2004) shrinkage covariance matrix:

calibrated under a parametric calibration assuming normality and
calibrated under a bootstrap nonparametric approach

par-lw and npar-lw

12 Formed with the shrinkage inverse covariance matrix studied in Sec-
tion 2.2.1: calibrated under a parametric calibration assuming nor-
mality and calibrated under a bootstrap nonparametric approach

par-ilw and npar-ilw

13 Formed with a shrinkage covariance matrix that accounts for the
expected quadratic loss and the condition number: calibrated under
a parametric calibration assuming normality and calibrated under
a bootstrap nonparametric approach

par-clw and npar-clw

Panel C: Shrinkage portfolios
14 Mixture of mean-variance and scaled minimum-variance portfolios mv-min
15 Mixture of mean-variance and scaled equally-weighted portfolios mv-ew
16 Mixture of minimum-variance and scaled equally-weighted portfo-

lios
min-ew

compute the out-of-sample performance measures. The “rolling-horizon” is defined as
follows: first, we choose a window over which to estimate the portfolio. The length of the
window is M < T , where T is the total number of observations of the dataset. In the em-
pirical analysis, our estimation window has a length of M = 120, which corresponds with
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10 years of data (with monthly frequency). Second, we compute the various portfolios
using the return data over the estimation window. Third, we repeat the “rolling-window”
procedure for the next month by including the next data point and dropping the first
data point of the estimation window. We continue doing this until the end of the dataset.
Therefore, at the end we have a time series of T −M portfolio weight vectors for each
of the portfolios considered in the analysis; that is wit ∈ RN for t = M, . . . , T − 1 and
portfolio i.

The out-of-sample returns are computed by holding the portfolio weights for one month
wit and evaluate it with the next-month vector of excess returns: rit+1 = R′t+1w

i
t, where

Rt+1 denotes the vector of excess returns at time t + 1 and rit+1 is the out-of-sample
portfolio return at time t + 1 of portfolio i. We use the times series of portfolio returns
and portfolio weights of each strategy to compute the out-of-sample standard deviation
and Sharpe ratio:

(σi)2 =
1

T −M − 1

T−1∑
t=M

(
wi
′

t Rt+1 − ri
)2

, (2.33)

with ri =
1

T −M

T−1∑
t=M

(
wi
′

t Rt+1

)
, (2.34)

SRi =
ri

σi
, (2.35)

where wit is the vector of weights at t under policy i. To account for transaction costs
in the empirical analysis, the definition of portfolio return is slightly corrected by the
implied cost of rebalancing the portfolio. Then, the definition of portfolio return, net of
proportional transaction costs, is:

rit+1 = (1 +R′t+1w
i
t)

(
1− κ

N∑
j=1

∣∣wij,t+1 − wij,t+
∣∣)− 1, (2.36)

where wij,t denotes the estimated portfolio weight of asset j at time t under policy i,
wij,t+ is the estimated portfolio weight of asset j accumulated at time t + 1, and κ is
the chargeable fee for rebalancing the portfolio. In the empirical analysis, expressions
(3.24)-(3.23) are computed using portfolio returns discounted by transaction costs.

Finally, to measure the statistical significance of the difference between the adjusted
Sharpe ratios, we use the stationary bootstrap of Politis and Romano (1994) with B=1000
bootstrap samples and block size b=1.18 We use the methodology suggested in (Ledoit
and Wolf, 2008, Remark 2.1) to compute the resulting bootstrap p-values. Furthermore,
we also measure the statistical significance of the difference between portfolio variances
by computing the bootstrap p-values using the methodology proposed in Ledoit and Wolf
(2011).

2.6.2. Discussion of the out-of-sample performance

Table B.3 reports the annualized Sharpe ratio adjusted by transaction costs of the bench-
mark portfolios and the portfolios constructed with the shrinkage estimators studied in

18We have also computed the p-values when b=5. The interpretation of the results does not change for
b=1 or b=5.

32



2. Size Matters: Optimal Calibration of Shrinkage Estimators for Portfolio Selection

Section 2.2.1. We consider transaction costs of 50 basis points—Balduzzi and Lynch
(1999) argue that 50 basis points is a good estimate of transaction costs for an investor
who trades with individual stocks. Panel A of Table B.3 reports the Sharpe ratios for the
benchmark portfolios. We observe that the minimum-variance portfolio with the shrink-
age covariance matrix proposed by Ledoit and Wolf (2004b) (lw) attains the highest
out-of-sample Sharpe ratio among all benchmark portfolios. Panel B reports the Sharpe
ratio for the portfolios formed with the shrinkage estimators studied in Section 2.2.1
calibrated under the assumption of iid normal returns. We observe that the minimum-
variance portfolio formed from the shrinkage covariance matrix that accounts for the
expected quadratic loss and the condition number (par-clw) outperforms the lw portfolio
for medium and large datasets. This is because for medium and large datasets, the sam-
ple covariance matrix is more likely to be nearly singular, and in turn it is important to
control for the condition number to construct optimal portfolios. Furthermore, we can
observe that the differences between par-clw and lw are statistically significant for the
38IndP, 48IndP and 100FF datasets. Consequently, for medium and large datasets it is
significantly relevant to use a calibration criterion that explicitly takes into consideration
the condition number of the covariance matrix.

Panel C reports the portfolios constructed with the shrinkage moments calibrated
with the proposed smoothed bootstrap of Section 2.4.19 First, we observe that the
mean-variance portfolio obtained from the shrinkage vector of means studied in Sec-
tion 2.2.1 beats the benchmark mean-variance portfolios (mv and bs) for small and
medium datasets; i.e. N ≤ 48 assets. We also observe that, in general, the smoothed
bootstrap approach works better than the parametric approach to calibrate the shrink-
age covariance matrix of minimum-variance portfolios. Hence, the proposed bootstrap
approach works effectively with empirical datasets where the available observations depart
from the normality assumption.

Table B.4 reports the annualized Sharpe ratio adjusted by transaction costs of the
shrinkage portfolios studied in Section 2.2.2. Panel A reports the annualized adjusted
Sharpe ratio of the shrinkage portfolios calibrated via parametric assumptions; see Sec-
tion 2.3. Panel B reports the annualized adjusted Sharpe ratio of the shrinkage portfolios
calibrated via bootstrap; see Section 2.4. Panel C reports the results of the shrinkage
portfolios from the literature. From Panel A, we make two observations. First, the
variance minimization criterion is the best criterion in small and medium datasets for
portfolios that consider the vector of means, mv-min and mv-ew, whereas the expected
quadratic loss is the best calibration criterion for the portfolio that does not consider the
vector of means, min-ew. This result confirms the intuition about this criterion discussed
in Section 2.2.2.

From Panel B in Table B.4 we observe that, in general, the best shrinkage portfolio is the
mixture formed with the minimum-variance portfolio and the equally-weighted portfolio.
We also observe that the expected quadratic loss minimization criterion is, in general,
the best calibration criterion in terms of Sharpe ratio and the results obtained under
the nonparametric bootstrap approach are slightly better than those obtained under the
assumption of normally distributed returns. This is because empirical returns depart
from the normality assumption and our proposed smoothed bootstrap approach captures
this characteristic.

Panel C of Table B.4 shows the annualized Sharpe ratio of the existing mixture of port-

19For the vector of means, we use the criterion proposed in Section 2.2.1 because it does not require any
parametric assumption.
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Table 2.3.: Annualized Sharpe ratio of benchmark portfolios and portfolios with shrinkage
moments (κ =50 basis points)

This table reports the out-of-sample annualized Sharpe ratio of benchmark portfolios
and portfolios constructed by using the shrinkage estimators studied in Section 2.2. We
adjust the Sharpe ratio with transaction costs, where we assume that transaction costs
are equal to 50 basis points (bp). We consider an investor with a risk aversion parameter
of γ = 5. One, two and three asterisks indicate that the difference with the lw portfolio is
statistically different from zero for a 90%, 95% and 99% confidence interval, respectively.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Benchmark Portfolios

Portfolios that consider the vector of means

mv 0.591∗∗ 0.519∗∗∗ -0.023∗∗∗ -0.154∗∗∗ 0.187∗∗∗ -0.386∗∗∗

bs 0.807 0.765∗∗∗ 0.203∗∗∗ 0.024∗∗∗ 0.169∗∗∗ -0.330∗∗∗

Portfolios that do not consider the vector of means

min 0.895 0.934 0.478∗∗∗ 0.343∗∗∗ -0.959∗∗∗ -0.188∗∗∗

lw 0.893 0.961 0.752 0.662 0.954 0.602
lw-m 0.890 0.953 0.670∗∗∗ 0.623 0.804∗∗∗ 0.589
Näıve Portfolios

1/N 0.786 0.817 0.717 0.712 0.754 0.340
Panel B: Portfolios calibrated parametrically

Portfolios that do not consider the vector of means

par-lw 0.891 0.944 0.645∗∗∗ 0.559∗∗∗ 0.687∗∗∗ 0.563
par-ilw 0.902 0.918 0.730 0.715 0.755 0.341
par-clw 0.890 0.956 0.823∗∗ 0.792∗∗∗ 1.194∗∗∗ 0.622

Panel C: Portfolios calibrated nonparametrically

Portfolios that consider the vector of means

f-mv 0.854 0.797∗∗ 0.374∗∗∗ 0.255∗∗∗ -0.960∗∗∗ -0.241∗∗∗

Portfolios that do not consider the vector of means

npar-lw 0.888∗∗ 0.957∗ 0.729∗∗∗ 0.634∗∗∗ 0.870∗∗∗ 0.586
npar-ilw 0.864 0.867 0.721 0.713 0.754 0.340
npar-clw 0.888 0.965 0.859∗∗∗ 0.831∗∗∗ 1.178∗∗∗ 0.622

folios from the literature. We observe that among these portfolios, the mixture formed by
the minimum-variance portfolio and the equally weighted portfolio offers the best results
for small and medium datasets; i.e. N ≤ 48 assets. This mixture, however, performs
worse than our studied shrinkage portfolio formed with the minimum-variance portfolio
and the equally-weighted portfolio across every dataset. Hence, in general our proposed
framework to construct shrinkage portfolios turns out to hedge better the investor’s port-
folio against estimation error.

Tables B.5 and B.6 report the results for the out-of-sample standard deviation of the
studied portfolios. These results are consistent with the results for the Sharpe ratio
adjusted by transaction costs. First, we observe that our proposed shrinkage vector of
means provides mean-variance portfolios with lower variance than those computed with
the Bayes-Stein estimator of Jorion (1986) across every dataset. Second, we observe that
the condition number helps to obtain minimum-variance portfolios with lower variabil-
ity than minimum-variance portfolios computed with the shrinkage covariance matrix of

34



2. Size Matters: Optimal Calibration of Shrinkage Estimators for Portfolio Selection

Table 2.4.: Annualized Sharpe ratio with transaction costs of shrinkage portfolios (κ =50
basis points)

This table reports the out-of-sample annualized Sharpe ratio (adjusted with 50 bp) of
the studied shrinkage portfolios for an investor with γ = 5. One, two and three asterisks
indicate that the difference with the lw portfolio is statistically different from zero for a
90%, 95% and 99% confidence interval, respectively.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Shrinkage portfolio with parametric calibration

EQL Minimization

mmv-min 0.780 0.755∗∗∗ 0.285∗∗∗ 0.180∗∗∗ -1.333∗∗∗ -0.222∗∗∗

mv-ew 0.713∗∗ 0.778∗ 0.439∗∗ 0.316∗∗ 0.195∗∗∗ -0.073∗∗

min-ew 0.887 0.949 0.642 0.590 -0.285 0.007
Utility Maximization

mv-min 0.764 0.726 0.314 0.269 -0.989 -0.206
mv-ew 0.732 0.732 0.413 0.394 0.205 0.031
min-ew 0.888 0.944 0.564 0.460 -0.719∗∗∗ -0.118∗∗∗

Variance Minimization

mv-min 0.892 0.921 0.479∗∗∗ 0.330∗∗∗ -1.071∗∗∗ -0.213∗∗∗

mv-ew 0.764∗∗ 0.806 0.617 0.680 -0.332∗∗∗ 0.072∗

min-ew 0.888 0.944 0.563∗∗∗ 0.460∗∗∗ -0.718∗∗∗ -0.118∗∗∗

Sharpe Ratio Maximization

mv-min 0.784 0.756∗∗ 0.248∗∗∗ 0.093∗∗∗ 0.187∗∗∗ -0.230∗∗

mv-ew 0.698∗ 0.665∗∗ 0.263∗∗∗ 0.145∗∗∗ -1.213∗∗∗ -0.119∗∗∗

min-ew 0.843 0.948 0.567∗∗∗ 0.486∗∗∗ -0.718∗∗∗ -0.055∗∗∗

Panel B: Shrinkage portfolios with bootstrap calibration

EQL Minimization

mv-min 0.747∗ 0.744∗∗∗ -0.315∗∗∗ -0.208∗∗∗ -0.503∗∗∗ 0.307
mv-ew 0.723∗ 0.794∗ 0.582 0.616 0.689 0.340
min-ew 0.885 0.949 0.715 0.704 0.754 0.340
Utility Maximization

mv-min 0.735∗ 0.723∗∗∗ -0.233∗∗∗ -0.653∗∗∗ -0.377∗∗∗ -0.208∗∗

mv-ew 0.747∗ 0.761∗∗ 0.582 0.668 0.737 0.340
min-ew 0.858∗ 0.940 0.704 0.709 0.754 0.340
Variance Minimization

mv-min 0.872 0.925 0.450∗∗∗ 0.339∗∗∗ -0.975∗∗∗ -0.195∗∗∗

mv-ew 0.767∗ 0.801 0.681 0.707 0.754 0.340
min-ew 0.849∗∗ 0.940 0.703∗ 0.714 0.754 0.340
Sharpe Ratio Maximization

mv-min 0.739 0.739∗∗∗ 0.178∗∗∗ -0.174∗∗∗ 0.184∗∗∗ -0.357∗∗∗

mv-ew 0.696∗ 0.677∗∗ 0.372∗∗ 0.452 0.755 0.340
min-ew 0.844 0.947 0.601 0.632 0.755 0.341

Panel C: Existing mixture of portfolios

kz 0.784 0.756∗∗∗ 0.248∗∗∗ 0.093∗∗∗ 0.184∗∗∗ -0.230∗∗∗

tz 0.708∗ 0.693∗∗∗ 0.341∗∗∗ 0.358∗ -0.569∗∗∗ 0.082∗∗

dm 0.825 0.905 0.564∗∗∗ 0.486∗∗∗ -0.733∗∗∗ -0.055∗∗∗
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Ledoit and Wolf (2004b), specially for medium and large datasets where the estimated
covariance matrix is more likely to be near singular. For the shrinkage portfolios that
consider the vector of means, mv-min and mv-ew, we observe that the variance criterion
tends to provide portfolios with lower variability, whereas the shrinkage portfolio that
does not consider the vector of means has a lower variability when it is calibrated with
the expected quadratic loss criterion. Comparing the parametric and nonparametric ap-
proaches, we observe that generally, the smoothed bootstrap approach provides as good
results as the parametric approach, and in many cases the smoothed bootstrap approach
gives portfolios with lower variability.

