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Abstract

GARCH models include most of the stylized facts of financial time series and they have been
largely used to analyze discrete financial time series. In the last years, continuous time models based
on discrete GARCH models have been also proposed to deal with non-equally spaced observations,
as COGARCH model based on Lévy processes.

In this paper, we propose to use the data cloning methodology in order to obtain estimators of
GARCH and COGARCH model parameters. Data cloning methodology uses a Bayesian approach
to obtain approximate maximum likelihood estimators avoiding numerically maximization of the
pseudo-likelihood function. After a simulation study for both GARCH and COGARCH models
using data cloning, we apply this technique to model the behavior of some NASDAQ time series.

Keywords: GARCH model, Continuous-time GARCH process, Lévy process, COGARCH model,
data cloning, Bayesian inference, MCMC algorithm.

1 Introduction

Financial time series present usually stylized facts, namely, statistical irregularities. Mandelbrot
(1963) pointed out that they usually show non-stationarity and variations that are similar to white
noise. They also present heavy-tailed distributions with leverage and calendar effects which affect
significantly the returns. These characteristics make useless the classical Box-Jenkins methodology.

Engle (1982) introduced ARCH models to include no constant variance. Later on, Bollerslev
(1986) introduced GARCH models which generalize them by including an auto-regressive term
to model the process variance. One of the most used methodology in financial time series are
GARCH models applied in equally spaced data. However, long periods of time present holidays
and weekends that may affect the behavior of series, therefore it is convenient to introduce models
with unequally spaced or continuous time periods.

In this sense, Nelson (1990) defined a continuous GARCH model and derived a limiting GARCH
(1,1) model by adding GARCH innovations up. The resulting model was driven by two different and
independent Brownian motions, one as the driving process and the other one, present in the variance
process. However, Wang (2002) proved that the diffusion limit of Nelson was not asymptotically
equivalent to a GARCH process, considering the Le Cam’s deficiency distance.

Corradi (2000) modified Nelson’s approximation in order to obtain an asymptotically equivalent
discrete time GARCH process. In this case, both processes were driven by the same Brownian
motion, but the limiting process was not a random process. Then, Kallsen and Taqqu (1998)
introduced a continuous-time GARCH model where the processes are both driven by the same
Brownian motion, and when it is applied in discrete periods of time it is equivalent to a standard
GARCH model. This model is arbitrage free and complete, the volatility is constant over each time
interval [t, t+ 1] and they used this approach to determine pricing formulas for European options.

Kazmerchuk et al. (2005) derived a continuous time GARCH process driven also by one Brow-
nian motion. In this case they defined the volatility process as a combination of volatility and
price processes using a stochastic delay differential equation. Later on, Lorenz (2006) expanded
the previous work obtaining some solutions for the model.

In this work, we will use the COGARCH model introduced by Klüppelberg et al. (2004). This
model is based in a single Lévy process which drives both processes, and can also model jumps
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of the process. As Bollerslev (2008) pointed out, it is important that jumps could be valuable,
because they exhibit a source of risk which is non-diversifiable.

In relation with the estimation techniques that can be used in this model, the method of
moments was studied in Haug et al. (2007), who showed that the resulting estimators are consistent
and asymptotically normal. On the other hand, estimators based in pseudo-maximum likelihood
were studied by Maller et al. (2008), who approximated the COGARCH model with an embedded
sequence of discrete-time GARCH series. Moreover, Müller (2010) used a Markov chain Monte
Carlo (MCMC) based estimation procedure for the COGARCH model, driven by a compound
Poisson process.

In this paper, we have applied data cloning methodology to estimate the parameters of the
GARCH and COGARCH models. Data cloning methods have been developed to tackle with
ecological complex models (see Lele et al. (2007) and Lele et al. (2010)). These methods give
estimations of the parameters, by simulating the posterior distribution of them with a MCMC
algorithm, which converge to those obtained by maximum likelihood (ML) method. Using data
cloning methodology it is not so relevant, in practice, which type of prior distribution is considered.

