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Abstract

A new methodology to construct synthetic volatility derivatives is presented. The

underlying asset price process is very general, since equity, commodities and interest

rates are included. The focus is on volatility swaps and volatility swap options, but

much more derivatives may be considered. The proposed methods optimize the con-

ditional value at risk of the non-hedged risk, and yields both bid and ask prices, as

well as optimal hedging strategies for both purchases and sales. Upper bounds for the

broker capital losses under very negative scenarios are given. Numerical experiments

are presented so as to illustrate the performance in practice of this new approach.
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1 Introduction

The growing interest in volatility derivatives may be justified by several reasons. These

derivatives are becoming very traded in practice because they provide effective ways

to diversify investors’ portfolios and protect investors against market turmoils. They

can be also used to hedge against Vega and/or implied volatility exposure, as well as

to speculate on future volatility.

Pricing and hedging equity volatility linked derivatives (mainly variance and volatil-

ity swaps) has been broadly studied in the literature. Carr et al (2009) present a com-

plete review of the historical development of volatility derivative markets. Breeden et

al (1978), Neuberger (1994), Carr et al (1998) and Demeterfi et al (1999) replicate the

log-contract by using infinitely many European puts and calls. They need to impose

that every strike is available in the market. The analysis allows the authors to price

and hedge the variance swap in a model-free framework. Obviously, calls or puts with

every strikes are not available in a real market, although in liquid markets there exist

enough strikes so as to give accurate approximations of the log-contract. Broadie et

al (2008) extend the previous approach and minimize the standard deviation of the

non-hedged component, in order to price the variance swap with the (finitely many)

available options. The volatility swap is studied in this paper too. The authors con-

sider the Heston model and hedge the volatility swap by continuously trading the

variance swap. This methodology has been later extended by many others.

More complex volatility pay-offs has been recently created. Portfolio managers who

desire non-linear exposure to variance are interested in other possible pay-off functions

of realized variance. Some of the most popular examples include call and put options

on the realized variance or volatility. Carr et al (2005) provide a robust dynamic hedg-

ing strategy for quite arbitrary equity linked pay-offs of realized volatility, including

volatility swaps. They impose null correlation between the stock price and the variance.
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In this paper we contribute to this literature by developing and testing a new

methodology which can apply to price and hedge every variance/volatility linked pay-

off. Furthermore, the methodology is very general, since there are no limitations for

the underlying asset evolution model. As will be seen, we can go beyond equity mar-

kets and deal with commodity and interest rate volatility derivatives. Although there

exists a well documented literature covering equity linked variance and volatility swaps

under general assumptions or approximations, at the best of our knowledge, this is the

first paper to propose a general theoretical and numerical methodology to price and

hedge every volatility derivative pay-off, including vanilla options or more complex

ones, on general underlying assets. Numerical examples on equity, commodity and

interest rate will be provided. Moreover, the proposed methodology also yields the

hedging strategy performance in monetary terms, by minimizing a coherent risk mea-

sure (Artzner et al, 1999) of the non-hedged risk, such as the Conditional Value at

Risk (CV aR, Rockafellar et al, 2006).

Our methodology is closely related to the incomplete markets literature. Actually,

though many volatility products may be studied in a complete market framework, if

one has to often rebalance the position then transaction costs may imply very negative

effects in real applications. Hence, if the frequency to rebalance becomes limited, we

will be in an incomplete framework (there are no perfect hedging strategies). Although

perfect hedges may be often possible by standard no-arbitrage methods (Cvitanic et

al, 2004), in practice they are difficult to find.

Hedging in incomplete markets has received considerable attention in the risk man-

agement activity. Traditional approaches deal with the variance minimization of the

non-hedged risk (Schweizer, 1995, Stulz, 2003, Hull, 2008, etc.). In a volatility market

this may provoke some caveats, since volatility products are every asymmetric and the

variance is not consistent with the second order stochastic dominance (Ogryczak and
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Ruszczynski, 1999). Generalizations dealing with more complex risk measures have

been proposed, such as the entropy or coherent risk measures, among others. We focus

on the approach of Balbás et al (2010). Though these authors study very general risk

functions, our applications in volatility markets will only deal with the CV aR. In

fact, the CV aR is consistent with the second order stochastic dominance (Ogryczak

and Ruszczynski, 2002), provides the level of risk in monetary terms (potential capital

losses under very negative scenarios),1 and is sub-additive and coherent (Rockafellar et

al, 2006), which implies that it facilitates risk diversifications.2 All of these properties

are making the CV aR more and more popular for researchers, regulators and practi-

tioners. By minimizing the CV aR of the non-hedged component we can provide bid

and ask prices in volatility markets, hedging portfolios for both purchases and sales,

and upper bounds for the broker capital losses. Previous approaches, although some

of them are based in a general non-parametric analyses, which provides a high level of

model independence, are limited to variance swaps on an equity diffusive underlying

evolution model, and are not able to provide bid and ask prices neither upper bounds

for the broker capital losses.

