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1 Introduction

Even though a particular variable may be unavailable in a researcher’s main data set, it

may be available in a secondary data set. If both data sets share a common set of char-

acteristics, then it is possible to resort to imputation. An imputation procedure consists

of characterizing a relationship between the variable of interest and other variables that

are observed in both data sets, and to use this relationship to construct the variable

of interest in the main data set. In economics, where data is frequently obtained from

surveys, an important question is how the imputation procedure is affected by measure-

ment error. Measurement error affects an imputation because it impacts the estimation

of the parameters that will be used to construct the imputed variable. In the classical

errors-in-variables (CEV) case, it is well known that OLS estimators are inconsistent.

In this paper we address how instrumental variable (IV) techniques can be used to

solve the problem of measurement error in imputation procedures. We make three

contributions. First, we theoretically show that the conditions under which IV methods

yield consistent estimators in the presence of measurement error are more stringent than

what had been claimed in previous research. Second, we derive a specific condition which

delivers consistent estimators even in the presence of measurement error. This condition

can be verified in the data. Third, we use a specific example that imputes consumption

from the Consumer Expenditure Survey (CEX) to the Panel Study of Income Dynamics

(PSID) to illustrate how our findings may help shape future research in which imputation

procedures are used. Our example also serves to examine how the influential estimations

of the degree of insurance by Blundell, Pistaferri, and Preston (2008) are affected by the

application of our methodology.

Our focus on the imputation of consumption data is motivated by the usual lack of good

measures of total consumption despite the relevance of this variable for various strands of

research. For example, consumption data at the consumer unit level is required to answer

empirical questions such as the permanent income hypothesis, retirement behavior, and

the analysis of consumption inequality.

For the United States there does not exist a panel survey which simultaneously provides

broad and complete measures of income and consumption expenditure, and which allows

to track a consumer unit for an extended period of time. Thus, there is frequently a

need to merge databases which requires imputing data from one source to the other. The
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PSID and the CEX are natural candidates to be merged. The PSID is the most compre-

hensive longitudinal data set in the United Sates containing income and socioeconomic

information. The PSID does, however, not include a measure of total consumption.

Comprehensive consumption data at the consumer unit level is available from the CEX.

The CEX, on the other hand, follows households for at most four consecutive quarters

and has less information on incomes.

A widely used method to impute consumption data from the CEX to the PSID was

proposed by Skinner (1987). This method is used in several articles including, among

others, Palumbo (1999), Dynan (2000), and Bernheim, Skinner, and Weinberg (2001).

Skinner’s imputation procedure consists in selecting several consumption expenditure

categories which are common to both data sets, like food consumption (at home and

away), utility payments, value of the house, and car ownership in order to run an OLS

regression in the CEX of total consumption on the selected consumption categories. The

parameters estimated in the regression are then used to construct artificial consumption

data for the PSID.

Skinner’s procedure does not address the issue of measurement error. Measurement error

is a pervasive problem in consumption surveys, in particular if recall methods are used

to collect consumption data, as shown in several studies. Battistin and Padula (2010)

document measurement error in recall methods for the United States by comparing

interview and diary data collected for food consumption in the CEX. Using Italian data,

Battistin, Miniaci, and Weber (2003) find important heaping and rounding problems in

recall consumption data. Ahmed, Brzozowski, and Crossley (2006) compare recall and

diary data from the Canadian Food Expenditure survey and find important measurement

errors in recall food consumption.

An imputation procedure that explicitly addresses the problem of measurement error

was advanced by Blundell, Pistaferri, and Preston (2008). Although relatively recent,

this imputation procedure has been widely used; examples include the work by Guvenen

and Smith (2010), Hryshko, Luengo-Prado, and Sorensen (2010), Attanasio, Hurst, and

Pistaferri (2012), and Michelacci and Ruffo (2013). Others, such as Kaplan and Violante

(2010), Abraham, Koehne, and Pavoni (2012), and Broer (2012) have directly used the

original imputed data from Blundell, Pistaferri, and Preston (2008), which is available

online.1

1At http://www.aeaweb.org/aer/data/dec08/20050545_data.zip.
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Blundell, Pistaferri, and Preston (2008) propose to impute consumption by estimating

a demand for food equation. To deal with measurement error they instrument total

consumption using wage data. Blundell, Pistaferri, and Preston (2008) argue, partly in

a companion paper (Blundell, Pistaferri, and Preston, 2004), that IV regressions pro-

duce consistent estimators in the demand for food estimation under certain conditions.

