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Abstract

In this paper comparisons of allocation policies of components in two-parallel-series

systems with two types of components are provided with respect to both, the hazard

rate and the reversed hazard rate orders. The main results indicate that the life of

this kind of system is stochastically maximized by unbalancing as much as possible

the two classes of components. We only assume that the two distributions implied

in the model have proportional hazard rates. The same type of comparisons are

also given for the dual model, the two-series-parallel systems but assuming that

the distributions implied in the model have proportional reversed hazard rates, and

therefore the final conclusion is the opposite; that is, the reliability of the system

improves as the similarity between the two parallel subsystems increases.
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1 Notation and Acronyms

a ∧ b minimum of a and b

a ∨ b maximum of a and b

Xi, Yi random variables of type X and Y , respectively

F, G distribution functions of X and Y , respectively

f, g density functions of X and Y , respectively

F , G survival functions of X and Y , respectively

rX , rY hazard rate function of X and Y , respectively

r̃X , r̃Y reversed hazard rate function of X and Y , respectively

Sk random variable representing the lifetime of system

Fk distribution function of Sk

F k survival function of Sk

fk density function of Sk

rk hazard rate function of Sk

r̃k reversed hazard rate function of Sk

≤st usual stochastic order

≤hr hazard rate order

≤rhr reversed hazard rate order

≤lr likelihood ratio order
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2 Introduction

This paper deals with optimal allocation of the components in a two-parallel-series system

when two different types of components are avalaible. Figure 1 shows the system that

we consider and that each parallel component is an n-series system. The reference El-

Neweihi et al. [9] is a classic paper in this topic. We assume that in one system there

are n components whose lifetimes are i.i.d. random variables and the lifetimes of the n

components in the other system are i.i.d. random variables but with different distribution

functions. It is easy to notice that the number of possible different allocations of the

2n components in the system is n+1
2

if n is odd, or n+2
2

if n is even. In this paper, we

focus on allocation policies of the system components where the reliability of the system

is compared in terms of the hazard rate and the reversed hazard rate order.

The first point to be addressed in this paper is comparable to an initial series system

of n components that is duplicated (after connecting it in parallel with another series

system of n components) in order to improve its reliability. In the literature, this option

for improving the reliability of some system is called the redundancy at system level.

The allocation of active redundancies is a well-known way to improve the reliability of a

system. Redundancy can be made at system level (duplicate the system) or at component

level (redundancies in parallel with each component).

Most studies on optimal allocation of active spares deal with performance comparisons

at the component level or with performance comparisons between component level versus

system level. The importance of the redundancy and allocation of spares in a coherent

system has been initially studied in Boland et al. [3, 5]. The problem of how and where

to allocate redundancies to the components has been extensively studied in the reliability

literature. For example, Boland et al. [4] and Shaked and Shanthikumar [22] studied the

allocation problem for series and parallel systems using the stochastic order as a criterion

for comparison, whereas Singh and Misra [24] and Romera et al. [21] used the precedence

order. Valdés and Zequeira [27] and more recently Li et al. [16] also provided optimal

allocation but using the hazard rate order and the increasing concave order, respectively.

For more general systems such as the k-out-of-n systems, Mi [18] also investigated optimal

allocation of redundancies.

On the other hand, there are many references studying which option is better: redun-

dancy at system level or at component level. Barlow and Proschan ([2], page 24) stated

a well known principle: redundancy at the component level is better than redundancy at

system level if the lifetime components are independent random variables and considering

the usual stochastic order as criterion for comparison. Boland and El Neweihi [6] obtained
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a similar result replacing the usual stochastic order by the hazard rate order and Singh

and Singh [25] achieved the same conclusion for k-out-of -n systems with components

and redundancies being i.i.d and considering the likelihood ratio order. Misra et al. [19]

investigated if the redundancy at the component level is better than the redundancy at

the system level in terms of the hazard rate order for coherent systems with nonmatching

components and spares, and for coherent systems with matching components and spares,

in terms of the likelihood ratio order. Recently, Brito et al. [7] compared allocation of

redundancy at the component level versus system level in two-component series systems

with nonmatching components and spares in terms of the likelihood ratio order. Some

recent results on this topic are provided in Misra et al. [20], Valdés et al. [28], Li and

Ding [15], Li et al. [16] and the references therein. However, there are situations in which

it is only possible to improve the system reliability with redundancy at system level, that

is, duplication of the system. This is the case of certain pipeline processor systems (see,

for instance, Austin [1]) where spatial redundancy is provided by separate processors.

