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Learning teaching strategies in an Adaptive and Intelligent
Educational System through Reinforcement Learning

Ana Iglesias · Paloma Martínez · Ricardo Aler ·
Fernando Fernández

Abstract One of the most important issues in Adaptive and
Intelligent Educational Systems (AIES) is to define effective
pedagogical policies for tutoring students according to their
needs. This paper proposes to use Reinforcement Learning
(RL) in the pedagogical module of an educational system so
that the system learns automatically which is the best peda-
gogical policy for teaching students. One of the main char-
acteristics of this approach is its ability to improve the peda-
gogical policy based only on acquired experience with other
students with similar learning characteristics. In this paper
we study the learning performance of the educational system
through three important issues. Firstly, the learning conver-
gence towards accurate pedagogical policies. Secondly, the
role of exploration/exploitation strategies in the application
of RL to AIES. Finally, a method for reducing the training
phase of the AIES.
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1 Introduction

Distance education is currently a significant research and de-
velopment area. In recent years, distance educational sys-
tems have been improved, opening new perspectives on dif-
ferent ways to teach. The use of the Internet as a tool for
educational systems helps to avoid physical barriers, class-
rooms access and incompatibilities resulting from different
student system platforms.

Traditionally, the courses in Web-based systems con-
sist of static hypertext pages with no student adaptability.
However, since the 1990s, researchers began to incorporate
adaptability into their systems [1]. Web-based Adaptive and
Intelligent Educational Systems (Web-based AIES) are dis-
tance educational systems based on the Internet.

One of the main problems in AIES is to determine how
to adapt the curriculum sequence to each student according
to their learning characteristics. Several Machine Learning
(ML) techniques are used in AIES in order to choose the
best pedagogical strategy to be applied in each moment, like
neural networks [2], Bayesian networks [3], etc. In a previ-
ous paper [4], we propose to use a knowledge representation
based on Reinforcement Learning (RL) [5] that allows AIES
to adapt tutoring to students’ needs. In this way, the system
could be able to improve its pedagogical policy, sequenc-
ing the system’s content in an accurate way according the
current student’s needs based only on the student’s perfor-
mance, lesson objectives and the relationships among course
modules. This proposal avoids the definition of every static
and predefined pedagogical policy for each student. We call
the system implemented according this proposal RLATES
(Reinforcement Learning in Adaptive and intelligent Edu-
cational Systems).

However, this feature could be a problem in Web-based
educational systems, because adaptation based only on pre-
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vious interactions with other students implies that when the
system is in its learning phase, it is not teaching students
in the best way. So the system development requires two
phases: the Training phase, where the system explores new
alternatives in order to teach the system contents; and the
Use phase, where the system uses the experience previously
acquired from interactions with other students with similar
learning characteristics.

That is why in this paper we deeply analyze the viabil-
ity of RLATES under a simulated and theoretical point of
view before using RLATES for real situations. This paper
presents the study of the learning performance of RLATES
through three important issues. Firstly, we demonstrate that
the system is able to converge into a good pedagogical strat-
egy when it interacts with simulated students with different
learning characteristics. The quality of the obtained policy is
measured in: (i) the number of actions that the system needs
to carry out to teach all of the contents to the student; (ii) the
number of students required in the training phase. Secondly,
two typical exploration/exploitation strategies in the rein-
forcement learning bibliography have been studied in order
to decide which one is more appropriate to be used in Adap-
tive and Intelligent Educational Systems. Finally, we have
studied how to reduce the Training phase of the system by
initializing the system with pedagogical information coming
from interactions with other simulated students. This third
study is crucial for the viability of the system in real situ-
ations, because it could reduce the number of students that
the AIES is not teaching in the best way.

The experiments show that the system learns to teach by
trial and error at the same time as simulated students learn
the AIES’s material. For the experiments, an example of a
Database Design (DBD) AIES is presented.