Moreover, they show that the variance of imputed consumption will correctly track the

evolution of true consumption.

In Section 2 of this paper we show that even if consumption is instrumented, as in the

proposal by Blundell, Pistaferri, and Preston (2004, 2008), the presence of additional

covariates in the demand for food equation may produce inconsistent estimators because

of measurement error. The reason is that measurement error in consumption biases the

estimates through its correlation with the additional covariates. As a corollary to this

result, in Section 2.2 we flesh out how the bias due to measurement error creates a gap

between the evolution of imputed consumption and true consumption.

In Section 2.3 we quantitatively assess the magnitude of the measurement error bias

through Monte Carlo simulations. We find that the bias in the estimated coefficients and

in the variance of consumption may be substantial even for small correlations between

measurement error and the covariates.

In Section 3 we revisit the demand for food estimation of Blundell, Pistaferri, and Preston

(2008) to provide a practical example of the application of our results. Our findings in

Section 2 imply that the bias attributable to measurement error can be mitigated, and

even eliminated, if the additional covariates are orthogonal to the instrument. Whether

this condition holds can, in principle, be verified in the data because the covariates

and the instrument are observable. Changing the specification for the demand for food

and using alternative instruments give rise to varying degrees of correlation between

the covariates and the instruments. We experiment with different specifications and

alternative instruments and report the resulting estimates.

2 Imputation with measurement error

The first step in an imputation procedure is the estimation of a relationship between the

variable targeted for imputation and variables available in both surveys that are used.
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In this section we show that the presence of covariates additional to those that are in-

strumented leads to estimation results that are, in general, inconsistent. We do so in the

context of the imputation procedure by Blundell, Pistaferri, and Preston (2004, 2008),

which imputes consumption data to the PSID using regression parameters estimated

from a demand function using CEX data.

2.1 IV estimation in presence of an additional covariate

Blundell, Pistaferri, and Preston (2004, 2008) estimate a demand equation for food

which, if augmented by an additional variable, takes the form

fi = β0 + β1di + γci + ei. (1)

Demand for food is a function that relates expenditure on food f (either in levels or in

logs) to total non-durable expenditure c (also measured in levels or logs) and possibly

other variables. The variable denoted by d is one such variable. Think of d as any

additional variable that should be included in the demand equation. For example, it

may be the price of food, a price of other substitutable or complementary goods, or a

characteristic of the household that acts as a demand shifter. The parameter γ measures

the sensitivity of food consumption to total consumption. If variables are measured in

logs, then it is called the budget elasticity. The interpretation of the parameter β1

depends on what d is. The only other term in the equation is unobserved heterogeneity,

which is represented by e. The single departure from the specification of Blundell,

Pistaferri, and Preston (2004) is that the variable d is included.

Letting c∗i denote measured nondurable consumption expenditure, ci true nondurable

consumption expenditure, and ui an error term, measurement error is modeled as follows:

c∗i = ci + ui, (2)

Because true consumption ci is unobservable, in practice, the demand for food in (1)

cannot be estimated. Substituting (2) into the demand equation in (1) yields an equation

in terms of c∗i , which can be estimated:

fi = β0 + β1di + γc∗i + ei − γui. (3)
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Imputation proceeds by using the parameters from this equation estimated with CEX

data together with observations of f and d from the PSID to obtain predicted consump-

tion observations for all the households in the PSID.

Estimation of the parameters from the demand for food equation (3) is not straight-

forward. It is well known that in the presence of classical errors-in-variables (CEV),

OLS estimators from the food-demand equation (3) are inconsistent.2 IV methods may

prove useful to obtain consistent estimators even under CEV if it is possible to find an

observable variable z that does not belong in (3) and that is partially correlated with

c∗. Blundell, Pistaferri, and Preston (2004) prove that, if total consumption c∗ is the

sole regressor, a valid instrument z eliminates any asymptotic bias and yields consistent

estimators.

