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Abstract 
 

This thesis comprises three essays on the idiosyncratic risk anomaly. The first essay 

argues that the anomaly is not pervasive over investor time horizon and that it is only 

observed for short term investors. The empirical results suggest that features changing with 

the investment horizon such as risk aversion are relevant to explain the anomaly. The 

second essay links the anomaly to managerial decisions related to investment. It shows that 

including controls for investment and profitability in the cross-section of stock returns is 

sufficient to account for the anomaly. The empirical results suggest that the idiosyncratic 

volatility anomaly reflects the negative impact that corporate investment has over expected 

returns and that is not captured correctly by the Fama and French (1993) model. Also, that 

that this effect arises in part from investor mispricing and in part from risk exposure. The 

third essay highlights the relevance of economic regimes on the anomaly and, shows that 

the flight to liquidity evidenced by Acharya et al., (2012) might be the reason why the 

anomaly is not observed after recession periods. 

The main contributions of this thesis can be summarized as follows: 

 The contributions in the second chapter are threefold. On the one hand, it 

proposes the co-existence of heterogeneous market players as the source of 

the idiosyncratic volatility anomaly. On the other hand, the paper proposes a 

methodology resulting in the estimation of one particular idiosyncratic risk 

measure for different group of investors defined according to their 

investment time horizon. Finally, it highlights the necessity finance 

discipline has of considering more complex mathematical methodologies 

that offer more realistic approximations to the complexity of financial 

markets. The major limitation of the paper is that no time horizon shorter 

than 2 days can be addressed given the daily character of the data used in the 

analysis.  

 The third chapter offers an innovative approach based on the idea that the 

anomaly should be linked to managerial decision making and not necessarily 
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to investors. The empirical results show that the anomaly is fully accounted 

for when both investment and profitability controls are considered in the 

cross-section of stock returns. The results cast doubt on the generalized idea 

that the anomaly is related investor mispricing. They suggest that the 

anomaly is also constituted by a component of risk. The major limitation of 

the analysis is its inability to disentangle how much influence each 

component has in the anomaly. 

 The third essay proves that the idiosyncratic volatility anomaly is 

conditional to the state of the economy and is not observed after recessions. 

The study stresses that during recessions investors move away from high 

firm specific risk stocks to cover their liquidity needs. It also shows that the 

effect of this flight to liquidity is larger than the one of the idiosyncratic 

volatility. Its main limitation is that the feature treated is not general enough 

to explain the anomaly across all economic regimes.   
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Resumen 

 

Esta tesis está compuesta por tres ensayos sobre la anomalía del riesgo 

idiosincrático. El primero muestra que la anomalía no se extiende a todos los horizontes 

temporales de inversión y que sólo se observa para los inversores de corto plazo. Los 

resultados empíricos sugieren que las características que cambian con el horizonte de 

inversión tales como la aversión al riesgo son relevantes a la hora de explicar la anomalía. 

El segundo ensayo vincula la anomalía a las decisiones empresariales  relacionadas con la 

inversión. Muestra que la inclusión de controles de inversión y de rentabilidad en la sección 

transversal de los retornos de las acciones es suficiente para explicar la anomalía. Los 

resultados empíricos sugieren que la anomalía de la volatilidad idiosincrática refleja el 

impacto negativo que la inversión tiene sobre los retornos esperados y que no es capturado 

correctamente por el modelo de Fama y French (1993). También sugieren que este efecto 

surge en parte por una valoración equivocada por parte de los inversores y, en parte por 

exposición al riesgo. El tercer ensayo subraya la importancia que los regímenes económicos 

tienen en la anomalía y muestra que la fuga a la liquidez evidenciada por Acharya et al., 

(2012) puede ser el motivo por el cual la anomalía no se observa después de los periodos de 

recesión.  

Las contribuciones principales de la tesis pueden resumirse así: 

 En el primer capítulo las contribuciones giran alrededor de tres ejes. Por una 

parte, el ensayo propone que la coexistencia de agentes heterogéneos en el 

mercado como fuente de la anomalía de la volatilidad idiosincrática. Por otro 

lado, el estudio propone una metodología que resulta en la estimación de una 

medida de riesgo idiosincrático diferente para cada grupo de inversores 

definido de acuerdo a su horizonte de inversión. Finalmente, el ensayo 

subraya que la disciplina de las finanzas tiene la necesidad latente de 

considerar metodologías matemáticas más desarrolladas que ofrezcan 

aproximaciones más realistas a la complejidad de los mercados financieros. 

El límite mayor del ensayo es que, dado el carácter diario de los datos 
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utilizados en el análisis, no se puede considerar ningún horizonte temporal 

menor a 2 días.   

 El tercer capítulo ofrece una aproximación innovadora cuya base es la idea 

de que la anomalía debería estar relacionada a las decisiones tomadas por la 

gerencia de la empresa. Los resultados empíricos muestran que la anomalía 

desaparece totalmente al incluir controles de inversión y de rentabilidad de 

manera conjunta en la sección transversal de los retornos de las acciones. 

Los resultados ponen en duda la idea generalizada según la cual la anomalía  

está relacionada en su totalidad a la valoración equivocada que los 

inversores hacen de algunas acciones y sugieren que la anomalía también 

tiene un componente de riesgo. La limitación mayor del análisis es su 

incapacidad para distinguir qué tanta influencia tiene cada uno de estos 

componentes en de la anomalía. 

  El tercer ensayo demuestra que la anomalía de la volatilidad idiosincrática 

está condicionada por el estado general de la economía y que no se observa 

después de periodos de recesión. El estudio enfatiza el hecho de que durante 

las recesiones los inversores liquidan sus posiciones en acciones con mayor 

riesgo idiosincrático para cubrir sus necesidades de liquidez. También 

muestra que el efecto de esta fuga a la liquidez es mayor que el de la 

volatilidad idiosincrática. La mayor limitación del estudio es que la 

característica tratada en él no es lo suficientemente general para explicar la 

anomalía en todos los regímenes económicos. 
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Chapter I: Introduction 

 

Idiosyncratic risk has become a relevant topic in asset pricing because its information 

content is larger than theoretically anticipated. A main and controversial discussion in this 

framework is the idiosyncratic volatility anomaly or, the fact that portfolios with the lowest 

levels of idiosyncratic risk perform better than portfolios with the highest levels of it (Ang 

et al., 2006 and 2009). The anomaly can be observed using portfolio sorting or Fama and 

MacBeth cross-sectional regressions and, is pervasive over sample periods in the American 

market. It is also observed across countries; firm specific risk and subsequent returns 

correlate negatively and significantly in 45 markets around the world among which 22 are 

emerging ones (Han et al., 2011). 

Even under relaxed assumptions, idiosyncratic risk should be irrelevant if investors 

have access to fully diversified portfolios. Furthermore, under-diversification models such 

as Merton (1987) show that an inability to diversify would theoretically imply a positive 

relationship between idiosyncratic risk and expected returns given that, aware of their 

additional exposure to risk, investors would require higher returns. Therefore, this simple 

observation has broad implications for asset pricing that represent new challenges for the 

field. In particular, it suggests that factorial asset pricing models such as the CAPM or the 

Fama and French (1993) model, commonly used to estimate the firm specific risk, might 

not be sufficient to explain stock returns.  

With the exception of a paper by Eiling (2013) that argues the anomaly arises due to 

the model lacking pricing factors related to human capital, literature has systematically 

leave aside the discussion over the accuracy of factorial asset pricing models and its effects 

on the idiosyncratic risk issue. In contrast, it has provided a fruitful selection of plausible 

explanations based on known phenomena in the stock market that make appear the 

dismissal of factorial models as an excessive solution to the problem. Among these efforts, 

papers such as Kapadia (2006) and Boyer et al., (2010) explore the effect of investor 

preferences on the anomaly and show investors might accept lower returns for high firm-
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specific volatility stocks whose returns distributions offer desirable features like positive 

skewness or lottery-like payoffs (Bali et al., 2011). Microstructure issues such as returns 

reversals (Huang et al., 2010) or trading non-synchronicity (Han and Lesmond, 2011) have 

also been linked to the anomaly but have been refuted by Chen et al., (2012a) showing that 

the debate in this matter is sound and still developing. Gao et al., (2012) argue the 

relationship between idiosyncratic volatility and expected returns depends on investor 

sentiment so that the anomaly is only observed during times following high investor 

sentiment periods. Finally, a large stream of literature argues that the anomaly is not 

arbitraged away because high idiosyncratic risk stocks are difficult to short (Boehme et al., 

2009; Au et al., 2009; Cao, 2009; Duan et al., 2010).  

 This thesis intends to contribute to the growing research area that idiosyncratic risk 

anomaly brings to the asset pricing discipline. With the goal of increasing the knowledge 

on the firm specific risk and its relationship with subsequent returns, the thesis offers three 

studies approaching the anomaly from different perspectives. Given the puzzling nature of 

the anomaly addressed in this thesis the approaches are deliberately independent from one 

study to the other so that they do not necessarily follow a common thread in terms of 

underlying assumptions, of underlying paradigms or even of empirical methodologies. For 

instance, some readers might think the second chapter of this thesis suggests a research 

agenda based on behavioral approaches to the financial markets. They might then be 

surprised by the rational paradigm implied in the third and fourth chapters and conclude the 

thesis is somehow inconsistent. However, to give the broadest picture to an unexplained, 

recent and, puzzling observation, the subject should be approached from a variety of 

perspectives. In other words, no approach should be dismissed ex-ante. Overall, the thesis 

provides three self-contained papers that can be read jointly or separately, each highlighting 

different features of their common thread, the idiosyncratic volatility anomaly. The rest of 

this introduction intends to provide a general context for each of the chapters forming this 

thesis, to highlight the relevance of their contribution and, the main results driving it.  

In the second chapter, it is argued that the co-existence of investors with different 

investment horizons might be linked the anomaly and that it should not be observed for 



Chapter I: Introduction  
 

 

3 
 

long-term investors who are relatively more concerned about risk and tend to be more risk 

averse.  

It was early shown by Levhari and Levy (1977) and Hawawini (1983) among others 

that systematic risk depends largely on the interval over which returns are measured. The 

use of an investment horizon different from the true one affects the estimation of 

idiosyncratic risk since, if the coefficients of the asset pricing models are biased, the 

residuals capturing the idiosyncratic component of risk should also be biased. In this 

framework, if all investors are considered homogeneous, the question becomes over which 

time horizon should returns be observed to fit the one investors truly have. If investors with 

different time horizons are assumed to co-exist in the market, the estimation of 

idiosyncratic risk should be different for each group of investors and, the anomaly should 

be studied separately for each of them.  

In addition, the assumption that different groups of investors co-exist in the market 

leads to the question of how information is conveyed within the market. Literature on 

heterogeneous market models argues that each type of investor values information 

differently given their differing characteristics so that information spreads unevenly within 

the market. In turn, the uneven spread of information should introduce non-linearities into 

the return distributions of stocks. Given that these non-linearities are consistent with 

stylized facts like volatility clusters and fat tails authors such as Dacorogna et al., (2001) 

and Los (2003) argue heterogeneity of market players is supported by financial data. More 

importantly, these authors conclude linear models are unfitted to analyze the risk – return 

relationship underlying the anomaly. To tackle this issue, the returns series of each stock 

and each pricing factor are decomposed using a wavelet multi-resolution analysis 

(WMRA). This methodology is able to assess non-linearities in the stock returns time series 

and is consistent with the hypothesis of co-existing investors with different time horizons.  

The results obtained support the hypothesis of heterogeneous investors. In this sense, 

the initial non-linear relationship between idiosyncratic risk and expected returns is 

decomposed into two linear ones, each one related to a particular type of investors. 

Moreover, the results are consistent with the idea that investors assessment of risk changes 
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from one group of investors to the other since the idiosyncratic volatility anomaly is only 

observed for short-term investors. The fact that the anomaly is not pervasive over time-

horizons suggests that features changing with the investment horizon such as risk aversion 

are relevant in explaining the anomaly. Finally, the fact that the anomaly does not disappear 

for short-term investors shows that these investors are more likely driven by speculative 

motivations and intend to profit from short lived investment opportunity windows for 

which models such as the CAPM or the Fama and French (1993) model are not 

constructed. 

The focus on the third chapter of this thesis shifts from investors to corporations and 

argues that the anomaly is fully accounted for when, following a basic argument advanced 

by valuation theory, controls for investment and profitability are included jointly in the 

cross-section of stock returns. The underlying argument is that the negative link between 

investment and expected returns (that accruals literature attributes exclusively to 

mispricing) has also a rational component attached to risk. In this sense, its main 

contribution is to offer a hypothesis neutral to investor expectations having two empirical 

testable implications and, that challenge the generalized idea that the anomaly might be 

related to investors’ irrationality. In particular, it rules out the argument that the anomaly 

arises from mispricing driven by investor tendency to overreact to past accounting 

information (Jiang et al., 2009) or by the overwhelming influence of irrational agents 

during times of high investor sentiment (Gao et al., 2012).  

By definition, managerial decisions should have a direct impact on the idiosyncratic 

component of risk for any firm. Therefore, the lack of studies on the relevance they might 

have on the anomaly is a good research opportunity. Conditional on managerial 

entrenchment, managers have the power to influence firm characteristics that have 

prediction power over expected returns. Among those, investment related characteristics 

including accruals, abnormal investment or asset growth seem potentially interesting since 

they correlate negatively with stock returns (Sloan, 1996, Cooper et al., 2008). It is 

therefore plausible that the predictive power of idiosyncratic risk is actually driven by 

investment related firm characteristics whose effects are not totally captured by the factorial 

asset pricing models used to estimate the idiosyncratic volatility. If so, would this make the 
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idiosyncratic volatility anomaly an issue of investor mispricing or rather an issue of risk? 

Fama and French (2006 and 2008) show that a priori there is no clear answer to this 

question. The negative relationship between investment and expected returns (that the 

literature on investment related anomalies attributes solely to mispricing) also arises under 

valuation theory that is neutral to investor expectations. However, some features about the 

idiosyncratic volatility anomaly provide two empirically testable hypotheses that would 

only support one of the views. On the one hand, in the mispricing approach controls for 

investment should be enough to account for the firm specific risk anomaly. In contrast, in 

the valuation theory approach it would be necessary to include additional controls for 

profitability. On the other hand, if valuation theory is supported, the joint controls for 

investment and profitability should hold also during high investor sentiment periods when 

irrational expectations tend to be more influential in the market.  

Throughout the paper, a series of Fama MacBeth cross-setional regressions are 

estimated to test the effect that investment and profitability have on the idiosyncratic 

volatility anomaly. The results strongly support the hypothesis that valuation theory is most 

likely related to the anomaly since controlling only for investment is insufficient to account 

for the anomaly. However, it becomes non-significant when controls for profitability are 

included. Moreover, joint controls are equally effective during times of higher irrationality 

in several cases. Overall, the results suggest that the idiosyncratic volatility anomaly 

reflects the negative impact that corporate investment has over expected returns and that is 

not captured correctly by the factorial asset pricing models used to estimate the 

idiosyncratic risk. They also imply that it is likely that this effect arises in part from 

investor mispricing and in part from risk exposure. 

Finally, the fourth chapter of this thesis points out the relevance of economic regimes 

on the anomaly and, shows that the flight to liquidity evidenced by Acharya et al., (2012) 

might be the reason why the anomaly is not observed after recession periods. 

As any other anomaly, the idiosyncratic volatility one has been forced to navigate its 

way to credibility through numerous tests. Surely anticipating this fact, Ang et al., (2006 

and 2009) provided several robustness tests for their surprising findings. Among these, 
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authors included controls for business cycle showing that the anomaly is observed both 

during recessions and normal times. However, a recent paper by Gao et al., (2012) shows it 

is only observed after periods of high investor sentiment casting doubt on the pervasiveness 

of the anomaly.1 In this paper the anomaly is shown to be not pervasive over time 

disappearing after financial distress times. This fact seems consistent with the mispricing 

argument because recessions should be characterized by low investor sentiment so that 

arbitrageurs are expected to overrule sentiment investors and drive prices to reflect 

fundamental values so that no mispricing should take place. However, consistently with the 

third chapter of this thesis, sentiment should not be sufficient to account for the anomaly 

and an alternative explanation for the conditional character of the anomaly has to be 

provided.  

The recently documented flight to liquidity phenomenon might offer a possible way 

to approach this conditionality. Indeed, Acharya et al., (2012) enounce that during 

recessions financial agents have trouble dealing with liquidity shocks while they can 

usually address them during normal times. In response, investors have binding incentives to 

move from less to more liquid assets only during distress times. On the other hand, liquidity 

and idiosyncratic volatility are negatively correlated so that stocks with the highest levels of 

firm specific risk are more illiquid than stocks with the lowest levels of it (Spiegel and 

Wang, 2005). Then, during recessions investors would tend to shift from high to low 

idiosyncratic volatility stocks. This movement would tend to increase (decrease) the returns 

of stocks having low (high) firm specific risk. As liquidity shocks generating such a 

movement are absorbed by the market the correction in prices of these stocks goes against 

the idiosyncratic volatility anomaly, explaining why it is not observed after distress times. 

The tool chosen to undertake this analysis is a multivariate Markov regime switching 

model meant to represent the asymmetric dynamic behavior of stocks over economic 

regimes. Being multivariate, the model adjusts a particular structure to the returns of the 

portfolio formed by stocks with the highest level of idiosyncratic risk and, another one to 

                                                           
1 Note that although the third chapter of this thesis rules out the conclusion articulated by Gao et al., (2012) 
that the anomaly is purely the reflection of investor mispricing, it does support the fact that the anomaly is not 
observed after periods of low investor sentiment.  
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the returns of the portfolio of stocks with the lowest level of it. Its switching nature implies 

each structure is also adjusted differently according to the regime. The results are highly 

satisfactory; during recessions the extreme idiosyncratic volatility quintiles portfolios are 

affected by liquidity shocks in opposite ways. Moreover, at distress times liquidity shocks 

are positively related to returns for stocks with low idiosyncratic risk while they do not 

have a significant effect for high firm specific risk stocks. Therefore, results support the 

hypothesis that the conditional effect of liquidity over stocks is also reflected into the 

idiosyncratic risk anomaly and provide a plausible explanation for the effect economic 

regimes have on it. 

This introduction intended to provide a general overview of the idiosyncratic 

volatility anomaly as a prominent research field to which this thesis is related. The 

remainder of the thesis is organized as follows. Chapter II is constituted by the paper 

entitled “Time horizon trading and the idiosyncratic risk puzzle”. Chapter III corresponds 

to the paper entitled “Idiosyncratic Volatility Anomaly: Corporate Investment or Investors 

Mispricing?” Chapter IV to the one entitled “Idiosyncratic volatility, conditional liquidity 

and stock returns”. Chapter V highlights the contributions this thesis offers to the existent 

literature on the anomaly together with some elements for further research. 
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Chapter II: Time horizon trading and the 

idiosyncratic risk puzzle 

 

 

 Introduction 

The relationship between idiosyncratic volatility and expected returns has become a 

major issue in recent research. 2 The current debate involves the evidence presented by Ang 

et al., (2006), who found that by creating quintile portfolios sorted by stocks based on 

idiosyncratic risk levels, the portfolio with the highest level of idiosyncratic risk has 

significantly lower returns than the portfolio with the lowest level. This negative 

relationship is a controversial idea because it challenges both modern portfolio theory and 

under-diversification models (Merton, 1987). The former assumes essentially no link at all, 

and the latter assumes a positive link driven by a lack of investors’ diversification capacity.  

Possibly because of its controversial nature, the literature has been reactionary to the 

idiosyncratic volatility-expected returns puzzle, or the concept of the pricing ability of 

idiosyncratic risk. Thus, after the publication of the initial paper, most of the literature 

focused on showing that the puzzle was somehow incorrect and discussed the robustness of 

the results of Ang et al. (2006). For example, Bali and Cakici (2008) argued that the 

negative relationship either disappears or is not significant depending on the data 

frequency, the weighting scheme used to calculate average portfolio returns, the 

breakpoints used to sort portfolios’ quintiles and the inclusion of small, illiquid stocks in 

the sample. A similar result was obtained by Fu (2009), who argued that Ang et al. (2006) 

mistakenly concluded that the link between idiosyncratic risk and expected returns is 

negative by assuming that idiosyncratic volatility is persistent. Using an EGARCH model 

                                                           
2 Although the recent debate has renewed the discussion on the predictability of returns using idiosyncratic 
risk, the issue has been extensively discussed in the past. Both Douglas (1969) and Lintner (1965) find 
significant explanatory power of the variance of the residuals from a market model in the cross-section of 
average stock returns. Miller and Scholes (1972) and Fama and Macbeth (1973) argue for statistical problems. 
Finally, Lehmann (1990) reaffirms Douglas’ results after a careful econometric revision. 
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to account for heteroscedasticity in idiosyncratic volatility, Fu finds a positive and 

significant result. 