In section 2 we revise briefly the GARCH and COGARCH models that are used in this paper.
In section 3 we present the main issues of the data cloning methodology as a general technique
suitable for analyzing complex models, which permits to obtain frequentist estimators by means of
a Bayesian framework. In Section 4 we introduce the data cloning estimators for the parameters
of GARCH and COGARCH models and we use a simulation study for checking the accuray of
the methodology. For this, we take simulated data from GARCH(1,1) and COGARCH models
with fixed parameters, and we obtain estimators and confidence intervals from the data cloning
application. Furthermore, we apply a Bayesian full procedure for those models with an aim of
comparison with a pure Bayesian MCMC technique. As results seem to be reasonable, that permits
to apply this methodology to real data and in section 5, we use the previous models in a real example
of the NASDAQ stock index.

2 GARCH and COGARCH Models

In this section, we first revise some definitions and characteristics of GARCH models and the
COGARCH model of Klüppelberg et al. (2004).

Stock returns have heavy-tailed distributions and, for that reason, the conditional variance is
not constant. GARCH models are concerned with modelling volatility that fluctuates over time,
which is very important as volatility is considered a measure of risk.
Definition 1. Assuming that volatilities σ2

t are random variables and εt is a sequence of random
variables, independently and identically distributed, then Yt follow a model process GARCH(1,1)
if

Yt = σtεt

where the volatility process is

σ2
t = α0 + α1Y

2
t−1 + βσ2

t−1 (1)

for t ∈ N, α0 > 0, α1 ≥ 0, β ≥ 0 and α1 + β > 0. We consider also that εt are normally distributed
N(0, 1). �

Definition 2. Let (Ω,F , P, (Ft)t≥0) be a filtered probability space, where (Ft)t≥0 is the natural
filtration of the background driving Lévy process L = (Lt)t≥0. Given an initial value σ0, the COG-
ARCH process G = (Gt)t≥0 and the variance process σ2 = (σ2

t )t≥0 are defined by the stochastic
differential equations

dGt = σtdLt (2)

dσ2
t+ = βdt− ησ2

t dt+ ϕσ2
t d[L,L]t (3)

where t > 0, G0 = 0, β > 0, η > 0, ϕ ≥ 0 and [L,L]t is the quadratic variation of the Lévy process.
�

Maller et al. (2008) proved that this model can be expressed as a continuous time limit of a
sequence of GARCH models. As the COGARCH model may be approximated by an appropriate
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set of GARCH processes, the parameters of the COGARCH model can be estimated using the
relation between them.

In order to deal with the approximation to the COGARCH model, Maller et al. (2008) fixed
an interval [0, T ], where T > 0, and took the sequence of integer numbers (Nn)n≥1 such that
limn→∞Nn =∞ and a sequence of partitions

0 = t0(n) < . . . < tNn(n) = T

which divide the interval [0, T ] into Nn sub-intervals of length ∆ti(n) = ti(n) − ti−1(n). It is
assumed that ∆t(n) = maxi=1,...,Nn ∆ti(n) −→ 0 when n→∞. Then, the corresponding discrete-
time processes (Gi,n)i=1,...,Nn and (σ2

i,n)i=1,...,Nn are defined by

Gi,n = Gi−1,n + σi−1,n

√
∆ti(n)εi,n (4)

σ2
i,n = β∆ti(n) + (1 + ϕ∆ti(n)ε2i,n)e−η∆ti(n)σ2

i−1,n, i = 1, ..., Nn (5)

where innovations εi,n are independent and identically distributed with E(εi,n) = 0, V (εi,n) = 1
and σ2

0,n = σ2
0 .

The continuous-time versions of Gi,n and σ2
i,n are defined as

Gn(t) = Gi,n in t ∈ [ti−1(n), ti(n)] with Gn(0) = 0
σn(t)2 = σ2

i,n in t ∈ [ti−1(n), ti(n)]

If E(L1) = 0 and E(L2
1) = 1, there exists for each n ≥ 1 a sequence εi,n such that

ρ((Gn, σ
2
n), (G, σ2))

P−→
n→∞

0

where ρ is the Skorokhod distance.
In this way, given a COGARCH model, there exists a sequence of GARCH models which

converges to it. Then, the process (Gn(t), σn(t)) can be considered as an approximation to the
COGARCH model (G(t), σ(t)) for n large enough.