Given that the demand for food will invariably include additional regressors in practice,

the question we consider is under which conditions consistency is achieved if an additional

regressor d is added. To answer this question, in Proposition 1 we derive the probability

limits of β1, and γ as functions of the asymptotic theoretical biases when z is used as

an instrument.3

Proposition 1

Let z be a valid instrument for c∗, d an exogenous regressor in (1), β̂1 the IV estimator

of β1, and γ̂ the IV estimator of γ. Then, the IV estimation of (3) yields the following

asymptotic results

plim β̂1 = β1 − γ
Cov(c∗, z)Cov(d, u)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)
(4)

plim γ̂ = γ

[
1 +

Cov(d, u)Cov(d, z)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)

]
(5)

In contrast to what happens in the absence of an additional regressor d, both param-

eters are inconsistent despite z being a valid instrument for c∗. To ensure consistent

estimators, the additional variable d (i.e. any additional variable that belongs in the

2See, for example, Wooldridge (2002, Ch. 4).
3All proofs are in the Appendix.
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demand for food) would need to be instrumented as well. Because it is not, asymptotic

bias due to measurement error sneaks back into the estimates through the covariance

between the additional variable and measurement error Cov(d, u), which is potentially

non-zero.

2.2 The variance of consumption

A reason for imputing consumption to the PSID is to track the evolution of consumption

inequality through time. Since a measure of consumption inequality that is commonly

used is the variance of consumption, the question is how well the variance of imputed

consumption tracks the variance of true consumption in the presence of measurement

error. Blundell, Pistaferri, and Preston (2004) show that, in the absence of an additional

regressor d, the sample variance of imputed consumption converges in probability to

the same limit as the variance of true consumption, up to an additive term. In their

setting the variance of imputed consumption is just an upward translated version of the

variance of true consumption with the same time trends. In this section we address how

measurement error affects the relationship between the variances of imputed and true

consumption in the presence of the additional regressor d.

Imputed consumption ĉ is obtained from the estimated value of the budget share γ̂

and the other estimated parameters: β̂0 and β̂1. After inverting the demand for food,

imputed consumption is calculated as

ĉi =
1

γ̂

[
fi − β̂0 − β̂1di

]
. (6)

By using the demand for food (1) to replace fi in the above equation, we obtain an

equation involving ĉi and ci:

ĉi =
1

γ̂

[
(β0 − β̂0) + (β1 − β̂1)di + γci + ei

]
. (7)

Because in this equation ci is multiplied by the ratio of the true budget elasticity to

the estimated budget elasticity γ
γ̂
, the relationship between the variances of imputed

and true consumption will be impacted by its square. The complete expression for the

probability limit of consumption is derived in Proposition 2.
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Proposition 2

The probability limit of the variance of predicted consumption is

plimV (ĉ) =

(
1

1 + Cov(d,u)Cov(d,z)
V (d)Cov(c∗,z)−Cov(c∗,d)Cov(d,z)

)2 [
plimV (c)

+
1

γ2
plimV (e) +

2

γ
plimCov(e, c)

+

(
Cov(c∗, z)Cov(d, u)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)

)2

plimV (d)

+ 2

(
Cov(c∗, z)Cov(d, u)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)

)
plimCov(c, d)

]
(8)

In comparison to the result by Blundell, Pistaferri, and Preston (2004), the presence

of the additional regressor d augments the expression for the variance of imputed con-

sumption by two additive terms. Because of measurement error, the variance of imputed

consumption is additively impacted by the variance of the additional regressor V (d) and

the covariance Cov(c, d). More importantly, the multiplicative term in front of plimV (c)

is different from one because γ̂ is inconsistent even if consumption is instrumented. Thus,

the variance of predicted consumption does not move in lockstep with the variance of

true consumption, implying that the evolution of the variance of true consumption over

time is not tracked by the variance of imputed consumption.

2.3 An orthogonality condition

Consistency of estimates cannot be achieved by instrumenting consumption when the

measurement error is correlated with d. Proposition 1 shows that the resulting asymp-

totic bias of both estimates is proportional to Cov(d, u), which is unobservable. There

is, however, an observable orthogonality condition that removes the bias in the estimate

of one of the parameters: the budget elasticity. If the condition Cov(d, z) = 0 is sat-

isfied, implying that the instrument for consumption expenditure is orthogonal to the

additional regressor, then the estimate γ̂ can be shown to be consistent. In turn, the

consistency of γ̂ implies that the slope coefficient in the expression for the variance in
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Proposition 2 is one, and that the variance of true consumption is tracked by the vari-

ance of imputed consumption. Thus, the orthogonality condition provides an indication

that can be verified in the data of whether the evolution of the variance of imputed con-

sumption over time is representative of that of true consumption. This result is formally

stated in Proposition 3.

Proposition 3

Let z be a valid instrument for c∗ and d an exogenous regressor. If the instrument z

is uncorrelated to the additional regressor, i.e. Cov(d, z) = 0, then the IV estimator

for γ in (3) is consistent and the slope coefficient multiplying the variance of true

consumption in Proposition 2 is one.