The paper is organized as follows: firstly, Sect. 2 de-
scribes the main characteristics of Adaptive and Intelligent
Educational Systems and Reinforcement Leaning. Then,
Sect. 3 describes the architecture of the DataBase Design
Adaptive and Intelligent Educational System (DBD AIES)
used in this work. Section 4 defines the DBD AIES system
as a RL problem. Then, Sect. 5 summarizes experimental re-
sults. Finally, the main conclusions and further research of
this work are given.

2 Background

The main characteristics of Web-based Adaptive and Intelli-
gent Educational Systems and the Reinforcement Learning
Model are described in this section.

2.1 Web-based Adaptive and Intelligent Educational
Systems

A Web-based AIES adapts the policy to teach to each stu-
dent according to their learning characteristics by applying

artificial intelligence techniques. These systems have three
useful benefits: classroom independence, platform indepen-
dence, and intelligent adaptability to the learners according
to their needs.

The Web-based AIES systems are not totally a new type
of systems, but they stem from Intelligent Tutoring Systems
(ITS) and Adaptive Hypermedia Systems (AHS). Intelligent
Tutoring Systems (ITSs) are computer-aided instructional
systems with models of instructional content that specify
what to teach and teaching strategies that specify how to
teach [6]. Adaptive Hypermedia Systems adapt the content
of a hypermedia page to the student’s goals, knowledge,
preferences and other student information for each individ-
ual student interacting with the system [1].

Both ITSs and AHS share one of the oldest problems in
educational systems: what to teach next and how to do it.
In Intelligent Tutoring Systems, Curriculum Sequencing has
been widely studied and specifies the individually planned
sequence of knowledge units and learning tasks (examples,
questions, problems, etc.) that are most suitable according
to the student learning needs at each moment. On the other
hand, the Adaptive Hypermedia Systems study the Adap-
tive Navigation Support technology (ANS). This technology
provides the student with hyperspace orientation and nav-
igation by changing the appearance of the pages and their
visible links.

In this paper, we address this problem again by applying
Reinforcement Learning so that the system could learn ac-
curate pedagogical strategies to teach students according to
their learning characteristics.

2.1.1 Pedagogical strategies

A pedagogical strategy specifies how to sequence, how to
provide feedback to students and how to show, explain or
summarize the system content [7]. Most of the current dis-
tance educational systems define their pedagogical strategies
as predefined action plans showing the system material to
each student according to their learning characteristics [8].
The heterogeneity of the students interacting with the sys-
tem is one of the main problems in adaptive educational sys-
tems, because the system has to adapt to each student at each
interaction step.

To choose the appropriate pedagogical strategy at each
moment is not an easy task. It is necessary to define the
teaching strategies according to each student at every step of
the interaction and it is also necessary to specify when and
where the strategies are different [9]. Moreover, if a peda-
gogical strategy has been chosen and it is not the most ap-
propriate strategy to be applied at this moment, we have to
discover why, and how to solve it.

How to choose the best pedagogical strategy to be ap-
plied at each moment has been widely studied, but it usually
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Fig. 1 AIES architecture

has a high cost. In the first educational systems, the students
were responsible for their own learning, such as in PMS
system [10]. Nowadays, artificial intelligence techniques are
applied in order to solve the problems derived from choosing
the pedagogical strategy; for instance, semantic nets have
been applied in the MENO-TUTOR system [11], neural nets
have been used in the UNIMEM system [2], bayesian net-
works have been applied in DT Tutor [3] and reinforcement
learning model have been used to define the user model in
the ADVISOR system [12].

2.1.2 Architecture of Adaptive and Intelligent Educational
Systems

A typical structure of an ITS, and hence, of an AIES, is made
up of four well differentiated modules (see Fig. 1) [13]:

• The student module manages all important information
about the student in the learning process: student knowl-
edge, personal characteristics, historical behaviour, learn-
ing aptitudes, etc.

