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Abstract

This thesis deals with the problem of modeling an univariate nonstationary time series

by a set of approximately stationary processes. The observed period is segmented into

intervals, also called partitions, blocks or segments, in which the time series behaves as

approximately stationary. Thus, by segmenting a time series, we aim to obtain the pe-

riods of stability and homogeneity in the behavior of the process; identify the moments

of change, called change-points; represent the regularities and features of each piece or

block; and, use this information in order to determine the pattern in the nonstationary

time series.

When the time series exhibits multiple change-points, a more intricate and difficult issue

is to use an efficient procedure to detect, locate and estimate them. Thus, the main

goal of the thesis consists on describing, studying comparatively with simulated data,

and applying to real data, a number of segmentation and/or change-points detection

procedures, which involve both, different type of statistics indicating when the data is

exhibiting a potential break, and, searching algorithms to locate multiple patterns vari-

ations.

The thesis is structured in five chapters. Chapter 1 introduces the main concepts in-

volved in the segmentation problem in the context of time series. First, a summary of

the main statistics to detect a single change-point is presented. Second, we point out

the multiple change-points searching algorithms presented in the literature and the lin-

ear models for representing time series, both in the parametric and the non-parametric
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approach. Third, we introduce the locally stationary and piecewise stationary processes.

Finally, we show examples of piecewise and locally stationary simulated and real time

series where the detection of change-point and segmentation seems to be important.

Chapter 2 deals with the problem of detecting, locating and estimating a single or mul-

tiple changes in the parameters of a stationary process. We consider changes in the

marginal mean, the marginal variance, and both the mean and the variance. This is

done for both uncorrelated, or serial correlated processes. The main contributions of

this chapter are: a) introducing a modification in the theoretical model proposed by

Al Ibrahim et al. (2003) that is useful to look for changes in the mean and the autore-

gressive coefficients in piecewise autoregressive processes, by using a procedure based on

the Bayesian information criterion; we allow also the presence of changes in the variance

of the perturbation term; b) comparing this procedure with several procedures available

in the literature which are based on cusum methods (Inclán and Tiao (1994), Lee et al.

(2003)), minimum description length principle (Davis et al. (2006)), the time varying

spectrum (Ombao et al. (2002)) and the likelihood ratio test (Killick et al. (2012)). For

that, we compute the empirical size and power properties in several scenarios and; c)

apply them to neurology and speech recognition datasets.

Chapter 3 studies processes, with constant conditional mean and dynamic behavior in

the conditional variance, which are also affected by structural changes. Thus, the goal is

to explore, analyse and apply the change-point detection and estimation methods to the

situation when the conditional variance of a univariate process is heteroskedastic and

exhibits change-points. Procedures based on informational approach, cusum statistics,

minimum description length and the spectrum assuming an heteroskedastic time series

are presented. We propose a method to detect and locate change-points by using the BIC

as an extension of its application in linear models. We analyse comparatively the size

and power properties of the procedures presented for single and multiple change-point

scenarios and illustrate their performance with the S&P 500 returns.
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Chapter 4 analyses the problem of detecting and estimating smooth change-points in the

data, where the Linear Trend change-point (LTCP) model is considered to represent a

smooth change. We propose a procedure based on the Bayesian information criterion

to distinguish a smooth from an abrupt change-point. The likelihood function of the

LTCP model is obtained, as well as the conditional maximum likelihood estimator of the

parameters in the model. The proposed procedure is compared with the outliers analy-

sis techniques (Fox (1972), Chang (1982), Chen and Liu (1993), Kaiser (1999), among

others) performing simulation experiments. We also present an iterative procedure to

detect multiple smooth and abrupt change-points. This procedure is illustrated with the

number of deaths in traffic accidents in Spanish motorways.

Finally, Chapter 5 summarizes the main results of the thesis and proposes some exten-

sions for future research.
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“Linearity cannot hold in the large (or globally) although it may hold in the small (or
locally)”.

Howell Tong.
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Chapter 1

Introduction

1.1 The segmentation and the change-point problem in time
series

Time series segmentation and change-point detection and location, has many applica-
tions in several disciplines, as neurology, cardiology, speech recognition, finance and
others. Consider questions like: what are the main features of the brain activity when
an epileptic patient suffers a seizure?; is the heart rate variability reduced after ischemic
stroke?; what are the most useful phonetic features to recognizing speech data?; is the
conditional volatility of the financial assets constant? These questions can often be an-
swered by performing segmentation analysis. The reason is that, many series in these
fields do not behave as stationary, but can be represented by approximately stationary
intervals or pieces.

The goal of segmentation is to obtain those intervals in which the time series behaves as
approximately stationary. Thus, the segmentation aims to: 1) find the periods of stabil-
ity and homogeneity in the behavior of the process; 2) identify the moments of change,
called change-points; 3) represent the regularities and features of each piece; and 4) use
this information in order to determine the pattern in the nonstationary time series.

In this thesis, we consider the problem of modeling a nonstationary time series by seg-
menting the series into blocks which can be fitted by aproximately stationary repre-
sentations. We are concerned with the segmentation of such nonstationary time series,
and the main objective involves describing, studying comparatively, and applying to real
data, a number of segmentation techniques.

Segmentation analysis aims to answer the following questions: Did a change occur?
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When did the changes occur? If more than one change occur, how can we locate them?
Whereas the first two questions refer to the problem of defining a statistical criteria
for detecting, estimating and locating a change-point, the last one is related with the
difficult task of creating a strategy, implemented in an algorithm, in order to search for
multiple change-points.

There are many approaches for solving the problem of detecting, estimating and locat-
ing a change-point for independent or linear autocorrelated random variables based on
parametric and non-parametric methods. The main idea consists of minimizing a loss
function which involves some criteria or statistic selected to measure the goodness of
the segmentation performed. The computation of those statistics is useful to detect a
potential change-point, by comparing the corresponding statistic computed under the
hypothesis of no changes with the one assuming a change-point at the most likely period
(Kitagawa and Gersch (1996), Chen and Gupta (1997), Al Ibrahim et al. (2003) and
Davis et al. (2006)).

One of the indicators of goodness of fit most often used to segment a time series is the
cumulative sums or cusums. Page (1954) defined cusum as a sequential analysis tech-
nique for statistical quality control. It is typically used for monitoring change detection
of the parameters characterizing a process, for example, the mean or the variance ei-
ther marginal or conditional. A cusum statistic is a cumulative sum of terms (usually
original data or residuals) and when this sum is statistically high, it is assumed that a
change-point had ocurred. Page (1954, 1955, 1957) made cusum a very intuitive method
in order to detect change-points and his ideas have found statistical applications in many
fields different from quality control. In fact, many procedures for change-point detection
are based on cusum statistics (Inclán and Tiao (1994), Lee et al. (2003), Kokoszka and
Leipus (1999), Lee et al. (2004) among others).

Other criteria for detecting change-points, are Akaike and Bayesian information criteria
(AIC and BIC) (see Kitagawa and Akaike (1978) and Yao (1988) respectively). Chen
and Gupta (1997) considered the BIC for locating the number of change-points assuming
i.i.d. observations. Al Ibrahim et al. (2003) extended the test for changes in the mean
and the coefficients of autoregressive processes. Liu et al. (1997) modified the BIC for
weakly dependent processes, by considering a different penalty function.

Davis et al. (2006) applied the minimum description length (MDL) principle of Rissanen
(1989) where the best-segmentation is the one that makes the maximum compression
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of the data possible. Finally, Adak (1998), Donoho et al. (1998), Ombao et al. (2002),
and Maharaj and Alonso (2007) performed the segmentation using a cost function based
on the spectrum, called evolutionary spectrum, because the calculation is made by the
spectrum of each stationary interval.

When multiple change-points are expected, as its number and location are usually un-
known, the multiple searching issue is very intricate. It is a challenge to jointly estimate
the number of structural breaks, their location, and also provide a estimation of the
model representing each interval. This problem has received considerably less attention
than the detection and estimation of a single change-point, due to the difficulty in han-
dling the computations. Many algorithms exist to calculate the optimal number and
location of the change-points, some of them were presented by Scott and Knott (1974),
Inclán and Tiao (1994), Auger and Lawrence (1989) Jackson et al. (2005) and Davis
et al. (2006).

Binary segmentation (Scott and Knott (1974), Sen and Srivastava (1975), Vostrikova
(1981)) addresses the issue of multiple change-points detection as an extension of the
single change-point problem. The segmentation procedure sequentially or iteratively ap-
plies the single change-point detection procedure, i.e. it applies the test to the total
sample of observations, and if a break is detected, the sample is then segmented into two
sub-samples and the test is reapplied. This procedure continues until no further change-
points are found. This simple method can consistently estimate the number of breaks
(e.g. Bai (1997), Inclán and Tiao (1994)) and is computationally efficient, resulting in
an O(n log n) calculation (Killick et al. (2011). In practice, binary segmentation become
less accurate with either small changes or changes that are very close on time.

Segment neighbourhood (Auger and Lawrence (1989)) and Optimal partitioning (Jack-
son et al. (2005)) methods search the entire segmentation space using dynamic pro-
gramming. A consequence of the exhaustive search is that the method has significant
computational cost, O(mn2). Davis et al. (2006) used a genetic algorithm for detecting
the optimal number and location of multiple change-points. These algorithms make a
population of individuals or chromosomes “to evolve” subject to random actions similar
to those that characterize the biologic evolution (i.e. crossover and genetic mutation), as
well as a selection process following a certain criteria which determines the most adapted
(or best) individuals that survive the process, and the less adapted (or the “worst” ones),
who are ruled out. In general, usual methods for applying genetic algorithm, encode each
parameter using binary coding or gray coding. Parameters are concatenated together in
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a vector to create a chromosome.

Finally, other approximate algorithms set a priori the segmentation structure. For exam-
ple, some procedures perform a dyadic segmentation to detect multiple change-points.
Under this structure, time series can be divided into a number of blocks which are a
power of 2. The algorithm begins setting the smallest possible size of the segmented
blocks or the maximum number of blocks. Ideally, the block size should be small enough
so that one can ensure the stationary behavior, but not too small to guarantee good
properties of the estimates. For instance, Stoffer et al. (2002) recommended that the
block size should be at least 28. Then, the following step is to segment the time se-
ries in 28, 27, ..., 21, 20 blocks, which is equivalent to consider different resolution levels
j = 8, 7, ..., 1, 0, respectively. At each level j, we compare a well-defined cost function
computed in that level j (father block) with respect to that computed in the level j − 1
(two children blocks). The best segmentation is that which minimize the cost function.

This Chapter is organized as follows. Section 2 presents the linear models for represent-
ing time series, both in parametric and non-parametric approach. Section 3 introduces
locally stationary and piecewise stationary processes. Section 4 shows examples of piece-
wise and locally stationary simulated and real time series. Finally, Section 5 presents
the structure of this thesis.

1.2 Linear time series

We assume that a time series is a realization of a stochastic process. i.e. a set of random
variables {xt}, where the values of the index t correspond to ordered periods of time. For
every t = 1, 2, ..., T , it is defined the variable xt and the sequence of regular time-ordered
observations of this variable taken at successive, in most cases equidistant, periods of
time, form a time series.

The stochastic process is characterized by the joint probability distribution of the vari-
ables x1, ..., xt, ..., xT , for every value of t, called finite-dimensional distributions of the
process, which determine the distribution of each subset of the variables in the sequence.
Since only one realisation for each variable is observed, we need the stationary assump-
tion to characterize the process by the observations. A time series, xt, is said to be
strictly stationary if: i) the marginal distribution of the variables in the stochastic pro-
cess are identical, and ii) the finit-dimensional joint distributions of a set of the variables
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in the stochastic process only depend on the lags between them.

These conditions imply that the joint probability distribution does not change when
shifted in time, that is:

F (xi, xj , ..., xk) = F (xi+h, xj+h, ..., xk+h) ∀h = ±1,±2,±3, ...

As strict stationarity is a very strong condition, weak stationarity only requires that
the first and second moments do not vary with respect to time. Thus, a stochas-
tic process, xt, is weakly stationary if, for all t: i) E(xt) = µ, ii) Var(xt) = σ2, iii)
E[(xt − µ)(xt−k − µ)] = γk, k = 0,±1,±2,±3, ....

Every discrete covariance stationary time series, xt, can be represented by the Wold
representation theorem, which establishes:

xt = Ψ(L)εt + ηt = (ψ0 + ψ1L+ ψ2L
2 + ...)εt + ηt =

∞∑
j=0

ψjεt−j + ηt,

where L is the lag operator, εt is a white noise process with variance σ2
ε , ψj , j = 0, 1, ...

are the coefficients or weights of the moving average and ηt is a deterministic com-
ponent which can be null if the process has no mean or trends. The ψ′js verify that∑∞

j=1 |ψj | < ∞ to guarantee the stability of the process. The usefulness of the Wold
Theorem is that it allows the dynamic evolution of a variable xt to be approximated by
a linear model.

The Wold representation theorem is the basis of autoregressive moving average (ARMA)
models, which were adopted in the seventies, in order to perform time series forecasts.
Since the Wold representation depends on infinit number of parameters, ARMA(p,q)
models are a parametric alternative that may have only a few coefficients where the
infinit order polynomial Ψ(L) can be approximated by the cocient of two finit orders
polynomials, such that Ψ(L) = Θ(L)

Φ(L) = 1−θ1L−θ2L2−...−θqLq

1−φ1L−φ2L2−...−φpLp . Thus, any stationary co-
variance process, xt, can be represented as:

xt =
1− θ1L− θ2L

2 − ...− θqLq

1− φ1L− φ2L2 − ...− φpLp
εt + ηt, (1.2.1)

where φ1, φ2, ..., φp and θ1, θ2, ..., θq are the autoregressive and the moving average coef-
ficients, respectively.
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The equivalent non-parametric representation of a covariance-stationary time series xt
is given by the Cramér representation theorem, which establishes that:

xt = µ+
∫ π

−π
A(ω)exp(iωt)dZ(ω) (1.2.2)

where ω is the frequency in radians, the complex exponentials exp(iωt) are the building
blocks of this stochastic representation, A(ω) is the transfer function and Z(ω) is a
complex valued zero-mean normal process on the frequency ω ∈ [−π, π], with Z̄(ω) =
Z(−ω) and orthonormal increments. Both, A and Z are constant in time t. The transfer
function A maps the input sequence εt into output sequence xt, such that

A(ω) =
∞∑
k=0

ak exp (−iω) ,

where the weights ak are real numbers telling the importance of the different periodic
components of the time series.

Note that the above representation defines a stable relationship between the contempo-
rary variable xt with its own past, such that:

xt = f (xt−1, xt−2, ...) + εt, t = 1, 2, ...T, (1.2.3)

where the function f (.) remains constant for all t.

In the real world the relationship between a contemporary variable with respect to its
own past can be non-stationary and non-linear. Often, linear models are a good approx-
imation, but there are cases when time series are affected by episodies that change the
parameters generating the process. In that cases, the above representations cannot be
used. In the following section we introduce the concept of piecewise stationary processes
as a way to model this type of non-stationary or/and non-linear behavior.

1.3 Non-stationarity and piecewise stationary processes

In the previous section, we defined the conditions for the stationarity of a process. When
those conditions do not hold, the process is non-stationary. In this thesis we are inter-
ested in a particular type of non-stationarity: that which emerges when the process
is stationary within exhaustive and non-overlapped intervals of the sample, exhibiting
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smooth transitions from one interval to another. Often, in the literature, piecewise sta-
tionary is used to refer to sharp or abrupt changes, whereas, locally stationary is used for
smooth transitions. Thus, a time series process xt, t = 1, ..., T , is said to be piecewise
stationary if

xt = xt,j , kj−1 ≤ t < kj , (1.3.1)

where xt,j are stationary processes and j = 1, ...,m + 1. Intuitivelly, it refers to a time
series xt of length T composed only by m+ 1 stationary intervals, where 1 < k1 < k2 <

... < km−1 < km < T represent the change-points. For instance, a very simple piecewise
stationary process is the piecewise constant, where {xt,j} = cj +σjεt, cj is the intercept,
σ2
j is the scale and {εt} is iid with zero mean and unitary variance.

The first author considering a piecewise linear behavior was Howell Tong (1983), who
introduced Threshold autoregressive (TAR) and Self-exciting threshold autoregressive
(SETAR) models. In these models, the function f in the equation (1.2.3), is approxi-
mated by linear behavior in intervals.

To introduce briefly TAR models, suppose as an example, that f (xt−1, xt−2, ...) = x3
t−1

which is presented in figure 1.1. This function can be approximated by a TAR(1) model

xt =


c1 + φ(1)xt−1 + ε

(1)
t xt−1 ≤ P1

c2 + φ(2)xt−1 + ε
(2)
t P1 < xt−1 ≤ P2

c3 + φ(3)xt−1 + ε
(3)
t xt−1 > P2

where ε(i)t i = 1, 2, 3 is an incorrelated N(0, σ2
i ) process. In the figure (1.1), the parame-

ters φ(1) and φ(3) are equal and different of the parameter φ(2). The goal is to determine
P1 and P2, the points where the fitted lines change their parameters.

TAR representation means that there is a linear model for different values of xt−1, the
threshold variable. The values of xt−1, which determine the change-points, are called
thresholds (those corresponding to P1 and P2 ). When the autoregressive order is greater
than one, it is assumed that the threshold variable is one of the lags of xt. In SETAR
models, the threshold is given by a variable which is different from one of the xt’s lags.

Davis et al. (2006) gives a similar parametrical definition of a piecewise autoregressive
process such that

7



Figure 1.1: Approximation of the function f (xt−1, xt−2, ...) = x3
t−1 by a piecewise linear

model

xt = γj + φj1xt−1 + ...+ φjpjxt−pj + σjεt, if kj−1 < t < kj , (1.3.2)

where {εt} is iid(0,1). Now there is not a threshold variable. In this parametric model,
γj represents the level, pj is the order of the autoregressive process, (φj1, ..., φjpj ) and
σ2
j the scale, all referred to the epoch or stationary interval jth.

Piecewise stationarity is the concept which just justifies the segmentation of a process.
However, many processes are neither stationary nor piecewise stationary. The reason
could be that the transition from one interval to another is smooth, or because the pro-
cess is changing slowly and continously. Fortunately, many of such processes can be
approximated by piecewise stationary processes.

For instance, let us consider the simulated process:
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xt = φ

(
t

T

)
xt−1 + εt, x1 = 0,

φ

(
t

T

)
=

(
1 +

1
2

exp
(
−4
(
t

T

)))−2

,

εt iid(0, 1),

t = 1, 2, ..., T = 512.

In this case, non-stationarity is due to smooth and almost continuous changes in the au-
toregressive parameter, which behaves like a generalized logistic function of the rescaled
time t/T . Figure 1.2 presents the coefficient evolution and the resulting time series re-
spectively. Meanwhile φ increase, the second plot shows a increment of the variance of
the process. We can approximate the non-stationary behavior of this process by seg-
menting the sample using a piecewise AR(1) stationary process.

Figure 1.2: Left panel: Time-varying coefficient AR(1) evolution, such that, φ
(
t
T

)
=(

1 + 1
2exp

(
−4
(
t
T

)))−2. Right panel: Time series evolution: xt = φ (t/T )xt−1 + εt, x1 =
0 and εt iid(0, 1).

We considered four equally sized intervals, [1,128], (128,256], (256,384] and (384,512],
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and for those intervals we estimate AR(1) models. The estimated autoregressive param-
eters are 0.6458, 0.7463, 0.8815 and 0.977, respectively. We show the similarity between
simulated and fitted time series in the figure (1.3).

Figure 1.3: Time-varying coefficient AR(1) process of the figure 1.2 and the fitted piece-
wise AR(1) time series with four equally sized pieces

To present a formal definition of this time-varying processes, first is necessary to define
a general class of non-stationary processes. Dahlhaus (1997), Adak (1998) and others,
working in the frequency domain, present a time varying spectral representation analog
to equation (1.2.2), but where the transfer function A(ω) is not constant over time. We
can define a time varying 2π periodic transfer function A( tT , ω) in (0, 1]x[−π, π), which
varies with the rescaled time t/T and the frequency ω. Then, this non-stationary process
can be represented as:

xt = µ

(
t

T

)
+
∫ π

−π
A

(
t

T
, ω

)
exp (iωt) dZ (ω) (1.3.3)

The first argument of A
(
t
T , ω

)
, t
T , is scaled to live on the unit interval; another property

is that for all ω, A
(
t
T , ω

)
is continous in t

T .

Piecewise stationary processes are a particular case of the processes defined by equation
(1.3.3). Adak (1998) establishes that a piecewise stationary process with a single change-
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point holds:

A

(
t

T
, ω

)
=


A(1) (ω) , t

T ≤
k0
T

A(2) (ω) , t
T > k0

T

(1.3.4)

where A(1) and A(2) are the transfer functions in the Cramér representation of the sta-
tionary process given by equation (1.2.2).

Dahlhaus (1997) showed that the class of processes represented by (1.3.3) and (1.3.4)
is too restrictive and defined the locally stationary processes. A process is said to be
locally stationary with transfer function A0 if there exists a representation

xt = µ

(
t

T

)
+
∫ π

−π
A0
t (ω) exp (iωt) dZ (ω) , t = 1, ..., T, T > 0. (1.3.5)

Neumann and Von Sachs (1997) formulate smoothness asumptions of A in t
T , which

define the departure from stationarity, but ensure the locally stationarity. It is assumed
that there exists a constant K, such that for all T ,

supt,ω
∣∣A0

t (ω)−A (t/T, ω)
∣∣ ≤ KT−1. (1.3.6)

which deals with the smoothness of A in t
T such that it is allowed to change only slowly

over time.

Note that in the above definition, a new transfer functions A0
t (ω), different from A( tT , ω)

is introduced. This complication is necessary, in order to model a class of processes
which is sufficiently rich to cover interesting applications.

Intuitively, locally stationary processes are nonstationary time series whose behavior can
locally be approximated by a stationary process. In this framework, some feature of
the process such as the covariance function for some lag, the spectral density at some
frequency or the parameter of an AR(1) (like the time series in the figure (1.2)) are
functions which change slowly over time. This idea sets that a locally stationary pro-
cesses can be approximated by piecewise stationary processes. Note, that the condition
in equation (1.3.6) and the definition (1.3.5) formally establishes this relationship.
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1.4 Examples of locally and piecewise stationary time series

In this section we present both simulated and real time series. Some of them behave
locally stationary and the other piecewise stationary.

Let begin with a trivial example. Consider a process with a level shift: the first half
of the sample behaves as a white noise with standard deviation equal to 2, changing
its mean to 5 in the second half of the sample. The figure (1.4) presents this process.
Clearly, a segmentation method should be able to discriminate the level shift.

Figure 1.4: Incorrelated standard process in 0 ≤ t ≤ 256 shifting its mean to 5 in
257 ≤ t ≤ 512.

The second example, presented in the figure (1.5), is a simulated Gaussian white noise
process, the first 256 observations have variance equal to one, whereas the last 256 have
variance equal to 4. The mean in this case, remains the same. Changes in variance
are very common in real processes belonging to different fields. For instance, the assets
returns in the case of a financial crisis or the recordings of the electroencephalogram in
the case of a ischemical stroke.
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Figure 1.5: Incorrelated standard process in 0 ≤ t ≤ 256 shifting its standard deviation
to 2 in 257 ≤ t ≤ 512.

The third example is a locally stationary time series simulated from a stationary AR(2)
process which was modulated by a time-varying function of the form:

xt = a(t,Θ)yt + εt

where εt is a white noise with unitary variance and a(t,Θ) = a(t, θ1, θ2) = θ1texp(−θ2t)
is a modulating function depending on t and Θ = (θ1, θ2); yt = φ1yt−1 + φ2yt−2 + ωt

is an AR(2) process, and ωt is a standard Gaussian white noise process. We found
this modeling scenario in the paper of Maharaj and Alonso (2007), who used [φ1, φ2] =
[0.966,−0.600] and [θ1, θ2] = [exp(−8.492), 0.005] to represent an earthquake pattern.
We present the behavior of the modulated AR(2) process in the figure (1.6) and the
evolution of the coefficients a(t,Θ)[φ1, φ2] in the figure (1.7).

Now consider the time series in figure (1.8). It represent an electroencephalogram of the
left temporal lobe of a patient with epilepsy, a disease characterized by a set of chronic
neurological disorders manifested in recurrent seizures arising from one or both tempo-
ral lobes of the brain. Previous, during and after a epileptic seizure, the observation

13



Figure 1.6: Modulated AR(2) process

Figure 1.7: Coefficients evolution of the modulated AR(2) process in the Figure (1.6)
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of the electroencephalogram is characterized by different intervals of the brain activity.
Stationary and linear models are not useful, but it is possible to represent the behavior
of such a time series by approximately stationary intervals.

Figure 1.8: Recordings from the electroencephalogram of the left temporal lobe (EEGT3)
during a epileptic seizure of a patient.

Our last example comes from finance and represents the differenced logarithm of the
daily Nasdaq 100 index (period: 1985-2011). It is a stock market index of 100 of the
largest non-financial companies. In Figure (1.9) we observe some atypical data and an
increase in the variance in the second half of the time series. Segmentation methods
should be useful to detect not only atypical punctual behavior, but changes in the con-
ditional volatility when they are applied to this kind of time series.

1.5 Thesis outline

The rest of the thesis is organized in four chapters.

Chapter 2 deals with the problem of detecting, locating and estimating a single or mul-
tiple changes in the parameters characterizing the distribution function, focusing on the
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Figure 1.9: Differenced logarithm of the daily nasdaq 100 index (period: 1985-2008)

marginal mean, the marginal variance, and both in the mean and the variance, both for
uncorrelated and serial correlated processes. We introduce a modification in the theo-
retical models considered in the literature, allowing for changes in mean, variance and
the autocorrelation coefficients, and present a procedure using an information criterion
jointly with the binary segmentation. Al Ibrahim et al. (2003) used the Bayesian in-
formation criterion (BIC) to detect, estimate and locate a change-point in the mean or
the autoregressive coefficients in a piecewise autoregressive model; our modification looks
also for changes in the variance of the perturbation term. We also compare this procedure
with several others available in the literature which are based on cusum methods (Inclán
and Tiao (1994), Lee et al. (2003)), minimum description length principle (Davis et al.
(2006)), the time varying spectrum (Ombao et al. (2002)) and the likelihood ratio test
(Killick et al. (2012)), respectively. We assess the size and power properties of the pro-
cedure in several scenarios and apply them to neurology and speech recognition datasets.

Chapter 3 studies some processes, which typically have constant conditional mean, but
present a dynamic behavior in the conditional variance and which can also be affected
by structural changes. Thus, the goal is to explore, analyze and apply the change-point
detection and estimation methods to the situation when the conditional variance of a
univariate process is heteroskedastic and exhibits change-points. We propose a procedure
to detect and locate change-points by using the BIC as an extension of its application in
linear models. We analyze comparatively the size and power properties of the procedures
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presented for single and multiple change-point scenarios and illustrate with the S&P 500
returns historical data.

The primary goal of the Chapter 4 is to analyse the problem of distinguishing an abrupt
from a smooth or gradual change-point in the data. For this task we propose a model-
based procedure based on BIC where the usually called “Ramp Model”, or “Linear trend
change-point model” (LTCP) is considered to represent the smooth change. The like-
lihood function of the LTCP model is analytically obtained, as well as the conditional
maximum likelihood estimator of the parameters in the model. We compare the proposed
procedure with the outliers analysis techniques (Fox (1972), Chang (1982), Chen and Liu
(1993), Kaiser (1999), among others) for the detection of level shifts and ramp effects.
Second, we present an iterative algorithm to detect and estimate multiple smooth and
abrupt change-points. The iterative procedure is illustrated with the number of deaths
in traffic accidents in Spanish motorways.

Finally, in Chapter 5 a summary of the main results of the thesis are presented and some
extensions are proposed.
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Chapter 2

Segmentation of processes with
change-points in the marginal
distribution

2.1 Introduction

In this chapter we deal with the change-point detection and estimation of processes with

changes in the marginal mean and/or the marginal variance. For illustration purposes

we present two real datasets where the mean and the variance change respectively. Fig-

ure (2.1) represents the monthly number of deaths in traffic accidents in Spanish roads

seasonally differenced in the period 1995-2011. There is evidence that the mean of the

mortality rate has been decreasing since 2004. This fact may be due to the measures

taken by the vial authorities for reducing the risk of a person using the road network.

These measures include strong use of sobriety detectors, lights and reflectors regulations,

speed radars, and the “carnet por puntos” introduced in 2006.

Data presented in Figure (2.2) contains 5762 observations of the recordings of the pho-

netic of the word “greasy”. Researches have been analysing the phonetic of this word

by studying the differences between dialects within United States. This time series was

analysed by Ombao et al. (2002) and Davis et al. (2006). There is a clear intervalic or

piecewise behavior, where the variance presents several change-points. Note that these

intervals could be non stationary, as occurs in the interval begining close to the obser-
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Figure 2.1: Monthly number of deaths in traffic accidents in Spanish roads seasonally
differenced (1996-2011)

vation 1000 and ending around the observation 3200, which corresponds to “EA”.

Other examples where the variance changed were presented in figures (1.8) and (1.9) of

the Chapter (1). Finally, it is possible that both the mean and the variance change in

the period analysed.

The problem we deal in this chapter is the following. Suppose that x1, x2, ..., xT is a

time series process with m change-points at the moments k∗1, ..., k∗m, with 1 ≤ k∗1 ≤ ... ≤

k∗m ≤ T . The density function f (xt/θ), with θ the vector of parameters, is assumed to

be

f (xt/θ) =



f (xt/θ1) , t = 1, ..., k∗1,
f (xt/θ2) , t = k∗1 + 1, ..., k∗2,

.

.

.
f (xt/θm) , t = k∗m−1 + 1, ..., T.

for θ1 6= θ2 6= ... 6= θm.

The values of θi, i = 1, 2, ...,m can be a priori known or unknown and the goal is to
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Figure 2.2: Speech signal of the word GREASY

detect and locate k∗1, k∗2, ..., k∗m, and also estimate θi’s when they are unknown.

Then, in general, the change-point problem consists of testing

H0 : xt ∼ f (xt/θ) , t = 1, ..., T

H1 : xt ∼ f (xt/θ1) , t = 1, ..., k∗1, xt ∼ f (xt/θ2) , t = k∗1 + 1, ..., k∗2, ...

..., xt ∼ f (xt/θm) , t = k∗m−1 + 1, ..., T, for θ1 6= θ2 6= ... 6= θm . (2.1.1)

If the distributions f (xt/θ1) , f (xt/θ2) , ..., f (xt/θm) belong to a common parametric

family, then the change-point problem in (2.4.1) is equivalent to test the null hypothesis:
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H0 : θ1 = θ2 = ... = θm = θ

H1 : θ1 = ... = θk∗1 6= θk∗1+1 = ... = θk∗2 6= ...

... 6= θkm−1+1 = ... = θkm 6= θkm+1 = ... = θT . (2.1.2)

Note that when m = 1, in order to estimate the change-point k∗, (T + 1) hypothesis

are tested: k-th hypothesis Hk means that k∗ = k (so H1 means that the time series

x1, ..., xT has density function f (xt/θ2), and HT+1, f (xt/θ1)).

Most of the parametric methods proposed in the literature for change-point problems

considered a normal model. If the density function is constant over time, the change-

point problem consists on testing whether the mean or the variance registered a change

over the period analysed.