The novelty of the model that we introduce in this paper is the possibility that one

can choose among 2n components (n of each type) to configure the whole system. One

practical situation that fits our model is, for instance, a factory with a production system

in which the final product is obtained through a process of n successive stages (or steps).

Each stage depends on a machine but the full process is finished when a product is treated

by the n machines whose lifetimes are identically distributed random variables. Hence

the machines form a series system. Suppose that, due to an increase in the demand, the

factory decides to open another line of production and the decision maker needs to buy

additional n machines in order to develop the same task. The new n machines can be

different from the original ones (for example, they can be either newer or second-hand

machines) . Notice that the total production system stops when at least one machine of

each line has failed. The manager has many possibilities to allocate the machines in both

lines by combining new machines with old machines. A natural question is, what is the

optimal configuration of machines in order to improve the reliability of the productivity

time?. This paper will focus on the answer to this question.

There are only few results in the literature dealing with stochastic comparisons of

alternative allocations in parallel-series systems. To our knowledge, the most relevant

results on this topic may be found in Boland et al. [3], El-Neweihi et al. [9] and Shaked

and Shanthikumar [22] where comparisons in the usual stochastic order are given. Hence,

the main contribution of this paper is to provide optimal allocation policies in terms of

the hazard rate order and of the reversed hazard rate order. The main results indicate

that the life of this kind of system is stochastically maximized by unbalancing as much
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as possible the two classes of components. The constraint in the distributions is that

they have proportional hazard rate functions. This conclusion is similar to that showed

in Shaked and Shanthikumar [22] [Result 2.14(p)] but for a special parallel-series system,

in terms of the usual stochastic order.

We have also investigated the dual problem; i.e, a two-series-parallel system where the

two components of the series system are parallel systems of n components (see Figure

3). We have also considered that there are two types of distribution functions implied

in the system, each one associated to n components. We provide stochastic comparisons

among allocation policies in terms of the hazard rate order. The results are similar to

those for the parallel-series system but the constraint in the distributions is that they

have proportional reversed hazard rates, so the final conclusion is the opposite; that is,

the reliability of the system improves as the similarity between the two parallel subsystem

increases.

The paper is organized as follows. After introducing the preliminary definitions in

Section III, we deal with the optimal allocation of components in the system considering

the reversed hazard rate order in Section 4. Section 5 has the same structure as Section

4 but considering the hazard rate ordering. In Section 6, we briefly describe the direction

of future research to prove the same results as in the two previous sections but with the

likelihood ratio order. Indeed, we formulate a conjecture. Finally, in Section 7 we give a

result for the dual case of the system considered.

3 Preliminaries

In this section, we include the mathematical formulation of the system displayed in Figure

1 and the definitions and tools that we need in future sections. Consider a series system

with n components performing a task, and denote by Xi, i = 1 . . . , n, the random variables

representing the identically distributed lifetimes of such components with distribution

function F . We assume that n additional components are available to strengthen the

lifetime of that series system, but at a system level where combination among initial

components and additional components are allowed. Denote by Yi, i = 1, . . . , n, their

lifetimes whose common distribution function G can differ from that of the Xi’s. This

description applies to the case in which the two types of components come from different

production centers, or to the case in which one type is formed by new components and the

other one is formed by used components. As usual, independence among the lifetimes is

assumed. Note that different allocations are possible at system level by combining initial

components with the new redundancies. Specifically, let Sk denote the lifetime of the
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system when the up-series system has k components of type X and n− k components of

type Y . Figure 1 illustrates this situation.

b b

r r r s s s

r r rs s s

X1 X2 Xk. . .
Yk+1 Yk+2

. . .
Yn

Y1 Y2 Yk. . . Xk+1 Xk+2 . . . Xn

Figure 1: Two-parallel-series system with lifetime Sk

Then,

Sk =

(

k
∧

i=1

Xi ∧
n
∧

i=k+1

Yi

)

∨

(

k
∧

i=1

Yi ∧
n
∧

i=k+1

Xi

)

(3.1)

The objective of this paper is to find sufficient conditions to ensure stochastic com-

parisons between Sk1 and Sk2 for different values of k1, k2 ∈ {0, . . . , n}. In order to do

that we rely on the following definitions of the stochastic orders considered in the paper.