The remainder of the paper is as follows. Section 2 is devoted to presenting the

general pricing methodology we are going to deal with. Section 3 describes the most

popular volatility derivative pay-offs, including variance (volatility) swaps and vanilla

volatility options. Sections 4, 5 and 6 present the main contributions of this paper,

since equity, commodity and interest rate derivatives are, respectively, priced and

hedged. In order to shorten the exposition, Sections 5 and 6 only study volatility

swaps and do not deal with volatility swap options for commodities or interest rates,

but the analysis of Section 4 for equity markets may be easily extended. The last

section of the paper summarizes the most important conclusions.

1The variance does not satisfy this property.
2The Value at Risk or V aR does not satisfy this important requirement (Artzner et al, 1999).
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2 Methodology

First of all let us summarize the pricing method proposed in Balbás et al (2010),

which will play a critical role in our construction of synthetic volatility derivatives.

The probability space (Ω,F ,P) will be composed of the set of states of the world Ω,

the probability measure P and the σ−algebra F . Additionally, we will deal with a

finite-horizon [0, T ] economy, a subset T ⊂ [0, T ] of trading dates containing 0 and T ,

and a filtration (Ft)t∈T providing the arrival of information and such that F0 = {∅,Ω}

and FT = F . In general, (St)t∈T will denote an adapted stochastic price process.

Assume that Y is a convex cone composed of super-replicable pay-offs, i.e., for every

y ∈ Y there exists at least one self-financing portfolio whose replicable final pay-off is

ST ≥ y. Denote by S (y) the family of such self-financing portfolios, and suppose that

there exists

π (y) = Inf
{

S0; (St)t∈T ∈ S (y)
}

(1)

for every y ∈ Y . It will be said that π (y) is the ask price of y.

Denote by L2 the space of FT−measurable random variables y (pay-offs at T ) with

finite expectation E(y) and variance σ2 (y). The market will be complete if Y = L2,

and incomplete whenever Y ⊂ L2 and Y 6= L2. Besides, the market will be perfect if

Y is a subspace of L2 and π : Y −→ IR is linear, and imperfect otherwise. In general,

we will impose the natural conditions, sub-additivity

π (y1 + y2) ≤ π (y1) + π (y2)

for every y1, y2 ∈ Y , and positive homogeneity

π (αy) = απ (y)

for every y ∈ Y and α ≥ 0. Consequently, π is a convex function such that −π (−y) ≤
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π (y) whenever y and −y are super-replicable (or belong to Y ). −π (−y) is usually

called the bid price of y. Finally, we will assume the existence of a risk-free asset that

does not generate any friction, and r will be the risk-free rate.

Though Balbás et al (2010) deal with general risk measures, our applications for

volatility markets will focus on the CV aR, as justified in the introduction. For every

random variable y in L2, the CV aR of y with the confidence level 0 < 1−µ0 < 1 may

be given by two different expressions leading to the same value, namely (Rockafellar

et al, 2006)

CV aRµ0
(y) =

1

µ0

∫ µ0

0
V aRt (y) dt =

Max
{

−E(yz); E(z) = 1, 0 ≤ z ≤ 1

µ0

}

,

(2)

V aRt denoting the V aR of y with the confidence level 1− t. In order to simplify nota-

tions, the set of random variables z satisfying the constraints in the second definition

above will be called sub-gradient of CV aRµ0
, and denoted by ∆µ0

. Thus,

∆µ0
=

{

z; 0 ≤ z ≤ 1

µ0

, E(z) = 1

}

(3)

Following Balbás et al (2010), we can define a new pricing rule Π : L2 −→ IR by

solving two dual optimization problems with the same optimal value, namely3

Π (g) =

Min
{

e−rTCV aRµ0
(y − g) + π (y) ; y ∈ Y

}

=

Max
{

E(gz); π(y)erfT − E(yz) ≥ 0∀y ∈ Y, z ∈ ∆µ0

}

.

(4)

Briefly speaking, if a trader sells g and buys the reachable pay-off y as a hedging

strategy, then he/she will minimize the price of the hedging strategy π (y) plus the

3In Balbás et al (2013) one can find further analyses so as to guarante that the optimization
problems below are bounded. Needless to say, in our empirical study for volatility derivatives we will
always have finite solutions.
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required capital e−rTCV aRµ0
(y − g) that must be invested in a riskless asset in order

to make the global risk vanish. In other words, if the trader sells g for Π (g), buys y

for π (y) and invests Π (g)− π (y) in the risk-free asset, then the global risk of her/his

portfolio (measured with the CV aRµ0
) is zero. The second equality in (4) shows that

Π (g) equals the maximum price of g given by a stochastic discount factor z of the

market (Cochrane, 2001) belonging to the CV aRµ0
sub-gradient ∆µ0

of (3). Balbás et

al (2010) proved that Π “improves” the bid/ask spread of π in the sense that

−π (−y) ≤ −Π (−y) ≤ Π (y) ≤ π (y)

whenever y and −y are super-replicable, and Π “extends” π to the whole space L2 in

the sense that Π (y) = π (y) for y ∈ Y such that the bid/ask spread π (y) + π (−y)

vanishes. In particular, Π is a genuine extension of π if the initial market model is

perfect (frictionless).