In the following sections of this chapter we present the problem of detecting, locating and

estimating changes in the parameters characterizing the distribution, putting the focus

on the marginal mean, the marginal variance, or both in the mean and variance. The

main contributions of this chapter are: a) introducing a modification in the theoretical

model proposed by Al Ibrahim et al. (2003) that is useful to look for changes in the

mean and the autocorrelation coefficients in piecewise autoregressive processes, by using

a procedure based on the BIC joint with the binary segmentation; we allow also the pres-

ence of changes in the variance of the perturbation term; b) comparing this procedure

with several procedures available in the literature which are based on cusum methods

(Inclán and Tiao (1994), Lee et al. (2003)), minimum description length principle (Davis

et al. (2006)), the time varying spectrum (Ombao et al. (2002)) and the likelihood ratio

test (Killick et al. (2012)). For that, we compute the empirical size and power proper-

ties in several scenarios and; c) apply them to neurology and speech recognition datasets.

Thus, first, in section (2.2) we present some of the methods for independent data: like-
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lihood ratio tests, informational approach and cumulative sums. In section (2.3) we

consider that the parameters driving the autocorrelation of the time series (i.e. autore-

gressive and moving average coefficients) can be also a source of a change-point. We

present informational approach, cusum methods, Auto-PARM and Auto-SLEX for au-

tocorrelated data. Section (2.4) present different algorithms that are useful to search

for multiple change-points. In Section (2.5) we modify the theoretical models consid-

ered in the literature, allowing for changes in mean, variance and the autocorrelation

coefficients and considered the BIC joint with binary segmentation as a procedure. We

also analyse the sensitiveness of cusum critical values to the number of parameters and

the sample size. In section (2.6) we compute and compare the size and the power of

the presented approaches. In section (2.7) they are applied to real data coming from

different disciplines, and finally, section (2.8) presents the conclusions.

2.2 Detecting parameters change with independent data

Let {xt, t = 1, ..., T} be a time series generated by an independent normal stochastic pro-

cess, with parameters
(
µ1, σ

2
)
, ...,

(
µT , σ

2
)
respectively. The problem now is detecting

and locating a change in the mean of the process. The hypotheses of interest are:

H0 : µ1 = µ2 = ... = µT = µ,

H1 : µ1 = ... = µk∗ 6= µk∗+1 = ... = µT . (2.2.1)

where 1 ≤ k∗ < T , the location of the single change-point is unknown.

If we are interested in testing changes in the marginal variance of a normal indepen-

dent time series, {xt, t = 1, ..., T} with parameters
(
µ, σ2

1

)
, ...,

(
µ, σ2

T

)
respectively, the

hypotheses (2.1.2) turn in:

22



H0 : σ2
1 = σ2

2 = ... = σ2
T = σ2 unknown,

H1 : σ2
1 = ... = σ2

k∗ 6= σ2
k∗+1 = ... = σ2

T (2.2.2)

where 1 < k∗ < T , is the unknown position of the single change-point. Under H0 the

variance of the process is constant over time, meanwhile under H1, there is a point

t = k∗ < T at which a change in variance occurs.

There are situations where both the mean and the variance registered a change, simul-

taneously. Let x1, x2, ..., xT be a sequence of independent normal random variables with

parameters
(
µ1, σ

2
1

)
,
(
µ2, σ

2
2

)
, ...,

(
µT , σ

2
T

)
, respectively. The interest here is to test the

hypothesis:

H0 : µ1 = ... = µT = µ and σ2
1 = ... = σ2

T = σ2
(
µ, σ2 unknown

)
(2.2.3)

versus the alternative:

H1 : µ1 = ... = µk∗ ≤ µk∗+1 = ... = µT

and

σ2
1 = ... = σ2

k∗ ≤ σ2
k∗+1 = ... = σ2

T . (2.2.4)

The initial works on the change-point problem assumed a change independent data and

studied the presence of a single shift in the marginal mean. The seminal papers of

Page (1954, 1955, 1957) assumed the parameters corresponding to each segment known

a priori. The author introduced cumulative sums (cusums) in order to take corrective

actions, but his method has two limitations: first, data cannot have autocorrelation and,

second, in order to detect one single change-point the underlying assumption is that the
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parameters corresponding to each segment are known.

Research on change-points in the marginal variance of uncorrelated time series began

with the paper of Hsu, Miller and Wichern (1974). They proposed a normal probability

model with a nonstationary variance subject to step changes at irregular time points.

Their model is an alternative to the Pareto distribution in order to model stock returns.

Hsu (1977) studied the detection of variance shifts at an unknown points in a sequence

of independent observations, focusing on the detection of change-points one at a time,

to avoid the heavy computational burden involved in looking for them simultaneously.

In the following sections, we will present the most significant approaches for studying

the change-point problem for independent data in the recent literature. First, we will

discuss the use of different loss functions and penalizations for each of the cases presented

above, by considering a single change-point. We will refer to the following approaches:

• Likelihood ratio test (LR),

• Informational approach, using the Akaike and Bayesian (also called Schwarz) in-

formation criteria,

• Cumulative sums (referred in the literature as cusum).

In what follows, k̂ refers to the estimation of the true change-point location k∗ by ap-

plying a test statistic.

2.2.1 Likelihood ratio test

The likelihood ratio test (LR) is a common used statistic for comparing the fit of two

models or the likelihood of two hypotheses. The computation of the LR statistic for a

change-point problem is given by the formula:

LR = −2 logL0(θ) + 2 logL1(θ1, ..., θT ) (2.2.5)
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where L0(θ) and L1(θ1, ..., θT ) are the likelihood function under H0 and H1 in (2.1.2),

respectively.

LR test to detect a change-point in the mean of a sequence of Gaussian univariate in-

dependent data, have been studied by many authors. Sen and Srivastava (1975) showed

that the LR statistic is the maximum t-Student statistic for testing for a difference in

mean between the observations before and after the change-point. Hawkins (1977) and

Worsley (1979) obtained exact null distributions for the case of changes in the mean of

Normal independent observations with known and unknown variances, respectively. Hor-

vath (1993) computes the asymptotic distribution of the maximum likelihood ratio test

when we want to check whether the parameters (both the mean and variance) of normal

independent observations have changed at an unknown point. More recent studies that

used LR to detect change-points are referred to serial correlated or/and multivariate data.

LR statistic can be constructed when the model generating the time series is known.

The main problem is that the statistic does not include any penalization term in order

to prevent the excessive segmentation of the sequence analysed. Moreover, LR point of

view was criticized because of the fact that maximum likelihood estimates takes no ac-

count of the uncertainty about the unknown parameters, and can promote complicated

alternative hypotheses with an excessive number of free parameters, promoting the over-

segmentation.

2.2.1.1 Changes in marginal mean

The likelihood ratio approach in order to detect changes in the marginal mean, as pre-

sented in the hypothesis test (2.2.1), depends on whether the variance σ2 is known or

unknown. Following Chen and Gupta (2011), we assume that σ2 = 1. Under the null

hypothesis, the likelihood function, denoted by L0 (µ), is
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L0(µ) =
(

1√
2π

)T
e−

PT
t=1(xt−µ)2/2

and the maximum likelihood estimator of µ is

µ̂ = x̄ =
1
T

n∑
t=1

xt.

Under H1, the likelihood function L1 (µ1, µT ), is

L1(µ1, µT ) =
(

1√
2π

)T
e−(

Pk
t=1(xt−µ1)2+

PT
t=k+1(xt−µT )2)/2, (2.2.6)

and the maximum likelihood estimators of µ1 and µT are, respectively,

µ̂1 = x̄k =
1
k

k∑
t=1

xt, and µ̂T = x̄T−k =
1

T − k

T∑
t=k+1

xt.

Let

Sk =
k∑
t=1

(xt − x̄k)2 +
T∑

t=k+1

(xt − x̄T−k)2 .

The likelihood function is monotonically decreasing in Sk, and so, the maximum likeli-

hood estimator of k∗, is k̂ such that Sk is minimized over k = 1, ..., T − 1.

Computing (2.2.5) without nuisance constants, and evaluating in the maximum likeli-

hood estimators, the following is obtained:

LR (k) = −2 logL0(µ̂) + 2 logL1(µ̂1, µ̂T ) =
T∑
t=1

(xt − x̄)2 − Sk∗

=
k∑
t=1

(xt − x̄)2 −
k∑
t=1

(xt − x̄k)2 +
T∑

t=k+1

(xt − x̄)2 −
T∑

t=k+1

(xt − x̄T−k)2

= kx̄2
k − 2kx̄x̄k + kx̄2 + (T − k) x̄2

T−k − 2 (T − k) x̄x̄T−k + (T − k) x̄2

= k (x̄k − x̄)2 + (T − k) (x̄T−k − x̄)2 .

The LR statistic to detect a change-point was called U2 in the related papers, which is
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obtained by maximizing the previous expression. Then, the result is,

U2 = max
1≤k≤T−1

{
k (x̄k − x̄)2 + (T − k) (x̄T−k − x̄)2

}
.

Under H0, for arbitrary k, k (x̄k − x̄)2 + (T − k) (x̄T−k − x̄)2 follows a χ2 distribution

with one degree of freedom (Hawkins (1977)). The distribution of U2 is stochastically

larger than χ2
1 because the maximization over k. Hawkins (1977) derived the exact and

asymptotic null distribution of the test statistic U =
√
U2 and Yao and Davis (1986)

derived the asymptotic null distribution of U . They expressed the statistic as:

U = max
1≤k≤T−1

∣∣∣∣∣
∑k

t=1 xt√
T
− k

T

∑T
t=1 xt√
T

∣∣∣∣∣
/[

k

T

(
1− k

T

)]1/2

.

Suppose {B (t) ; 0 ≤ t <∞} is a standard Brownian motion; then under H0, from prop-

erties of the normal random variable,

∑k
t=1 xt − kµ√

T
→ B

(
k

T

)
, 1 ≤ k ≤ T.

Furthermore,

U = max
1≤k≤T−1

∣∣∣∣∣
∑k

t=1 xt√
T
− k

T

∑T
t=1 xt√
T

∣∣∣∣∣
/[

k

T

(
1− k

T

)]1/2

,

= max
Tt=1,...,T−1

∣∣∣∣∣
∑k

t=1 xt√
T
− t
∑T

t=1 xt√
T

∣∣∣∣∣/[t (1− t)]1/2 ,

= max
Tt=1,...,T−1

∣∣∣∣∣
∑k

t=1 xt√
T
− kµ√

T
− t

(∑T
t=1 xt√
T
− Tµ√

T

)∣∣∣∣∣/[t (1− t)]1/2 ,

= max
Tt=1,...,T−1

|B (t)− tB (1)|
/

[t (1− t)]1/2 ,

= max
Tt=1,...,T−1

|B0 (t)|
/

[t (1− t)]1/2 ,

where t = k/T , and B0 (t) = B (t)− tB (1) is the Brownian bridge.

If the variance is unknown, under H0, the maximum likelihood estimator of σ2 is now:
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σ̂2 =
1
T

T∑
t=1

(xt − x̄)2 .

Under H1, the likelihood function is

L1

(
µ1, µT , σ

2
1

)
=

1(√
2πσ2

1

)T e−Pk
t=1(xt−µ1)2/2σ2

1−
PT

t=k+1(xt−µT )2/2σ2
1 , (2.2.7)

and the maximum likelihood estimators of µ1, µT , and σ2
1 are,

µ̂1 = x̄k =
1
k

k∑
t=1

xt, µ̂T = x̄T−k =
1

T − k

T∑
t=k+1

xt,

and

σ̂2
1 =

1
T

[
k∑
t=1

(xt − x̄k)2 +
T∑

t=k+1

(xt − x̄T−k)2

]
,

respectively. Let

S =
T∑
t=1

(xt − x̄)2 and T 2
k =

k (T − k)
T

(x̄k − x̄T−k)2 .

The likelihood procedure-based statistic is given by

V = max
1≤k≤T−1

|Tk|
S
. (2.2.8)

Worsley (1979) obtained the null distribution of V .

2.2.1.2 Changes in marginal variance

Under H0 in the test hypothesis presented in 2.2.2, the log likelihood function is:

logL0

(
σ2
)

= −T
2

log 2π − T

2
log σ2 −

∑T
t=1 (xt − µ)2

2σ2
.
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Let σ̂2 be the maximum likelihood estimator of σ2 under H0 such that

σ̂2 =
∑T

t=1 (xt − µ)2

T
,

and the maximum likelihood is

logL0

(
σ̂2
)

= −T
2

log 2π − T

2
log σ̂2 − T

2
.

Under H1, the log likelihood function is:

logL1

(
σ2

1, σ
2
T

)
= −T

2
log 2π − k

2
log σ2

1 −
T − k

2
log σ2

T

−
∑k

t=1 (xt − µ)2

2σ2
1

−
∑T

t=k+1 (xt − µ)2

2σ2
T

.

Let σ̂2
1, σ̂2

T , the maximum likelihood estimators of σ2
1, σ2

T respectively; then,

σ̂2
1 =

∑k
t=1 (xt − µ)2

k
,

σ̂2
T =

∑T
t=k+1 (xt − µ)2

T − k
,

and the maximum log-likelihood is:

logL1

(
σ2

1, σ
2
T

)
= −T

2
log 2π − k

2
log σ̂2

1 −
T − k

2
log σ̂2

T −
T

2
.

Then the likelihood-ratio (LR) procedure statistic for detecting a change in the marginal

variance is

λT = max
1<k<T−1

[
T log σ̂2 − k log σ̂2

1 − (T − k) log σ̂2
T

]1/2
.

Notice that, to be able to obtain the maximum likelihood estimators, it is only possible to

detect changes for 2 ≤ k ≤ T − 2. In many situations, µ remains common but unknown.

Under this condition, the likelihood procedure can still be applied. Now, the maximum

log likelihood is:
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logL0

(
σ̂2, µ̂

)
= −T

2
log 2π − T

2
log σ̂2 − T

2

where σ̂2 =
∑T

t=1 (xt − x̄)2 /T and µ̂ = x̄ are the maximum likelihood estimators of σ2

and µ, respectively. Under H1 the log likelihood function is

logL1

(
µ, σ2

1, σ
2
T

)
= −T

2
log 2π − k

2
log σ2

1 −
T − k

2
log σ2

T

−
∑k

t=1 (xt − µ)2

2σ2
1

−
∑T

t=k+1 (xt − µ)2

2σ2
T

.

and the likelihood equations are:



0 = σ2
T

∑k
t=1 (xt − µ)2 + σ2

1

∑T
t=k+1 (xt − µ)2

σ2
1 = 1

k

∑k
t=1 (xt − µ)2

σ2
T = 1

T−k
∑T

t=k+1 (xt − µ)2

where the solutions of µ, σ2
1 and σ2

T are the maximum likelihood estimators. This system

of equations will not give us the closed forms for µ̂, σ̂2
1 and σ̂2

T , but it is possible to get

approximate solution using iteration methods (Chen and Gupta (2011)). Under some

regularity conditions (Denis and Schnable, 1983), the solution will yield the unique max-

imum likelihood estimator, and the log maximum likelihood under H1 can be expressed

as

logL1

(
µ̂, σ̂2

1, σ̂
2
T

)
= −T

2
log 2π − k

2
log σ̂2

1 −
T − k

2
log σ̂2

T −
T

2
,

where µ̂, σ̂2
1 and σ̂2

T are the numerical solutions of the above system of equations, and

2 ≤ k ≤ T − 2.
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2.2.1.3 Changes in both marginal mean and variance

In this section, inference about both the mean and variance changes using likelihood ratio

is discussed. We assume that x1, x2, ..., xT is a sequence of independent normal random

variables with parameters
(
µ1, σ

2
1

)
,
(
µ2, σ

2
2

)
, ...,

(
µT , σ

2
T

)
, respectively. The interest here

is to test the hypothesis (Chen and Gupta (1999)):

H0 : µ1 = ... = µT = µ and σ2
1 = ... = σ2

T = σ2
(
µ, σ2 unknown

)
(2.2.9)

versus the alternative:

H1 : µ1 = ... = µk1 ≤ µk1+1 = ... = µk2 ≤ ... ≤ µkm+1 = ...µT

and

σ2
1 = ... = σ2

k1 ≤ σ
2
k1+1 = ... = σ2

k2 ≤ ... ≤ σ
2
km+1 = ...σ2

T .

or, as discussed previously, an iterative algorithm can be applied to test (2.2.3) versus

the alternative hypothesis (2.2.4). Under H1, the log likelihood function is

logL1

(
µ1, µT , σ

2
1, σ

2
T

)
= −T

2
log 2π − k

2
log σ2

1 −
T − k

2
log σ2

T

− 1
2σ2

1

k∑
t=1

(xt − µ1)2 − 1
2σ2

T

T∑
t=k+1

(xt − µT )2 .

Let µ̂1, µ̂T , σ̂2
1 and σ̂2

T be the maximum likelihood estimators under H1 of µ1, µT , σ2
1

and σ2
T , respectively. Then, the maximum log likelihood is

logL1

(
µ̂1, µ̂T , σ̂

2
1, σ̂

2
T

)
= −T

2
log 2π − k

2
log σ̂2

1 −
T − k

2
log σ̂2

T −
T

2
(2.2.10)

The likelihood-ratio procedure is (Lehmann and Romano (2005)):

ΛT = max
2≤k≤T−2

{
σ̂T

σ̂1
kσ̂T

T−k

}
.
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The exact null distribution is not yet available in the literature. Horvath (1993) derived

the asymptotic null distribution of the function 2 log ΛT . For large T , the asymptotic

null distribution of this function is

max
1<k<T−1

{
T log

1
T
χ2
T−1 − k log

1
k
χ2
k−1 − (T − k) log

1
T − k

χ2
T−k−1

}
,

where χ2
j denote the chi-square random variable with j degrees of freedom.

2.2.2 Information criteria approach

A key problem in segmentation using LR statistic is that of splitting up into too many

pieces (Killick et al. (2012)). This problem is called oversegmentation. In order to im-

prove the potential over-segmentation that is obtained with the likelihood ratio method,

the application of information criteria is used to detect and estimate the change-points.

Information criteria are different measures of the relative goodness of fit of a statistical

model that combine the likelihood of the model and a penalization term depending on

the number of estimated parameters and the sample size.

The first and most popular of the information criteria is the Akaike information criterion

(AIC), which was introduced in 1973 for model selection in statistics. This criterion has

found many applications in time series, outliers detection, robustness and regression

analysis. AIC is defined as:

AIC = −2 logL
(
θ̂
)

+ 2p,

where L
(
θ̂
)

is the maximum likelihood of the model and p is the number of free pa-

rameters. If σ̂2
MV is the maximum likelihood estimator of σ2, an equivalent formula

is

AIC = T log σ̂2
MV + 2p.

A model that minimizes the AIC is considered the appropriate model. The limitation of
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the minimum estimated AIC is that it is not an asymptotically consistent estimator of

the model order (Schwarz (1978)).

Another information criterion was introduced by Schwarz in 1978, and commonly is

referred as BIC or SIC. The fundamental difference with the AIC is the penalization

function, which punishes more the excesive number of parameters included in the model

and gives an asymptotically consistent estimate of the order of the true model. BIC is

defined as

BIC = −2 logL(θ̂) + p log T,

where L(θ̂) is the maximum likelihood function for the model, p is the number of free

parameters θ in the model, and T is the length of the time series. In this setting we have

two models corresponding to the null and the alternative hypotheses. Equivalenty, the

BIC can be written as

BIC = T log σ̂2
MV + p log T.

Let BIC0(T ) the BIC under H0 in (2.1.2) where no changes occur in the process along

whole the sample and BIC1(k) the criterion assuming that there is a change-point at

t = k, where k could be, in principle, 1, 2, ..., T .

The rejection or not of H0 is based on the principle of minimum information criterion.

That is, we do not reject H0 if BIC0(T ) < minkBIC1(k), because the BIC computed

assuming no changes is smaller than the BIC calculated supposing the existence of a

change-point at the most likely k, that is, in the value of k where the minimum BIC

is achieved. On the other hand, H0 is rejected if BIC0(T ) > BIC1(k) for some k and

estimate the position of the change-point k∗ by k̂ such that

BIC(k̂) = min2<k<TBIC1(k).
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Chen and Gupta (1997) proposed a procedure which combine BIC and the binary seg-

mentation1 to test for multiple change-points in the marginal variance, assuming inde-

pendent observations. In this article BIC is used for locating the number of breaks in the

variance of stock returns. Liu et al. (1997) modified the BIC by adding a larger penalty

function and Bai and Perron (1998) considered criteria based on squared residuals. In

the following section we present the approach of Chen and Gupta (1997) for testing a

single change-point in the variance of independent normal data.

2.2.2.1 BIC for changes in marginal variance

Consider the test hypothesis given by (2.2.2), which implies a change-point in the vari-

ance. The BIC under H0 is

BIC0(T ) = T log σ̂2 + log T

and the BIC assuming a change in k = 2, ..., T − 2 is

BIC1(k) = k log σ̂2
1 + (T − k) log σ̂2

T + 2 log T,

where

σ̂2 =
1
T

T∑
t=1

(xt − µ)2, σ̂2
1 =

1
k

k∑
t=1

(xt − µ)2 and σ̂2
T =

1
T − k

T∑
t=k+1

(xt − µ)2.

2.2.2.2 BIC for changes in both marginal mean and variance

Now, consider the hypothesis test in (2.2.3) and (2.2.4) which implies a change-point

both in the mean and the variance of the process. BIC under H0 is given by

BIC0(T ) = T log σ̂2 + 2 log T.

1Binary segmentation is a searching procedure in order to detect multiple change-points in one time
series. We will explain it in section 2.4.
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Under H1, BIC for k, 2 ≤ k ≤ T − 2, BIC1(k) is

BIC1(k) = k log σ̂2
1 + (T − k) log σ̂2

T + 4 log T,

where σ̂2
1 = k−1

∑k
t=1 (xt − x̄k)2, x̄k = k−1

∑k
t=1 xt, σ̂

2
T = (T − k)−1∑T

t=k+1 (xt − x̄T−k)2

and x̄T−k = (T − k)−1∑T
t=k+1 xt are the maximum likelihood estimators of σ2

1, µ1, σ2
T

and µT respectively.

The estimator of the change-point k∗ is given by k̂ such that

BIC
(
k̂
)

= min
2≤k≤T−2

BIC1 (k) .

Note that in order to obtain the maximum likelihood estimators of the variances, it is

possible only detecting changes located at k for 2 ≤ k ≤ T − 2.

Information criteria provide an extraordinary tool for exploratory data analysis without

requirement of specifying either the distribution or the significant level α. However, when

BIC0(T ) and the minimum of the BIC1(k) are very close, one may question whether the

small difference among them is caused by the fluctuation of the data, and thus whether

there is any change at all. To make the conclusion about the change-points statistically

convincing, Chen and Gupta (1997) introduce the significance level α and its associated

critical value cα ≤ 0. Instead of do not rejecting H0 when BIC0(T ) < mink BIC1(k), they

do not reject H0 if BIC0(T ) < minkBIC1(k) + cα, where cα, and α have the relationship

1 − α = P [BIC0(T ) < minkBIC1(k) + cα/H0]. Solving this probability for cα, using

different values of α (α = .01, .025, .05, .5) and sample sizes T (T = 13, ..., 200), the

authors had computed the approximate values of cα according to the formula:

cα = {− 1
a(log T )

loglog[1− α+ exp(−2eb(log T ))]−1/2 +
b(log T )
a(log T )

}2 − log T,

in order to perform the hypothesis test (2.2.2), and
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cα = {− 1
a(log T )

loglog[1− α+ exp(−2eb(log T ))]−1/2 +
b(log T )
a(log T )

}2 − 2 log T,

for testing (2.2.3) against (2.2.4).

A table of the values of cα can be found in Chen and Gupta (2011).

2.2.3 Cusum methods

In order to detect changes in the marginal variance of a process Inclán and Tiao (1994)

proposed a statistic based on (iterative use of) cumulative sums of squares (called ICSS

algorithm) for independent observations. The iterative procedure is explained in Section

2.4, and the main idea is that the hypotheses are tested several times in different subse-

quences of the time series.

Let x1, x2, ..., xT be a sequence of independent normal random variables with parameters(
0, σ2

1

)
,
(
0, σ2

2

)
,
(
0, σ2

T

)
respectively. The hypothesis to test is:

H0 : σ2
1 = ... = σ2

T = σ2 (2.2.11)

versus the alternative:

σ2
1 = ... = σ2

k1 = η2
0 ≤ σ2

k1+1 = ... = σ2
k2 = η2

1 ≤ ... ≤ σ2
km+1 = ...σ2

T = η2
m+1. (2.2.12)

where m is the number of change-points and 1 < k1 < k2 < ... < km < T are the

unknown positions of the change-points, respectively. The test statistic is defined as:

IT =
√
T/2 max

k
|Dk| (2.2.13)

where
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Dk =
k∑
t=1

Xt/

T∑
t=1

Xt − k/T, (2.2.14)

Xt is usually the process xt (for testing shifts in the mean) or x2
t (for changes in the

variance), and 0 < k < T . The null hypothesis of no break is rejected when the maximum

value of the function IT is greater than the critical value and we conclude that there is

a change-point at period k = k̂, where the maximum is achieved:

k̂ = min{k : IT > c.v.}.

where c.v. is the corresponding critical value. The asymptotic distribution of the statistic

IT is the supremum of a Brownian bridge (B(k)):

sup{IT (k)} →D[0,1] sup{B(k) : k ∈ [0, 1]}

This establishes a Kolmogorov-Smirnov type asymptotic distribution.

The statistic IT is related to the likelihood ratio test as indicated by Inclán and Tiao

(1994). They showed that the former puts more weight near the middle of the series.

They demonstrated that the estimator k̂, which is the point where the maximum is

achieved, is skewed distributed and biased to the middle of the time series. The skew-

ness depends both of k and the variance ratio of H0 with respect H1. What makes

the statistics work well is that the mode of k̂ is exactly at the point where the change

in variance occurs. The values of k̂ become increasingly concentrated around the true

change-point as the sample size increases or as the variance ratio increases. Another

implication of the skewness in the distribution of k̂ is that if the smaller variance corre-

spond to the shorter segment of the series, then it will be harder to find the change-point

using the statistic proposed.

Inclán and Tiao (1994) suggested to complement the test for variance changes with a

procedure for outlier detection. For instance, looking at the plots of Dk, because a big
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outlier would create a significant peak that might not be due to a variance change. In

most cases it is easy to detect outliers affecting the Dk plot, because they will appear as

sudden jumps; the slope of the Dk would not be changed.

2.3 Changepoint methods and segmentation for autocorre-
lated data

In the present section, we present four recent approaches to the change-point and seg-

mentation problem for autocorrelated data:

1. The information criteria approach (Ozaki and Tong (1975), Al Ibrahim et al. (2003)

among others);

2. A general cusum method for the detection of a change-point allowing autocorrela-

tion in the data (Lee et al. (2003));

3. An automatic parametric procedure based on autoregressive models called Auto-

PARM (Davis et al. (2006));

4. An automatic non-parametric method based on the spectrum called Auto-SLEX

(Ombao et al. (2002), Ombao et al. (2001)).

2.3.1 Informational approach

Previously to compute the LR and AIC or BIC, we need to identify a suitable model

representing the data. The first paper applying the informational approach to detect-

ing change-point for autocorrelated data was Ozaki and Tong (1975), where the AIC

is applied to segment the time series by fitting for example a stationary autoregressive

(or moving average) model to each stationary block of data. The goodness of fit of the

global model is measured by the AIC of these locally stationary models which are jointly

minimized to define the best model. This also define the best segmentation.
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When the data are autocorrelated, AIC and BIC formulas change considering the corre-

sponding likelihood and the number of parameters estimated. Al Ibrahim et al. (2003)

used the BIC to detect change-points in the mean and autoregressive coefficients of an

AR(1). Then, if there is a single change-point, the data are generated by the model

xt =
{
c1 + φ1xt−1 + εt, −∞ < t ≤ k
c2 + φ2xt−1 + εt, k < t ≤ ∞ (2.3.1)

with var(εt) = σ2. The hypotheses to test are:

H0 : c1 = c2, and φ1 = φ2 against H1 : c1 6= c2, or φ1 6= φ2. (2.3.2)

In order to compute BIC0(T ) they considered the estimation of three parameters under

H0 (the constant, the autoregressive parameter and the perturbation’s variance) and

conditioned on the first observation to overcome dependency in data. Thus,

BIC0(T ) = (T − 1) logσ̂2 + 3log (T − 1) , (2.3.3)

where

σ̂2 =
1

T − 1

T∑
i=2

(xi − ĉ1 − φ̂1xt−1)2,

and ĉ1 and φ̂1 are the conditional maximum likelihood estimators of σ2, c1 and φ1

under H0, respectively. Similarly, under H1 there are five parameters to estimate (two

constants, two autoregressive parameters and the perturbation’s variance). Then,

BIC1(k) = (T − 1) logσ̂2
1 + 5log (T − 1) (2.3.4)

where σ̂2
1 = 1

T−1(
∑k

i=2(xi− c̃1− φ̃1xt−1)2 +
∑T

i=k+1(xi− c̃2− φ̃2xt−1)2), c̃1, φ̃1, c̃2 and φ̃2

are the conditional maximum likelihood estimators of σ2, c1, φ1, c2 and φ2 respectively.

As in Section (2.2.2), H0 is not rejected if BIC0(T ) < minkBIC1(k) + cα, where cα, and
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α have the relationship 1− α = P [BIC0(T ) < minkBIC1(k) + cα/H0].

2.3.2 Cusum methods for autocorrelated data

Lee et al. (2003) developed a cusum method for the detection of a change-point in the

parameters of the generating process allowing autocorrelation in the data. The basic idea

is the following: consider the time series {xt; t = 0, 1, 2, ..., T}, and let θ = (θ1, ..., θJ)

the parameter vector which will be examined for constancy, e.g. the mean, variance,

autocovariances, etc. The hypotheses to test are:

H0 : θ does not change for x1, ..., xT versus H1: not H0.

Let θ̂k be the estimator of θ based on x1, ..., xk. Lee et al. (2003) investigate the differ-

ences θ̂k− θ̂T , for constructing a cusum test. They assume that θ̂k satisfies the following

√
k
(
θ̂k − θ

)
=

1√
k

k∑
1

It + ∆k,

where It : It (θ) = (I1,t, ..., IJ,t)
′ forms stationary martingale differences with respect to

a filtration {Ft}, namely for every t,

E (It/Ft−1) = 0 a.s.,

and ∆k = (∆1,t, ...,∆J,t)
′ is the magnitude of change vector of θ in the period k. Let

Γ = Var (It) be the covariance matrix of It. Lee et al. (2003) define the statistic Tk by

computing

Tk =
k2

T

(
θ̂k − θ̂T

)
Γ−1

(
θ̂k − θ̂T

)
(2.3.5)

and taking the maximum value for k = J, ..., T the test statistic, TT is obtained

40



TT = max
J≤k≤T

Tk (2.3.6)

which under H0 and some regular conditions, holds:

TT
d→ sup

0≤s≤1

J∑
j=1

(
W o
j (s)

)2
. (2.3.7)

where Wo
J (s) = (W o

1 (s) , ...,W o
J (s))′ is a J -dimensional standard Brownian bridge. We

reject H0 if TT is large. To calculate the critical values of the distribution they provide

tables through Monte Carlo simulation, since it is not easy to calculate the critical values

analytically. For this task, they generate random numbers εt following the standard

normal distribution and compute the empirical quantiles based on the random variables

UT,J = max
1≤k≤T

J∑
j=1

{
T−1/2

k∑
i=1

εi,j − T−1/2

(
k

T

T∑
i=1

εi,j

)}2

, (2.3.8)

and provide the critical values for the significance levels α = 0.01, 0.05, 0.1 and J =

1, ..., 10, which are obtained by replicating 10000 simulated U1000,J .