Let X and Y be two absolutely continuous random variables that have common sup-

port [0,∞), distribution functions F and G, and survival functions F = 1 − F and

G = 1−G, respectively. Let f and g be their density functions, rX = f/F and rY = g/G

be their hazard rate functions and r̃X = f/F and r̃Y = g/G their reversed hazard rate

functions, respectively.

We say that X is smaller than Y

– in the usual stochastic order (denoted X ≤st Y ) if, F (t) ≤ G(t) for all t ∈ [0,∞),

– in the hazard rate order (denoted X ≤hr Y ) if, rX(t) ≥ rY (t) for all t ∈ [0,∞), or

equivalently, if the ratio F (t)/G(t) is non-increasing in t ≥ 0, and

– in the reversed hazard rate order (denoted X ≤rhr Y ) if, r̃X(t) ≤ r̃Y (t) for all t ∈ (0,∞),

or equivalently, if the ratio F (t)/G(t) is non-increasing in t > 0.

– in the likelihood ratio order (denoted X ≤lr Y ) if, the ratio f(t)/g(t) is non-increasing

in t ≥ 0 as X and Y have the common support [0,∞).

For equivalent definitions and properties of the stochastic orders mentioned above, see

Shaked and Shanthikumar [23].
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The next notion will also be used in what follows. Given two random lifetimes, X and

Y , then they are said to follow the proportional hazard rate model (PHR) if G(t) = F
α
(t)

for all t ≥ 0, and some α > 0. For examples and applications of these notions in system

reliability see Valdés and Zequeira [26] and Kochar and Xu [[13],[14]], or in a different

context, see for example, Finkelstein [10].

Given two vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) and let a[1] ≥ a[2] ≥

. . . ≥ a[n] and b[1] ≥ b[2] ≥ . . . ≥ b[n] the decreasing arrangements of the components

of the two vectors, then the vector a is said to be majorized by the vector b in the

Marshall and Olkin sense (denoted as a ≺ b) if and only if,
∑n

i=1 a[i] =
∑n

i=1 b[i] and
∑k

i=1 a[i] ≤
∑k

i=1 b[i] for all k = 1, 2 . . . , n − 1. Besides, a function φ : In ⊆ R
n → R is

said to be a Schur–convex function if φ(a) ≤ φ(b) whenever a ≺ b. For extensive and

comprehensive details on majorization order and Schur–convex functions, we refer the

reader to the book of Marshall and Olkin [17].

4 Comparison results in terms of the reversed hazard

rate order

If the usual stochastic order is considered and the random variables Xi and Yi, i = 1, . . . , n

are independent, then Sn−k1 ≥st Sn−k2, for all k1 ≤ k2 ≤
n
2
, regardless of the distributions

F and G. This result can be proved with a straightforward calculation of the survival

functions of the two systems. A similar result has been formally derived in El-Neweihi

et al. [9] for more general parallel-series systems. A similar conclusion was also reached

by Shaked and Shanthikumar [22]. The most important conclusion is that the life of

the parallel-series system is stochastically optimized when the heterogeneity between the

series subsystems of the parallel system is maximized. If we consider the system of Figure

1, this conclusion means that the system will have a higher reliability if the components

and redundancies are as unbalanced as possible. We call this property as heterogeneity in

the duplication of the system. Hence, the highest reliability will be obtained when each

subsystem is composed by n components of the same type, i.e., k = 0.

In this paper, we prove that under the assumption of proportional hazard rate functions

a stronger conclusion holds; i.e., the systems can be compared in terms of both, the hazard

rate order and the reversed hazard rate order. In order to obtain the main result, we need

two useful results.

7



Lemma 4.1 The function h(x) = xpx

1−px
is a convex function for x > 0, and for all

p ∈ [0, 1).

The second preliminary result is given in Marshall and Olkin [17], Proposition C.1.,

page 64.