Table 2.5.: Standard deviation of benchmark portfolios and portfolios with shrinkage mo-
ments

This table reports the out-of-sample standard deviation of benchmark portfolios and
portfolios constructed by using the shrinkage estimators studied in Section 2.2. We
consider an investor with a risk aversion parameter of γ = 5. One, two and three
asterisks indicate that the difference with the lw portfolio is statistically different
from zero for a 90%, 95% and 99% confidence interval, respectively.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Benchmark Portfolios

Portfolios that consider the vector of means

mv 0.175∗∗ 0.167∗∗∗ 0.277∗∗∗ 0.414∗∗∗ 4.777∗∗∗ 0.578∗∗∗

bs 0.146 0.137∗∗ 0.185∗∗∗ 0.273∗∗∗ 3.930∗∗∗ 0.495∗∗∗

Portfolios that do not consider the vector of means

min 0.139 0.127 0.134∗∗∗ 0.150∗∗∗ 0.260∗∗∗ 0.307∗∗∗

lw 0.137 0.124 0.123 0.129 0.128 0.129
lw-m 0.138 0.126 0.124∗∗∗ 0.127 0.133∗∗∗ 0.128
Näıve Portfolios

1/N 0.153 0.148 0.166 0.165 0.173 0.170
Panel B: Portfolios calibrated parametrically

Portfolios that do not consider the vector of means

par-lw 0.137 0.125 0.126∗∗∗ 0.134∗∗∗ 0.142∗∗∗ 0.132
par-ilw 0.139 0.133 0.160 0.162 0.172 0.169
par-clw 0.137 0.124 0.122∗∗ 0.125∗∗∗ 0.121∗∗∗ 0.126

Panel C: Portfolios calibrated nonparametrically

Portfolios that consider the vector of means

f-mv 0.140 0.134∗∗ 0.147∗∗∗ 0.193∗∗∗ 0.322∗∗∗ 0.345∗∗∗

Portfolios that do not consider the vector of means

npar-lw 0.137∗∗ 0.124∗ 0.124∗∗∗ 0.131∗∗∗ 0.132∗∗∗ 0.130
npar-ilw 0.144 0.140 0.164 0.164 0.173 0.170
npar-clw 0.137 0.123 0.121∗∗ 0.124∗∗∗ 0.121∗∗∗ 0.126

We now summarize the main findings from our empirical analysis. Our first observation
is that portfolios computed from the shrinkage vector of means calibrated by minimizing
its expected quadratic loss outperform those computed from the Bayes-Stein vector of
means of Jorion (1986). Second, we observe that controlling for the condition number
of the shrinkage covariance matrix results in portfolio weights that are more stable, and
this leads to better adjusted Sharpe ratios for medium and large datasets. Third, for

36



2. Size Matters: Optimal Calibration of Shrinkage Estimators for Portfolio Selection

Table 2.6.: Standard deviation of shrinkage portfolios

This table reports the out-of-sample standard deviation of the studied shrinkage
portfolios. We consider an investor with a risk aversion parameter of γ = 5. One,
two and three asterisks indicate that the difference with the lw portfolio is statisti-
cally different from zero for a 90%, 95% and 99% confidence interval, respectively.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Shrinkage portfolios with parametric calibration

EQL Minimization

mv-min 0.149 0.138∗∗∗ 0.164∗∗∗ 0.198∗∗∗ 0.383∗∗∗ 0.348∗∗

mv-ew 0.155∗ 0.140∗ 0.171∗ 0.187∗∗ 1.866∗∗∗ 0.245∗∗

min-ew 0.138 0.125 0.129 0.139 0.173∗∗∗ 0.185∗∗

Utility Maximization

mv-min 0.151 0.139∗∗∗ 0.158∗∗∗ 0.187∗∗ 0.275∗∗∗ 0.312∗∗∗

mv-ew 0.153 0.142∗∗ 0.174∗∗ 0.191∗ 1.475∗∗∗ 0.207∗∗

min-ew 0.138 0.126 0.129∗∗∗ 0.142∗∗∗ 0.211∗∗∗ 0.236∗∗

Variance Minimization

mv-min 0.139 0.128 0.134∗∗∗ 0.151∗∗∗ 0.270∗∗∗ 0.310∗∗∗

mv-ew 0.149∗ 0.140 0.162 0.164 0.204∗∗∗ 0.198∗∗

min-ew 0.138 0.126 0.129∗∗∗ 0.142∗∗∗ 0.211∗∗∗ 0.236∗∗

Sharpe Ratio Maximization

mv-min 0.149 0.138∗∗ 0.174∗∗∗ 0.236∗∗∗ 2.469∗∗∗ 0.362∗∗

mv-ew 0.156∗ 0.148∗∗ 0.195∗∗∗ 0.252∗∗∗ 0.446∗∗∗ 0.276∗∗

min-ew 0.139 0.127 0.130∗∗∗ 0.140∗∗∗ 0.223∗∗∗ 0.226∗∗

Panel B: Shrinkage portfolios with nonparametric calibration

EQL Minimization

mv-min 0.150∗ 0.138∗∗∗ 1.323∗∗∗ 0.903∗∗∗ 0.601∗∗∗ 29.758
mv-ew 0.155∗ 0.140 0.161 0.159 0.175 0.170
min-ew 0.138 0.126 0.137 0.152 0.173 0.170
Utility Maximization

mv-min 0.152∗ 0.138∗∗∗ 0.526∗∗∗ 0.726∗∗∗ 0.423∗∗∗ 0.321∗∗

mv-ew 0.152 0.140∗∗ 0.161 0.160 0.173 0.170
min-ew 0.139∗ 0.126 0.133 0.150 0.173 0.170
Variance Minimization

mv-min 0.139 0.128 0.135∗∗∗ 0.151∗∗∗ 0.261∗∗∗ 0.308∗∗

mv-ew 0.150∗ 0.142 0.162 0.163 0.173 0.170
min-ew 0.140∗∗ 0.126 0.134 0.150 0.173 0.170
Sharpe Ratio Maximization

mv-min 0.151∗ 0.139∗∗∗ 0.201∗∗∗ 0.298∗∗∗ 4.860∗∗∗ 0.501∗∗∗

mv-ew 0.156∗ 0.147∗∗ 0.177∗∗ 0.177 0.172 0.170
min-ew 0.140 0.127 0.132∗ 0.144 0.172 0.170

Panel C: Existing mixture of portfolios

kz 0.149 0.138∗∗∗ 0.174∗∗∗ 0.235∗∗∗ 2.243∗∗∗ 0.362∗∗∗

tz 0.155∗∗ 0.145∗∗ 0.184∗∗ 0.208∗ 0.242∗∗∗ 0.194∗

dm 0.139 0.129 0.130∗∗∗ 0.140∗∗∗ 0.223∗∗∗ 0.226∗∗
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shrinkage portfolios that consider the vector of means, the variance minimization criterion
is the most robust criterion, whereas for shrinkage portfolios that do not consider the
vector of means, the expected quadratic loss criterion works better. Finally, the studied
nonparametric approach to calibrate shrinkage estimators captures the departure from
normality in real return data and this results in more stable portfolios (small turnover)
with reasonable Sharpe ratios.

2.7. Summary

We provide a comprehensive investigation of shrinkage estimators for portfolio selection.
We first study several shrinkage estimators of the moments of asset returns. We propose
a new calibration criterion for the shrinkage estimator of the vector of means and we
obtain a closed-form expression of the true optimal shrinkage intensity without making
any assumptions on the distribution of stock returns. This new calibration criterion for
the shrinkage vector of means turns out to perform better than the vector of means
proposed by Jorion (1986). We also introduce a novel criterion to calibrate the shrinkage
covariance matrix proposed by Ledoit and Wolf (2004b). This new calibration criterion
accounts for both the expected quadratic loss and the condition number of the covariance
matrix. Our empirical results show that the shrinkage estimator based on this criterion
results in portfolios with larger Sharpe ratio, adjusted with transaction costs, and lower
standard deviation for medium and large datasets.

For shrinkage portfolios, we consider two novel calibration criteria (expected quadratic
loss and Sharpe ratio) in addition to the expected utility criterion, considered in most of
the existent literature, and the variance minimization criterion considered in DeMiguel,
Garlappi, and Uppal (2009). Our empirical results show that the variance minimization
criterion is the most robust to calibrate shrinkage portfolios that make use of the sample
vector of means. On the other hand, the expected quadratic loss minimization criterion
is the most robust procedure to calibrate those portfolios that ignore the vector of means.

Finally, we show that the smoothed bootstrap approach is a practical and simple tech-
nique to calibrate shrinkage estimators in situations where the available data departs
from the normality assumption. In general, we observe that portfolios computed using
this approach perform well in medium and large datasets.

To the best of our knowledge, this work is among the first to consider and compare
different shrinkage estimators within the context of portfolio optimization. This chapter
attempts to highlight the importance of calibrating shrinkage estimators to construct
optimal portfolios. In the empirical application we demonstrate that the results may be
very different when using alternative calibration criteria, and we show that the size of
the shrinkage intensity matters in the out-of-sample performance of optimal portfolios
constructed from shrinkage estimators.
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3. Parameter Uncertainty in
Multiperiod Portfolio Optimization
with Transaction Costs

3.1. Overview

The seminal paper of Markowitz (1952) shows that an investor who cares only about
the portfolio mean and variance should hold one of the portfolios on the efficient fron-
tier. Markowitz’s mean-variance framework is the main foundation of most practical
investment approaches, but it relies on three restrictive assumptions. First, the investor
is myopic and maximizes a one-period utility. Second, financial market are frictionless.
Third, the investor knows the exact parameters that capture asset price dynamics. In
this chapter, we study the case where these three assumptions fail to hold; that is, the
investor tries to maximize a multiperiod utility in the presence of quadratic transaction
costs and suffers from parameter uncertainty. Our contribution is threefold. First, we
characterize analytically the utility loss associated with estimation error for a multiperiod
mean-variance investor who faces quadratic transaction costs. Second, we use these result
to propose two shrinkage portfolios designed to combat the impact of parameter uncer-
tainty. Third, we provide evidence based on simulated and empirical datasets that the
proposed shrinkage portfolios substantially outperform the portfolios of investors that
ignore either parameter uncertainty or transaction costs.

There is an extensive literature on multiperiod portfolio selection in the presence of
transaction costs under the assumption that there is no parameter uncertainty. For the
case with a single-risky asset and proportional transaction costs, Constantinides (1979)
and Davis and Norman (1990) show that the optimal portfolio policy of an investor with
constant relative risk aversion (CRRA) utility is characterized by a no-trade region. The
case with multiple-risky assets and proportional transaction costs is generally intractable
analytically.1 Garleanu and Pedersen (2012) show that the case with multiple-risky assets
and quadratic transaction costs is, however, more tractable; and they provide closed-form
expressions for the optimal portfolio policy of a multiperiod mean-variance investor.2

As we observe in Chapter 2, there is also an extensive literature on parameter un-
certainty on portfolio selection for the case of a myopic investor who is not subject to
transaction costs. Kan and Zhou (2007) characterize analytically the utility loss of a
mean-variance investor who suffers from parameter uncertainty. Moreover, they consider
a three-fund portfolio, which is a combination of the sample mean-variance portfolio, the
sample minimum-variance portfolio, and the risk-free asset. They analytically character-
ize those combination weights of three-fund portfolios that minimize the investor’s utility

1Liu (2004), however, characterizes analytically the case where asset returns are uncorrelated for the
particular case of an investor with constant absolute risk aversion (CARA) utility.

2Quadratic transaction costs are well suited to model market impact cost; see, for instance, Engle and
Ferstenberg (2007).
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loss from parameter uncertainty.3

Our work is, to the best of our knowledge, the first to consider the impact of parameter
uncertainty on the performance of a multiperiod mean-variance investor facing quadratic
transaction costs. As mentioned above, our contribution is threefold. Our first contribu-
tion is to give a closed-form expression for the utility loss of an investor who uses sample
information to construct her optimal portfolio policy. We find that the utility loss is the
product of two terms. The first term is the single-period utility loss in the absence of
transaction costs, as characterized by Kan and Zhou (2007). The second term captures
the effect of the multiperiod horizon on the overall utility loss. Specifically, this term can
be split into the losses from the multiperiod mean-variance utility and the multiperiod
transaction costs.

We also use our characterization of the utility loss to understand how the transaction
costs and the investor’s impatience factor affect the investor utility loss. We observe that
agents that face high transaction costs are less affected by estimation risk. Although high
trading costs do not diminish the investor’s exposure to estimation risk, they delay its
impact to future stages where the overall importance in the investor’s expected utility is
lower. Also, an investor with high impatience factor is less affected by estimation risk.
Roughly speaking, the investor’s impatience factor has a similar effect on the investor’s
expected utility to that of trading costs. When the investor is more impatient, the cost
of making a trade takes a greater importance than the future expected payoff of the
corresponding trade. Hence, larger trading costs or higher impatience factor make the
investor trade less aggressively, and this offsets the uncertainty of the inputs that define
the multiperiod portfolio model.

Our second contribution is to propose shrinkage portfolios designed to combat estima-
tion risk in the multiperiod mean-variance framework with quadratic transaction costs.
From Garleanu and Pedersen (2012), it is easy to show that, in the absence of estima-
tion error, the optimal portfolio policy is to trade towards the Markowitz portfolio at a
fixed trading rate every period. For this reason, we propose two approaches to combat
estimation error: i) shrink the Markowitz portfolio maintaining the trading rate fixed at
its nominal value; ii) shrink the trading rate. Regarding the first approach i), we propose
a shrinkage portfolio that is obtained by shrinking the Markowitz portfolio towards zero.
We term this portfolio as multiperiod three-fund portfolio, because it is a combination of
the current portfolio, the Markowitz portfolio, and the risk-free asset. Then, we propose
a second shrinkage portfolio obtained by shrinking the Markowitz portfolio towards a tar-
get portfolio that is less affected by estimation error, and we term the resulting shrinkage
portfolio as four-fund portfolio. We show that the shrinkage intensities for the three- and
four-fund portfolios are the same as for the single-period investor and we show that it
is always optimal to shrink the Markowitz portfolio and combine it with the minimum-
variance portfolio. Regarding the second approach ii), the nominal trading rate given
by Garleanu and Pedersen (2012) may not be optimal in the presence of parameter un-
certainty. Hence, we propose versions of previous four-fund portfolio where the trading
rate is also shrunk to reduce the effects of parameter uncertainty. We provide a rule to
compute the optimal trading rate and we illustrate those conditions where the investor
can obtain gains by shrinking the trading rate.

Our third contribution is to evaluate the out-of-sample performance of the proposed
shrinkage portfolios on simulated data as well as on an empirical dataset of commodity

3See also Tu and Zhou (2011), who consider a combination of the sample mean-variance portfolio with
the equally-weighted portfolio.
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futures similar to that used by Garleanu and Pedersen (2012). We find that the four-fund
portfolios (either with fixed or optimal trading rate) substantially outperform portfolios
that either ignore transaction costs, or ignore parameter uncertainty. In addition, we find
that shrinking the nominal trading rate can also improve the investor’s out-of-sample
performance.

The outline of the chapter is as follows. In Section 3.2, we introduce the setup of
the economy, and we characterize the investor’s expected loss when the investor uses
sample information to construct the trading strategy in Section 3.3. In Section 3.4, we
introduce the shrinkage portfolios that help to reduce the effects of estimation risk, and
we test their out-of-sample performance in Section 3.5. We summarize our main findings
in Section 3.6.

3.2. General framework

We adopt the framework proposed by Garleanu and Pedersen (2012), henceforth the G&P
model. In this framework, the investor maximizes her multiperiod mean-variance utility,
net of quadratic transaction costs, by choosing the number of shares to hold from each of
the N risky assets. The only difference between our model and the G&P model is that
while G&P assume that price changes in excess of the risk-free rate are predictable, we
focus on the case where price changes are independent and identically distributed (iid)
as normal with mean µ and covariance matrix Σ, which is a common assumption in most
of the transaction costs literature; see Constantinides (1979), Davis and Norman (1990),
Liu and Loewenstein (2002), and Liu (2004).

The investor’s objective is

max
{xi}

U
(
{xi}

)
=
∞∑
i=0

(1− ρ)i+1
(
x′iµ−

γ

2
x′iΣxi

)
− (1− ρ)i

(
λ

2
∆x′iΣ∆xi

)
, (3.1)

where xi ∈ RN for i ≥ 0 contains the number of shares held from each of the N risky
assets at time i, ρ is the investor’s impatience factor, and γ is the risk-aversion parameter.
The term (λ/2)∆x′iΣ∆xi is the quadratic transaction cost at the ith period, where λ is
the transaction cost parameter, and ∆xi = xi− xi−1 is the vector containing the number
of shares traded at the ith period.

A few comments are in order. First, quadratic transaction costs are appropriate to
model market impact costs, which arise when the investor makes large trades that distort
market prices. A common assumption in the literature is that market price impact
is linear on the amount traded (see Kyle (1985)), and thus market impact costs are
quadratic.4 Second, we adopt G&P’s assumption that the quadratic transaction costs are
proportional to the covariance matrix Σ. G&P provide micro-foundations to justify this
type of trading cost.5

4Several authors have shown that the quadratic form matches the market impact costs observed in
empirical data; see, for instance, Lillo et al. (2003) and Engle et al. (2012).

5In addition, Greenwood (2005) shows from an inventory perspective that price changes are proportional
to the covariance of price changes. Engle and Ferstenberg (2007) show that under some assumptions,
the cost of executing a portfolio is proportional to the covariance of price changes. Transaction costs
proportional to risk can also be understood from the dealer’s point of view. Generally, the dealer
takes at time i the opposite position of the investor’s trade and “lays it off” at time i + 1. In this
sense, the dealer has to be compensated for the risk of holding the investor’s trade.
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It is easy to adapt the results in G&P to obtain a closed-form expression for the optimal
portfolio policy in our setting.

Proposition 5 (Adapted from Garleanu and Pedersen (2012)). The optimal portfolio at
time i is:

xi = (1− β)xi−1 + βxM , (3.2)

where xM = 1
γ
Σ−1µ is the static mean-variance (Markowitz) portfolio, β =

√
(γ+λ̃ρ)2+4γλ−(γ+λ̃ρ)

2λ
,

λ̃ = (1− ρ)−1λ, and β ≤ 1 is the trading rate. Moreover, the monotonicity properties of
the trading rate β are as follows:

1. β is monotonically increasing with γ.