Following the initial criticisms, Ang et al. (2009) proved the robustness of their puzzle 

by examining not only American data but also data from all other G7 countries (Canada, 

France, Italy, Germany, Japan, US and UK). Again, they found the same negative and 

significant relationship between idiosyncratic volatility and expected returns for all 

countries. Furthermore, the American data results were shown to be robust to different 

weightings for the formation of portfolios and to the use of different periods to compute 

idiosyncratic risk. This second paper marked a turning point in the literature, and the puzzle 

gained credibility after its publication, turning the discussion to possible reasons for this 

relationship. Our paper is part of this literature and provides new insights into this puzzle. 

One of the relatively recent hypotheses is that the so-called volatility returns puzzle is 

driven by investors’ heterogeneity in the financial markets. In this sense, Brandt et al. 

(2010) argue that the puzzle is driven by retail investors, which have a special preference 

for stocks with high idiosyncratic volatility compared with institutional investors, who tend 

to minimize their exposure to this type of asset. However, some authors argue that mutual 

fund managers prefer stocks with high idiosyncratic risk (Falkenstein, 1996) and that when 

they are willing to increase their risk, they increase their portfolio’s exposure to 

idiosyncratic risk (Huang et al., 2011). In this paper, we assume the perspective of 

heterogeneity of market players, focusing specifically on heterogeneity in investors’ time 

horizons. Financial markets comprise investors and traders with different investment time 

horizons: market makers, intraday traders, day traders, short-term traders and long-term 

traders. The aggregation of the activities of all traders is what ultimately generates prices. 

The heterogeneity assumption implies that the true dynamic relationship between the 

various aspects of market activity is only revealed when the market prices are decomposed 

by different time scales or investment horizons. 

Both heterogeneity of investors and time horizons are important concepts for asset 

pricing. On the one hand, empirical stylized facts such as fat tails and volatility clusters are 

difficult to explain in the context of homogeneous investors, whereas they naturally arise in 
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computational markets with different types of investors (Lévy et al., 2000, Gil-Bazo et al., 

2007). On the other hand, empirical tests of risk loadings depend largely on the time 

interval, and systematic risk is biased when using a shorter-term investor’s time horizon 

rather than the true risk (e.g., Levhari and Levy, 1977). By extension, considering 

heterogeneous investors based on differences in time horizons should affect idiosyncratic 

volatility estimation and could thus be expected to enhance the study of this puzzle. 

However, this approach entails the problematic issue of separating investor classes and 

their influence on idiosyncratic volatility and returns. 

Wavelet multiresolution analysis (WMRA) is useful for differentiating time horizons. 

WMRA allows for the decomposition of a time series into different time horizons, called 

time scales, each of which correspond to a particular frequency. Because different investors 

have different trading frequencies, the first scale should yield information on short-term 

investors, whereas the higher scale should provide information on long-term investors 

(Müller et al., 1997, Gençay et al., 2005 and 2010 and, In and Kim 2006). In this context, 

asset allocation depends on investors’ time horizons (In et al., 2011), asset pricing models 

yield different results for each time scale (Gençay et al., 2003 and 2005), and the negative 

risk-return link shown by Ang et al. (2006, 2009) may not be valid for all investors.3 

Alternative explanations state that the puzzle is observed because stocks with the 

highest levels of idiosyncratic risk are difficult to short-sale; thus, pessimistic information 

does not flow to these stock prices (Boehme et al., 2006, Asquith et al., 2005). An 

additional proposal by Boyer et al. (2010) argues that stocks with higher idiosyncratic risk 

offer larger probabilities of an extreme positive return and thus have lower returns. Finally, 

in Berrada and Hugonnier (2012), the puzzle is related to firms’ cash flow growth rate. Although 

these authors suggest that explanations for the puzzle are related to the specific 

                                                           
3 Wavelet analysis is relatively new in economics and finance, although the literature on wavelets is growing 
rapidly. Applications in these fields include the study of systematic risk in the capital asset pricing model 
(Gençay et al. 2003 and  Rhaiem et al., 2007), the multi-scale relationship between stock returns and inflation 
(Kim and In, 2005), the relation between returns and systematic co-kurtosis and coskewness (Galagedera and 
Maharaja, 2008),  a multiscale hedge ratio (In and Kim 2006), studies in portfolio management (In et al. 2008 
and  Bowden and Zhub, 2010) and  portfolio allocation (Kim and In 2010), the analysis of co-movements in 
stock markets (Rua and Nunes, 2009), Value at Risk measures (Fernandez, 2005) and  credit portfolio losses  
(Masdemont and Ortiz-Gracia, 2011). 
 

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Galagedera%2C+Don+%5C%28Tissa%5C%29+U.+A.)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Maharaj%2C+Elizabeth+A.)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Maharaj%2C+Elizabeth+A.)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Bowden%2C+Roger+J.)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Zhu%2C+Jennifer)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Masdemont%2C+Josep+J.)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Ortiz%5C-Gracia%2C+Luis)
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characteristics of the stocks or firms with the highest level of idiosyncratic risk, we argue 

that investors’ characteristics are also relevant. 

The main goal of this paper is to separate short-term investors and long-term investors 

through a WMRA using daily data to study separately their influence in monthly stock 

prices. Therefore, we can analyze the puzzle for each group separately. To the best of our 

knowledge, this approach has not been applied previously to the idiosyncratic volatility-

expected returns puzzle. We hypothesize that the negative relationship is driven by short-

term investors who do not necessarily follow the typical mean-variance logic that makes 

Ang et al.’s (2006 and 2009) result puzzling. Our results confirm that the puzzle disappears 

as the wavelet scale increases; the idiosyncratic risk-returns relationship turns positive at 

larger scales, indicating that investors with long-term horizons should not worry about the 

puzzle compared with those with short-term horizons. Moreover, our approach provides an 

explanation for all stocks (not only the riskiest ones) and is robust to changes in wavelet 

family, idiosyncratic risk estimators and coskewness or liquidity factors.  

The remainder of the paper is organized as follows. Section 2 provides a general 

discussion of empirical tests of asset pricing models that justifies the use of wavelet 

decomposition for this particular analysis. Preliminary evidence of the puzzle in our sample 

is provided in section 3. Section 4 describes wavelets and multiresolution analysis 

methodology and the empirical results. Section 6 analyzes the robustness of our findings, 

and Section 7 concludes the paper. 

 

 Empirical tests of asset pricing models, time horizons and wavelets  

Given the continuous nature of price formation, determining the correct time interval to 

empirically test asset pricing models is impossible. This is why any empirical study is 

subject to critiques on data frequency such as the ones made about Ang et al. (2006 and 

2009) by Bali and Cakici (2008), who show that using monthly instead of daily data 

achieves different conclusions about the idiosyncratic risk-expected returns relationship. 

Nevertheless, it is well known that systematic risk depends largely on the interval over 
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which returns are measured (Levhari and Levy, 1977, Hawawini, 1983, Handa et al., 1993, 

Brailsford and Josev, 1997, Brailsford and Faff, 1997, among others) 4. Furthermore, the so-

called Epps effect (Epps, 1979) shows that stock return correlations decrease as the return 

interval increases. As risk measures change with the return interval (i.e., implied investor 

time horizon), the idiosyncratic risk estimation is expected to change, introducing the need 

to study the puzzle for different time horizons. 

From a statistical point of view, a possible reason for the mixed evidence on empirical 

tests of asset pricing models might be the divergence between theoretical assumptions used 

in the construction of models and the empirical evidence itself. In an efficient market, asset 

prices reflect all relevant and available information, and any news affecting them is 

simultaneously and immediately incorporated into prices. New information has to be 

independent and random to avoid being anticipated and immediately translated to prices. 

Thus, the instantaneous adjustment implies the independence of price increments and a 

singular time horizon. However, stylized facts, such as volatility clustering and fat tails, 

contradict this i.i.d. assumption. In this context, heterogeneous agent models state that the 

market is formed by investors with different characteristics who judge which information is 

relevant according to their nature.5 Specifically, we consider market participants with 

different time horizons. From this perspective, information is diffused unevenly, the 

independence of price increments does not hold, and asset prices reflect a combination of 

long- and short-term valuation processes. 6 Thus, financial risk depends not only on time 

but also on the particular investment horizon; financial risk is both time varying and time-

scaling (Los, 2003).  

                                                           
4 In particular, the beta of thinly traded securities increases as the return interval rises, whereas the beta of 
frequently traded securities falls. Furthermore, the estimated beta of highly capitalized firms decreases as the 
return interval increases, whereas the beta of low-cap firms increases. 
5 Heterogeneous agent models (Müller et al., 1993 and 1997, LeBaron, 2000) are theoretical explanations for 
empirical stylized facts based on the existence of differences in investors. Müller argues that differences can 
be observed in perceptions, institutional constraints, risk profiles, prior beliefs and geographical location. We 
focus on the idea of differences in time horizons because it offers the possibility of the mathematical 
treatment we show. 
6 O’Hara (2003) discusses the impact of diverging information within the classical asset pricing model 
assumptions. Her main conclusion is that asymmetric information derives from a group of uninformed (noise) 
traders who, even if they systematically lose to better-informed ones, make portfolio choices so that their risk 
exposure to wins of informed investors is lower.  
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So far, we have introduced three concepts: time horizons, frequency and scale. As 

shown, time horizons determine frequencies. Scale and frequency are directly related so 

that time-scaling risk corresponds to the notion of risk being assessed differently by 

investors with various time horizons. Differing investment horizons violate the 

independence assumptions and thus introduce global (in opposition to serial) dependences 

on the return series. These are very difficult to assess with ARMA or GARCH family 

models because correlations are transient or have varying frequencies. Therefore, to 

analyze risk in this framework, the analytical tools used to allow different time scales in 

most of the financial literature must be changed. A recent major development regarding the 

time-scales issue in financial data is multiresolution analysis from wavelet decomposition 

(Mallat, 1989), which appeared in the late 1980s. The next section summarizes the main 

features of this statistical tool, which provides an additive decomposition in which, instead 

of differentiating a trend into a seasonal and a cyclic component, a time series is viewed as 

a sum of time scales accounting for local changes.   

  

2.1.1. Wavelets methodology and multiresolution analysis 

Considering global (long-term) dependence on market returns shows that returns series 

are non-stationary and that the assessment of financial risk involves more than the first two 

moments of the distribution (Mandelbrot, 1972). To obtain evidence for any form of time 

dependence, it is necessary to simultaneously have both distributional and the time-

localized evidence.    

The first technique to develop information on frequencies for a given time series was 

Fourier analysis. The Fourier transform is not suitable for financial data because it is only 

meaningful when the time series is stationary and does not have sudden changes. 

Furthermore, the transform loses all time-dependence information so that global 

dependences are impossible to isolate using this technique.  

Wavelet transform is similar to the Fourier transform but does not lose time information 

because wavelets are localized by both time and frequency. In addition, wavelets are 
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functions with finite time support so that they are able to cope with sudden changes in 

signals. We are interested in a particular feature of wavelet analysis: the wavelet 

multiresolution analysis. This technique divides the time-frequency space into frequency 

bands separated by multiples of 2j, with time support divided by 2 as frequency increases. 

To perform WMRA, a time series S0 is decomposed into a blurred approximation Si (long-

run horizon) and the remaining details Di (short-run horizons), where Si and Di are 

orthogonal to each other. The resulting series in the time domain is the contribution of 

frequency i to the original series or the component of the original series that has frequency j 

(Norsworthy et al., 2000). 

Mallat (1989) developed a method to perform the WMRA of a signal through simple 

linear filters that separate its high frequency elements (corresponding to the details) from its 

low frequency ones (corresponding to the blurred approximation). Frequency separation is 

performed using two linear filters, each blocking a particular frequency (high or low) while 

letting the other (low or high) pass through. The series are recomposed into the time 

domain using the corresponding quadrature mirror filters. There are many wavelet 

transform classes and wavelet families with particular properties. We use the Maximum 

Overlap Discrete Wavelet Transform (MODWT) and the Haar wavelet family (Haar, 

1910), for which the filter coefficients are    [
 

√ 
 
 

√ 
] for the low pass filter and    

[ 
 

√ 
 
 

√ 
] for the high pass filter. Both the scale series and the details series are obtained 

using the quadrature mirror filters   ̅̅̅̅  [
 

√ 
 
 

√ 
] and    ̅̅ ̅̅  [

 

√ 
  

 

√ 
]. Gençay et al. (2002) 

provide a comprehensive analysis of wavelets and several similar filter-related 

methodologies applied to economics and finance. 

 

 Data description and preliminary evidence 

In this section, we follow the procedure of Ang et al. (2006) to confirm the 

idiosyncratic volatility-expected returns puzzle for our sample before addressing any time-

horizon issues using wavelets. Our database includes daily returns of all stocks in the CRSP 
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(Chicago Research Stock Prices) with more than 17 observations in a month for the NYSE, 

AMEX and NASDAQ markets from July 1963 to December 2009. For each month, we sort 

stocks according to their idiosyncratic volatility, defined as the standard deviation of the 

residuals (     ), in the three-factor model of Fama and French (1993):  

                        
          

        
  ,                             [1] 

where     is the stock return in excess of the risk-free rate, and {              } 

represent the market, size and book-to-market factors.7 Once we have sorted the stocks into 

quintiles, with the first containing stocks with the lowest risk and the last containing the 

highest risk, we form portfolios and hold them for one month. The corresponding portfolios 

are value weighted and rebalanced month by month.8  

Table 1 reports the results obtained by replicating the process of Ang et al. (2006) 

using data from July 1963 to December 2009. In columns, we present the average returns, 

standard deviation, and alphas for portfolios sorted based on idiosyncratic volatility. All of 

these are reported in monthly percentages. Alphas CAPM correspond to Jensen’s alphas 

calculated with respect to the CAPM and Alphas FF with respect to the three-factor model. 

The t-statistics are reported in brackets. The row [5-1] is the difference between portfolio 5 

and portfolio 1, with the Newey-West t-statistic also reported in brackets.  

The main patterns reported by Ang et al. (2006) appear in our sample. Average returns 

of portfolios sorted by idiosyncratic volatility display an inverse U-shaped form that 

increases in the middle quintiles; returns rise from 0.88% in quintile 1 to 1.10% in quintile 

3 and then drop to 0.22% in quintile 5. The difference [5-1] is, on average, -0.66% per 

month. It is negatively significant at 10% when using the Newey-West t-statistic and at 5% 

when using White’s Heteroskedasticity-Consistent t-statistic. Moreover, Jensen’s alphas are 

 

                                                           
7 They have been obtained from Kenneth French’s website 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library html. 
8 We also verify the puzzle using 6 months for the regression in equation [5] to address the critique of error-
in-variance exposed by Malkiel and Xu (2002). The results do not change. They are available upon request. 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1: Returns of portfolios sorted by idiosyncratic risk 

This table reports the results we obtain by forming portfolios of quintiles according to idiosyncratic risk 
using data from July 1963 to December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk 
portfolio, and quintile 5 corresponds to the highest idiosyncratic risk. Returns and standard deviation (Std 
Dev) are reported as monthly percentages. The row [5-1] is the difference between portfolio 5 and portfolio 1. 
Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas FF correspond to the alphas 
calculated with the three-factor model. Newey-West t-statistics are reported in brackets, and p-values are 
reported in parentheses. * denotes significance at the 10% level, and ** denotes significance at the 5% level.  

Quintile Returns Std Dev Alphas CAPM Alphas FF 

1 0.88 3.58 

0.12 0.04 

[1.63] [0.67] 

(0.10) (0.50) 

2 1.01 4.55 

0.13 0.09 

[2.45] [1.93] 

(0.01) (0.05) 

3 1.10 5.83 

0.11 0.13 

[1.30] [1.85] 

(0.19) (0.07) 

4 0.88 7.56 

-0.23 -0.22 

[-1.54] [-2.08] 

(0.13) (0.04) 

5 0.22 9.19 

-0.96 -1.00 

[-4.01] [-5.69] 

(0.00) (0.00) 

[5-1] 

-0.66*  -1.08** -1.04** 

[-1.82]  [-3.66] [-4.97] 

(-0.07)  (0.00) (0.00) 
 

positive for the initial three portfolios and become negative starting with the fourth. Both 

[5-1] differences in Alphas CAPM and in Alphas FF are negative (-1.08% and -1.04%, 

respectively), showing that the puzzle appears even after controlling for risk. The presence 

of similar patterns in our results provides evidence of the robustness of the results of Ang et 

al. (2006 and 2009). Their main conclusions hold for a longer period and are not modified 

by the particularly unstable time characteristic of the recent years in our sample.  

Because asset pricing models impact the estimation of idiosyncratic volatility, another 

question is whether the puzzle is robust to different models. We replace the Fama and 

French three-factor model with the Carhart (1997) model so that the idiosyncratic volatility 

used to sort the stocks is the standard deviation of the residuals from the following 

equation: 
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 ,           [2] 

where     is the stock excess returns, and {                   } represents the  

market , size, book-to-market and momentum factors. 

Table 2: Evidence of the puzzle using Carhart (1997) 

This table reports the results using the Carhart (1997) model for the data sample from July 1963 to 
December 2000. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, and quintile 5 corresponds 
to the highest idiosyncratic risk. Returns and standard deviation (Std Dev) are reported as percentages. [5-1] is 
the difference between portfolio 5 and portfolio 1, and [5-2] is the difference between portfolio 5 and 
portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas FF correspond 
to the alphas calculated with the Carhart (1997) model. Newey-West t-statistics are reported in brackets, and 
p-values are reported in parentheses. * denotes significance at the 10% level, and ** denotes significance at 
the 5% level. 

Quintile Returns Std Dev Alphas CAPM Alphas FF4 

1 0.88 3.58 

0.11 0.05 

[1.64] [0.78] 

(0.10) (0.43) 

2 1.02 4.55 

0.14 0.10 

[2.62] [2.27] 

(0.00) (0.02) 

3 1.11 5.82 

0.11 0.12* 

[1.32] [1.73] 

(0.19) (0.08) 

4 0.92 7.56 

-0.20 -0.18 

[-1.30] [-1.53] 

(0.20) (0.13) 

5 0.27 9.28 

-0.92 -0.98 

[-3.88] [-5.52] 

(0.00) (0.00) 

[5-1] 

-0.61*  -1.03** -1.02** 

[-1.70]  [-3.55] [-4.73] 

(0.09)  (0.00) (0.00) 

[5-2] 

-0.75**  -1.06** -1.08** 

[-2.47]  [-4.05] [-5.70] 

(0.01)  (0.00) (0.00) 
 

Table 2 illustrates the results from Carhart’s model. As in the previous table, returns 

and standard deviations are monthly averages in percentages, and alphas for CAPM and 

Carhart’s model are tabulated. All t-statistics are in brackets.  



Chapter II: Time horizon trading and the idiosyncratic risk puzzle  
 

 

18 

Qualitatively, the results for alphas, returns and standard deviations are similar, and the 

[5-1] returns difference is equal to -0.61% but is only significant at the 10% level. 

However, the puzzle can be verified using the second quintile portfolio because the fact that 

a riskier portfolio yields lower returns also appears for the fifth and second quintiles. The 

negative link is significant at the 5% level if one considers the [5-2] returns difference.9 

Therefore, controlling for momentum is not relevant to explaining the puzzle.10 At this 

point, we have proven the puzzle is present in our sample and that it is robust to changes in 

idiosyncratic risk estimation. We can now turn to the implications of time horizons on 

idiosyncratic risk-expected returns relationship. 

 

 Methodology and empirical results 

In this section, we briefly describe the process followed for the wavelet approach to 

shed light on the idiosyncratic risk-expected return puzzle. We distinguish several time 

scales, each corresponding to a group of investors with a particular and homogeneous time 

horizon. Our hypothesis is that investors value information according to their investment 

horizon; therefore, for each group, a different idiosyncratic risk-expected return link may be 

observed.  

Theoretically, once the efficient market hypothesis is dropped by introducing differing 

time horizons, the number of investor groups accounted for is unlimited. This number is 

also not limited by the WMRA nature. Therefore, the first stage of the analysis is to 

determine the number of time scales considered. Many articles on portfolio rebalancing 

limit the number of time scales to the maximum possible number before the rebalancing 

(Gençay et al., 2003 and 2005). With daily data, a one-level MRA divides the data into two 

investment horizons (2 to 4 days and more than 4), a two-level MRA divides the data into 

three investment horizons (2 to 4 days, 4 to 8 days and more than 8), and a three-level 

                                                           
9 Although not reported here, the significance of the [5-1] difference is sensitive to the time period considered. 
Only for three months in the sample from November 1990 to December 2009 is the difference not significant 
at either the 5% or 10% levels. These results are available upon request. 
10 The same conclusion was found by Ang et al. (2006) using another methodology. They included a double-
sorting control for momentum, after which the puzzle still holds. 



Chapter II: Time horizon trading and the idiosyncratic risk puzzle  
 

 

19 

MRA divides the data into four investment horizons (2 to 4 days, 4 to 8 days, 8 to 16 days 

and more than 16).11 Therefore, the maximum number of time scales is three because our 

rebalancing is performed monthly (i.e., approximately 17 to 20 days). 