Strict fulfillment of the orthogonality condition Cov(d, z) = 0 will likely be impossible in

practice. Whether the condition comes close to be fulfilled will depend on the particular

data set, and on which additional variables are included in the demand for food. For

example, the range of correlations between regressors and the instrument in the data of

Blundell, Pistaferri, and Preston (2008) goes from close to zero (correlation with having

three or more kids) to 0.627 (correlation with being a high school graduate).

To gauge how estimators are affected by deviations from the orthogonality condition

Cov(d, z) = 0 we conduct a Monte Carlo simulation. Our simulation exercise measures

how Cov(d, z) affects measurement error bias for different values of Cov(u, d) and pro-

vides a sensitivity analysis of the estimated parameters if the orthogonality condition

Cov(d, z) is not satisfied.

The range of sample correlations in the data of Blundell, Pistaferri, and Preston (2008)

goes from close to 0 to 0.6. Thus, in our simulations we consider four values for the

correlations between d and z: 0, 0.1, 0.3, and 0.6 (and call them zero, low, medium, and

high). We use the same range of values for the unobservable correlation of the additional

regressor with measurement error. For these correlations, we assume a hypothetical true

value of γ = 0.5 and estimate γ̂ in an IV regression.4

We present three types of results. Table 1 reports the estimates of γ̂. Table 2 shows the

percentage of rejections of the null hypothesis that the estimated coefficient is equal to

4Random variables are taken from standard Normal distributions. We do 10,000 simulations with
sample size 5,000.
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the true value of γ for a significance level of 5 percent. A consistent estimator would

yield 5 percent of rejections in all cases. Finally, Table 3 addresses whether the variance

of imputed consumption tracks the evolution of the variance of true consumption over

time —it reports
(
γ
γ̂

)2
.

Table 1: Estimates of γ̂ for different correlations between the additional regressor and the
measurement error and the instrument. The labels (Zero, Low, Medium, High) correspond to
correlations of (0, 0.1, 0.3, 0.6).

Corr(u, d)
Zero Low Medium High

Corr(z, d)

Zero 0.500 0.500 0.500 0.500
Low 0.500 0.507 0.520 0.540
Medium 0.500 0.522 0.566 0.632
High 0.500 0.562 0.688 0.876

Table 2: Percentage of rejections of the null hypothesis that the coefficient is equal to the true
value, for different correlations between the additional regressor and the measurement error and
the instrument. The labels (Zero, Low, Medium, High) correspond to correlations of (0, 0.1,
0.3, 0.6).

Corr(u, d)
Zero Low Medium High

Corr(z, d)

Zero 0.05 0.05 0.05 0.05
Low 0.05 0.08 0.29 0.85
Medium 0.05 0.30 0.99 1.00
High 0.05 0.93 1.00 1.00

Bias due to measurement error disappears if at least one of the correlations is zero,

meaning that either the additional regressor is uncorrelated with measurement error or

the instrument is uncorrelated with the additional regressor. This follows from the result

in Proposition 1 that measurement error produces an asymptotic bias equal to

B ≡ plim γ̂ − γ = γ
Cov(u, d)Cov(d, z)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)
. (9)

Thus, the first line and the first column of Table 1 have γ̂ = γ if either Cov(u, d) = 0 or

Cov(d, z) = 0. As expected, the empirical rejection rate in Table 2 is 5 percent.

In contrast, if both correlations are positive, biased estimates are obtained. It only takes

medium-sized correlations to obtain estimates that exhibit significant bias. For example,
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Table 3: Sensitiveness of the ratio
(
γ
γ̂

)2
to different correlations between the additional

regressor and the measurement error and the instrument. The labels (Zero, Low, Medium,
High) correspond to correlations of (0, 0.1, 0.3, 0.6).

Corr(u, d)
Zero Low Medium High

Corr(z, d)

Zero 1.000 1.000 1.000 1.000
Low 1.000 0.975 0.925 0.855
Medium 1.000 0.918 0.781 0.626
High 1.000 0.791 0.529 0.326

when both correlations are medium-sized, γ̂ = 0.566 (Table 1) and the null hypothesis

that it is equal to the true value of 0.500 is rejected in 99 percent of the simulations

(Table 2). The ratio (γ
γ̂
)2, which governs the effect of marginal increase in the variance

of true consumption on the variance of imputed consumption, drops by more than 20

percent, to 0.781, when both correlations are medium-sized (Table 3).