The pricing methodology above is quite general and Π can be built in a wide family

of frameworks. Nevertheless, our numerical experiments will show that a significant

simplification of the set of states Ω and the set of trading dates T still allow us to

give accurate prices in volatility markets, with a small bid/ask spread Π (g) +Π (−g).

Moreover, the clear advantage of such a simplification is that the the hedging portfolio

y solving the first optimization problem in (4) is easy to create in practice. Conse-

quently, consider a discrete framework in which securities are traded at date 0 and

their pay-offs are realized at T . The unique trading dates are T = {0, T} (static

approach) and there are only a finite number S of states (Ω is finite) Security j is

identified by its pay-off yj , an element of RS (L2 = RS in this setting) and yjs de-

notes the pay-off at T of security j under state s. It will be assumed that there

exists a finite number J of securities with pay-offs y1, . . . , yJ , yj ∈ RS. Under these

assumptions the optimal hedging portfolio will be composed of holdings of the J avail-
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able securities. These holdings may be positive, zero or negative. A positive holding

of a security means a long position in that security, while a negative holding means

a short position (short sale). A portfolio is denoted by a J−dimensional vector h,

where hj denotes the holding of security j. The portfolio pay-off at maturity under

state s will be
∑J

j=1
hjyjs. Notice that the pay-off g, to be priced and hedged, will

also be considered as a general security and will take S different values, gs, at maturity.

In this framework (4) shows that Π (g) is the optimal value of



































Max E(gz),

π(y)erfT − E(yz) ≥ 0, ∀y ∈ Y,

E(z) = 1

0 ≤ z ≤ 1

µ0

. (5)

Problem (5) characterizes our optimization problem in the general case of dealing

with imperfect markets, meanwhile by means of Proposition 1 below we impose the

constraints under the perfect market hypothesis.

Proposition 1. If the market is perfect and z ∈ ∆µ0
then

π(y)erfT − E(yz) ≥ 0, ∀y ∈ Y ⇐⇒ E(yz) = π(y)erfT , ∀y ∈ Y (6)

Proof. If the market is perfect, −y ∈ Y and −π (−y) = π (y) for every y ∈ Y .

Thus, the inequality in (6) implies

0 ≤ −π(y)erfT + E(yz) = −
(

π(y)erfT − E(yz)
)

,

and the equality of (6) trivially holds.

�

Taking into account Proposition 1, the linear optimization problem (5) becomes
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Max E(gz),

π(y)erfT − E(yz) = 0, ∀y ∈ Y,

E(z) = 1

0 ≤ z ≤ 1

µ0

. (7)

In this paper we will consider only the case of perfect markets in the numerical exam-

ples. Furthermore, if z∗ ∈ RS denotes the solution of Problem (7), then Proposition 2

below characterizes the optimal hedging portfolio.

Proposition 2. The optimal hedging portfolio h∗ =
(

h∗
j

)J

j=1
will be composed of

holdings of the J available securities which equal the Lagrange multipliers of (7). In

other words, h∗
j = Λj, j = 1, 2, ..., J , Λj being the Lagrange multiplier associated with

the jth constraint of Problem (7).

Proof. Problem (7) is equivalent to























Min − E(gz),

π(y)erfT − E(yz) = 0, ∀y ∈ Y,

E(z) = 1, 0 ≤ z ≤ 1

µ0

. (8)

The Lagrangian function is

L(z,Λ, τ) = −E(gz) +

J
∑

j=1

Λj(E(yjz)− π(yj)) + β(1− E(z)) +

S
∑

s=1

τs(zs −
1

µ0

) (9)

Reordering expression (9)

L(z,Λ, τ) = E((−g +
J

∑

j=1

Λjyj − β)z) +
S
∑

s=1

zsτs −
1

µ0

S
∑

s=1

τs −
J
∑

j=1

Λjπ(yj) + β (10)
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The dual problem of (8) can be expressed as























Max − 1

µ0

∑s=S

s=1
τs −

∑j=J

j=1
Λjπ(yj) + β

(−gs +
∑j=J

j=1
Λjyjs − β)ps + τs > 0, s = 1, . . . , S

τs > 0, s = 1, . . . , S

. (11)

where β and Λj, j = 1, . . . , J , will be free or unconstrained parameters, and ps is the

probability associated to state of the nature s. Optimality conditions for (z,Λ, τ, β)

are

E(yjz) = π(yj), j = 1, . . . , J

τs

(

zs − 1

µ0

)