2. β is monotonically decreasing with λ.

3. β is monotonically decreasing with ρ.

Proposition 5 shows that the optimal portfolio policy is to trade every period at a
trading rate β towards the static mean-variance (Markowitz) portfolio. The intuition is
that the Markowitz portfolio is optimal in terms of the multiperiod mean-variance utility,
but it is prohibitive to trade in a single period to the Markowitz portfolio due to the
impact of transaction costs.

3.3. Multiperiod utility loss

In this section, we study the impact of parameter uncertainty by characterizing analyti-
cally the investor’s expected loss. We consider an investor who uses a plug-in approach
to estimate the optimal portfolio policy given by Proposition 5. Specifically, let rl for
l = 1, 2, . . . , T be the sample of excess price changes with which the investor constructs
the following unbiased estimator of the Markowitz portfolio: x̂M = Σ̂−1µ̂/γ, where

µ̂ =
1

T

T∑
l=1

rl, and Σ̂ =
1

T −N − 2

T∑
l=1

(rl − µ̂)2 . (3.3)

Then, the estimated optimal portfolio policy is given by replacing xM in (3.2) with x̂M ,

x̂i = (1− β)x̂i−1 + βx̂M , (3.4)

which results in an unbiased estimator of the optimal trading strategy.
Like Kan and Zhou (2007) we define the investor’s expected utility loss as the difference

between the investor’s utility evaluated for the true optimal portfolio and the investor’s
expected utility evaluated for the estimated portfolio. For a single-period mean-variance
investor in the absence of transaction costs, Kan and Zhou (2007) characterize the ex-
pected utility loss corresponding to the sample mean-variance portfolio x̂M , which is
defined as δS(xM , x̂M) = US(xM)− E

[
US(x̂M)

]
, where US(xM) = xM

′
µ− γ

2
xM

′
ΣxM :

δS(xM , x̂M) = (c− 1)
θ

2γ
+

1

2γ
c
N

T
, (3.5)
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where c = [(T −N −2)(T −2)]/[(T −N −1)(T −N −4)].6 We observe that the expected
loss for a static investor decreases with γ and the sample length T , whereas it increases
with θ = µ′Σ−1µ and the number of available assets N .

The following proposition provides a closed-form expression for the utility loss of a
multiperiod mean-variance investor facing quadratic transaction costs that uses the plug-
in approach described above.

Proposition 6. A multiperiod mean-variance investor who uses the plug-in approach to
estimate the optimal portfolio policy has the following expected utility loss:

δ({xi}, {x̂i}) = δS(xM , x̂M)× [AV + AC]︸ ︷︷ ︸
Multiperiod term

, (3.6)

where AV is the multiperiod mean-variance loss factor, and AC is the multiperiod trans-
action cost loss factor:

AV =
1− ρ
ρ

+
(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
− 2

(1− ρ)(1− β)

1− (1− ρ)(1− β)
, (3.7)

AC =
λ

γ

β2

1− (1− ρ)(1− β)2
. (3.8)

Proposition 6 shows that the multiperiod utility loss is equal to the single-period utility
loss multiplied by the summation of two terms. The first term captures the losses from
the multiperiod mean-variance utility, and the second term captures the losses from the
multiperiod transaction costs. Note also that the multiperiod loss factors AV and AC
depend only on λ, γ, and ρ.

Figure 3.1 depicts the absolute multiperiod expected losses for different values of γ,
λ, and ρ. We consider a base-case investor with γ = 10−8, λ = 3 × 10−7 and ρ =
1− exp(−0.1/260), which are the same parameters that define our base-case investor in
the empirical application in Section 3.5.7 In addition, the investor constructs the optimal
trading strategy with T = 500 observations, and we define the population parameters µ
and Σ with the sample moments of the empirical dataset of commodity futures used in the
empirical application in Section 3.5. We obtain three main findings from Figure 3.1. First,
the multiperiod expected loss decreases with γ. Like in the static case, this is a natural
result because as the investor becomes more risk averse, the investor’s exposure to risky
assets is lower, and then the impact of parameter uncertainty is also smaller. Second,
the multiperiod expected loss decreases with λ. As trading costs increase, the investor
delays the convergence to the Markowitz portfolio and in turn, the investor postpones the
impact of parameter uncertainty to future stages where the overall importance of utility
losses is smaller. This makes that the multiperiod expected loss becomes smaller with
trading costs. Third, the multiperiod expected loss decreases with ρ. Roughly speaking,
the investor’s impatience factor has a similar effect on the investor’s expected utility to
that of trading costs. When the investor is more impatient, the cost of making a trade
takes a greater importance than the future expected payoff of the corresponding trade.

6Expression (3.5) is not the exact expected loss that we find in Kan and Zhou (2007). This has
been adapted to our estimator for the covariance matrix, that provides an unbiased estimator of the
Markowitz portfolio, whereas the estimate for this element in Kan and Zhou (2007) provides a biased
estimator of the Markowitz portfolio.

7See Section 3.5 to understand the implications from these parameters.
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

Figure 3.1.: Absolute loss of multiperiod investor
This plot depicts the investor’s absolute expected loss for different values of γ, λ, and ρ. Our
base-case investor is defined with γ = 10−8, λ = 3 × 10−7 and ρ = 1 − exp(−0.1/260). We
consider an investor that has 500 observations to construct the optimal trading strategy whose
parameters are defined with the sample moments of the empirical dataset formed with com-
modities that we consider in the empirical application.
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(c) Different values of ρ

Although the above example gives some monotonicity properties of the absolute utility
loss, for interpretation it may be useful to study how the relative utility loss depends on
the investor’s risk aversion parameter γ, trading costs λ, and the investor’s impatience
factor ρ. Figure 3.2 depicts the investor’s relative loss for different values of γ, λ and
ρ. From Figure 3.3a, we observe that as the investor’s risk aversion parameter increases,
the investor’s relative loss also increases but slightly. That is, the relative loss is nearly
constant (but increasing) with the investor’s risk aversion parameter. On the other hand,
Figure 3.3b illustrates that larger trading costs reduce the investor’s relative loss. Finally,
we observe in Figure 3.3c that an investor with high impatience factor has a lower relative
loss. In turn, the variation of the investor’s utility loss is, in absolute value, lower than that
of the investor’s utility when the risk aversion parameter changes, whereas the variation of
the investor’s utility loss is larger than that of the investor’s utility when the impatience
factor or trading costs change.
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

Figure 3.2.: Relative loss of multiperiod investor
This plot depicts the investor’s relative loss for different values of γ, λ, and ρ. Our base-case
investor is defined with γ = 10−8, λ = 3 × 10−7 and ρ = 1 − exp(−0.1/260). We consider an
investor that has 500 observations to construct the optimal trading strategy whose parameters
are defined with the sample moments of the empirical dataset of commodity futures that we
consider in the empirical application.
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(c) Different values of ρ

After analyzing the expected utility loss of an investor who uses sample information to
construct her optimal portfolio, in section 3.4 we propose several shrinkage portfolios that
help to reduce the effects of estimation risk on the performance of multiperiod portfolios.

3.4. Multiperiod shrinkage portfolios

In this section we propose several shrinkage portfolios that mitigate the impact of esti-
mation error on the multiperiod mean-variance utility of an investor who faces quadratic
transaction costs. We consider two approaches to shrink the plug-in portfolio policy de-
fined in Equation (3.4): (i) shrink the estimated Markowitz portfolio xM , and (ii) shrink
the trading rate β.
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

3.4.1. Shrinking the Markowitz portfolio

The optimal portfolio at period i, in the absence of estimation error, allocates the in-
vestor’s wealth into three funds: the risk-free asset, the portfolio at period i − 1, and
the Markowitz portfolio. However, this solution is not optimal when the investor suffers
from parameter uncertainty. For the single period case, Kan and Zhou (2007) show that
shrinking the Markowitz portfolio helps to mitigate the impact of parameter uncertainty.

We generalize their analysis to the multiperiod case. In particular, we consider two
different approaches to shrink the Markowitz portfolio. First, we consider shrinking the
Markowitz portfolio towards the portfolio that invests solely on the risk-free asset; that
is, towards x = 0. We term the resulting shrinkage portfolio as multiperiod three-fund
portfolio because the optimal portfolio at period i allocates the investor’s wealth into
three different funds: the portfolio at time i − 1, the Markowitz portfolio, and the risk-
free asset. The resulting portfolio can be written as:

x̂3F
i = (1− β)x̂3F

i−1 + βηx̂M , (3.9)

where η is the shrinkage intensity.
Second, we consider a multiperiod portfolio that combines the Markowitz portfolio with

a target portfolio. This combination may diversify the effects of estimation error in the
sample mean-variance portfolio and reduce the risk of taking inefficient positions. We
choose as a target portfolio the minimum-variance portfolio x̂Min = (1/γ)Σ−1ι, which
is known to be less sensitive to estimation error than the mean-variance portfolio.8 We
term the resulting shrinkage portfolio as four-fund portfolio:

x̂4F
i = (1− β)x̂4F

i−1 + β(ς1x̂
M + ς2x̂

Min), (3.10)

where ς1 and ς2 are the combination parameters for the Markowitz portfolio and the
minimum-variance portfolio, respectively.

Note that while Kan and Zhou (2007) consider a static mean-variance investor that is
not subject to transaction costs, we consider a multiperiod mean-variance investor subject
to quadratic transaction costs. Given this, one would expect that the optimal shrinkage
intensities for our proposed multiperiod shrinkage portfolios would differ from those ob-
tained by Kan and Zhou (2007) for the single-period case, but the following proposition
shows that the optimal shrinkage intensities for the single-period and multiperiod cases
coincide.

Proposition 7. The optimal shrinkage intensities for the three-fund and four-fund port-
folios that minimize the utility loss of a multiperiod mean-variance investor δ({xi}, {x̂i})
coincide with the optimal shrinkage intensities for the single-period investor who ignores
transaction costs. Specifically, the optimal shrinkage intensity for the three-fund portfolio

8Notice that the minimum-variance portfolio does not consider γ. However, for expository reasons, we
multiply the unscaled minimum-variance portfolio with (1/γ) to simplify the analysis.
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

η and the optimal combination parameters for the four-fund portfolio ς1 and ς2 are:

η = c−1, (3.11)

ς1 = c−1 Ψ2

Ψ2 + N
T

, (3.12)

ς2 = c−1
N
T

Ψ2 + N
T

× µ′Σ−1ι

ι′Σ−1ι
, (3.13)

where c = [(T − 2)(T − N − 2)]/[(T − N − 1)(T − N − 4)] and Ψ2 = µ′Σ−1ι −
(µ′Σ−1ι)2/(ι′Σ−1ι) > 0.

Note that the optimal shrinkage intensities for the multiperiod three-fund an four-fund
portfolios do not depend on transaction costs, given by parameter λ, and as a result they
coincide with the optimal shrinkage intensities for the single-period case in the absence
of transaction costs.

The following corollary shows that the optimal multiperiod portfolio policy that ig-
nores estimation error is inadmissible in the sense that it is always optimal to shrink the
Markowitz portfolio. Moreover, the three-fund shrinkage portfolio is also inadmissible in
the sense that it is always optimal to shrink the Markowitz portfolio towards the tar-
get minimum-variance portfolio. The result demonstrates that the shrinkage approach is
bound to improve performance under our main assumptions.

Corollary 1. It is always optimal to shrink the Markowitz portfolio; that is, η < 1. More-
over, it is always optimal to combine the Markowitz portfolio with the target minimum-
variance portfolio; that is, ς2 > 0.

As expected from Corollary 1, the relative improvement in the investor’s expected
utility when using the proposed shrinkage portfolios in (3.9) and (3.10) is larger than
that when using the plug-in portfolio in (3.4). In particular, Figure 3.3 shows that for
the base-case investor that we consider in Section 3.3, the relative loss when using the
shrinkage three-fund portfolio in (3.9) is about eight times smaller than that when using
the plug-in multiperiod portfolio in (3.4). And the relative loss when using the shrinkage
four-fund portfolio in (3.10) is about 11% less than that when using the three-fund
portfolio in (3.9). Figure 3.3 shows that there is a clear advantage of using the four-fund
portfolio with respect to the plug-in multiperiod portfolio and the multiperiod shrinkage
three-fund portfolio.

3.4.2. Shrinking the trading rate

In this section we study the additional utility gain associated with shrinking the trading
rate in addition to the target portfolio. For the proposed shrinkage portfolios in (3.9)
and (3.10), note that the nominal trading rate β as given in Proposition 5 may not be
optimal in the presence of parameter uncertainty. To mitigate even more this effect,
we propose to optimize the trading rate in order to minimize the investor’s utility loss
from estimation risk. In particular, a multiperiod mean-variance investor who uses the
shrinkage four-fund portfolio in (3.10) may reduce the impact of parameter uncertainty
by minimizing the corresponding expected utility loss, δ({xi}, {x̂4F

i (β)}), respect to the
trading rate β.
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

Figure 3.3.: Relative loss of different multiperiod investor
This plot depicts the investor’s relative loss of the plug-in multiperiod investor (M-M), the mul-
tiperiod investor that shrinks the static mean-variance portfolios (M3F), and the multiperiod
four-fund portfolio that combines the static mean-variance portfolio with the minimum-variance
portfolio (M4F-Min). Our base-case investor is defined with γ = 10−8, λ = 3 × 10−7 and
ρ = 1 − exp(−0.1/260). The investor has 500 observations to construct the optimal trading
strategy whose parameters are defined with the sample moments of the empirical dataset of
commodity futures that we consider in the empirical application.
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The following proposition formulates an equivalent optimization problem to obtain
the optimal trading rate for the shrinkage four-fund portfolio in (3.10). Notice that we
can apply the same proposition to the shrinkage three-fund portfolio in (3.9) simply by
considering ς2 = 0 and ς1 = η.

Proposition 8. For the shrinkage four-fund portfolio in (3.10), the optimal trading rate
β that minimizes the expected utility loss δ({xi}, {x̂4F

i (β)}) can be obtained by solving the
following optimization problem:

max
β

Excess return︷ ︸︸ ︷
V1(x−1 − xC)′µ−1

2

Variability + Trading costs︷ ︸︸ ︷(
E
[
x̂C
′
Σx̂C

]
V2 + x′−1Σx−1V3 + x′−1ΣxCV4

)
, (3.14)

where x−1 is the investor’s initial position, xC = ς1x
M + ς2x

Min,

E
[
x̂C
′
Σx̂C

]
= (c/γ2)

(
ς2
1

(
µ′Σ−1µ+ (N/T )

)
+ ς2

2 ι
′Σ−1ι

)
+ (c/γ2)

(
2ς1ς2µ

′Σ−1ι
)
, (3.15)

and the Vi=2,3,4 account for the accumulated variability and trading costs:

V1 =
(1− ρ)(1− β)

1− (1− ρ)(1− β)
(3.16)

V2 = γ

(
1− ρ
ρ

+
(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
− 2

(1− ρ)(1− β)

1− (1− ρ)(1− β)

)
+ λ̃

(1− ρ)β2

1− (1− ρ)(1− β)2
, (3.17)

V3 = γ
(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
+ λ̃

(1− ρ)β2

1− (1− ρ)(1− β)2
, (3.18)

V4 = 2γ

(
(1− ρ)(1− β)

1− (1− ρ)(1− β)
− (1− ρ)(1− β)2

1− (1− ρ)(1− β)2

)
− 2λ̃

(1− ρ)β2

1− (1− ρ)(1− β)2
. (3.19)
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From Proposition 8 we observe that as β goes to zero, V2 and V4 also approximate to
zero. This implies that V3 is the only element that defines the expected variability and
trading costs of the multiperiod investor. Precisely, the investor’s expected variability and
trading costs are defined by ((1− ρ)/ρ)x′−1Σx−1, which is the accumulated variability of
the investor’s initial portfolio. Notice that when β is zero, trading costs do not affect the
investor’s expected utility.

In addition, we can observe that as the investor’s initial position x−1 approximates to
the static portfolio xC , the expected return of the investor’s initial portfolio in excess of
the expected return of the static portfolio xC , approximates to zero. Consequently, the
optimal trading rate that we obtain from (3.14) must minimize the expected portfolio
variability and trading costs.

To analyze the benefits of optimizing the trading rate, we study the relative loss for
the multiperiod four-fund portfolio optimizing the trading rate as in (3.14), and the
corresponding relative loss of the multiperiod four-fund portfolio with the nominal trading
rate β as in (5). Figure 3.4 depicts the relative loss for our base-case investor with
γ = 10−8, λ = 3×10−7, ρ = 1− exp(−0.1/260), and T = 500. As in the previous section,
we define µ and Σ with the sample moments of the empirical dataset of commodity futures
that we use in Section 3.5.