Lee et al. (2003) proposed the Random Coefficient Autoregressive of order one (RCA(1))

model, to analyse the existence of changes in the coefficient of an AR(1) process, in its

variance and in the variance of the innovation term.

Let {xt; t = 0, 1, 2, ..., T} be the time series of the RCA(1) model

xt = (φ+ bt)xt−1 + εt, (2.3.9)

where
(
bt
εt

)
∼ iid

((
0
0

)
,

(
ω2 0
0 σ2

))
.

A sufficient condition for the strict stationarity and ergodicity of xt is φ2 + ω2 < 1

(Nicholls and Quinn (1983)).
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Lee et al. (2003) considered the problem of testing for a change of the parameter vector

θ =
(
φ, ω2, σ2

)′ based on a conditional LSE θ̂. Using the sample x1, ..., xT with x0 = 0

they test the following hypotheses:

H0 :
(
φ, ω2, σ2

)′ is constant over x1, ..., xT versus

H1 : not H0.

In order to perform the test, they constructed the cusum statistic, with θ̂k =
(
φ̂k, ω̂

2
k, σ̂

2
k

)′
,

where φ̂k is the estimator of φ obtained by the minimization of
∑k

t=1 (xt − φxt−1)2, and

ω̂2
k and σ̂

2
k are the estimators of ω2 and σ2 defined as the minimizers of

∑k
t=1

(
û2
k,t − ω2x2

t−1 − σ2
)2

,

with ûk,t = xt − φ̂kxt−1. Moreover, Γ is a matrix of dimension 3x3 composed by

Γ11 =
ω2Ex

4
1 + σ2Ex2

1(
Ex2

1

)2 ,

Γ22 =
(
Ex4

1 −
(
Ex2

1

)2)−2 ((
Eb41 − ω4

) (
Ex8

1 − 2Ex2
1Ex

6
1 +

(
Ex2

1

)2
Ex4

1

)
+ 4ω2σ2

(
Ex6

1 − 2Ex2
1Ex

4
1 +

(
Ex2

1

)3)+
(
Eε41 − σ4)

(
Ex4

1 −
(
Ex2

1

)2))
,

Γ33 =
(
Eb41 − ω4

)(
Ex4

1 −
2Ex2

1

(
Ex6

1 − Ex2
1Ex

4
1

)
Ex4

1 −
(
Ex2

1

)2
)

− 4ω2σ2Ex2
1 + Eε41 − σ4 +

(
Ex2

1

)2 Γ22,

Γ12 =
Eb31Ex

6
1 − Eb31Ex2

1Ex
4
1 + Eε31Ex

3
1

Ex2
1Ex

4
1 −

(
Ex3

1

)3
Γ13 =

−Eb31Ex2
1Ex

6
1 + Eb31

(
Ex4

1

)2 − Eε31Ex2
1Ex

3
1

Ex2
1Ex

4
1 −

(
Ex2

1

)3 ,

Γ23 =

(
Eb41 − ω4

) (
Ex6

1 − Ex2
1Ex

4
1

)
Ex4

1 −
(
Ex2

1

)2 + 4ω2σ2 − Ex2
1Γ22.

In order to obtain Γ they estimatedEε3t , Eb3t , Eε4t , andEb4t minimizing
∑T

t=1

(
û3
t − x3

t−1Eb
3
t + Eε3t

)
and

∑T
t=1

(
û4
t − x4

t−1Eb
4
t + Eε4t

)
. Plug in those estimators and T−1

∑T
t=1 x

k
t , k = 2, 3, 4, 6, 8

into Γij , they obtained a consistent estimator of Γ.

42



Since we work with large time series, we extend the critical values of the statistic in

equation (2.3.8) for 0.05 and 0.01 significance levels and J = 1, ..., 4, and investigate the

sensitiveness of the statistic to the length of the time series (T ). We perform 10000 repli-

cations of the statistic for T = 2k, where k = 9, ..., 15. The results are presented in Table

2.3.2. We found that the critical values are not too sensitive to changes in the time series

length, although they change with the number of parameters to which the test is applied.

Table 2.1: Critical values for 0.05 and 0.01 significance levels and J = 1, ..., 4
J

T 1 2 3 4
512 1.76 2.41 2.97 3.37

2.48 3.27 3.87 4.37
1024 1.78 2.42 2.97 3.48

2.51 3.27 3.94 4.48
2048 1.79 2.44 2.97 3.49

2.59 3.31 3.96 4.49
4096 1.81 2.44 3.00 3.49

2.56 3.31 3.90 4.35
8192 1.85 2.49 3.03 3.49

2.65 3.29 3.91 4.54
16384 1.85 2.50 3.04 3.50

2.53 3.39 3.89 4.53
32768 1.86 2.50 3.04 3.51

2.66 3.38 3.90 4.53

2.3.3 Auto-PARM

Davis et al. (2006) proposed an automatic procedure, called Auto-PARM, for modelling a

non stationary time series by segmenting the series into blocks of different autoregressive

processes. Let kj the breakpoint between the j-th and the (j + 1)st AR processes, with

j = 1, ...,m, k0 = 1 and km+1 = n+ 1. Thus, the j-th piece of the series is modelled as:
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Xt = xt,j , kj−1 ≤ t < kj , (2.3.10)

where {xt,j} is an AR(pj) process.

xt,j = γj + φj1xt−1,j + ...+ φj,pjxt−pj ,j + σjεt,

where ψj :=
(
γj , φj1, ..., φj,pj , σ

2
j

)
is the parameter vector corresponding to this AR(pj)

process and the sequence {εt} is iid with mean 0 and variance 1. This model assumes

that the behavior of the time series is changing at various times. Such a change might

be a shift in the mean, a change in the variance and/or a change in the dependence

structure of the process.

Given the time series {xt}Tt=1, the objective is to obtain the best-fitting model from this

class of piecewise AR processes. In other words, the proposal is to find the best combi-

nation of the number of pieces, m+ 1, the location of the breakpoints k1, ..., km and the

AR orders in each piece p1, ..., pm+1.

To solve the problem of selecting the appropriate model the minimum description length

(MDL) principle of Rissanen (1989) is applied, where the best-fitting model is the one

that makes the maximum compression of the data possible.

Let M the complete class of piecewise autoregressive models and F any model cor-

responding to this class M. The MDL principle defines the best model as the one

that produces the shortest code length that completely describes the observed data

x = (x1, x2, ..., xT ). The code length of an object is defined as the memory space re-

quired to store that object. In the applications of MDL principle, a classical way to

store x is to split it in two components: the adjusted model F̂ and the portion of x

not explained by the model, the residuals, denoted by ê = x − x̂, where x̂ is the fitted

vector for x. If CLF (z) denotes the code length of the object z using model F , then

the following decomposition is obtained:
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CLF (x) = CLF

(
F̂
)

+ CLF

(
ê/F̂

)
,

where CLF
(
F̂
)
represent the code length of the fitted model and CLF

(
ê/F̂

)
is the

code length of the corresponding residuals conditional on the fitted model F̂ . The MDL

principle suggests that the best piecewise AR model F̂ is the minimizer of CLF (x). The

authors decompose CLF
(
F̂
)
in:

CLF (m) + CLF (k1, ..., km) + CLF (p1, ..., pm+1) + CLF

(
ψ̂1, ..., ψ̂m+1

)
= CLF (m) + CLF (T1, ..., Tm+1) + CLF (p1, ..., pm+1) + CLF

(
ψ̂1, ..., ψ̂m+1

)
.

Behind the last equation is the idea that complete knowledge of (k1, ..., km) implies the

complete knowledge of (T1, ..., Tm+1) and viceversa. In general, to store a not bounded

integer I, is required approximately log2I bits. Then, CLF (m) = log2m and CLF (pj) =

log2pj . If the object I has a known bound, IU , is required approximately log2Iu bits.

Since all Tj are bounded by T , CLF (Tj) = log2T for all j. To calculate CLF
(
ψ̂j

)
a

result of Rissanen is used. It says: A maximum likelihood estimator of a real parameter

computed using N observations can be encoded with 1
2 log2N bits. Since each of the

pj + 2 parameters of ψ̂j is computed with Tj observations,

CLF

(
ψ̂j

)
=
pj + 2

2
log2Tj .

Combining these results, equation (2.3.11) is obtained:

CLF

(
F̂
)

= log2m+ (m+ 1) log2T +
m+1∑
j=1

log2pj +
m+1∑
j=1

pj + 2
2

log2Tj . (2.3.11)

The code length for the residuals, CLF
(
ê/F̂

)
is obtained using a classical result of

Rissanen, who demonstrated that the code length of ê is equal to the negative of the log-

likelihood of the fitted model F̂ . Let yj :=
(
ykj−1

, ..., ykj−1

)
the vector of observations

of the piece j in (2.3.10). For simplicity, is assumed that µj , the mean of the piece j
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in (2.3.10) is 0 and the covariance matrix is denoted by V−1
j = cov {xj}, and V̂j is

an estimator of Vj . The inference is based on a Gaussian likelihood (quasi-likelihood

procedure). Assuming the independence of the pieces, the Gaussian likelihood of a

piecewise process is given by

L (m, k0, k1, ..., km, p1, ..., pm+1, ψ1, ..., ψm+1; x) =
m+1∏
j=1

(2π)−Tj/2 |Vj |1/2 exp
{
−1

2
xTj Vjxj

}
,

and then, the code length of ê given the model F̂ is

−log2L
(
m, k0, k1, ..., km, p1, ..., pm+1, ψ̂1, ..., ψ̂m+1; x

)
= (2.3.12)

m+1∑
j=1

{
Tj
2

log (2π)− 1
2

log
∣∣∣V̂j

∣∣∣+
1
2
xTj Vjxj

}
log2e.

Combining (2.3.11) and (2.3.12) and using logarithm base e rather than 2, the following

approximation of CLF (x) is obtained:

logm+ (m+ 1) log T +
m+1∑
j=1

log pj +
m+1∑
j=1

pj + 2
2

log Tj + (2.3.13)

+
m+1∑
j=1

{
Tj
2

log (2π)− 1
2

log
∣∣∣V̂j

∣∣∣+
1
2
xTj Vjxj

}
.

Using the approximation of the likelihood for the autoregressive models−2log (likelihood)

by Tj log σ̂2
j , where σ̂

2
j is the Yule Walker estimator of σ2

j (Brockwell and Davis (1991)),

MDL is defined as 2:

MDL (m, k1, ..., km, p1, ..., pm+1) = (2.3.14)

logm+ (m+ 1) log T +
m+1∑
j=1

log pj +
m+1∑
j=1

pj + 2
2

log Tj +
m+1∑
j=1

Tj
2

log
(
2πσ̂2

j

)
.

2for more details see Davis et al. (2006)
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where Tj is the number of observation in each segment j and σ̂2
j is the Yule Walker

estimator of σ2
j (Brockwell and Davis (1991)).

Davis et al. (2006) demonstrated that the best-fitted model obtained by the minimization

of the MDL principle is a non trivial issue because the search space composed by m,

kj ’s and pj ’s has a enormous dimension. To solve this problem, they use a genetic

algorithm. These algorithms make a population of individuals “to evolve” subject to

random actions similar to those that characterize the biologic evolution (i.e. crossover

and genetic mutation), as well as a selection process following a certain criteria which

determines the most adapted or best individuals that survive the process, and the less

adapted or the “worst” one, who are ruled out.

2.3.4 Auto-SLEX

This is a non-parametric procedure introduced by Ombao et al. (2002). The basis is

the Cramer representation of locally stationary processes. Since Fourier vectors are

perfectly localized in frequency, they are ideal at representing stationary time series.

However, they cannot adequately represent non stationary time series, i.e., the time

series with spectra that change over time. Ombao et al. (2002) create SLEX vectors

which are simultaneously orthogonal and localized in time and frequency. They are

calculated by applying a projection operator on the Fourier vectors, consisting on two

specially constructed smooth windows. Then, a SLEX basis vector φS,ω (t) for the time

block [α0, α1] and oscillating at frequency ω, has support on the discrete time block

S = {α0 − ε+ 1, ..., α1 − ε} and has the form

φS,ω (t) = ΨS,+ (t) exp
(
i2πω

t

|S|

)
+ ΨS,− (t) exp

(
−i2πω t

|S|

)
(2.3.15)

where ω ∈ [−1/2, 1/2], |S| = α1 − α0, ε is a small overlap between two consecutive time

blocks which ensures smoothness in the transition between them. In Huang et al. (2004),

the windows ΨS,+ (t) and ΨS,− (t) take the form
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ΨS,+ (t) = r2

(
t− α0

ε

)
r2

(
α1 − t
ε

)
ΨS,− (t) = r

(
t− α0

ε

)
r

(
α0 − t
ε

)
− r

(
t− α1

ε

)
r

(
α1 − t
ε

)
where r (.) is called a “rising cut-off function”. Huang et al. (2004) use the sine rising

cut-off function

r (u) = sin
(π

4
(1 + u)

)
, where u ∈ [−1, 1] . (2.3.16)

Other types of rising cut-off functions may be used (see Wickerhauser and Chui (1994)

for details).

The SLEX library is a collection of bases, each having orthogonal vectors with time

support, which are obtained by segmenting the time series, of length T , in a dyadic way.

We explain the dyadic algorithm in section (2.4). Let S (j, b) be the block b on level j

and Mj = T/2j the length of the block j, with j = 0, ..., J and J the finest resolution

level. The SLEX transform consists of the set of coefficients corresponding to all the

SLEX vectors defined in the library. The SLEX coefficients on block S = S (j, b) are

defined by

θ̂S,k =
1√
Mj

∑
t

xt,TφS,ωk
(t), (2.3.17)

where the fundamental frequency is ωk = k/Mj and k = −Mj/2 + 1, ...,Mj/2. The

SLEX periodogram, an analogue of the Fourier periodogram for a stationary process, is

defined to be

α̂S,k =
∣∣∣θ̂S,k∣∣∣2 . (2.3.18)

After computing the SLEX transform a well-defined cost is computed at each of the

blocks. For example, the cost function of the block S (j, b) could be
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Cost (j, b) =
Mj/2∑

k=−Mj/2+1

log α̂S,k + β
√
Mj , (2.3.19)

where β is a complexity penalty parameter. The penalty term β
√
Mj safeguards the

procedure from obtaining a segmentation that has too many, or too few, blocks. A small

value of β leads to a procedure that tends to select a segmentation with too many small

blocks, and this favors the existence of less bias due to the non stationarity. However,

having less observations within each block leads to inflated variances of the estimates. A

large value of β, on the other hand, leads to a procedure that tends to select a segmenta-

tion with very few blocks. Although variance of the estimates is reduced, having too few

blocks may lead to bias due to non stationarity (i.e. error due to not splitting a non sta-

tionary block). The penalty parameter β can be either approximated or computed via a

data-driven procedure. Ombao et al. (2002) set β = 1 motivated by Donoho et al. (1998).

The cost for a particular segmentation of the time series is the sum of the costs at all the

blocks defining that segmentation. The Best Basis Algorithm is applied to the SLEX

transform to obtain the unique orthonormal transform in the SLEX library that has the

smallest cost. So, the Best Basis in the SLEX library is the segmentation having the

smallest cost.

Let BT the best basis selected from the SLEX library and ∪Si be the blocks in BT

(a particular dyadic segmentation of the time series). Define Mi to be the numbers of

points on the block Si. Let JT to be the highest time resolution level in BT , i.e., the

smallest time block in BT has length T/2JT . The frequencies defined on Si are the grid

frequencies ωki
= ki/Mi for ki = −Mi/2 + 1, ...,Mi/2. The spectral representation of

xt,T is

xt,T =
∑

∪Si∼BT

1√
Mi

Mi/2∑
k=−Mi/2+1

θi,k,Tφi,k (t) zi,k (2.3.20)

where θi,k,T is the transfer function on time block Si and frequency k; φi,k is the SLEX
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basis vector oscillating at frequency k and having support at block Si; and zi,k is a or-

thonormal random process with finite fourth moment.

2.4 Detection of multiple change-points

Working with real time series, and even more with lengthy time series of very high fre-

quency data, the probability of changes affecting the structure of the data is high and

therefore, the consideration of a single potential change is not realistic. Moreover, the

number of changes is usually unknown, which makes the multiple searching much more

intricate.

Detection of multiple change-points problem imply the consideration of testing the fol-

lowing hypotheses,

H0 : xt ∼ f (xt/θ) , t = 1, ..., T

H1 : xt ∼ f (xt/θ1) , t = 1, ..., k∗1, xt ∼ f (xt/θ2) , t = k∗1 + 1, ..., k∗2, ...

..., xt ∼ f (xt/θm) , t = k∗m−1 + 1, ..., T, for θ1 6= θ2 6= ... 6= θm . (2.4.1)

or,

H0 : θ1 = θ2 = ... = θm = θ

H1 : θ1 = ... = θk∗1 6= θk∗1+1 = ... = θk∗2 6= ...

... 6= θkm−1+1 = ... = θkm 6= θkm+1 = ... = θT . (2.4.2)

The problem of multiple structural changes has received considerably less attention than

the detection and estimation of a single change-point, in part because the difficulty in

handling the computations. There is a great interest in developing a search method

which is both efficient and optimal. In this section we present the algorithms we have
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found in the literature to search for multiple change-points.

We consider Binary Segmentation (Scott and Knott (1974), Sen and Srivastava (1975)

and Vostrikova (1981)), the Iterated Cumulative Sum of Squares (ICSS) created by Inclán

and Tiao (1994) to test the hypotheses in equations (2.2.11) and (2.2.12) sequentially,

the Dyadic Segmentation (used by Ombao et al. (2002)), and Genetic Algorithms (used

by Davis et al. (2006)), Optimal Partitioning (Jackson et al. (2005)) and Pruned Exact

Linear Time (PELT) Algorithm (Killick et al. (2010), Killick et al. (2012)).

2.4.1 Binary Segmentation and Iterative Cusum of Squares

Binary segmentation algorithm addresses the issue of multiple change-points detection

as an extension of the single change-point problem. It has been introduced by Scott

and Knott (1974), Sen and Srivastava (1975) whereas the paper of Vostrikova (1981)

proved its consistency. This method has been combined with the likelihood ratio and

information criteria statistics to detect multiple change-points, as in the model presented

by Al Ibrahim et al. (2003) where the statistic used is the BIC. Binary segmentation is

based on successive evaluation of the statistic at different parts of the series, detecting

the number of change-points and their positions simultaneously. However, it has the

merits of saving a lot of computational time. We need only to test and estimate a single

change-point at each stage, and then repeat the test for each subsequence until the null

hypothesis is accepted. The steps are as follows:

• Step 1: Calculate the chosen statistic (usually LR, AIC or BIC) from the start

to the endpoint of the initial time segment. Search for a significant change-point.

If there is no change, then the null hypothesis is accepted. If there is a change,

then this change-point divides the original sequence of random variables into two

subsequences and proceed to the Step 2.

• Step 2: For each subsequence, detect a change, like in the Step 1, and continue the
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process until no more changes are found in any of the subsequences.

The advantage of the Binary Segmentation method is that it is computationally efficient,

resulting in an O(T log T ) calculation.

A similar approach is proposed by Inclán and Tiao (1994) consisting of an iterative

procedure (ICSS) with several steps based on successive application of the statistic IT

(defined in (2.2.13)) to pieces of the series, dividing consecutively after a possible change-

point is found. The goal is to detect multiple changes in marginal variance.

Let a[t1 : t2] the series at1 , at1+1, ..., at2 , t1 < t2 and Dk(a[t1 : t2]) the cumulated centered

sum of squares over the range [t1, t2] as defined in equation (2.2.14). The steps for the

sequential Inclán and Tiao (1994) procedure are explained below:

• Step 0: Let t1 = 1.

• Step 1: CalculateDk(a[t1 : T ]). Let k∗(a[t1 : T ]) be the point at which maxk |Dk(a[t1 :

T ])| is obtained and let

IT (t1 : T ) = max
t1≤k≤T

√
(T − t1 + 1)/2|Dk(a[t1 : T ])|.

If IT (t1 : T ) > D∗, where D∗ is the critical value, there is a possible change-point

at k∗(a[t1 : T ]) and proceed to Step 2a. If IT (t1 : T ) < D∗, there is no evidence of

change in the series. The algorithm stops.

• Step 2a: Let t2 = k∗(a[t1 : T ]). Calculate Dk (t1 : t2) and IT over the new range. If

IT (t1 : t2) > D∗, then we have a new possible change-point. Again, let k ∗ (t1 : t2)
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the point where k (t1 : t2) is maximized. Repeat this step until IT (t1 : t2) < D∗.

Then, the first potential change-point is kfirst = t2.

• Step 2b: Let k∗ (t1 : T ) the point of change found in Step 1, set t1 = k∗ (t1 : T )+1

and calculate Dk (t1 : T ) and evaluate whether its maximum corrected by the half

of the square roots of the number of observations in the corresponding range is

greater than D∗ or not. If the condition holds, the new period k ∗ (t1 : T ) where

there is the maximum is a potential period of the change. Now, set t1 = k ∗ (t1 : T )

and repeat this step until IT (t1 : T ) < D∗. The last period of change will be

klast = t1 − 1 where IT (t1 : T ) < D∗.

• Step 2c: If kfirst = klast there is only one shift in the time series. If kfirst < klast

repeat Step 1 and Step 2 with t1 = kfirst + 1 and T = klast. Call NT the number

of potential breakpoints found.

• Step 3: Sort the breakpoints in increasing order. Let cp be the vectors of break-

points with cp0 = 0 and cpNt+1 = T . Check all the breakpoints by calculating

ITnj = max
k

Dk

(
cpj−1 + 1 : cpj+1 − 1

)
, j = 1, 2, ..., NT (2.4.3)

If ITnj > D∗ keep the point. Else eliminate it. Repeat step 3 until number of

change-points does not change and the points found in each new pass are “close”

to those in the previous pass.

However, it has been shown that the ICSS algorithm tends to overstate the number of

actual structural breaks in variance. Specifically, Bacmann and Dubois (2002) point

out that the behavior of the ICSS algorithm is questionable under the presence of con-

ditional heteroskedasticity. They show that one way to circumvent this problem is by

filtering the return series by a GARCH (1,1) model, and applying the ICSS algorithm

to the standardized residuals. Bacmann and Dubois conclude that structural breaks in
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unconditional variance are less frequent than it was shown previously.

With respect to CPU requirements, Inclán and Tiao (1994) showed that on average, after

cutting and analysing the pieces, we need to perform O(T ) operations.

2.4.2 Dyadic Segmentation

Some multiple change-points searching algorithms have a predefined structure, in the

sense that the detection is not guided by the previous change-points found. This is the

case of the dyadic segmentation procedure used by Auto-SLEX (Ombao et al. (2002)).

The SLEX library is constructed by first specifying the finest resolution level J or the

length of the smallest time block T/2J . At resolution level j, with j = 0, ..., J , time series

is divided into 2j overlapping blocks. The amount of overlap ε is the same for all levels j,

and is equal to ε = T/2J+1. With this restriction the SLEX vectors remain orthogonal

despite the overlap. The SLEX vectors on block S (j, b) are allowed to oscillate at differ-

ent fundamental frequencies ωk = k/Mj where k = −Mj/2 + 1, ...,Mj/2. For example,

in figure (2.3), with J = 2, the SLEX library consists of 5 orthogonal bases: i) S (0, 0);

ii) S (1, 0)∪S (1, 1); iii) S (2, 0)∪S (2, 1)∪S (2, 2)∪S (2, 3); iv) S (1, 0)∪S (2, 2)∪S (2, 3)

which is highlighted in yellow; v) S (2, 0)∪ S (2, 1)∪ S (1, 1). Therefore, the SLEX basis

vectors are allowed to have different lengths of support (different time and frequency

resolutions).

The limitation of this kind of methods is that the change-point encountered, can be very

bad approximated, if they are not close to the dyadic limits (i.e. the points of the form

2j with j = 0, 1..., J). A very high resolution level is needed to get more exact results.

The possible reason is that dyadic segmentation was used not as a method to detect

change-points, but it was a way to approximate them to estimate, non-parametrically,

the changing variance of the process.
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Figure 2.3: Dyadic segmentation structure with J = 2

2.4.3 Genetic Algorithms

Auto-PARM (Davis et al. (2006)) estimate the piecewise autoregressive model defined in

equation (1.3.2) using a genetic algorithm (Holland, 1992). This procedure is a random-

ized search technique that imitates natural selection in the optimization of an objective

function. In its canonical version the genetic algorithm has the following idea: an initial

set or population of candidate solutions to one optimization problem is represented by

vectors called chromosomes. The chromosomes “parents” are randomly selected from the

initial population with a probability inversely proportional to their MDL. This mean

that a chromosome with a low MDL will have a greater likelihood to be selected. The

second generation (the first “child” chromosomes) are obtained under the operations of

crossover or mutation of the selected parents. Once enough members of the second gen-

eration are obtained, it begins the production of the children of the third generation.

This process continues producing new generations, with the expectation of the gradual

improvement of the values of the objective function moving closer to the optimal value.

The crossover operation is the feature that distinguish the genetic algorithms from the

other optimization procedures. The chromosome child is created by the mixture of two

parents. The new solution created typically shares many of the best characteristics of its

parents. One typical strategy for the mixture is to assign to each location of the child’s

gen the same probability of receipting the corresponding father’s or mother’s gen.
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In the mutation, one child chromosome is created from only one parent chromosome.

The child is very similar to the parent, except for a small number of gens in which is

introduced randomness to reach the changes. The mutation operation prevents the al-

gorithm to be trapped in local optima.

To preserve the best chromosome of the current generation, there exists the elitist stage.

The worst chromosome of the next generation is replaced with the best chromosome of

the current generation. This procedure guarantees the monotonicity of the algorithm.

Auto-PARM considers as a chromosome a vector g = (g1, ..., gT ) of length T , the number

of observations of the time series, for which its genes gt take on the values of −1, if there

is no break at time t or the value of dj , the dimension of the real-valued parameter in

the j-th segment:

gt =
{
dj+1, if t = τj , j = 0, 1, ...,m,
−1, otherwise.

For an autoregressive model with three pieces, g = (2,−1,−1,−1, 1,−1,−1, 0,−1,−1) is

a chromosome, where the values different from −1 represent the location of the change-

points at t = 5 and t = 8, the first piece is an AR(2), the second one is an AR(1) and

the third an AR(0) or white noise.

In the implementation, a discrete random variable D with values 0, 1, ..., D0, is used to

select the order of the model in a segment, where D0 is the largest order model allowed.

The probabilities P (D = j) , j = 0, 1, ..., D0 are predetermined and by default are set

to be 1/ (D0 + 1). To ensure quality estimates for the parameters in each segment, a

minimum span constraint is imposed on g.

There exist a lot of variations of the canonical genetic algorithm, pursuing the goal of the

improvement the convergence rates and to reduce obtaining suboptimal solutions. Davis
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et al. (2006) implement the island model, which runs TI searchs (number of islands) si-

multaneously applying canonical genetic algorithms in TI different subpopulations rather

than performing the search in only one enormous population. The key feature is that

periodically a number of individuals emigrate between islands according a certain mi-

gration rule. In Davis et al. (2006) after Mi generations, the worst MT chromosomes of

the jth island are replaced with the best MT chromosomes of the (j − 1)st island, with

j = 2, ..., T I. For j = 1, the best MT chromosomes emigrate from the TIth island.

2.4.4 Optimal Partitioning and Pruned Linear Time Algorithms

Recently, in Killick et al. (2010) and Killick et al. (2012) a new search algorithm called

PELT (Pruned Exact Linear Time) was introduced. This search method balances the

competing computational cost and accuracy properties. PELT algorithm is O(T ) under

certain assumptions and, in contrast to Binary Segmentation, the search is exact. The

PELT method considers the data sequentially and searches the solution space exhaus-

tively. Computational eficiency is achieved by removing solution paths that are known

not to lead to optimality. The assumptions and theorems which allow removal of solution

paths are explained further in Killick et al. (2012).

The base of PELT is the Optimal Partitioning method Jackson et al. (2005), a search

method that aims to minimize

m+1∑
i=1

[C (x (ki−1 + 1) : ki) + β] . (2.4.4)

where C(.) is a cost function, which could be −2 log likelihood or BIC, etc., x (s : t) the

observations of x between s and t, and β the penalization parameter and m the number

of change-points.

Optimal partitioning method begins by first conditioning on the last point of change and

calculating the optimal segmentation of the data up to that change-point. Following this,
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the last change-point is then moved through from the start to the end of the data and

the optimal overall segmentation chosen as the final set of change-points. More formally,

let F (T ) denote the minimization from (2.4.4):

F (T ) = min
k

{
m+1∑
i=1

[C (x (ki−1 + 1) : ki) + β]

}
. (2.4.5)

Setting km = k∗ denote the last change-point and conditioning on its location is obtained

F (T ) = min
km=k∗

{
m∑
i=1

[C (x (ki−1 + 1) : ki) + β] + C (x (k∗ + 1) : T ) + β

}
. (2.4.6)

This could equally be repeated for the second to last, third to last, and so on. The recur-

sive nature of this conditioning becomes clearer as one notes that the inner minimisation

is reminiscent of equation (2.4.5). In fact the inner minimisation is equal to F (k∗) and

as such (2.4.6) can be re-written as

F (T ) = min
k∗
{F (k∗) + C (x (k∗ + 1) : T ) + β} . (2.4.7)

This result enables the calculation of the global optimal segmentation using optimal seg-

mentations on subsets of the data. In particular it gives a recursive form to the method

as the optimal segmentation for data x (1 : k∗) is identified and then used to inform the

optimal segmentation for data x (1 : k∗ + 1) . At each step in the method the optimal

segmentation up to k∗ is stored. When F (T ) is reached, the optimal segmentation for

the entire data has been identified and the number and location of change-points have

been recorded.

PELT introduce a step which the “pruning” is executed. The idea consists into removing

those values of k which can never be minima from the minimization performed at each

iteration. Consider, a time s during the recursions. At this time point

F (s) = min
0≤k<s

[F (k) + C (x (k + 1) : s) + β]
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Now, let t be a time such that 0 ≤ k < s and

F (t) + C (x (t+ 1) : s) + β > F (s) .

This inequality means that t is not the location of the last change-point prior to s. The

pruning is based on the idea that the knowledge of the difference F (t)+C (x (t+ 1) : s)−

F (s) is useful to identify whether t is the location of the last change-point prior to T > s.

Authors assume that, when introducing a change-point into a sequence of observations,

the cost C of the sequences reduces. This means that there exists a constant K such

that for all t < s < T ,

C (x (t+ 1) : s) + C (x (s+ 1) : T ) +K < C (x (t+ 1) : T )

Then,

F (t) + C (x (t+ 1) : s) +K > F (s) (2.4.8)

and if (2.4.8) holds, at any future time T > s, t can never be the optimal last change-point

prior to T and can be removed from the set of k for each future step of the algorithm.