= 0, s = 1, . . . , S

[

(−gs +
∑J

j=1
Λjyjs − β)ps + τs

]

zs = 0, s = 1, . . . , S

(12)

Obviously, first condition in (12) automatically holds for z = z∗. In order to study the

rest of conditions in (12) we will distinguish different cases:

Case: zs =
1

µ0

. Under this scenario the last equality in (12) implies

[

(−gs +
J

∑

j=1

Λjyjs − β)ps + τs

]

= 0, s = 1, . . . , S. (13)

Rearranging the expression above

J
∑

j=1

Λjyjs +
τs
ps

− β = gs, s = 1, . . . , S. (14)

Then,

J
∑

j=1

Λjyjs ≤ gs + β s = 1, . . . , S, (15)

and the result follows from Theorem 13 in Balbás et al (2010).
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Case: zs = 0. By feasibility condition in (11)

J
∑

j=1

Λjyjs ≥ gs + β, s = 1, . . . , S, (16)

and once again Theorem 13 in Balbás et al (2010) applies.

Case: zs 6= 0 and zs 6= 1

µ0

. The second condition in (12) implies that

τs = 0, s = 1, . . . , S. (17)

In addition, by means of the third condition in (12) it can be shown that Theorem 13

in Balbás et al (2010) applies because

J
∑

j=1

Λjyjs = gs + β, s = 1, . . . , S,

where
∑J

j=1
Λjyjs may be interpreted as the pay-off of a portfolio of Λj units of Security

j. Furthermore, this portfolio satisfies both optimality and feasibility.

�

3 Describing some volatility derivatives

Let us remind the pay-off of the volatility derivatives we are going to deal with. There

are no contributions in this section, but it is worth fixing the exact pay-offs we will

price and hedge in future sections.

The variance swap pay-off at maturity is

(σ2
R −Kvar)×N. (18)

A variance swap has zero net market value at entry. At maturity, as it is shown in

(18), the long side of the swap will be equal to the difference between the realized
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variance over the life of the contract [0, T ] and a constant called the variance swap

rate, Kvar. The equivalent volatility swap payoff is constructed by substituting σ2
R by

σR in (18).The absence of arbitrage implies that the variance swap rate must equal

the risk-neutral expected value of the realized variance

Kvar = EQ[σ2
R], (19)

where EQ[·] denotes the expectation under some risk-neutral measure Q. In numerical

examples, the variance (volatility) swap rate, defined as (19), will be referred as the

variance (volatility) price.

More complex pay-offs are those of the variance swap European call (or put) and

the volatility swap European call (or put). For the variance swap European call the

holder will receive

CT = max(σ2
R −Kvol, 0)×N. (20)

Meanwhile the payoff in a variance swap European put will be

PT = max(Kvol − σ2
R, 0)×N. (21)

The procedure to compute the realized volatility (or variance), σR, is generally specified

in the derivative contract and must include details about the source and observation

frequency of the underlying asset, the factor AF , and the exact method to compute

the volatility.

Let 0 = t0 < t1 < t2 < . . . < tn = T be a partition of the time interval [0, T ] into n

segments of length ∆ti = (ti− ti−1)/T for i = 1, 2, . . . , n. Most of the traded contracts
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define the realized variance as

σ2
R =

n
∑

i=1

AFi

n− 1

(

ln

(

Si

Si−1

))2

, (22)

where AFi = ∆ti/T . For the case in which the observations are equally spaced,

Expression (22) can be written as

σ2
R =

AF

n− 1

n
∑

i=1

(

ln

(

Si

Si−1

))2

. (23)

The other common contractual definition of the realized volatility, although less traded

in practice, it is

σ2
R =

AF

n− 1

n
∑

i=1

(

Si − Si−1

Si−1

)2

. (24)

In this paper we will consider for the numerical examples the log return definition,

as in Expression (23), which corresponds to the definition of realized variance for the

most traded volatility derivatives (Demeterfi et al, 1999).

The methodology proposed in this work is totally compatible with previous results

in the literature and extends the volatility derivative knowledge by introducing a new

theory for pricing and hedging commodity and interest rate volatility derivatives in

an static framework. We will give empirical results for equity, commodity and interest

rate linked volatility derivatives, with special focus on bid and ask prices as well as

optimal hedging portfolios. Numerical examples containing more complex volatility

pay-offs will be proposed, and the development of volatility linked derivatives over

more general underlying evolution models will be studied in order to expand volatility

derivatives to new asset classes.
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4 Equity volatility derivatives

It is well-known that the dynamic hedging of a log contract captures the realized vari-

ance under general assumptions regarding the underlying evolution model. Specifically,

the underlying model evolution must be diffusive,

dSt

St

= µ(t, . . . , )dt+ σ(t, . . . , )dW, (25)

where µ and σ will be general arbitrary functions of time and other parameters. Fol-

lowing Demeterfi et al (1999), the Ito’s lemma for log(St) leads to

d(logSt) =

(

µ(t, . . . , )− 1

2
σ(t, . . . , )2

)

dt+ σ(t, . . . , )dW. (26)