Figures 3.5a, 3.5b and 3.5c depict the relative loss for an investor whose initial portfolio
is x−1 = 0.1× xM and we observe that the benefits from using the multiperiod four-fund
portfolio that shrinks the trading rate are large. In particular, we observe that the investor
can reduce the relative loss more than a 15%. Moreover, we observe that the relative loss
of the different multiperiod portfolios remain almost invariant to changes in γ, λ and ρ.
In addition, from Figure 3.5d we find that when the investor’s initial portfolio is close
to the static mean-variance portfolio, shrinking the trading rate β provides substantial
benefits. In particular, when x−1 ' 0.5× xM , one can reduce the relative loss to almost
zero by shrinking the trading rate. In turn, shrinking the nominal trading rate may result
into a considerable reduction of the investor’s expected loss, specially in those situations
where the investor’s initial portfolio is close to the static mean-variance portfolio.

3.5. Out-of-sample performance evaluation

In this section, we compare the out-of-sample performance of the multiperiod shrink-
age portfolios with that of the portfolios that ignore either transaction costs, parameter
uncertainty, or both. We run the analysis with both simulated and empirical datasets.

3.5.1. Portfolio policies

We consider seven different portfolio policies. We first consider three buy-and-hold port-
folios based on single-period policies that ignore transaction costs. First, the sample
Markowitz portfolio, which is the portfolio of an investor who ignores transaction costs
and estimation error (S-M). Second, the single period two-fund shrinkage portfolio, which
is the portfolio of an investor who ignores transaction costs, but takes into account esti-
mation error by shrinking the Markowitz portfolio (S-2F). Specifically, this portfolio can
be written as

xS2F = ηx̂M , (3.20)
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

Figure 3.4.: Nominal Vs Optimal four-fund portfolios: Comparison of relative losses
This plot depicts the investor’s relative loss for different values of γ, λ, and ρ. Our base-case
investor is defined with γ = 10−8, λ = 3 × 10−7 and ρ = 1 − exp(−0.1/260). We consider an
investor that has 500 observations to construct the optimal trading strategy whose parameters
are defined with the sample moments of the empirical dataset of commodity futures that we
consider in the empirical application.
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where, as Kan and Zhou (2007) show, the optimal single-period shrinkage intensity η is
as given by Proposition (7). The third portfolio is the single-period three-fund shrinkage
portfolio of an investor who ignores transaction costs but takes into account estimation
error by shrinking the Markowitz portfolio towards the minimum variance portfolio (S-
3F-Min). Specifically, this portfolio can be written as

xS3F = ς1x̂
M + ς2x̂

Min, (3.21)

where the optimal single-period combination parameters are given in Proposition (7).
We then consider four multiperiod portfolios that take transaction costs into account.

The first portfolio is the optimal portfolio policy of a multiperiod investor who takes
into account transaction costs but ignores estimation error (M-M), which is given by
Proposition 5. The second portfolio is the multiperiod three-fund shrinkage portfolio
of an investor who shrinks the Markowitz portfolio (M3F), as given by Proposition (7).
The third portfolio is the multiperiod four-fund shrinkage portfolio of an investor who
combines the Markowitz portfolio with the minimum-variance portfolio (M4F-Min), as
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

given by Proposition (7). The fourth portfolio is a modified version of the multiperiod
four-fund shrinkage portfolio, where in addition the investor shrinks the trading rate by
solving the optimization problem given by Proposition 8 (O-M4F-Min).

3.5.2. Evaluation methodology

We evaluate the out-of-sample portfolio gains for each strategy using a rolling-window
approach similar to DeMiguel et al. (2009). To account for transaction costs in the
empirical analysis, we define portfolio gains discounted by trading costs as:

rhl+1 = xh
′

l rl+1 − λ̃∆xh
′

l Σ∆xhl , (3.22)

where xhl denotes the estimated portfolio h at period l, rl is the vector of price changes at
time l, and Σ is the covariance matrix of asset prices.9 Then, we compute the portfolio
Sharpe ratio of all the considered trading strategies with the time series of the out-of-
sample portfolio gains as:

SRi =
rh

σh
, (3.23)

where (σh)2 =
1

L− T − 1

L−1∑
l=T

(
xh
′

i rl+1 − rh
)2

, (3.24)

rh =
1

L− T

L−1∑
l=T

(
xh
′

l rl+1

)
, (3.25)

where L is the total number of observations in the dataset, and T is the estimation
window. We estimate the different portfolios using an estimation window of T=500
observations.10

We measure the statistical significance of the difference between the adjusted Sharpe
ratios with the stationary bootstrap of Politis and Romano (1994) with B=1000 bootstrap
samples and block size b=5.11 Finally, we use the methodology suggested in (Ledoit and
Wolf, 2008, Remark 2.1) to compute the resulting bootstrap p-values for the difference
of every portfolio strategy with respect to the four-fund portfolio M4F-Min.

We consider an investor with a risk aversion parameter of γ = 10−8, which corresponds
with a relative risk aversion of one for a manager who has $100M to trade. Garleanu and
Pedersen (2012) consider an investor with a lower risk aversion parameter, but because
our investor suffers from parameter uncertainty, it is reasonable to establish a higher
risk aversion parameter. We use a discount factor ρ equal to 1 − exp(−0.1/260), which
corresponds with an annual discount of 10%. Finally, we consider transaction costs with
λ = 3 × 10−7 as in Garleanu and Pedersen (2012). We subsequently test the robustness
of our results to the values of these three parameters and observe that our main insights

9For the simulated data, we use the population covariance matrix, whereas for the empirical dataset
with commodity futures we construct Σ with the sample estimate of the entire dataset.

10To compute those portfolios that account for parameter uncertainty, we need to estimate the optimal
combination parameters, which require the true population moments. To mitigate the impact of pa-
rameter uncertainty in these parameters, we use the shrinkage vector of means proposed in DeMiguel
et al. (2013), and the shrinkage covariance matrix by Ledoit and Wolf (2004b).

11We also compute the p-values when b=1, but we do not report these results to preserve space. These
results are, however, equivalent to the block size b=5.
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

are robust.
Finally, we report the results for two different starting portfolios: the portfolio that is

fully invested on the risk-free asset and the true Markowitz portfolio.12 We have tried
other starting portfolios such as the equally weighted portfolio and the portfolio that is
invested in a single risky asset, but we observe that the results are similar and thus we
do not report these cases to conserve space.

3.5.3. Simulated and empirical datasets

We first use simulation to generate two datasets with number of risky assets N = 25 and
50. The advantage of using simulated datasets is that they satisfy the assumptions un-
derlying our analysis. Specifically, we simulate price changes from a multivariate normal
distribution. We assume that the starting prices of all N risky assets are equal to one, and
the annual average price changes are randomly distributed from a uniform distribution
with support [0.05, 0.12]. In addition, the covariance matrix of asset price changes is diag-
onal with elements randomly drawn from a uniform distribution with support [0.1, 0.5].13

Without loss of generality, we set the return of the risk-free asset equal to zero. Under
these specifications, a level of transaction costs of λ = 3×10−7 corresponds with a market
that, on average, has a daily volume of $4.66 million.14

To understand the impact of data departing from the iid normal assumption, we con-
sider an empirical dataset similar to that used by Garleanu and Pedersen (2012). Con-
cretely, we construct a dataset with commodity futures of Aluminum, Copper, Nickel,
Zinc, Lead, and Tin from the London Metal Exchange (LME), Gas Oil from the Inter-
continental Exchange (ICE), WTI Crude, RBOB Unleaded Gasoline, and Natural Gas
from the New York Mercantile Exchange (NYMEX), Gold and Silver from the New York
Commodities Exchange (COMEX), and Coffee, Cocoa, and Sugar from the New York
Board of Trade (NYBOT). We consider daily data from July 7th, 2004 until September
19th, 2012. We collect data from those commodity futures with 3-months maturity, and
for those commodity futures where we do not find data with that contract specification
(i.e. 3 months maturity), we collect the data of the commodity future with the largest
time series. Some descriptive statistics and the contract multiplier for each commodity
is provided in Table 3.1.15

3.5.4. Discussion of the out-of-sample performance

Table 3.2 reports the out-of-sample Sharpe ratios of the seven portfolio policies we con-
sider on the three different datasets, together with the p-value of the difference between

12For the commodity dataset, we assume the true Markowitz portfolio is constructed with the entire
sample.

13Notice that for our purpose of evaluating the impact of parameter uncertainty in an out-of-sample
analysis, assuming that the covariance matrix is diagonal is not a strong assumption as we know that
the investor’s expected loss is proportional to θ = µ′Σ−1µ.

14To compute the trading volume of a set of assets worth 1$, we use the rule from Engle et al. (2012),
where they assume that trading 1.59% of the daily volume implies a price change of 0.1%. Hence, for
our first case we calculate the trading volume as 1.59%×Trading Volume×3×10−7×0.32×0.5 = 0.1%.

15The contract multiplier specifies the number of units that are traded for each commodity in each
contract. Also, notice that we do not report the trading volume. Unfortunately, we have not been
able to obtain that type of data. However, we use the same level of transaction costs, which may be
slightly high for the standard deviations of price changes that we have.
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Table 3.1.: Commodity futures:

This table provides some descriptive statistics of the data from the
commodity futures, as well as the contract multiplier.

Commodity Average
Price

Volatility
price
changes

Contract
multiplier

Aluminium 56,231.71 888.37 25
Copper 161,099.45 3,268.96 25
Nickel 127,416.45 3,461.62 6
Zinc 54,238.84 1,361.69 25
Lead 45,925.04 1,227.02 25
Tin 78,164.60 1,733.53 5
Gasoil 69,061.48 1,571.89 100
WTI Crude 75,853.55 1,798.93 1000
RBOB Crude 88,503.62 2,780.74 42,000
Natural Gas 63,553.35 3,4439.78 10,000
Coffee 58,720.11 940.55 37,500
Cocoa 23,326.21 458.50 10
Sugar 18,121.58 462.35 112,000
Gold 94,780.87 1,327.11 100
Silver 87,025.94 2,415.69 5,000

the Sharpe ratio of every policy and that of the multiperiod four-fund shrinkage portfo-
lio. Panels A and B give the results for a starting portfolio that is fully invested in the
risk-free asset and a starting portfolio equal to the true Markowitz portfolio, respectively.

Comparing the multiperiod portfolios that take transaction costs into account with
the static portfolios that ignore transaction costs, we find that the multiperiod portfolios
substantially outperform the static portfolios. That is, we find that taking transaction
costs into account has a substantial positive impact on performance.

Comparing the shrinkage portfolios with the portfolios that ignore transaction costs, we
observe that shrinking helps both for the static and multiperiod portfolios. Specifically,
we find that the portfolios that shrink only the Markowitz portfolio (S2F for the static
case and M3F for the multiperiod case) outperform the equivalent portfolios that ignore
estimation error (S-M for the static case and M-M for the multiperiod case). Moreover,
we find that shrinking the Markowitz portfolio towards the minimum-variance portfolio
improves performance substantially. Specifically, we observe that the S3F-Min and M4F-
Min considerably outperform the shrinkage portfolios that shrink only the Markowitz
portfolios (S2F and M3F).

Finally, our out-of-sample results confirm the insight from Section 3.4.2 that shrinking
the trading rate may help when the starting portfolio is close to the true mean-variance
portfolio. Specifically, we see from Panel A that shrinking the trading rate (in addition
to shrinking the Markowitz portfolio towards the minimum-variance portfolio) does not
result in any gains when the starting portfolio is fully invested in the risk-free asset, but
Panel B shows that it may lead to substantial gains when the starting portfolio is the
true mean-variance portfolio.

Overall, the best portfolio policy is the O-M4F-Min portfolio that shrinks the Markowitz
portfolio towards the minimum-variance portfolio and, in addition, shrinks the trading
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

Table 3.2.: Sharpe ratio discounted with transaction costs
This table reports the annualized out-of-sample Share ratio for the different
portfolio strategies that we consider. Sharpe ratios are discounted by quadratic
transaction costs with λ = 3× 10−7. The number in parentheses are the corre-
sponding p-values for the difference of each portfolio strategy with the four-fund
portfolio that combines the static mean-variance portfolio with the minimum-
variance portfolio. Our considered base-case investor has an absolute risk aver-
sion parameter of γ = 10−8 and an impatience factor of ρ = 1− exp(−0.1/260).

Panel A: Start from zero Panel B: Start from xM

N=25 N=50 Com. N=25 N=50 Com.
Static trading strategies
S-M -0.266 -0.345 -0.459 -0.266 -0.337 -0.452

( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000)

S2F 0.076 0.105 0.102 0.068 0.101 0.106
( 0.000) ( 0.000) ( 0.050) ( 0.000) ( 0.000) ( 0.036)

S3F-Min 0.678 0.633 0.739 0.678 0.637 0.769
( 0.000) ( 0.000) ( 0.126) ( 0.000) ( 0.000) ( 0.148)

Multiperiod trading strategies
M-M 0.150 0.297 0.056 0.153 0.295 0.052

( 0.000) ( 0.008) ( 0.036) ( 0.004) ( 0.008) ( 0.042)

M3F 0.202 0.307 0.269 0.212 0.298 0.259
( 0.004) ( 0.004) ( 0.106) ( 0.000) ( 0.008) ( 0.094)

M4F-Min 0.765 0.771 0.874 0.772 0.764 0.868
( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000)

O-M4F-Min 0.765 0.771 0.874 0.911 0.865 0.895
( 0.786) ( 0.774) ( 0.628) ( 0.144) ( 0.376) ( 0.742)

rate while taking transaction costs into account. This portfolio policy outperforms the
M4F-Min portfolio when the starting portfolio is close to the true minimum-variance
portfolio, and it performs similar to the M4F-Min for other starting points. These two
policies O-M4F-Min and M4F-Min appreciably outperform all other policies, which shows
the importance of taking into account both transaction costs and estimation error.

We carry out an additional analysis to test the robustness of our results for different
values of the risk-aversion parameter γ, and number of observations T . However, we do
not report robustness checks for trading costs because only modifying parameter γ can
provide equivalent results to those when we fix γ and modify λ.16 We report these results
in Table 3.3. We consider a base-case investor with an initial portfolio equal to the true
Markowitz portfolio, γ = 10−8, λ = 3× 10−7, and T = 500.

16In particular, if we transform γ and λ by multiplying them with 10−z and 10z, respectively, we
obtain the same multiperiod trading rate β, and in turn results are equivalent to those before the
transformation. Then, if we want to study the impact of an increment/reduction on trading costs,
we can simply reduce/increase γ by the same factor.
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Table 3.3.: Sharpe ratio: some robustness checks (RC)
This table reports the annualized out-of-sample Share ratio for the different portfolio strategies that we consider. Our considered
base-case investor has an absolute risk aversion parameter of γ = 10−8 and an impatience factor of ρ = 1 − exp(−0.1/260) and
faces quadratic transaction costs with λ = 3× 10−7. The number in parentheses are the corresponding p-values for the difference
of each portfolio strategy with the four-fund portfolio that combines the static mean-variance portfolio with the minimum-variance
portfolio.

Panel A: RC for different γ Panel B: RC for different T
γ = 10−9 γ = 10−7 T=250 T=750

N=25 N=50 Com. N=25 N=50 Com. N=25 N=50 Com. N=25 N=50 Com.
Static trading strategies
S-M -3.623 -4.020 -2.636 0.141 0.248 -0.044 -1.126 -1.458 -0.766 -0.023 0.207 -0.156

( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.004) ( 0.006) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.110)

S2F -1.242 -1.383 -1.625 0.209 0.272 0.324 -0.186 -0.096 -0.073 0.087 0.435 -0.100
( 0.000) ( 0.000) ( 0.000) ( 0.004) ( 0.004) ( 0.112) ( 0.000) ( 0.000) ( 0.008) ( 0.000) ( 0.010) ( 0.174)

S3F-Min -0.195 -0.425 -0.740 0.765 0.748 0.984 0.349 0.416 0.089 0.718 0.822 0.417
( 0.000) ( 0.000) ( 0.000) ( 0.066) ( 0.076) ( 0.030) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.900)

Multiperiod trading strategies
M-M 0.086 0.219 -0.067 0.179 0.306 0.034 0.055 0.218 0.635 0.216 0.545 0.049

( 0.000) ( 0.000) ( 0.030) ( 0.000) ( 0.000) ( 0.018) ( 0.000) ( 0.000) ( 0.752) ( 0.000) ( 0.044) ( 0.310)

M3F 0.194 0.305 0.115 0.226 0.290 0.311 0.171 0.321 0.515 0.179 0.569 -0.122
( 0.000) ( 0.006) ( 0.086) ( 0.004) ( 0.008) ( 0.102) ( 0.000) ( 0.000) ( 0.476) ( 0.000) ( 0.036) ( 0.142)

M4F-Min 0.752 0.767 0.767 0.779 0.762 0.936 0.633 0.734 0.730 0.775 0.909 0.441
( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000)

O-M4F-Min 0.895 0.887 0.843 0.918 0.845 0.921 0.742 0.905 0.711 0.831 0.949 0.536
( 0.166) ( 0.318) ( 0.432) ( 0.108) ( 0.488) ( 0.846) ( 0.182) ( 0.156) ( 0.512) ( 0.552) ( 0.768) ( 0.104)
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

In general, we observe that our main insights are robust to these parameters. There are
substantial losses associated with ignoring both transaction costs and estimation error,
and overall the best portfolio policies are M4F-Min and O-M4F-Min. We observe that
for the simulated datasets shrinking the trading rate generally helps (that is, O-M4F-Min
outperforms M4F-Min), although the difference between the Sharpe ratios of these two
policies are not significant.