2.5 A proposal to find multiple change-points for autocor-
related data

The purposes of this section are: a) introducing a modification to the models considered

in the change-point literature for autocorrelated data in the context of the informational

approach, taking into account that the source of the change-point can be the marginal

mean, the marginal variance and the autoregressive coefficients, and, b) discusing the

extension to the multiple change-point problem using binary segmentation.
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2.5.1 A proposed procedure to detect changes in mean, variance and
autoregressive coefficients in AR models

In this section, we propose an informational approach procedure for detecting changes in

mean, variance and autoregressive coefficients for serial correlated data. The procedure

generalizes the one proposed by Al Ibrahim et al. (2003). These authors considered the

problem of testing for multiple change-points in the mean and the autoregressive coeffi-

cients of a time series generated by an autoregressive model of order 1, by using the BIC

joint with binary segmentation method. We generalize the method in two directions.

First, we present the procedure for the AR(p) model. Second, we introduce a modifica-

tion in the parameters of the model for allowing not only the presence of change-points in

the mean and the autoregressive coefficients, but also in the variance of the perturbation

term.

The generalization of the model in Al Ibrahim et al. (2003) to multiple piecewise AR(p)

is given as follows. Let x1, x2, ..., xT be the T consecutive observations from a Gaussian

autoregressive process of order p given by:

xt =



c1 + φ11xt−1 + ...+ φ1pxt−p + εt, −∞ < t ≤ k1

c2 + φ21xt−1 + ...+ φ2pxt−p + εt, k1 < t ≤ k2

.

.

.
cm + φm1xt−1 + ...+ φmpxt−p + εt, km−1 < t ≤ km

cm+1 + φm+1,1xt−1 + ...+ φm+1,pxt−p + εt, km < t ≤ ∞

(2.5.1)

where ε’s are iid normal random variables with mean zero and variance σ2. The null

hypothesis is that there are no changes in the constant and autoregressive parameters

against the alternative hypothesis of m change-points. That is,

H0 : k1 = k2 = ... = km = T against H1 : k1 < k2 < ... < km < T. (2.5.2)
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The null hypothesis is equivalent to c1 = c2 = ... = cm+1, and φ1i = φ2i = ... = φm+1,i

for i = 1, 2, ..., p.

For performing the test hypothesis, we need to compute the BIC conditioning on the

first p observations. Thus,

BIC0 (T ) = (T − p) σ̂2
0 + (p+ 2) log (T − p) , (2.5.3)

where σ̂2
0 = 1

T−p
∑T

t=p+1

(
xt − ĉ1 − φ̂1xt−1 − ...− φ̂pxt−p

)2
, ĉ, φ̂1, ..., φ̂p are the con-

ditional maximum likelihood estimators of σ2, c1, and the autoregressive parameters,

respectively. Similarly,

BIC1 (k) = (T − p) σ̂2
1 + ((m+ 1) (p+ 1) + 1) log (T − p) , (2.5.4)

where σ̂2
1 = 1

T−p

[∑k1
t=p+1

(
xt − c̃1 − φ̃11xt−1 − ...− φ1pxt−p

)2
+ ...+

∑T
t=km+1 (xt − c̃m+1

−φ̃m+1,1xt−1 − ...− φm+1,pxt−p

)2
]
, c̃i and φ̃ji are the conditional maximum likelihood

estimators of σ2, the constants ci’s, and the autoregressive parameters φji, j = 1, ...,m+

1, i = 1, ..., p, respectively. The constant multiplying the penalization term, ((m+ 1) (p+

1) + 1), is the number of parameter estimated in the piecewise AR(1) model, the p+ 1

constants and autoregressive coefficients of the m + 1 pieces and one more parameter

which is the variance, σ2.

The limitation of this piecewise AR(p) model, which the generalization of the piece-

wise AR(1) of Al Ibrahim et al. (2003), is that it is not considered the presence of

change-points due to the parameter σ2. Thus, if there are changes in the variance of the

perturbation term and they are not taken into account, there is a specification problem

in that model and the change-point could be not detected. To investigate this statement,

we generate 1000 replications of the process xt, that is given by the piecewise AR(1),

such that,
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xt =
{

φxt−1 + εt, 1 ≤ t ≤ 512
φxt−1 + σεt, 512 < t ≤ 1024,

(2.5.5)

where εt is a white noise with zero mean and unitary variance and with the initial value

x0 set equal to zero. The values of the parameters φ and σ are generated from an uniform

distribution with parameters (−1, 1) and
[√

2, 3
]
, respectively. Thus, the change-point

exhibited by xt is due to the variance of the perturbation term which can vary from 1

to a value in the interval [2, 9], remaining constant the autoregressive parameter.

We computed the BIC using the formulas in 2.5.3 and 2.5.4, which assume that only the

autoregressive parameter (and the constant) could change, and resulted that BIC0(T ) <

minkBIC1(k) in a proportion of 0.978 of the simulated processes, and then the null hy-

pothesis of no change is supported with a very high frequency.

The simulation experiment performed shows the importance of considering not only the

change-points due to the constant and the autoregressive parameters, but also the breaks

caused by the variance of the perturbation term. Allowing that possibility, the model

becomes:

xt =



c1 + φ11xt−1 + ...+ φ1pxt−p + σ1εt, −∞ < t ≤ k1

c2 + φ21xt−1 + ...+ φ2pxt−p + σ2εt, k1 < t ≤ k2

.

.

.
cm + φm1xt−1 + ...+ φmpxt−p + σmεt, km−1 < t ≤ km

cm+1 + φm+1,1xt−1 + ...+ φm+1,pxt−p + σm+1εt, km < t ≤ ∞

(2.5.6)

The null hypothesis is that

H0 : c1 = ... = cm+1, φ11 = ... = φm+1,1, φ1p = ... = φm+1,p and σ2
1 = ... = σ2

m+1.

In the model (2.5.6), there are (m+ 1) more parameters to estimate with respect to the
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model in (2.5.1), the variances of ε’s, and the BIC is heavily punished. The formula of

the BIC1(k) for the piecewise AR(p) model is given by:

BIC1(k) = (k1 − 1) log σ̂2
1 + ...+ (T − km) log σ̂2

m+1 + (m+ 1) (p+ 2) log T. (2.5.7)

where σ̂2
1 = 1

k1−1

∑k
t=2 1(xt−c̃1−φ̃11xt−1−...−φ̃1pxt−p)2,...,σ̂2

m+1 = 1
T−km

∑T
t=km+1(xt−

c̃m+1−φ̃m+1,1xt−1−...−φ̃m+1,pxt−p)2, c̃1,...,c̃m+1, φ̃11,...,φ̃m+1,p are the conditional max-

imum likelihood estimators of the variances, σ2
1,...,σ2

m+1, the constants, c1,..., cm+1 and

the autoregressive parameters, φ11,...,φm+1,p, respectively.

To simplify the exposition, consider the case of an AR(1) and a single change-point, such

that,

xt =
{
c1 + φ1xt−1 + σ1εt, −∞ < t ≤ k
c2 + φ2xt−1 + σ2εt, k < t ≤ ∞

The hypotheses to test are:

H0 : c1 = c2, φ1 = φ2 and σ2
1 = σ2

2 against H1 : c1 6= c2, φ1 6= φ2 or σ2
1 6= σ2

2.

Under H0 we have three parameters to estimate, so the BIC0(T ) is that referred in equa-

tion (2.3.3), meanwhile under H1 there are, at most, six different parameters; therefore

the BIC1(k) is:

BIC1(k) = (k − 1) log σ̂2
1 + (T − k) log σ̂2

2 + 6 log T (2.5.8)

where σ̂2
1 = 1

k−1

∑k
t=2(xt− c̃1−φ̃1xt−1)2 and σ̂2

2 = 1
T−k

∑T
t=k+1(xt− c̃2−φ̃2xt−1)2, c̃1, φ̃1,

c̃2 and φ̃2 are the conditional maximum likelihood estimators of σ2
1, σ2

2, c1, φ1, c2 and φ2.

Similarly to Section (2.2.2), H0 is not rejected if BIC0(T ) < minkBIC1(k).
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To show the performance of the model proposed, we computed the BIC using the for-

mulas in (2.5.3) and (2.5.8) using the same 1000 replications of the model (2.5.5) that

we employed previously, and obtained a proportion of 0.959 properly segmented time se-

ries. This result indicates the merits of the BIC to detect change-points in the piecewise

autoregressive proposed model, where the constant, the autoregressive coefficients and

also the variance of the pertubation term can be the source of the break.

2.5.2 Multiple change-point problem using BIC or cusum statistics for
autocorrelated processes

As the statistics presented for iid processes, the BIC presented in this section for auto-

correlated data, can be combined with a multiple change-point searching method. Little

attention has been paid to the problem of multiple change-points for this kind of data.

Research concentrated in multiple change-points for iid processes or in the single change-

point detection for autocorrelated data.

Some papers focusing on multiple change-point problem for autocorrelated data are An-

dreou and Ghysels (2002) and Al Ibrahim et al. (2003). In Andreou and Ghysels (2002)

an algorithm similar to ICSS (Inclán and Tiao (1994)) is applied to detect multiple

change-points in financial time series using cusum methods. In the first step the statistic

is applied to the total sample and if a change-point is detected, the sampled is segmented

and the test is applied again to each subsample upto 5 segments. Other algorithms are

applied in this paper, using a grid search approach or methods based on dynamic pro-

gramming. Al Ibrahim et al. (2003) used the binary segmentation algorithm combined

with the BIC procedure for piecewise autoregressive models.

Given the merits of binary segmentation saving a lot of computational time and the

better performance with respect to ICSS algortihm, in order to design the simulation

experiments, and, for empirical applications below, we propose to combine the cusum
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statistic developed by Lee et al. (2003) for RCA(1) models and the BIC statistic assuming

the model in equation (2.5.6) with binary segmentation (referred as iterative cusum

method or ICM and BICBS respectively).

2.6 Monte Carlo simulation experiments

In this section we evaluate the performance of the methods presented above, by com-

puting the empirical size and power under different hypotheses. In order to search

for multiple change-points, we have used six methods: IT (Inclán and Tiao (1994)),

ICM (Lee et al. (2003) combined with binary segmentation), BICBS (BIC for model in

(2.5.6) with binary segmentation), Auto-PARM (Davis et al. (2006)), Auto-SLEX (Om-

bao et al. (2002)) and likelihood ratio combined with PELT called here LRPELT (Killick

et al. (2012)). In the tables below, where these procedures are compared, the results for

BICBS, which is the proposed procedure, are highlighted with bold font.

2.6.1 Empirical size

First, we compute the empirical size, that is, how many times the corresponding method-

ology incorrectly segments a stationary process. We consider the cases of uncorrelated,

moderately and highly autocorrelated time series data. The length of the simulated se-

ries is set equal to 212. Then, we generate 1000 replications of the following processes

xt:

• a white noise,

xt = at where at ∼ iid (0, 1) , (2.6.1)

• autoregressive of order one (AR(1)) processes

xt = φxt−1 + at where x0 = 0 and at ∼ iid (0, 1) , (2.6.2)

and the parameter φ is set equal to 0.8, -0.8 (high positive and negative autocor-

relation), 0.5, -0.5 (moderate positive and negative correlation) and to a uniform
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random number in the interval (−1, 1) and,

• moving average of order one (MA(1)) processes

xt = θat−1 + at where at ∼ iid (0, 1) (2.6.3)

and the parameter θ is set equal to 0.8, -0.8, 0.5 and -0.5.

Table (2.2) presents the results for stationary processes. In this table the size repre-

sents the proportion of wrong segmented stationary processes. The performances of all

methodologies are very satisfactory. Applying them to stationary processes we obtain

only one block or segment in most of the cases, and only a small percentage of processes

are segmented in two blocks.

Table 2.2: Size of IT, ICM, BICBS, Auto-PARM, Auto-SLEX and LRPELT

Processes IT ICM BICBS Auto-PARM Auto-SLEX LRPELT
White Noise 0.000 0.001 0.04 0.000 0.000 0.001

AR(1) φ =0.8 0.029 0.003 0.000 0.001 0.005 0.09
AR(1) φ =-0.8 0.039 0.004 0.000 0.000 0.005 0.10
AR(1) φ =0.5 0.000 0.005 0.000 0.000 0.01 0.000
AR(1) φ =-0.5 0.000 0.007 0.000 0.000 0.018 0.000
MA(1) θ =0.8 0.000 0.007 0.000 0.000 0.012 0.000
MA(1) θ =-0.8 0.000 0.004 0.000 0.000 0.006 0.001
MA(1) θ =0.5 0.000 0.005 0.000 0.000 0.016 0.000
MA(1) θ =-0.5 0.000 0.006 0.000 0.001 0.01 0.000

AR(1) φ ∈ (−1, 1) 0.000 0.009 0.000 0.005 0.025 0.07

Procedures analysed seems to appear undersized in finite samples. For example, for IT,

BICBS and Auto-PARM the rate of wrong segmented stationary processes is almost zero.

The only exception is LRPELT when is applied to AR(1) processes with high absolute

value coefficient (0.8 and −0.8): the size in this case is around 10%. Killick et al. (2012)

explained this performance by the use of the LR test, which tends to oversegmentation.
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We investigate the hypothesis that the type of autocorrelation (i.e. autoregressive and

moving average) could influence the segmentation. The results for MA(1) and AR(1)

processes are similar leading to the conclusion that the type of serial correlation seems

to be not important, except for LRPELT.

2.6.2 Power for piecewise stationary processes

We compute the power of the methods, by counting how many times the corresponding

methodology correctly segments piecewise stationary processes in 1000 replications. We

begin with processes which exhibit a single change-point. Since each process has two

stationary segments or blocks, the goodness of the results consists on the finding of

these two stationary segments or blocks. Thus, we observe if the procedure only finds

two segments or blocks and if the change occurs in a narrow interval centered on the

correct breakpoint (k∗ ± 100). The piecewise processes simulated in order to do the

power evaluation have a length of T = 4096 and are given by:

1. White noise with variance equal to 1 changing to 2 in the observation k∗ = 2048.

2. AR(1) (and MA(1)) with parameter 0.8 changing to -0.8 in the observation k∗ =

2048.

3. AR(1) (and MA(1)) with parameter 0.5 changing to -0.5 in the observation k∗ =

2048.

4. AR(1) (and MA(1)) with parameter 0.9 changing to -0.2 in the observation k∗ =

2048.

5. White noise with unitary variance having a unitary shift in the mean in the obser-

vation k∗ = 2048.

6. AR(1) with autoregressive parameter equal to 0.8 and 0.5 but changing intercept

from a number in the interval [1, 2] and ∆ = |1| in k∗ = 2048.
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7. AR(1) with autoregressive parameter φ ∈ (−1, 1) changing the perturbation vari-

ance from 1 to 2 in k∗ = 2048.

8. AR(1) with autoregressive parameter φi ∈ (−1, 1) , i = 1, 2 changing in k∗ = 512,

imposing |φ1 − φ2| > 0.2.

For cases 1 and 5 the performance of the procedures is analysed for uncorrelated piece-

wise processes in which the variance and the mean change respectively. For cases 2 and

3 we study a change in the autoregressive and moving average parameters, considering

the case of high and moderate autocorrelation. Note that only the sign of the coefficient

changes in those cases, but the marginal variance remains constant. In 4 we consider

autocorrelated processes where the absolute value of the autoregressive (or moving av-

erage) parameter changes. In 6 we compute the power of the procedures detecting a

change in the intercept of autoregressive processes with a high and moderate persistence

respectively. In 7 we evaluate the performance of the procedures when the data present

serial correlation and the perturbation’s variance changes. All of these change-point are

located in the observation 2048, which is just in the middle of the sample. This loca-

tion of the change is set in an arbitrary way and favors the dyadic structure used by

Auto-SLEX. In the item 8, we set the change-point in the autoregressive parameter in

k∗ = 512 to analyse the fact that some procedures find better breaks around the middle

of the sample (i.e. IT, Auto SLEX).

In Tables 2.3 to 2.8 we present the results for the piecewise stationary processes described

before, showing how many breakpoints are found belonging to the interval 2048± 100.

Since IT was designed to detect changes in the marginal variance of independent data,

the results in Table 2.3 are not surprising. When the time series is uncorrelated, IT

found the 100% of the change-points. For autocorrelated time series, if the change in

the autoregressive or the moving average coefficient not implies a change-point in the

marginal variance (processes 2, 3, 5 and 6), IT is not able to find it with a high frequency,

as is expected.
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Table 2.3: Proportion of piecewise stationary processes with changes inside the interval
2048± 100 applying IT

Processes 0 changes 1 changes ≥ 2 changes
1)White Noise: σ2 = 1 to 2 0.000 1.000 0.000

2)AR(1): 0.8 to -0.8 0.998 0.002 0.000
3)AR(1): 0.5 to -0.5 1.000 0.000 0.000
4)AR(1): 0.9 to -0.2 0.321 0.676 0.003
5)MA(1): 0.8 to -0.8 1.000 0.000 0.000
6)MA(1): 0.5 to -0.5 1.000 0.000 0.000
7)MA(1): 0.9 to -0.2 0.062 0.938 0.009

For autocorrelated time series, when the change in the coefficient implies also a change-

point in the marginal variance (processes 4 and 7), the performance of IT seems to be

better, the smaller is the autocorrelation first order coefficient (ρ1). Recall that the first

order autocorrelation coefficient is equal to the autoregressive coefficient for an AR(1),

whereas for a MA(1) process xt = θat−1 + at, with at a white noise, it is equal to

θ/
(
1 + θ2

)
. In the figure 2.4 we present the relationship between ρ1 for a MA(1) and

an AR(1), where it is easy to see that the MA(1) coefficient is, in absolute value, always

smaller than the AR(1) coefficient.

On the other hand, also comparing the processes in 4 and 7, the performance of IT seems

to be better when the smaller is the marginal variance of the process. For a given value

of σ2, the marginal variance of the AR(1) stationary process is greater than the marginal

variance of the MA(1) invertible process, considering the same parameter value, φ = θ

(and is only equal in the trivial case when φ = θ = 0). Moreover, the divergence between

both variances increases for higher absolute values of the autoregressive or the moving

average coefficients. The figure 2.5 shows the marginal variances both for a MA(1) and

an AR(1) with respect to θ ∈ (−1, 1) and φ ∈ (−1, 1), respectively, given by the formulas:

Var (xt) = σ2
(
1 + θ2

)
, for xt = θat−1 + at,with at a white noise

(
0, σ2

)
, (2.6.4)

69



and,

Var (xt) =
σ2

1− φ2
, for xt = φxt−1 + at,with at a white noise

(
0, σ2

)
. (2.6.5)

Figure 2.4: Relationship between first order autocorrelation coefficients in MA(1) and
AR(1) processes with the same parameter value φ = θ.

Table 2.4: Proportion of piecewise stationary processes with changes inside the interval
2048± 100 applying ICM

Processes 0 changes 1 changes 2 changes ≥ 3 changes
White Noise: σ2 = 1 to 2 0.867 0.111 0.020 0.002

AR(1): 0.8 to -0.8 0.027 0.797 0.155 0.021
AR(1): 0.5 to -0.5 0.017 0.839 0.129 0.015
AR(1): 0.9 to -0.2 0.009 0.856 0.122 0.013
MA(1): 0.8 to -0.8 0.046 0.891 0.060 0.003
MA(1): 0.5 to -0.5 0.065 0.932 0.003 0.000
MA(1): 0.9 to -0.2 0.069 0.931 0.000 0.000

Given that ICM is developed for AR(1) data, it does not detect the change-point in

almost 90% of the white noise simulated. When the process is an AR(1), we noticed a

very good performance, i.e. the correct unique change in the interval 2048± 100, in 79.7

to 93.2% of the simulated processes. Both the correct detection of the change-point for
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Figure 2.5: Marginal variances for MA(1) and AR(1) processes with the same parameter
value φ = θ and σ2 = 1.

autocorrelated data and the oversegmentation by ICM, improved when the level of per-

sistence of the simulated process is not closer to the non-stationarity or non-invertibility.

As for IT, this seems to be the reason that the ICM performance to MA(1) is better

than that for the AR(1) processes.

Table 2.5: Proportion of piecewise stationary processes with changes inside the interval
2048± 100 applying BICBS

Processes 0 changes 1 changes 2 changes ≥ 3 changes
White Noise: σ2 = 1 to 2 0 1.000 0.000 0.000

AR(1): 0.8 to -0.8 0.000 0.952 0.029 0.019
AR(1): 0.5 to -0.5 0.000 0.977 0.016 0.007
AR(1): 0.9 to -0.2 0.000 0.966 0.024 0.010
MA(1): 0.8 to -0.8 0.000 0.957 0.031 0.012
MA(1): 0.5 to -0.5 0.000 0.970 0.023 0.007
MA(1): 0.9 to -0.2 0.000 0.964 0.027 0.009

As ICM, BICBS is a model-dependent procedure, but the estimation takes into account

the dynamic evolution of the data. Thus, we computed the BIC for the corresponding

simulated process and the results obtained were excellent. For uncorrelated data BICBS
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detected correctly the 100% of the change-points and for autocorrelated data the power

was also greater than 95%.

Table 2.6: Proportion of piecewise stationary processes with changes inside the interval
2048± 100 applying Auto-PARM

Processes 0 changes 1 change 2 changes
White Noise: σ2 = 1 to 2 0.000 1.000 0.000

AR(1): 0.8 to -0.8 0.004 0.985 0.001
AR(1): 0.5 to -0.5 0.000 0.998 0.002
AR(1): 0.9 to -0.2 0.005 0.990 0.005
MA(1): 0.8 to -0.8 0.001 0.994 0.005
MA(1): 0.5 to -0.5 0.000 0.998 0.002
MA(1): 0.9 to -0.2 0.001 0.991 0.008

The power of Auto-PARM resulted also excellent for both uncorrelated and autocorre-

lated data. As BICBS procedure uses the BIC to select the best model, the parametric

model estimated by Auto-PARM is based on the MDL to fit the data. This model-

based aspect make the performance of these two procedures to be better than the one of

ICM, which adjusts a fixed order AR(1) model to capture the autocorrelation in the data.

Table 2.7: Proportion of piecewise stationary processes with changes inside the interval
2048± 100 applying Auto-SLEX

Processes 0 changes 1 changes 2 changes ≥ 3 changes
White Noise: σ2 = 1 to 2 0.000 0.931 0.036 0.033

AR(1): 0.8 to -0.8 0.000 0.671 0.141 0.188
AR(1): 0.5 to -0.5 0.000 0.895 0.060 0.045
AR(1): 0.9 to -0.2 0.000 0.765 0.105 0.130
MA(1): 0.8 to -0.8 0.000 0.623 0.131 0.246
MA(1): 0.5 to -0.5 0.000 0.881 0.072 0.047
MA(1): 0.9 to -0.2 0.000 0.848 0.092 0.060

Auto-SLEX also showed a very good performance for uncorrelated data, but the segmen-

tation made for autocorrelated data resulted not good enough, with a power between

67.1 and 89.5%. Compared with the other procedures, Auto-SLEX oversegmented the
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piecewise processes, exceeding also the number of false change-points detected by ICM.

When the persistence of the process becomes bigger, the oversegmentation is higher.

Table 2.8: Proportion of piecewise stationary processes with changes inside the interval
2048± 100 applying LRPELT

Processes 0 changes 1 change 2 changes ≥3 changes
White Noise: σ2 = 1 to 2 0.000 0.994 0.004 0.002

AR(1): 0.8 to -0.8 0.000 0.000 0.000 1.0003

AR(1): 0.5 to -0.5 0.000 0.000 0.000 1.0004

AR(1): 0.9 to -0.2 0.000 0.582 0.210 0.208
MA(1): 0.8 to -0.8 0.000 0.000 0.000 1.0005

MA(1): 0.5 to -0.5 0.000 0.000 0.000 1.0006

MA(1): 0.9 to -0.2 0.000 0.514 0.485 0.000

Finally, LRPELT performance seems to depend on whether or not the data is autocor-

related. For uncorrelated data7, the segmentation performance was excellent, with only

0.006% of error. For autocorrelated data8, the results varied depending on the value

selected for pen. Although, in general, the change-point was correctly detected, the pro-

cedure tended to oversegment the process, but the higher is the penalization, the smaller

is the oversegmentation. Using the suggested value of 2*log(4096) for pen by Killick,

if the change in the autoregressive or the moving average coefficient does not imply a

change-point in the marginal variance (processes 2, 3, 5 and 6), LRPELT found the cor-

rect change-point, but with an important oversegmentation, which got worse, as the first

order autocorrelation coefficient becomes higher. If the change in the autoregressive or

the moving average coefficient implies a change-point in the marginal variance (processes

4 and 7), the segmentation improved, obtaining a lower oversegmentation.

3Those 1000 processes were oversegmented in 14 to 19 pieces.
4Those 1000 processes were over-segmented in 5 to 7 pieces.
5Those 1000 processes were over-segmented in 8 to 11 pieces.
6Those 1000 processes were over-segmented in 5 to 7 pieces.
7We used the PELT.var.norm(y,pen=2*log(4096)) function in the R package change-point for this

purpose, where y is the time series and pen is the penalization parameter argument.
8The R function PELT.ar.norm(y,max.lag=p,pen=2*log(4096)) provided by Rebecca Killick was

used, where y is the time series, max.lag is the maximum value allowed for the order of the autore-
gressive model fitted and pen is the penalization parameter argument.
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Hereinafter, we compute the power of the procedures to detect a change-point in the mean

of uncorrelated, highly autocorrelated and moderately autocorrelated data, respectively.

In Table 2.9, the procedures were applied to a white noise with unitary variance having

a unitary shift in the mean in the observation t = 2048. Table 2.10 shows the results for

an AR(1) with autoregressive parameter equal to 0.8 and 0.5, respectively, with a change

in the intercept from a number in the interval [1, 2] and a shift of ∆ = |1| in t = 2048.

In this table, the row “precise detection” refers to the proportion of processes correctly

segmented by the corresponding methodology, the row “oversegmentation” shows the pro-

portion of processes which the corresponding procedure found not only the single correct

change-point, and the row “no segmentation” indicates the proportion of processes which

no change-points are detected.

Table 2.9: Power of the procedures segmenting piecewise uncorrelated processes with
unitary variance. The mean is zero until t = 2048 and has a change-point of magnitude
∆ = |1| in t = 2048

Processes IT ICM BICBS Auto-PARM Auto-SLEX LRPELT
Precise detection 0.000 0.985 0.993 0.998 0.181 0.999
Oversegmentation 0.000 0.000 0.007 0.000 0.000 0.000
No segmentation 1.000 0.015 0.000 0.002 0.819 0.001

For uncorrelated data all the procedures with the exception of IT and Auto-SLEX cor-

rectly detected the change-point in mean with a high power (≥ 0.985). IT and Auto-

SLEX did not find the change-point and did not segment the simulated piecewise pro-

cesses. For autocorrelated data also LRPELT had a bad performance when the persis-

tence of the data is high: when the autoregressive parameter is 0.5 it had a power of

0.994, but when it is 0.8, LRPELT detected the correct change-point in the 100% of the

cases, but with a 100% rate of oversegmentation.

9The mean of the number of change-points is 0.823 using textitpelt.mean.norm(.) function.
pelt.ar.norm(.) does not detect the changes in mean.
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Table 2.10: Power of the procedures segmenting piecewise autoregressive processes with
φ = 0.8, 0.5 and intercept in the interval [1, 2]. Intercept has a change-point of magnitude
∆ = |1| in t = 2048

Processes IT ICM BICBS Auto-PARM Auto-SLEX LRPELT
φ = 0.8

Precise detection 0.000 0.944 0.952 0.989 0.123 0.000
Oversegmentation 0.000 0.017 0.039 0.002 0.004 1.0009

No segmentation 1.000 0.039 0.009 0.009 0.873 0.000
φ = 0.5

Precise detection 0.000 0.973 0.958 1.000 0.157 0.994
Oversegmentation 0.000 0.005 0.004 0.000 0.005 0.006
No segmentation 1.000 0.022 0.038 0.000 0.838 0.000

In what follows we compute the power of the procedures to detect and locate a change-

point in the perturbation’s variance term of an AR(1) process. In Table 2.11 we present

the results, where the autoregressive coefficient is generated as φ ∈ (−1, 1), and the per-

turbation term is a white noise with unitary variance in the first piece (t = 1, ..., 2048),

shifting to 2 in the second piece (t = 2049, ..., 4096).

Table 2.11: Power of the procedures segmenting piecewise autoregressive processes with
φ ∈ (−1, 1), where the perturbation’s variance changes from 1 to 2 in t = 2048

Processes IT ICM BICBS Auto-PARM Auto-SLEX LRPELT
Precise detection 0.951 0.909 0.959 0.961 0.923 0.952
Oversegmentation 0.001 0.000 0.041 0.039 0.077 0.015
No segmentation 0.048 0.091 0.000 0.000 0.000 0.033

All the procedures obtained excellent results when the perturbation’s term variance

changes, where the best results were for Auto-PARM and BICBS.
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In the previous simulation experiments, the change-point is located in the middle of the

time series. Given that some procedures are biased to the middle of the time series, in

order to analyse the performance of the procedures detecting change-points in a different

location, we computed the power to detect a change-point in the autoregressive parameter

located in t = 512. For this task, we generate 1000 piecewise autoregressive processes

provided that:

xt = φ1xt−1 + at t < 512 (2.6.6)

xt = φ2xt−1 + at t ≥ 512, (2.6.7)

where x0 = 0, at ∼ iid(0, 1), and φi ∈ (−1, 1), i = 1, 2. In t = 512, the coefficient φ1

changes in an amount ∆, such that, |φ1 − φ2| > 0.2. The results are presented in the

Table (2.12).

Table 2.12: Power of the procedures segmenting piecewise autoregressive processes with
φi ∈ (−1, 1) changing in t = 512, imposing |φ1 − φ2| > 0.2, i = 1, 2

Processes IT ICM BICBS Auto-PARM Auto-SLEX LRPELT
Precise detection 0.238 0.819 0.840 0.800 0.078 0.646
Oversegmentation 0.005 0.000 0.015 0.009 0.478 0.034
No segmentation 0.757 0.181 0.145 0.191 0.444 0.320

Numbers in Table 2.12 show that the model based procedures as ICM, BICBS and Auto-

PARM, had a better performance than the other. In particular and in decreasing order,

the power of BICBS, ICM and Auto-PARM were higher than 79% and much more greater

than the obtained by the other methodologies. Auto-SLEX had a high detection of the

change-point, but with a rate close to 50% of oversegmentation. Although the location

of the change-point is in t = 29, it seems that, the dyadic segmentation does not work

well where the change-point is not located in the middle of the observed data.
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In order to analyse the sensitivity to the magnitude of change (∆) of the autoregressive

parameter of piecewise stationary processes we apply each procedure to 2000 piecewise

stationary AR(1) processes with φ equal to a uniform random number in the interval

(−1, 1): in 1000 of them the φ parameter changes in a magnitude of ∆ = |0.6| in the

middle of the sample and in the other 1000 it changes in ∆ = |0.3| .

The sensitivity analysis to the magnitude of change of piecewise AR(1) parameter is

presented in the Table 2.13. For both magnitudes of change (∆ = |0.6| and ∆ = |0.3|),

this Table shows the number of processes correct segmented in two blocks in the second

column, the number of processes wrongly not segmented in the third column and finally,

the number of processes segmented into 2 or more blocks in the following columns, re-

spectively.

We found a very high rate of well segmented processes except for IT and LRPELT. As it

is expected, the results are more precise when ∆ is greater. In other words, the higher is

the magnitude of change in the autoregressive parameter φ, the higher is the proportion

of well segmented processes.