Combining Equations (25) and (26),

dSt

St

− d(logSt) =
1

2
σ(t, . . . , )2. (27)

Integrating Equation (27),

V =
1

T

∫ T

0

σ(t, . . . , )2dt =
2

T

[
∫ T

0

dSt

St

− log
ST

S0

]

. (28)

Hence, a trader can replicate V by a dynamically traded share position which always

equals 2/St shares, a static short position in a contract paying twice the logarithm of

the total return at T , and a bond position that finances the shares. It is interesting to

note that the pricing and hedging of a variance swap given by (28) is non-parametric,

i.e., it does not depend on the volatility function σ(t, . . . , ). Nevertheless, let us remark

some possible limitations of this approach. Firstly, the accuracy of this strategy will

depend on whether σ2
R is a good estimator of the discretely sample variance defined in

the contract. It should be expected this to be the case if ∆ti is small enough, so the

hedging strategy in (28) might not hold for sampling intervals such as weekly samples.
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Secondly, in order to hedge volatility derivatives it will be required to hedge a square

root derivative on the variance swap, involving a dynamic trading strategy in these

log contracts which will result in excessive transaction costs. Thirdly, the hedging

strategy in (28) is useless with more complex volatility pay-offs such as vanilla options

or other more exotic volatility products.

Taking into account the above limitations, we apply the new methodology of Sec-

tion 2. We will deal with volatility swaps and volatility swap call options. We provide,

in both cases, bid and ask prices, hedging portfolios, and P&L distributions at matu-

rity for different CV aR levels. The numerical experiments developed in this section

assume the following general underlying evolution:

dSt

St

= µdt+ σ(S, t)dW. (29)

Notice that the methodology provided in Section 2 is completely independent of

the underlying evolution model and can be applied with any other equity model. The

σ(S, t) process is unrestricted. In particular, the instantaneous volatility σ(S, t) can

have stochastic drift, stochastic volatility and a stochastic jump component, among

many other alternatives. It is not the object of the present paper to study the price

dependency with different models neither to study the wide set of well-known volatility

and equity models, although the reader can find comparisons among, jump-diffusion,

local volatility with no jumps, and a constant volatility model with no jumps, under

the classical pricing approach of Windeliff et al (2006).

As said above, there are numerous papers studying the pricing and hedging of

equity volatility derivatives. For illustrative reasons, we have based our numerical ex-

amples on a well-known data set from Demeterfi et al (1999). We will implement a

simple model, with a constant volatility given by the implied volatility of the ATM

option (σimp = 0.2), and following Demeterfi et al (1999) data with r = 0.05. Un-
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der these assumptions, in a risk-neutral world with a constant risk-free rate r, the

underlying will follow the SDE

dSt

St

= rdt+ σdW. (30)

Next, using the above underlying evolution model, we will develop the following nu-

merical tests: First, a volatility swap with maturity in three months will be priced and

hedged. Second, a volatility swap call option will be studied, presenting comparisons

between bid-ask prices as well, with different strikes and CV aR levels.

4.1 Numerical results

4.1.1 Volatility swaps

Assume that the initial spot level is S0 = 100, and the available securities composing

the optimal hedging portfolio are eight call options shown in Table 1 along with the

risk-free asset (J = 9). The underlying evolution model is simulated by Montecarlo

with an Eüler discretization scheme

St+1 = St + Str∆t + Stσ
√
∆tεi. (31)

The volatility swap pay-off is defined as

σR =

√

√

√

√

AF

n− 1

n
∑

i=1

(

ln

(

Si

Si−1

))2

. (32)

Hence, denoting by w = 1, . . . , S the simulated paths, we will have S different values

of (32) at maturity

σR(w), w = 1, . . . , S. (33)

The pay-off vector g will be composed of the S different values of σR(w). Numerical
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results for the CV aR95%, notional N = 100000 and ten thousand Montecarlo simula-

tions (S = 10000), are shown in Table 1. Last columns present the optimal hedging

portfolio for the ask price (product sale), in units of each available call option. These

hedging portfolios are computed by mean of Proposition 2. In addition, the ask price

equals 23370 m.u., and the bid price is calculated by substituting g by −g, and equals

17180 m.u.

Table 1: (Equity Volatility Swap) Hedging Portfolio Data and Results. Parameters: r = 0.05,

σ = 0.2, S0 = 100, T = 0.25, ∆t = ”Daily”, N = 100000 m.u, and CV aR confidence level = 95%.