Maller et al. (2008) used this approximation to fit the model to unequally spaced time data, by
deriving a pseudo-maximum likelihood function and numerically maximizing it in order to estimate
the corresponding parameters.

We take this pseudo-likelihood function to build the joint posterior distribution of the param-
eters, as a previous step to deal with the data cloning methodology. But, in this case, as the
procedure is based on a MCMC algorithm, it is not necessary to numerically maximize the pseudo-
likelihood function as in Maller et al. (2008).

By other hand, we consider also full Bayesian procedures, based on MCMC techniques, for both
GARCH and COGARCH cases regarding a comparison with the data cloning methodology.

Let us assume that data G(ti) are distributed as a COGARCH model, defined in (2) and (3),
in time points 0 = t0 < t1 < . . . < tN = T .

Let Yi = G(ti) − G(ti−1) be returns and ∆ti = ti − ti−1 the time increments. As the process
(σti)i=1...,N is Markovian, Yi is conditionally independent of the previous returns Yi−1, Yi−2, . . .,
given Fti−1

. The conditional expectation and variance of Yi given Fti−1
, by using Proposition 5.1

in Klüppelberg et al. (2004), are
E(Yi|Fti−1) = 0

ρ2
i = V ar(Yi|Fti−1

) = E(Y 2
i |Fti−1

) =

(
σ2
ti−1
− β

η − ϕ

)(
e(η−ϕ)∆ti − 1

η − ϕ

)
+
β∆ti
η − ϕ

(6)

where (Lt)t≥0 is a quadratic pure jump process with E(L1) = 0, E(L2
1) < ∞ and (σ2

t )t≥0 is
stationary.

To ensure the stationarity of the process it must be assumed that E(L2
1) = 1 and E(σ2

0) = β
η−ϕ ,

with η > ϕ.
Then, assuming that Yi are conditionally N(0, ρ2

i ), the pseudo-likelihood function for the ob-
served returns y = (y1, . . . , yN ) is

L(β, ϕ, η|y) =

(
N∏
i=1

1√
2πρ2

i

)
exp

{
−

N∑
i=1

y2
i

2ρ2
i

}
(7)
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where

σ2
i = β∆ti + e−η∆tiσ2

i−1 + ϕe−η∆ti(
√

∆tiεi,nσi−1)2

= β∆ti + e−η∆tiσ2
i−1 + ϕe−η∆tiy2

i (8)

The last equation is obtained by substituting σ2
ti−1

by σ2
i−1 in (6) and assuming the discretization

of the volatility process.
Maller et al. (2008) obtained the pseudo-maximum likelihood estimates by directly maximizing

the pseudo-log-likelihood function for the initial value σ2
0 = β

η−ϕ .

3 Data cloning methodology

The data cloning method is a general technique to compute maximum likelihood estimates, along
with their asymptotic variances, by means of a Bayesian MCMC procedure (see Lele et al. (2007)
and Lele et al. (2010)).

In a MCMC procedure, once y = (y1, . . . , yN ) has been observed, any sample can be generated
from the posterior distribution

π(β, ϕ, η|y) ∝ L(β, ϕ, η|y)π(β, ϕ, η)

which is proportional to the product of the likelihood function L(β, ϕ, η) and a given prior distri-
bution π(β, ϕ, η).

In data cloning methodology, samples are driven from the posterior distribution

π(k)(β, ϕ, η|y) ∝ [L(β, ϕ, η|y)]
k
π(β, ϕ, η)

which is proportional to the product of the kth power of the likelihood function [L(β, ϕ, η|y)]
k

and
the prior distribution π(β, ϕ, η).

The expression [L(β, ϕ, η|y)]
k

is the likelihood for k copies of the original data, and for k large
π(k)(β, ϕ, η|y) converges to a multivariate normal distribution with mean equal to the maximum
likelihood (ML) estimate of the parameters, and covariance matrix equal to 1/k times the inverse
of the Fisher information matrix for the ML estimates (see Lele et al. (2007)).

In this way, after obtaining samples from the posterior distribution using a MCMC procedure,
their sample means are computed which provide the maximum likelihood estimates of the param-
eters.

The data cloning algorithm can be summarized in the next steps

Step 1: Create k-cloned data set y(k) = (y,y, . . . ,y), where the observed data vector is repeated
k times.