Lemma 4.2 Let c : I ⊆ R → R be a convex function. Then the function

ψ(x1, . . . , xn) =

n
∑

i=1

c(xi)

is Schur–convex on In.

The next statement shows conditions to ensure comparisons among the systems Sk

defined in (3.1) with respect to the reversed hazard rate order.

Theorem 4.3 Let X and Y have PHR, i.e., G(t) = F
α
(t) for some positive α, and for

all t ≥ 0. Then,

Sn−k1 ≥rhr Sn−k2,

for every k1 ≤ k2 ≤
n
2
.

One conclusion here is that heterogeneity in the duplications improves the reversed haz-

ard rate function of the system and as a consequence, the reliability of the system also

improves. Hence, the optimal allocation will be obtained when both subsystems have the

heterogeneity in the duplication of the system.

Note that the assumption of the previous theorem (PHR) is satisfied when X and

Y are exponentially distributed with intensities λX and λY and α = λY

λX

. Indeed, this

assumption is considered in many systems in Engineering and Medicine.

5 Comparison results in terms of the hazard rate or-

der

The second main result describes conditions to obtain comparisons related to the random

variables, Sk, k = 1, . . . , n, with respect to the hazard rate order. As in the previous

Section, we need two auxiliary lemmas to prove the main result.
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Lemma 5.1 The function

γ(x, p) =
xpx−1 + (1− x)p−x − 1

px + p1−x − p
,

is a non-decreasing function in x ∈ (0, 1
2
], for all p ∈ (0, 1].

Lemma 5.2 The function

ϕ(p) =
pδ + p1−δ − p

pβ + p1−β − p
,

is non-increasing in p ∈ (0, 1], for all 0 < δ ≤ β ≤ 1
2
.

Proof. It is straightforward to see that ϕ(p) is non-increasing in p ∈ (0, 1], for all 0 < δ ≤

β ≤ 1
2
, if

δpδ−1 + (1− δ)p−δ − 1

pδ + p1−δ − p
≤
βpβ−1 + (1− β)p−β − 1

pβ + p1−β − p
, (5.1)

which holds from Lemma 5.1. �

Now we can extend the statement of Theorem 4.3 but considering the hazard rate

order.

Theorem 5.3 Let X and Y have PHR; i.e., G(t) = F
α
(t) for some positive α and for

all t ≥ 0. Then

Sn−k1 ≥hr Sn−k2,

for every k1 ≤ k2 ≤
n
2
.

Proof. There is no loss of generality in assuming α ≥ 1. Then, we have that,

F n−k(t) = 1− [1− F
k
(t)G

n−k
(t)][1−G

k
(t)F

n−k
(t)]

= G
k
(t)F

n−k
(t) +G

n−k
(t)F

k
(t)−G

n
(t)F

n
(t)

= F
n−k+αk

(t) + F
k+α(n−k)

(t)− F
(α+1)n

(t).

Then, Sn−k1 ≥hr Sn−k2 if and only if the ratio

R(t) =
F n−k1(t)

F n−k2(t)

=
F

n−k1+αk1
(t) + F

k1+α(n−k1)
(t)− F

(α+1)n
(t)

F
n−k2+αk2

(t) + F
k2+α(n−k2)

(t)− F
(α+1)n

(t)
,

(5.2)
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is non-decreasing in t ≥ 0. Denote p(t) = F
(α+1)n

(t). Obviously, dp(t)
dt

≤ 0 and 0 < p(t) ≤

1. Notice that (5.2) can be written as

Rp(t) =
pδ(t) + p1−δ(t)− p(t)

pβ(t) + p1−β(t)− p(t)
,

where

δ =
αk1 + n− k1
(α + 1)n

and β =
αk2 + n− k2
(α + 1)n

.

Since k1 ≤ k2 ≤ n
2
implies that δ ≤ β ≤ 1

2
, then Rp decreases in p by using Lemma 5.2.

Since
d

dt
R(t) =

dRp(t)

dp

dp(t)

dt
≥ 0,

the proof is concluded. �

As a consequence, heterogeneity in the duplications implies that the hazard rate func-

tion of the system decreases, and therefore the reliability of the system improves. Hence,

as for the reversed hazard rate function, the optimal allocation will be also obtained when

both subsystems are as different as possible.