For each MRA level and time scale, we calculate Fama and French’s 3-factor model 

and sort the stocks according to the standard deviation of the residuals. Then, we compute 

the five portfolio quintiles and focus our attention on the difference in the returns from the 

fifth to the first quintile. This procedure produces two time scales (D1 and S1) for the one-

level MRA, three time scales (D1, D2 and S2) for the two-level MRA and four time scales 

(D1, D2, D3 and S3) for the three-level MRA. Because WMRA is performed recursively, 

both the D1 and D2 time scales are the same for an MRA of any level.  

The finer scale of the MRA can be expected to isolate the behavior of short-term 

investors (e.g., technical analysts).12 By extension, fundamentalists’ behavior should be 

reflected on a coarser scale. Because the idiosyncratic risk-expected returns puzzle cannot 

be explained by classical portfolio theory, the empirical characteristics of financial data 

provide evidence supporting the hypothesis of multiple types of investors in the market, 

and long-term investors are expected to follow fundamentals (i.e., they are close to the 

representative agent in classical asset pricing models). This is consistent with the findings 

of Gençay et al. (2005), which show that the relationship between the return of a portfolio 

and the systematic risk measure becomes stronger as the investment horizon increases. 

Thus, we expect the negative idiosyncratic volatility-expected returns liaisons to disappear 

at a coarser scale.  

We begin with the simplest case, in which there are only two groups of investment 

horizons, short-term (2 to 4 days) and long-term (more than 4 days), corresponding to D1 

and S1, respectively. The decomposition linked to this hypothesis is the one-level MRA, 

for which results are reported in Table 3. The structure of this table is analogous to the 

                                                           
11 Notice that, as stated previously, the time scale increases by multiples of 2j, and we are working with daily 
data. Therefore, the time scale increases by 2j days each time: 2-4 days, 4-8 days, 8-16 days and so on. 
12 It has been shown that technical analysis is mostly used for short-term forecasting (Frankel and Froot, 
1990). However, we prefer to let the exact nature of investors be an open issue and limit our classification to 
the relative frequency of trading of each group of investors considered in the MRA. This is because we 
assume that investors use all tools available for decision making no matter how frequently they trade.  
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initial tables but duplicates columns to display information for both investor groups. The 

first four columns correspond to the analysis for short-term investors (D1). Returns and 

standard deviations are average monthly percentages across portfolios, and the last two 

columns for each group display Alphas CAPM and FF. The last four columns illustrate the 

results for long-term investors. All t-statistic values are tabulated in brackets.  

Table 3: One-level MRA results. Haar wavelet. 

The tables display MRA results for two groups of investment horizons: short-term and long-term 
horizons, from July 1963 to December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, 
and quintile 5 corresponds to the highest idiosyncratic risk. Returns and standard deviation (σ) are reported as 
percentages. [5-1] is the difference between portfolio 5 and portfolio 1, and [5-2] is the difference between 
portfolio 5 and portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas 
FF correspond to the alphas calculated with the three-factor model. Newey-West t-statistics are reported in 
brackets, and p-values are reported in parentheses. * denotes significance at the 10% level, and ** denotes 
significance at the 5% level. 

 Short-term horizon: 2 to 4 days Long-term horizon: more than 4 days 

Quintiles 
Returns σ 

Alphas 
CAPM 

Alphas FF  Returns σ 
Alphas 
CAPM 

Alphas 
FF  

1 -0.09 0.38 

-0.06 -0.06 

1.01 3.45 

0.21 0.11 

[-11.11] [-12.11] [2.93] [1.74] 

(0.00) (0.00) (0.00) (0.08) 

2 -0.15 0.51 

-0.11 -0.11 

1.24 4.26 

0.32 0.27 

[-14.27] [-14.64] [6.41] [5.88] 

(0.00) (0.00) (0.00) (0.00) 

3 -0.26 0.66 

-0.23 -0.21 

1.40 5.29 

0.37 0.39 

[-15.31] [-15.49] [5.73] [6.22] 

(0.00) (0.00) (0.00) (0.00) 

4 -0.47 0.86 

-0.42 -0.41 

1.70 6.97 

0.52 0.63 

[-13.47] [-13.55] [3,65] [5.61] 

(0.00) (0.00) (0.00) (0.00) 

5 -1.04 1.23 

-0.99 -0.97 

1.91 8.84 

0.61 0.72 

[-13.08] [-13.20] [2.83] [4.08] 

(0.00) (0.00) (0.00) (0.00) 

5-1 

-0.96**  -0.93** -0.90** 0.90**  0.40 0.61** 

[-12.34]  [-12.50] [-12.61] [2.64]  [1.51] [2.90] 

(0.00)  (0.00) (0.00) (0.01)  (0.13) (0.00) 

5-2 

-0.90**  -0.88** -0.85** 0.67**  0.40 0.45** 

[-12.23]  [-12.33] [-12.42] [2.31]  [1.51] [2.48] 

(0.00)  (0.00) (0.00) (0.02)  (0.13) (0.01) 

 

The results support our hypothesis in that the puzzle is only present for short-term 

investors. For this group (D1), the [5-1] returns difference is significantly negative and 

equal to -0.96%. Furthermore, the puzzle remains after controlling for CAPM and FF risk 

factors; [5-1] differences in both models’ alphas are negative (-0.006 in both cases). For 
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long-term investors (S1), the puzzle disappears, and the [5-1] difference takes a positive 

and significant value of 0.90%. 

A noteworthy result is that average monthly returns sorted by idiosyncratic risk do not 

exhibit an inverse U-shaped form. For short-term horizons, returns decrease linearly from -

0.09% in the first quintile to -1.04% in the last. For long-term horizons, returns increase 

from 1.01% for the portfolio with the lowest idiosyncratic risk to 1.91% for the riskiest one. 

These patterns support the idea of an asset price formation resulting from two 

heterogeneous groups. In this sense, the inverse U-shaped return pattern indicates a 

nonlinear relationship between idiosyncratic risk and expected returns. We argue that this 

relationship is caused by the interaction of investors with dissimilar time horizons. 

Alternatively, returns’ U-shaped form could be the result of a missing risk factor. However, 

we think our results support our working hypothesis, because a non-linear liaison related to 

a missing risk factor should be reflected for both short- and long-term investors. In 

addition, our results are corroborated by a recent study by Cao and Xu (2010), who 

decomposed the idiosyncratic volatility into long-run and short-run components and found 

the existence of a negative short-run effect.  

Another significant but challenging fact is that for short-term horizons, all portfolios 

have negative returns (-0.09%, -0.15%, -0.26%, -0.47% and -1.04%). We hypothesize that 

the highest frequency scale involves isolating short-term strategies, which have different 

objectives from the typical mean-variance strategy, and that the negative results are 

random. Alternative explanations can be provided by O’Hara’s idea of a group of 

(uninformed) investors persistently losing to the other group (informed) while rationally 

minimizing their risk exposure (O’Hara, 2003) or by the Fractal Hypothesis Market, in 

which the negative signs can be understood as evidence of the greater likeliness of crowd 

behavior in short-term movements.13  

                                                           
13 Adopting O’Hara’s idea would require separating short-term investors from uninformed ones. However, we 
do not have sufficient evidence to do this. The Fractal Market Hypothesis proposes that information is more 
closely related to market sentiment and technical factors in the short term than in the long term and that short-
term price movements are likely to be the result of crowd behavior (Blackledge, 2010). 
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In contrast, before the decomposition into time horizons, the negative link between 

expected returns and idiosyncratic risk is driven by a significant drop of -75% (that is, 0.22 

- 0.88) in returns from the fourth to the fifth quintile. In this sense, Brandt et al. (2010) and 

Han and Kumar (2009) report that the negative idiosyncratic volatility-expected returns 

relationship is stronger for the small, low-priced stocks typically held by retail investors.14 

However, in our analysis, retail investors may be in either of the two categories of 

investors, but they are most likely represented in both groups. For short-term investors, the 

notorious drop in the last quintile portfolio return remains. Other explanations relate this 

notorious drop to the type of stocks classified in the fifth quintile (e.g., Asquith et al., 2005, 

Boehme et al., 2006). Because changes from quintile to quintile are similar for short-term 

investors (increases of approximately 100%), showing the linear relationship described 

previously, the special features of stocks in the fifth quintile that cause the puzzle are not 

supported. These stocks are represented both in the short-term series (Di) and in the long-

term series (Si). If they drove the puzzle, their effects should be observed in both groups. 

Although these stocks may be related to the puzzle because of some special feature, only 

the movements of short-term investors explain the appearance of a negative relationship 

between idiosyncratic risk and returns. 

 

 Robustness 

In this section, we study whether our main result (that the puzzle is present in the short 

horizon but not in long horizons) is robust to several estimators of idiosyncratic risk and 

different definitions of short-term investors. The wavelet family may influence the results 

because it dictates the length of the MRA filter. A longer filter implies a larger adaptability 

to complex time series in the WMRA. In Table 4, we display the one-level MRA for two 

                                                           
14 The authors argue that retail investors are especially interested in these stocks because of their speculative 
character: high skewness and high volatility. 
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groups of investors, short-term and long- term investors, corresponding to D1 and S1, 

respectively, for a Daubechies 8 wavelet.15 

Table 4: One-level MRA results. Daubechies 8 wavelet. 

The tables display MRA results for two groups of investment horizons: short-term and long-term 
horizons, from July 1963 to December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, 
and quintile 5 corresponds to the highest idiosyncratic risk. Returns and standard deviation (σ) are reported as 
percentages. [5-1] is the difference between portfolio 5 and portfolio 1, and [5-2] is the difference between 
portfolio 5 and portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas 
FF correspond to the alphas calculated with the three-factor model. Newey-West t-statistics are reported in 
brackets, and p-values are reported in parentheses. * denotes significance at the 10% level, and ** denotes 
significance at the 5% level. 

 Short-term horizon: 2 to 4 days Long-term horizon: more than 4 days 

Quintiles 
Returns σ 

Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

1 -0.11 0.38 

-0.08 -0.08 

1.00 3.46 

0.20 0.10 

[-11.30] [-12.29] [2.79] [1.58] 

(0.00) (0.00) (0.00) (0.11) 

2 -0.17 0.53 

-0.13 -0.13 

1.25 4.27 

0.34 0.28 

[-13.48] [-13.96] [6.27] [5.73] 

(0.00) (0.00) (0.00) (0.00) 

3 -0.29 0.66 

-0.25 -0.24 

1.32 5.22 

0.30 0.34 

[-15.62] [-15.84] [4.82] [5.39] 

(0.00) (0.00) (0.00) (0.00) 

4 -0.54 0.92 

-0.48 -0.46 

1.63 6.98 

0.46 0.56 

[-13.19] [-13.40] [3.53] [5.41] 

(0.00) (0.00) (0.00) (0.00) 

5 -1.18 1.13 

-1.12 -1.09 

1.75 8.96 

0.45 0.57 

[-12.85] [-12.88] [2.15] [3.27] 

(0.00) (0.00) (0.03) (0.00) 

5-1 

-1.07**  -1.04** -1.01** 0.75**  0.26 0.47** 

[-12.12]  [-12.19] [-12.24] [2.24]  [0.99] [2.25] 

(0.00)  (0.00) (0.00) (0.03)  (0.32) (0.02) 

5-2 

-1.01**  -0.98** -0.96** 0.50*  0.12 0.29 

[-12.07]  [-12.08] [-12.10] [1.74]  [0.51] [1.59] 

(0.00)  (0.00) (0.00) (0.08)  (0.61) (0.11) 

 
The figures reported in Table 4 show a [5-1] returns difference that is significant and 

negative for short-term investors (-1.07%) but significant and positive (0.75%) for long-

term investors. Furthermore, for both groups, idiosyncratic risk and returns are linearly 
                                                           
15 Although many other possibilities exist, in this paper, we consider only the Haar and the Daubechies 
wavelet families. We consider the Haar family our benchmark because many of the previous studies available 
on risk loadings in asset pricing models use it. Keeping the same family facilitates comparisons. The 
Daubechies family is a natural extension in that the Haar wavelet is the Daubechies wavelet of minimum 
length. It is also a common wavelet family for studies in economics and finance. See, for example, Fan and 
Gençay (2010) or Huang and Wu (2008). 
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related; returns monotonically decrease from -0.11% to -1.18% for D1 and monotonically 

increase from 1.00% to 1.75% for S1. The consistency of the results across different 

wavelet families leads us to the conclusion that the wavelet family does not drive our 

conclusions. 

In Tables 5 and 6, we present a two-level and a three-level MRA, respectively, to 

include more investor groups. As explained in section 4, D1 represents the 2- to 4-day investors, 

D2 represents the 4- to 8-day investors, D3 represents the 8- to 16-day investors, and S2 and S3 

represent long-term investors. The tables follow the same structure as the previous ones but 

include additional columns with the information for D2, D3, S2 and S3 according to the 

MRA level considered.  

For alternative definitions of short run, the puzzle remains; risks and returns are 

significantly and negatively related for both D2 (-0.30%) and D3 (-0.24%). In these cases, 

portfolios’ returns are also negative for all short-term horizon definitions. However, both 

the magnitude of the negative relationship constituting the puzzle and its significance level 

diminish as the investment horizon increases. Furthermore, we build a monthly S1 series 

for stocks with no missing values over the sample period and determine the influence of 

short-term investors by comparing it to the original monthly series. We find that, even if 

short-term movements are relevant in the daily decomposition, compounding the daily 

long-term series (S1) produces basically the same series as the original. In fact, over the 

whole period, only 21% of the stocks have points outside the one-standard-deviation 

interval. Of these, 73% have only one point outside the interval, and 100% have 4 or fewer 

points. Monthly S1 and the original series are very similar in terms of the mean and 

standard deviation and have very large correlations (0.99 in mean).  However, there are 

marked differences in terms of skewness and kurtosis for some of the stocks.16  Thus it is 

possible that stocks in the highest quintile are stocks with a higher coskewness values so

                                                           
16 Results are available upon request. 
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Table 5: Two-level MRA results. Haar wavelet. 

The tables display MRA results for three groups of investment horizons: 2- to 4-day horizons, 4- to 8-day horizons and long-term horizons, from July 1963 
to December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, and quintile 5 corresponds to the highest idiosyncratic risk. Returns and 
standard deviation (σ) are reported as percentages. [5-1] is the difference between portfolio 5 and portfolio 1, and [5-2] is the difference between portfolio 5 and 
portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas FF correspond to the alphas calculated with the three-factor model. 
Newey-West t-statistics are reported in brackets, and p-values are reported in parentheses. * denotes significance at the 10% level, and ** denotes significance at 
the 5% level. 

 Short-term horizon: 2 to 4 days Short-term horizon: 4 to 8 days Long-term horizon: more than 8 days 

Quintiles 
Returns σ 

Alphas 
CAPM 

Alphas FF  Returns σ 
Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

1 -0.09 0.38 

-0.06 -0.06 

-0.03 0.34 

-0.02 -0.02 

1.04 3.46 

0.20 0.12 

[-11.11] [-12.11] [-4.49] [-4.54] [3.06] [1.98] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.05) 

2 -0.15 0.51 

-0.11 -0.11 

-0.04 0.49 

-0.03 -0.03 

1.28 4.08 

0.35 0.32 

[-14.27] [-14.64] [-8.53] [-8.55] [7.69] [6.39] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

3 -0.26 0.66 

-0.23 -0.21 

-0.07 0.62 

-0.06 -0.06 

1.44 4.83 

0.42 0.43 

[-15.31] [-15.49] [-10.13] [-9.98] [7.38] [8.21] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

4 -0.47 0.86 

-0.42 -0.41 

-0.15 0.83 

-0.13 -0.13 

1.74 6.05 

0.60 0.67 

[-13.47] [-13.55] [-10.90] [-11.13] [6.20] [7.36] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5 -1.04 1.23 

-0.99 -0.97 

-0.32 0.97 

-0.31 -0.30 

2.34 8.68 

1.00 1.07 

[-13.08] [-13.20] [-14.35] [-14.79] [4.58] [6.30] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5-1 

-0.96**  -0.93** -0.90** -0.30**   -0.29** -0.28** 1.30**   0.80** 0.95** 

[-12.34]  [-12.50] [-12.61] [-12.20]   [-13.33] [-13.64] [3.86]   [3.12]  [4.89] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) 

5-2 

-0.90**  -0.88** -0.85** -0.28**   -0.28** -0.27** 1.06**   0.65**  0.75** 

[-12.23]  [-12.33] [-12.42] [-12.37]   [-12.91] [-13.41] [3.54]   [2.83]  [4.27] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) 
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Table 6: Three-level MRA results. Haar wavelet. 

The tables display MRA results for four groups of investment horizons: 2- to 4-day horizons, 4- to 8-day horizons, 8- to 16-day horizons and long-term 
horizons, from July 1963 to December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, and quintile 5 corresponds to the highest 
idiosyncratic risk. Returns and standard deviation (σ) are reported as percentages. [5-1] is the difference between portfolio 5 and portfolio 1, and [5-2] is the 
difference between portfolio 5 and portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas FF correspond to the alphas 
calculated with the three-factor model. Newey-West t-statistics are reported in brackets, and p-values are reported in parentheses. * denotes significance at the 
10% level, and ** denotes significance at the 5% level.  

 Short-term horizon: 2 to 4 days Short-term horizon: 4 to 8 days Short-term horizon: 8 to 16 days Long term horizon: more than 16 days 

Quintiles 
Returns σ 

Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

1 -0.09 0.38 

-0.06 -0.06 

-0.03 0.34 

-0.02 -0.02 

-0.01 0.42 

0.00 0.00 

1.00 3.29 

0.17 0.10 

[-11.11] [-12.11] [-4.49] [-4.54] [-0.60] [-0.53] [2.41] [1.46] 

(0.00) (0.00) (0.00) (0.00) (0.55) (0.60) (0.02) (0.14) 

2 -0.15 0.51 

-0.11 -0.11 

-0.04 0.49 

-0.03 -0.03 

-0.03 0.55 

-0.02 0.02 

1.32 4.00 

0.39 0.34 

[-14.27] [-14.64] [-8.53] [-8.55] [-4.45] [-4.49] [8.13] [7.22] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

3 -0.26 0.66 

-0.23 -0.21 

-0.07 0.62 

-0.06 -0.06 

-0.04 0.71 

-0.03 0.03 

1.54 4.88 

0.50 0.50 

[-15.31] [-15.49] [-10.13] [-9.98] [-4.57] [-4.59] [8.99] [9.19] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

4 -0.47 0.86 

-0.42 -0.41 

-0.15 0.83 

-0.13 -0.13 

-0.08 0.94 

-0.07 -0.07 

1.91 6.30 

0.72 0.81 

[-13.47] [-13.55] [-10.90] [-11.13] [-6.78] [-7.29] [6.57] [8.29] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5 -1.04 1.23 

-0.99 -0.97 

-0.32 0.97 

-0.31 -0.30 

-0.25 1.30 

-0.24 -0.24 

4.05 26.45 

2.29 1.74 

[-13.08] [-13.20] [-14.35] [-14.79] [-11.50] [-12.22] [3.03] [4.38] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5-1 

-0.96**  -0.93** -0.90** -0.30**   -0.29** -0.28** -0.24**   -0.24**  -0.24** 3.05**   2.12** 1.64**  

[-12.34]  [-12.50] [-12.61] [-12.20]   [-13.33] [-13.64] [-9.03]    [-9.72] [-10.34] [2.59]   [2.73]  [4.11] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.01)  (0.01) (0.00) 

5-2 

-0.90**  -0.88** -0.85** -0.28**   -0.28** -0.27** -0.22**    -0.22** -0.22** 2.73**   1.90**  1.40** 

[-12.23]  [-12.33] [-12.42] [-12.37]   [-12.91] [-13.41] [-9.31]    [-9.65]  [-10.34] [2.38]   [2.53]  [3.68] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.02)  (0.01) (0.00) 
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that the lower returns in the last quintile are explained by stocks offering a larger 

probability of extreme values.  

To disprove this alternative explanation, we introduce a coskewness factor into the 

asset pricing model used to estimate idiosyncratic volatility. Using all stocks with more 

than 220 daily observations available, we calculate a daily coskewness factor. For each 

stock and year, we calculate the Harvey and Siddique (2000) coskewness measure,  

                                                      
 (            

 )

√ (      
 ) (      

 )
,                                                  [7] 

where for each stock,        are the residuals from the regression of the excess return on the 

contemporaneous market excess return, and        are the residuals of the excess market 

return over its mean.  