Step 2: Using an MCMC algorithm, generate random numbers from the posterior distribution
that is based on a prior π(β, ϕ, η) and the cloned data vector y(k) = (y,y, . . . ,y), where the
k copies of y are assumed to be independent of each other. In practice, any proper prior
distribution can be used.

Step 3: Compute the sample mean and variances of the values (θ)j , j = 1, . . . , B (for B iterations
of the MCMC run) generated from the marginal posterior distribution. The ML estimates
of (θ)j correspond to the posterior mean values and the approximate variances of the ML
estimates correspond to k times the posterior variances.

4 Data cloning estimation of GARCH and COGARCHmod-
els

In this section we apply the data cloning methodology to estimate the parameters of GARCH(1,1)
and COGARCH models. Usually, these models are studied either from a classical point of view,
with moment estimators or with a pseudo-maximum likelihood procedure (see e.g. Francq and
Zakoian (2010), Haug et al. (2007) and Maller et al. (2008)), or from a Bayesian point of view (see
e.g. Ardia (2008) and Müller (2010)).

Interpretations of the estimators and credible intervals in the Bayesian approach are dependent
of prior distributions. In this way, it is convenient to elicit accurate prior distributions. But in the
data cloning approach any proper prior distribution can be used in pratice, and elicitation of prior
distributions is not very relevant.
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4.1 Data cloning estimation of GARCH(1,1) model

We consider the estimation of the parameters of a GARCH(1,1) model under a data cloning method-
ology. The algorithm may be straightforwardly generalized in order to estimate the parameters of
general GARCH models, by including the corresponding terms.

In the GARCH(1,1) model (1), the parameters of interest are α0, α1 and β. In order to guarantee
the stationary of the process, the model must satisfy that E

[
ln(α1η

2
t + β)

]
< 0, and this permits

to find boundaries over parameters.

Proposition 1. If a GARCH process satisfies that E
[
ln(α1η

2
t + β)

]
< 0, then the process is

strictly stationary and α1 and β are bounded between the following limits

β ∈ (0, 1) (9)

α1 ∈ (0, 2eγ) (10)

Proof. As E
[
ln(α1η

2
t + β)

]
< 0 and α1 ≥ 0

E [ln(β)] ≤ E
[
ln(α1η

2
t + β)

]
< 0

that is, β ∈ (0, 1), as in (9).
In order to obtain (10), as β ≥ 0

E
[
ln(α1η

2
t )
]
≤ E

[
ln(α1η

2
t + β)

]
< 0 (11)

As ηt ∼ N(0, 1), the characteristic function of Y = ln(η2
t ) is

ϕY (t) = E
[
eitY

]
= E

[
eitln(η2t )

]
= E

[
(η2
t )it
]

=

∫ ∞
0

1√
2π

(
η2
t

)it−1/2
e−η

2
t /2dη2

t

=
1√
2π

Γ
(

2it+1
2

)
(1/2)

2it+1
2

which gives

E
[
ln
(
η2
t

)]
=
ϕ′Y (0)

i
=

Γ′ (1/2)√
π

+ ln(2)

and, as Γ′(t) = Γ(t)ψ(t), where ψ(t) is the digamma function

E
[
ln(η2

t )
]

= ψ(1/2) + ln(2) ≈ −γ − ln(2)

where γ is the Euler-Mascheroni constant.
Substituting this value in (11), it is obtained that

E
[
ln(α1η

2
t )
]

= ln(α1) + E
[
ln(η2

t )
]

= ln(α1)− γ − ln(2) < 0

and, hence, α1 < 2eγ . �

In data cloning methodology, as the first step is to design a Bayesian MCMC procedure, we
have to consider what the prior distributions of the parameters are; although the final results are
not affected by the particular chosen prior distributions (see Lele et al. (2007)).

In this case, as vaguely informative distributions, we use the following uniform distributions
taking into account the corresponding restrictions from Proposition 1

α0 ∼ U(0, d)

α1 ∼ U(0, 2eγ)

β ∼ U(0, 1)

where d is any positive value.
The corresponding joint posterior distribution is the product of the previous prior distributions

and the kth power of the pseudo-likelihood function (see e.g. Francq and Zakoian (2010))
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π(k)(α0, α1, β|y) ∝ [L(α0, α1, β|y)]
k
π(α0)π(α1)π(β)

∝
∏N
i=1

(
2πσ2

i

)− k2 exp
{
−k y2i

2σ2
i

}
I(0,d)(α0)I(0,2eγ)(α1)I(0,1)(β).