3 Application

In this section we consider a concrete application that reproduces the estimations of

Blundell, Pistaferri, and Preston (2008) using specifications with different degrees of

correlation between instruments and regressors. The application illustrates the kind of

changes that can be made to mitigate measurement error bias in the estimation used

for imputation. In addition, it serves as a sensitivity analysis of the results by Blundell,

Pistaferri, and Preston (2008).

To implement the imputation procedure, Blundell, Pistaferri, and Preston (2008) esti-

mate a demand equation for food using CEX data from 1980 to 1992 of the form

ln fi,t = W ′
i,tµ+ p′i,tθ + β(Di) ln ci,t + εi,t, (10)

where ln f stands for the log of real food consumption, W contains demographic variables

that are available in both the CEX and the PSID, p contains relative prices, ln c stands for

the log of nondurable expenditure (available only in the CEX), and ε captures unobserved

heterogeneity in the demand for food and measurement error in food expenditure. The

coefficient on nondurable expenditure is allowed to vary with demographic characteristics
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(D) and over time. Nondurable consumption is instrumented using the average of the

hourly wage of the husband (by cohort, year, and education) and the average of the

hourly wage of the wife (also by cohort, year, and education).

In light of our results, a potential problem with the estimation arises if instruments

are correlated with the additional regressors in equation (10). Our simulations showed

that medium-sized correlations were enough to induce a significant departure of the

estimate from the true value of the budget elasticity. In the data there are two groups

of variables with high sample correlations with the instruments: education and prices.

Their correlations with the average of the hourly wage of the husband are presented in

the first column of Table 4. The correlation between hourly wage of the husband and

education dummies are around 0.6 (what we called a high correlation); the correlations

with prices are a somewhat lower.

Table 4: Correlations between the hourly wage of the husband and selected regressors.

BPP Alt. IV BPP - Real Alt. IV - Real
Prices
- Food 0.467 0.753 -0.072 -0.150
- Alcohol and Tobacco 0.469 0.758 -0.069 -0.134
- Fuel and Utilities 0.427 0.696 -0.066 -0.117
- Transports 0.455 0.738 -0.078 -0.148
Education
- Elementary -0.567 -0.058 -0.607 -0.013
- HS Graduate 0.627 0.055 0.674 0.010
Correlations computed for the sample used in the estimation of the food
equation. We select regressors with the largest correlations with the average
hourly wage of the husband. Column show the correlations with the different
instruments used in the analysis.

We address the high correlation between education and prices and the instruments con-

sidering two complementary ways of reducing measurement error bias. One way is to

drop the problematic regressors in the estimation of the budget elasticity, and the other

is to use an alternative instrument that is less correlated with the regressors.

As a benchmark, we replicate the specification of Blundell, Pistaferri, and Preston (2008)

and obtain the same results as they do. The budget elasticity is estimated to be 0.850

(Table 5, Col. 1). In contrast, if education dummies are excluded from the baseline

specification, then a lower budget elasticity of 0.799 is obtained (Col. 3). It can be
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argued that this is not a fair comparison because the exclusion of education dummies also

implies dropping the interactions between education and ln c. Thus, we also re-estimate

the specification of Blundell, Pistaferri, and Preston (2008) without the interactions and

report the results in Column 2. The result is stronger. Comparing columns 2 and 3, we

find that the estimated budget elasticity drops from 1.081 to 0.799 if education dummies

are excluded.

The difference in the results when education is removed suggests that measurement

error could be biasing the estimate of the budget elasticity upward. It is far from a

definitive proof; if education dummies are deemed necessary in the demand equation,

then their removal may generate omitted variable bias. On the other hand, the demand

function contains total consumption expenditure that is instrumented by wage rates.

This reduces the role of education as a proxy for income. In any case, the sensitivity

of the estimate of the budget elasticity to the removal of education dummies should at

least cast doubt on the exact value of the estimate.

The second approach does not require to drop any variables from the demand equation.

The difference is in the construction of the instruments. To achieve less correlation with

education we calculate the average hourly wage of the husband and the average hourly

wage of the wife by cohort and year but without conditioning on education. Doing so

lowers the correlation between the instrument and education dummies to close to zero

(Table 4, Col. 2).