We also observe that the static portfolio policies are very sensitive to the risk-aversion
parameter, and their performance is particularly poor for the case with low risk aversion γ.
This is because investors with low risk aversion invest more on the risky assets and thus are
more vulnerable to the impact of estimation error, which is particularly large for the static
investors who ignore transaction costs. The multiperiod portfolio policies are more stable
because taking transaction cots into account helps to combat estimation error, even for
the case with low risk aversion. In particular, the difference of performance between static
portfolios and multiperiod portfolios is large when the investor’s risk aversion parameter
is equal to γ = 10−9.

Finally, we observe that the performance of the static portfolio strategies is also very
sensitive to the choice of estimation window T . Specifically, static portfolios perform
poorly when the estimation window is small and has T = 250 observations. For this es-
timation window, the difference between static mean-variance portfolios and multiperiod
portfolios is large.

Summarizing, the out-of-sample losses associated with ignoring either transaction costs
or parameter uncertainty are large. Moreover, overall the multiperiod four-fund shrinkage
portfolio that combines the Markowitz portfolio with the minimum-variance portfolio
achieves the best out-of-sample Sharpe ratio net of transaction costs. We also observe
that shrinking the trading rate may provide considerable benefits, specially when the
investor’s initial portfolio is near the Markowitz portfolio.

3.6. Summary

We address the impact of parameter uncertainty in multiperiod portfolio selection with
transation cots. We first provide a closed-form expression for the utility loss associated
with using the plug-in approach to construct multiperiod portfolios. We observe from
this closed-form expression that the investor’s expected loss decreases with trading costs,
the investor’s impatience factor and the investor’s risk aversion parameter.

Second, we propose a four-fund multiperiod shrinkage portfolio that mitigates the ef-
fects of estimation risk. We give closed-form expressions for the optimal shrinkage in-
tensities, and we show that these intensities coincide with the shrinkage intensities for
the corresponding single-period portfolio. In addition, we analytically characterize under
which circumstances the four-fund shrinkage portfolio reduces the impact of parameter
uncertainty, and we prove that it is prohibitive to use the plug-in multiperiod portfolio
or the multiperiod shrinkage three-fund portfolio.

Third, we propose a novel technique that reduces the investor’s trading rate to the
static mean-variance portfolio, and we show that this methodology can substantially im-
prove the investor’s performance. In particular, we show that this methodology improves
the investor’s performance when the investor’s initial position is close to the Markowitz
portfolio.

Finally, our out-of-sample analysis with simulated and empirical datasets shows that
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3. Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs

the losses associated with ignoring transaction costs, parameter uncertainty, or both, are
large, and that the four-fund shrinkage portfolio achieves good out-of-sample performance.
In addition, we observe that shrinking the trading rate helps to mitigate the impact of
parameter uncertainty and helps to attain high risk-adjusted expected returns.
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4. Concluding remarks and future
research

4.1. Conclusion

Parameter uncertainty is one of the main challenges of portfolio optimization. In particu-
lar, the classical mean-variance framework is very sensitive to small changes affecting the
inputs of the model. The empirical evidence shows that small errors contaminating the
inputs in the mean-variance framework result into large losses in the investor’s expected
performance. Therefore, parameter uncertainty must be considered by mean-variance
investors to obtain portfolios that on average have larger risk-adjusted expected returns.

In this thesis, we contribute to the literature in two aspects. First, we study different
calibration criteria for shrinkage estimators within the context of portfolio optimization.
We consider shrinkage estimators for both the inputs of the mean-variance model – shrink-
age moments – and the outputs – shrinkage portfolios. We provide analytical expressions
for the optimal shrinkage intensity, and we also propose a novel nonparametric approach
to compute the optimal shrinkage intensity. Finally, we evaluate the out-of-sample perfor-
mance of the resulting portfolios with simulated and empirical datasets, and we find that
the size of the shrinkage intensity plays a significant role on the investor’s performance.

Second, we study the impact of parameter uncertainty in multiperiod portfolio selection
with trading costs. Precisely, we characterize the expected loss of a multiperiod investor,
and we find that it is equal to the product between the single-period utility loss in the
absence of transaction costs, and another term that captures the multiperiod effects on
the overall utility loss. In addition, we propose two multiperiod shrinkage portfolios to
combat the impact of parameter uncertainty. In the first multiperiod shrinkage portfolio,
we combine the Markowitz portfolio with the minimum-variance portfolio and we term
as four-fund portfolio. This trading strategy results into an investment that diversifies
the effects of estimation risk across the risk-free asset, the investor’s current portfolio,
the Markowitz portfolio and the minimum-variance portfolio. In the second multiperiod
portfolio, we shrink the investor’s trading rate. This novel technique limits the investor
trading activity and it also helps to reduce the impact of parameter uncertainty. Finally,
we characterize the out-of-sample performance of the proposed multiperiod shrinkage
portfolios with simulated and empirical datasets, and we find that ignoring transaction
costs, parameter uncertainty, or both, results into large losses.

As a result, investors must consider at least three elements in order to construct opti-
mal portfolios. First, the investor should construct a portfolio in accordance with her own
preferences; i.e. maximize her utility function. Second, the investor must take into con-
sideration parameter uncertainty in order to understand the consequences of using sample
estimates in portfolio optimization because estimated optimal portfolios may result into
suboptimal solutions. Third, the investor should also consider frictions in the market
because optimal solutions may be prohibitive in the presence of market constraints.
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4. Concluding remarks and future research

4.2. Future research lines

Overall, we address the inherent uncertainty that arises in portfolio optimization when
the investor uses sample information to construct her optimal investment strategy. How-
ever, for tractability reasons we make some assumptions to characterize the effects of
estimation risk in portfolio optimization. In particular, our main assumption is to con-
sider that returns/price changes are independent and identically distributed (iid). Future
research lines could relax this assumption and consider more general models that take
into account serial dependence or predictive factors. Additionally, it could also be in-
teresting to understand the impact of parameter uncertainty in financial markets as a
whole, in contrast with the micro-perspective that we address in this thesis in which we
characterize the impact of parameter uncertainty for a single investor.

These two research lines are natural extensions of this thesis. However, there are other
research areas that have a direct implementation to portfolio optimization. For instance,
modeling asset returns is an active area for econometricians and financial economists that
has an immediate application to asset allocation.

In particular, a future research line would be modeling asset returns for large datasets
where the number of assets may be larger than the number of observations. In this
situation, we can use a factor model to capture the dynamics of asset returns. This is a
parsimonious method that can model asset returns and mitigate the impact of parameter
uncertainty, which is particularly of interest for large datasets. One possibility is to use
those factors obtained from a principal component analysis (PCA). It is common in the
literature of PCA to select those components that account for most of the variability in
the dataset. However, it might be more interesting to look for those components that
account for some other property such as an utility function. As a result, we could obtain
components that model asset returns and have a clear financial interpretation based on
the investor’s utility function.

In general, models that explain better the dynamics of asset returns can help investors
to construct optimal portfolios. One can apply the proposed model to define the statistical
properties of asset returns and use these properties to characterize the investor’s expected
utility. Essentially, understanding asset returns gives a better idea of the dynamics of
financial markets and this is indeed a worthwhile area to investigate further.
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A. Proofs

A.1. Proof for Chapter 2

In this part, we prove all the propositions. Before going throughout all the propositions,
we state two lemmas that will be used along the proofs:

Lemma 1. Let x be a random vector in RN with mean µ and covariance matrix Σ, and
let A be a definite positive matrix in RN×N . Thus, the expected value of the quadratic
form x′Ax is:

E(x′Ax) = trace (AΣ) + µ′Aµ. (A.1)

The proof for the expected value of quadratic forms is a standard result in econometrics.
See, for instance, (Greene, 2003, Page 49).

Lemma 2. Given a sample R ∈ RT×N of independent and normally distributed observa-

tions, that is Rt ∼ N (µ,Σ), the unbiased sample covariance matrix Σsp =
∑T
t=1(Rt−R)

2

T−1
,

where R =
∑T
t=1Rt
T

, has a Wishart distribution Σsp ∼ W
(

Σ
T−1

, T − 1
)
. On the other

hand, the unbiased estimator of the inverse covariance matrix Σ−1
u = T−N−2

T−1
Σ−1
sp has an

inverse-Wishart distribution Σ−1
u ∼ W−1 ((T −N − 2)Σ−1, T − 1). Then, the expected

values of ΣspΣsp, Σ−2
u and Σ−1

u ΣΣ−1
u are:

E (ΣspΣsp) =
T

T − 1
Σ2 +

1

T − 1
trace (Σ) Σ. (A.2)

E
(
Σ−2
u

)
=

(T −N − 2)

(T −N − 1)(T −N − 4)

(
trace

(
Σ−1

)
Σ−1 + (T −N − 2)Σ−2

)
, (A.3)

E
(
Σ−1
u ΣΣ−1

u

)
=

(T −N − 2)(T − 2)

(T −N − 1)(T −N − 4)
Σ−1. (A.4)

The proof for E (ΣspΣsp) can be found in Haff (1979), Theorem 3.1. The proof for
E (Σ−2

u ) and E (Σ−1
u ΣΣ−1

u ) are found in Haff (1979), Theorem 3.2.

A.1.1. Proof of Proposition 1

In this section, we prove the closed-form expression given in Proposition 1. In general,
we consider that asset returns are independent and identically distributed. Then, from
problem (2.6), we have:

min
α

E
[
‖µsh − µ‖2

2

]
= (1− α)2E

[
‖µsp − µ‖2

2

]
+ α2 ‖νµι− µ‖2

2 . (A.5)

Now, developing the optimality conditions of problem (A.5), we can obtain the optimal

60



A. Proofs

α that minimizes the expected quadratic loss:

αµ =
E
(
‖µsp − µ‖2

2

)
E
(
‖µsp − µ‖2

2

)
+ ‖νµι− µ‖2

2

, (A.6)

where νµ = argminν ‖νι− µ‖
2
2 = µ. We develop the expected value given in (A.6) to

derive the closed-form expression:

E
(
‖µsp − µ‖2) = E

(
µ′spµsp

)
− µ′µ. (A.7)

Since µsp is a random variable with mean µ and covariance matrix Σ
T

, we can use

Lemma 1 to obtain the closed-form expression of E
(
‖µsp − µ‖2). Thus:

E
(
‖µsp − µ‖2) = (N/T )σ2, (A.8)

where σ2 = trace (Σ) /N , and it completes the proof.

A.1.2. Proof of Proposition 2

To prove this proposition we simply develop the optimality conditions from the calibra-
tion functions defined by the shrinkage portfolio formed with the sample and the target
portfolios. The scale parameter is defined as ν = argmin

{
‖νE(wtg)− wop‖2

2

}
with re-

spect to ν. Developing the optimality conditions, we obtain that the optimal scale factor
is ν = E(wtg)′wop

E(wtg)′E(wtg)
. The expected quadratic loss function of the considered shrinkage

portfolio is:

E
(
‖wsh − wop‖2

2

)
= E

(
‖(1− α) (wsp − wop) + α (νwtg − wop)‖2

2

)
=

= (1− α)2E
(
‖wsp − wop‖2

2

)
+ α2E

(
‖νwtg − wop‖2

2

)
+

+ 2(1− α)αE
(
(wsp − wop)′ (νwtg − wop)

)
. (A.9)

Therefore, developing the optimality conditions of E
(
‖wsh − wop‖2

2

)
, we obtain that

the optimal α is:

αeql =
E
(
‖wsp − wop‖2

2

)
− τsp−tg

E
(
‖wsp − wop‖2

2

)
+ E

(
‖νwtg − wop‖2

2

)
− 2τsp−tg

, (A.10)

where τsp−tg = E
(
(wsp − wop)′ (νwtg − wop)

)
.

Second, the expected utility function of the shrinkage portfolio is:

E (U (wsh)) = (1− α)E(wsp)
′µ+ ανE(wtg)

′µ−

− γ

2
E
(
(1− α)2w′spΣwsp + α2ν2w′tgΣwtg + 2(1− α)ανw′spΣwtg

)
. (A.11)
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Deriving the optimality conditions of the above expression, we obtain the optimal α:

αut =
E
(
w′spΣwsp

)
− νE

(
w′spΣwtg

)
E
(
w′spΣwsp

)
+ ν2E

(
w′tgΣwtg

)
− 2νE

(
w′spΣwtg

)−
− 1

γ

E(wsp)
′µ− νE(wtg)

′µ

E
(
w′spΣwsp

)
+ ν2E

(
w′tgΣwtg

)
− 2νE

(
w′spΣwtg

) . (A.12)

The proof of the variance is straightforward. The investor’s portfolio variance is defined
by the second addend of the utility, given by expression (A.11). Deriving the optimality
conditions of that expression we have that the optimal α is:

αvar =
E
(
w′spΣwsp

)
− νE

(
w′spΣwtg

)
E
(
w′spΣwsp

)
+ ν2E

(
w′tgΣwtg

)
− 2νE

(
w′spΣwtg

) . (A.13)

A.1.3. Proof of Proposition 3

In this section, we prove the closed-form expressions of the expected values considered
in Proposition 3. We consider that the vector of asset returns is iid normal. Thus, we
develop the expected values of Proposition 3 and use Lemma 2 to derive the closed-form
expressions:

E
(
‖Σsp − Σ‖2

F

)
= trace

(
E
(
Σ′spΣsp

)
− Σ′Σ

)
=

N

T − 1

(
trace (Σ2)

N
+N

(
σ2
)2
)

(A.14)

E
(∥∥Σ−1

u − Σ−1
∥∥2

F

)
= trace

(
E
(
Σ−2
u

)
− Σ−2

)
= trace (Ω)− trace

(
Σ−2

)
(A.15)

E
(
< Σ−1

u − Σ−1, νI − Σ−1 >
)

= trace
(
E
(
Σ−1
u − Σ−1

)′ (
νI − Σ−1

))
= 0 (A.16)

being σ2 = trace (Σ) /N and Ω = (T−N−2)
(T−N−1)(T−N−4)

(trace (Σ−1) Σ−1 + (T −N − 2)Σ−2).
It completes the proof.