The performances of Auto-SLEX and LRPELT were pretty different. Meanwhile Auto-

SLEX always detected the correct change-point, LRPELT exhibited a high number of

non-segmented piecewise processes (48.2% for ∆ = 0.3 and almost 38% for ∆ = 0.6),

but both of them had similar rates of oversegmentation. IT results are similar in this

sense with those of LRPELT.

Finally, we analyse the performance of the tests detecting multiple change-points by

simulating:

xt =


εt, 1 < t ≤ 1365

2εt, 1366 < t ≤ 2730
0.5εt, 2731 < t ≤ 4096,

(2.6.8)
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Table 2.13: Sensitiveness of the segmentation performed to the magnitude of change ∆
of the φ parameter in piecewise AR(1) processes

Procedure found: 2 correct blocks 1 block 2 blocks 3 blocks 4 blocks 5 blocks 6 blocks
∆ = 0.3

IT 0.436 0.350 0.565 0.047 0.024 0.010 0.000
ICM 0.908 0.001 0.978 0.021 0.000 0.000 0.000

BICBS 0.904 0.048 0.904 0.028 0.020 0.000 0.000
Auto-PARM 0.934 0.000 1.000 0.000 0.000 0.000 0.000
Auto-SLEX 0.878 0.018 0.878 0.078 0.018 0.008 0.000

LRPELT 0.419 0.482 0.483 0.016 0.010 0.007 0.002
∆ = 0.6

IT 0.558 0.263 0.662 0.043 0.018 0.014 0.000
ICM 0.973 0.001 0.973 0.026 0.000 0.000 0.000

BICBS 0.957 0.001 0.957 0.027 0.015 0.000 0.000
Auto-PARM 0.996 0.000 0.996 0.003 0.001 0.000 0.000
Auto-SLEX 0.878 0.000 0.878 0.079 0.025 0.014 0.004

LRPELT 0.558 0.379 0.599 0.009 0.011 0.002 0.000

where we are interested in changes in the scale of the perturbation term, when the process

does not have autocorrelation, and

xt =


0.5xt−1 + εt, 1 < t ≤ 1365

0.8xt−1 + εt, 1366 < t ≤ 2730
−0.5xt−1 + εt, 2731 < t ≤ 4096,

(2.6.9)

where it is introduced first order autocorrelation in the process and the change-points

are due to the autoregressive coefficient, and finally,

xt =


0.5xt−1 + εt, 1 < t ≤ 1365

0.8xt−1 + εt, 1366 < t ≤ 2730
0.8xt−1 + 2εt, 2731 < t ≤ 4096,

(2.6.10)

where also is introduced autocorrelation in the data and there is both a change-point in

the autoregressive coefficient and another one in the variance of the perturbation.

It is assumed that εt ∼ N(0,1) and x0 = 0.

When multiple change-points are present in the time series, some procedures performed

excellent only if the data have no serial correlation (process 2.6.8). That is the case of

78



Table 2.14: Proportion of detected change-points in piecewise stationary processes with
two changes presented in equations 2.6.8, 2.6.9 and 2.6.10

Processes IT ICM BICBS Auto-PARM Auto-SLEX LRPELT
Process defined in (2.6.8)

Precise detection 0.999 0.772 0.910 1.000 0.626 0.990
One change-point 0.000 0.000 0.000 0.000 0.000 0.000
Oversegmentation 0.000 0.228 0.005 0.000 0.372 0.010
No segmentation 0.001 0.000 0.085 0.000 0.000 0.000

Process defined in (2.6.9)
Precise detection 0.673 0.369 0.992 0.995 0.029 0.775
One change-point 0.000 0.000 0.000 0.000 0.000 0.000
Oversegmentation 0.001 0.621 0.001 0.000 0.914 0.007
No segmentation 0.326 0.000 0.007 0.005 0.057 0.218

Process defined in (2.6.10)
Precise detection 0.753 0.110 0.910 0.954 0.023 0.884
One change-point 0.206 0.045 0.028 0.045 0.000 0.000
Oversegmentation 0.013 0.827 0.062 0.001 0.945 0.006
No segmentation 0.000 0.063 0.000 0.000 0.032 0.110

IT and LRPELT. With this kind of data, also the power of BICBS and Auto-PARM was

high. In the opposite side, ICM and Auto-SLEX detected the change-point, but with a

big rate of oversegmentation.

For autocorrelated data, the procedures with the best performance, were BICBS and

Auto-PARM, with powers greater than 0,91. Though the acceptable powers of IT and

LRPELT, they tended to do not segment or to find only one of the change-points that

the process exhibit. Finally, ICM and Auto-SLEX performed again detecting more than

the right number of change-points.

In summary, Monte Carlo simulation experiments showed:

• All the presented procedures were undersized in finite samples.

• The type of serial correlation (i.e. autoregressive or moving average dynamic) did
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not affect the size, except for LRPELT.

• IT worked well, properly detecting a change-point when the data is uncorrelated

and the source of the change-point is a variation in the marginal variance of the

process. In other cases, its power got worse.

• ICM performance was better when the data generating process is an AR(1), in

special when the autoregressive coefficient is not close to one in absolute value.

However, (i.e., for other models representing the autocorrelation structure or close

to the unitary root) it tends to oversegment the process.

• Auto-SLEX worked well for uncorrelated data, but its power was smaller and the

oversegmentation was more frequent for serial correlated processes.

• LRPELT results were very dependent of the choice of the parameter pen. Moreover,

as ICM it exhibited an important oversegmentation which got worse as the first

order autocorrelation becomes higher.

• When the change-point is not located in the middle, the powers of the procedures

were reduced, but model-based procedures (i.e. ICM, Auto-PARM and BICBS)

obtained a better performance.

• Analysing the sensitiveness of the power to the magnitude of change in the au-

toregressive parameter, we found better levels of power for higher magnitude of

changes.

• The performances of both Auto-PARM and the proposed BICBS were the best,

with a very high power in the different simulation experiments. Thus, the modifi-

cation proposed in the piecewise model to compute the BIC jointly with the binary

segmentation searching algorithm, provided an intuitive and excellent tool to de-

tect and locate the change-points. The advantage with respect to Auto-PARM

is its simplicity, without the need of a complex searching method as the genetic

algorithm.

80



2.7 Application to real datasets of Neurology and Speech
Recognition

The performance of the methods is illustrated with two datasets. We compare the results

of applying IT, ICM, BICBS, Auto-PARM, Auto-SLEX and LRPELT, first, to a neurol-

ogy dataset denoted by EEGT3, which represents the recordings from the left temporal

lobe during an epileptic seizure of a patient with 32768 data observed at the sampling

rate of 100 Hz.; and second, to a speech dataset consisting in the recording of the word

GREASY with 5762 observations.

Both time series have been analysed by Ombao et al. (2002) and Davis et al. (2006)

and have been presented previously, in Figures 1.8 and 2.2 respectively. We apply the

six methods and present the resulting segmentations in Figures 2.6 and 2.7 respectively.

Breakpoints are showed with vertical dashed lines.

For EEGT3, IT found 13 change-points, BICBS 3, ICM 5, Auto-PARM 15, Auto-SLEX

28 and LRPELT 17. Auto-SLEX found that the first half of the time series is stationary.

The seizure, or at least a different behavior of the series, seems to begin in t = 16384.

The other procedures showed a observation after t = 18000 as the breakpoint beginning

the seizure. We found the resulting segmentation by ICM and BICBS very intuitive.

By ICM, until the observation 18511 the time series presented a smaller variance which

characterizes the period pre-seizure, during the seizure between the observations 18512

and 22732 the variance increased, and after that observation the variance is reduced

again, getting a more stable variance after the observation 26870 approximately. BICBS

indicated that the time series is starting to change in the observation 17415 and the

seizure is coming more notorious begining in the observation 18905, and the decreasing

in the variability determines the last change-point close to the observation 25000. IT

found those same change-points, but segmented the time series in more intervals. LR-

PELT results are very sensitive to the choosing of β parameter. Trying several values of

the penalization parameter, we use β = 12, avoiding an oversegmentation and ensuring
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that there are at least 200 observations in each interval.

GREASY appears in the figure as non stationary, but it could be segmented into approx-

imately stationary blocks. Note that in the behavior of the time series we can identify

blocks corresponding to the sounds G, R, EA, S, and Y (Ombao et al. (2002)). Auto-

SLEX was the procedure which found more breakpoints also for this time series. The

performance of IT, ICM, BICBS, Auto-PARM and LRPELT (with β = 10) seems to be

better, finding 4 to 13 change-points, most of them limiting intervals corresponding to

the sounds compounding the word GREASY.
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In order to compare the goodness of the segmentation, we compute the standard devi-

ation, Akaike and Bayesian Information criteria for the resulting segmentation by each

method. We present the statistics in Table 2.15, where the best values of the indicators

proposed are highlighted with italic font.

Table 2.15: Standard deviation, AIC, BIC and number of change-point in the segmen-
tation by each methodology

IT ICM BICBS Auto-PARM Auto-SLEX LRPELT
EEGT3

Std. Dev. 240.83 170.62 102.26 608.71 917.21 396.57
AIC10 2.6709 2.6771 2.6754 2.5981 2.6140 2.6306
BIC11 2.6754 2.6818 2.6788 2.6080 2.6291 2.6423

# change-points 13 5 3 15 28 17 (β = 12)
GREASY

Std. Dev. 51.97 52.46 52.44 118.32 137.84 82.80
AIC 4.0409 4.0412 4.0409 4.0486 4.0898 4.0590
BIC 4.0763 4.0803 4.0759 4.1178 4.1712 4.1119

# change-points 7 4 6 13 18 11 (β = 10)

For EEGT3 data, the segmentation with less standard deviation is given by BICBS, but

it was not the best by using AIC and BIC. These criteria indicated a hardly better per-

formance using AutoPARM. For GREASY data, the less standard deviation is reached

by IT, but information criteria pointed out as the best, the segmentation performed by

BICBS.

2.8 Conclusions

In this Chapter we handled the problem of detecting, locating and estimating a single

or multiple change-points in the marginal mean and/or the marginal variance for both

uncorrelated and serial correlated data.

10The values of AIC in this row should be multiplied by 105

11The values of BIC in this row should be multiplied by 105
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We introduced a modification in the models considered in the change-point literature

that were arrived by the informational approach. Working with autoregressive models,

those papers allowed changes in the marginal mean and in the autoregressive parameters.

We include the possibility that also the perturbation’s variance could change.

By combining the BIC of such kind of models with binary segmentation, we obtained an

excellent performance in several simulation experiments. When the change-point is in

the middle of the sequence, its power resulted higher than 95%, segmenting uncorrelated

and serial correlated data which exhibited changes in the mean, in the autoregressive

parameters and in the perturbation’s variance.

When the change-points is not in the middle, all the procedures had a smaller power.

BICBS obtained the highest proportion of correct segmentation, equal to 0.84. In mul-

tiple change-points experiments, only BICBS and Auto-PARM got a power greater than

90%.

Ultimately, the modification proposed in the piecewise model to compute the BIC jointly

with the binary segmentation, provided a model-adapted procedure with excellent re-

sults for detecting and locating change-points without the need of complex searching

algorithms.
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Chapter 3

Segmentation of processes with
conditional heteroskedasticity

3.1 Introduction

This Chapter deals with the detection, location and estimation of change-points in the

unconditional variance of heteroskedastic time series. This kind of processes have a

great importance in finance, but also in other fields as neurology, cardiology, seismol-

ogy, meteorology and atmospheric physics. Testing for changes in the unconditional

variance of a time series has received considerable attention, but most of the testing pro-

cedures assumed constant conditional variance (Inclán and Tiao (1994), Chen and Gupta

(1997)). However, procedures for the change-point problem in the variance allowing a

heteroskedastic behavior of the time series have been less investigated.

Suppose that {xt}, t = 1, ..., T is a time series of independent random variables with zero

mean1,and conditional variance equal to σ2
t . We assume that σ2

t is a function that evolves

through time and can exhibit a piecewise behavior. Thus, the purpose of this chapter is to

explore, analyse and apply the change-point detection and estimation procedures to the

situation when the conditional variance of a univariate process exhibited change-points.

The hypotheses of interest are:

1The assumption of zero or constant conditional mean is made in order to focus the analysis in the
variance of the process, but it can be changed for a stationary behavior in the mean, allowing serial
correlation in the data.
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H0 : σ2
t is a function with constant parameters over x1, ..., xT

H1 : σ2
t is a function with changing parameters over x1, ..., xT .

Under H0, the parameters defining the variance function are constant over time, mean-

while under H1, there is, at least one point t = k∗ < T , at which a change in the

parameters of the variance function occurs.

The research issue of the Chapter is to present, evaluate and apply several statistics and

procedures in order to find and locate a change point in the conditional variance of a

time series process. One of these procedures, the one that we propose, is a model-based

method using the Bayesian information criterion (BIC). The merit of this approach, com-

paring with other procedures based on BIC, is that it is not necessary to use non-linear

estimation methods and the algorithm involved becomes more efficient.

The Chapter is organized as follows. Section 2 introduces the conditional variance mod-

els and their dependence properties. Section 3 explains the importance of detecting and

estimating change-points in the conditional heteroskedastic processes. Section 4 presents

a number of statistics and procedures to detect a change-point in processes with condi-

tional heteroskedasticity, and, in Section 5, we discuss their strengths and limitations.

In Section 6, we propose a procedure to detect and locate change-points by using the

Bayesian information criterion as an extension of its application in linear models. In Sec-

tion 7, we perform Monte Carlo simulation experiments to asses the behavior of seven

different procedures to test and detect change-points, analysing their size and power

properties, both for heteroskedastic processes with a single or multiple change-points.

Section 8 presents the application of the procedures to S&P500 return index and Section

9 concludes.
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3.2 Review of conditional heteroskedastic volatility models

Over the eighties and nineties, several models of conditional variance or volatility (as

it is known among econometricians), for time series have been proposed. The common

element to all these approaches is the notion that volatility can be decomposed into pre-

dictable and unpredictable components. Empirical applications of this idea have been

made in financial time series, where the interest has centered on the determinants of the

predictable part because the risk premium is a function of it.

To formalize this idea, we denote the conditional mean of a time series {x1, ..., xT } by

µt = E (xt/xt−1, xt−2, ...) = Et−1 (xt) and the conditional variance by

σ2
t = E

[
(xt − µt)2 /xt−1, xt−2, ...

]
= Et−1 (xt − µt)2 .

Engle (1982) proposed to model σ2
t as

xt = εtσt,

σ2
t = ω +

p∑
k=1

αkx
2
t−k,

where εt is an iid process with zero mean and variance 1. This process is called Autore-

gressive Conditional Heteroscedastic of order p (ARCH(p)) model.

To simplify the exposition, consider the ARCH(1) model, where the conditional vari-

ance is σ2
t = ω + αx2

t−1, with ω > 0 and α ≥ 0 to be positive at every t. Although

the conditional variance evolves through time, the unconditional or marginal variance

of such a process is constant and equal to ω/ (1− α). Thus, the constant ω is related

to the scale or the marginal variance of the process while the parameter α models the

evolutive part of the variance. When α = 0, the variance is constant over time and the

process is homoscedastic, while when α 6= 0, σ2
t evolves depending on the past values of
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xt: if xt was large in a given t, the next period variance is going to be large, while if

xt was small, the next period variance is also small, resulting in a clustering of variance

behavior. In this sense, α represents the persistence in the variance evolution and the

weakly stationarity condition is α < 1.

The ARCH(1) model can be written as an AR(1) in the squares of xt:

x2
t = σ2

t + σ2
t

(
ε2t − 1

)
= ω + αx2

t−1 + ut, (3.2.1)

where ut = σ2
t

(
ε2t − 1

)
, which has zero mean and is uncorrelated but conditionally het-

eroskedastic.

The problem of ARCH models is that many lags are needed to adequately represent the

dynamic evolution of the conditional variance. Following the idea in the Wold theorem,

Bollerslev (1986) generalized ARCH models to

σ2
t = ω +

q∑
j=1

βjσ
2
t−j +

p∑
k=1

αkx
2
t−k,

the Generalized ARCH (GARCH(p, q)) models. The most recurrent model in financial

applications is the GARCH(1,1) given by:

σ2
t = ω + βσ2

t−1 + αx2
t−1. (3.2.2)

The parameters have to be restricted to guarantee the positiveness of the conditional

variance. In particular, ω > 0, α ≥ 0 and β ≥ 0. The marginal variance for the

GARCH(1,1) is constant and equal to ω/ (1− α− β). Alternatively, the GARCH(1,1)

model can be written as an ARMA(1,1) model for squared residuals as follows:

90



x2
t = ω + αx2

t−1 + βσ2
t−1 + ut

ω + (α+ β)x2
t−1 − β

(
x2
t−1 − σ2

t−1

)
+ ut

ω + (α+ β)x2
t−1 − βσ2

t−1

(
ε2t−1 − 1

)
+ ut

ω + (α+ β)x2
t−1 − βut−1 + ut. (3.2.3)

The sum of the parameters, α+β, is related with the persistence of shocks to the volatil-

ity. The weak stationarity condition of the GARCH(1,1) model is α+ β < 1.

GARCH model has a very important limitation: it is very rigid to represent simulta-

neously series with high kurtosis and small autocorrelations of squares. Only when the

persistence is very close to one, the GARCH model is able to represent both charac-

teristics. Moreover, when the GARCH(1,1) is applied to financial returns, it is often

observed that α̂ + β̂ is almost 1. For this reason, Engle and Bollerslev (1986) proposed

the IGARCH(1,1) model which is given by

σ2
t = ω + αx2

t−1 + (1− α)σ2
t−1

= ω + σ2
t−1 + α

(
x2
t−1 − σ2

t−1

)
In the IGARCH model, the conditional volatility is modeled with a random walk plus

drift.

Other approaches for modeling conditional variance are based on the idea that it has a

predictable component that depends on past information and an unexpected noise. This

type of models are called Stochastic Volatility models (SVM) , where the variance is an

unobserved variable. In the simplest SVM, the log-volatility follows an AR(1) process

(Andersen (1994)), where
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xt = εtσ
∗
t

log(σ∗t ) = µ+ φ log(σ∗t−1) + ηt

with εt a strict white noise with variance 1, η has a normal distribution with zero mean

and variance σ2
η and the parameter µ is related with the marginal variance of the pro-

cess. The noise of the volatility equation, ηt, is assumed to be a Gaussian white noise

with variance σ2
η, independent of the noise of the level, εt. The Gaussianity of ηt, means

that the log-volatility process has a normal distribution. In this model, the parameter φ

measures the persistency in the conditional variance.

We focus the change-point problem in the parameters of the GARCH family models,

letting this study of change-points in the SVM model for future research.

3.3 Motivation

GARCH(p, q) models are composed of a constant term, ω, related to the scale of the

process, and a dynamic term, generated through the past values, which is driven by

the parameters α and β. Thus, there are two sources of a change-point in conditional

heteroskedastic processes: a) changes in the parameter related to the scale, ω and, b)

changes in the parameters α and/or β.

Changes in α and β are related with changes in the persistence of the condicional variance

and had been analysed in several papers, specially those related with finance, because

the degree to which the conditional variance is affected by its past values is a very im-

portant economic or financial issue of daily stock returns.

Hendry (1986), Diebold (1986), Lamoureux and Lastrapes (1990) and Mikosch and Star-

ica (2004) suggested that the persistence in volatility must be combined with the presence
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of change-points, since as it happens for linear processes, when modeling time varying

volatility, we require that the parameters which describe the data generating process

of volatility be stable over time. Parameter instability is an evidence of model miss-

specification and standard econometric theory no longer applies. Furthermore, West

et al. (1999) and Starica et al. (2005) showed that the presence of structural breaks could

affect forecasting. Forecasting improve considerably, taking in account the change-points

in the variance of the return series.

Lamoureux and Lastrapes (1990) demonstrated that breaks in the unconditional level

of variance drove the estimated persistence of variance towards IGARCH. However, an

IGARCH model implies an infinite unconditional variance for the time series, and in

particular, assets returns does not exhibit this property. Thus, ignoring the presence of

those change-points produces higher values of the estimated persistence. We illustrate

this fact with the example presented in equations (3.3.1) and the Figure (3.1).

Let assume a stochastic GARCH(1,1) as follows:

xt = εtσt, (3.3.1)

σ2
t =

{
0.001 + 0.7σ2

t−1 + 0.03x2
t−1 if t ≤ 2048

0.001 + 0.8σ2
t−1 + 0.1x2

t−1 if t > 2048,

where εt is N(0,1). In this example, the marginal variance of xt increases in t = 2048

from 0.001/(1 − 0.03 − 0.7) = 0.0037 to 0.001/(1 − 0.1 − 0.8) = 0.01. If we ignore this

change-point and fit a GARCH(1,1) with constant parameters, the estimated model is:

0.000009 + 0.981σ2
t−1 + 0.0177x2

t−1,

resulting in a persistence equal to α̂ + β̂ = 0.9987, which is greater than the true per-

sistence: 0.73 in 1 ≤ t ≤ 2048 and 0.9 in 2048 ≤ t ≤ 4096, and the marginal variance

is 0.000009/(1 − 0.981 − 0.0177) = 0.00692, which lies between the marginal variances

computed for the true model.
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Figure 3.1: Simulated GARCH(1,1) defined in equations (3.3.1)

As the example shows, it is important to detect change-points in the conditional vari-

ance. The observation of equations (3.2.1) and (3.2.3), where the presence of evolutive

behavior in the variance is reflected by a linear behavior in the squares of the time series,

suggest to apply the change-point tests for linear processes presented in Chapter 2 to

squared transformation of the time series. Several articles demonstrated that it can be

done under the fulfilment of some asymptotic properties2 (Carrasco and Chen (2002),

Fryzlewicz and Subba Rao (2011)). The models and change-points procedures presented

in this Chapter are assumed to satisfy those properties.

There are many approaches based on cusums, informational criteria, minimum descrip-
2These conditions are called mixing properties. Intuitivelly, they imply that the distant future is

essentially independent of the past or present of the process, and they are very important in order to
apply tests for the change-point problem, because they allow to show asymptotic normality of the sums
of {xt} and

˘
x2

t

¯
consistency of change-point detection schemes for non-linear time series. Several of

those tests requiere some conditions on the dependence between the elements of a random sequence to
be consistent.
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tion length (MDL) and the spectrum to detect and locate breaks in the parameters of

the conditional heteroskedastic variance. We present them in the following section.

3.4 Procedures for the change-point problem in conditional
heteroskedastic processes

A procedure for detecting a change-point is composed of two elements:

• a statistic or loss function, useful for detect and locate a change-point, and,

• a multiple change-point searching method.

We concentrate our literature review of the procedures, in the following statistics for

detecting, locating and estimating change-points in the conditional variance: cusum

methods presented by Inclán and Tiao (1994), Kokoszka and Leipus (1999) and Lee

et al. (2004); Bayesian information criterion proposed by Fukuda (2010); minimum de-

scription length (Davis et al. (2008)) and the spectrum (Ombao et al. (2002)).

In what follows, we denote as k̂ the estimation of the true change point location k∗ by

applying a test statistic.

3.4.1 Cusum type procedures

A cusum statistic is a cumulative sum of terms (usually original data or residuals, in

levels or squared) and when this sum is statistically high, it is assumed that a change-

point had ocurred. When the parameter exhibiting the potential change-point is the

variance, the cusum statistic is usually computed adding the squares of the data. The

pioneer paper using cumulative sums of squares for the detection of changes in variance

is Inclán & Tiao (1994). Their statistic was proposed for independent observations with

constant conditional variance. We presented IT statistic and explained the iterative pro-

cedure known as ICSS (for Iterative Cumulative Sum of Squares) in the previous chapter.

95



Kokoszka and Leipus (1999, 2000) proposed a cusum statistic (hereinafter, KL) for which

the main difference with the IT statistic, is that it was designed to analyse the existence

and location of structural breaks in the conditional variance of a time series. This gives

to the KL statistic the advantage of being a valid test under a wide class of strongly de-

pendent processes, including long memory, autoregressive conditional heteroskedasticity

(ARCH) and stochastic volatility (SV) type processes which have important empirical

application examining financial time series.

The statistic in order to test for breaks in an ARCH(∞) process is:

UT (k) =
1√
T


k∑
j=1

Xj −
k

T

T∑
j=1

Xj


where 0 < k < T . Kokoszka and Leipus (2000) considered Xt = x2

t for ARCH(∞)

and Xt = |xt| for long memory processes, where xt are the returns. The CUSUM type

estimator k̂ of a change point k∗ is defined as:

k̂ = min{k : |UT (k)| = max |UT (j)|}

The asymptotic distribution of the statistic UT (k) is the same as the one of IT, this

means a Kolmogorov-Smirnov type asymptotic distribution.

sup{|UT (k)| /σ̂} →D[0,1] sup{B(k) : k ∈ [0, 1]}

where B(k) is a Brownian bridge. The computation of this statistic depends on σ̂, which

is the estimator of square root of σ2 =
∑∞

j=−∞Cov(Xj , X0). There are several of such

estimators depending of the kernel function used. Kokoszka and Leipus (1999) suggested:

σ̂2
T,q =

∑
|j|≤q

ωj (q) γ̂j ,

where γ̂j are the sample covariances:
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γ̂j =
1
T

T−|j|∑
i=1

(
Xi − X̄

) (
Xi+|j| − X̄

)
|j| < T,

X̄ is the sample mean T−1
∑T

j=1Xj and

ωj (q) = 1− |j|
q + 1

|j| ≤ q,

are the Bartlett weights, assuming that q →∞ and q/T → 0.

Lee et al. (2004) performed a simulation study and concluded that the test for GARCH(1,1)

models, using the cusum statistic based on the squares is unstable and produces low

power. They considered a cusum test based on the squares of ε̂t = xt/σ̂ instead of xt,

where σ̂ is obtained via estimating the unknown parameters of a GARCH process. The

test statistic is

TT =
1√
Tτ

max
1≤k≤T

∣∣∣∣∣
k∑
t=1

ε̂2t −
(
k

T

) T∑
t=1

ε̂2t

∣∣∣∣∣ , (3.4.1)

where τ2 = V ar(ε̂21). Since the iid property of the true errors remains when there are no

changes, this statistic is capable of detect changes in the parameters, with more stability

and better powers. The parameter τ2 is estimated as

τ̂2 =
1

T − p− q

T∑
j=p+q+1

ε4j −

 1
T − p− q

T∑
j=p+q+1

ε2j

2

.

Substituting τ by τ̂ in the expression (3.4.1) the result is T̂T , which under H0

T̂T →d sup
0≤u≤1

∣∣B0 (u)
∣∣ , T →∞,

where B0 is a Brownian bridge.

3.4.2 Informational approach

Information criteria were used to detect changes in the marginal mean and variance by

Yao (1988), but they have been less used for changes in the parameters of conditional
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variance. The paper of Lavielle and Moulines (2000) which was cited in many papers,

proposed a very general least square test combined with a penalty function based on

the Bayesian information criterion (BIC) to avoiding oversegmentation. As a particular

application, this test can be used with the squared data for detecting, locating and esti-

mating change-point in the variance Andreou and Ghysels (2002).

We focus in the recent approach presented by Fukuda (2010), where the segmentation is

based on the minimization of the BIC: the parameters of a piecewise GARCH(1,1) are

estimated, jointly with the number and location of change-points.

Fukuda (2010) consider the case in which the time series xt is divided into m+ 1 pieces

generated from different GARCH(1,1) models. Thus, the i-th segment is modeled by:

xt = σtεt, εt ∼ N(0, 1),

σ2
t = ωi + αix

2
t−1 + βiσ

2
t−1,

with ωi > 0 and αi + βi < 1. The log likelihood (Li) of the piece i (or the interval

[ki−1, ki], with k0 = 0 and km+1 = T ) is given by:

Li =
ki − ki−1

2 log (2π)
−
(

1
2

) ki∑
t=ki−1+1

log
(
σ2
t

)
−
(

1
2

) ki∑
t=ki−1+1

x2
t

σ2
t

.

The BIC is obtained as follows:

BIC = −2
m+1∑
i=1

Li + {3 (m+ 1) +m} log T. (3.4.2)

Moreover, it is imposed a minimum length constraint on the segments, then:

ki − ki−1 ≥ L, i = 1, ...,m+ 1.

L and the maximum number of change-points is predetermined using a visual inspection

of the data. The vector of parameters (k1, ..., km, ω1, ..., ωm+1, α1, ..., αm+1, β1, ...βm+1)
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was obtained by fixing the maximum value of m and minimizing the BIC from the sit-

uation of m = 0, different locations of m = 1, until different locations of the mmax

change-points.

For change-points in SVM, information criteria approach was less investigated. Berg

et al. (2004) proposed a Bayesian approach based on the deviance information criterion

for comparing SVM, but it has not been used for the change-point problem.

3.4.3 Minimum Description Length and Auto-SEG

In Chapter 2 we presented the Minimum Description Length (MDL) as a criterion to se-

lect the model that achieves the best compression of the data, in particular for piecewise

autoregressive processes as in the method Auto-PARM (Davis et al. (2006)). Following

the same idea, in Davis et al. (2008) MDL is used in a more general way by the Auto-

SEG (for automatic segmentation) procedure, for GARCH and SVM among others.

Let m be the unknown number of change-points of the process xt of length T . Moreover,

let kj , j = 1, ...,m be the change-point between the j-th and (j + 1)-th segments, and

set k0 = 1 and km+1 = T + 1. The j-th piece of the time series {xt} is modeled by a

stationary time series {xt,j} such that:

xt = xt+1−kj−1,j kj−1 ≤ t < kj ,

where the pieces are independent with stationary distribution pθj
(.), and θj is a member

of the parameter space Θj with θj 6= θj+1, j = 1, ...,m. The dimension of θj and its

parameter space Θj may vary with j and can be unknown.

The j-th piece of the process {xt} can be modelled, for example, as
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• a GARCH(pj ,qj) model; i.e

xt,j = σt,jεt,j , t = ...,−1, 0, 1, ..., (3.4.3)

σ2
t,j = α0,j + α1,jx

2
t−1,j + ...+ αpj ,jx

2
t−pj ,j

+β1,jσ
2
t−1,j + ...+ βqj ,jσ

2
t−qj ,j t = ...,−1, 0, 1, ...,

subject to constraints α0,j > 0, αi,j ≥ 0, βi,j ≥ 0, i = 1, ...,m + 1 and α1,j + ... +

αpj ,j+β1,j+ ...+βqj ,j < 1. With pj and qj unknown, then θj = (pj , qj , α0,j , αj , βj),

where αj and βj are the vectors of αjs and βjs in equation (3.4.4) respectively.

• a ARSV(pj) model; i.e.

xt,j = σt,jεt,j , t = ...,−1, 0, 1, ..., (3.4.4)

log(σt∗,j) = µ0,j + φ1,j log(σt∗−1) + ...+ φpj ,j log(σt∗−pj ,j) + ηt,j , t = ...,−1, 0, 1, ....

The problem of finding the best segmentation is solved using the Minimum Description

Length (MDL) principle of Rissanen (1989). As mentioned in the Chapter 2, using the

MDL for the model selection problem, consists of select the model F ∈M that achieves

the best compression of the data, whereM is a family of candidate models. Thus, the

MDL principle defines as the best model of F , as the one that produces the shortest

code length that completely describes the observed data x = (x1, x2, ..., xT ).