The conditional posterior distribution of the parameters are

π(k)(α0|α1, β,y) ∝

(
N∏
i=1

σ2
i

)− k2
exp

{
−k

N∑
i=1

y2
i

2σ2
i

}
I(0,d)(α0)

π(k)(α1|α0, β,y) ∝

(
N∏
i=1

σ2
i

)− k2
exp

{
−k

N∑
i=1

y2
i

2σ2
i

}
I(0,2eγ)(α1)

π(k)(β|α0, α1,y) ∝

(
N∏
i=1

σ2
i

)− k2
exp

{
−k

N∑
i=1

y2
i

2σ2
i

}
I(0,1)(β)

The data cloning algorithm starts with an initial solution α
(0)
0 , α

(0)
1 , β(0), and generates values

for α
(m)
0 , α

(m)
1 , β(m) from the previous conditional posterior distributions of the parameters in each

iteration m.
The algorithm can be summarized in the next steps

Step 1 Set initial values α
(0)
0 , α

(0)
1 , β(0) at m = 0.

Step 2: Generate α
(m+1)
0 from

α
(m+1)
0 ∼ π(k)(α0|α(m)

1 , β(m),y)

Step 3: Generate α
(m+1)
1 from

α
(m+1)
1 ∼ π(k)(α1|α(m+1)

0 , β(m),y)

Step 4: Generate β(m+1) from

β(m+1) ∼ π(k)(β|α(m+1)
0 , α

(m+1)
1 ,y)

Step 5: Set m = m+ 1. Go to Step 2.

The data cloning algorithm has been programmed by using the package dclone (Sólymos (2010))
from the R project (R Core Team (2012)). In order to check the performance of this algorithm in
GARCH models, we have simulated data series from a known GARCH(1,1) model and we have
compared the obtained results with the real ones.

We simulate, as an example, 1000 observations from a GARCH(1,1) model with parameters
α0 = 3, α1 = 0.7 and β = 0.1, by means of the R library TSA (Chan and Ripley (2012)).

We check what the optimal number of clones is, regarding some statistics computed in the
package dclone (Sólymos (2010)), such as the maximum eigenvalue of the posterior variance, the
minimum squared error and the squared error (see Lele et al. (2010) and Brooks and Gelman
(1998)). There are not relevant improvements in their values when the number of clones is larger
than 10, therefore we use this number of clones to analyze the data.

Table 1 shows the real values of α0, α1 and β from which data has been simulated, the parameters
estimation, the standard errors and the 95% frequentist confidence intervals.

These results show that all parameters are quite close to their real values. Moreover, the
standard errors are low and the 95% confidence intervals include all the real values. Similar results
can be found with any other set of simulated parameters.

We compare now the data cloning method with a Bayesian MCMC algorithm using the same
simulated data. The MCMC algorithm has been programmed using Jags (Plummer et al. (2003))
by means of the package runjags (Denwood (2011)) from the R project (R Core Team (2012)).
One advantage of using Jags is that it constructs the full conditional distributions and it carries
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Parameter Real Value Estimator S.D. 95% Confidence Interval

α0 3 3.229 0.333 (2.589, 3.869)

α1 0.7 0.744 0.075 (0.597, 0.891)

β 0.1 0.088 0.031 ( 0.027, 0.148)

Table 1: Estimation for GARCH parameters using the data cloning method

out the Gibbs sampling from the model specifications. All codes are available from the authors,
upon request.

In table 2 it is shown the posterior means, standard errors and the credible intervals for the
GARCH model parameters when the prior distributions are the same as in the data cloning method
(see, e.g., Nakatsuma (1998)).

Parameter Real Value Posterior mean S.D. HPD 0.95

α0 3 3.226 0.328 (2.612, 3.898)

α1 0.7 0.743 0.074 (0.606, 0.896)

β 0.1 0.094 0.031 (0.042, 0.163)

Table 2: Estimation for GARCH parameters using MCMC

Tables 1 and 2 show similar accurate results, although interpretations of them must be done in
terms of frequentist or Bayesian point of views.