A.1.4. Proof of Proposition 4

Here, we illustrate how to prove Proposition 4. We develop each element mentioned in

the Proposition. First, we show how to obtain E
(∥∥wmvsp − wmvop ∥∥2

2

)
:

E
(∥∥wmvsp − wmvop ∥∥2

2

)
=

1

γ2

(
E
(
µspΣ

−2
u µsp

)
− µΣ−2µ

)
. (A.17)

Due to the fact that returns are assumed to be independent and normally distributed,
µsp and Σsp are independent. Therefore, we can make use of Lemma 1 and Lemma 2 to
compute the expected value of E (µspΣ

−2
u µsp). Thus:
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E
(∥∥wmvsp − wmvop ∥∥2

2

)
=

1

γ2

[
trace (Σ−1) (T −N − 2)(T − 2)

(T −N − 1)(T −N − 4)T
+

+
(T −N − 2)

(T −N − 1)(T −N − 4)

[
trace

(
Σ−1

)
µ′Σ−1µ+ (T −N − 2)µ′Σ−2µ

]]
−

− 1

γ2
µ′Σ−2µ. (A.18)

The following element is E
(∥∥νwminsp − wmvop

∥∥2

2

)
:

E
(∥∥νwminsp − wmvop

∥∥2

2

)
= ν2E

(
ι′Σ−2

u ι
)

+
1

γ2
µ′Σ−2µ− 2

ν

γ
ι′Σ−2µ. (A.19)

Using the value of E (Σ−2
u ) given in Lemma 2, we have that:

E
(∥∥νwminsp − wmvop

∥∥2

2

)
= ν2 (T −N − 2)

(T −N − 1)(T −N − 4)

[
trace

(
Σ−1

)
ι′Σ−1ι+

+(T −N − 2)ι′Σ−2ι
]

+
1

γ2
µ′Σ−2µ− 2

ν

γ
ι′Σ−2µ. (A.20)

Now, we prove how to obtain the closed-form expression of E
(∥∥wminsp − wminop

∥∥2

2

)
. First,

we expand the expression as usual:

E
(∥∥wminsp − wminop

∥∥2

2

)
= E

(
ι′Σ−2

u ι
)
− ι′Σ−2ι. (A.21)

Again, applying the value of E (Σ−2
u ) given in Lemma 2, we obtain the following:

E
(∥∥wminsp − wminop

∥∥2

2

)
=

(T −N − 2)

(T −N − 1)(T −N − 4)

[
trace

(
Σ−1

)
ι′Σ−1ι+

+(T −N − 2)ι′Σ−2ι
]
− ι′Σ−2ι. (A.22)

The remaining elements are easy to prove. Understanding how to apply Lemma1 and
Lemma 2, expressions E

(
wmv

′
sp Σwmvsp

)
, E

(
wmin

′
sp Σwminsp

)
and E

(
wmv

′
sp Σwminsp

)
are simple

to obtain. For instance,

E
(
wmv

′

sp Σwmvsp

)
=

1

γ2
E
(
µspΣ

−1
u ΣΣ−1

u µsp
)
. (A.23)

Since µsp and Σsp are independent, using Lemma 1 and the expression for E (Σ−1
u ΣΣ−1

u )
given in Lemma 2, we have:

E
(
wmv

′

sp Σwmvsp

)
=

1

γ2

(
(T −N − 2)(T − 2)

(T −N − 1)(T −N − 4)

(
N

T
+ µ′Σ−1µ

))
. (A.24)

The proof of the remaining elements can be omitted since they are similar to the
previous proof.
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A.2. Proofs for Chapter 3

A.2.1. Proof Proposition 5

To solve the investor’s problem, we first guess that the value function at any time i:

V (xi) = −1

2
x′iAxi + x′iBµ+ c. (A.25)

Therefore, the Bellman equation becomes:

x′iµ−
γ

2
x′iΣxi −

λ̃

2
∆x′iΣ∆xi + (1− ρ)

(
−1

2
x′iAxi + x′iBµ+ c

)
, (A.26)

where λ̃ = (1− ρ)−1λ. The right hand side can be simplified as follows:

V (xi) = −1

2
x′iJxi + x′ih+ l, (A.27)

where J = (γ+λ̃)Σ+(1−ρ)A, h = µ+λ̃Σxi−1+(1−ρ)Bµ, and l = − λ̃
2
xi−1Σxi−1+(1−ρ)c.

The first-order necessary condition to solve the above problem give the optimal solution:

xi = J−1h. (A.28)

Now, plugging the solution into the value function in (A.27), we obtain:

V ∗(xi) =
1

2
h′J−1h+ d. (A.29)

From the above expression and using (A.25), we obtain that A = −λ̃2ΣJ−1Σ + λ̃Σ and

B = λ̃ΣJ−1 (I + (1− ρ)B). Thus, A = αΣ, which implies that

α = − λ̃2

γ + λ̃+ (1− ρ)α
+ λ̃. (A.30)

Solving the above equation, we have that α =

√
(γ+λ̃ρ)2+4γλ−(γ+λ̃ρ)

2(1−ρ)
. On the other hand,

the solution for B is straightforward. It takes the form

B =
λ̃

γ + ρλ̃+ (1− ρ)α
I. (A.31)

Thus, the optimal solution, xi = J−1h, can be expressed as follows:

xi =
λ̃

γ + λ̃+ (1− ρ)α
xi−1 +

γ + (1− ρ)γB

γ + λ̃+ (1− ρ)α

1

γ
Σµ. (A.32)

The above expression can be simplified as follows (see Garleanu and Pedersen (2012)):

xi = (1− β)xi−1 + β
1

γ
Σµ. (A.33)
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where β = α/λ̃.
To prove the monotonicity of the convergence rate β, we only need to analyze the deriva-
tive of β with respect to γ, λ and ρ.

First, we show that the convergence rate β is a monotonic and nondecreasing function
with respect to γ. Thus, we show that the derivative of β with respect to γ is always
positive for any γ, λ, ρ ≥ 0. To do that, it suffices to show that

2× (1− ρ)× ∂α

∂γ
≥ 0.

Then,

2× (1− ρ)× ∂α

∂γ
=

1

2

2
(
γ + λ̃ρ

)
+ 4λ√(

γ + λ̃ρ
)2

+ 4γλ

− 1 > 0⇒
(
γ + λ̃ρ

)
+ 2λ ≥

√(
γ + λ̃ρ

)2
+ 4γλ. (A.34)

Now, we take the square of the above inequality, which is a monotone transformation
and does not affect the results. Then:(

γ + λ̃ρ
)2

+ 4λ2 + 4λ
(
γ + λ̃ρ

)
≥
(
γ + λ̃ρ

)2

+ 4γλ⇒ (A.35)

⇒ 4λ2 + 4γλ+ 4λλ̃ρ ≥ 4γλ. (A.36)

Inequality (A.36) is always true for any γ, λ, ρ ≥ 0.
To prove that the rate of convergence β is a monotonic decreasing function with respect

to λ, we show that the derivative of β with respect to λ is negative. First, let us define
φ = ρ/(1− ρ). Thus,

2×

(
(γ+λφ)φ+2γ√
(γ+λφ)2+4γλ

− φ
)
λ−

(√
(γ + λφ)2 + 4γλ− (γ + λφ)

)
4λ2

< 0. (A.37)

To prove that the above inequality holds, it suffices to prove that the numerator is
negative. Thus,(

1

2

2(γ + λφ)φ+ 4γ√
(γ + λφ)2 + 4γλ

− φ

)
λ−

(√
(γ + λφ)2 + 4γλ− (γ + λφ)

)
< 0. (A.38)

After some straightforward manipulations, we have that

((γ + λφ)φ+ 2γ)λ < (γ + λφ)2 + 4γλ−
√

(γ + λφ)2 + 4γλ× γ. (A.39)

The above inequality can be expressed as:

γφλ+ λ2φ2 + 2γλ < γ2 + λ2φ2 + 2γφλ+ 4γλ−
√

(γ + γφ)2 + 4γλ× γ, (A.40)

which may be simplified as

0 < γ2 + γφλ+ 2γλ−
√

(γ + γφ)2 + 4γλ× γ. (A.41)
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Dividing by γ, and taking the square, we have:

(γ + λφ)2 + 4γλ < (γ + λφ)2 + 4λ2 + 4(γ + λφ)λ⇒ (A.42)

⇒ 0 < 4λ2 + 4λ2φ, (A.43)

which shows that for any γ, λ, ρ > 0, the rate of convergence β is a monotonic decreasing
function with respect to λ.

Finally, to prove that the rate of convergence β is a monotonic decreasing function with
respect to ρ, we show that:

2× λ× ∂β

∂ρ
=

1

2

2
(
γ + λ ρ

1−ρ

)
λ

(1−ρ)2√(
γ + λ ρ

1−ρ

)2

+ 4γλ

− λ

(1− ρ)2
< 0. (A.44)

After some straightforward manipulations, we have that(
γ + λ

ρ

1− ρ

)
<

√(
γ + λ

ρ

1− ρ

)2

+ 4γλ. (A.45)

Now, taking the square of the above inequality, we have:(
γ + λ

ρ

1− ρ

)2

<

(
γ + λ

ρ

1− ρ

)2

+ 4γλ, (A.46)

which holds for any γ, λ, ρ > 0, and thus it completes the proof that ensures that the
rate of convergence β is a monotonic decreasing function with respect to ρ.

A.2.2. Proof of Proposition 6

To prove Proposition 6, we first write the investor’s expected loss:

δ({xi}, {x̂i}) =
∞∑
i=0

(1− ρ)i+1

{
x′iµ−

γ

2
x′iΣxi −

λ̃

2
∆x′iΣ∆xi

−E

[
x̂′iµ−

γ

2
x̂′iΣx̂i −

λ̃

2
∆x̂′iΣ∆x̂i

]}
. (A.47)

And from the above expression, it is easy to see that the investor’s expected loss is:

δ({xi}, {x̂i}) =

∞∑
i=0

(1− ρ)i+1

{
E

[
γ

2
x̂′iΣx̂i +

λ̃

2
∆x̂′iΣ∆x̂i

]
− γ

2
x′iΣxi −

λ̃

2
∆x′iΣ∆xi

}
. (A.48)

Now, we can plug the estimated investor’s optimal strategy in (A.48) to obtain a
simplified expression of the investor’s expected loss. Moreover, all those elements that
are linear functions with respect to the sample Markowitz portfolio disappear due to the
unbiasedness of the estimator. Then, we use the following expression for the estimated
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multiperiod portfolio:

x̂i = (1− β)i+1x−1 + βξix̂
M and ∆x̂i = φix−1 + β(1− β)ix̂M , (A.49)

where ξi =
∑i

j=0(1 − β)j and φ = ((1− β)i+1 − (1− β)i). Then, after some straightfor-
ward manipulations, we obtain that the investor’s expected loss is:

δ({xi}, {x̂i}) =
1

2γ

(
E
[
µ̂′Σ̂−1ΣΣ̂−1µ̂

]
− θ
)
×
∞∑
i=0

(1− ρ)i+1 [AVi + ACi] , (A.50)

where θ = µ′Σ−1µ, AVi = β2ξ2
i stands for the accumulated portfolio variability and

ACi = β2(λ̃/γ)(1−β)2i stands for the accumulated trading costs. Then, we can substitute

(1/2γ)(E
[
µ̂′Σ̂−1ΣΣ̂−1µ̂

]
− θ) with δ(xM , x̂M), and make the following simplifications for

geometric series:

ξi =
i∑

j=0

(1− β)j =
1− (1− β)i+1

β
. (A.51)

In turn, we obtain that

β2

∞∑
i=0

(1− ρ)i+1ξ2
i =

∞∑
i=0

(1− ρ)i+1 +
∞∑
i=0

(1− ρ)i+1
[
(1− β)2i+2 − 2(1− β)i+1

]
. (A.52)

Because (1− ρ) and (1− β) are positive elements and smaller than one, we can express
the above geometric series as follows:

AV = β2

∞∑
i=0

(1− ρ)i+1ξ2
i =

1− ρ
ρ

+
(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
− 2

(1− ρ)(1− β)

1− (1− ρ)(1− β)
. (A.53)

Now, applying the same arguments, we can simplify the following expression:

AC =
∞∑
i=0

(1− ρ)i+1β2 λ̃

γ
(1− β)2i =

λ

γ

β2

1− (1− ρ)(1− β)2
. (A.54)

In turn, we obtain that the investor’s expected loss is

δ({xi}, {x̂i}) = δ(xM , x̂M)× [AV + AC]. (A.55)

A.2.3. Proof of Proposition 7

We now prove that the optimal combination parameter of multiperiod portfolios coincide
with the optimal combination parameter in the static framework. First, let us define the
investor’s initial portfolio as x−1. Then, we can write the investor’s four-fund portfolio
as:

x̂i = (1− β)i+1x−1 + βξix̂
C , (A.56)
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where x̂C = (ς1x̂
M + ς2x̂

Min), and

∆x̂i = φix−1 + β(1− β)ix̂C , (A.57)

where ξi =
∑i

j=0(1− β)j and φ = ((1− β)i+1 − (1− β)i). Then, the investor’s expected
utility is defined as:

E

[
∞∑
i=0

(1− ρ)i+1
{

(1− β)i+1x′−1µ+ βξix̂
C′µ

− γ

2

(
(1− β)2ix′−1Σx−1 + β2ξ2

i x̂
C′Σx̂C + 2(1− β)i+1ξix

′
−1Σx̂C

)
− λ̃

2

(
φ2
ix
′
−1Σx−1 + β2(1− β)2ix̂C

′
Σx̂C + 2φiβ(1− β)ix′−1Σx̂C

)}]
(A.58)

The above expression can be simplified with the following properties of geometric series:

βξi = β
1− (1− β)i+1

β
= 1− (1− β)i+1 (A.59)

β2ξ2
i = 1 + (1− β)2+2 − 2(1− β)i+1 (A.60)

r1 =
∞∑
i=0

(1− ρ)i+1(1− β)i+1 =
(1− ρ)(1− β)

1− (1− ρ)(1− β)
(A.61)

r2 =
∞∑
i=0

(1− ρ)i+1(1− β)2i+2 =
(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
(A.62)

r3 =
∞∑
i=0

(1− ρ)i+1(1− β)2i =
(1− ρ)

1− (1− ρ)(1− β)2
(A.63)

r4 =
∞∑
i=0

(1− ρ)i+1(1− β)2i+1 =
(1− ρ)(1− β)

1− (1− ρ)(1− β)2
(A.64)

r5 =
∞∑
i=0

(1− ρ)i+1 =
(1− ρ)

ρ
(A.65)

And in turn, the investor’s expected utility can be simplified as follows:

r1(x−1 − xC)′µ+
1− ρ
ρ

xC
′
µ− γ

2

{
r2x
′
−1Σx−1 + (r5 + r2 − 2r1)E(x̂C

′
Σx̂C)

+2x−1ΣxC(r1 − r2)
}
− λ̃

2

{
β2r3x

′
−1Σx−1 + E(x̂C

′
Σx̂C)β2r3 + 2β(r4 − r3)x′−1ΣxC

}
(A.66)

Now, we develop the first order conditions with respect to ς1, and we obtain that the
optimal value is:

ς1 =
E
[
x̂M

′
µ
]

γE [x̂M ′Σx̂M ]

W1

W2

−
x′−1ΣxM

γE [x̂M ′Σx̂M ]

W3

W2

− ς2
E
[
x̂M

′
Σx̂Min

]
E [x̂M ′Σx̂M ]

, (A.67)

where W1 = r5− r1, W2 = (r5 + r2− 2r1) + (λ̃/γ)β2r3, and W3 = γ(r1− r2) + λ̃β(r4− r3).
We numerically verify that W1/W2 = 1 and W3 = 0, so that the optimal parameter ς1
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takes the following expression:

ς1 =
E
[
x̂M

′
µ
]

γE [x̂M ′Σx̂M ]
− ς2

E
[
x̂M

′
Σx̂Min

]
E [x̂M ′Σx̂M ]

. (A.68)

Accordingly, the optimal value of ς2 is

ς2 =
E
[
x̂Min′µ

]
γE [x̂Min′Σx̂Min]

− ς1
E
[
x̂M

′
Σx̂Min

]
E [x̂Min′Σx̂Min]

. (A.69)

Therefore, one can solve the system given by (A.68)-(A.69) to obtain the optimal values
of ς1 and ς2. This corresponds with the system of linear equations that one has to solve to
obtain the optimal combination parameters in the static framework. In turn, we obtain;
see Kan and Zhou (2007):

ς1 = c−1 Ψ2

Ψ2 + N
T

, (A.70)

ς2 = c−1
N
T

Ψ2 + N
T

× µ′Σ−1ι

ι′Σ−1ι
, (A.71)

where c = [(T − 2)(T − N − 2)]/[(T − N − 1)(T − N − 4)] and Ψ2 = µ′Σ−1ι −
(µ′Σ−1ι)2/(ι′Σ−1ι) > 0. Accordingly, one can obtain the optimal value of η by setting
ς2 = 0 in equation (A.68), and we obtain that the optimal value of η is:

η =
E
[
x̂M

′
µ
]

γE [x̂M ′Σx̂M ]
= c−1µ

′Σ−1µ

µ′Σ−1µ
= c−1. (A.72)

A.2.4. Proof of Corollary 1

We know from Proposition 7 that the optimal combination parameters coincide with
the optimal combination parameters of the static case. Then, we can show that it is
optimal to shrink the static mean-variance portfolio if the derivative of the investor’s
(static) expected utility with respect to parameter η is negative when η = 1. Deriving
the investor’s expected utility with respect to η and setting η = 1, we obtain the it is
optimal to have η < 1 when:

E
(
x̂M

′
µ
)
< γE

(
x̂M

′
Σx̂M

)
. (A.73)

If we characterize the expectations from the above expression, we obtain that η < 1 if
1 < c, where c = [(T − N − 2)(T − 2)]/[(T − N − 1)(T − N − 4)]. Because, c > 1, we
observe that it is always optimal to shrink the static mean-variance portfolio.

Now, if we take derivatives of the investor’s (static) expected utility with respect to
parameter ς2, and then set ς2 = 0, this derivative if positive (an in turn it is optimal to
have ς2 > 0) if

E
(
x̂T
′
µ
)
> γς1E

(
x̂M

′
Σx̂T

)
. (A.74)

Now, characterizing the above expectations, we obtain that ς2 > 0 if 1 > ς1c. From the
optimal expression of ς1, we obtain that 1 > ς1c if 1 > Ψ2/(Ψ2+N/T ), which always holds
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because Ψ2 can be written as Ψ2 = (µ− µg)′Σ−1(µ− µg), where µg = (ι′Σ−1µ)/(ι′Σ−1ι),
and in turn Ψ2 is nonnegative. Moreover, from the optimal expression for ς2, we observe
that the optimal value is always positive because Ψ2 = µ′Σ−1ι− (µ′Σ−1ι)2/(ι′Σ−1ι) > 0,
and it means that µ′Σ−1ι should be positive, otherwise Ψ2 > 0 would not hold. this
means that all the elements require to compute the optimal ς2 are positive, and in turn
the optimal ς2 is positive.