Using these alternative instruments, which by construction are less correlated with ed-

ucation, the point estimate of the budget elasticity drops to 0.718 (Table 5, Col. 4). In

this case, the relevant comparison is with the original estimate of 0.850. The estimate

is less precise and does not allow to statistically distinguish between these values at

the usual probability thresholds. Nevertheless, if the difference in the point estimates is

attributed to measurement error, then the evidence indicates that the budget elasticity

is biased upward, as before.

The other group of variables correlated with the instruments are prices. Their correlation

with the instrument is not removed by the alternative definition of the instrument; in

fact, correlations with prices are higher (Table 4, Col. 2). The reason behind the large

correlation with prices is that total consumption expenditure enters the food demand

equation in nominal terms. Wages used to instrument consumption are also nominal.

Wages and prices are linked by inflation.
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Table 5: Sensitivity of the budget elasticity to different specifications and to the use of
alternative instruments.

(1) (2) (3) (4)
VARIABLES BPP No Interactions No Education Alt. IV

ln c 0.850*** 1.081*** 0.799*** 0.718***
(0.151) (0.112) (0.032) (0.203)

ln c x HS 0.073 -0.004
(0.072) (0.076)

ln c x College 0.083 0.058
(0.089) (0.108)

Observations 14,430 14,430 14,430 14,430
R-squared 0.671 0.619 0.687 0.682
RMSE 0.249 0.268 0.243 0.245
Standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). In the first
three columns the instruments are the average (by cohort, year, and education)
of the hourly wage of the husband and the average (also by cohort, year, and
education) of the hourly wage of the wife. In column (4) the instruments are the
average (by cohort and year) of the hourly wage of the husband and the average
(also by cohort and year) of the hourly wage of the wife.
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A more flexible specification for the demand for food breaks this link. We separate

nominal expenditures into a real component and a price index, and do the same with

the instrument. We do so by deflating nominal values using the Consumer Price Index

and add this index as an additional regressor. This change in the specification reduces

the correlation between the instrument and additional regressors. Correlations with

prices are lower both for the original instrument in Blundell, Pistaferri, and Preston

(2008) (Table 4, Col. 3) and for the alternative definition of the instrument (Table 4,

Col. 4).

We repeat our previous regressions using real consumption expenditure instrumented by

real wages. Results are shown in Table 6. The columns are analogous to those in Table 5.

The specification of Blundell, Pistaferri, and Preston (2008) with real expenditures and

real wages produces an estimate of 0.937 (Table 5, Col. 1). Again, lower point estimates

for the budget elasticity are obtained when education dummies are dropped (Table 5,

Col. 3) and when alternative definition is used for the instruments (Table 5, Col.4).

Table 6: Sensitivity of the budget elasticity to different specifications and the use of alternative
instruments using real expenditures instrumented by real wages.

(1) (2) (3) (4)
VARIABLES BPP No Interactions No Education Alt.IV

ln c 0.937*** 1.025*** 0.786*** 0.772***
(0.119) (0.100) (0.032) (0.211)

ln c x HS 0.112 -0.101
(0.129) (0.129)

ln c x College 0.018 -0.151
(0.121) (0.126)

Observations 14,430 14,430 14,430 14,430
R-squared 0.655 0.635 0.686 0.682
RMSE 0.255 0.262 0.243 0.245
Standard errors in parentheses (*** p<0.01, ** p<0.05, * p<0.1). All re-
gressions use consumption and wages in real terms. In the first three columns
the instruments are the average (by cohort, year, and education) of the hourly
wage of the husband and the average (also by cohort, year, and education) of
the hourly wage of the wife. In column (4) the instruments are the average
(by cohort and year) of the hourly wage of the husband and the average (also
by cohort and year) of the hourly wage of the wife.
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In conclusion, our results in this section indicate that in the estimation of the demand

for food, the instruments used by Blundell, Pistaferri, and Preston (2008) are highly

correlated with two sets of additional regressors, education and prices. Modifying the

specification and using alternative instruments are two approaches that lead to lower

correlations between those instruments and the additional regressors. Estimated coef-

ficients of the budget elasticity were lower in all cases, suggesting that the unobserved

correlation between additional regressors and measurement error is leading to an over-

estimation of this elasticity.