4.2 Data cloning estimation of COGARCH models

In this section we estimate the COGARCH model parameters under the data cloning methodol-
ogy. As in section 4.1, at first it is necessary to consider the corresponding conditional posterior
distributions of the parameters.

We consider the following vaguely informative prior distributions

β ∼ U(0, a)

ϕ ∼ U(0, c)

η ∼ U(ϕ, b)

where a, c and b are positive real values and b > c.
The corresponding joint posterior distribution is the product of the previous prior distributions

and the kth power of the pseudo-likelihood function (see 7) given by

π(k)(β, ϕ, η|y) ∝ [L(β, ϕ, η|y)]
k
π(β)π(ϕ)π(η)

∝
(∏N

i=1 ρ
2
i

)−k/2
exp

{
−k
∑N
i=1

y2i
2ρ2i

}
I(0,a)(β)I(ϕ,b)(η)I(0,c)(ϕ).

Then, the conditional posterior distribution of the parameters are

π(k)(β|ϕ, η,y) ∝

(
N∏
i=1

ρ2
i

)−k/2
exp

{
−k

N∑
i=1

y2
i

2ρ2
i

}
I(0,a)(β)

π(k)(ϕ|β, η,y) ∝

(
N∏
i=1

ρ2
i

)−k/2
exp

{
−k

N∑
i=1

y2
i

2ρ2
i

}
I(0,c)(ϕ)

π(k)(η|β, ϕ,y) ∝

(
N∏
i=1

ρ2
i

)−k/2
exp

{
−k

N∑
i=1

y2
i

2ρ2
i

}
I(ϕ,b)(η)
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The data cloning algorithm generates values for β(m), ϕ(m), η(m) from the previous conditional
posterior distributions of the parameters in each iteration m from initial values β(0), ϕ(0), η(0).

The algorithm can be summarized in the next steps

Step 1 Set initial values β(0), ϕ(0), η(0) at m = 0.

Step 2: Generate β(m+1) from

β(m+1) ∝

(
N∏
i=1

ρ2
i

)−k/2
exp

{
−k

N∑
i=1

y2
i

2ρ2
i

}
I(0,a)(β)

where

ρ2
i =

(
σ2
i−1 −

β(m)

η(m) − ϕ(m)

)(
exp{(η(m) − ϕ(m))∆ti} − 1

η(m) − ϕ(m)

)
+

β(m)∆ti
η(m) − ϕ(m)

σ2
i−1 = β(m)∆ti−1 + exp{−η(m)∆ti−1}σ2

i−2 + ϕ(m) exp{−η(m)∆ti−1}y2
i−1

σ2
0 =

β(m)

η(m) − ϕ(m)

for i = 1, . . . , N.

Step 3: Generate ϕ(m+1) from

ϕ(m+1) ∝

(
N∏
i=1

ρ2
i

)−k/2
exp

{
−k

N∑
i=1

y2
i

2ρi2

}
I(0,c)(ϕ)

where

ρ2
i =

(
σ2
i−1 −

β(m+1)

η(m) − ϕ(m)

)(
exp{(η(m) − ϕ(m))∆ti} − 1

η(m) − ϕ(m)

)
+

β(m+1)∆ti
η(m) − ϕ(m)

σ2
i−1 = β(m+1)∆ti−1 + exp{−η(m)∆ti−1}σ2

i−2 + ϕ(m) exp{−η(m)∆ti−1}y2
i−1

σ2
0 =

β(m+1)

η(m) − ϕ(m)

for i = 1, . . . , N.

Step 4: Generate η(m+1) from

η(m+1) ∝

(
N∏
i=1

ρ2
i

)−k/2
exp

{
−k

N∑
i=1

y2
i

2ρi2

}
I(ϕ(m+1),b)(η)

where

ρ2
i =

(
σ2
i−1 −

β(m+1)

η(m) − ϕ(m+1)

)(
exp{(η(m) − ϕ(m+1))∆ti} − 1

η(m) − ϕ(m+1)

)
+

β(m+1)∆ti
η(m) − ϕ(m+1)

σ2
i−1 = β(m+1)∆ti−1 + exp{−η(m)∆ti−1}σ2

i−2 + ϕ(m+1) exp{−η(m)∆ti−1}y2
i−1

σ2
0 =

β(m+1)

η(m) − ϕ(m+1)

for i = 1, . . . , N.