A.2.5. Proof of Proposition 8

Writing the expected utility for an investor using the four-fund portfolio as in (A.66), it
is straightforward to see that we can obtain the optimal β that minimizes the investor’s
expected loss by solving the following problem:

V1(x−1 − xC)′µ− 1

2

(
E
[
x̂C
′
Σx̂C

]
V2 + x′−1Σx−1V3 + x′−1ΣxCV4

)
, (A.75)

where Vi accounts for the accumulated variability and trading costs of x̂C and the in-
vestor’s initial position x−1, and they take the form:

V1 =
(1− ρ)(1− β)

1− (1− ρ)(1− β)
(A.76)

V2 = γ

(
(1− ρ)

ρ
+

(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
− 2

(1− ρ)(1− β)

1− (1− ρ)(1− β)

)
+ λ̃

(1− ρ)β2

1− (1− ρ)(1− β)2
, (A.77)

V3 = γ
(1− ρ)(1− β)2

1− (1− ρ)(1− β)2
+ λ̃

(1− ρ)β2

1− (1− ρ)(1− β)2
, (A.78)

V4 = 2γ

(
(1− ρ)(1− β)

1− (1− ρ)(1− β)
− (1− ρ)(1− β)2

1− (1− ρ)(1− β)2

)
− 2λ̃

(1− ρ)β2

1− (1− ρ)(1− β)2
. (A.79)

Now, we characterize E
[
x̂C
′
Σx̂C

]
, which is defined as:

E
[
x̂C
′
Σx̂C

]
=

c

γ2

(
ς2
1

(
µ′Σ−1µ+

N

T

)
+ ς2

2 ι
′Σ−1ι+ 2ς1ς2µ

′Σ−1ι

)
, (A.80)

where c = [(T −N − 2)(T − 2)]/[(T −N − 1)(T −N − 4).
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B.1. Overview

In this supplementary appendix, we report four different sets of additional empirical
results that demonstrate the robustness of our analysis. First, we report the out-of-
sample turnover for all the portfolios that we consider in Chapter 2. Second, we report
the results for a longer estimation window with M=150 observations. Third, we report
the results for a smaller estimation window with M=60 observations. For the case with
M=60, we only consider minimum variance portfolios that shrink the covariance matrix,
because the rest of the approaches result in a singular (or nearly singular) matrix for the
48IndP, 100FF and SP100 datasets. Fourth, we compare the out-of-sample performance
of the minimum-variance portfolios constructed with the shrinkage covariance matrices
calibrated with the approach proposed in Section 2.1.4, which accounts for the RIAL and
the condition number, and with shrinkage covariance matrices calibrated with a related
simpler approach that we term the direct approach.

In general, the results that we highlight in Chapter 2 are very robust. First, the
considered calibration criterion for the shrinkage vector of means provides more stable
mean-variance portfolios with higher net Sharpe ratio than those constructed with the
shrinkage vector of means of Jorion (1986). Second, the condition number of the co-
variance matrix matters to calibrate its shrinkage estimator and it helps to obtain more
stable portfolios with larger net Sharpe ratio. Third, for those shrinkage portfolios that
consider the vector of means, the variance criterion provides in general the best results,
whereas for the shrinkage portfolio that does not consider the vector of means the most
robust criterion is the expected quadratic loss minimization criterion. Finally, we observe
that the proposed multivariate smoothed bootstrap effectively captures the departure of
data from normality and it helps to provide better out-of-sample results.

In the next four sections we report the results for the four different sets of additional
experiments.

B.2. Out-of-sample Turnover for M=120

In this part, we report the out-of-sample turnover of all the studied portfolios. We do not
include them in the main body of the chapter because they are implicitly considered in
the Sharpe ratio of returns net of transaction costs. The definition of the out-of-sample
turnover is as follows:

Turnoveri =
1

T −M − 1

T−1∑
t=M

N∑
j=1

(∣∣wij,t+1 − wij,t+
∣∣) , (B.1)

where wij,t denotes the estimated portfolio weight of asset j at time t under policy i and
wij,t+ is the estimated portfolio weight of asset j accumulated at time t+ 1, which implies
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that the turnover is equal to the sum of the absolute value of the rebalancing trades
across the N available assets over the T −M − 1 trading dates, normalized by the total
number of trading dates.

In general, we observe from Tables B.1 and B.2 that the turnover results are consistent
with what we report in Chapter 2. First, the criterion for the shrinkage vector of means
provides more stable mean-variance portfolios with lower turnover than the benchmark
mean-variance portfolios. Second, the matrix condition number matters and helps to
provide more stable minimum-variance portfolios when using a shrinkage covariance ma-
trix. The variance and expected quadratic loss criteria provide more stable portfolios
with lower turnover for the shrinkage portfolios that consider the vector of means and
the shrinkage portfolio that does not consider the vector of means, respectively. Finally,
we observe that the studied smoothed bootstrap also provides estimated portfolios with
lower turnover.

Table B.1.: Turnover of benchmark portfolios and portfolios estimated with shrinkage
moments

This table reports the out-of-sample turnover of benchmark portfolios and
portfolios constructed by using the studied shrinkage estimators for the mo-
ments of asset returns. We consider an investor with a risk aversion parameter
of γ = 5.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Benchmark Portfolios

Portfolios that consider the vector of means

mv 0.372 0.482 1.854 3.685 277.548 5.415
bs 0.192 0.255 1.051 2.103 393.893 4.492
Portfolios that do not consider the vector of means

min 0.094 0.153 0.495 0.793 6.639 2.730
lw 0.065 0.104 0.274 0.377 0.904 0.302
lw-m 0.093 0.134 0.308 0.371 1.063 0.266
Näıve Portfolios

1/N 0.018 0.024 0.031 0.033 0.023 0.062
Panel B: Portfolios calibrated parametrically

Portfolios that do not consider the vector of means

par-lw 0.074 0.119 0.339 0.480 1.398 0.375
par-ilw 0.047 0.054 0.042 0.040 0.024 0.066
par-clw 0.060 0.091 0.193 0.242 0.393 0.234

Panel C: Portfolios calibrated nonparametrically

Portfolios that consider the vector of means

f-mv 0.128 0.205 0.647 1.153 8.432 3.019
Portfolios that do not consider the vector of means

npar-lw 0.077 0.111 0.295 0.407 1.061 0.338
npar-ilw 0.038 0.035 0.032 0.034 0.023 0.062
npar-clw 0.061 0.084 0.174 0.215 0.345 0.218
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Table B.2.: Turnover of shrinkage portfolios

This table reports the out-of-sample Turnover of the shrinkage portfolios.
We consider an investor with a risk aversion parameter of γ = 5.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100

Panel A:Shrinkage portfolios with parametric calibration

EQL Minimization
mv-min 0.216 0.279 0.873 1.390 12.306 3.215
mv-ew 0.208 0.218 0.687 1.126 83.852 1.670
min-ew 0.086 0.124 0.335 0.463 3.207 1.344
Utility Maximization
mv-min 0.229 0.295 0.801 1.214 7.260 2.796
mv-ew 0.186 0.245 0.723 1.084 40.024 1.464
min-ew 0.084 0.136 0.420 0.652 4.975 1.960
Variance Minimization
mv-min 0.133 0.163 0.499 0.812 7.173 2.832
mv-ew 0.080 0.135 0.328 0.445 3.952 1.339
min-ew 0.084 0.136 0.420 0.652 4.974 1.960
Sharpe Ratio Maximization
mv-min 0.210 0.262 0.945 1.729 145.685 3.155
mv-ew 0.208 0.290 1.002 1.704 12.673 2.412
min-ew 0.121 0.136 0.385 0.571 5.199 1.960

Panel B: Shrinkage portfolios with bootstrap calibration

EQL Minimization
mv-min 0.259 0.295 19.077 173.172 42.238 5.738
mv-ew 0.198 0.197 0.423 0.404 0.259 0.062
min-ew 0.083 0.111 0.199 0.162 0.023 0.062
Utility Maximization
mv-min 0.259 0.312 35.319 14.670 29.513 3.097
mv-ew 0.169 0.216 0.420 0.342 0.108 0.062
min-ew 0.100 0.115 0.246 0.187 0.023 0.062
Variance Minimization
mv-min 0.193 0.160 0.520 0.837 6.728 2.798
mv-ew 0.093 0.127 0.167 0.107 0.023 0.062
min-ew 0.098 0.116 0.244 0.189 0.023 0.062
Sharpe Ratio Maximization
mv-min 0.282 0.273 1.180 2.702 281.946 4.940
mv-ew 0.205 0.287 0.791 0.835 0.024 0.063
min-ew 0.112 0.135 0.321 0.327 0.023 0.063

Panel C: Existing mixture of portfolios

kz 0.210 0.262 0.945 1.729 149.144 3.155
tz 0.208 0.296 0.851 1.255 5.326 1.176
dm 0.147 0.151 0.386 0.571 5.280 1.960

B.3. Out-of-sample results for M=150

Table B.3 reports the annualized Sharpe ratio of returns, net of transaction costs of
50 basis points, of the benchmark portfolios and the portfolios constructed with the
shrinkage moments. From Panel A we observe that the minimum-variance portfolio with
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the shrinkage covariance matrix proposed by Ledoit and Wolf (2004b) (lw) attains the
highest out-of-sample Sharpe ratio among all benchmark portfolios. Panel B reports
the Sharpe ratio for the portfolios formed with our studied shrinkage moments calibrated
under the normality assumption. We observe that the minimum-variance portfolio formed
from the shrinkage covariance matrix that accounts for the expected quadratic loss and the
condition number (par-clw) outperforms the lw portfolio for medium and large datasets.
This is because for medium and large datasets, the sample covariance matrix is more
likely to be nearly singular. Also, we can observe that the differences between par-clw
and lw are statistically significant for the 38IndP, 48IndP and 100FF datasets.

Table B.3.: Annualized Sharpe ratio of benchmark portfolios and portfolios with shrinkage
moments (κ =50 basis points)

This table reports the out-of-sample annualized Sharpe ratio of benchmark port-
folios and portfolios constructed by using the shrinkage moments. We adjust the
Sharpe ratio with transaction costs, where we assume that the chargeable fee is
equivalent to 50 basis points (bp). We consider an investor with a risk aversion pa-
rameter of γ = 5. One, two and three asterisks indicate that the difference with the
lw portfolio is statistically different from zero for a 90%, 95% and 99% confidence
interval, respectively.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Benchmark Portfolios

Portfolios that consider the vector of means

mv 0.593∗∗ 0.599∗∗∗ 0.004∗∗∗ -0.003∗∗∗ -0.463∗∗∗ -0.102∗

bs 0.733∗ 0.817∗ 0.250∗∗∗ 0.164∗∗∗ -0.343∗∗∗ 0.113
Portfolios that do not consider the vector of means

min 0.841 0.945 0.528∗∗∗ 0.378∗∗∗ -0.014∗∗∗ 0.399
lw 0.863 0.955 0.731 0.651 1.003 0.687
lw-m 0.836 0.953 0.649∗∗∗ 0.607 0.843∗∗∗ 0.648
Näıve Portfolios

1/N 0.761 0.780 0.695 0.688 0.712 0.328
Panel B: Portfolios calibrated parametrically

Portfolios that do not consider the vector of means

par-lw 0.845 0.945 0.643∗∗∗ 0.553∗∗∗ 0.762∗∗∗ 0.641
par-ilw 0.877 0.907 0.716 0.693 0.713 0.337
par-clw 0.853 0.948 0.824∗∗∗ 0.794∗∗∗ 1.164∗∗∗ 0.700

Panel C: Portfolios calibrated nonparametrically

Portfolios that consider the vector of means

f-mv 0.809 0.881 0.403∗∗∗ 0.270∗∗∗ 0.018∗∗∗ 0.257
Portfolios that do not consider the vector of means

npar-lw 0.860 0.954 0.711∗∗∗ 0.622∗∗∗ 0.929∗∗∗ 0.667
npar-ilw 0.848 0.844 0.701 0.690 0.712 0.328
npar-clw 0.863 0.954 0.858∗∗ 0.825∗∗∗ 1.152∗ 0.702

Panel C reports the portfolios constructed with our studied shrinkage moments cal-
ibrated without making any assumption about the distribution of stock returns. To
estimate the shrinkage covariance matrix and the inverse covariance matrix, we apply
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the proposed smoothed bootstrap. First, we observe that the mean-variance portfolio ob-
tained from our considered shrinkage vector of means beats the benchmark mean-variance
portfolios (mv and bs) across every dataset. We also observe that the nonparametric cal-
ibration works better than the parametric approach to calibrate the shrinkage covariance
matrix of the minimum-variance portfolios. In general, the nonparametric approach gives
larger shrinkage intensities, which seems to imply that empirical data departs from the
normality assumption, and therefore sample estimators require larger shrinkage intensities
than those suggested by the parametric approach.

Table B.4 reports the annualized Sharpe ratio of returns net of transaction costs of
50 basis points of the shrinkage portfolios. Panel A reports the annualized adjusted
Sharpe ratios of the shrinkage portfolios calibrated via parametric assumptions. Panel B
reports the annualized adjusted Sharpe ratios of the shrinkage portfolios calibrated via
bootstrap. Panel C reports the results of the shrinkage portfolios from the literature.
From Panel A we make two observations. First, the variance minimization criterion is
the best calibration criterion for the portfolios that consider the vector of means, mv-min
and mv-ew, whereas the expected quadratic loss is the best calibration criterion for the
portfolio that does not consider the vector of means, min-ew. Moreover, we observe that
the best shrinkage portfolio is the min-ew portfolio. The explanation for this is that it
is well-known that it is much harder to estimate the mean than the covariance matrix
of asset returns from empirical data. Therefore, a mixture of the minimum-variance
portfolio with the equally-weighted portfolio always outperforms any other combination
that considers the vector of means, which would provide more unstable portfolios with
lower adjusted Sharpe ratios.

From Panel B of Table B.4, we observe again that the best shrinkage portfolio is the
mixture formed with the minimum-variance portfolio and the equally-weighted portfolio.
Furthermore, we also observe that the expected quadratic loss minimization criterion is,
in general, the best calibration criterion in terms of Sharpe ratio. The results obtained
under the nonparametric bootstrap approach are, in general, slightly better than the
results obtained under the assumption of normally distributed returns because empirical
returns seem to depart from the normality assumption.

Panel C of Table B.4, shows the annualized Sharpe ratio of the existing mixture of
portfolios from the literature. We observe that among the mixture of portfolios, the
mixture formed by the minimum-variance portfolio and the equally weighted portfolio
offers the best results. This mixture, however, performs worse than our studied shrinkage
portfolio formed with the minimum-variance portfolio and the equally-weighted portfolio
across every dataset. Thus, our proposed framework to construct shrinkage portfolios
turns out to hedge better the investor’s portfolio against estimation error.

Tables B.5 and B.6 report the results for the out-of-sample standard deviation of the
studied portfolios. The results obtained from these tables are consistent with the results
obtained for the Sharpe ratio and the turnover.