Let ξj be a vector collecting the cj integer-valued parameters (i.e. unknown orders of

the model) and ψj contains the dj real-valued parameters of the model. As it was

explained in Chapter 2, the CLF (m) = log2m, CLF (Tj) = log2T for all j, and,

CLF

(
ψ̂j

)
= dj

2 log2Tj . Moreover, CLF (ξj) =
∑cj

k=1 log2ξkj , where ξkj is the kth entry

of ξj . The code length for the residuals, CLF
(
ê/F̂

)
as demostrated by Rissanen, is

equal to the negative of the log-likelihood of the fitted model F̂ , denoted as L (ψj ,xj).

Thus, the formula of the MDL is given by
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log2m+ (m+ 1) log2T +
m+1∑
j=1

cj∑
k=1

log2ξkj +
m+1∑
j=1

dj
2

log2Tj −
m+1∑
j=1

L
(
ψ̂j ,xj

)
, (3.4.5)

where the last addend is obtained from the assumption that the pieces are independent.

For instance, in the GARCH(1,1) model presented in (3.2.2), pj = 1, qj = 1 are the

integer-valued parameters j representing the model orders and ω, β and α are the real-

valued parameters ψj . Thus, θj = (1, 1, ω, β, α), cj = 2 and dj = 3. The corresponding

MDL is then,

log2m+ (m+ 1) log2 n+
m+1∑
j=1

3
2

log nj −
m+1∑
j=1

L
(
ψ̂j ,xj

)
.

Davis et al. (2006) showed that the best-fitted model obtained by the minimization of the

MDL principle is a non trivial issue because the search space has a enormous dimension.

They use a genetic algorithm to solve this problem, providing an automatic method for

multiple change-point detection, location and estimation.

3.4.4 The spectrum of locally stationary processes and Auto-SLEX

In Section (2.3.4) we presented this non-parametric procedure introduced by Ombao

et al. (2002). The basis is the Cramer representation of locally stationary processes,

which generalizes the Fourier vectors which are perfectly localized in frequency, but they

cannot adequately represent non stationary time series, i.e., the time series with spectra

that change over time. Since Auto-SLEX is a non parametric method based on the spec-

trum, it does not depend on the model assumed. Thus, in principle, Auto-SLEX could

be applied to data with conditional heteroskedasticity.
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3.5 Strenghs and limitations of the previous procedures

The procedures presented above were examined by several authors by studying the theo-

retical properties of the statistics and performing Monte Carlo simulation experiment for

assessing their size and power properties. In general, cusum methods have the advantage

of being non-parametrical o semi-parametrical methods that can be easily implemented,

and do not require parameter estimation. The same issue is valid for Auto-SLEX, which

is a non-parametric procedure.

The main strengh of the model-based procedures is that they consider the theoretical

properties of the data generating process, taking into account the dynamic structure

of the time series. The advantage of this aspect is that using parametric procedures,

it is possible to determine which is the parameter shifting. Galeano and Tsay (2010)

stated that depending on what is the parameter changing, the effects on the time series

could be very different. They examined the consequences of a shift in the individual

parameters of the GARCH(1,1) on the unconditional variance and the kurtosis. They

showed that a change in ω remains constant the kurtosis, but produces a permanent

change in the volatility level. A change in α or in β produces a permanent change in

both the volatility level and the excess kurtosis, such that the variance level increases

if α and/or β increases, and it decreases otherwise. However, if the innovations εt are

normally distributed, a change in ω has a larger influence in the excess kurtosis than a

change in β, if both have the same size.

In what follows we present some findings presented in the literature about the procedures

mentioned above.

With respect to IT statistic, it was designed by Inclán and Tiao (1994) for iid data with

zero mean. As we showed in the previous chapter, when the analysed data is serial cor-

related, its power porperties are severely affected. Apart from the limitations referred in

the previous chapter (i.e., IT puts more weight near the middle of the series, the skewness
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of the estimator of the change-point location, etc), IT statistic does not perform well

when the process is not iid.

Aggarwal et al. (1999), Malik (2003), Malik and Hassan (2004), Morana and Beltratti

(2004), Nouira et al. (2004), Hyung et al. (2009) among others used the IT statistic to

detect change-points in time series of financial returns. Kim et al. (2000) considered

the application of IT statistic to GARCH(1,1) processes taking in account of the fact

that the unconditional variance is a functional of GARCH parameters, and their change

can be detected by examining the existence of a change in the unconditional variance.

They modify the IT test, allowing GARCH errors and concluded that their test performs

appropriately in GARCH models under some limited conditions. Andreou and Ghysels

(2002) showed via Monte Carlo simulation that IT test has power and size distorsions

when applied to dependent data, particularly GARCH models, though it is not as pow-

erful as other test like KL.

The most important virtue of KL cusum test is that it was designed to detect and locate

changes in the unconditional variance, when the time series is heteroskedastic. Kokoszka

and Leipus (2000) prove its consistency. Sansó et al. (2004) studied the KL statistic

performance with conditional heteroskedastic processes and suggested that it is a ro-

bust method, valid for detecting structural breaks under fairly general conditions. The

properties of KL statistic were also analysed by Andreou and Ghysels (2002) and Pooter

and Dijk (2004), finding that the test has good power but it can suffer of severe size

distorsions. In the paper of Pooter and Dijk (2004), KL is applied to examine changes

in the unconditional variance of a set of emerging stock market returns.

Unlike the other cusum procedures, the LEE cusum statistic needs the estimation of the

parameters of the GARCH model. Lee et al. (2003) argumented that in linear processes

a change in the variance of the observations, imply a change in the errors. Thus, a test

for a variance change can be performed based on the errors rather than the observa-
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tions themselves. Furthermore, the test based on the errors performs better than the

one based on the observations since the latter is subject to serious power losses when

the data is highly correlated. Other authors were interested in cusums of squares of

the residuals of a GARCH model. For instance, Kulperger and Yu (2005) constructed

high moment partial sum processes of residuals (from squares until fourth moment) in a

GARCH model and provide interesting diagnostic tools.

Fukuda (2010) approach using the BIC to detect, locate and estimate change-points for

GARCH models was examined and compared with KL statistic and other information

criterion by performing some simulation experiments. The test size resulted very small

(0.000) and the frequency count of correctly selecting one-change model was not high,

particularly when the magnitude of the change in the parameters is small. Another

important aspect that can be noted from the Table 1 in ?? is that the success of the

procedure seems to be sensitive to the selection of the parameter L, or to the relationship

beetween L and the sample size T . For instance, for a GARCH(1,1) model with α = 0.1

and β = 0.8, where in the first half of the time series, ω = 0.1 changing in the second

half to ω = 0.2, the percentage of detected breaks changed from 14.8% to 63%, when

T and L changed from 1000 to 2000 and from 300 to 800, respectively. The method is

applicated to financial Japanese data. Compared with KL statistic, the BIC computed

by estimating a GARCH model obtained a lower power. The merit of the procedure,

compared with cusum methods, is that the number and location of the change-points

are determined based on a piecewise GARCH model and the estimates in each segment

are jointly estimated.

The same applies for Auto-SEG, since it is a model-based procedure, the detection and

location of the change-points and the estimation of the parameters of each piece are

jointly obtained. In Davis et al. (2008) Auto-SEG was applied to analyse change-points

in the SP 500.
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Finally, Auto-SLEX was designed as a segmentation method to detect and locate change-

points in the unconditional variance. The main problem with this non-parametric proce-

dure is that the segmentation is performed in a dyadic way, making it difficult to properly

locate changes away from the cutoffs.

3.6 ARMAmodels and BIC for detecting and locating change-
points in the conditional heteroskedastic processes

Given the good performance of the procedure based on the BIC found in the previous

Chapter, we propose an alternative to Fukuda (2010), for detecting changes in the pa-

rameters of the conditional heteroskedastic processes.

From equations (3.2.1) and (3.2.3) a GARCH process can be represented as an ARMA(p,q)

in the squares of xt. Recall that an ARCH(1) model can be expressed as an AR(1) in

squares, such that

x2
t = ω + αx2

t−1 + ut,

where ut = x2
t − σ2. Analogously, a GARCH(1,1) model, can be expressed as an

ARMA(1,1), where

x2
t = ω + (α+ β)x2

t−1 − βut−1 + ut.

Then, we propose to detect a single change-point as follows:

• Estimating an ARMA(p,q) process for the squares, x2
t , t = 1, ..., T and compute

the BIC using the formula (2.3.3), denoted as BIC0. In that formula, σ̂2 is the con-

ditional maximum likelihood estimator of the variance assuming an ARMA(p,q)

model for x2
t .

For instance, an ARCH(1) process can be represented by an AR(1) in the squares
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of xt. Then, the BIC under the hypothesis of no change in the conditional variance

can be assessed with

BIC0 = (T − 1) log σ̂2 + 3 log (T − 1)

where σ̂2 = 1
T−1

∑T
t=2

(
x2
t − ω̂ − α̂x2

t−1

)2, ω̂, α̂ are the conditional maximum like-

lihood estimators of σ2, ω, α.

For the GARCH(1,1) model, one more parameter is estimated. Then,

BIC0 = (T − 1) log σ̂2 + 4 log (T − 1)

where σ̂2 = 1
T−1

∑T
t=2

(
x2
t − ω̂ −

(
α̂+ β̂

)
x2
t−1 − β̂ût−1

)2
, ω̂, α̂, β̂ are the condi-

tional maximum likelihood estimators of σ2, ω, α, β, respectively, ût = x2
t − σ̂2

t

and û0 = 0.

• Estimating a piecewise ARMA(p,q) for the pieces x2 (1 : k) and x2 (k + 1 : T ),

where k = 1, ..., T . We denote with x2 (i : j) the vector of squares of xt, from

the observation i to the observation j. Compute the BIC corresponding to each

segmentation by using the equation (3.6) and take the minimum, denoted as BIC1.

In that formula, σ̂2
1 and σ̂2

2 are the conditional maximum likelihood estimators of

the variance before and after the change-point, assuming a piecewise ARMA(p,q)

model for x2
t . Thus, for the ARCH(1) process with a single change-point in k =

1, ..., T ,

BIC1 = (k − 1)logσ̂2
1 + (T − k)logσ̂2

2 + 6log (T − 1) (3.6.1)

where σ̂2
1 = 1

k−1

∑k
i=2(x2

t−ω̂1−α̂1x
2
t−1)2 and σ̂2

2 = 1
T−k

∑T
i=k+1(x2

t−ω̂2−α̂2x
2
t−1)2,

ω̂1, α̂1, ω̂2 and α̂2 are the conditional maximum likelihood estimators of σ2
1, σ2

2, ω1,

α1, ω2 and α2, with αi, ωi, i = 1, 2, the parameters before and after the change-

point, respectively.
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For the GARCH(1,1) model,

BIC1 = (k − 1)logσ̂2
1 + (T − k)logσ̂2

2 + 8log (T − 1)

where σ̂2
1 = 1

k−1

∑k
i=2(x2

t−ω̂1−
(
α̂1 + β̂1

)
x2
t−1−β̂1ût−1)2 and σ̂2

2 = 1
T−k

∑T
i=k+1(x2

t−

ω̂2−
(
α̂2 + β̂2

)
x2
t−1− β̂1ût−1)2, ω̂1, α̂1, β̂1, ω̂2, α̂2 and β̂2 are the conditional max-

imum likelihood estimators of σ2
1, σ2

2, ω1, α1, β1, ω2, α2 and β2, with ωi, αi, βi,

i = 1, 2, the parameters before and after the change-point, respectively, ût = x2
t−σ̂2

t

and û0 = 0.

• If BIC0 ≤BIC1, there is not a change-point, else there is a change-point in k̂ =

arg minBIC1.

If there are multiple change-points, by sequentially repeating this procedure using binary

segmentation, multiple change-points can be detected.

The merit of this approach, comparing with that in Fukuda (2010) is that, it arises as an

extension of the change-point problem in piecewise linear autocorrelated processes to the

case of conditional heteroskedastic processes. Thus, it is not necessary to use non-linear

estimation methods and the algorithm involved becomes more efficient. Since in previ-

ous studies, Fukuda (2010) approach resulted with very small size and not enough power

compared with other procedures, we proposed this informational approach to compare

with the other methods presented above.

3.7 Monte Carlo simulation experiments

In this section we report and discuss results from a set of Monte Carlo simulations ex-

periments, designed to examine and compare the procedures presented above. We will

analyse the performance of IT, KL, LEE, BIC from an ARMA(p, q) applied to x2
t (in

what follows, BICx2), BIC obtained from the GARCH model (hereinafter, BICgarch,

with fixing L = 300), Auto-SEG and Auto-SLEX by computing the size and the power
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for simulated data. For multiple change-point detection by KL, LEE and BIC statistics

are combined with binary segmentation.

Since, in the following section we are going to apply these procedures to a financial

dataset, and the GARCH(1,1) was the most recurrent model in financial applications,

we consider this model in order to perform the simulation experiments. For compar-

ing with Auto-SEG, the same GARCH(1,1) models included in Davis et al. (2008) have

been used. Simulations are performed with 500 replicates with T = 1000 (1024 for Auto-

SLEX). We denote the GARCH parameters as ωi, αi and βi, i = 1, 2, where the subscript

i refers to the corresponding piece of the process. Simulated processes are presented in

Table (3.1).

Table 3.1: Piecewise GARCH(1,1) simulated processes

(ω1, α1, β1) (ω2, α2, β2) Marginal variance 1st piece Marginal variance 2nd piece
1 (0.4, 0.1, 0.5) (0.4, 0.1, 0.5) 1.000 1.000
2 (0.1, 0.1, 0.8) (0.1, 0.1, 0.8) 1.000 1.000
3 (0.4, 0.1, 0.5) (0.4, 0.1, 0.6) 1.000 1.333
4 (0.4, 0.1, 0.5) (0.4, 0.1, 0.8) 1.000 4.000
5 (0.1, 0.1, 0.8) (0.1, 0.1, 0.7) 1.000 0.500
6 (0.1, 0.1, 0.8) (0.1, 0.1, 0.4) 1.000 0.200
7 (0.4, 0.1, 0.5) (0.5, 0.1, 0.5) 1.000 1.250
8 (0.4, 0.1, 0.5) (0.8, 0.1, 0.5) 1.000 2.000
9 (0.1, 0.1, 0.8) (0.3, 0.1, 0.8) 1.000 3.000
10 (0.1, 0.1, 0.8) (0.5, 0.1, 0.8) 1.000 5.000

Note that in the cases 1 and 2 the GARCH parameters do not change. In the cases 3, 4,

5 and 6 the persistence of the variance is changing, in the first two cases the persistence

is low/moderate and the marginal variance exhibits an increasing, and in the second two

cases, the persistence in the first piece is high and the unconditional variance decreases.

Finally, in the cases 7, 8, 9 and 10 the constant term in the GARCH is increasing; in

both the first two cases with a low/moderate persistence and in the second two with a
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high persistence. We also analyse the sensitiveness to the magnitude of the break in the

cases 3 to 10.

Table 3.2 presents the proportion of simulation runs for which the correct number of

change-points (zero for models 1 and 2; one for the rest) has been detected, for the seven

procedures. The Auto-SEG values were taken from Table I of Davis et al. (2008) and

are also based on 500 replicates.

As a general feature, the detection rate is influenced by the size of the change in the un-

conditional variance. The larger is the magnitude of change, the higher is the detection

rate. Besides the processes in 1 and 2, this conclusion can be noted by comparing the

“even” processes which the change in the marginal variance is higher than the change in

the “odd” ones.

Except for BICgarch, which resulted undersized and IT, KL and Auto-SLEX, with a high

size, the sizes of the different procedures were appropriate. The undersize exhibited for

BICgarch is coherent with the findings in Fukuda (2010) where the frequency count of

incorrectly selecting one change model was also 0.000. In other hand, the size distorsions

of IT and KL was also obtained in the simulations performed by Andreou and Ghysels

(2002) for both statistics, and by Fukuda (2010), for the second one, where the critical

values for 95% percentile were on average higher than the asymptotic critical value of

1.36, obtained by the supremum of the Brownian Bridge.

Both in the cases 3 and 5, the persistence is changing in a small magnitude, but in case 3

the procedures exhibited a lower power detecting one change-point than in case 5. This

result can have both two explanation: a) on one side, the unconditional variance is chang-

ing more in the case 5, which increases the power with respect to the processes in the case

3, and, B) on the other side, in the case 5, the persistence given by α+ β is closer to 1,

which call an interesting issue referred byAndreou and Ghysels (2002), who showed that
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closer to the boundaries (i.e. α+ β ≈ 1) the power of the procedures seems to improve.

The explanation that we found is that, when the persistence is close to 1 and exhibits a

change-point, the dynamic of a GARCH(1,1) process varies more and is easier to detect

the change with respect a GARCH(1,1) process with less persistence and a chang-point

of the same magnitude. Finally, for the case 3, where detecting the break seems to

be difficult for all the procedures, the proposed BICx2 procedure exhibited the highest

power (0.728), and only, LEE statistic obtained a nearby proportion of detection (0.694).

When the magnitude of the change in the persistence of the process is higher (cases 4 and

6), all the procedures improve the power, and the same as before, near to the boundaries,

the break was more frequently detected (case 6).

For the breaks in the constant of the GARCH(1,1) (cases 7, 8, 9 and 10) results were

similar. For the case 7, with a small persistence and a small magnitude of change, proce-

dures obtained a small rate of detection. The proposed procedure, BICx2, obtained the

highest power (0.670), followed by LEE and KL with a similar proportion of detection

(0.594 and 0.584, respectively).

In cases 8, 9 and 10, IT procedure pretty improved the power, showing that is a more ap-

propriate test for detecting change-points in the constant of the conditional heteroskedas-

tic processes. Auto-SEG was the procedure exhibiting the highest power for this cases,

but the proportion of one break detected by BICx2 exceeded 0.800.

Before applying the statistics and procedures to real datasets is convenient to evaluate

their performance for detecting and locating multiple change-point. For this task, except

for IT and Auto-SLEX which have their own multiple points searching algorithm, we

combine the other statistics with binary segmentation3. To illustrate how the procedure

3Binary segmentation (Scott and Knott (1974), Sen and Srivastava (1975), Vostrikova (1981)) ad-
dresses the issue of multiple change-points detection as an extension of the single change-point problem.
The segmentation procedure sequentially or iteratively applies the single change-point detection proce-
dure, i.e. it applies the test to the total sample of observations, and if a break is detected, the sample is
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work with multiple changes we simulate 1000 replications of the following process:

1. GARCH(1,1) process with ω1 = 0.1, ω2 = ω3 = 0.5, α1 = α2 = α3 = 0.03,

β1 = β2 = 0.8 and β3 = 0.9,

where ωi, αi and βi, i = 1, 2, 3, denote the parameters in each piece of the process. The

changes are located in k∗1 = 340 and k∗2 = 680 and the length of the time series is 1024.

The first change-point is due to the parameter related to the scale, ω, and the second is

induced by a change in the persistence.

As for the single change-point examples, we clasify the results of this experiment by the

proportion of breaks detected, which are presented in the Table (3.3).

The main conclusions of Table (3.3) are:

• All the procedures have the ability of detecting, at least, one change-point. Only

in few cases IT and less Auto-SEG did not detected a break.

• Except for LEE and Auto-SLEX, the procedures exhibit a big rate of detecting

only one change.

• Auto-SEG, BICx2 and LEE obtained a similar and the higher proportion of de-

tecting two breaks, around 70%.

• The procedures detecting less times two breaks are Auto-SLEX and IT.

• Auto-SLEX, LEE and, in lesser extent KL, detected an important proportion of

processes with more than two changes.

To complement this information, in Figure (3.2) the histograms of the locations de-

tected are showed, in order to examine the shape of the sampling distribution of the

then segmented into two sub-samples and the test is reapplied. This procedure continues until no further
change-points are found. This simple method can consistently estimate the number of breaks (e.g. Bai
(1997), Inclán and Tiao (1994)) and is computationally efficient, resulting in an O(n logn) calculation
(Killick et al. (2011). In practice, binary segmentation become less accurate with either small changes
or changes that are very close on time.
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change-points estimators, and a bar graph of the total number of breaks detected by

each procedure.
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Table 3.2: Proportion of estimated change-points based on 500 replications when there
is a break at t = 501 in the GARCH process

Process Procedure IT KL LEE BICx2 BICgarch Auto-SEG Auto-SLEX
No break 0.870 0.850 0.958 0.922 1.000 0.958 0.902

1 1 break 0.130 0.116 0.038 0.078 0.000 0.042 0.092
≥ 2 break 0.000 0.034 0.004 0.000 0.000 0.000 0.006
No break 0.772 0.904 0.976 0.941 1.000 0.956 0.820

2 1 break 0.218 0.050 0.024 0.059 0.000 0.044 0.142
≥ 2 break 0.000 0.048 0.000 0.000 0.000 0.000 0.038
No break 0.974 0.500 0.226 0.268 0.984 0.804 0.648

3 1 break 0.026 0.488 0.694 0.728 0.016 0.192 0.336
≥ 2 break 0.080 0.000 0.012 0.004 0.000 0.004 0.016
No break 0.835 0.500 0.200 0.000 0.004 0.000 0.756

4 1 break 0.165 0.280 0.796 0.900 0.976 0.964 0.266
≥ 2 break 0.016 0.220 0.004 0.100 0.020 0.036 0.018
No break 0.418 0.006 0.136 0.014 0.394 0.370 0.094

5 1 break 0.578 0.524 0.862 0.806 0.602 0.626 0.652
≥ 2 break 0.004 0.470 0.012 0.180 0.004 0.004 0.254
No break 0.000 0.000 0.000 0.000 0.008 0.004 0.000

6 1 break 0.576 0.742 0.976 0.956 0.978 0.978 0.670
≥ 2 break 0.424 0.258 0.024 0.044 0.014 0.018 0.330
No break 0.996 0.370 0.386 0.268 0.876 0.878 0.786

7 1 break 0.004 0.584 0.594 0.670 0.124 0.122 0.198
≥ 2 break 0.000 0.046 0.020 0.062 0.000 0.000 0.016
No break 0.066 0.000 0.004 0.000 0.200 0.072 0.050

8 1 break 0.744 0.888 0.892 0.818 0.710 0.912 0.778
≥ 2 break 0.190 0.112 0.104 0.182 0.090 0.016 0.172
No break 0.002 0.000 0.360 0.000 0.294 0.068 0.002

9 1 break 0.778 0.530 0.638 0.822 0.704 0.910 0.668
≥ 2 break 0.020 0.470 0.002 0.122 0.002 0.022 0.330
No break 0.000 0.024 0.100 0.000 0.050 0.008 0.000

10 1 break 0.601 0.688 0.820 0.898 0.950 0.952 0.594
≥ 2 break 0.399 0.288 0.080 0.102 0.000 0.040 0.406
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Table 3.3: Proportion of estimated change-points based on 1000 replications when there
are two breaks at k∗1 = 340 and k∗2 = 680 in the GARCH process with parameters ω1 = 1,
ω2 = ω3 = 1.5, α1 = α2 = α3 = 0.03, β1 = β2 = 0.8 and β3 = 0.9

IT KL LEE BICx2 BICgarch Auto-SEG Auto-SLEX
No break 0.048 0.000 0.000 0.000 0.000 0.001 0.000
1 break 0.780 0.444 0.004 0.307 0.371 0.310 0.000
2 breaks 0.172 0.446 0.679 0.678 0.620 0.720 0.000
≥2 breaks 0.000 0.110 0.317 0.015 0.009 0.002 1.000

114



F
ig
ur
e
3.
2:

Sa
m
pl
in
g
di
st
ri
bu

ti
on

s
of
k̂
∗ 1
,k̂
∗ 2
,
ba

se
d
on

10
00

re
pl
ic
at
io
ns

of
th
e
G
A
R
C
H
(1
,1
)
w
it
h
ω

1
=

1,
ω

2
=
ω

3
=

1.
5,

α
1

=
α

2
=
α

3
=

0.
03

,β
1

=
β

2
=

0.
8
an

d
β

3
=

0.
9
an

d
th
e
to
ta
ln

um
be

r
of

br
ea
ks

de
te
ct
ed

by
ea
ch

pr
oc
ed
ur
e
(1
:
IT

,2
:
K
L,

3:
LE

E
,4

:
B
IC

x2
,5

:B
IC

ga
rc
h,

6:
A
ut
o-
SE

G
,7

:
A
ut
o-
SL

E
X
).

115



Except for Auto-SLEX, the sampling distributions of the estimators are bimodal around

the true change-points. A general feature of the plots is that the spread of the estima-

tors seems to be higher for the second break than for the first one. By observing the

histograms, we realized that the high rate of detecting only one change-point of IT, KL,

BICx2, BICgarch and Auto-SEG presented in Table (3.3), has to do with the detection

of the first true break. According to the simulations for a single change-point, this can

be explained mainly by two factors: first, it seems that a break in the parameter ω is, in

general, detected with more success than a change in the other parameters; second, the

magnitude of change introduced in β is smaller than the shift in ω, which makes harder

to find the second change.

While LEE, BICx2 and Auto-SEG procedures detected a similar proportion of two

breaks, their performance is very different. The histogram reflects the bimodal sam-

pling distribution of the estimators, but the latter with a smaller dispersion than the

other.

By watching the histogram of Auto-SLEX, we can conclude that the dyadic segmentation

is not able of detecting, with a good performance, multiple changes, when the breaks do

not coincide with the dyadic boundaries.

Finally, in the last bar plot, the total number of breaks detected by each procedure is

presented. The horizontal blue line marks the total true number of breaks, which is

2000. Bars exceeding this line indicate oversegmentation. LEE and Auto-SLEX appear

as the procedures detecting extra breaks, a feature that we noticed in Table (3.3). While

for Auto-SLEX the segmentation had a bad performance, for LEE, both the two modes

of the sampling distribution remained close to the true breaks. The other procedures

resulted in less than 2000 breaks, given that many of the replications were segmented in

only two pieces.
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3.8 Application to real dataset: changes in the conditional
volatility of the S&P 500 index

In this section we study the existence of change-points in the conditional volatility of

the S&P 500 daily log returns from 5th January 1989 to 19th October 2001 (T = 3230)

by applying the procedures compared in the previous section. Data is presented in the

Figure 3.3. This stock market time series was also analysed by Andreou and Ghysels

(2002) and Davis et al. (2008), where the goal was to study the impact of Asian and

Russian Financial crises begining in July 1997.
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Figure 3.3: Daily log returns of S&P 500 from 5th January 1989 to 19th October 2001
(T = 3230)

In Table 3.4 we present the location of the breaks detected by each procedure. Results

for Auto-SEG are taken from Davis et al. (2008). It can be noted the similarities between

the break-points detected by the different procedures. IT and KL detected almost the

same changes. The three break-points detected by Auto-SEG were also found almost in

the same dates by BICx2. Two of the change-points detected by BICgarch are similar

to those of IT and KL; the third one was found also by BICx2 and Auto-SEG, and the
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fourth one was not found by other procedure. Since the Auto-SLEX method gives such

results that always have the form of two to the power of a positive integer number, the

detected change points are different than the ones detected by other procedures. How-

ever, some of them might be very similar to the breaks detected by other methods.

Table 3.4: Change-point locations detected by all the procedures
Procedure Number of breaks Location

IT 2 31/12/91, 27/03/97
KL 2 2/01/92, 26/03/97

LEE 3 30/12/91, 2/12/96, 20/07/98
BICx2 4 13/10/89, 30/12/91, 21/10/97, 10/09/01

BICgarch 4 13/10/89, 11/12/89, 31/12/91, 27/03/97
Auto-SEG 3 13/10/89, 15/11/91, 27/10/97

Auto-SLEX 11 9/01/90, 12/07/90, 14/01/91, 17/01/92,
21/07/92, 21/01/93, 16/12/94, 3/08/95,

5/02/96, 7/08/96, 7/02/97

Many of the detected change-points can be related with some shocks affecting the evolu-

tion of the S&P 500 Index. The change-point in October 1989 corresponds to the Black

Friday mini-crash caused by a reaction to the news of the breakdown of an agreement

leveraged buyout of 6750 million for UAL Corporation, the parent company of United

Airlines. When the UAL deal failed, helped trigger the collapse of the junk bond market.

Begining 1990 and following in 1991 United States economy exhibited a large stock mar-

ket recession mainly attributable to the workings of the business cycle and restrictive

monetary policy. In December 1991, (change-point detected by all the procedures), the

stock market recovered from the recession and resumed a largely stable upward trajec-

tory until the onset of the great stock market bubble began in April 1997 (break detected

by KL and BICgarch in March). In 1997 the wold economy was affected by the Asian

crisis, which the main impacts were in the second half of 1997 (found by BICx2 and

Auto-SEG) and the spread to Russia in August 1998 (detected by LEE), when it was

increased the perceived riskiness of the largest corporate cash flows. Finally, the last
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change-point detected by BICx2 in September 2001 can be related with the Twin Towers

attack when the S&P 500 sank 11.6 percent in four days and the volatility increased.

For the detected breaks by each methodology a piecewise GARCH(1,1) is estimated.

The summary of the fitted model is presented in Tables 3.5 and (3.6) and the conditional

volatilities resulting from each model jointly with the estimated breaks are plotted in

Figure 3.4.

Table 3.5: Estimated coefficients of the piecewise GARCH(1,1) processes (Part 1)

Parameter IT KL LEE BICx2 BICgarch Auto-SEG
PIECE 1

ω 2.2e-06 2.1e-06 2.4e-06 8.96e-06 8.96e-06 1.35e-05
β 0.820 0.830 0.809 0.000 0.000 0.000
α 0.039 0.036 0.041 0.000 0.000 0.000

PIECE 2
ω 2e-07 2e-07 2e-07 1.49e-06 2e-07 1.46e-06
β 0.931 0.932 0.935 0.868 0.937 0.862
α 0.042 0.041 0.036 0.042 0.000 0.049

PIECE 3
ω 2.32e-06 2.4e-06 2.74e-06 2e-07 5.3e-07 2e-07
β 0.819 0.817 0.761 0.928 0.942 0.917
α 0.110 0.111 0.105 0.049 0.027 0.064

PIECE 4
ω - - 2.35e-06 1.55e-06 2e-07 1.84e-06
β - - 0.846 0.858 0.931 0.843
α - - 0.009 0.095 0.042 0.101

PIECE 5
ω - - - 2e-07 2.32e-06 -
α - - - 0.960 0.819 -
β - - - 0.010 0.110 -

BIC -2.6833 -2.6840 -2.6821 -2.6834 -2.6844 -3.5382

119



Table 3.6: Estimated coefficients of the piecewise GARCH(1,1) processes (Part 2)

Parameter Auto-SLEX
PIECE 1 PIECE 7

ω 1.24e-05 2e-07
β 0.000 0.943
α 0.000 0.024

PIECE 2 PIECE 8
ω 2e-07 2e-07
β 0.981 0.952
α 0.000 0.011

PIECE 3 PIECE 9
ω 4.92e-05 2e-07
β 0.619 0.906
α 0.190 0.067

PIECE 4 PIECE 10
ω 1.31e-05 1.13e-06
β 0.094 0.889
α 0.000 0.019

PIECE 5 PIECE 11
ω 1.75e-06 2.42e-07
α 0.711 0.915
β 0.059 0.061

PIECE 6 PIECE 12
ω 3.52e-07 2.31e-06
α 0.911 0.820
β 0.023 0.109

BIC -2.6685
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The estimations for the three pieces detected by IT and KL are very similar. In the first

change-point, ω̂ decreases and β̂ increases. This change resulted in a smaller marginal

variance and a bigger persistence, as can be observed in Figure 3.4, and can be explained

by the stock market recovery from the recession. In the second change-point, the three

parameters varied their estimations, increasing ω̂ and α̂, and reducing β̂, and getting an

increased marginal variance and less persistence, that can be observed in the Figure 3.4,

which is a expected result, given the instability begining and during the Asian crisis.