Then, we sort the stocks into three portfolios by dividing them at 30% and 70% of the 

stocks and consider the two extreme portfolios. The factor value-weighted returns are 

calculated for the next day as the difference between the return on the lowest coskewness 

portfolio and the highest coskewness portfolio. The procedure is repeated by rolling the 

initial window by one day. Despite the promising elements that lead us to introduce the 

coskewness factor into our analysis, Tables 7 to 9 provide evidence against its relevance in 

explaining the existence of the puzzle for short-term investors. Introducing the factor has 

virtually no impact on D1’s [5-1] returns, which are equal to -0.96% and are significant 

with or without coskewness. Decreases in differences are also meaningless for D2 and D3: 

from a significant -0.30% to a significant 0.28% for D2 and from a significant 0.24% to a 

significant -0.21% for D3. Furthermore, controlling for risk, CAPM and FF factors do not 

alter the results, and linearity in the decrease in returns is again observed. Moreover, the 

drop in returns for the fifth portfolio remains unchanged so that coskewness can be ruled 

out as an explanation for that phenomenon. 
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Table 7: One-level MRA results. Haar wavelet. Coskewness Factor 

The tables display MRA results for two groups of investment horizons: short-term and long-term 
horizons, from July 1963 to December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, 
and quintile 5 corresponds to the highest idiosyncratic risk. Returns and standard deviation (σ) are reported as 
percentages. [5-1] is the difference between portfolio 5 and portfolio 1, and [5-2] is the difference between 
portfolio 5 and portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas 
FF correspond to the alphas calculated with the three-factor model, Newey-West t-statistics are reported in 
brackets, and p-values are reported in parentheses. * denotes significance at the 10% level, and ** denotes 
significance at the 5% level. 

 Short-term horizon: 2 to 4 days Long-term horizon: more than 4 days 

Quintiles 
Returns σ 

Alphas 
CAPM 

Alphas FF  Returns σ 
Alphas 
CAPM 

Alphas 
FF  

1 -0.09 0.38 

-0.06 -0.06 

0.99 3.52 

0.20 0.11 

[-11.55] [-12.30] [2.86] [1.84] 

(0.00) (0.00) (0.00) (0.07) 

2 -0.15 0.52 

-0.12 -0.12 

1.23 4.25 

0.34 0.29 

[-14.83] [-15.42] [6.32] [6.06] 

(0.00) (0.00) (0.00) (0.00) 

3 -0.26 0.65 

-0.22 -0.21 

1.43 5.35 

0.42 0.44 

[-15.44] [-15.31] [6.07] [6.72] 

(0.00) (0.00) (0.00) (0.00) 

4 -0.47 0.86 

-0.42 -0.40 

1.66 7.03 

0.51 0.59 

[-13.32] [-13.42] [3.77] [5.50] 

(0.00) (0.00) (0.00) (0.00) 

5 -1.05 1.21 

-1.00 -0.97 

1.88 8.98 

0.61 0.70 

[-13.01] [-13.06] [2.84] [3.87] 

(0.00) (0.00) (0.00) (0.00) 

5-1 

-0.96**    -0.94**  -0.91** 0.89**   0.41 0.59** 

[-12.30]    [-12.43]  [-12.47] [2.63]   [1.58] [2.72] 

(0.00)  (0.00) (0.00) (0.01)  (0.11) (0.01) 

5-2 

-0.90**    -0.88**  -0.85** 0.65**   0.27 0.41** 

[-12.13]    [-12.20]  [-12.23] [2.24]   [1.19]  [2.21] 

(0.00)  (0.00) (0.00) (0.03)  (0.23) (0.03) 

 
Similarly, we introduce an illiquidity factor because the literature has consistently 

identified it as a possible cause for the puzzle. Ang et al. (2006) control for both illiquidity 

and coskewness separately, but their approach does not include controlling for both 

simultaneously. We use Amihud’s illiquidity measure, defined in equation [8], to build a 

factor for illiquidity: 

                                                                  
|    

 |
    

 ⁄ .                                             [8]
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Table 8: Two-level MRA results. Haar wavelet. Coskewness Factor 

The tables display MRA results for three groups of investment horizons: 2- to 4-day horizons, 4- to 8-day horizons and long-term horizons, from July 1963 to 
December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, and quintile 5 corresponds to the highest idiosyncratic risk. Returns and 
standard deviation (σ) are reported as percentages. [5-1] is the difference between portfolio 5 and portfolio 1, and [5-2] is the difference between portfolio 5 and 
portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas FF correspond to the alphas calculated with the three-factor model, 
Newey-West t-statistics are reported in brackets, and p-values are reported in parentheses. * denotes significance at the 10% level, and ** denotes significance at 
the 5% level. 

 Short-term horizon: 2 to 4 days Short-term horizon: 4 to 8 days Long-term horizon: more than 8 days 

Quintiles 
Returns σ 

Alphas 
CAPM 

Alphas FF  Returns σ 
Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

1 -0.09 0.38 

-0.06 -0.06 

-0.03 0.35 

-0.02 -0.02 

1.06 3.46 

0.24 0.17 

[-11.55] [-12.30] [-4.45] [-4.50] [3.89] [3.17] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

2 -0.15 0.52 

-0.12 -0.12 

-0.05 0.49 

-0.03 -0.03 

1.29 4.12 

0.38 0.34 

[-14.83] [-15.42] [-9.14] [-9.08] [8.07] [7.06] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

3 -0.26 0.65 

-0.22 -0.21 

-0.08 0.62 

-0.06 -0.06 

1.45 4.94 

0.44 0.45 

[-15.44] [-15.31] [-10.80] [-10.62] [8.12] [8.88] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

4 -0.47 0.86 

-0.42 -0.40 

-0.14 0.82 

-0.13 -0.13 

1.69 6.15 

0.57 0.63 

[-13.32] [-13.42] [-10.20] [-10.41] [5.66] [6.57] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5 -1.05 1.21 

-1.00 -0.97 

-0.31 0.95 

-0.29 -0.29 

2.38 8.75 

1.09 1.15 

[-13.01] [-13.06] [-13.68] [-13.97] [5.07] [6.24] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5-1 

-0.96**    -0.94**  -0.91** -0.28**    -0.27** -0.27** 1.32**   0.85** 0.98** 

[-12.30]    [-12.43]  [-12.47] [-11.81]    [-12.59] [-12.97] [4.01]   [3.49] [4.84] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) 

5-2 

-0.90**    -0.88**  -0.85** -0.26**    -0.26** -0.26** 1.09**   0.71** 0.81** 

[-12.13]    [-12.20]  [-12.23] [-11.68]    [-12.09]  [-12.37] [3.65]    [3.14] [4.13] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) 
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Table 9: Three-level MRA results. Haar wavelet. Coskewness Factor 

The tables display MRA results for four groups of investment horizons; 2- to 4-day horizons, 4- to 8-day horizons, 8- to 16-day horizons and long-term horizons, 
from July 1963 to December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, and quintile 5 corresponds to the highest idiosyncratic risk. 
Returns and standard deviation (σ) are reported as percentages. [5-1] is the difference between portfolio 5 and portfolio 1, and [5-2] is the difference between 
portfolio 5 and portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas FF correspond to the alphas calculated with the 
three-factor model. Newey-West t-statistics are reported in brackets, and p-values are reported in parentheses. * denotes significance at the 10% level, and ** 
denotes significance at the 5% level. 

 Short-term horizon: 2 to 4 days Short-term horizon: 4 to 8 days Short-term horizon: 8 to 16 days Long-term horizon: more than 16 
days 

Quintiles 
Returns σ 

Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

1 -0.09 0.38 

-0.06 -0.06 

-0.03 0.35 

-0.02 -0.02 

-0.01 0.43 

-0.01 0.00 

1.03 3.39 

0.21 0.14 

[-11.55] [-12.30] [-4.45] [-4.50] [-0.81] [-0.73] [3.43] [2.71] 

(0.00) (0.00) (0.00) (0.00) (0.42) (0.46) (0.00) (0.01) 

2 -0.15 0.52 

-0.12 -0.12 

-0.05 0.49 

-0.03 -0.03 

-0.02 0.56 

-0.02 -0.02 

1.33 4.02 

0.41 0.38 

[-14.83] [-15.42] [-9.14] [-9.08] [-3.84] [-3.87] [7.98] [7.27] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

3 -0.26 0.65 

-0.22 -0.21 

-0.08 0.62 

-0.06 -0.06 

-0.04 0.70 

-0.04 -0.04 

1.48 4.82 

0.46 0.47 

[-15.44] [-15.31] [-10.80] [-10.62] [-5.19] [-5.25] [8.48] [8.81] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

4 -0.47 0.86 

-0.42 -0.40 

-0.14 0.82 

-0.13 -0.13 

-0.08 0.92 

-0.07 -0.08 

1.77 5.94 

0.64 0.71 

[-13.32] [-13.42] [-10.20] [-10.41] [-6.77] [-7.19] [6.51] [8.19] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5 -1.05 1.21 

-1.00 -0.97 

-0.31 0.95 

-0.29 -0.29 

-0.22 1.29 

-0.22 -0.22 

2.99 14.05 

1.53 1.34 

[-13.01] [-13.06] [-13.68] [-13.97] [-10.56] [-11.35] [3.88] [5.03] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5-1 

-0.96**    -0.94**  -0.91** -0.28**    -0.27** -0.27** -0.21**    -0.21** -0.22**  1.96**   1.32** 1.20** 

[-12.30]    [-12.43]  [-12.47] [-11.81]    [-12.59] [-12.97] [-8.08]    [-8.62]  [-9.30] [3.18]   [3.14]  [4.16 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) `(0.00) 

5-2 

-0.90**    -0.88**  -0.85** -0.26**    -0.26** -0.26** -0.20**    -0.19**  -0.20** 1.66**   1.12**  0.96** 

[-12.13]    [-12.20]  [-12.23] [-11.68]    [-12.09]  [-12.37] [-8.44]    [-8.73]  [-9.45] [2.87]   [2.85]  [3.74] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) 
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For all stocks with more than 200 observations each year, Amihud’s measure is 

calculated. Stocks are then sorted according to annual Amihud’s mean measure and are 

assigned to one of three portfolios. The factor value-weighted returns are calculated for the 

next day as the difference between the return on the highest illiquidity portfolio and the 

lowest illiquidity portfolio. Here, the divisions are introduced so that each of the portfolios 

contains 30% of the stocks. The procedure is repeated by rolling the initial window by one 

day. 

Table 10: One-level MRA results. Haar wavelet. Illiquidity and Coskewness Factors 

The tables display MRA results for two groups of investment horizons: short-term and long-term 
horizons, from July 1963 to December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, 
and quintile 5 corresponds to the highest idiosyncratic risk. Returns and standard deviation (σ) are reported as 
percentages. [5-1] is the difference between portfolio 5 and portfolio 1, and [5-2] is the difference between 
portfolio 5 and portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas 
FF correspond to the alphas calculated with the three-factor model. Newey-West t-statistics are reported in 
brackets, and p-values are reported in parentheses. * denotes significance at the 10% level, and ** denotes 
significance at the 5% level. 

 Short-term horizon: 2 to 4 days Long-term horizon: more than 4 days 

Quintiles 
Returns σ 

Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

1 -0.09 0.39 

-0.06 -0.06 

1.02 3.52 

0.22 0.14 

[-11.13] [-11.80] [3.17] [2.28] 

(0.00) (0.00) (0.00) (0.02) 

2 -0.16 0.51 

-0.12 -0.12 

1.21 4.26 

0.31 0.27 

[-14.03] [-14.95] [6.20] [6.01] 

(0.00) (0.00) (0.00) (0.00) 

3 -0.26 0.64 

-0.22 -0.21 

1.41 5.29 

0.40 0.42 

[-15.42] [-15.28] [5.61] [5.94] 

(0.00) (0.00) (0.00) (0.00) 

4 -0.45 0.85 

-0.40 -0.39 

1.65 6.94 

0.51 0.59 

[-13.74] [-13.82] [3.80] [5.62] 

(0.00) (0.00) (0.00) (0.00) 

5 -1.03 1.22 

-0.98 -0.95 

1.84 8.94 

0.57 0.66 

[-12.88] [-12.92] [2.72] [3.68] 

(0.00) (0.00) (0.01) (0.00) 

5-1 

-0.94**    -0.92** -0.89**  0.82**   0.35  0.52** 

[-12.21]    [-12.31]  [-12.35] [2.48]   [1.37]  [2.46] 

(0.00)  (0.00) (0.00) (0.01)  (0.17) (0.01) 

5-2 

-0.87**    -0.86**  -0.83** 0.63**   0.26  0.39** 

[-12.00]    [-12.05]  [-12.06] [2.22]   [1.16]  [2.12] 

(0.00)  (0.00) (0.00) (0.03)  (0.25) (0.03) 
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Table 11: Two-level MRA results. Haar wavelet. Illiquidity and Coskewness Factors 

The tables display MRA results for three groups of investment horizons: 2- to 4-day horizons, 4- to 8-day horizons and long-term horizons, from 
July 1963 to December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, and quintile 5 corresponds to the highest 
idiosyncratic risk. Returns and standard deviation (σ) are reported as percentages. [5-1] is the difference between portfolio 5 and portfolio 1, and 
[5-2] is the difference between portfolio 5 and portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas FF 
correspond to the alphas calculated with the three-factor model. Newey-West t-statistics are reported in brackets, and p-values are reported in 
parentheses. * denotes significance at the 10% level, and ** denotes significance at the 5% level. 

 Short-term horizon: 2 to 4 days Short-term horizon: 4 to 8 days Long-term horizon: more than 8 days 

Quintiles 
Returns σ 

Alphas 
CAPM 

Alphas FF  Returns σ 
Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

1 -0.09 0.39 

-0.06 -0.06 

-0.03 0.35 

-0.02 -0.02 

1.12 3.49 

0.29 0.22 

[-11.13] [-11.80] [-3.62] [-3.58] [4.89] [4.29] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

2 -0.16 0.51 

-0.12 -0.12 

-0.05 0.49 

-0.03 -0.03 

1.27 4.10 

0.35 0.33 

[-14.03] [-14.95] [-9.10] [-8.96] [7.16] [6.58] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

3 -0.26 0.64 

-0.22 -0.21 

-0.08 0.62 

-0.06 -0.06 

1.44 4.86 

0.44 0.45 

[-15.42] [-15.28] [-10.30] [-10.20] [8.38] [8.70] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

4 -0.45 0.85 

-0.40 -0.39 

-0.14 0.81 

-0.12 -0.12 

1.59 5.98 

0.48 0.55 

[-13.74] [-13.82] [-10.41] [-10.62] [5.13] [6.16] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5 -1.03 1.22 

-0.98 -0.95 

-0.30 0.97 

-0.28 -0.28 

2.24 8.41 

0.98 1.02 

[-12.88] [-12.92] [-13.40] [-13.60] [4.84] [6.11] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5-1 

-0.94**    -0.92** -0.89**  -0.27**    -0.26** -0.26** 1.12**    0.69**  0.80** 

[-12.21]    [-12.31]  [-12.35] [-11.42]    [-12.27] [-12.55] [3.64]    [2.99]  [4.34] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) 

5-2 

-0.87**    -0.86**  -0.83** -0.25**    -0.25** -0.25** 0.97**    0.63**  0.69** 

[-12.00]    [-12.05]  [-12.06] [-11.00]    [-11.46] [-11.66] [3.46]    [2.85]  [3.77] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) 
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Table 12: Three-level MRA results. Haar wavelet. Illiquidity and Coskewness Factors 

The tables display MRA results for four groups of investment horizons: 2- to 4-day horizons, 4- to 8-day horizons, 8- to 16-day horizons and long-term horizons, 
from July 1963 to December 2009. Quintile 1 corresponds to the lowest idiosyncratic risk portfolio, and quintile 5 corresponds to the highest idiosyncratic risk. 
Returns and standard deviation (σ) are reported as percentages. [5-1] is the difference between portfolio 5 and portfolio 1, and [5-2] is the difference between 
portfolio 5 and portfolio 2. Alphas CAPM correspond to Jensen’s alphas calculated with CAPM, and Alphas FF correspond to the alphas calculated with the 
three-factor model. Newey-West t-statistics are reported in brackets, and p-values are reported in parentheses. * denotes significance at the 10% level, and ** 
denotes significance at the 5% level. 

 Short-term horizon: 2 to 4 days Short-term horizon: 4 to 8 days Short-term horizon: 8 to 16 days Long-term horizon: more than 16 days 

Quintiles 
Returns σ 

Alphas 
CAPM 

Alphas FF  Returns σ 
Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

Returns σ 
Alphas 
CAPM 

Alphas 
FF  

1 -0.09 0.39 

-0.06 -0.06 

-0.03 0.35 

-0.02 -0.02 

-0.01 0.43 

-0.01 -0.01 

1.04 3.36 

0.22 0.16 

[-11.13] [-11.80] [-3.62] [-3.58] [-1.46] [-1.41] [3.21] [2.63] 

(0.00) (0.00) (0.00) (0.00) (0.15) (0.16) (0.00) (0.01) 

2 -0.16 0.51 

-0.12 -0.12 

-0.05 0.49 

-0.03 -0.03 

-0.03 0.55 

-0.02 -0.02 

1.33 4.05 

0.41 0.36 

[-14.03] [-14.95] [-9.10] [-8.96] [-3.99] [-4.01] [7.86] [6.75] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

3 -0.26 0.64 

-0.22 -0.21 

-0.08 0.62 

-0.06 -0.06 

-0.04 0.69 

-0.03 -0.03 

1.45 4.91 

0.42 0.44 

[-15.42] [-15.28] [-10.30] [-10.20] [-4.84] [-4.84] [7.77] [7.87] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

4 -0.45 0.85 

-0.40 -0.39 

-0.14 0.81 

-0.12 -0.12 

-0.07 0.90 

-0.06 -0.07 

1.89 6.22 

0.74 0.81 

[-13.74] [-13.82] [-10.41] [-10.62] [-5.68] [-5.99] [6.54] [8.49] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5 -1.03 1.22 

-0.98 -0.95 

-0.30 0.97 

-0.28 -0.28 

-0.20 1.24 

-0.19 -0.19 

3.94 25.89 

2.25 1.69 

[-12.88] [-12.92] [-13.40] [-13.60] [-10.17] [-10.84] [3.06] [4.33] 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

5-1 

-0.94**    -0.92** -0.89**  -0.27**    -0.26** -0.26** -0.19**   -0.18**  -0.18** 2.90**   2.03** 1.53** 

[-12.21]    [-12.31]  [-12.35] [-11.42]    [-12.27] [-12.55] [-7.47]   [-8.02]  [-8.56] [2.55]   [2.71] [3.91] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.01)  (0.01) (0.00) 

5-2 

-0.87**    -0.86**  -0.83** -0.25**    -0.25** -0.25** -0.17**   -0.17**  -0.17** 2.61**   1.84** 1.33** 

[-12.00]    [-12.05]  [-12.06] [-11.00]    [-11.46] [-11.66] [-7.72]   [-8.09]  [-8.67] [2.36]   [2.53] [3.52] 

(0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.00)  (0.00) (0.00) (0.02)  (0.01) (0.00) 
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As shown in Tables 10 to 12, the inclusion of both factors in the analysis does not 

account for the puzzle. As in the previous case, decreases in [5-1] returns are small, and the 

negative relationship is still significant for all short-term investors. 

 

 Conclusions 

For classical asset pricing theory, the negative link between idiosyncratic risk and 

expected returns established by Ang et al. (2006, 2009) is challenging. We believe that in 

order to study the anomaly it is necessary to consider the effect of empirical issues such as 

fat tails in return distributions and theoretical reasons behind these issues. In particular, we 

propose a heterogeneous market framework that provides a possible theoretical explanation 

for the puzzle and seems to better fit the empirical data. Our main conclusion is that the 

puzzle reported above disappears for long-term horizons and holds for the short-term 

investors. Our findings note the relevance of the puzzle only for investors with short-run 

horizons compared with those with long-run horizons. This result holds when controlling 

for different wavelet families and different idiosyncratic risk estimators, including 

illiquidity and coskewness effects. Moreover, adding several definitions of short-term 

investors provides corroborating evidence for our hypothesis that the puzzle is related to 

investors’ time horizon. This is because the link between idiosyncratic risk and returns 

becomes weaker as we increase the number of short-term investor groups. 
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Chapter III: Idiosyncratic volatility anomaly: 

corporate investment or investors 

mispricing? 
 

 

3.1. Introduction 

The concept of diversification rules out any predictive power of idiosyncratic risk 

over expected returns and is one of the strongest ones in asset pricing. Therefore, the 

fact that the portfolios with highest idiosyncratic risk levels yield significantly lower 

returns than those with the lowest levels of it came as a puzzling surprise (Ang et al., 

2006 and 2009). Although this observation was initially contested in papers such as Bali 

and Cakici (2008) and Fu (2009) it has ultimately gained full recognition and became 

known as the idiosyncratic volatility anomaly. At first sight, the anomaly constitutes a 

challenge either to the idea of diversification or to the models used to estimate 

idiosyncratic risk. But given that in contradiction to the anomaly, under-diversification 

models such as Merton (1987) anticipate a positive relationship between idiosyncratic 

risk and expected returns, the accuracy of the CAPM or the Fama and French (1993) 

model seems to be the option to go with. Indeed, idiosyncratic risk is always estimated 

as a residual from a particular asset pricing model so that if the model is inaccurate then 

the measure of idiosyncratic risk could be catching more information that it should. In 

this sense, it seems plausible that the anomaly arises due to the lack of relevant controls 

related to stock returns.  