Summarizing, we observe that the main findings are in general the same as in the case of
M=120, and in turn the qualitative results do not change for M=150. Our first observation
is that portfolios computed from our studied shrinkage vector of means outperform those
computed from the Bayes-Stein vector of means of Jorion (1986). Second, we observe
that controlling for the condition number of the shrinkage covariance matrix results in
portfolio weights that are more stable, and this leads to better adjusted Sharpe ratios
for medium and large datasets. Third, for shrinkage portfolios that consider the vector
of means, the variance minimization criterion is the most robust criterion, whereas for
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Table B.4.: Annualized Sharpe ratio with transaction costs of shrinkage portfolios
This table reports the out-of-sample annualized Sharpe ratio (adjusted with 50
bp) of the shrinkage portfolios for an investor with γ = 5. One, two and three
asterisks indicate that the difference with the lw portfolio is statistically different
from zero for a 90%, 95% and 99% confidence interval, respectively.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100

Panel A: Shrinkage portfolio with parametric calibration

EQL Minimization
mv-min 0.702∗∗ 0.812∗∗ 0.313∗∗∗ 0.274∗∗ -0.198∗∗∗ 0.307
mv-ew 0.647∗∗ 0.760∗ 0.483 0.437 0.028∗∗∗ 0.188∗

min-ew 0.844 0.954 0.658 0.587 0.435∗∗∗ 0.509
Utility Maximization
mv-min 0.708∗ 0.790∗ 0.303∗∗∗ 0.305∗∗ -0.025∗∗∗ 0.388
mv-ew 0.691∗ 0.738∗ 0.386∗∗ 0.436 0.205∗∗∗ 0.234
min-ew 0.847 0.949 0.593∗∗∗ 0.472∗∗∗ 0.165∗∗∗ 0.483
Variance Minimization
mv-min 0.820 0.925 0.527∗∗∗ 0.374∗∗∗ -0.054∗∗∗ 0.414
mv-ew 0.773 0.796∗ 0.594 0.670 0.425∗∗∗ 0.277
min-ew 0.847 0.949 0.593∗∗∗ 0.472∗∗∗ 0.165∗∗∗ 0.483
Sharpe Ratio Maximization
mv-min 0.714∗ 0.807∗∗ 0.284∗∗∗ 0.208∗∗ -0.208∗∗∗ 0.273
mv-ew 0.685∗∗ 0.715∗∗ 0.249∗∗∗ 0.254∗∗ -0.188∗∗∗ 0.111∗

min-ew 0.817 0.955 0.606∗∗ 0.508∗∗∗ 0.104∗∗∗ 0.472

Panel B: Shrinkage portfolios with bootstrap calibration

EQL Minimization
mv-min 0.708∗∗ 0.795∗∗ 0.277∗∗∗ -0.356∗∗∗ -0.612∗∗∗ 0.398
mv-ew 0.657∗∗ 0.769∗ 0.575 0.596 0.713 0.329
min-ew 0.853 0.952 0.711 0.675 0.712 0.330
Utility Maximization
mv-min 0.714∗ 0.771∗∗ 0.264∗∗∗ 0.158∗∗ -0.471∗∗∗ 0.399
mv-ew 0.701∗∗ 0.750∗∗ 0.514 0.615 0.712∗ 0.328
min-ew 0.844 0.945 0.688 0.662 0.712 0.328
Variance Minimization
mv-min 0.821 0.931 0.528∗∗∗ 0.374∗∗∗ -0.093∗∗∗ 0.399
mv-ew 0.757 0.798 0.641 0.685 0.712 0.328
min-ew 0.855 0.948 0.684 0.660 0.712 0.328
Sharpe Ratio Maximization
mv-min 0.702∗∗ 0.793∗∗ 0.261∗∗∗ 0.050∗∗∗ -0.471∗∗∗ 0.153∗

mv-ew 0.689∗∗ 0.714∗∗ 0.308∗∗∗ 0.401 0.714 0.331
min-ew 0.824 0.955 0.627 0.590 0.713 0.335

Panel C: Existing mixture of portfolios

kz 0.714∗ 0.807∗∗ 0.284∗∗∗ 0.208∗∗ -0.208∗∗∗ 0.273
tz 0.673∗∗ 0.704∗∗ 0.301∗∗∗ 0.360∗ 0.083∗∗∗ 0.195
dm 0.813 0.941 0.603∗∗ 0.508∗∗∗ 0.104∗∗∗ 0.472

shrinkage portfolios that do not consider the vector of means, the expected quadratic loss
criterion works better. Finally, the studied nonparametric approach to calibrate shrinkage
estimators captures the departure from normality in real return data and this results in
more stable portfolios (small turnover) with reasonable Sharpe ratios.
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Table B.5.: Standard deviation of benchmark portfolios and portfolios with shrinkage
moments

This table reports the out-of-sample standard deviation of benchmark portfolios and
portfolios constructed by using the shrinkage moments. We consider an investor
with a risk aversion parameter of γ = 5. One, two and three asterisks indicate that
the difference with the lw portfolio is statistically different from zero for a 90%, 95%
and 99% confidence interval, respectively.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Benchmark Portfolios

Portfolios that consider the vector of means

mv 0.161∗∗∗ 0.157∗∗∗ 0.244∗∗∗ 0.336∗∗∗ 0.417∗∗∗ 0.267∗∗∗

bs 0.143∗∗ 0.134∗∗∗ 0.167∗∗∗ 0.224∗∗∗ 0.346∗∗∗ 0.200∗∗∗

Portfolios that do not consider the vector of means

min 0.138 0.126∗∗ 0.131∗∗∗ 0.137∗∗∗ 0.179∗∗∗ 0.171∗∗∗

lw 0.136 0.124 0.120 0.124 0.125 0.122
lw-m 0.138 0.126 0.121 0.123 0.132∗∗∗ 0.120
Näıve Portfolios

1/N 0.154∗∗∗ 0.148∗∗∗ 0.166∗∗∗ 0.165∗∗∗ 0.174∗∗∗ 0.169∗∗∗

Panel B: Portfolios calibrated parametrically

Portfolios that do not consider the vector of means

par-lw 0.136 0.125 0.124∗∗∗ 0.128∗∗∗ 0.137∗∗∗ 0.125∗∗

par-ilw 0.138∗∗ 0.132∗ 0.159∗∗∗ 0.161∗∗∗ 0.174∗∗∗ 0.167∗∗∗

par-clw 0.136 0.124 0.119 0.122 0.122 0.121
Panel C: Portfolios calibrated nonparametrically

Portfolios that consider the vector of means

f-mv 0.138 0.128∗∗ 0.139∗∗∗ 0.169∗∗∗ 0.204∗∗∗ 0.178∗∗∗

Portfolios that do not consider the vector of means

npar-lw 0.136 0.124 0.121∗∗∗ 0.125∗∗∗ 0.128∗∗∗ 0.123∗

npar-ilw 0.143∗∗∗ 0.140∗∗∗ 0.164∗∗∗ 0.164∗∗∗ 0.174∗∗∗ 0.169∗∗∗

npar-clw 0.137 0.124 0.119 0.122 0.123 0.121

B.4. Out-of-sample results for M=60

In this part of the analysis, we report the out-of-sample results for estimated portfolio
that shrink the covariance matrix. The estimation window is M=60 observations and
because this is a very small sample to estimate portfolios with large number of asset, we
do not report the results for the other considered portfolios in the chapter. In general,
we again observe that the proposed calibration criterion that accounts for the condition
number provides better results than all the benchmark portfolios: larger Sharpe ratio with
moderate turnover and small volatility; see Tables B.7, B.8 and B.9. Also, we observe that
the multivariate smoothed bootstrap tends to work better than the parametric approach,
and this provides larger Sharpe ratios with lower turnover.
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Table B.6.: Standard deviation of shrinkage portfolios

This table reports the out-of-sample standard deviation of the shrinkage portfo-
lios. We consider an investor with a risk aversion parameter of γ = 5. One, two
and three asterisks indicate that the difference with the lw portfolio is statisti-
cally different from zero for a 90%, 95% and 99% confidence interval, respectively.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100

Panel A: Shrinkage portfolios with parametric calibration

EQL Minimization
mv-min 0.145∗∗ 0.137∗∗∗ 0.159∗∗∗ 0.183∗∗∗ 0.251∗∗∗ 0.173∗∗∗

mv-ew 0.152∗∗∗ 0.140∗∗∗ 0.157∗∗∗ 0.177∗∗∗ 0.216∗∗∗ 0.149∗

min-ew 0.138 0.125 0.126∗∗ 0.130∗∗ 0.146∗∗∗ 0.134∗∗

Utility Maximization
mv-min 0.145∗∗∗ 0.137∗∗∗ 0.158∗∗∗ 0.177∗∗∗ 0.195∗∗∗ 0.170∗∗∗

mv-ew 0.149∗∗∗ 0.140∗∗∗ 0.165∗∗∗ 0.186∗∗∗ 0.198∗∗∗ 0.147∗

min-ew 0.137 0.125 0.127∗∗∗ 0.132∗∗∗ 0.160∗∗∗ 0.142∗∗∗

Variance Minimization
mv-min 0.141∗∗ 0.127∗ 0.131∗∗∗ 0.137∗∗∗ 0.184∗∗∗ 0.172∗∗∗

mv-ew 0.146∗∗∗ 0.138∗∗∗ 0.155∗∗∗ 0.162∗∗∗ 0.174∗∗∗ 0.145
min-ew 0.137 0.125 0.127∗∗∗ 0.132∗∗∗ 0.160∗∗∗ 0.142∗∗∗

Sharpe Ratio Maximization
mv-min 0.144∗∗∗ 0.135∗∗∗ 0.161∗∗∗ 0.203∗∗∗ 0.277∗∗∗ 0.176∗∗∗

mv-ew 0.150∗∗∗ 0.142∗∗∗ 0.181∗∗∗ 0.228∗∗∗ 0.297∗∗∗ 0.162∗∗∗

min-ew 0.136 0.124 0.126∗∗ 0.132∗∗∗ 0.166∗∗∗ 0.142∗∗∗

Panel B: Shrinkage portfolios with nonparametric calibration

EQL Minimization
mv-min 0.144∗∗∗ 0.137∗∗∗ 0.160∗∗∗ 0.335∗∗∗ 0.264∗∗∗ 0.171∗∗∗

mv-ew 0.151∗∗∗ 0.140∗∗∗ 0.153∗∗∗ 0.160∗∗∗ 0.174∗∗∗ 0.168∗∗∗

min-ew 0.137 0.125 0.132∗∗ 0.142∗∗∗ 0.174∗∗∗ 0.168∗∗∗

Utility Maximization
mv-min 0.144∗∗ 0.137∗∗∗ 0.161∗∗∗ 0.971∗∗∗ 0.183∗∗∗ 0.171∗∗∗

mv-ew 0.149∗∗∗ 0.140∗∗∗ 0.155∗∗∗ 0.161∗∗∗ 0.174∗∗∗ 0.169∗∗∗

min-ew 0.138∗∗∗ 0.125 0.129∗∗ 0.140∗∗∗ 0.174∗∗∗ 0.169∗∗∗

Variance Minimization
mv-min 0.140∗ 0.127∗∗ 0.131∗∗∗ 0.138∗∗∗ 0.181∗∗∗ 0.171∗∗∗

mv-ew 0.148∗∗∗ 0.140∗∗∗ 0.159∗∗∗ 0.162∗∗∗ 0.174∗∗∗ 0.169∗∗∗

min-ew 0.138∗∗ 0.125 0.129∗∗ 0.140∗∗∗ 0.174∗∗∗ 0.169∗∗∗

Sharpe Ratio Maximization
mv-min 0.145∗∗∗ 0.135∗∗∗ 0.166∗∗∗ 0.231∗∗∗ 0.373∗∗∗ 0.189∗∗∗

mv-ew 0.149∗∗∗ 0.142∗∗∗ 0.171∗∗∗ 0.193∗∗∗ 0.174∗∗∗ 0.168∗∗∗

min-ew 0.137 0.124 0.127∗∗ 0.135∗∗ 0.174∗∗∗ 0.167∗∗∗

Panel C: Existing mixture of portfolios

kz 0.144∗∗∗ 0.135∗∗∗ 0.161∗∗∗ 0.203∗∗∗ 0.277∗∗∗ 0.176∗∗∗

tz 0.150∗∗∗ 0.143∗∗∗ 0.174∗∗∗ 0.202∗∗∗ 0.222∗∗∗ 0.149∗∗

dm 0.136 0.125 0.126∗∗ 0.132∗∗∗ 0.166∗∗∗ 0.142∗∗∗
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Table B.7.: Sharpe ratio for estimation window M = 60 of benchmark portfolios and
portfolios estimated with shrinkage moments

This table reports the out-of-sample Sharpe ratio net of transaction costs
of benchmark portfolios and portfolios constructed by using the studied
shrinkage estimators for the moments of asset returns.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Benchmark Portfolios

lw 0.798 0.884 0.538 0.403 0.647 0.862
lw-m 0.747 0.824 0.462 0.371 0.549 0.840
1/N 0.786 0.811 0.739 0.738 0.803 0.672

Panel B: Portfolios calibrated parametrically

par-lw 0.789 0.866 0.450 0.265 0.527 0.798
par-clw 0.801 0.911 0.681 0.672 0.948 0.906

Panel C: Portfolios calibrated nonparametrically

par-lw 0.793 0.877 0.503 0.338 0.578 0.813
par-clw 0.802 0.918 0.708 0.708 0.967 0.909

Table B.8.: Turnover of benchmark portfolios and portfolios estimated with shrinkage
moments

This table reports the out-of-sample turnover of benchmark portfolios and
portfolios constructed by using the studied shrinkage estimators for the
moments of asset returns.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Benchmark Portfolios

lw 0.104 0.166 0.418 0.526 1.127 0.320
lw-m 0.173 0.243 0.474 0.513 1.240 0.303
1/N 0.017 0.024 0.030 0.032 0.023 0.059

Panel B: Portfolios calibrated parametrically

par-lw 0.116 0.194 0.518 0.668 1.434 0.389
par-clw 0.092 0.140 0.277 0.297 0.474 0.249

Panel C: Portfolios calibrated nonparametrically

par-lw 0.117 0.178 0.458 0.593 1.290 0.375
par-clw 0.093 0.130 0.254 0.277 0.353 0.198

B.5. Direct approach to shrink the covariance matrix
using the condition number

In Section 2.2.1 we propose a criterion that takes explicitly into account the matrix con-
dition number to calibrate the shrinkage covariance matrix. In particular, our proposed
calibration criterion minimizes the expected quadratic loss and the condition number of
the estimated covariance matrix. We solve the following optimization problem:

α = argmin {δΣsh − φRIAL (Σsh)} , (B.2)
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Table B.9.: Standard deviation of benchmark portfolios and portfolios estimated with
shrinkage moments

This table reports the out-of-sample standard deviation of benchmark port-
folios and portfolios constructed by using the studied shrinkage estimators
for the moments of asset returns.

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Benchmark Portfolios

lw 0.134 0.118 0.122 0.120 0.130 0.113
lw-m 0.133 0.121 0.122 0.117 0.131 0.112
1/N 0.153 0.146 0.166 0.166 0.174 0.151

Panel B: Portfolios calibrated parametrically

par-lw 0.132 0.119 0.125 0.127 0.136 0.115
par-clw 0.133 0.118 0.120 0.117 0.124 0.113

Panel C: Portfolios calibrated nonparametrically

par-lw 0.133 0.118 0.123 0.122 0.132 0.115
par-clw 0.135 0.118 0.120 0.117 0.128 0.114

where δΣsh represents the condition number of the shrinkage matrix and RIAL (Σsh) is
the relative improvement in average loss of the shrinkage covariance matrix.

We define parameter φ as the value that minimizes the out-of-sample portfolio variance,
i.e. φ = arg minφ σ

2
φ, where σ2

φ is the out-of-sample portfolio variance of the minimum
variance portfolio formed with the shrinkage covariance matrix Σsh, calibrated by criterion
(B.2). However, we can use a more direct approach where we set φ = 0 (φ → ∞) when
the out-of-sample portfolio variance of the equally-weighted portfolio is lower (larger)
than the out-of-sample portfolio variance of the minimum-variance portfolio computed
with the shrinkage covariance matrix that minimizes its expected quadratic loss.1

We compare the out-of-sample results of these two approaches in Table B.10. Portfolio
par-clw is the minimum-variance portfolio that calibrates the shrinkage covariance matrix
using (B.2), which we term the mixed approach, and portfolio da-clw is the direct approach.
We observe that, in general, the mixed approach provides higher Sharpe ratios, net of
transaction costs, and the out-of-sample standard deviation is lower than that of the
portfolio calibrated by using the direct approach.

These results show that there is always a parameter 0 < φ < ∞ that provides better
out-of-sample results than the direct approach for estimated portfolios constructed with
a shrinkage covariance matrix.

1We implement the equally-weighted portfolio when φ = 0 because in that case the resulting covariance
matrix from (B.2) provides the equally-weighted portfolio. On the other hand, we implement the
minimum-variance portfolio constructed with the shrinkage covariance matrix that minimizes the
expected quadratic loss when φ → ∞ because in that situation, the resulting shrinkage covariance
matrix from (B.2) is the shrinkage covariance matrix that minimizes the expected quadratic loss.
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Table B.10.: Mixed approach vs Direct approach

This table reports the out-of-sample annualized net Sharpe ratio and the
standard deviation of minimum-variance portfolios computed with the
shrinkage covariance matrix that accounts for the condition number. We
compare the results between the mixed approach and the direct approach.
We assume that transaction costs are equal to 50 basis points (bp).

Policy 5IndP 10IndP 38IndP 48IndP 100FF SP100
Panel A: Net Sharpe ratio

par-clw 0.890 0.956 0.823 0.792 1.194 0.622
da-clw 0.891 0.944 0.645 0.559 0.687 0.563

Panel B: Standard deviation

par-lw 0.137 0.124 0.122 0.125 0.121 0.126
da-clw 0.137 0.125 0.126 0.134 0.142 0.132
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