The segmentation performed by using LEE is very similar to the one performed by IT

and KL, but the last piece is segmented in two intervals. Although both of them have

a similar level of persistence, in the second interval α̂ is smaller and β̂ greater. Also the

estimation of the constant ω decreased in the second interval with respect to the first

one, probably because the diminishing of the Asian crisis effects.

The estimations of the piecewise GARCH(1,1) processes are very similar for BICx2 and

Auto-SEG. They found a constant conditional variance until the first change-point, the

Black Friday in 1989, as occurred also by using BICgarch. After that, the dynamic of

the conditional variance appeared as heteroskedastic, with a persistence slightly higher

than 0.9, and a marginal variance which is greater than the previous interval. The stock

market recovery increased the persistence of the S&P index conditional variance, which

is reflected in the value of β̂ and a reduction of the marginal variance given by the de-

creasing of ω̂, both of them in the piece 3. With the Asian crisis, ω̂ and α̂ resulted higher

and β̂ smaller than the respective estimations in the previous piece. The persistence was

remained relatively constant, but the marginal variance increased. Finally, with BICx2,

one more change-point is detected, corresponding to the 11S, where ω̂ and α̂ decreased

and β̂ increased.

The change-points detected by Auto-SLEX resulted in periods of heteroskedastic and

homoskedastic behavior of the conditional variance. The most notorious result is that
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after the Asian crises the marginal variance increased, as the other procedures showed.

Finally, as a measure of the goodness of the segmentation performed we estimated piece-

wise GARCH(1,1) models according to the change-points detected by each procedure,

and computed the BIC for that models to obtain a measure of the segmentation good-

ness. The smallest BIC is obtained for the segmentation performed by Auto-SEG.

3.9 Conclusions

In this Chapter we explored, analysed and applied the change-points detection and es-

timation procedures to conditional heteroskedastic processes. Based on the fact that a

GARCH process can be expressed as an ARMA model in the squares of the variable, we

proposed to detect and locate change-points by using the Bayesian information criterion

as an extension of its application in linear models.

As cusum methods, BICx2 s characterized by computational simplicity, reducing difficul-

ties of the change-point detection in the complex non-linear processes. By the simulation

performed, we obtained a good size and power properties in detecting even small mag-

nitudes of change and for low levels of persistence. Since we focused on GARCH(1,1)

processes with Gaussian perturbations, we suggest to analyse the performance of the

proposed procedure both to GARCH(1,1) processes with t-student perturbations and to

Stochastic Volatility models.

Finally, the procedures were applied to the S&P500 log returns time series, in order

to compare with the results in Andreou and Ghysels (2002) and Davis et al. (2008).

Change-points detected by BICx2 were similar to the breaks found by the other proce-

dures, and their location can be related with the Southeast Asia financial crisis and with

other known financial events.
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Chapter 4

Abrupt versus smooth change-point

4.1 Introduction

In Chapter 1 we presented the definition of locally stationary processes (Dahlhaus (1997))

and time-varying processes. These kind of processes are characterized by parameters that

continuously and smoothly change over time. However, in the change-point literature,

abrupt changes are used in many models across different disciplines and are easier to rep-

resent statistically than smooth patterns of change. On the other hand, smooth changes

could be more realistic.

In many fields, as in economics, technology progress, financial returns volatility, hydrolog-

ical, meteorological and environmental variables, psychology, changes appear smoothly

or gradually in the long term. As Hansen (2001) pointed out, “it may seem unlikely

that a structural break could be immediate and might seem more reasonable to allow a

structural change to take a period of time to take effect”.

The detection and estimation of smooth change-points in time series has been analyzed

in many papers. Lombard (1987) considered quadratic form rank statistics to test for a

single or multiple change-points in a series of independent observations by incorporating

both smooth and abrupt changes. Vilasuso (1996) employed nonparametric change-point

tests to business cycle duration data in the United States. Hušková (1999) studied the

least squares estimator of a change-point in gradually changing sequences supposing that
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the data increases or decreases linearly after the change-point. Jarušková (1998) analyzed

the limit behavior of the change-point estimator for more complicated smooth changes.

Wang (2007) and Chen and Hong (2009) compared the log-likelihoods of a time-varying

parameter GARCH model and a constant parameter GARCH model. Chen and Gupta

(2007) applied a Bayesian statistic to a smooth and abrupt change-point model, to de-

tect the gene expression pattern for a specific gene. In order to identify how many years

before death individuals experience a change in the rate of decline of their cognitive

ability, van den Hout et al. (2011) used a model with smooth change between the two

linear intervals based on Bayesian statistics. Quessy et al. (2011) studied the sample

properties of various statistics for Lombard’s smooth-change model and applied them to

environmental data sets.

In Hušková (1999) a model with smooth or abrupt change after an unknown period k

was considered, where

xt = µ+ δT

(
t− k
T

)α
+

+ et, t = 1, ..., T, (4.1.1)

where et are iid random variables with E (et) = 0, 0 < E
(
e2
t

)
= σ2 < ∞ and

E|et|2+∆ < ∞ with some ∆ > 0. a+ = max {0, a}, µ, δT 6= 0 and k < T are un-

known parameters, and α ∈ [0, 1] is supposed to be known. Also, k = [γT ] with some

γ ∈ (0, 1), where [a] denotes the integer part of a.

If α = 0 in equation (4.1.1), the sequence xt has an abrupt change-point, while if α ∈ (0, 1]

the change-point is smooth. The extreme case where α = 1 refers to a linear evolution

of xt after k. Hušková (1999) considered least square type estimators of the change-point.

In the paper of Hušková (1999) the goal consisted on detecting the change-point assum-

ing a known structure for the smooth change, since α is known. This is a very general

model that allows both an abrupt or a smooth change-point, and as a particular case,

a change-point with a linear behavior. The weakness that we found is that the mean of
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the variable is not stabilized after the change-point occurred.

The approach in Chen and Gupta (2007) mixed an abrupt and a smooth change-points

for a sequence of normally distributed random variables. They assumed that x1, x2, ..., xT

is a sequence of normal random variables with parameters
(
µ1, σ

2
1

)
,
(
µ2, σ

2
2

)
,
(
µT , σ

2
T

)
,

respectively. Assuming a common variance, the interest consists on testing the null

hypothesis of no change in the mean:

H0 : µ1 = µ2 = ... = µT

versus the alternative of a linear trend change and an abrupt change in the mean:

H1 : µt =


µ, 1 ≤ t ≤ k1

µ+ β (t− k1) , k1 < t ≤ k2

µ, k2 < t ≤ T,
(4.1.2)

where β is the slope of the linear trend change starting at the unknown position k1 and

ending at an unknown position k2. It is a model with a common mean before position

k1 and after position k2, with a linear trend mean with slope β between positions k1 and

k2. When k1 = 1 and k2 = T , this model becomes an ordinary linear regression model.

When k2 = k1 + 1, this model is a normal model with an additive outlier at position

k2 = k1 + 1. For that reason, it is assumed that 1 ≤ k1 ≤ T − 2, k1 < k2 ≤ T − 1 and

T ≥ 3. Chen and Gupta (2007) used a Bayesian approach for estimating the model.

In Chen and Gupta (2007) the defined model determines that after the smooth change,

the mean returns abruptly to its initial value. We consider that it is a limitation of their

model, because is not considered the possibility of a change in the mean to another level

different from the initial one.

The first goal of this chapter is to propose a model-based procedure to distinguish a

smooth from an abrupt change-point. For this goal, the usually called “Ramp Model”,

or “Linear trend change-point model” (LTCP) is considered to represent the smooth
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change. In contrast to the model presented in Hušková (1999), in the LTCP model, the

time series after the smooth change-point gets a stable level. Compared with the model

in Chen and Gupta (2007), the LTCP model allows a change of the level of the mean,

which is different from the mean in the first piece of the time series. Second, we present

an iterative algorithm to detect and estimate multiple smooth and abrupt change-points

based on the LTCP model.

The Chapter is organized as follows. The LTCP model is presented in Section 4.2. In

the following Section 4.3, the outliers detection approach is presented, with a particular

interest in the identification and estimation of ramp effects and level shifts, since they

are useful for representing smooth and abrupt changes, respectively. In section 4.4 we

propose a procedure based on the likelihood ratio or the Bayesian information criterion

to distinguish a smooth from an abrupt change-point. The likelihood function of the

LTCP model is obtained, as well as the conditional maximum likelihood estimator of the

parameters in the model. In Section 4.5 some Monte Carlo simulation experiments are

presented to analyse the performance of the proposed procedure. We compare it with

the outliers analysis techniques (Fox (1972), Chang (1982), Chen and Liu (1993), Kaiser

(1999), among others), in particular for the detection of level shifts (LS) and ramp ef-

fects (RE). In section 4.6 an iterative procedure to detect multiple smooth and abrupt

change-points is proposed and in Section 4.7 we apply it to a real dataset, to asses the

effects of the Penalty Point License introduction and the Criminal Code reform in the

number of deaths in traffic accidents in Spanish motorways. Finally, in section 4.8 the

conclusions of the chapter are presented.

4.2 The smooth change represented with the LTCP model

In what follows, we assume that the observed time series exhibited a change-point and

we are interested in distinguishing if it was an abrupt break or a smooth change-point

as presented in the figure (4.1). For the time series in that plot, we want to decide
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whether the change-point was abrupt or smooth, as shown in the green dashed line and

the magenta dotted line respectively.

Figure 4.1: Abrupt and smooth change-point

Differenciating this kind of change-points is very useful in many disciplines. For in-

stance, in quality control of a production process, we are not sure that the measure of

some product suddenly changed or in k1 it starts to increase according to a linear trend

achieving a maximum level in k2. To take corrective actions is important to distinguish

between these situations, in order to detect the change-point when it starts. In economic

and finance studies, it is important to know if certain kind of shocks affect smoothly or

suddenly to macroeconomic and financial variables. In meteorology, environmental and

atmospherics sciences, climatic changes are more related with a increasing trend than an

abrupt change.

Let x1, x2, ..., xT be a sequence of normal random variables with parameters
(
µ1, σ

2
1

)
,(

µ2, σ
2
2

)
,
(
µT , σ

2
T

)
, respectively, and T > 3. To simplify, we consider that the variance

does not change, then σ2
1 = ... = σ2

T = σ2. The interest consists on testing the null

hypothesis of an abrupt shift in the mean:
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H0 : µ1 = µ2 = ... = µk−1 6= µk = µk+1 = ... = µT , (4.2.1)

versus the alternative of a linear trend change in the mean:

H1 : µt =


µ1, 1 ≤ t ≤ k1

µ1 + µT−µ1

k2−k1 (t− k1) , k1 < t ≤ k2

µT , k2 < t ≤ T,
(4.2.2)

where µT−µ1

k2−k1 is the slope of the linear trend change starting at the unknown position k1

and ending at an unknown position k2. This is the model referred above as LTCP model,

taken from Lombard (1987). Compared with the model in the equation (4.1.1), the level

of the time series after the change-point is stable. Moreover, LTCP model is different

from that in the equation (4.1.2), because the mean before and after the smooth change

is not restricted to be common.

In LTCP model, the smooth change is represented as a linear trend or ramp variable,

(t − k1 for k1 < t < k2 ≤ T ). This type of variable has been also considered in applied

papers for fitting a model with outliers to a time series, either for uncorrelated data or in

the context of ARMA and ARIMA models (Box and Tiao (1975)). However, the research

dealing with this approach considered other kind of deterministic effects like additive out-

liers, innovative outliers and level shifts, more than a ramp in the model. If the smooth

change-point is exhibited shortly in time, it could be represented with a level shift and a

ramp model is not considered. Additionally, if the smooth change is small in magnitude

and exhibited for a short time, it could be not detected by this approach. Moreover,

the procedures presented in the previous chapters could indicate an abrupt break when

the change is smooth, opening a great motivation to distinguishing both kind of changes.

Lombard (1987) considered non-parametric statistics based on the rank to test for both

smooth and abrupt change considering the model in (4.2.2). Sugiura and Ogden (1994)

extended this research analysing both, one and two sided rank test for the LTCP

model. Huang and Chang (1993) proposed least square type estimators for estimat-
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ing the change-points in the LTCP model. Mudelsee (2000) used this model to measure

transitions in the mean of climate time series. The unknown means before and after the

change were estimated by weighted least-squares regression, and the moments of change,

k1 and k2, by computing the loss function for all the possible values in a grid. Quessy

et al. (2011) analysed the power properties of the rank statistics proposed by Lombard

(1987) and derived least squares estimators of the means in the model (4.2.2), studying

their efficiency.

The LTCP model has the advantage of been very general to represent not only a smooth

change, but also an abrupt break, when k1 = k and k2 = k + 1. This idea translates

the problem of distinguishing an abrupt from a smooth change-point presented in the

test hypothesis in a model selection problem, meaning that the null hypothesis implies

a single restriction on the parameters, k1 and k2 in the model (4.2.2). This hypothesis

test can be performed with a likelihood ratio statistic or, equivalently, comparing the

BIC under H0 (abrupt change) and H1 (smooth change).

In the following sections we propose an information criteria approach based on the BIC,

in order to distinguish an abrupt and a smooth change in a time series. We show that

this approach is equivalent to using a likelihood ratio test when the data are uncor-

related. We start pointing out the outlier detection approach, which has been widely

used to identify and estimate deterministic shifts in the level of a time series. In this

approach, a smooth change is usually represented with a ramp variable, whereas an

abrupt break in the mean is fitted with a step function. The significance of these ef-

fects are tested with a t-test type statistic. By Monte Carlo simulation experiments, we

compare both approaches and show that the BIC approach exhibit a better performance.
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4.3 Outliers detection in time series

Outliers are often encountered in time series data analysis. An outlier can be defined

as an observation that lies outside the overall pattern of a distribution. In the time

series analysis in general, and particularly, working with ARIMA models, it is usual

to represent these extraordinary events as Additive Outliers (AO) , Innovative Outliers

(IO), Level Shifts (LS) or Transitory Changes (TC) (see for instance Fox (1972), Chang

(1982), Chen and Liu (1993), Kaiser (1999)).

Working with a stationary time series1, xt, t = 1, ..., T , we saw in equation (1.2.1) of

Chapter 1, that it can be represented with an ARMA model such that,

xt =
θ (L)
φ (L)

εt + ηt,

where φ (L) = 1− φ1L− φ2L
2 − ...− φpLp and θ (L) = 1 − θ1L − θ2L

2 − ... − θqL
q,

φ1, φ2, ..., φp and θ1, θ2, ..., θq are the autoregressive and the moving average coefficients,

respectively, εt is a white noise process with variance σ2
ε and ηt is a deterministic com-

ponent composed by the mean, trends (including ramp effects) or outliers that are inde-

pendent of the ARMA structure (i.e. AO, LS or TC outliers).

To simplify the presentation we assume that the mean of the time series is zero, then for

the four type of the outliers above,

ηt = ωξ (L) I(k)
t , (4.3.1)

where ω is the initial impact of the outlier at time t = k, I(k)
t is an indicator variable

which is equal to 1, for t = k, and 0 otherwise; and ξ (L) determines the dynamic of the

outlier occurring at t = k according to the following scheme:

1If the time series is not stationary, the corresponding transformation can be applied before adjusting
an ARMA model.
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AO : ξ (L) = 1,

LS : ξ (L) = 1/ (1− L) ,

TC : ξ (L) = 1/ (1− δL) , 0 < δ < 1,

IO : ξ (L) = εkθ (L) /φ (L) .

Thus, these four types affect the time series in different ways. An AO represents an

extraordinary spike, a LS a step function, a TC a spike that takes some periods to

disappear and an IO represents a effect caused by the perturbation in the moment k, εk,

that propagates with the ARMA model for the time series. Examples of the four types

of outliers are presented in the Figure 4.2.

Figure 4.2: Effect of an AO, a TC, a LS and an IO for an AR(1) with φ = 0.8, respectively.

The detection and estimation of the different outliers effect are done by estimating and

testing the parameter ω that measures the impact of the respective outlier. If the ARMA

parameters are known, this can be done by estimating a simple linear regression. Let x∗t
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and η∗t be

x∗t =
φ (L)
θ (L)

xt,

η∗t =
φ (L)
θ (L)

ξ (L) It (k) .

Then,

x∗t = ωη∗t + εt,

and the estimator of ω is therefore,

ω̂ =
∑T

t=1 x
∗
t η
∗
t∑T

t=1 η
∗
t

2
(4.3.2)

Var (ω̂) =
σ2
ε∑T

t=1 η
∗
t

2
. (4.3.3)

By replacing the respective η∗t , the estimates of the ω’s for the four type of outliers are

obtained. The statistics for testing the existence of an outlier of these four types are

based on the null hypothesis H0: no outlier at time k, against the alternatives H1: there

is an AO at t = k, H1: there is an IO at t = k, H1: there is a LS at t = k, and, H1: there

is a TC a t = k, for k = 1, ..., T . For each of these alternative hypotheses a statistic is

computed by using the formula:

λi,t =
ω̂i,t

Var (ω̂i,t)
, (4.3.4)

where i=AO, TC, LS, IO, and t = 1, .., T . Under the null hypothesis and the assumption

of the parameters known, all of these test statistics are distributed as N(0,1).

Following this idea, the representation of an abrupt shift in the mean of a time series

can be viewed as a LS, whereas a smooth change in the mean can be represented with a

ramp effect (RE).
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In the LS,

ω̂LS =
x∗k −

∑T−k
i=1 γix

∗
k+i

1 + γ2
1 + γ2

2 + ...+ γ2
T−k

and its variance is

Var (ω̂LS) =
σ2
ε

1 + γ2
1 + γ2

2 + ...+ γ2
T−k

,

where γ (L) = 1− γ1L− ... = φ (L) /θ (L) (1− L). The statistic for testing H0: there is

no outlier, against H1: there is a LS begining at t = k is given by

λLS,t =
ω̂LS√

Var (ω̂LS)
. (4.3.5)

A RE can be represented as:

RE : ηt = ωREξ (L) I(k1,k2)
t , (4.3.6)

where ξ (L) = 1/ (1− L)2 and I(k1,k2)
t takes the value of 1 for t in the interval [k1, k2],

and 0 otherwise. Thus, the estimator of the parameter ωRE for the RE is given by

ω̂RE =
x∗k1 −

∑k2−k1
i=1 βix

∗
k1+i

1 + β2
1 + β2

2 + ...+ β2
k2−k1

,

and its variance is

Var (ω̂RE) =
σ2
ε

1 + β2
1 + β2

2 + ...+ β2
k2−k1

,

where β (L) = 1−β1L− ... = φ (L) /
[
θ (L) (1− L)2

]
. The statistic for testing H0: there

is no outlier, against H1: there is a RE beginning at t = k1 and ending at t = k2 is given

by

λRE,t =
ω̂RE√

Var (ω̂RE)
. (4.3.7)
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Both statistic for the LS and RE are distributed as a N (0, 1).

In practice, the periods of change-point as well as the parameters of the ARMA model

and the perturbation’s variance are all unknown. If only the period of change is un-

known, the statistics above can be computed por each t and conclude taking in account

the statistics presented above. If only σ2
ε is unknown, it can be replaced by some consis-

tent estimator and the test can already be performed with large time series, given the

asymptotic justification of the use of consistent estimators. If the ARMA parameters

are also unknown, it can be shown that the estimators of these parameters are severely

biased under the presence of outliers. Taking into account these considerations, Tiao

(1985) presented an iterative procedure to jointly estimate the parameters of the time

series and decide about the nature of the change-points exhibited by the data. It is also

a procedure for detecting multiple outliers. The steps are as follows:

1. Estimate an ARMA model for the time series xt assuming that there are no change-

points and compute the residuals x̂∗t

x̂∗t =
φ̂ (L)

θ̂ (L)
xt,

and the initial estimate of the perturbation’s variance,

σ̂2
ε =

1
T

T∑
t=1

x̂∗t
2.

2. Compute the statistics λi,t for i =AO, IO, TC, LS and t = 1, ..., T , using the

estimated model. Let λk = maxt maxi
∣∣∣λ̂i,t∣∣∣. If λk > c, where c is a constant

usually taken to be some value between 3 and 4, then the conclusion is that there is

an outlier of the type which the maximum is achieved with the respective estimated

impact ω̂. Then, the effect of the outlier found is removed by computing x̃∗t = x̂∗t−ω̂

with the corresponding new estimated variance σ̃2
ε = 1

T

∑T
t=1 x̃

∗
t

2.

3. Recompute λi,t for i =AO, IO, TC, LS, and t = 1, ..., T , based on the same

parameter estimates of the ARMA model in step 1 and the modified variance σ̃2
ε ,
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and repite the step 2.

4. When no more outliers are found in step 3, suppose thatM outliers have tentatively

identified at k1, ..., kM . Treat these periods as if they are known, and estimate the

outliers parameters ω1, ..., ωM and the time series simultaneously using the model

xt =
M∑
m=1

ωmξm (L) Ikm
m +

θ (L)
φ (L)

εt,

where the function ξm (L) depends on the type of the outlier detected. The new

residuals are obtained as

ε̂t =
φ̂∗ (L)

θ̂∗ (L)

[
xt −

M∑
m=1

ωmξm (L) Ikm
m

]
.

The entire process is repeated for these residuals ε̂t, until all the outliers are iden-

tified and estimated.

The presented procedure is usually applied for the detection of AO and IO more than

the other type of outliers. When the level of the observed time series exhibited a change,

a LS can also be incorporated. A RE was less considered, mainly, because the difficulty

imposed by detecting both the starting and the ending periods of the change. Moreover,

if these periods are unknown and close each other, a LS is usually selected by the iterative

procedure above to represent the change in the level. We show this result in the simula-

tions section where we compare it with the procedure that we propose in the following

sections. Given the motivation of improving the detection of smooth change-points by

the outliers analysis approach presented, and considering the good performance of the

BIC to detect and estimate change-points seen in the previous chapters, the suggestion

in what follows is to evaluate an informational approach for distinguishing an abrupt

break and a smooth change.
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4.4 Likelihood ratio and informational approach solutions
to the problem of a single smooth change-point

In this section, we consider the use of the BIC to distinguish an abrupt and a smooth

change-point. To our knowledge, the only paper that pointed out the maximum likeli-

hood estimators of the LTCP model is Sugiura and Ogden (1994). With those maximum

likelihood estimators of µ1, µT and σ2 given k1 and k2 the likelihood ratio statistic for

testing the hypothesis of no change in the mean of a normal sequence against the hy-

pothesis of linear trend change-point in the Gaussian model is constructed. Hereinafter,

we will obtain the conditional maximum likelihood estimators of the parameters in the

smooth change-point model analytically, assuming that the moments of change, k1 and

k2 are known. The conditional maximum likelihood estimators for the abrupt break

model are obtained as a particular case. Using the maximum conditional likelihood

function, we will compute the BIC both for the model of smooth change and the one

with an abrupt break and the likelihood ratio statistic.

Let x1, x2, ..., xT be a sequence of normal random variables with parameters
(
µ1, σ

2
)
,(

µ2, σ
2
)
,
(
µT , σ

2
)
, respectively, behaving as the LTCP model in equation (4.2.2). We

denote L1

(
µ1, µT , σ

2, k1, k2

)
as the log likelihood function of this model, such that:

L1

(
µ1, µT , σ

2, k1, k2

)
=
−T
2

log 2π − T

2
log σ2

− 1
2σ2

 k1∑
t=1

(xt − µ1)2 +
k2∑

t=k1+1

(
xt −

(
µ1 +

µT − µ1

k2 − k1
(t− k1)

))2

+
T∑

t=k2+1

(xt − µT )2

 . (4.4.1)

Let ∆ be the magnitude of the change, such that ∆ = µT − µ1. Then,
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L1

(
µ1,∆, σ2, k1, k2

)
=
−T
2

log 2π − T

2
log σ2

− 1
2σ2

 k1∑
t=1

(xt − µ1)2 +
k2∑

t=k1+1

(
(xt − µ1) + ∆

t− k1

k2 − k1

)2

+
T∑

t=k2+1

(xt − µ1 −∆)2

 .
Given the complexity of L1 and the different nature of the arguments2 we will obtain

the first order conditions assuming that k1 and k2 are known.

The first order condition for µ1 is ∂L1
∂µ1

= 0, such that,

2
k1∑
t=1

(xt − µ1) + 2
k2∑

t=k1+1

(
xt − µ1 −∆

t− k1

k2 − k1

)
+ 2

T∑
t=k2+1

(xt − µ1 −∆) = 0,

T∑
t=1

xt − Tµ1 −∆

T − k2 +
k2∑

t=k1+1

t− k1

k2 − k1

 = 0.

Recall that

N∑
n=1

n =
N (N + 1)

2
(4.4.2)

where n denotes a natural number. Then,
∑k2

t=k1+1 (t− k1) = (k2−k1)(k2−k1+1)
2 , and

therefore, the first order condition with respect to µ1 is

T∑
t=1

xt − Tµ1 −∆(T − k2 +
k2 − k1 + 1

2
) = 0

T∑
t=1

xt − Tµ1 −∆(
2T − k2 − k1 + 1

2
) = 0.

2Note that k1 and k2 are integer parameters, µ1 and µT are real and σ2 is a strict positive real
number.
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Thus,

µ̃1 =
∑T

t=1 xt
T

− ∆̃A, (4.4.3)

where A = 2T−k2−k1+1
2T , and with µ̃1 and ∆̃ the conditional maximum likelihood estima-

tors of µ1 and ∆ for the LTCP model, respectively.

Equation (4.4.3) means that the conditional maximum likelihood estimator of µ1 is the

sample mean plus a correction term depending both on two factors: the magnitud of

change ∆ and A, which is a function of the length T and the amplitude of the change

k2−k1. Since k1 < k2 < T , A is always positive, equation (4.4.3) gives an expected mean-

ing, in the sense that the estimator of the mean before the change, µ1, will be smaller

than the sample mean if ∆ is positive (i.e., the mean smoothly increased, µT > µ1),

and higher than the sample mean if ∆ is negative (i.e., the mean smoothly decreased,

µT < µ1).

First condition with respect to ∆ is ∂L1
∂∆ = 0, such that,

k2∑
t=k1+1

(
xt − µ1 −∆

t− k1

k2 − k1

)(
t− k1

k2 − k1

)
+

T∑
t=k2+1

(xt − µ1 −∆) = 0.

Operating we have that,

k2∑
t=k1+1

xt

(
t− k1

k2 − k1

)
− µ1

k2∑
t=k1+1

t− k1

k2 − k1
−∆

k2∑
t=k1+1

(t− k1)2

(k2 − k1)2

+
T∑

t=k2+1

xt − µ1 (T − k2)−∆ (T − k2) = 0.

Now, using (4.4.2) and
∑N

n=1 n
2 = 1

6N (N + 1) (2N + 1), with n a natural number,

we get
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k2∑
t=k1+1

xt

(
t− k1

k2 − k1

)
− µ1

k2 − k1 + 1
2

−∆
(k2 − k1 + 1) (2 (k2 − k1) + 1)

6 (k2 − k1)

+
T∑

t=k2+1

xt − µ1 (T − k2)−∆ (T − k2) = 0.

By grouping terms of the same nature,

k2∑
t=k1+1

xt

(
t− k1

k2 − k1

)
+

T∑
t=k2+1

xt − µ1

(
T − k2 +

k2 − k1 + 1
2

)
−∆

(
T − k2 +

(k2 − k1 + 1) (2 (k2 − k1) + 1)
6 (k2 − k1)

)
= 0,

Or,

k2∑
t=k1+1

xt

(
t− k1

k2 − k1

)
+

T∑
t=k2+1

xt − µ1TA−∆B = 0,

where B =
(
T − k2 + (k2−k1+1)(2(k2−k1)+1)

6(k2−k1)

)
. Therefore, ∆ can be expressed as a func-

tion of µ1, such that,

∆̃ =

∑k2
t=k1+1 xt

(
t−k1
k2−k1

)
+
∑T

t=k2+1 xt − µ̃1TA

B
. (4.4.4)

Equations system (4.4.3) and (4.4.4) should be solved to obtain conditional maximum

likelihood estimators of µ1 and ∆. By substitution of (4.4.3) in (4.4.4),

∆̃ =

∑k2
t=k1+1 xt

(
t−k1
k2−k1

)
+
∑T

t=k2+1 xt −A
∑T

t=1 xt + ∆TA2

B
.

Thus,

∆̃ =

∑T
t=k2+1 xt +

∑k2
t=k1+1 xt

(
t−k1
k2−k1

)
−A

∑T
t=1 xt

B − TA2
, (4.4.5)

and

µ̃1 =
∑T

t=1 xt
T

− ∆̃A. (4.4.6)
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The conditional maximum likelihood estimator of µT is given by

µ̃T = µ̃1 + ∆̃. (4.4.7)

Finally, the first order condition for σ2 is

∂L1
∂σ2

= − T

2σ2
+

1
2 (σ2)2

 k1∑
t=1

(xt − µ1)2 +
k2∑

t=k1+1

(
xt −

(
µ1 +

µT − µ1

k2 − k1
(t− k1)

))2

+
T∑

t=k2+1

(xt − µT )2

 = 0.

Then, using (4.4.5), (4.4.6) and (4.4.7), the conditional maximum likelihood estimator

of σ2 is obtained, such that

σ̃2 =

∑k1
t=1 (xt − µ̃1)2 +

∑k2
t=k1+1

(
xt −

(
µ̃1 + µ̃T−µ̃1

k2−k1 (t− k1)
))2

+
∑T

t=k2+1 (xt − µ̃T )2

T
.

(4.4.8)

The BIC1 for k1 and k2 given is

BIC1

(
µ̃1, µ̃T , σ̃

2
)

= T log
(
σ̃2
)

+ 3 log (T ) . (4.4.9)

where µ̃1, µ̃T and σ̃2 are the conditional maximum likelihood estimators of µ1, µT and

σ2, under the LTCP model, respectively.

Assuming an abrupt change in the mean of a Gaussian process, the conditional log

likelihood function is a particular case of the equation (4.4.1). The second term

k2∑
t=k1+1

(
xt −

(
µ1 +

µT − µ1

k2 − k1
(t− k1)

))2

,

can be simplified, considering that k2−k1 = 1, then, that term is equal to (xk1+1 − µT )2,

and thus, the conditional log likelihood function under H0 can be expressed as
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L0

(
µ1, µT , σ

2, k1

)
= −T

2
log 2π− T

2
log σ2− 1

2σ2

 k1∑
t=1

(xt − µ1)2 −
T∑

t=k1+1

(xt − µT )2

 .

(4.4.10)

Note that this formula coincides with the logarithm of the formula in (2.2.7), where we

presented the likelihood ratio test to detect change-points in the marginal mean.

Given k1, the maximum likelihood estimators of µ1, µT , and σ2 are,

µ̂1 = x̄k1 =
1
k1

k1∑
t=1

xt, µ̂T = x̄T−k1 =
1

T − k1

T∑
t=k1+1

xt,

and

σ̂2 =
1
T

 k1∑
t=1

(xt − x̄k1)2 +
T∑

t=k1+1

(xt − x̄T−k1)2

 ,

respectively. By using the maximum likelihood estimators in the equation 4.4.10, the

likelihood under the assumption of an abrupt change is:

L0

(
µ̂1, µ̂T , σ̂

2, k1

)
= −T

2
log 2π − T

2
log σ̂2 − 1

2σ̂2
T σ̂2

= −T
2

log 2π − T

2
log σ̂2 − T

2
.