As a final point, we consider how our results affect the main results by Blundell, Pista-

ferri, and Preston (2008). Their article uses the imputation procedure only as an inter-

mediate step. The final objective is to estimate the response of household consumption

to permanent and transitory shocks. In Table 7 we show how their answers are influenced

by the different demands for food we estimated.5

Blundell, Pistaferri, and Preston (2008) estimate the response of consumption to perma-

nent and transitory income shocks (denoted by φ and ψ). The response of consumption

to transitory income shocks is not substantially affected by the different imputation pro-

cedures. It remains low and is not significantly different from zero. In contrast, either

dropping education dummies or using the alternative definition of the instruments, leads

to a rise in φ, the response of consumption to permanent shocks. This happens regard-

less of whether nominal or real expenditures are used for the imputation. This suggests

that the likely bias in the budget elasticity implies an underestimation of the impact of

permanent income shocks on consumption.6

4 Conclusion

We show that the presence of measurement error produces inconsistent estimates in

procedures used to impute consumption. Inconsistency is not easily removed using

instrumental variables, an approach used in the previous literature. The source of the

5For details on the estimation of the response to permanent and transitory income shocks consult
Blundell, Pistaferri, and Preston (2008). Blundell, Pistaferri, and Preston (2008) have made their data
and code publicly available. We use their data and adapt their code to obtain our results.

6On the other hand, the values estimated for φ are inside the range of values considered by Blundell,
Pistaferri, and Preston (2008) in their robustness checks.
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Table 7: Robustness of the response to permanent and transitory income shocks.

BPP No education Alt. IV
Nominal Imputation

φ 0.6423 0.7882 0.8186
(0.0945) (0.1153) (0.1191)

ψ 0.0533 0.0558 0.0601
(0.0435) (0.0523) (0.0584)

Real Imputation

φ 0.5988 0.7871 0.7668
(0.0877) (0.1150) (0.1106)

ψ 0.0453 0.0545 0.0501
(0.0396) (0.0519) (0.0553)

inconsistency is the presence of additional regressors that are likely to be correlated with

consumption measurement error.

The theoretical contribution of this paper is to show the existence of the asymptotic bias

due to measurement error and to derive a mathematical expression for it. Using this

expression we further show that if the interest lies in the evolution of the variance of con-

sumption, then IV estimation may prove useful, provided an additional orthogonality

condition between the instrument and the additional regressors is satisfied. Specifi-

cally, the variance of imputed consumption tracks the evolution of the variance of true

consumption if additional regressors are uncorrelated with the instrument used in the

imputation. In a Monte Carlo simulation we quantify the bias due to measurement error

when the orthogonality condition is not exactly satisfied and find that correlations of

around 0.3 may already pose a significant problem.

We use the imputation of the influential article by Blundell, Pistaferri, and Preston

(2008) as a concrete application to illustrate techniques that may mitigate measurement

error bias. We consider two different approaches to lower the correlation between instru-

ments and regressors: changes in the specification (such as the exclusion of problematic

variables) and changes in the definition of instruments. In our results, we find lower
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estimates for the budget elasticity of food consumption. In turn, in the context of the

model by Blundell, Pistaferri, and Preston (2008), these revised estimates imply a larger

role of permanent income shocks in driving consumption.

Because there is frequently a need to impute consumption data across databases, and

because measurement error is a pervasive problem in survey data, our findings should

prove useful to researchers who require the imputation of consumption to address a

larger set of questions, such as the permanent income hypothesis, retirement behavior,

and the analysis of consumption inequality.
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A Proofs

Proof of Proposition 1:

Start by stating a basic result of the IV framework.

The general IV framework

The general model consists of K regressors where one of them (Xk) suffers from mea-
surement error. It is instrumented with a instrumental variable denoted by W .

Y = Xθ + ε (A.11)

where X = [X1, ..., XK ]

Let W be a valid instrument for Xk and define Z = [1 X1 ...Xk−1 W Xk+1 ...XK ].

The IV formula for the estimators of the parameters in equation (A.11) is:

θ̂ = (Z>X)−1Z>y (A.12)

Derivation of the probability limits

Apply the formula in (A.12), and properties of convergence in probabilities, to obtain
the probability limit of both estimators: β̂1 and γ̂. The plim of the estimator of the
parameter of the variable measured with error is

plim γ̂ =
Cov(f, z)V (d)− Cov(d, z)Cov(d, y)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)
(A.13)

Replacing equation (3) in (A.13) yields

plim γ̂ =
1

Φ
{V (d) [β1Cov(d, z) + γCov(c∗, z) + Cov(e, z)− γCov(u, z)]

−Cov(d, z) [β1V (d) + γCov(d, c∗) + Cov(d, e)− γCov(d, u)]} (A.14)

where Φ ≡ V (d)Cov(c∗, z) − Cov(c∗, d)Cov(d, z). After some algebra the probability
limit of γ̂ is

plim γ̂ = γ +
Cov(e, z)V (d)