Surprisingly, most of the literature leaves this option aside and approaches the 

anomaly through more complex rationales including investor preferences, market 

microstructure issues, arbitrage costs and investor irrationality. Papers such as Kapadia 

(2006) and Boyer et al., (2010) who show investors tilt towards high firm-specific 

volatility stocks whose returns distributions offer desirable features like positive 

skewness or lottery-like payoffs (Bali et al., 2011) explore the effect of investor 

preferences on the anomaly. Microstructure issues such as returns reversals or trading 

non-synchronicity are linked to the anomaly by Huang et at., (2010) and Han and 
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Lesmond, (2011) respectively but are refuted by Chen et al., (2012a) showing that the 

debate is sound and still developing. Also, papers related to arbitrage costs argue that 

idiosyncratic risk determines arbitrage cost so that the anomaly is not arbitraged away 

because high idiosyncratic risk stocks are difficult to short (Boehme et al., 2009; Au et 

al., 2009; Cao, 2009; Duan et al., 2010). Finally, some authors relate the anomaly to 

investor irrationality; Gao et al., (2012) argue the relationship between idiosyncratic 

volatility and expected returns depends on investor sentiment so that the anomaly is 

only observed during times following high investor sentiment periods. In contrast, Jiang 

et al., (2009) refute the hypothesis that accruals anomaly (based on the irrationality of 

investors when assessing cash flows information content) explains the idiosyncratic 

volatility anomaly.   

In this paper we follow the idea that the idiosyncratic volatility anomaly might be 

observed given the lack of controls related to stock returns and we argue these controls 

should account for managerial decisions within the firm since these should have a large 

idiosyncratic effect on firm’s stock returns. In particular, in this paper we contribute to 

the discussion by studying the effect of corporate investment on the observation of the 

idiosyncratic volatility anomaly. Our rationale is threefold. First, firm investment is 

mostly idiosyncratic given that each manager faces very unique conditions when he 

decides which investment projects are to be undertaken. Second, given that investments 

are associated to higher uncertainty of future cash flows, investment level should 

significantly modify firms overall risk and, in turn, its idiosyncratic risk component. 

Third, valuation theory offers a framework where expected returns, profitability and 

investment are theoretically linked and where the true negative relationship between 

investment and expected returns arises only after controls for profitability are included. 

Moreover, this negative relationship should persist with independence of investor 

rationality (Fama and French, 2006). 

Introducing the discussion of the effect of investment on the idiosyncratic volatility 

anomaly we pursue two objectives. On the one hand, we believe we fill a gap in the 

literature that has until now marginalized the corporations side from the analysis. On the 

other hand, we offer a working hypothesis that is broad in implications. Indeed, in 

addition to provide a plausible explanation for the anomaly, the hypothesis that joint 

controls for profitability and investment account for the anomaly with independence of 
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investor rationality allows us to refute two recent papers that seemed to support 

irreconcilable hypotheses. These are, the conception that the anomaly arises purely from 

investor irrationality during times of high investor sentiment exposed by Gao et al., 

(2012) and, the idea that the anomaly is not linked at all to investor irrationality when 

coming to assess accruals information advanced by Jiang et al., (2009). Furthermore, 

our approach allows testing a hypothesis based on rationality that should be proven false 

before considering any hypothesis based on irrationality. 

Our results strongly support our hypothesis. On the one hand, there is a linear 

relationship between investment and idiosyncratic risk that supports our initial idea that 

investment and idiosyncratic risk should correlate positively. On the other hand, 

investment is by itself insufficient to explain the anomaly in the cross-sectional analysis, 

but considering both profitability and investment does account for the idiosyncratic risk 

anomaly. Moreover, these controls also proof to prevail both during times succeeding 

high investor sentiment and during times succeeding low investor sentiment. It seems 

then that the idiosyncratic volatility anomaly is not related to investor irrational 

expectations but to managerial decision making affecting both investment and 

profitability of the firms and that are not fully considered in the asset pricing model 

used to estimate the firm specific risk. Our results also emphasize the implications of 

valuation theory in terms of the literature on the idiosyncratic volatility anomaly. First, 

they offer an explanation to why Jiang et al., (2009) fail to link investor irrationality in 

assessing accruals information content and the idiosyncratic risk anomaly; it is not 

enough to control for investment related variables such as accruals. Second, they 

account for the anomaly both during high and during low investor sentiment periods, 

refuting the argument by Gao et al., (2012) that the anomaly is purely dependent on 

investor rationality. 

The remainder of the paper is organized as follows. Section 2 gives a general 

discussion on the explanations provided for the empirical observation of a negative link 

between investment and expected returns and their relevance for our approach to the 

idiosyncratic volatility anomaly. Data description, methodology and preliminary 

evidence of the anomaly in our sample are discussed in Section 3. Section 4 describes 

our empirical findings over the puzzle after controlling by corporate variables. Section 5 

concludes. 
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3.2. Corporate investment and the cross section of stock returns 

Our hypothesis is based on the idea that there is an effect non-captured in the 

idiosyncratic risk measure. Therefore, two conditions are necessary; first, the missing 

effect should be negatively correlated with expected returns and second, this missing 

effect should be positively related to idiosyncratic risk. We argue investment is a good 

candidate for this missing variable because it fulfills both necessary conditions. On the 

one hand, investment and idiosyncratic risk should be positively related because (i) 

investment results from a decision making process conditioned by purely firm-specific 

variables such as managerial aversion to risk or financing conditions faced by the firm 

and, (ii) intuitively, investment should increase idiosyncratic volatility because it 

increases uncertainty over future cash flows. Also, papers such as Chen et al., (2012b) 

support this idea by showing that measures related to managerial activity such as 

discretionary accruals reduce information quality and this, in turn, induces higher 

idiosyncratic return volatility. Therefore, managerial decisions on investment levels and 

the nature of the projects undertaken by firms could have an impact on the idiosyncratic 

volatility anomaly.  

On the other hand, there are at least two theoretical approaches justifying a negative 

link between investment and expected returns. The first one is related to the accruals 

anomaly and implies that this negative link is driven by investor mispricing of past 

accounting information. The second one is based on the valuation theory and implies 

that the negative link between investment and expected returns arises analytically from 

a valuation equation and is totally independent from investor rationality. The differences 

and similarities between these two approaches are of major importance for our argument 

to be proven right. Therefore, in this section we develop both theoretical arguments and 

show that they are closely related in terms of their empirical implications. By doing so, 

we also emphasize that the relevance of investor irrationality changes dramatically from 

one approach to the other. Finally, in the last part of the section we highlight what type 

of empirical results would support our hypothesis that idiosyncratic volatility anomaly 

is related to corporate investment and profitability and not related either to investor 

expectations, as implied by Jiang et al., (2009), or to investor sentiment, as implied by 

Gao et al., (2012). 
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From the literature documenting a negative link between expected returns and 

investment arising from investor mispricing, accruals literature might be the most 

influential one.17 After Sloan (1996) seminal paper, a large body of evidence has been 

developed around the idea that investors underreact to cash-flows information content. 

Most of the accruals literature follows the argument that investors are unable to 

correctly differentiate earnings from accruals which, since they are less persistent, lead 

investors to overvalue firms with larger accruals. This turns into a negative relationship 

between accruals and expected returns, known as the accruals anomaly, as the largest 

the accruals component of cash flows, the largest the drop in the stock price when 

realized earnings differ from investors’ expectations (e.g. Sloan, 1996, or Richardson et 

al., 2005, among others).  

Building on the accruals anomaly, authors such as Cooper et al., (2008) provide 

evidence in favor of a larger anomaly related to the mispricing of investment growth in 

general because firm-specific asset growth dominates other variables usually negatively 

correlated to the cross-section of stock returns such as accruals, sales growth and growth 

in capital investment. Authors conclude that their results signal strong empirical 

evidence on the inability of financial markets to price both investment and 

disinvestment activities and not only some of its components. Similarly to the accruals 

argument the negative relationship between investment and expected returns in this 

context results from investors’ lack of sophistication in the sense that they overreact to 

past accounting information and therefore misprice the stocks. 

A particularly relevant critique to the irrationality idea underlying the accruals 

anomaly is offered by Fama and French (2006) that argue the negative link between 

investment and expected returns arises analytically after controlling for profitability and 

without the need to assume irrational expectations18. Based on the valuation theory, 

Fama and French argue the observation of the accrual anomaly could arise from the 

dividend discount model in equation 1: 

                                                           
17 The fact that investment and accruals are closely related would become clear at the end of this section. 
18 There are additional approaches for the empirical observation implied by the accruals anomaly that do 
not consider mispricing and irrationality as the source of the negative link between investment and 
expected returns. Noteworthy examples are Fairfield et al., (2003) and Dechow (2008) suggesting 
accruals are measures of invested capital and relating the negative association between accruals and 
expected returns to diminishing marginal returns to investment. 



Chapter III: Idiosyncratic volatility anomaly corporate investment or investors mispricing?  
 

 

40 
 

    ∑ (    ) (   )
 ⁄

 

   

  [1] 

where    is a share market price at time t,  (    ) is the expected dividend in period 

t+τ, and r is the internal rate of returns on expected dividends. Considering clean surplus 

accounting and dividing by book equity the model can be written as equation 2: 

 
  
  
 
∑  (          ) (   )

 ⁄ 
   

  
  [2] 

where    is equity earnings per share at time t and             is change in book 

equity per share,   .
19 

Then, assuming the internal rate of returns on expected dividends, r, is 

approximately equivalent to the long-term average expected stock return, and fixing 

    ⁄  and expected earnings to book equity, firms with higher expected equity 

investment,      , have lower expected returns. Also, controlling for     ⁄  and 

expected growth in book equity, more profitable firms have higher expected returns 

(Fama and French, 2006). This is to say there are two interrelated effects, the 

profitability effect and the investment effect, that should not be treated in isolation. To 

study the relationship between any two of these variables: investment, profitability and 

expected returns, it becomes necessary to control for the third one. The negative 

relationship between investment and expected returns should be the result of controlling 

for profitability.  

Notice that in this framework the negative relation between investment and 

expected returns is silent about the nature of pricing so that investors’ valuation can 

arise both from rational or irrational expectations. The model is not able to determine if 

the effects of investment and profitability on average stocks returns are related to 

rational or irrational pricing. Seen in another way, the negative link between expected 

returns and investment after controlling for profitability should yield both under rational 

and under irrational expectations. Additional evidence in favor of this approach is 

provided by Chen et al., (2011) that develop an asset pricing model which factors are 

based on profitability and investment and that performs well in explaining the cross-

                                                           
19 For a discussion on why results could hold even if the clean surplus accounting assumption is violated 
see Fama and French (2006). 
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section of stock returns and, Novy-Marx (2013) that argue current profitability predicts 

returns through its effect on important determinants of future stock prices such as 

earnings, cash-flows and payouts. 

In the context of the idiosyncratic risk anomaly the discussion of the investment 

and profitability effects offers several interesting opportunities. On the one hand, it 

allows us to contribute to the debate on the role of investment in the anomaly opened by 

Jiang et al., (2009) who conclude the accruals anomaly does not account for the 

idiosyncratic risk one. In this paper we include a different measure for investment and 

propose an alternative interpretation unrelated to investors that highlights the primordial 

role investment has on the idiosyncratic risk anomaly. Another interesting point is that 

the fact that, as shown below in this section, our hypothesis that controlling 

simultaneously for profitability and investment the idiosyncratic volatility could no 

longer be observed should hold both under rationality and under irrationality. In 

particular, this fact allows us to contribute to the discussion about the relevance of 

investor sentiment as a determinant of the idiosyncratic volatility anomaly initiated by 

Gao et al., (2012) who show the anomaly is only observed in times of high investor 

sentiment, concluding that the anomaly is produced by a mispricing from investors.  

In terms of the results we expect it is imperative to understand that our measure for 

investment is clearly related to accruals (this is shown at the end of the following 

section). Therefore, we expect that controlling for investment would not be sufficient to 

account for the idiosyncratic volatility anomaly. Also, for our hypothesis to be 

supported two elements are required. On the one hand, joint controls for investment and 

profitability should result in the relationship between idiosyncratic risk and expected 

returns to become either non-significant or positive. On the other hand, the effectiveness 

of these controls should prevail both during times of high investor sentiment when 

irrational expectations from sentiment investors dominate and during times of low 

investor sentiment when the dominant expectations are arbitrageurs’ rational ones. 
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3.3. Data, methodology and preliminary evidence 

 
3.3.1. Data and methodology 

We approach the study of the idiosyncratic volatility anomaly through two 

methodologies; in this section we perform a portfolio sorting methodology and in the 

following section we discuss the results of several Fama and Macbeth (1973) 

regressions where joint controls for profitability and investment are included. The study 

is developed using daily returns information on all non-financial common stocks (SIC 

codes 6000 to 6999) in the NYSE, AMEX and Nasdaq available both in CRSP and 

Compustat since our measures for profitability and for investment are based on balance 

sheet information.20 To allow for accounting information to become public knowledge 

we leave a window of six months after each fiscal year end. The resulting sample dates 

from July 1982 to December 2009 and includes 1.127.147 firm-month observations, 

approximately 3.415 firms per month. For the Fama-MacBeth regressions in section 4 

the sample is reduced to 1.004.965 firm-month observations by eliminating the months 

for which mergers and acquisitions result in a strong variation of our accounting 

measures.     

We consider six alternative measures of profitability and only one for investment 

since we believe it is the most comprehensive measure that can be possibly constructed. 

Three of our profitability measures are based on Tobin’s q as defined by Verdi (2006); 

the first proxy labeled “Tobin’s q” is defined as:  

    
               

   
  [3] 

where, TA is total assets (Compustat item #6), MVEq stands for market value of equity 

defined as common stocks outstanding (Compustat item #25) times stock price 

(Compustat item #199) and BVEq is book value of equity (Compustat item #60). Using 

the mean stock price for each month reported in CRSP instead of the information on 

Compustat, we define our second proxy for profitability labeled “Tobin’s q var”. This 

measure has the advantage that it incorporates the most recent information investors 

have on stock prices and varies month by month. Our third proxy labeled “Tobin’q min” 

                                                           
20 We only consider firms in the CRSP with more than 17 daily observations in a month.  
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is the minimum between these two measures and is used in order to minimize the effect 

of outliers.   

We also consider three additional profitability measures based on Fama and French 

(2006); dividends per share (Compustat item #26), a dummy variable equal to one for 

dividend paying firms and profitability defined as in equation 4: 

                
     

         
  [4] 

where, IBEI stands for income before extraordinary items (Compustat item #18), TA is 

total assets (Compustat item #6), L is total liabilities (Compustat item #181) and A is a 

term equal to balance sheet deferred taxes investment tax credit (Compustat item #35) if 

available minus preferred stock liquidating value (Compustat item #10) if available, or 

redemption value (Compustat item #56) if available, or carrying value (Compustat item 

#130).    

Our investment proxy is asset growth defined as the growth rate of total assets 

(Compustat item #6) during the previous two years (Cooper et al., 2008): 

     
           

     
  [5] 

where AG stands for asset growth and TA is total assets. We do not consider any more 

measures of investment since any alternative accounting based definition of investment 

should be included in asset growth and also because this measure allows us to contrast 

our results with the results expected in the accruals framework. This is possible because 

as we show in the following lines asset growth is also a proxy for accruals. 

In fact, given the extension of the literature on accruals anomaly, several definitions 

of accruals are available.21 For our purposes we highlight the one provided by 

Richardson et al. (2005) who define accruals as the left-hand side of equation [6]:  

               [6]  

                                                           
21 For a comprehensive review of accounting anomalies such as the investment anomaly see Richardson 
et al. (2010). 
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where,     stands for net operating assets and is derived as the difference between 

operating assets and operating liabilities,     stands for net financial obligations and is 

calculated as short-term debt plus long-term debt less financial assets,   stands for book 

value of equity and   denotes changes. 

Note that this accruals measure is mechanically related to asset growth as shown 

through equations [7] to [9]. Defining asset growth as:   

              [7]  

where,     is change in total assets,     is change in operating assets and     is 

change in financial assets. 

Also, a change in net operating assets can be defined as: 

               [8]  

where,     stands for operating liabilities and the rest of the variables are defined as 

before.  

Thus, from equations [7] and [8], asset growth can be written as shown in equation [9]:  

                   [9]  

making clear that asset growth proxies for accruals. Since asset growth is a measure of 

investment, it is thus possible to establish the following equivalence in the context of 

our study: asset growth ≡ accruals ≡ investment and to link asset growth and expected 

returns negatively both in the context of investor irrational expectations implied by the 

accruals anomaly literature and in the context of the valuation theory independent from 

investor expectations. This fact will become relevant when several variables are 

included in the Fama and Macbeth regressions in the second part of this section.  
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3.3.2. Preliminary evidence 

Before introducing any controls for profitability or investment we verify that the 

idiosyncratic volatility puzzle is observed in our sample. Each month of year t we 

consider firms reporting information for the previous fiscal year in Compustat. Firms 

are sorted monthly from the lowest to the highest level of idiosyncratic risk as defined 

by the standard deviation of the residuals of equation [10], (    ). 

   
         

          
          

        
                    [10]   

where,     is the stock return in excess of the risk free rate and {              } 

represent the market, size and book to market factors.22 Then, we form quintiles and 

calculate monthly value weighted returns for each of them. Once the vector of monthly 

returns is formed for each quintile, we also calculate their Fama and French three-factor 

model alphas. 

Table 1 summarizes the information on the idiosyncratic risk anomaly for our 

sample. Columns report average monthly returns, alphas and mean asset growth (all in 

percentages) for each quintile of idiosyncratic risk. Since stocks are organized so that 

the first quintile has lower idiosyncratic risk than the fifth one, we expect the [5-1] 

difference to be significantly negative. As expected, the idiosyncratic volatility anomaly 

is observed both in raw and risk adjusted returns; the [5-1] difference in monthly raw 

returns is equal to a significant -0.77% and is even more pronounced in risk adjusted 

terms. Difference in alphas is equal to -1.17% with an associated t-statistic of -4.08.  In 

addition, we observe a pattern common to previous studies of the idiosyncratic volatility 

anomaly; a sharp drop in the returns is observed on the fourth or fifth quintile (Chen and 

Petrokva, 2011, Malagon et al., 2013a and Jiang et al., 2009).  

In the framework of our working hypothesis that investment should increase 

idiosyncratic risk, Table 1 provides a major argument in favour because mean asset 

growth increases linearly with idiosyncratic risk. Notice also that the [5-1] difference in 

asset growth is significant. Although we do not perform any causality test, we argue our 

intuition that corporate investment and firm’s idiosyncratic volatility should be related 
                                                           
22 They have been obtained from Kenneth French’s website 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library html 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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cannot be dismissed. On the other hand, we argue the observation of the idiosyncratic 

risk anomaly is the joint result of the investment and the profitability effects identified 

by Fama and French (2006). It is therefore important to check that none of our variables 

accounts by itself for the anomaly. In order to test this fact, we check for the anomaly to 

be observed after controlling separately by investment and by profitability.  

Table 1: Returns of portfolios sorted by idiosyncratic risk 

This table reports monthly average returns, risk adjusted returns and mean asset growth for quintiles 
formed after sorting stocks according to their level of idiosyncratic risk including all non-financial (SIC 
codes 6000 - 6999) common stocks available jointly on CRSP and Compustat from July 1982 to 
December 2009 (approximately 3.415 firms per month). Quintile 1 corresponds to the portfolio having 
the lowest idiosyncratic risk and quintile 5 to the portfolio with highest idiosyncratic risk. Returns, 
Alphas and Asset Growth are reported in monthly percentage. The row [5-1] is the difference between 
portfolio 5 and portfolio 1. Newey-West t-statistics are reported in brackets. Alphas correspond to the 
intercept of [1].  

    
Returns Alphas 

Asset 
Growth     

Id
io

sy
n

cr
at

ic
 r

is
k 

q
u
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s 

Low 1 1.26 
0.30 

0.49 
[3.76] 

2 1.17 
0.08 

0.49 
[0.88] 

3 1.26 
0.07 

1.31 
[0.61] 

4 1.09 
-0.12 

2.95 
[-0.75] 

High 5 0.49 
-0.87 

5.82 
[-3.64] 

5-1 
-0.77 -1.17 5.31 

[-1.74] [-4.08] [2.44] 

          

To control for the investment effect, in Table 2 we first sort stocks according to 

investment and we form quintiles. Then, within each portfolio we sort stocks according 

to their idiosyncratic risk level and form quintiles again. All sorts are done from the 

lowest to the highest level. Once all quintiles are constructed, both monthly value 

weighted returns and alphas are calculated for each of the 25 resulting portfolios.23 

Since accounting information is released yearly, asset growth’s measure is kept for a 

whole year until new information comes to the market and the position of a given firm 

in the sort based on it is the same from one year to the other. Both reported raw returns 

(Panel A) and alphas (Panel B) are in percentages. The same procedure is followed to

                                                           
23 Alphas refer here to alphas from a Fama and French three factor model where each portfolio is treated 
as an asset to be priced. 
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Table 2: Raw and risk-adjusted returns by levels of asset growth  

This table reports both raw and risk adjusted returns for 25 quintile portfolios obtained every month when 
stocks are double sorted. First, stocks are sorted according to the investment related variable enounced in 
the first column and quintiles are formed. Then, within each portfolio stocks are sorted according to their 
idiosyncratic risk level and quintiles are formed again. Panel A reports raw average monthly returns for 
each portfolio. Panel B reports the intercept of [10]. Both raw returns and alphas are reported in monthly 
percentage. The column [5-1] is the difference between portfolio 5 and portfolio 1 so that each row 
corresponds to a higher profitability level. Data sample covers all common stocks available jointly on 
CRSP and Compustat from July 1982 to December 2009. Newey-West t-statistics are reported in 
brackets. 