Number of simulations = 10000

Calls Strikes Imp Vol Price Optimal Hedging Portfolio

100 20 4.5790 -80
105 19 2.2581 100
110 18 0.8874 -40
115 17 0.2578 120
120 16 0.0501 -20
125 15 0.0057 50
130 14 0.0003 -100
135 13 0.000006 -20

* The hedging portfolio composition will be composed of the above options plus an investment of
22530 m.u in the risk-free asset.
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Figure 1: Pricing performance for a volatility swap. Bid and ask prices evolution with the CVaR

confidence level. Parameters r = 0.05 and σ = 0.2. Number of simulations = 10000.
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Figure 2: P&L distribution for different CVaR confidence levels. Parameters r = 0.05 and σ = 0.2.

Number of simulations = 10000.

Figure 1 shows how the bid-ask spread evolves under different CV aR confidence

levels, from 50% to 99%. Clearly, it can be observed how the bid-ask spread increases

with more demanding CV aR levels, with a remarkable increment in the ask price and

an important decrement in the bid price. This numerical result in coherent with the

previous expectations. For a trader who is interested in selling the volatility swap,

more demanding confidence levels increases the hedging accuracy requirements. Fi-

nally, the hedging portfolio performance is studied in Figure 2, computing the P&L

distribution at maturity for confidence levels equaling 99%, 90%, 80% and 70%. The

P&L distribution was computed as the difference between the optimal hedging port-

folio pay-off and the volatility swap pay-off at maturity for each possible state of the

nature.

4.1.2 Volatility swap options

The payoff vector g will be composed of the S different values of CT (w) (see Equation

(20)), which represent the volatility swap call option pay-off in each state of the nature.
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In this case, we will include the call option underlying asset (the volatility swap) as a

new hedging instrument.4 The problem arises when we try to include the underlying

asset (volatility swap) current price. Theorem 9 in Balbás et al (2010) justifies that

we cannot incorporate the volatility swap with the bid/ask prices computed in the

sub-section above. Indeed, if we do that then the volatility swap call bid/ask price

will remain the same, i.e., our methodology will lead to similar call prices with and

without the volatility swap as a hedging instrument, and the volatility swap will never

be in the optimal hedging strategy. In order to overcome this caveat, we deal with

the available securities of Table 1, compute the bid and the ask price of the volatility

swap, and use the average value bid+ask
2

as the volatility swap price.5 The obtained

average price equals 0.1993 m.u. Table 2 shows numerical results for a call option and

for CV aR65%, notional N = 100000, strike K = 0.1993 (ATM) and ten thousand

Montecarlo simulations. Last columns give the optimal hedging portfolios of the op-

tion sale (Proposition 2). Obviously, in this example we have ten hedging instruments

(J = 10). Under these assumptions the ask price equals 1100 m.u. and the bid price

(option purchase) is 180 m.u.

Figure 3 shows the call bid-ask price evolution with respect to the strike level K.

The parameters are: CV aR65, ten thousand Montecarlo simulations (S = 10000) and

notional of one monetary unit (N = 1). We replicate the classical vanilla option results

and, as we should expect, the maximum bid-ask spread occurs exactly for the ATM

strike level.

4Recall that the underlying asset is usually “the best” hedging instrument of every option.
5According to the numerical results of the sub-section above, the bid/ask average value of teh

volatility swap remains stable with regard to the CV aR confidence level, and it also achieves quite
realistic values.
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Table 2: (Volatility Call Option) Hedging Portfolio Data and Results. Parameters: r = 0.05,

σ = 0.2, S0 = 100, T = 0.25, ∆t = ”Daily” and N = 100000 m.u. Number of simulations = 10000

Calls Strikes Imp Vol Price Optimal Hedging Portfolio

100 20 4.5790 -22
105 19 2.2581 12
110 18 0.8874 7
115 17 0.2578 48
120 16 0.0501 20
125 15 0.0057 -36
130 14 0.0003 118
135 13 0.000006 -130

Volatility Swap 50985
Risk Free Asset -9423

* The volatility swap price is equal to 0.1993 (average between bid and ask prices).
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Figure 3: Call option price evolution with the strike level, K. Parameters: CV aR confidence level

= 65%, N = 1, r = 0.05 and σ = 0.2. Number of simulations = 10000.

5 Commodity volatility derivatives

Brennan (1991), Gibson et al (1990) and Cortazar et al (1994) show that, under a

general equilibrium framework, the impact of relative supply will induce commodity

prices to follow a mean reversion process. In Schwartz et al (1997) three different

models for the stochastic behavior of commodity prices are developed, which include

mean reversion and admit a simple closed expression for the related future contracts.

A one factor model has been chosen to perform the empirical example. Under this
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Figure 4: Call option price evolution with the strike level, K. Parameters: CV aR confidence level

= 85%, N = 1, r = 0.05 and σ = 0.2. Number of simulations = 10000.

assumption the commodity spot price will follow the stochastic process

dS = k(µ− lnS)Sdt+ σSdZ. (34)

Applying Ito´s Lemma and defining X = lnS, the log price follows an Ornstein-

Uhlenbeck stochastic process

dX = k(α−X)dt+ σdZ, (35)

with

α = µ− σ2

2k
. (36)

In Equation (36) the parameter k > 0 is a measure of the level of mean reversion of

the long run mean log price, α. Under common assumptions, the Ornstein-Uhlenbeck

underlying evolution of (35) in a risk neutral world becomes

dX = k(α∗ −X)dt+ σdZ∗, (37)
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where, α∗ = α− λ, and λ it is called market price of risk.