Step 5: Set m = m+ 1. Go to Step 2.

In order to check the performance of the data cloning method, we have simulated data series
from a known COGARCH model and we have compared the parameters estimations with the real
ones from which data has been generated.

We simulate, as an example, 180 observations from a COGARCH with parameters β = 0.35,
η = 0.25 and φ = 0.02 following the same procedure as in Maller et al. (2008).

As in section 4.1, we check what the optimal number of clones is in term of the statistics
computed in the package dclone (Sólymos (2010)). In this case there are not relevant improvements
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in the values when the number of clones is larger than 20, therefore we use this number of clones
to analyze the data.

Table 3 shows the real values of β, η and φ, the parameters estimations, the standard errors
and the 95% frequentist confidence intervals.

Parameter Real Value Estimators S.D. 95% Confidence Interval

β 0.25 0.268 0.211 (0, 0.682)

η 0.35 0.188 0.146 (0, 0.474)

φ 0.02 0.045 0.021 (0.003, 0.086)

Table 3: Estimation for COGARCH parameters using data cloning

These results show that all parameters are quite close to their real values, the standard errors
are low and the 95% confidence intervals include all the real values. Similar results can be found
with other sets of simulated parameters.

In Table 4 it is shown the posterior means, standard errors and the credible intervals for the pa-
rameters of the COGARCH model, using a Bayesian MCMC approach when the prior distributions
are the same used in the data cloning algorithm.

Parameter Real Value Estimated Value S.D. HPD 0.95

β 0.25 0.427 0.158 (0.138 ; 0.747)

η 0.35 0.301 0.132 (0.092 ; 0.600)

φ 0.02 0.029 0.014 (0.002 ; 0.049)

Table 4: Estimation for COGARCH parameters using MCMC

Both tables 3 and 4, show similar accurate results, although interpretations of parameters are
different.

5 Data cloning estimation for a NASDAQ-100 stock index
data set

GARCH and COGARCH models have been proposed to deal with volatilities in real financial series,
assuming stationarity. Therefore, in this section we apply GARCH(1,1) and COGARH models to
analyze the behavior of Nasdaq-100 index series. In order to obtain estimators of the parameters,
we apply both, data cloning and full Bayesian methodologies.

The data are obtained from the website finance.yahoo.com and we consider weekly returns of
Nasdaq-100 index from January 2000 to November 2012.

We first test the presence of autoregressive conditional heteroskedasticity effects in the series,
by means of the ARCH-LM test (see Godfrey (1978) and Breusch (1978)). Table 5 shows the LM
statistic and the corresponding p-values computed on the Nasdaq-100 returns. It can be concluded
that this series presents autoregressive conditional heteroskedasticity effects.

lags LM p-value

1 20.2287 6.871e-06
5 40.6069 1.126e-07
10 82.096 1.947e-13
15 179.5892 2.2e-16
20 212.5089 2.2e-16

Table 5: Lagrange Multipliplier test for Nasdaq-100 returns
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Then we check which are the most appropriate model by using the Akaike information criterion
(AIC) (Akaike (1974)) and the Bayesian information criterion (BIC) (Schwarz (1978)). Their
respective values are shown in table 6.

Model AIC BIC

ARCH(1) 2381.906 -2372.885
ARCH(2) -2538.131 -2524.601

GARCH(1,1) -2623.244 -2609.713
GARCH(1,2) -2614.217 -2596.176
GARCH(2,1) -2606.293 -2588.252
GARCH(2,2) -2611.563 -2589.012

Table 6: AIC and BIC criteria for several GARCH models

Minimum values for AIC and BIC criteria are found just for a GARCH(1,1) model, therefore it
will be used for modeling the behavior of the weekly Nasdaq-100 returns series.