6 The likelihood ratio order

Since the likelihood ratio order implies both the hazard rate order and the reversed hazard

rate order (see Shaked and Shanthikumar [23]), one may wonder whether, under the same

assumption of PHR imposed in Theorem 4.3 or Theorem 5.3, Sn−k1 and Sn−k2 are also

ordered according to the likelihood ratio order. We are not able to answer this question

analytically, but we outline a possible proof and we formulate a conjecture that if proven

right, will conclude the proof.

Note that the density function of Sn−k can be written as

fn−k(t) =
f(t)

F (t)

[

x1F
x1
(t) + x2F

x2
(t)− (x1 + x2)F

x1+x2
(t)
]

,

where

x1 = k + α(n− k) and x2 = αk + n− k. (6.1)

Thus, considering k1 ≤ k2 ≤
n
2
,

Sn−k1 ≥lr Sn−k2,
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if only if,

fn−k1(t)

fn−k2(t)

=
x
(1)
1 F

x
(1)
1 (t) + x

(1)
2 F

x
(1)
2 (t)− (x

(1)
1 + x

(1)
2 )F

x
(1)
1 +x

(1)
2 (t)

x
(2)
1 F

x
(2)
1 (t) + x

(2)
2 F

x
(2)
2 (t)− (x

(2)
1 + x

(2)
2 )F

x
(2)
1 +x

(2)
2 (t)

,

(6.2)

is non-decreasing in t, where

x
(i)
1 = ki + α(n− ki) and x

(i)
2 = αki + n− ki, i = 1, 2.

By setting u = F (t), (6.2) is equivalent to requiring that the ratio

x
(1)
1 ux

(1)
1 + x

(1)
2 ux

(1)
2 − (x

(1)
1 + x

(1)
2 )ux

(1)
1 +x

(1)
2

x
(2)
1 ux

(2)
1 + x

(2)
2 ux

(2)
2 − (x

(2)
1 + x

(2)
2 )ux

(2)
1 +x

(2)
2

(6.3)

be non-increasing in u ∈ (0, 1]. Let now denote

δ =
x
(1)
2

x
(1)
1 + x

(1)
2

and β =
x
(2)
2

x
(2)
1 + x

(2)
2

.

Under the assumption of k1 ≤ k2 ≤
1
2
and α≥1 it holds 0 ≤ δ ≤ β ≤ 1

2
. Now, if we let

y = ux
(1)
1 +x

(1)
2 = ux

(2)
1 +x

(2)
2 = u(α+1)n,

then (6.3) is non-increasing in u if and only if

δyδ + (1− δ)y1−δ − y

βyβ + (1− β)y1−β − y
(6.4)

is non-increasing in y ∈ (0, 1], for 0 ≤ δ ≤ β ≤ 1
2
. Even though we have empirical evidence

of this fact as shown in Figure 2 for some values of δ and for β = 0.5, so far we have

not been able to obtain a mathematical proof of this result. Thus the likelihood ratio

comparison Sn−k1 ≥lr Sn−k2 remains as a conjecture in the paper.
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Figure 2: Graphic of (6.4) for different δ-values and for β = 0.5

7 A result for the dual case

Now consider the dual version of the system displayed in Figure 1; that is, a series-parallel

(see El-Neweihi et al. [9]). We assume a two-series-parallel system which is formed by

two subsystems connected in series, where each subsystem is formed by n components in

parallel. The new situation is represented in Figure 3.
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Figure 3: Two-series-parallel system with lifetime S∗
k

As mentioned in the Introduction, we have again n components of kind X , and n

components of kind Y , with different distribution functions, F and G, respectively. Let

S∗

k denote the lifetime of the system when the components are allocated in such a way

that one of the parallel subsystems has k components of kind X and n − k of kind Y .

Then,

S∗

k =

(

k
∨

i=1

Xi ∨
n
∨

i=k+1

Yi

)

∧

(

k
∨

i=1

Yi ∨
n
∨

i=k+1

Xi

)

. (7.1)

We now assume that X and Y satisfy the proportional reversed hazard rate model

(PRHR) which implies that G(t) = F α(t) for all t > 0 and some α > 0. For examples

and applications of the reversed proportional hazard rate function notions in reliability of

systems see Gupta et al. [12], Di Crescenzo [8], Gupta and Gupta [11], and the references

therein. Again, recall that it is possible to combine components of each type in both

subsystems. The following result states stochastic comparisons among S∗

k , k = 1, . . . , n

in terms of the hazard rate order.