Assuming a constant interest rate, the commodity future price with maturity T

will be computed as the expected price at T

F (S, T ) = E[S(T )] = exp

[

e−kT lnS + (1− e−kT )α∗ +
σ2

4k
(1− e−2kT )

]

. (38)

We are interested in pricing and hedging a volatility swap over a forward commodity

contract. We assume the above underlying evolution model from Schwartz et al (1997).

5.1 Numerical results

Numerical results related to the pricing and hedging of a volatility swap with maturity

in one year over a future contract with delivery in one month are presented in this

section. The parameter values are based on Schwartz’s results for the cooper case

(Model 1 in Schwartz et al, 1997): k = 0.369, µ = 4.854, σ = 0.233 and λ = −0.339.

On the other hand, call options prices have been computed with reverse engineering

to match the model theoretical call options prices (see Table 3).

The pay-off will be

σ2
R =

AF

n− 1

n
∑

i=1

(

ln

(

Fi

Fi−1

))2

, (39)

where the future price is computed as

Fi = F (Si, T ) = exp

[

e−kT lnSi + (1− e−kT )α∗ +
σ2

4k
(1− e−2kT )

]

, (40)

and the process for X = lnS is simulated by Montecarlo with an Eüler discretization

scheme

Xt+1 = Xt + k(α∗ −Xt)∆t+ σ
√
∆tεi. (41)
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Table 3: (Commodity Volatility Swap). Hedging Portfolio Data and Results. Parameters: r = 0.05,

k = 0.369, µ = 4.854, σ = 0.233, λ = −0.339, S0 = 100, T = 1 year, ∆t = ”Daily”, N = 100000 m.u,

and CV aR confidence level = 95%. Number of simulations = 10000

Calls Strikes Price Optimal Hedging Portfolio (Units)

100 21.6406 -21
110 14.6334 42
120 9.2395 -65
125 7.1599 -49

Puts Strikes Price Optimal Hedging Portfolio (Units)

105 2.7704 -40
100 1.7035 51
95 0.9719 -51
90 0.5016 48

* The hedging portfolio composition will be composed of the above options plus an
investment of 24081 m.u in the risk-free asset.

Numerical results are calculated with ten thousand Montecarlo simulations (S =

10000). As mentioned above, we are considering a forward contract with delivery

in one month (T = 1/12). Since the volatility swap maturity is one year, we will use

∆t = 1/365 for a daily computation of the realized volatility. Therefore, if we denote

by w = 1, . . . , S the computed paths, we will have S different values of σ2
R at maturity

σR(w), w = 1, . . . , S. (42)

The pay-off vector g will be composed of S = 10000 different values of σR(w). The

J = 9 hedging instruments are the four call options and the four put options of Table

3, along with the risk free asset (r = 0.05). Numerical results for CV aR95%, notional

N = 100000 and ten thousand Montecarlo simulation (S = 10000) are shown in Table

3. Once again, the last column in Table 3 gives the optimal hedging portfolio (product

sale). The bid price is equal to 17180 m.u., and the ask price equals 23370 m.u. In
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Figure 5: Pricing performance for a commodity volatility swap. Bid and ask prices evolution with

the CVaR confidence level. r = 0.05, k = 0.369, µ = 4.854, σ = 0.233, λ = −0.339, S0 = 100,

T = 1 year, ∆t = ”Daily”, N = 1 m.u. Number of simulations = 10000.

addition, in Figure 5 we can see how the bid-ask spread changes under different CV aR

confidence levels. As it should be expected, the bid-ask spread increases with more

demanding CV aR levels. To conclude this numerical example, we provide evidences

about the hedging portfolio performance in Figure 6, by computing the P&L distri-

bution at maturity for different CV aR confidence levels: 99%, 89%, and 79%.
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Figure 6: (Commodity Volatility Swap) P&L distribution for different CVaR confidence levels.