We use the data cloning approach, as in section 4.1, to estimate the parameters, their standard
errors and the approximate maximum likelihood intervals. We check what the optimal number of
clones is (see (Sólymos (2010)) and we obtain that there are not relevant improvements when the
number of clones is larger than 40, therefore we use this number of clones to analyze the data.

Using 40 clones, the results are shown in Table 7.

Parameter Estimated Value S.D. Confidence Interval 95%

α0 7.82e-05 2.97e-06 (4.13e-05 ; 1.15e-04)

α1 0.196 5.01e-03 (0.134; 0.258)

β 0.741 4.60e-03 (0.684; 0.798)

Table 7: Clone estimations for GARCH(1,1) parameters to model Nasdaq weekly returns

Results obtained with data cloning can be compared with those obtained by a standard MCMC
Bayesian approach (see e.g. Nakatsuma (1998)). Table 8 shows posterior means, standard errors
and the credible intervals for the GARCH(1,1) parameters under a full Bayesian approach.

Parameter Estimated Value S.D. HPD 0.95

α0 8.31e-05 1.94e-05 (4.90e-05 ; 1.25e-04)

α1 0.2054 0.0324 (0.147; 0.2748)

β 0.7324 0.0285 (0.675; 0.7863)

Table 8: MCMC estimations for GARCH(1,1) parameters to model Nasdaq weekly returns

Both, data cloning and Bayesian methodologies, show similar results (see table 7 and table 8).
We now analyze the Nasdaq-100 daily returns from January 2008 to December 2012. As COG-

ARCH model enable to analyze irregularly spaced time series, we will use it to take into account
holiday periods and weekends of the daily Nasdaq-100 series.

As in section 4.2, we use the data cloning approach to estimate the parameters of the COCARCH
model, their standard errors and the approximate frequentist intervals. We also consider a MCMC
Bayesian approach in order to obtain the posterior distributions and the credible intervals of the
parameters. Results are shown in table 9 and table 10, respectively.

10



Parameter Estimated Value S.D. Confidence Interval 95%

β 9.041 0.289 (5.457; 12.626)

η 0.055 0.00042 (0.050; 0.061)

φ 0.05 0.00015 (0.048; 0.052)

Table 9: Clone estimations of COGARCH parameters to model Nasdaq daily returns

Parameter Estimated Value S.D. HPD 0.95

β 9.661 2.113 (6.140; 14.414)

η 0.054 0.0043 (0.045; 0.063)

φ 0.047 0.0028 (0.039; 0.050)

Table 10: MCMC estimations of COGARCH parameters to model Nasdaq daily returns

Tables 9 and 10 show similar results in the estimations and the standard errors seem to be lower
for the data cloning algorithm.

Parameter η measures the speed of the decline of a volatility burst. For this dataset the value
is not very high, namely, when a volatility burst appears due to the arrival of new information to
markets, its influence in volatility declines with a moderate speed.

Parameter φ measures the magnitude of the volatility jumps and it may be considered as a
measure of how information affects to volatility and how fast market assumes new events. In
Nasdaq-100 series the estimation of φ is quite large in relation to the values it may reach in order
to maintain stationarity. A possible interpretation is that volatility bursts are quite big and daily
index moves largely up or down regarding the appearance of relevant information in market.

Finally, parameter β represents the level of volatility and regarding the Nasdaq-100 values, the
estimated value is not very large.

6 Final conclusions

GARCH modeling is a very popular methodology that takes into account the most important
stylized facts that financial series present and it is applied in equally spaced data. But there
are periods of time with holidays and weekends that may affect the behavior of series, and it is
convenient to introduce unequally spaced or continuous time periods. In this sense, COGARCH
models may be a good alternative to tackle with this kind of situations.

In this work, we use COGARCH models based in a Lévy process which include volatility and
model the process jumps (see Klüppelberg et al. (2004)). We propose to use a MCMC Bayesian
algorithm and the data cloning methodology.

The main results are

(i) Either the posterior means estimated by a MCMC Bayesian method or the data cloning
estimators can be used for estimating the parameters of GARCH and COGARCH models as
they show a good behavior in the simulation study.

(ii) We have used GARCH and COGARCH models to analyze the behavior of the Nasdaq-100
index series, by using both data cloning and a MCMC Bayesian methodologies. Results are
easily interpreted from a practical point of view.
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