Panel A: Quintiles portfolio returns by investment levels 

Ranking on idiosyncratic volatility 

    Low 1 2 3 4 High 5 5-1 

A
ss

et
 g

ro
w

th
 q

u
in

ti
le

s 

Low 1 1.36 1.26 1.57 0.56 0.48 
-0.88 

[-1.49] 

2 1.15 1.36 1.27 1.33 1.27 
0.12 

[0.26] 

3 1.29 1.22 1.28 1.26 1.01 
-0.28 

[-0.69] 

4 1.39 1.40 1.29 1.11 0.71 
-0.68 

[-1.60] 

High 5 1.12 1.16 0.80 0.11 0.08 
-1.03 

[-1.65] 

                

Panel B: Quintiles portfolio alphas by investment levels 

Ranking on idiosyncratic volatility 

    Low 1 2 3 4 High 5 5-1 

A
ss

et
 g

ro
w

th
 q

u
in

ti
le

s 

Low 1 0.29 0.03 0.28 -0.84 -0.89 
-1.18 

[-2.56] 

2 0.18 0.22 0.00 0.02 -0.17 
-0.36 

[-1.17] 

3 0.37 0.10 0.10 0.15 -0.37 
-0.74 

[-2.59] 

4 0.45 0.40 0.14 -0.06 -0.52 
-0.97 

[-2.74] 

High 5 0.11 0.12 -0.34 -1.13 -1.45 
-1.56 

[-3.47] 

                
control for the profitability effect in Table 3. Table 2 shows that although in raw returns 

the anomaly is only marginally significant for the last investment quintile, in risk-

adjusted returns the anomaly is observed for 4 out of 5 investment quintiles. Only for 

quintile 2 risk adjusted returns and alpha are non-significant and equal to -0.36%. In all 

the other quintiles the anomaly is strong with an associated t-statistic higher than -2.00 
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in risk-adjusted returns. Therefore, controlling solely for the investment effect does not 

account for the anomaly. This evidence is in line with studies such as Jiang et al., 

(2009) pointing accruals anomaly does not account for the idiosyncratic risk one.  

Table 3: Raw and risk-adjusted returns by levels of profitability  

This table reports both raw and risk adjusted returns for 25 quintile portfolios obtained every month when 
stocks are double sorted. First, stocks are sorted according to the profitability related variable enounced in 
the first column and quintiles are formed. Then, within each portfolio stocks are sorted according to their 
idiosyncratic risk level and quintiles are formed again. Panel A reports raw average monthly returns for 
each portfolio. Panel B reports the intercept of [10]. Both raw returns and alphas are reported in monthly 
percentage. The column [5-1] is the difference between portfolio 5 and portfolio 1 so that each row 
corresponds to a higher profitability level. Data sample covers all common stocks available jointly on 
CRSP and Compustat from July 1982 to December 2009. Newey-West t-statistics are reported in 
brackets. 

Panel A: Quintiles portfolio returns by profitability levels 

Ranking on idiosyncratic volatility 

    Low 1 2 3 4 High 5 5-1 

T
o

b
in

's
 Q

 q
u

in
ti

le
s 

Low 1 1.26 1.76 1.86 1.92 1.37 
0.11 

[0.19] 

2 1.21 1.20 1.42 1.73 1.30 
0.09 

[-0.15] 

3 1.37 1.23 1.53 1.35 0.63 
-0.75 

[-1.61] 

4 1.19 1.32 1.13 0.57 0.38 
-0.80 

[-1.67] 

High 5 1.19 1.13 0.93 0.45 -0.11 
-1.30 

[-2.65] 

                

Panel B: Quintiles portfolio alphas by profitability levels 

Ranking on idiosyncratic volatility 

    Low 1 2 3 4 High 5 5-1 

T
o

b
in

's
 Q

 q
u

in
ti

le
s 

Low 1 -0.10 0.23 0.31 0.48 -0.35 
-0.25 

[-0.59] 

2 -0.07 -0.23 -0.10 0.21 -0.21 
-0.14 

[-0.44] 

3 0.37 0.01 0.00 -0.27 -0.87 
-1.24 

[-3.92] 

4 0.25 0.33 0.01 -0.58 -0.77 
-1.02 

[-2.61] 

High 5 0.37 0.24 -0.01 -0.64 -1.35 
-1.72 

[-4.97] 
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Regarding profitability, Table 3 demonstrates that the anomaly is concentrated in 

the stocks having higher profitability; the [5-1] difference in risk-adjusted returns is -

1.24% (t = -3.92), -1.02% (t = -2.61) and -1.72% (t = -4.97) for profitability quintiles 3, 

4 and 5 respectively. Furthermore raw returns decrease linearly with profitability from a 

non-significant 0.11% in the first profitability quintile to a significant -1.30% in the last 

quintile. Here again, controlling for profitability does not fully account for the anomaly. 

The fact that the idiosyncratic risk anomaly concentrates on the higher levels of 

profitability is interesting given that Tobin’s q provides a natural threshold (this is 

Tobin’s q = 1) to divide the sample in two meaningful subsamples.24 Thus, in Table 4 

we create both subsamples and follow our previous methodology constructing value-

weighted quintiles returns sorted by idiosyncratic volatility.  

Table 4: Portfolios sorted by idiosyncratic volatility and Tobin’s q values 

This table reports both monthly average raw returns and monthly average risk adjusted returns for each 
quintile portfolio formed sorting on idiosyncratic risk using all non-financial (SIC codes 6000 – 6999) 
common stocks available jointly on CRSP and Compustat from July 1982 to December 2009 resulting in 
approximately 3.415 firms per month firms per month. Panel A includes all stocks for which Tobin’s q 
value exceeds one, approximately 2.740 per month. Panel B include all the others, around 676 firms per 
month. In both panels quintile 1 corresponds to the portfolio with the lowest idiosyncratic risk and 
quintile 5 to the highest idiosyncratic risk. Returns and Alphas are reported in monthly percentage. The 
row [5-1] is the difference between portfolio 5 and portfolio 1. Newey-West t-statistics are reported in 
brackets.  

Panel A: Idiosyncratic risk returns relationship 
for firms having q>1 

  Panel B: Idiosyncratic risk returns relationship 
for firms having q<1   

    
Returns Alphas 

Asset 
Growth 

      
Returns Alphas 

Asset 
Growth           
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Low 1 1.14 
0.30 

0.56 
  

Id
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n
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Low 1 1.05 
-0.45 

0.23 
[4.05]   [-2.14] 

2 1.19 
0.14 

0.44 
  

2 1.73 
0.17 

0.96 
[1.55]   [0.81] 

3 1.23 
0.07 

0.87 
  

3 1.77 
0.25 

1.48 
[0.61]   [1.16] 

4 0.93 
-0.24 

2.54 
  

4 1.76 
0.33 

4.05 
[-1.40]   [0.96] 

High 5 0.27 
-1.04 

6.27 
  

High 5 1.70 
-0.09 

1.84 
[-4.05]   [-0.23] 

5-1 
-0.96 -1.34 5.72   

5-1 
0.65 0.36 1.61 

[-2.16] [-4.39] [2.20]   [1.11] [0.86] [1.39] 

 

                                                           
24 Tobin’s q provides a measure of market valuation of a company. A company having a Tobin’s q larger 
than one should be perceived as a more profitable one in the sense that the firm has incentives to invest in 
future projects.   
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Both Panel A and Panel B of Table 4 report returns, alphas and asset growth in 

percentage terms. Panel A corresponds to firms with Tobin’s q larger than one while 

Panel B to firms with Tobin’s q lower than one. As expected from our previous 

results,the [5-1] difference is significant and negative for the subsample of firms with 

higher profitability (Tobin’s q larger than one) while is positive and non-significant for 

the other one. In terms of raw returns (alphas), the difference across extreme quintiles is 

equal to -0.96% (-1.34%) with a significant t-statistic of -2.16 (-4.39) for the subsample 

with higher profitability and equal to an insignificant 0.65% (0.36%) for firms with 

lower profitability level. Remarkably, the [5-1] difference in asset growth is significant 

only in the subsample where the idiosyncratic volatility anomaly is observed. This fact 

highlights the importance of taking into account the profitability effect when attempting 

to link the idiosyncratic volatility anomaly to corporate investment in the sense that it 

might be the case that investment fully accounts for the idiosyncratic volatility anomaly 

once the profitability effect is discounted and that this link is shadowed when 

controlling only for investment.  In the following section, we test our hypothesis by 

introducing simultaneous controls for profitability and investment in the cross-section 

analysis. 

 

3.4. The idiosyncratic risk – investment relationship conditional to profitability 

We investigate the relation between idiosyncratic volatility and expected returns 

after jointly control for the investment and profitability effects by examining the sign 

and statistical significance of the mean value of   , the coefficient on the idiosyncratic 

volatility measure in: 

 
                                                     

                       
[11]  

 

where current month stock excess returns (rt) are regressed onto one-month previous 

idiosyncratic risk (εt-1), current loadings on the market factor (β1), the SMB factor (β2) 

and the HML factor (β3) of a Fama and French (1993) model, size (s), lag returns over 

the previous six months (lr) and both our accounting variables, Tobin’s q (q) and asset 

growth (ag) which are built with data available to the market during the last 6 months. 
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We estimate alternative models changing the definition of profitability to “Tobin’s q 

var”, to “Tobin’s q min”, to profitability, to dividends or to a dummy variable equal to 

one for dividend paying firms. All these variables were defined over the previous 

section.25  

Table 5 reports results of the Fama and MacBeth (1973) regressions in equation 

[11]. The first column, named Model (1) should present the puzzle before controlling by 

corporate variables. Model (2) corresponds to the hypothesis test of the investment 

effect on the idiosyncratic volatility anomaly from the point of view of the accruals 

anomaly. Although our investment measure is different from the one used by Jiang et 

al., (2009) this model should be unable to account for the significance of the 

idiosyncratic risk since no controls for profitability are included. Models (3) to (8) 

present the jointly effect over    of controlling by investment and profitability using the 

different proxies we propose for profitability. Although previous literature includes a 

five lags Newey-West adjustment to account for heteroscedasticity all our regressions 

include a two lags adjustment since the five lags usual adjustment largely reduces the 

anomaly and therefore plays in our favor.   

Thus, Model (1) only indicates that consistently with Table 1 the anomaly is observed in 

our data; the coefficient related to idiosyncratic volatility is equal to -0.0750 and 

statistically significant. On the other hand, the results of Model (2) are consistent with 

our hypothesis since they show that controlling only for investment    is still 

significant, and therefore the idea that investor mispricing related to overreaction to past 

information such as change in total assets or accruals is not the underlying force driving 

the anomaly. Once this possibility is discarded from our sample, Models (3) to (8) that 

correspond to our hypothesis merit some discussion. The basic result is provided by 

Model (3) that shows that controlling for the joint effects of profitability and investment 

accounts for the idiosyncratic volatility anomaly so that    becomes non-significant 

with a t-statistic equal to -1.63. Furthermore, both Tobin’s q and asset growth measures 

proof to be largely significant with t-statistic equal to -4.53 for the former and -2.95 for 

the latter. Although the sign attached to the coefficient related to Tobin’s q is contrarian 

to the expected sign we argue that this sign can become negative after additional 

                                                           
25 There is evidence showing that the anomaly is robust to the estimation of idiosyncratic risk using a 
Carhart (1997) model. For further details see the first note foot on this paper. 
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Table 5: Fama-MacBeth Regressions Controlling Simultaneously for 
Profitability and Investment Effects  

This table reports the results of Fama-MacBeth regressions using all non-financial (SIC codes 6000 – 
6999) common stocks available jointly on CRSP and Compustat from July 1982 to December 2009. The 
dependent variable is monthly stock returns compounded from daily data. The explanatory variables are 
idiosyncratic volatility (ε),  ̂   ,  ̂   ,  ̂   , size, lag returns over the previous six months, Asset growth, 
Tobin’s q, Tobin’s q var, Min Tobin’s q corresponding to the minimum value between Tobin’s q and 
Tobin’s q var, dividends per share and a dummy variable equal to one for dividend paying firm. t-
statistics are reported in parentheses. 

 

controls such as the estimated betas from the asset pricing model or size are included in 

the regression.   

Results for the alternative measures of profitability, Models (4) to (8), are mixed. In 

Models (3), (5) and (8) profitability and investment controls are successful in fully 

accounting for the anomaly while in Models (4), (6) and (7) these controls are only able 

to diminish the anomaly to a 10% significance.  We hypothesize that the relative failure 

(1) (2) (3) (4) (5) (6) (7) (8)

-0.0750** -0.0705* -0.0584 -0.0675* -0.0527 -0.0696* -0.0633* -0.0548
(-2.006) (-1.898) (-1.633) (-1.820) (-1.472) (-1.878) (-1.751) (-1.571)

0.00341*** 0.00340*** 0.00354*** 0.00340*** 0.00356*** 0.00339*** 0.00362*** 0.00369***
(3.456) (3.474) (3.670) (3.469) (3.703) (3.459) (3.740) (3.880)

0.00145*** 0.00148*** 0.00152*** 0.00149*** 0.00154*** 0.00149*** 0.00150*** 0.00150***
(2.938) (2.987) (3.093) (3.005) (3.128) (3.004) (3.048) (3.063)

-0.00105* -0.00106* -0.00118** -0.00108* -0.00122** -0.00107* -0.00117** -0.00121**
(-1.815) (-1.839) (-2.108) (-1.874) (-2.167) (-1.842) (-2.051) (-2.166)

Size -0.00213*** -0.00212*** -0.00194*** -0.00211*** -0.00193*** -0.00213*** -0.00274*** -0.00269***
(-4.135) (-4.136) (-3.707) (-4.124) (-3.715) (-4.148) (-5.268) (-5.481)

Lag Returns 0.00189 0.00184 0.00130 0.00196 0.00165 0.00182 0.00207 0.00200
(0.755) (0.738) (0.524) (0.807) (0.679) (0.728) (0.829) (0.803)

Asset Growth -0.000387*** -0.000327*** -0.000387*** -0.000308*** -0.000389*** -0.000348*** -0.000326***
(-3.263) (-2.947) (-3.272) (-2.763) (-3.276) (-3.066) (-2.903)

Tobin's q -0.00123***
(-4.533)

Tobin's q var -0.000179**
(-2.048)

Min Tobin's q -0.00286***
(-7.377)

Profitability 5.16e-05
(0.592)

Dividends 0.00443***
(4.395)

DumDiv 0.00526***
(3.502)

Constant 0.0157*** 0.0157*** 0.0166*** 0.0159*** 0.0182*** 0.0157*** 0.0167*** 0.0155***
(3.515) (3.530) (3.748) (3.563) (4.073) (3.539) (3.817) (3.504)

Observations 1,004,965 1,004,965 1,004,965 1,004,965 1,004,965 1,004,965 1,004,965 1,004,965
t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

σt-1 
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of the latter models lies in the fact that profitability is a broad concept and therefore 

difficult to measure or observe directly. In this context, different proxies might be 

capturing different features of profitability or might be better than others. However this 

disappointment is mitigated by unreported results showing that including two measures 

of profitability together (i.e. adding either dividens or the dummy variable for dividend 

paying firms into these models), or that increasing the number of lags for the Newey-

West adjustment fully accounts for the anomaly. These results are available upon 

request. Altogether, we believe the evidence strongly supports our hypothesis that joint 

controls for profitability and investment proof able to account for the idiosyncratic risk 

anomaly.  

To provide further insights we profit from the fact that, as discussed earlier, the 

hypothesis that investment and profitability can jointly account for the anomaly should 

hold both with rational or irrational expectations so that no mispricing is necessary. We 

therefore explore how our results behave in times of high investor sentiment when 

irrational expectations are more likely to be latent and, in times of low investor 

sentiment when rational expectations should prevail. We include two additional 

multiplicative effects in [11]: (i) σt.1HighSent, measuring the interaction between a 

dummy variable equal to one if the previous month is considered a high sentiment 

month and the idiosyncratic volatility in the previous month and (ii) σt.1LowSent, the 

interaction between a dummy variable equal to one if the previous month is considered 

a low sentiment month and the idiosyncratic volatility in the previous month. A month 

is considered a high (low) sentiment period if the value of the Baker and Wurgler Index 

is positive (negative).26 The resulting model can be written as: 

 
                  (        )                             

                            (        )                           
[12]  

where,        is a dummy variable equal to one if month t-1 is considered to be a high 

investor sentiment month and the rest of the variables are defined as in equation [11].  

 

                                                           
26 For details on the construction of the Index see Baker and Wurgler (2006 and 2007). We also perform 
the analysis defining a high (low) sentiment period any month in which the value of the index is higher 
(lower) than one standard deviation from the mean of the index. Since results do not change substantially, 
we only tabulate the former in order to make our results comparable to Gao et al., (2012). 
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Table 6: Fama-MacBeth Regressions: Investor Sentiment 

This table reports the results of Fama and MacBeth regressions using all non-financial (sic codes 6000 – 
6999) common stocks available jointly on CRSP and Compustat from July 1982 to December 2009. The 
dependent variable is monthly stock returns compounded from daily data. The explanatory variables are 
idiosyncratic volatility (ε),  ̂   ,  ̂   ,  ̂   , size, lag returns over the previous six months, asset growth, 
Tobin’s q, Tobin’s q var, Min Tobin’s q corresponding to the minimum value between Tobin’s q and 
Tobin’s q var, dividends per share and a dummy variable equal to one for dividend paying firm. et-

1HighSent is the interaction between a dummy (D High Sent) equal to one if the investor sentiment 
index by Wurgler et al., (2006) is positive in the precedent month and the idiosyncratic volatility (ε), et-

1LowSent is the interaction between a dummy (D Low Sent) equal to one if the investor sentiment index 
by Wurgler et al., (2006) is negative in the precedent month and the idiosyncratic volatility (ε). t-statistics 
are reported in parentheses. 

 

(8) (9) (10) (11) (12) (13) (14)

-0.0272** -0.00271 -0.0144 -0.00938* -0.00896 -0.0268*** -0.00685
(-2.465) (-0.211) (-1.484) (-1.843) (-1.283) (-3.025) (-1.233)
-0.0479 -0.0557* -0.0531 -0.0433 -0.0606* -0.0365 -0.0480
(-1.357) (-1.663) (-1.479) (-1.257) (-1.655) (-1.071) (-1.397)

0.00341*** 0.00354*** 0.00340*** 0.00356*** 0.00339*** 0.00362*** 0.00369***
(3.456) (3.670) (3.469) (3.703) (3.459) (3.740) (3.880)

0.00145*** 0.00152*** 0.00149*** 0.00154*** 0.00149*** 0.00150*** 0.00150***
(2.938) (3.093) (3.005) (3.128) (3.004) (3.048) (3.063)

-0.00105* -0.00118** -0.00108* -0.00122** -0.00107* -0.00117** -0.00121**
(-1.815) (-2.108) (-1.874) (-2.167) (-1.842) (-2.051) (-2.166)

Size -0.00213*** -0.00194*** -0.00211*** -0.00193*** -0.00213*** -0.00274*** -0.00269***
(-4.135) (-3.707) (-4.124) (-3.715) (-4.148) (-5.268) (-5.481)

Lag Returns 0.00189 0.00130 0.00196 0.00165 0.00182 0.00207 0.00200
(0.755) (0.524) (0.807) (0.679) (0.728) (0.829) (0.803)

D High Sent 0.00799** 0.00854** 0.00808** 0.00957*** 0.00804** 0.00863*** 0.00778**
(2.377) (2.547) (2.415) (2.811) (2.409) (2.609) (2.333)

D Low Sent 0.00769** 0.00809*** 0.00785** 0.00861*** 0.00766** 0.00806*** 0.00771**
(2.535) (2.674) (2.560) (2.824) (2.534) (2.693) (2.567)

Asset Growth -0.000327*** -0.000387*** -0.000308*** -0.000389*** -0.000348*** -0.000326***
(-2.947) (-3.272) (-2.763) (-3.276) (-3.066) (-2.903)

Tobin's q -0.00123***
(-4.533)

Tobin's q var -0.000179**
(-2.048)

Min Tobin's q -0.00286***
(-7.377)

Profitability 5.16e-05
(0.592)

Dividends 0.00443***
(4.395)

DumDiv 0.00526***
(3.502)

Observations 1,004,965 1,004,965 1,004,965 1,004,965 1,004,965 1,004,965 1,004,965
t-statistics in parentheses
*** p<0.01, ** p<0.05, * p<0.1

σt-1_HighSent 

 σt-1_LowSent 
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Here again, we estimate alternative models changing the definition of 

profitability to “Tobin’s q var”, to “Tobin’s q min”, to profitability, to dividends or to a 

dummy variable equal to one for dividend paying firms. Notice also that to avoid 

collinearity problems the model in equation 12 does not include a constant. The results 

of the Fama-Macbeth estimations are presented in Table 6 and also support our 

hypothesis. Model in equation [11] separates the relationship between expected returns 

and idiosyncratic volatility in two so that it becomes possible to test the hypothesis that 

investment and profitability controls are able to account for the anomaly also during 

times of high investor sentiment. The relationship achieved just after periods of high 

investor sentiment is isolated by   and the one observed just after periods of low 

investor sentiment is measured by   . Consistently with the findings of Gao et al., 

(2012) Model (8) shows that the relationship is only significant for the times after 

sentiment has been high. For these periods,   is equal to -0.0272 and with a t-statistic of 

-2.47 it is largely significant. For the remaining periods, the idiosyncratic risk – 

expected returns relationship is also negative (-4.79%) but is not statistically significant. 