Theorem 7.1 Let X and Y have PRHR; i.e., G(t) = F α(t), for some positive α and for

all t > 0. Then,

Sn−k1 ≤hr Sn−k2,

for every k1 ≤ k2 ≤
n
2
.

Proof. Without loss of generality we can assume α ≥ 1. For k ≤ n
2
let us denote

with F
∗

n−k the survival function of S∗

n−k, i.e.,

F
∗

n−k(t) = [1− F k(t)Gn−k(t)][1−Gk(t)F n−k(t)]

= [1− F k+α(n−k)(t)][1− F αk+n−k(t)].
(7.2)
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Then, the corresponding hazard rate function is

r∗n−k(t) = −
d

dt

[

lnF
∗

n−k(t)
]

= −
d

dt

[

ln[1− F k+α(n−k)(t)] + ln[1− F αk+n−k(t)]
]

=
f(t)

F (t)

[

(k + α(n− k))F k+α(n−k)(t)

1− F k+α(n−k)(t)

]

+
f(t)

F (t)

[

(αk + n− k)F αk+n−k(t)

1− F αk+n−k(t)

]

=
f(t)

F (t)

2
∑

i=1

xiF
xi(t)

1− F xi(t)
,

where x1 and x2 are given in (6.1). Observe that both x1 and x2 are non–negative for all

α ≥ 1. Let us denote

x
(i)
1 = ki + α(n− ki) and x

(i)
2 = αki + n− ki, i = 1, 2. (7.3)

Note that, for all i = 1, 2

x
(i)
1 ≥ x

(i)
2 ; x

(1)
1 + x

(1)
2 = x

(2)
1 + x

(2)
2 = (α + 1)n

and that x
(1)
1 ≥ x

(2)
1 whenever k1 ≤ k2 ≤

n
2
, and α ≥ 1. These considerations imply that,

(x
(1)
1 , x

(1)
2 ) ≻ (x

(2)
1 , x

(2)
2 ), for all k1 ≤ k2 ≤

n

2
. (7.4)

Using Lemma 4.1 and Lemma 4.2, we have that the function

ψt(x1, x2) =
2
∑

i=1

xiF
xi(t)

1− F xi(t),

is a Schur–convex function. Then, it follows from (7.4) that

r∗n−k1
(t) =

f(t)

F (t)
ψt(x

(1)
1 , x

(1)
2 )

≥
f(t)

F (t)
ψt(x

(2)
1 , x

(2)
2 )

= r∗n−k2
(t),

for all t ≥ 0 and then, the Theorem is proved. �

An important conclusion is that the hazard rate function of the two-series-parallel

system decreases as a parallel subsystem resembles another parallel subsystem, and as a

consequence the reliability improves. In other words, the optimal allocation will be when

both subsystems are as similar as possible. Notice that as we can see, this conclusion is

the opposite to that obtained for the two-parallel-series system.
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Appendix

A. Proof of Lemma 4.1

The lemma trivially holds true for p = 0. Now consider that 0 < p < 1 and observe

that

d2h(x)

dx2
= ln p

px

(1− px)3
[px(x ln p− 2) + x ln p + 2]

= ln p
px

(1− px)3
l1(x, p),

(7.5)

where

l1(x, p) = px(x ln p− 2) + x ln p+ 2.

To prove the convexity of h(x), we need to show that l1(x, p) ≤ 0 for all x > 0.

Therefore, note that

∂l1(x, p)

∂x
= px(x ln2 p− ln p) + ln p

= ln p [pxx ln p− px + 1] = ln p l̃(x, p),

(7.6)

where

l̃(x, p) = pxx ln p− px + 1.

Given x > 0, l̃(x, p) is non-increasing in p ∈ (0, 1) since

∂l̃(x, p)

∂p
= x2px−1 ln p ≤ 0.

Thus,

l̃(x, p) ≥ lim
p→1−

l̃(x, p) = 0,

for all 0 < p < 1.