Given the value of k1, the BIC under the hypothesis of abrupt break is

BIC0

(
µ̂1, µ̂T , σ̂

2
)

= T log
(
σ̂2
)

+ 3 log (T ) . (4.4.11)

In practice, k1 and k2 can be unknown. In this case, we propose to compare the BIC0

and the BIC1 for a grid of the pairs (k1, k2) in order to distinguish an abrupt and a

smooth change-point in the observed time series. For large time series, this approach

could be computationally expensive. However, the user can help the searching by reduc-
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ing the length of the grid by incorporating information about the process obtained both

by visual inspection or the knowledge about the process.

For uncorrelated data, given that we have the same number of parameters under both

hypothesis, the approach presented above is equivalent to the construction of a likelihood

ratio test, such that

LR = −2L0 + 2L1 = −T log
(
σ̂2
)

+ T log
(
σ̃2
)
,

which is asymptotically distributed as a χ2 with one degree of freedom given by the single

constraint k2−k1 = 1. When there is serial correlation, the model fitting restricted data

could contain different number of free parameters than the model for the data assuming

a smooth change. This aspect makes that the likelihoods of both models cannot be

compared without considering a different penalization term for each model as the BIC

takes into account.

4.5 Monte Carlo simulation experiments

In this section we compare the performance of the statistic considered for the outlier

analysis method and the BIC criterion to distinguish an abrupt and a smooth change-

point. We incorporate into the outlier analysis procedure a ramp effect as a new type of

outlier. For this goal, we simulate 1000 replications of the following processes:

1. xt = εt + I
(t>50)
t ,

2. xt = εt + 0.1I(t>50)
t (t− 50),

3. xt = εtI
(40≤t)
t + 0.1I(40<t≤60)

t (t− 40) + 2εtI
(t>60)
t ,

4. xt = εtI
(45≤t)
t + 0.2I(45<t≤55)

t (t− 45) + 2εtI
(t>55)
t ,

5. xt = εtI
(40≤t)
t + 0.2I(40<t≤60)

t (t− 50) + 4εtI
(t>60)
t ,

6. xt = 0.5xt−1 + εt + I
(t>50)
t ,
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7. xt = 0.5xt−1 + εt + 0.1I(t>50)
t (t− 50),

8. xt = 0.5xt−1 + εtI
(40≤t)
t + 0.1I(40<t≤60)

t (t− 40) + 2εtI
(t>60)
t ,

where εt is a white noise with unitary variance and I(A)
t is an indicator function which

takes the value of 1 if the condition A holds and 0 otherwise. The length of the simulated

processes is T = 100. Only the processes 1 and 6 present an abrupt shift in the mean at

t = 50, whereas for the other processes the change exhibited is smooth. Processes in 2

have a mean that smoothly increases until the last observation. In processes 3 and 4 the

mean of the white noise increases from 0 to 2, but the transition takes twenty periods

in the former and ten periods in the latter, in order to analyse the sensitiveness of the

procedure to the amplitude of change (i.e. the difference between the starting and the

ending period of the ramp). In process 5 the smooth transition takes twenty periods, but

the mean increases from 0 to 4, pursuing to evaluate the sensitiveness of the procedure

to the magnitude of change (i.e. the difference between the means after and before the

change). Processes 6, 7 and 8 incorporate serial correlation; while the first one exhibits

an abrupt shift, the other two present a smooth change-point, respectively. We consider

autocorrelated data to analise how the existence of serial correlation affects the power of

the BIC (computed for uncorrelated data) to properly detect the corresponding change-

point. The results for both procedures are presented in the Table 4.1.

Table 4.1: Proportion of LS, RE and AO detected by both the OA and BIC
Outliers approach BIC

Processes Abrupt Smooth AO Abrupt Smooth No change
1 0.934 0.000 0.066 0.960 0.040 0.000
2 0.057 0.943 0.000 0.031 0.969 0.000
3 0.627 0.364 0.009 0.468 0.532 0.000
4 0.844 0.146 0.010 0.557 0.443 0.000
5 0.705 0.290 0.005 0.105 0.895 0.000
6 0.821 0.083 0.096 0.937 0.063 0.000
7 0.408 0.553 0.039 0.157 0.843 0.000
8 0.556 0.406 0.038 0.484 0.516 0.000
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Table 4.1 shows that the Outliers approach is able to perform a correct detection for

processes which exhibit a LS (process 1). For processes with a RE, the power of the

procedure depends on the period that the RE starts and finishes, on the amplitude of

the ramp and on its magnitude. For processes 2, where the ramp effect continues until

the last observation, the procedure performed well. Nevertheless, when after the ramp,

the time series get stable, the results are poorer and a RE is more frequently wrongly

fitted as a LS. Comparing processes in 3 and 4, when the amplitude of the change is

smaller, the smaller seems to be the power of the procedure. For processes in 5, which

the mean increases more than the mean of the processes in 3 (in the same interval of

time), the procedure reduced the power detecting a RE. The results for the processes in

cases 6, 7 and 8 are similar to their analogous 1, 2 and 3, but it seems that the existence

of serial correlation reduces the power of the procedure. In particular, the power for

the case 7 is severely reduced because of the correlation and the RE is more frequently

estimated as a LS than in the case 2.

Using the BIC to detect the change-point we obtained better results and the main con-

clusions are:

1. For both cases exhibiting an abrupt break without and with serial correlation

(processes in 1 and 6), the BIC procedure obtained an excellent power.

2. Similarly to the Outlier approach, when the process exhibits a smooth change,

the power depends on the start and ending periods of the change and also on the

amplitude and magnitude of the change.

3. For processes in cases 2 and 7, where the smooth change begins in the middle of

the period observed and the mean is not getting a stable level, the power obtained

is excellent.

4. The power was severely reduced when the amplitude of the interval exhibiting

the smooth change is smaller, but higher than the power obtained for the Outlier

approach.
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5. Comparing cases 3 and 4, when the amplitude of the change is reduced, the proce-

dure properly detected less frequently the smooth change-point and more frequently

found an abrupt break.

6. Comparing cases 3 and 5, the higher the magnitude of the smooth change, the

higher the power obtained.

7. Finally, the case 8, which is the analogous to the case 3 but incorporating serial

correlation, the power of properly detecting the smooth change-point was reduced,

as occurred with the cases 6 and 7 in comparation with cases 1 and 2, respectively.

However, this reduction seems to be smaller than that presented by the Outlier

approach.

As Table 4.1 showed, BIC exhibited a better performance than the Outlier approach in

the simulation experiments presented. In the following section we propose a sequential

procedure based on BIC in order to detect multiple change-points, when the time series

exhibits both types, abrupt and smooth.

4.6 An iterative procedure to detect multiple smooth and
abrupt change-points

In practice, the time series can exhibit several change-points, both of the abrupt and

smooth type, but multiple change-points, including smooth changes were less studied.

The presence of multiple smooth changes complicates the detection, since they are de-

fined by two periods k1 and k2, and the difficuty can be greater if, for some period t,

such that k1 < t < k2, the time series exhibits also an abrupt shift. Based on the out-

lier detection iterative procedure presented in Section 4.3 and the BIC, in this section

we propose a sequential procedure to detect and estimate multiple abrupt and smooth

changes in the mean of a time series. Far from being a segmentation procedure as the

procedures presented in previous chapters, we follow similar steps to those presented in

Tiao (1985) where the effect of each change is removed sequentially and the multiple

points are detected. We focus the procedure on detecting both abrupt breaks that are
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represented by a step function and smooth change-points which are fitted by a ramp

variable.

Let xt, t = 1, ..., T , be a time series. In this section, we assume that this sequence is

stationary and serial correlated. To deal with this kind of data, as it was presented

in the Section 4.3, the outlier analysis approach starts fitting an ARMA(p,q) model to

obtain an uncorrelated sequence and then applies the corresponding tests to the residuals

of that model for detecting and estimating the outliers. However, if a stationary time

series exhibits an abrupt change in the mean or a ramp evolution, it is likely that, if

we fit an ARMA model previously to detect and incorporate in the model the effect of

those changes, it could result in a non-stationary model (i.e. a unit root could be non

rejected, see Perron (1989), Zivot and Andrews (2002) for more details). By other hand,

we showed in the previous section, that even though the BIC formula for uncorrelated

data reduces the properly detection of the corresponding change-point, this reduction is

small. Thus, we propose to work in a different way than the outlier detection algorithm

does: we treat the data as an uncorrelated sequence, then we use the BIC for detecting

the tentative changes, afterwards the effect of these changes is removed from the time

series, and finally, an ARMA model is fitted to the data without changes for analysing

the suitableness of the detection. Thus, the steps that we propose to detect and estimate

the multiple abrupt and smooth change-points are:

1. Compute the BIC under the hypothesis of no change as,

BIC0

(
µ̂, , σ̂2

0

)
= T log σ̂2

0 + 2 log T,

where σ̂2
0 = 1

T

∑T
t=1 x̂

2
t .

2. Compute the BIC assuming that there is an abrupt break in the mean at each

k1 = 1, ..., T , such that,

BIC1

(
µ̂1, µ̂T , σ̂

2
1

)
= T log σ̂2

1 + 3 log T,
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where σ̂2
1 = 1

T

[∑k1
t=1 (xt − µ̂1)2 +

∑T
t=k1+1 (xt − µ̂T )2

]
, µ̂1 = 1

k1

∑k1
t=1 xt and µ̂T =

1
T−k1

∑T
t=k1+1 xt. Take the minimum of these BIC1.

3. Compute the BIC assuming that there is a smooth break in the mean starting in

k1 = 1, ..., T − 1 and finishing in k2 = k1 + 1, ..., T , such that,

BIC2

(
µ̃1, µ̃T , σ̃

2
2

)
= T log σ̃2

2 + 3 log T.

where µ̃1, µ̃T and σ̃2
1 are given by the equations (4.4.5), (4.4.6), (4.4.7) and (4.4.8).

Compute the minimum of these BIC2.

4. Compare BIC0, minBIC1 and minBIC2. There are three possible results:

(a) If the smallest is BIC0, then the conclusion is that there is not a change in

the time series and the procedure stops.

(b) If the smallest is minBIC1, then, there is evidence of a potential abrupt break

at the period k1, where the minimum is achieved. Denote this moment as ka1

and compute x1
t = xt − ωa (1− L)−1 Ika1

t , where Ika1
t is an indicator variable

that takes the value of 1 when t = ka1 and 0 otherwise, and ω̂a is obtained by

regressing xt with respect to (1− L)−1 Ika1
t .

(c) If the smallest is minBIC2, there is evidence of a potential smooth change-

point starting at k1 and ending at k2, where the minimum is achieved. Denote

these moments as ks1 and ks2, respectively, and compute

x1
t = xt − ω̂s (1− L)−2 I

(ks1,ks2)
t ,

where I(ks1,ks2)
t is an indicator variable which takes the value of 1 between k̂s1

and k̂s2 and 0 otherwise, and ω̂s is obtained by regressing xt with respect to

(1− L)−2 I
(ks1,ks2)
t .

5. Repeat the steps 2, 3 and 4, removing from the time series the effect of the change-

points detected in the previous runs until no more change-points are detected by
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estimating the model

xt =
Ma∑
ma=1

ωma
1

1− L
Ikma
ma

+
Ms∑
ms=1

ωms
1

(1− L)2 I
(k1

ms
,k2

ms)
ms + εt,

The new residuals are obtained as

ε̂t = xt −
Ma∑
ma=1

ωma
1

(1− L)
Ikma
ma
−

Ms∑
ms=1

ωms
1

(1− L)2 I
(k1

ms
,k2

ms)
ms , (4.6.1)

where Ma is the number of abrupt breaks and Ms the number of smooth changes

tentatively identified in the previous runs.

6. When no more change-points are found, treat Ma, Ms and the periods of change

as fixed and known and estimate an ARMA(p,q) model for the residuals obtained

by the equation 4.6.1, checking the significance of the parameters, such that,

ε̂t =
θ (L)
φ (L)

at,

where at has to be a white noise and the polinomial θ(L)
φ(L) defines a stationary and

invertible model.

4.7 Application to real dataset: the effects of the Penalty
Point System introduction in the number of deaths in
traffic accidents in Spanish motorways

In this section we analyze the effect of the Penalty Point System (PPS) introduced in

July 2006 in Spain on the number of deaths in traffic accidents. The PPS is a system

in which the Traffic Department could substract points from drivers on conviction for

road traffic offenses. In Figure 4.3 we present the monthly number of deaths in traffic

accidents in Spanish motorways from January 1995 to August 2012 (212 data) seasonally

adjusted with ARIMA X12. There is evidence that the mean of the mortality rate has

been decreasing since the mid-2000s. This fact may be due to the measures taken by the

vial authorities for reducing the risk caused by the road network users. Those measures

include strong use of sobriety detectors, lights and reflectors regulations, speed radars,
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and specially, the PPS introduced in July 2006.
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Figure 4.3: Monthly number of deaths in traffic accidents in Spanish motorways from
January 1995 to August 2012 seasonally adjusted

The logarithm of number of deaths in traffic accidents has been analyzed by Aparicio

et al. (2010) who adjusted an ARIMA(0,1,1)(0,1,1) model with outlier analysis. They

found a significant reduction in the deaths in traffic accidents since July 2006, when the

PPS was introduced. They analysed the effect of other interventions, one in January

2004, explained by a set of measures that augmented the number of radars, the blood

alcohol tests and the checks of the use of seat belts and helmets for motorcycles; another

in November 2007, when the Criminal Code was reformed, enforcing stricter rules for all

road safety related offenses, preventing some behaviors of drivers from being left unpun-

ished, and another in September 2008, that could be due to a reduction in the mobility

because of the economic crisis. The information of the periods and the nature of the

detected outliers are presented in the Table 4.2.

We consider that the time series like the deaths in traffic accidents in Spanish motor-
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Table 4.2: Outliers detected in the ARIMA(0,1,1)(0,1,1) fitted by Aparicio et al. (2010)

Period Type
January 2004 LS

July 2006 LS
August 2007 AO

November 2007 LS
July 2008 LS

September 2008 AO

ways, which depend, in part, on the human behavior, have to be analysed by taking

into account both, smooth change and abrupt breaks interventions. When a measure

that is taken affects a human behavior variable, it is very intuitive to expect that if

the measure is going to have effects, these effects will be exhibited gradually, because

in general, changes in human habits take time. But abrupt breaks could also appear.

Thus, in order to detect and estimate abrupt and smooth change-points, we applied the

procedure based on the BIC presented above.

We detected both a smooth change-point and two abrupt breaks. The former starts at

observation 97 (January 2003) and finishes at observation 185 (May 2010) with a im-

portant decreasing in the mean of deaths in traffic accidents. In 2003, Spanish traffic

authorities started a new campaign to increase the road traffic safety and anounced the

new measures for that goal. The smooth change-point detected shows that these mea-

sures had been effective for reducing the number of deaths in traffic accidents.

The first abrupt break detected in the observation 139 corresponds to July 2006 and

coincides with the introduction of the Penalty Points System, as mentioned by Apari-

cio et al. (2010). It produced a level shift, with a immediate reduction in the mean of

13.99 deaths. Another abrupt break was found in the observation 155, corresponding to

November 2007, the month when the Criminal Code was reformed, reducing immediatly

the mean of the deaths in 11.75. The dates, the nature of the change and the mean for
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the pieces are presented in the Tables 4.3 and 4.4.

Table 4.3: Abrupt and Smooth change-points detected

Period Type
January 2003 Smooth
to May 2010

July 2006 Abrupt
November 2007 Abrupt

Table 4.4: Mean of the pieces

Period Mean
Jan-1995:Dic-2002 339.998
Jan-2003:Jun-2006 298.893

Jul-2006:Nov-2007 235.184

Dic-2007:May-2010 166.905

Jun-2010:Aug-2012 138.48

The final model for the deaths in Spanish motorways is:

(
1− 0.164L2 − 0.144L3 − 0.164L4 − 0.209L5 − 0.167L6

)
xt = 47.83− 13.99

1
1− L

IJul06
t ...

(0.068) (0.066) (0.067) (0.067) (0.067) (19.76) (7.16)

...− 11.75
1

1− L
INov07
t − 0.12

1
(1− L)2 I

(Jan03,May10)
t

(6.76) (0.06)

where the standard error of the coefficient are inside the brackets and the estimated
3This mean was computed with the smooth changing values of the observed time series, where the

deaths were decaying in 1.002 each month in average.
4This mean was computed with the smooth changing values of the observed time series, where the

deaths were decaying in 3.74 each month in average.
5This mean was computed with the smooth changing values of the observed time series, where the

deaths were decaying in 2.208 each month in average.
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variance of the perturbation term is 21.132.

The results of the application indicate that the measures taken by the Traffic Authorities

after 2003, that were focused upon the prevention of serious injury and number of fatal

accidents in spite of human fallibility, influenced the drivers to be much safer, causing

a gradual reduction of the deaths. Moreover, the results indicates that the introduction

of the PPS in Spain and the Criminal Code Reform had a very strong effect on the

number of deaths in traffic accidents in motorways. Aparicio et al. (2010) explained

that the fundamental key of this success was the conjunction of three factors: the PPS,

the progressive intensification of monitoring and sanctioning measures and the massive

difussion of road safety problems. As a result of the gradual reduction experienced

during the last ten years, the mean of the last piece is 138.48 deaths per month in traffic

accidents, indicating that more measures are needed to improve the Spanish motorways

safety.

4.8 Conclusions

This Chapter dealt with the presence of smooth change-point in a time series. First,

we discussing the problem of distinguishing an abrupt and a smooth change-point. By

considering the LTCP model for representing the smooth change, as Lombard (1987) and

others, we obtained analytically the expressions for the conditional maximum likelihood

estimators of the means before and after the change, and the variance, assuming known

the locations of the change and Gaussian observations. We also proposed a procedure

based on the BIC to distinguishing both an abrupt and a smooth change. By performing

simulations we compared this procedure with the outlier analysis of time series.

Second, given that in practice, abrupt breaks and smooth changes can appear together,

we suggested a sequential algorithm to detect and estimate multiple changes, both of

the smooth and abrupt type. We applied it to the Deaths in traffic accidents in Spanish

motorways, obtaining that the Penalty Point System and the Criminal Code had an
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important role reducing significantly the mortality, but all the measures taken from 2003

produced a gradual pattern over time.
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Chapter 5

Conclusions and future research

In this chapter we present a summary of the main conclusions of the thesis and point

out several extensions of these ideas for future research.

We consider three important topics for future research: 1) the study of the procedures’

performance for detecting change-points in conditional heteroskedastic processes, when

the generating process is a Stochastic Volatility model (SVM); 2) the analysis of turning

points as a particular type of change-points; and, 3) the consideration of a more general

model than the LTCP to represent a smooth change-point, for situations where the

trajectory is not necessary linear.

5.1 Contributions

Chapter 2 discussed the problem of detecting, locating and estimating a single or mul-

tiple changes in the marginal mean, the marginal variance, and both the mean and the

variance, both for uncorrelated, or serial correlated processes. The main contributions

of the Chapter are as follows:

• A presentation of the main lost functions to detect a single break, including likeli-

hood ratio tests, information criteria, cusum statistics, minimum description length

and the spectrum of the time series.

• An analysis of the most used algorithms to search for multiple changes, encompass-
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ing genetic algorithms, dyadic segmentation and sequential methods as binary seg-

mentation and the similar iterative approach proposed by Inclán and Tiao (1994)

(ICSS) among others.

• A more general approach was introduced in the models considered in the change-

point literature by the informational approach. Working with autoregressive mod-

els, previous method allowed changes in the marginal mean and in the autoregres-

sive parameters. We included the possibility that also the perturbation’s variance

could change.

• A new procedure, BICBS, was proposed for detecting multiple change-points in

piecewise autoregressive model where the constant term, the autoregressive coef-

ficients and the perturbation could change, joint with binary segmentation was

considered as a procedure (denoted as BICBS) to detect multiple change-points.

• A comparation of the main procedures to detect, locate and estimate change-points

was made, including the cusum methods both by Inclán and Tiao (1994) and Lee

et al. (2003), AutoPARM (Davis et al. (2006)), AutoSLEX (Ombao et al. (2002)),

the likelihood ratio test with the PELT algorithm (Killick et al. (2012)) and the

proposed BICBS.

• The size and the power of the procedures was assessed in several scenarios.

• The procedure performance was showed with real data of neurology and speech.

The most important result was that the proposed procedure BICBS obtained a small

size and very high power in most simulation scenarios. When the change-point is in the

middle of the sequence, its power resulted higher than 95%, segmenting uncorrelated and

serial correlated data. When the change-point is not in the middle, all the procedures

had a smaller power. BICBS obtained the highest proportion of correct segmentation,

equal to 0.84. In multiple change-points experiments, only BICBS and AutoPARM got

a power greater than 90%. Thus, the modification proposed in the piecewise model to
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compute the BIC, provided a model-adapted procedure with excellent results for detect-

ing and locating change-points without the need of complex searching algorithms.

Chapter 3 analysed processes with dynamic behavior in the conditional variance which

are also affected by structural changes. Based on the fact that a GARCH process can be

expressed as an ARMA model in the squares of the variable, we proposed to detect and

locate change-points by using the BIC as an extension of its application in linear models,

as in Chapter 2. We called that procedure BICx2. It is characterized by computational

simplicity, reducing difficulties of the change-point detection in the complex non-linear

processes.

As in the previous chapter the main statistics and approaches to detect breaks in het-

eroskedastic time series were presented and analysed comparatively, including those

based on cusum methods, informational criteria, minimum description length and the

spectrum. The size and power properties of the procedures presented for single and mul-

tiple change-point scenarios and illustrate their performance with the S&P 500 returns.

The main results were:

• By the simulation performed, we obtained a good size and power properties in

detecting even small magnitudes of change.

• Change-points detected by BICx2 for the S&P500 log returns time series, were

similar to the breaks found by the other procedures, and their location can be

related with the Southeast Asia financial crisis and with other known financial

events.

Finally, Chapter 4 studied the problem of detecting and estimating smooth change-

points in the data, where the Linear Trend change-point (LTCP) model is considered to

represent a smooth change. The main contributions of the chapter are:

• We proposed a procedure based on the BIC for distinguishing a smooth from an
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abrupt change-point. The likelihood function of the LTCP model was analytically

obtained, as well as the conditional maximum likelihood estimator of the param-

eters in the model, where the locations of the change are assumed known and for

Gaussian observations.

• The proposed procedure was compared with the outliers analysis techniques (Fox

(1972), Chang (1982), Chen and Liu (1993), Kaiser (1999), among others) by

performing simulation experiments.

• An iterative procedure to detect multiple smooth and abrupt change-points is pro-

posed. This procedure is illustrated with the number of deaths in traffic accidents

in Spanish motorways.

The main results were:

• From simulation experiments we obtained that, when the smooth change is small

in magnitude and exhibited for a short time, the power of being properly detected

is higher for the BIC than for the outlier analysis approach.

• By applying the iterative procedure to detect multiple smooth and abrupt changes

to the Deaths in traffic accidents in Spanish motorways, we obtained that the

Penalty Point System and the Criminal Code had an important role reducing

significantly the mortality, but all the measures taken from 2003 produced a gradual

pattern over time.

5.2 Extensions and future research

First, we consider to study the performance of the procedures for detecting change-points

in conditional heteroskedastic processes, when the generating process is a Stochastic

Volatility model (SVM). Second, we propose to analyse turning points as a particular

type of change-points. Finally, we comment how to distinguish an abrupt from a grad-

ual change-point when the smooth function representing the transition is not necessary

linear.
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5.2.1 Change-point detection and location in GARCH(p,q) with t-
student errors and stochastic volatility models

In Chapter 3 we referred to the change-points in conditional heteroskedastic processes.

We presented some simulation experiments for the GARCH(1,1) model with Gaussian

errors. For future research we will consider the possibility of t-student errors and Stochas-

tic Volatility models (referred here as SVM).

Unlike GARCH models with Gaussian disturbances, the t-student specification is partic-

ularly useful, since it can represent the excess of kurtosis in the conditional distribution

that is often found in financial time series processes. Probably, the BICx2 procedure

could not perform well in this context, since the likelihood function in the formula of the

BIC is computed assuming a Normal distribution of the errors.

SVM is another approach to model conditional heteroskedastic processes, where the

conditional variance is represented with a predictable component that depends on past

information and an unexpected noise.

The simplest SVM is the ARSV(1), where the log-volatility follows an AR(1) process

(Andersen (1994)), such that

xt = εtσ
∗
t

log(σ∗t ) = µ+ φ log(σ∗t−1) + ηt

with εt a strict white noise with variance 1, η has a normal distribution with zero mean

and variance σ2
η and the parameter µ is related with the marginal variance of the pro-

cess. The noise of the volatility equation, ηt, is assumed to be a Gaussian white noise

with variance σ2
η, independent of the noise of the level, εt. The Gaussianity of ηt, means

that the log-volatility process has a normal distribution. In this model, the parameter φ

measures the persistency in the conditional variance.
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The change-points problem has been less investigated for SVM than for GARCH mod-

els. In Davis et al. (2008) the Auto-SEG procedure can be applied to detect, locate and

estimate change-points for SVM. Informational approach was less applied, but criteria

like the BIC or DIC can be used to analyse the goodness of SVM.

Lamoureux and Lastrapes (1990) showed that ignoring the presence of change-points

in conditional heteroskedastic processes produces higher of the estimated persistency

in GARCH models. In what follows, we present two simulated ARSV(1) models with

a change-point in φ, and analyse what happens when the SVM is fitted ignoring that

change-point.

In Figures (5.1) and (5.2) are presented two simulated time series, xt and yt, that are

generated with the following processes:

xt = εtσ
∗
t (5.2.1)

log(σ∗t ) = 0.9 log(σ∗t−1) + ηt, t = 1, ..., 256

log(σ∗t ) = 0.98 log(σ∗t−1) + ηt, t = 257, ..., 512.

yt = εtσ
∗
t (5.2.2)

log(σ∗t ) = 0.9 log(σ∗t−1) + ηt, t = 1, ..., 384

log(σ∗t ) = 0.98 log(σ∗t−1) + ηt, t = 385, ..., 512.

where εt is a Gaussian white noise with variance 1, η has a normal distribution with zero

mean and variance equal to 0.10. The persistence parameter is incremented from 0.9 to

0.98, in the observations 257 and 384, for the processes (5.1.1) and (5.1.2), respectively.

Table (5.1) presents the estimated parameters for both processes. In both cases, is easy
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Figure 5.1: Simulated ARSV(1) defined in
equations (5.1.1)

Figure 5.2: Simulated ARSV(1) defined in
equations (5.1.2)

Table 5.1: Estimated parameters

Parameter Process (5.2.2) Processes (5.2.3)
φ 0.9237 0.7894

V ar (ηt) 0.1602 0.4067
V ar (log εt) 4.3868 3.8730

to note that the estimation of φ resulted smaller than the true parameter in the second

piece of the time series. In the case of the process (5.1.2) where the higher persistence

(φ = 0.98) is exhibited in a narrow interval, the estimations of the parameters were

seriously distorted.

By presenting this examples, we propose a further literature review of existing method-

ologies and proposing new procedures to detect, locate and estimate change-points for

SVM.

5.2.2 Turning points as particular type of change-points

Business cycle is the periodic, but not regular, fluctuations in economic activity, mea-

sured by the fluctuations in GDP and other macroeconomic variables. It is identified
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as a sequence of four phases: the contraction, which refer to a slowdown in the path of

economic activity; the trough, the lower point in the cycle; the expansion, a speedup in

the path of economic activity, and; the peak, which is the upper point of the cycle. The

turning point concept refers to the periods when a economic variable exhibits a trough or

a peak. In this sense, a turning point is a change in the sign of the slope in the business

cycle.

The recession in many European economies, revived the research about business cycles.

A key question is when it was it started, and more important, when it is going to end.

There are several methodologies to estimate turning points. National Bureau of Eco-

nomic Research (NBER) and the Centre of Economic Policy Research (CEPR) have the

goal of forecasting them as one of their main task. The first one was guided by the

definition of Burns and Mitchell (1946), where:

“business cycles are a type of fluctuation in the aggregate economic activity of nations

that organize their work mainly in business enterprises: a cycle consists of expansions

occurring at about the same time in many economic activities, followed by similarly gen-

eral recessions, contractions, and revivals which merge into the expansion phase of the

next cycle; this sequence of changes is recurrent but not periodic; in duration business

cycles vary from more than one year to ten or twelve years; they are not divisible into

shorter cycles of similar character with amplitudes approximating their own”.

Thus, this complex definition, emphasizes three features of the cycle: duration, depth,

and diffusion. The CEPR Committee adopted a definition of a recession similar to that

used by the NBER, in order to determine the important dates of the euro area business

cycle, but making some modifications to reflect specific features of the euro area. The

Committee of the CEPR defines a recession as

“a significant decline in the level of economic activity, spread across the economy of

the euro area, usually visible in two or more consecutive quarters of negative growth in
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GDP, employment and other measures of aggregate economic activity for the euro area

as a whole; and reflecting similar developments in most countries.”

Both of these approaches concentrated in the idea that to identify turning points, is

necessary to study individually in a large number of macroeconomic series, then to look

for a common date that could be called an aggregate turning point.

A more recent approach, which has been the focus of academic and applied research,

consists in to look for turning points in a few, or just one, aggregate (Stock and Watson

(2010)) .

In the figures (5.3) and (5.4) we present both the Spanish Industrial Production Index

(IPI) estimated cycle and trend, by using Hodrick-Prescott filter applied to the trend

plus cycle component obtained by TRAMO-SEATS1. Despite the Hodrick-Prescott filter

bad performance in the extremes of the data, the left panel of this figure shows that

in the last year the Spanish cycle exhibited a very deep trough in March 2009, being

in the last year almost always over its trend. By this estimation, the component which

registered a strong decreasing was the trend of the IPI, as shows the right panel of the

figure, where after August 2006 started to decline and registering a decreasing rate of

33,3% from this month until August 2012.

Based on the second approach presented above, we propose to study the turning points

of Spanish business cycle by analysing just one or few variables. Considering a turning

point as a change-point in the sign of the slope in the cycle, we propose the use of the

Bayesian Information Criterion and a multiple change-point searching algorithm to esti-

mate them, taking in account that recessions are rare, non-linear and complicated events.

1The model fitted by TRAMO was a seasonal ARIMA(3,1,1)(0,1,1), with additive outliers in April
1997 and April 2002
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Figure 5.3: Spanish IPI estimated cycle
(1987-2012)

 70

 75

 80

 85

 90

 95

 100

 105

 110

 1990  1995  2000  2005  2010

h
p

_t
r

Figure 5.4: Spanish IPI estimated trend
(1987-2012)

5.2.3 Distinguishing general patterns of smooth change-points

In Chapter 4 we proposed two model-based procedures to distinguish a smooth from an

abrupt change-point. We used a model with a linear pattern change, the called “linear

trend change-point model” or “ramp model” for representing the smooth change-point.

We obtained analitically the likelihood function of the model and the conditional maxi-

mum likelihood estimators of the parameters.

The linear trend change-point model is a very simplified way for representing a smooth

change-point and given the complexity of real datasets, we propose to consider more

general patterns of smooth change. In the case of model-based procedures, we propose

to modify the model in Hušková (1999), to represent a time series exhibiting a stationary

mean after the change-point. It would be interesting to explore the use of non-parametric

methods in this problem, which are more flexible and not need the specification of a par-

ticular model for representing the change-point.
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