Our results, however, show that the anomaly does not particularly depend on investor 

mispricing during times of high sentiment. Actually, Model (9) shows that controlling 

for investment and profitability totally account for the anomaly during these periods 

while it makes the anomaly marginally significant for periods following low investor 

sentiment. This results seem quite robust since in 4 out of the 6 models considered the 

anomaly totally disappears for times succeeding high investor sentiment while it 

remains unobserved or is only marginally significant (p-values close to 0.10) for times 

succeeding low investor sentiment.     

 

3.5. Conclusions 

A considerable body of the literature related to the idiosyncratic volatility anomaly 

suggests it is related to several motifs such as investor preferences for particular types of 

stocks or to investor mispricing. Surprisingly, the role of corporate in the anomaly has 

been largely neglected. Approaching the anomaly from corporate investment is 

particularly appealing because it is plausible to argue that investment is the result of a 

totally idiosyncratic decision making process and large investments should increase 
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uncertainty on the firm performance. Moreover, valuation theory offers a testable 

theoretical framework in which investment and expected returns should be negatively 

related once profitability is accounted for.  

In this paper we test the hypothesis that the idiosyncratic volatility anomaly might 

be observed because the measure of idiosyncratic risk could be contaminated by the 

effects of investment and profitability. Our results show that both corporate investment 

and profitability are significantly related to returns and that the idiosyncratic volatility 

anomaly is no longer observed after these effects are accounted for. In particular our 

results contradict the idea that the idiosyncratic risk anomaly is related to irrational 

investor expectations led either by a misunderstanding of the information content of 

cash-flows or by euphoria during times of high sentiment. More interesting is the fact 

that we follow a theoretical approach that permit us to test several hypotheses 

previously considered in the literature and to show why, although our results do not 

contradict the empirical results found in these previous studies, their interpretations are 

not sound. We believe our interpretation is somehow broader in its implications.    
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Chapter IV: Idiosyncratic volatility, conditional 

liquidity and stock returns 
 

 

4.1. Introduction 

As counterintuitive as it might appear recent literature shows that unsystematic risk is 

relevant and seems to have increase over time. In the last decade a number of papers have 

discussed whether the apparent upward trend in idiosyncratic volatility reported by 

Campbell et al., (2001) is real or, just an illusion driven by the lack of controls related to 

returns such as available growth options (Cao et al., 2008) or firms’ profitability (Pastor 

and Varonesi, 2003, Wei and Zhang, 2006). Independently of its evolution over time there 

is no doubt that idiosyncratic risk, defined as the standard deviation of the residuals of a 

CAPM or a Fama and French (1993) model, has become a relevant topic given that its 

information content is larger than theoretically anticipated. In this sense, idiosyncratic risk 

has been shown to increase with expected earnings growth (Campbell et al., 2001 and Xu 

and Malkiel, 2003), to be related with business cycles in a countercyclical way (Brown and 

Ferreira, 2004) and to correlate negatively with liquidity (Spiegel and Wang, 2005). All this 

can be seen as a critique to the CAPM and to the Fama and French (1993) model as 

accurate asset pricing models. In particular, it appears that their specifications miss an 

element that is thus captured in the residuals making them relevant against theoretical 

arguments.  

Out of all the discussions related to the idiosyncratic volatility, the idiosyncratic 

volatility anomaly is one of the stronger critique to the CAPM type models and also the 

most controversial one. The anomaly, or what is the same, the fact that unsystematic risk is 

negatively correlated with subsequent returns (Ang et al., 2006 and 2009), implies a 

negative relationship between risk and returns that is difficult to explain in the CAPM’s 

framework and that constitutes a dynamic field of research within which this paper is 

situated. Despite the controversy it initially generated, the few papers arguing the anomaly 
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is not robust (Bali and Cakici, 2008) or mistakenly conceived (Fu, 2009) have been 

surpassed by a large number of papers trying to explain this empirical observation. In fact, 

the anomaly is now well established and potential explanations for it lie in papers arguing it 

is related to non-synchronicity of trading (Han and Lesmond, 2011), to investor sentiment 

(Gao et al., 2012) or to the preference of investors towards stocks offering features such as 

positive skewness (Kapadia, 2006 and Boyer et al., 2010) or lottery-like payoffs (Bali et 

al., 2011) among others.  

Our approach is based on two key points in the discussion on the idiosyncratic risk 

anomaly; on the one hand liquidity and, on the other, the fact that the anomaly is not 

observed at all periods of time. The presence of liquidity as a potential explanation for the 

anomaly has been a noticeable element in the analysis of the relationship between 

idiosyncratic risk and expected returns from the seminal paper by Ang et al. (2006) that 

were the first to rule-out it as the factor driving the anomaly. To do so, authors included ex-

post controls for liquidity and conclude the idiosyncratic volatility anomaly is observed for 

all quintiles of liquidity.27 However, more recently Han and Lesmond  (2011) and Han et 

al., (2011) argue that illiquidity has a major impact in the estimation of the idiosyncratic 

risk itself so that the illiquidity effect has to be accounted for before estimating the actual 

measure of idiosyncratic risk. 

On the other hand, the fact that the anomaly is not pervasive at all times was recently 

evidenced by Gao et al., (2012) who dividing their sample in periods following times of 

high and low investor sentiment show the anomaly is significant only after periods of high 

investor sentiment. In this paper we also use the idea that the anomaly is not pervasive over 

time and we show it is indeed observed after good economic times but disappears after 

distress times. At first sight this fact could seem to be aligned with the argument by Gao et 

al., (2012) that the anomaly is the manifestation of a mispricing effect lead by sentiment 

investors vis-à-vis arbitrageurs. It would seem natural that the anomaly is only observed 

after good economic times because in any other time arbitrageurs would overrule sentiment 
                                                           
27 These controls are ex-post in the sense that the estimation of idiosyncratic risk does not depend on the 
illiquidity of the stock. Controls for illiquidity are included only after the quintiles based on idiosyncratic risk 
are built and intend to test if the spread in returns of portfolios with different levels of idiosyncratic risk can 
be related to a spread in the illiquidity of these portfolios. 
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investors and drive prices to reflect fundamental values. However, in a recent paper 

Malagón et al., (2013b) provide an alternative theoretical approach to the negative 

relationship between idiosyncratic risk and expected returns that does not imply mispricing 

and show that simultaneous controls for corporate profitability and investment account for 

the anomaly also during periods of high investor sentiment. If sentiment is dropped from 

the equation it becomes difficult to explain why the anomaly is conditional on the state of 

the economy in such a way that it is only relevant for periods following normal times.    

In this paper we conjecture that the explanation might settle on the conditional pricing 

of liquidity shocks during times of financial distress recently evidenced by Acharya et al., 

(2012). Our rational is as follows. Since according to Spiegel and Wang (2005) 

idiosyncratic risk and liquidity are correlated negatively then it should be that the portfolio 

with the highest level of idiosyncratic risk is more illiquid than the one with the lowest 

level. The flight to liquidity phenomenon could then apply to the extreme idiosyncratic 

volatility portfolios.28 If this is so, during recessions the stocks forming the portfolio with 

the highest level of idiosyncratic risk (illiquid stocks) should tend to depreciate while the 

ones on the portfolio with the lowest level of idiosyncratic risk (liquid stocks) should tend 

to appreciate. In the following periods both groups of stocks should suffer a correction in 

process as the economic regime changes or the liquidity shock disappears so that the returns 

of the high idiosyncratic risk portfolios should increase and the ones of the low 

idiosyncratic risk should decrease. In this framework, the differences of returns between the 

high and the low idiosyncratic risk portfolios could become not significant and even 

positive as it is indeed observed.  

In order to test our hypothesis we estimate a Markov regime switching model allowing 

for different return structures for high and low idiosyncratic risk portfolios and for different 

loadings on the variables used to define these return structures over two distinct economic 

                                                           
28 Flight to liquidity occurs during recessions because investors risk aversion increases making them changing 
their holdings of illiquid securities to more liquids ones. Literature has checked this issue showing that 
investors change the securities not only from stocks to bonds, but also within stocks. During crisis mutual 
funds also reduce their holdings of illiquid assets and Hedge Funds trading patterns change (see for example 
Longstaff (2004), Ben-Repahel (2011) or Ben-David et al., (2010)). 
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regimes (normal times and recessions). Overall, our results support the idea that liquidity 

shocks affect stocks with high and low idiosyncratic risk in opposite ways during 

recessions. Moreover, the effect of liquidity shocks is such that there is a flight to liquidity 

and that the returns of the quintile with the lowest level of idiosyncratic risk increase 

significantly during recessions. This result supports our hypothesis that there is a flight to 

liquidity that results in the idiosyncratic volatility anomaly disappearing in periods 

following recessions as the returns of the portfolio with the lowest level of idiosyncratic 

risk suffer a correction in prices once the economy is no longer under stress.    

The remainder of the paper is organized as follows. In Section 2 we discuss the 

relevance of liquidity in the discussion related to the idiosyncratic volatility anomaly and 

link it to economic regimes. Then, in Section 3 we use several measures of economic 

conditions and several sample periods to demonstrate that the anomaly is not pervasive 

over time, being significant only in periods following normal economic times. Section 4 

shows the results obtained estimating a Markov regime-switching model to check the 

conditional effect of liquidity shocks both for high and low idiosyncratic volatility stocks in 

alternative economic regimes. Finally, Section 5 concludes.    

 

4.2. Idiosyncratic risk anomaly, liquidity and economic times 

The most common way to show the idiosyncratic volatility anomaly is to rank stocks 

according to their level of idiosyncratic risk and to form quintiles portfolios so that the fifth 

quintile contains the highest idiosyncratic risk stocks. Once this is done, the anomaly is 

observed when comparing the value weighted returns of the extreme quintile portfolios 

since the [5-1] difference in returns is negative and significant. The fact that the 

idiosyncratic risk anomaly is observed can either imply that there is a missing factor in the 

asset pricing model or, alternatively, that there is a characteristic shared by the stocks with 

higher idiosyncratic risk able to explain the spread in returns of the extreme idiosyncratic 

risk quintiles of stocks. In this context one of the variables that could potentially explain the 

idiosyncratic volatility anomaly is liquidity since it has been shown that both aggregate 

liquidity and the liquidity level of each stock are related to returns. The relevance of 
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liquidity as a pricing factor was shown by Pastor and Stambaugh (2003) who provide 

evidence that aggregate liquidity is a priced factor in the stock market and that stocks with 

low liquidity betas have relatively lower returns. Also, several papers such as Amihud and 

Meldenson (1986), Brennan and Subrahmanyam (1996), Brennan et al., (1998), Datar et 

al., (1998) and Fiori (2000) show that, in average, illiquid stocks tend to have higher 

returns since investors have a preference for liquidity. Therefore, both options considered 

above are plausible and liquidity could account for the anomaly in several ways. First, if the 

anomaly is related with liquidity as a pervasive pricing factor then the stocks with higher 

idiosyncratic risk should have low liquidity betas. Second, if stocks with high idiosyncratic 

risk are particularly illiquid then the level of liquidity of these stocks could be a 

characteristic explaining the anomaly.  

The relevance of liquidity as a potential explanation for the anomaly has been indeed 

latent from the seminal paper by Ang et al., (2006) who control for liquidity performing 

double sorts on characteristics related to it and on idiosyncratic risk. Their controls for 

liquidity include liquidity betas based on Pastor and Stambaugh (2003), volume, turnover 

measured as volume divided by total shares outstanding and the bid-ask spread. In all cases 

the particular liquidity control is unable to account for the anomaly so that authors conclude 

their results are robust to liquidity. A similar conclusion is found by Spiegel and Wang 

(2005) who using several proxies for liquidity show that liquidity and idiosyncratic risk are 

negatively correlated and that, although both have effects on the cross-section of stock 

returns, the effect of idiosyncratic risk dominates the one of liquidity for all proxies.  

However, two recent papers argue the controls for liquidity have to be included before 

estimating the idiosyncratic volatility and show that liquidity is in the core of the anomaly. 

Han and Lesmond (2011) argue liquidity affects the estimation of idiosyncratic volatility 

via the percentage of zero returns which affects the loadings on the systematic risk factors, 

and via the bid-ask spread that increases the variance of the returns. Therefore, authors 

perform double sorts first on the percentage of zero returns during a month and then on 

idiosyncratic risk and estimate the idiosyncratic volatility using midpoint returns to control 

for the bid-ask bounce. They conclude that both approaches are able to fully account for the 

significance of the explanatory power of idiosyncratic risk on returns and argue their results 



Chapter IV: Idiosyncratic volatility, conditional liquidity and stock returns  
 

 

62 
 

highlight the relevance of liquidity in the discussion. 29 Their results are reinforced by Han 

et al., (2011) who show the midpoint approach accounts for the anomaly in 45 markets 

including 22 emerging ones. It seems then that although ex-post controls for liquidity are 

not effective to account for the idiosyncratic risk anomaly, the effect of liquidity on the 

estimation of the idiosyncratic risk should be taken into account when studying it. 

A noticeable fact that has not been covered in the literature relating liquidity with the 

idiosyncratic risk anomaly is the fact that the anomaly is not observed at all times. Authors 

such as Gao et al., (2012) show that the anomaly is only observed after periods of high 

investor sentiment and conclude the anomaly arises from irrational investors who are able 

to overrule arbitrageurs only during times of high sentiment. In the next section we go 

further and using several proxies for the state of the economy we demonstrate that, in 

general, the anomaly vanishes after recession times. The fact that the anomaly is not 

pervasive over economic regimes is difficult to justify using the sentiment approach 

followed by Gao et al., (2012) because normal times do not necessarily imply a stronger 

influence of sentiment investors vis-à-vis arbitrageurs and given the recent evidence against 

the sentiment hypothesis (Malagon et al., 2013b). It is also difficult to find a theoretical 

argument based on the microstructure arguments provided by Han and Lesmond (2011) or 

Han et al., (2011) fitting this observation since the liquidity related problems they consider 

should increase during recessions when liquidity tends to be scarce so that if the anomaly 

was to be explained through liquidity it should become stronger during these times. A 

possible answer to this issue might be found in a recent paper by Acharya et al., (2012) 

who demonstrate the effect of liquidity on stock returns is conditional on the state of the 

economy, that liquidity shocks affect asset prices in a stronger way during recessions and 

that during these times there is a flight to liquidity throughout which the prices of liquid 

assets tend to raise and the prices of illiquid assets tend to decline. In this context, the 

estimation of the idiosyncratic risk might also be sensitive to the economic conditions 

characterizing the particular time over which this risk is estimated. In particular, and given 

the fact that Spiegel and Wang (2005) showed that stocks with higher (lower) idiosyncratic 
                                                           
29 A recent paper by Chen et al., (2012a) argues the percentage of zero returns does not account for the 
anomaly. However, since it does not provide any argument related to liquidity we do not refer to it 
extensively here.   
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risk are in general less (more) liquid, it is important to analyze whether the flight to 

liquidity phenomenon documented by Acharya et al., (2012) has an effect on the anomaly.  

Our hypothesis in this paper is that during recessions liquidity shocks affect the returns 

of extreme idiosyncratic risk portfolios in opposite directions shrinking their difference. In 

particular, we hypothesize that during bad economic times both the portfolios with the 

lowest and the highest levels of idiosyncratic risk are subject to a flight to liquidity 

phenomenon that translates in the prices of stocks with highest (lowest) idiosyncratic risk 

tending to depreciate (appreciate). If this is true, stocks forming these portfolios should 

suffer a correction in prices once the economic regime changes increasing the returns of the 

riskier portfolio (in terms of idiosyncratic risk) and decreasing the ones of the less risky 

portfolio. Then, following recessions the spread in returns of the portfolio with the highest 

level and the one with the lowest level of idiosyncratic risk should diminish and could 

either become non-significant or even positive. 

 

4.3. Preliminary evidence 

In this section we confirm the idiosyncratic volatility – expected returns puzzle is 

observed in our sample. Each month, we sort stocks according to their idiosyncratic 

volatility estimated over the previous six months, defined as the standard deviation of the 

residuals, (     ), in the three-factor model of Fama and French (1993): 

                        
          

        
  ,                             [1] 

where,     is the stock returns in excess of the risk free rate and {              } 

represent the  market, size and book to market factors.30,31 Once stocks are sorted into 

quintiles, where the first one contains stocks with the lowest risk and the last one those with 

                                                           
30 The original methodology by Ang et al., (2006) implies the estimation of the idiosyncratic risk only over 
one month. However, we use the estimation over six months to address the critique of error-in-variance 
exposed by Malkiel and Xu (2002). Using this estimation goes against our interest because the anomaly is 
much more significant using the six month estimation of idiosyncratic risk. 
31 The factors used the model have been obtained from Kenneth French’s website: 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library html 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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the highest risk, quintiles portfolios are formed and hold for one month. The corresponding 

portfolios are value-weighted and rebalanced month by month. Our database includes daily 

returns of all stocks in the CRSP (Chicago Research Stock Prices) for NYSE, AMEX and 

NASDAQ markets from July 1963 to December 2009.  

Table 1 reports the results we obtain using data from January 1964 to December 2009 

since the first six months are lost in the initial estimation of idiosyncratic risk. The table 

reports monthly average returns, standard deviations, and alphas (all in percentage) for 

portfolios sorted on idiosyncratic volatility. Alphas CAPM correspond to Jensen’s alphas 

calculated with respect to the CAPM and Alphas FF with respect to the three-factor model. 

The t-statistics are reported in brackets. The row [5-1] is the difference between portfolio 5 

and portfolio 1 where Newey-West t-statistic is also reported in brackets.  

Table 1: Returns of portfolios sorted by idiosyncratic risk 

This table reports the results we obtain by forming quintile portfolios according to idiosyncratic risk, 
estimated over 6 months, using data from July 1963 to December 2009. Since the six initial months are lost, 
effectively the table corresponds to data from January 1964. Quintile 1 corresponds to the lowest idiosyncratic 
risk portfolio and quintile 5 to the highest idiosyncratic risk. Returns and standard deviation (Std Dev) are 
reported in monthly percentage. The row [5-1] is the difference between portfolio 5 and portfolio. Alphas 
CAPM correspond to Jensen’s alphas calculated with respect to the CAPM and Alphas FF with respect to the 
three-factor model and are also reported in percentage. Newey-West t-statistics are reported in brackets. * 
denotes significance at 10% level, ** significance at 5% level and *** significance at 1% level.  

Quintile Returns Std Dev Alphas CAPM Alphas FF 

1 0.91 3.88 
0.12 0.11 

[2.26] [2.74] 

2 0.99 5.30 
0.06 0.02 

[1.17] [0.36] 

3 1.05 6.88 
0.00 0.03 

[0.14] [0.42] 

4 0.66 8.61 
-0.04 -0.59 

[-2.43] [-3.81] 

5 0.12 9.83 
-1.01 -1.17 

[-3.66] [-5.84] 

[5-1] 
-0.79**  -1.59*** -1.73*** 

[-2.09]  [-4.98] [-7.76] 

 

Once stocks are sorted on idiosyncratic volatility average returns of quintile portfolios 

display an inverse U-shaped form increasing in the middle quintiles; returns rise from 
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0.91% in quintile 1 to 1.05% in quintile 3, then drop to 0.12% in quintile 5. The difference 

[5-1] is in average -0.79% per month and statistically significant. Moreover, Jensen’s 

alphas are positive for the initial three portfolios and switch to negative from the fourth. 

Both [5-1] differences in CAPM alphas and in FF alphas are negative, -1.59% the former 

and -1.73% the latter, showing the puzzle appears even after controlling for risk. These 

results exhibit similar patterns to the ones reported by Ang et al., (2006) and provide 

evidence that the idiosyncratic volatility anomaly is robust since it is observed for a longer 

period and is not modified by the particularly unstable times characterizing the late years of 

our sample or by the use of a longer period in the estimation of the idiosyncratic risk.  