It follows that
∂l1(x, p)

∂x
= ln p l̃(x, p) ≤ 0,

i.e., l1(x, p) is non-increasing in x > 0, which implies that,

l1(x, p) ≤ lim
x→0+

l1(x, p) = 0, for all x > 0.

Hence, the convexity of h follows (see 7.5).
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B. Proof of Theorem 4.3

Without loss of generality we can assume α ≥ 1. For k ≤ n
2
, let Fn−k denote the

distribution function of Sn−k, which can be written as,

Fn−k(t) = [1− F
k
(t)G

n−k
(t)][1 −G

k
(t)F

n−k
(t)]

= [1− F
k+α(n−k)

(t)][1 − F
αk+n−k

(t)].
(7.7)

Then, the corresponding reversed hazard rate function is given as

r̃n−k(t) =
d

dt
[lnFn−k(t)]

=
d

dt

[

ln[1− F
k+α(n−k)

(t)] + ln[1− F
αk+n−k

(t)]
]

=
f(t)

F (t)

[

(k + α(n− k))F
k+α(n−k)

(t)

1− F
k+α(n−k)

(t)

]

+
f(t)

F (t)

[

(αk + n− k)F
αk+n−k

(t)

1− F
αk+n−k

(t)

]

=
f(t)

F (t)

2
∑

i=1

xiF
xi

(t)

1− F
xi

(t)
,

where x1, x2 are as in (6.1).

Observe that both x1 and x2 are non–negative for all α ≥ 1. Denote

x
(i)
1 and x

(i)
2 i = 1, 2, as in (7.3).

Recall, from (7.4), that

(x
(1)
1 , x

(1)
2 ) ≻ (x

(2)
1 , x

(2)
2 ), for all k1 ≤ k2 ≤

n

2
. (7.8)

Using Lemma 4.1 and Lemma 4.2, we have that the function

ψt(x1, x2) =
2
∑

i=1

xiF
xi

(t)

1− F
xi

(t)
,
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is a Schur–convex function. Then, it follows from (7.8) that

r̃n−k1(t) =
f(t)

F (t)
ψt(x

(1)
1 , x

(1)
2 )

≥
f(t)

F (t)
ψt(x

(2)
1 , x

(2)
2 )

= r̃n−k2(t),

for all t ≥ 0 and then, the Theorem is proved.

C. Proof of Lemma 5.1

Consider

φ(x, p) = ln(px + p1−x − p).

It is easy to see that γ(x, p) is non-decreasing in x ∈ (0, 1
2
], for all 0 < p ≤ 1, if

∂

∂x

[

∂φ(x, p)

∂p

]

≥ 0.

By symmetry of the second derivatives, we have that

∂

∂x

[

∂φ(x, p)

∂p

]

=
∂

∂p

[

∂φ(x, p)

∂x

]

=
∂

∂p

[

px − p1−x

px + p1−x − p
ln p

]

=
l2(x, p)

p
+
∂l2(x, p)

∂p
ln p, (7.9)

where

l2(x, p) =
px − p1−x

px + p1−x − p
.

Clearly,
∂l2(x, p)

∂p
=

−px

(p2x − px+1 + p)2
Q(x, p),

where

Q(x, p) = (x− 1)p2x + 2(1− 2x)px + xp.

For any x ∈ (0, 1
2
], notice that

∂2Q(x, p)

∂p2
= 2xpx−2(x− 1)(2x− 1)(px − 1)
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is non-positive in 0<p ≤ 1. Therefore,

∂Q(x, p)

∂p
= 2x(x− 1)p2x−1 + 2x(1− 2x)px−1 + x

is non-increasing in p ∈ (0, 1], which implies,

∂Q(x, p)

∂p
≥

[

∂Q(x, p)

∂p

]

p=1

= x− 2x2 ≥ 0,

since x ∈ (0, 1
2
]. Hence, Q(x, p) is non-decreasing in p ∈ (0, 1]. Therefore,

Q(x, p) ≥ lim
p→0+

Q(x, p) = 0

and as consequence, we have that ∂l2(x,p)
∂p

≤ 0, for all 0 < p ≤ 1. Since l2(x, p) ≥ 0

in x ∈ (0, 1
2
], for all 0 < p ≤ 1, the assertion follows from (7.9).
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