Parameters: r = 0.05, k = 0.369, µ = 4.854, σ = 0.233, λ = −0.339, S0 = 100, T = 1 year,

∆t = ”Daily”, N = 1 m.u. Number of simulations = 10000.
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6 Interest rate volatility derivatives

Interest rates will be the last asset class under consideration in this paper. In order

to illustrate the generality of the theory proposed in this paper, we model and price

volatility interest rates under a three steps approach: Firstly we construct and cali-

brate a recombining trinomial tree (see Hull and White, 2001). Secondly, we obtain

the realized volatility for each state of the nature at maturity by using Montecarlo

simulation. Thirdly, the optimization problem (7) will be solved. Therefore, the nu-

merical experiments provided in this section assume the general interest rate model

proposed by Hull and White (2001)

df(r) = [θ(t)− a(t)f(r)]dt+ σ(t)dZ, (43)

where the function θ(t) gives term-structured parameters that will be used to fit the

initial term structure. Functions a(t) and σ(t) are volatility parameters that are se-

lected to fit the current market prices of different interest rate securities. Finally, the

diffusion process, dZ, will be a standard Wiener process with zero mean and variance

equal to dt. Model (43) includes some of the most popular term-structure models for

interest rates, by making use of the function f(r): Ho-Lee (1986), Hull-White (1990),

Pelsser (1996) and Black-Karasinski (1991) are examples. For the empirical analysis

Black-Karasinski (1991) is implemented, which is perhaps one of the most popular

short interest rate model nowadays.

dln(r) = [θ(t)− a(t)ln(r)]dt + σ(t)dZ. (44)

The parameter values used in the numerical example are based on historical param-

eter estimations for the Black-Karasinski model: a = 0.01 and σ = 0.25. Meanwhile

θ(t) was computed to fit the initial term structure shown in Table 4.
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Table 4: Term-Structure. Date: June 30, 2011

Time to Maturity Bond Price

0 0.9993603
0.25 0.9984632
0.5 0.9973697
0.75 0.996091
1 0.9944365

1.25 0.9921851
1.50 0.989507
1.75 0.9861916
2 0.9817949

2.25 0.9774344
2.5 0.9722901
2.75 0.9661169
3 0.9602342

6.1 Results

Assume that the initial short term interest rate is r0 = 0.0025, the available J hedging

instruments are caps with strikes 0.01, 0.015 and 0.02 (Table 5) plus the risk-free asset

(J = 4). The volatility swap pay-off is defined as usually by

σR =

√

√

√

√

AF

n− 1

n
∑

i=1

(

ln

(

ri
ri−1

))2

. (45)

Therefore, if we denote by w = 1, . . . , S the computed paths, we will have S different

values of (45) at maturity

σR(w), w = 1, . . . , S. (46)

The payoff vector g will be composed of the S different values of σR(w). Numerical

results for a CV aR95%, notional N = 1 and ten thousand Montecarlo simulation

(S = 10000) are shown in Table 5. Last columns figures give the optimal hedging

portfolio for the ask price (product sale, Proposition 2). The bid price value equals

0.1010 m.u., and the ask price is 0.1266 m.u.
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Table 5: Hedging Portfolio Data and Results. Parameters: a = 0.01, σ = 0.25, r0 = 0.0025,

T = 3 Years, ∆t = 0.25, N = 1, and CV aR confidence level = 95%. Number of simulations = 10000.

Caps Strikes Price Ask Hedging Portfolio (Units)

0.01 0.01243 5.622
0.015 0.00963 1.510
0.02 0.008624 -6.9274

* The hedging portfolio composition will be composed of the above options plus an
investment of 0.0963 m.u in the risk-free asset.
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Figure 7: Pricing performance for a volatility swap. Bid and ask prices evolution with the CVaR

confidence level. a = 0.01, σ = 0.25, r0 = 0.0025, T = 3 Years, ∆t = 0.25, N = 1. Number of

simulations = 10000.

Figure 7 shows how the bid-ask spread evolves for different CV aR confidence levels,

from 88% to 99%. Clearly, the bid-ask spread increases with more demanding CV aR

levels, with a remarkable increment in the ask price and an important decrement in

the bid price. We conclude the numerical example by providing evidences about the

hedging portfolio performance in Figure 8, which gives P&L distributions at maturity

for different CV aR confidence levels (99%, 96%, and 93%).
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Figure 8: P&L distribution for different CVaR confidence levels. Parameters a = 0.01, σ = 0.25,

r0 = 0.0025, T = 3 Years, ∆t = 0.25, N = 1. Number of simulations = 10000.

7 Conclusions

The present paper has focused on several unsolved problems about pricing and hedging

volatility derivatives. The main idea of the paper is to price and hedge volatility-linked

products by dealing with an incomplete market and minimizing the CV aR of the non-

hedged risk. The broker can buy or sell the studied volatility product for the proposed

price, implement the proposed hedging strategy, and invest the received price in a

riskless asset. If so, the CV aR of the broker global portfolio will vanish.

The main contribution of the paper is to make it practical the idea above by cre-

ating appropriate discrete sets of scenarios with their probabilities. This allows us to

give bid and ask prices for equity, commodity and interest rates volatility swaps and

equity volatility options. Moreover, the analysis may be easily extended so as to deal

with more sofisticated (equity, commodity or interest rate)-volatility products. The

bid (ask) price is given with the associated portfolio hedging the product purchase

(sale), and upper bounds for potential capital losses of the broker under very negative

scenarios are given. Many numerical experiments have been presented, along with the

performance in practice of the proposed pricing and hedging method.
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