Since the anomaly is observed in our sample we can proceed to show that it is not 

pervasive over time and that it depends on the economic regime characterizing a particular 

moment. To identify recessions we define three dummy variables, one based on the NBER 

Business Cycle data, one on the Kansas City Financial Stress Index and one on the Saint-

Louis Fed Financial Stress Index. The NBER Business Cycle data directly defines 

expansion and recession months so the construction of the dummy is straightforward; it 

takes the value one when the previous month is classified as recession. Both the Kansas 

City Financial Stress Index and the Saint-Louis Financial Stress Index reflect the level of 

financial stress in the American economy so that high values of the indexes correspond to 

high financial stress. Intuitively, high financial stress is related to economic downturn so 

that the dummies related to each of these indexes take the value one when the particular 

index value for the previous month is larger than its historical mean. Using each of these 

variables we separate normal and recession months and we check whether the anomaly is 

observed or not for each of these economic regimes. Results, reported in Table 2, show that 

the anomaly is not pervasive over time disappearing just after recessions.  

Panel A shows the monthly percentage returns for idiosyncratic risk quintiles both for 

months following recessions and for months following expansions as defined in the NBER 

business cycle data. The data sample covers the period between January 1964 and 

December 2009. The difference between the fifth and the first quintile portfolio is equal to
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Table 2: Returns of portfolios sorted by idiosyncratic risk both for periods following 
recessions and for periods following expansions 

This table reports the results we obtain by forming quintile portfolios according to idiosyncratic risk and 
separating the sample months into periods following recessions and periods following expansions. Quintile 1 
corresponds to the lowest idiosyncratic risk portfolio and quintile 5 to the highest idiosyncratic risk. In Panel 
A months are classified into these two regimes according to the NBER Business Cycle Data and covers the 
sample period from January 1964 to December 2009. In Panel B months are classified into the two regimes 
according to the Kansas City Financial Stress Index so that any month having a value higher that the historical 
mean of the index is considered as a recession period. It covers the sample period from February 1990 to 
December 2009. Panel C follows the same logic but classification is done following the Saint-Louis Financial 
Stress Index and the sample covers the period from December 1993 to December 2009. In all tables, returns 
and standard deviation (Std Dev) are reported in monthly percentage. The row [5-1] is the difference between 
portfolio 5 and portfolio. Alphas CAPM correspond to Jensen’s alphas calculated with respect to the CAPM 
and Alphas FF with respect to the three-factor model. Newey-West t-statistics are reported in brackets and p-
values in parenthesis. * denotes significance at 10% level, ** significance at 5% level and *** significance at 
1% level.  

 

Panel A: Quintiles by Idiosyncratic Risk in Recessions and Expansions 
(NBER) 
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Panel B: Quintiles by Idiosyncratic Risk in differing Financial stress regimes 
(Kansas Index) 
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Panel C: Quintiles by Idiosyncratic Risk in differing Financial stress regimes 
(St Louis Index) 
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 a significant -0.70% (t-stat = -1.79) for the time periods following expansions while it is 

equal to -1.22% but insignificant (t-stat = -1.11) for the ones following recessions. The 

anomaly is therefore only significant at 10% during times following expansions and the 

results seem to only weakly point out that the anomaly is not pervasive over time. 

However, using two alternative definitions of economic regime both Panels B and C 

provide stronger evidence on the influence recessions have on the idiosyncratic volatility 

anomaly. On the one hand, Panel B displays the results when normal and recession months 

are separated according to the Kansas City Financial Stress Index that covers the period 

from February 1990 to December 2009. In this panel, any month for which the index is 

higher than its historical mean is considered as a recession period. In this case again, the 

anomaly is only observed for the group of months following expansions for which the 

difference in returns of extreme quintiles of idiosyncratic risk is equal to -1.00% and 

significant at 5% with a t-stat of -1.92. Moreover, in the case of periods following 

recessions the [5-1] difference between extreme quintiles of idiosyncratic risk is actually 

positive (0.24%) and not significant. On the other hand, Panel C corresponds to the results 

obtained when the economic regime is defined according to the Saint-Louis Financial 

Stress Index. The sample for which the index is available covers the period from December 

1993 to December 2009 and again the anomaly is only observed for the periods following 

normal times. The [5-1] difference between extreme quintile portfolio returns is equal to a 

significant -1.76% for times following normal times and to a positive but non-significant 

1.80% for those following recessions.  

Overall, the evidence on Table 2 supports the idea that the anomaly is not pervasive 

over time and is only observed after normal times. In particular, the anomaly disappears 

after recessions in the three cases even though the sample periods covered by each of the 

definitions of economic regime are different. This is a strong evidence of the influence of 

the economic regime in the observation of the anomaly and drives us to our hypothesis that 

the anomaly is not observed after recessions because during recessions there is a flight to 

liquidity phenomenon. To the best of our knowledge relating the anomaly to the economic 

conditions is pioneering. In order to test this hypothesis in the following section we use a 

Markov regime switching model including a variable related to innovations in market 



Chapter IV: Idiosyncratic volatility, conditional liquidity and stock returns  
 

 

69 
 

liquidity and check the influence of liquidity both for high and low idiosyncratic volatility 

portfolios during differing business cycles. 

 

4.4. Results on liquidity shocks and extreme idiosyncratic risk portfolios 

In this section we test the hypothesis that the anomaly is not observed during periods 

following recessions because of an asymmetrical impact of liquidity shocks on the extreme 

idiosyncratic volatility portfolios. In particular we test whether the flight to liquidity 

phenomenon identified by Acharya et al., (2012) explains the fact highlighted in the 

previous section that the idiosyncratic volatility anomaly is not observed during periods 

following recessions.  

We use a Markov regime switching model to check the relationship between the 

returns of both the highest and the lowest idiosyncratic risk portfolios and liquidity shocks 

conditional to the economic regime.32 The model, expressed from equation [2] to equation 

[5], is a good candidate to represent the asymmetric dynamic behavior of stocks with 

differing idiosyncratic risk levels implied in our hypothesis. It is basically formed by a 

return structure for each type of portfolios and changes conditional on an unobservable 

state variable identifying the regime that follows a first order Markov chain. This is to say 

that the model allows for all the coefficients of the returns equations to vary between both 

regimes and also between types of portfolios.  

For our purposes we follow the model proposed by Acharya et al., (2012) to identify 

the effect of liquidity innovations on stocks returns so that the returns of the highest 

idiosyncratic volatility portfolio in regime k for k = {1,2} are assumed to be characterized 

by the model: 

 
                 

          
               

       

        
              

                   
 , 

[2]  

                                                           
32 For futher details on a Markov regime switching model refer to Hamilton (1994) 
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where,         corresponds to the value-weighted returns of the quintile portfolio of stocks 

with highest levels of idiosyncratic risk estimated using the previous 6 months, MKT is the 

market factor,      represents term structure and is computed as the difference between 

the market yield on U.S. Treasury securities at 10-year constant maturity and the 3-month 

Treasury bill rate,     is a variable that proxies the default premium and it is computed as 

the difference between Moody’s yield on BAA corporate bonds and the yield on U.S. 

Treasury securities at 10-year maturity and        is the measure of aggregate liquidity 

shocks. The liquidity measure corresponds to the equally-weighted average of the daily 

Amihud (2002) illiquidity measure averaged over each month using NYSE and AMEX 

stocks.33 Liquidity shocks are measures as the innovations are obtained adjusting an AR(3) 

model to the index. It is important to notice that this model uses factors related to bond 

pricing but was shown to also account for the liquidity innovations on stock returns by 

Acharya et al., (2012). 

 

Similarly, the returns of the lowest idiosyncratic volatility portfolio in regime k for k = 

{1,2} are assumed to be characterized by the model: 

 
                 

          
               

       

        
              

                   
 , 

[3]  

where, the variables are defined as in equation 2. 

 
The state variable st changes according to the Markov switching probabilities for state 

transition p and q such that: 

 

 
 (    |      )    and, 

 (    |      )     
[4]  

 

                                                           
33 Formally, Amihid measure for stock i at the end of month t is given by  

     
  

 

 
∑

|    
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where,  d is the number of days with available data for stock i over month t, ret is the stock return and Vol its 
dollar volume in millions. 
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and variance-covariance matrix defined as: 

     [
         
                      

                              
 ], [5]  

also changes with the regime therefore capturing the idea that the variance of both the 

returns of the extreme quintiles of idiosyncratic volatility and the correlation between them 

may change from one regime to the other.  

All the parameters of the model are estimated by Maximum Likelihood so that, in 

opposition to the previous section where the classification of the economic regime either as 

a normal or a recession period was made ex-post, the regimes are determined 

endogenously. This has the advantage that the classification does not depend on some 

particular definition of recession but has the problem that it is necessarily to actually 

characterize the regimes. This is to say, the model generates two regimes but it is not 

possible to directly argue what type of regimes they are. Applied to our case, this means we 

have to provide evidence that one of the regimes corresponds to recessions. To provide 

such evidence we regress the estimated probability of being in regime 2 against several 

variables related to recessions. The estimated regressions are displayed in Table 3.  

In all regressions the dependent variable is the logit transform of the estimated 

probability of being in state 2, (log[(P2t + c)/(1- P2t + c)]), where c = 0.5/419 to avoid 

problems where the probability is exactly equal to one.34 The independent variables are (i) a 

dummy variable equal to one for any recession month according to the NBER Business 

Cycle data, (ii) the Chicago Fed National Activity Index (CFNAI) that captures the overall 

economic activity in the US and (iii) the Aurora Diebold Scotti Business Conditions Index 

(ADS). Both for the CFNAI and the ADS cases higher values of the indexes are related to 

better economic conditions so that we expect the sign of the coefficients related to these 

indexes to be negative and significant and the one of the coefficient of the NBER recession 

dummy to be positive and significant. The results in Table 3 confirm our hypothesis; the 
                                                           
34 The logit transform is used to avoid problems related to the fact that by definition the estimated 
probabilities range from 0 to 1 while the linear prediction Xβ might take any real value. The constant c is 
defined as in Acharya et al., (2012) and is necessary to avoid problem with the transforms when the estimated 
probability is exactly equal to 0 or 1.  
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coefficient relied to the NBER recession dummy is equal to 1.37 and significant at 1% 

confidence level, the one relied to the CFNAI is equal to -0.78 and the one related to the 

ADS are equal to -0.64. Both these coefficients are also significant at 1% confidence level. 

We therefore conclude that the regime 2 corresponds to recession and regime 1 to normal 

times. 

Table 3: Regression analysis to identify regime 2 as recession  

This table reports the regression analysis intended to characterize regime 2 of the Markov regime-switching 
model as recession. The dependent variable is the logit transform of the estimated probability of being in 
regime 2 using the sample period from January 1964 to December 2009. The independent variables are, in 
order, a dummy variable equal to one for NBER recession times, the Chicago Fed National Activity Index 
(CFNAI) and the Aurora Diebold Scotti Business Conditions Index (ADS). All the independent variables are 
lagged one month. * denotes significance at 10% level, ** significance at 5% level and *** significance at 
1% level.  

Model [1] [2] [3] 

    constant -2.72*** -2.44*** -2.50*** 

 
[-17.88] [-16.99] [-18.03] 

NBER Recession t-1 1.37*** 
  

 
[3.63] 

  CFNAI Index t-1 
 

-0.78*** 
 

  
[-5.42] 

 ADS Index t-1 
  

-0.64*** 

   
[-4.04] 

Obs 552 552 552 

Adj R2 (%) 2.16 5.24 2.71 

 
Having identified the regimes, it is possible to analyze the results of the model 

displayed in Table 4 and to highlight they support our hypothesis. On the one hand, the 

basic result is that the returns of both the lowest and the highest idiosyncratic volatility 

portfolios are affected by liquidity shocks in opposite ways only during recessions. During 

normal times liquidity shocks affect negatively the returns of both low and high 

idiosyncratic volatility stocks; the coefficient relied to Silliq is significant in all cases and 

equal to -0.82 for the former and to -3.32 for the latter. However, during recessions the 

coefficient relied to the measure of liquidity shocks becomes positive and statistically 
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significant for the low idiosyncratic risk portfolio being equal to 2.20. For the high 

idiosyncratic risk portfolio the coefficient equal to -5.67 is still negative but becomes not 

significant. Therefore, while during recessions liquidity shocks affect the returns of low 

idiosyncratic volatility (liquid) stocks positively they affect negatively the returns of high 

idiosyncratic volatility (illiquid) stocks. This result is fully consistent with our hypothesis 

since they reflect a flight to liquidity from stocks with higher idiosyncratic risk level to 

stocks with lower levels of it. This flight to liquidity should be a transient phenomenon so

Table 4: Estimation of the Markov regime-switching model 

This table reports the results of the Marvoy regime-switching model. For the portfolio formed by stocks with 
the lowest (highest) level of idiosyncratic risk the results are found in the column labeled “low (high) 
idiosyncratic volatility stocks”. In that case, the dependent variable is the value weighted monthly returns of 
the portfolio with the lowest (highest) idiosyncratic risk stocks. The independent variables are the market 
factor (MKT), the term structure (TERM), the default premium (DEF) and the liquidity shocks in the total 
market (Silliq). Regime 1 corresponds to normal times and Regime 2 to recessions. The sample covers the 
period between January 1964 and December 2009. * denotes significance at 10% level, ** significance at 5% 
level and *** significance at 1% level. 

Regime 1       

    Low idiosyncratic 
volatility stocks 

  High idiosyncratic 
volatility stocks 

  

Parameters         

    Coefficient p-val   Coefficient p-val   

          

Constant   -0.37* 0.06   -0.34 0.65   p 0.95 

MKT   78.40*** 0.00   137.44*** 0.00   q 0.81 

TERM   -8.71 0.12   -71.99*** 0.01      

DEF   32.75*** 0.00   36.77 0.41      

Silliq   -0.82*** 0.00   -3.32*** 0.00       

 
                  

Regime 2       

    Low Idiosyncratic 
volatility stocks 

  High Idiosyncratic 
volatility stocks 

      

            

    Coefficient p-val   Coefficient p-val       

                    

Constant   0.24 0.80   0.76 0.84       

MKT   77.17*** 0.00   212.41*** 0.00       

TERM   7.81 0.78   15.74 0.90       

DEF   -2.18 0.94   -53.05 0.70       

Silliq   2.20** 0.05   -5.67 0.23       
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that in the following period stock prices should suffer a correction making the [5-1] 

difference in returns of extreme idiosyncratic risk portfolios smaller or even positive as 

observed in the previous section. On the other hand, the fact that for the regime 

characterized as normal times the effect of liquidity is significant for both portfolios, being 

more negative for the high idiosyncratic risk portfolio allow us to hypothesize the anomaly 

might be related to the effect of liquidity shocks on high idiosyncratic volatility stocks. 

Although we believe this is a noticeable path for future research a more direct proof of this 

issue falls outside the scope of this paper.  

 

4.5. Conclusions 

This paper highlights the idiosyncratic volatility anomaly is conditional to the state of 

the economy and that after recessions it might be hidden by a flight to liquidity. The paper 

contributes to the literature in two ways. On the one hand, it points out the relevance of past 

economic conditions on the anomaly showing that previous recessions end up hiding the 

anomaly. It also provides a plausible explanation for this based on the flight to liquidity 

phenomenon recently evidenced by Acharya et al., (2012). In this sense our results are 

aligned to strong evidence provided in favor of the role of liquidity on the estimation of 

idiosyncratic risk by authors such as Han and Lesmond (2011) and Han et al., (2011). 

Moreover, this paper suggests the anomaly as a whole, meaning for all regimes considered 

together, might be related to the asymmetric effect of liquidity shocks on the stocks 

forming the extreme idiosyncratic risk portfolios. This could be possible since the effect 

observed is that during expansions liquidity shocks decrease much more the returns of high 

idiosyncratic risk portfolios than those of low idiosyncratic risk. Although this second 

contribution opens a relevant path for further research our results do not allow us to 

articulate such a strong assertion and more evidence is needed in order to support it. 
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Chapter V: Discussion on contributions and 

further research 

 

The experiences observed with previous anomalies allow anticipating that the one 

attached to idiosyncratic volatility will be a relevant field of research for years to come. 

This thesis intends to shed light to the problematic theoretical implications of the negative 

relationship between idiosyncratic risk and expected returns. The remainder of this chapter 

describes the major contributions each study has together with their limitations and possible 

directions for further research.  

 

The contributions in the second chapter are threefold. On the one hand, it offers a 

theoretical discussion on the biases hampering the estimation of both systematic and 

unsystematic risk when the time interval over which returns are measured differs from the 

true one. This is a major issue for the idiosyncratic volatility anomaly in the sense that any 

bias in the estimation of the idiosyncratic risk measure could be the reason that the anomaly 

is observed. However, although these biases are not strange to the asset pricing literature 

(see for instance Levhari and Levy (1977) and Hawawini in 1983), this paper is the first to 

consider them as a potential explanation for the anomaly. In this sense, it poses the 

hypothesis that the anomaly is observed due to the co-existence of investors with different 

time horizons. On the other hand, the paper proposes a methodology able to estimate both 

the systematic and the unsystematic risk for different time intervals therefore diminishing 

these biases. The methodology results in the estimation of one particular idiosyncratic risk 

measure for each of the different groups of investors that are defined according to their 

investment time horizon. Finally, its third major contribution is to highlight the necessity 

finance discipline has of considering more complex mathematical methodologies, such as 

the WMRA applied in the paper, that are readily available and offer more realistic 

approximations to the complexity of financial markets. The theoretical case made for the 
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use of the WMRA reveals the attractive nature of the methodology for further research on 

financial markets issues related to heterogeneity of market players. Some papers non 

referenced here also show their usefulness in treating issues such as core inflation, co-

movements of stock returns and volatility spillovers. In terms of the anomaly, the paper 

suggests that it is not pervasive over time horizons, being relevant only for short-term 

investors. This result can be interpreted as evidence in favor of a more speculative nature of 

short-term investors that pursue very short lived investment opportunities in the market and 

do not consider idiosyncratic risk as a relevant determinant of their portfolio formation. The 

major limitation of the paper is that no time horizon shorter than 2 days can be addressed 

given the daily character of the data used in the analysis. In terms of intraday data nothing 

related to the idiosyncratic volatility anomaly has been done so that it seems like a quite 

direct path to pursue in future research. 

 

In the third chapter several contributions to the literature on the idiosyncratic risk 

anomaly are made. On the first hand, the study shows that the anomaly should be linked to 

managerial decision making. In particular, the empirical results suggest the anomaly is fully 

accounted for when both investment and profitability controls are considered in the cross-

section of stock returns. This path of research is innovative because most of the studies on 

the anomaly have been addressed following an investor related approach. On the other 

hand, the arguments offered in the critique to the accruals anomaly made by Fama and 

French (2006 and 2008) conclude that the negative relationship between investment and 

expected returns cannot be considered solely a matter of mispricing since the negative 

character of this relationship holds both under rational and irrational expectations. The 

same arguments apply to the empirical results displayed in the paper because the approach 

to the anomaly is based, as Fama and French (2006 and 2008) studies, on the valuation 

theory. Therefore, the anomaly is proven to be most likely constituted both by a component 

of mispricing and by a component of risk. This result is further supported in an additional 

test inspired by a recent paper by Gao et al., (2012) who show that the anomaly is only 

observed during periods following high investor sentiment. Given that the negative 

relationship between investment and expected returns is assumed to come from valuation 
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theory, the effectiveness of the controls for profitability and investment in accounting for 

the anomaly should hold also during periods of high investor sentiment. They do. This is a 

capital result given that this particular test does not apply to the studies of Fama and French 

(2006 and 2008). In this sense, it provides additional and in some sort independent support 

for the hypothesis that the anomaly cannot be linked solely to investor mispricing and that 

firm investment decisions have an influence in the anomaly. The major limitation of the 

analysis is its inability to disentangle how much influence each has in the anomaly. As 

most of the limitations, this one also constitutes an interesting path for further research. 

   

Finally, two major contributions are made in the fourth chapter of this thesis. On the 

one hand, the idiosyncratic volatility anomaly is proved to be conditional to the state of the 

economy.35 In this sense, the anomaly is not observed after recessions. This is an interesting 

contribution because it questions the extended idea that the anomaly is highly pervasive. On 

the other hand, the study explores the effect of liquidity on the anomaly from a novel 

perspective that incorporates the conditionality referred above. The study stresses how 

liquidity shocks occurred during recessions generate a flight to liquidity from stocks with 

high idiosyncratic risk to stocks with low firm specific risk. This switching movement to 

liquidity is offered as the source of conditionality in the anomaly since a correction in 

prices should happen as the market copes with the shocks. Although the paper shows that 

the effect of the flight to liquidity is larger than the one of the idiosyncratic volatility, its 

main limitation is that it only addresses a particular feature of the anomaly that is not 

general enough to explain it across economic regimes. 

 

                                                           
35 Note that in its seminal papers Ang et al., (2006 and 2009) show the anomaly holds both during recessions 
and expansions. Their definition is such that idiosyncratic risk is estimated in t while it is the period t+1 which 
is classified as recession or expansion. The study in this paper classifies the period t as being part of a 
particular regime. 
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