Φ
− γCov(u, z)V (d)

Φ

− Cov(d, z)Cov(d, e)

Φ
+
γCov(d, z)Cov(d, u)

Φ
(A.15)
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Define

Be =
Cov(e, z)V (d)

Φ

Bm = −γCov(u, z)V (d)

Φ

Bed = −Cov(d, e)Cov(d, z)

Φ

Bmd = γ
Cov(d, u)Cov(d, z)

Φ

The probability limit of γ̂ can then be written as

plim γ̂ = γ +Be +Bm +Bed +Bmd (A.16)

Assuming that z is a valid instrument: Cov(z, e) = Cov(z, u) = 0, and that d is exoge-
nous in (1): Cov(d, e) = 0 then:

plim γ̂ = γ +Bmd

= γ

[
1 +

Cov(u, d)Cov(d, z)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)

]
(A.17)

A similar derivation is done for β1; the IV formula for β̂1 implies that the probability
limit is

plim β̂1 =
Cov(d, f)Cov(c∗, z)− Cov(c∗, x1)Cov(f, z)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)
(A.18)

Replace f using equation (3) to obtain

plim β̂1 =
1

Φ
{Cov(c∗, z) [β1V (d) + γCov(c∗, d) + Cov(d, e)− γCov(d, u)]

−Cov(c∗, d) [β1Cov(d, z) + γCov(c∗, z) + Cov(e, z)− γCov(u, z)]} (A.19)

After some algebra, the probability limit of β̂1 is

plim β̂1 = β1 −
Cov(c∗, d) [Cov(e, z)− γCov(u, z)]

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)

+
Cov(c∗, z) [Cov(d, e)− γCov(d, u)]

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)
(A.20)

If z is a valid instrument, then Cov(e, z) = Cov(u, z) = 0. If d is exogenous in (1), then
Cov(d, e) = 0. Therefore,

plim β̂1 = β1 − γ
Cov(c∗, z)Cov(d, u)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)
(A.21)
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Proof of Proposition 2:

Start from

ĉi =
1

γ̂

[
(β0 − β̂0) + (β1 − β̂1)di + γci + ei

]
. (A.22)

Applying properties of convergence in probability, write the probability limit of the
sample variance of predicted consumption as

plimV (ĉi) =

(
γ

plim γ̂

)2

plimV (c) +

(
β1 − plim β̂1

plim γ̂

)2

plimV (d)

+

(
1

plim γ̂

)2

plimV (e) + 2

(
γ

(plim γ̂)2

)
plimCov(e, c)

+ 2γ

(
β1 − plim β̂1

(plim γ̂)2

)
plimCov(c, d)

+ 2

(
β1 − plim β̂1

(plim γ̂)2

)
plimCov(e, d) (A.23)

From Proposition 1, if z is a valid instrument and d is an exogenous regressor, then

plim β̂1 = β1 − γ
Cov(c∗, z)Cov(d, u)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)

plim γ̂ = γ

[
1 +

Cov(u, d)Cov(d, z)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)

]
(A.24)

Finally, replace plim γ̂ and β1 − plim β̂1 in (A.23) to obtain the expression for the prob-
ability limit of the sample variance of predicted consumption:

plimV (ĉi) =

(
1

1 + Cov(u,d)Cov(d,z)
V (d)Cov(c∗,z)−Cov(c∗,d)Cov(d,z)

)2 [
plimV (c) +

1

γ2
plimV (e)

+

(
Cov(c∗, z)Cov(d, u)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)

)2

plimV (d)

+ 2

(
Cov(c∗, z)Cov(d, u)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)

)
plimCov(c, d)

+
2

γ
plimCov(e, c)

]
(A.25)

22



Proof of Proposition 3:

If z is a valid instrument then Cov(e, z) = Cov(u, z) = 0 and Cov(c∗, z) 6= 0. If d is
exogenous then Cov(e, d) = 0. Coupled with Cov(d, z) = 0, this implies that

Cov(u, d)Cov(d, z)

V (d)Cov(c∗, z)− Cov(c∗, d)Cov(d, z)
= 0. (A.26)

Therefore, from Proposition 1
plim γ̂ = γ, (A.27)

and from Proposition 2(
1

1 + Cov(u,d)Cov(d,z)
V (d)Cov(c∗,z)−Cov(c∗,d)Cov(d,z)

)2

= 1. (A.28)
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