• The interface module facilitates the communication be-
tween the AIES and the student. Therefore, it has to have
high usability, to be intuitive and not ambiguous, etc.

• The domain module contains all characteristics of the
knowledge to teach. It is sometimes called the expert
module because some systems use it like an expert sys-
tem [14], storing information on the topics, tasks, rela-
tionships between them, difficulty of each task, etc.

• The pedagogical module decides what, how and when to
teach the domain module contents, making better peda-
gogical decisions according to the student needs. Some
researchers call it the tutor module, because it compares
the student knowledge with the domain knowledge and
then chooses the pedagogical strategies to teach the stu-
dents.

Fig. 2 Reinforcement learning architecture

2.2 Reinforcement Learning

Reinforcement learning deals with agents connected to their
environment via perception and action. At each step of
the interaction, the agent observes the current state, s, and
chooses an action to be executed, a. This execution produces
a state transition and the environment provides a reinforce-
ment signal, r , indicating the quality of the state transition
when the agent solves the task. The final goal of the agent
is to behave choosing the actions that tend to increase the
long-run sum of values of the reinforcement signal, r , learn-
ing its behavior by systematic trial and error, guided by a
wide variety of algorithms [15].

RL problems are usually described by Markov Decision
Processes (MDP) [16]. The components of an MDP are de-
scribed in Fig. 2. The I function indicates how the agent
perceives the current state of the environment. The dynamic
of the domain is defined by using the state transaction func-
tion, T , and the reinforcement signal, R:

• R : S ×A → R, where a reinforcement signal is provided
for each state and each action and is defined in (1),

R(s, a) = Ra
ss′ = E{rt+1 | st = s, at = a} (1)
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• T : S × A × S → P , where for each state and each ac-
tion, a probability distribution is provided. The function
is shown in (2), where T (s, a, s′) indicates the probabil-
ity of transiting to state s′ when the agent was in state s

and the action a is carried out.

T (s, a, s′) = P a
ss′ = Pr{st+1 = s′ | st = s, at = a} (2)

Then, the main goal of the agent is to find a policy, π , that
tends to maximize the long-run sum of values of the rein-
forcement signal.

One of the most important properties of the MDP is that
the next state depends only on the current state and action
and is independent of the preceding states and actions. In
(3) this property (called the Markov property) is captured.

Pr{st+1 = s′, rt+1 = r | st , at }
= Pr{st+1 = s′, st+1 = r | st , at , rt , st−1, at−1, rt−1, . . . ,

s0, a0, r0} (3)

2.2.1 Utility functions

Most of the reinforcement learning algorithms are based on
the utility functions, which estimate how good the action
policy is. The action-value function described in (4), for
instance, is defined as the expected reward that will be re-
ceived if the agent is located in a state s, the first action that
it carries out is action a, and, then, it follows the action
policy π .

Qπ(s, a) = Eπ {Rt | st = s, at = a}

= Eπ

{ ∞∑
k=0

γ krt+k+1 | st = s, at = a

}
(4)

This function introduces the discount parameter, γ , to dif-
ferentiate when the reinforcements have been obtained.

Therefore, the goal of the learning process is to find
the policy such that it maximizes this function. In other
words, to obtain the optimal value-action function, denoted
by Q∗(s, a), such that Q∗(s, a) ≥ Q(s, a) ∀a ∈ A, s ∈ S.

From the optimal Q-function, the optimal policy can be
obtained as is shown in (5).

π+(s) = arg max
a

Q∗(s, a) (5)

2.2.2 Q-learning: an algorithm for learning Q∗

The Q-learning algorithm [17] is based on the value-action
function, Q(s, a), to compute its optimal action policy. The
definition of this function for non-determinist environments
is described in (6), where the γ parameter controls the rela-
tive importance of future action rewards with respect to new

Table 1 Q-learning algorithm

Q-learning algorithm

■ For each pair (s ∈ S, a ∈ A), initialize the table entry Q(s, a) = 0.

➣ Observe the current state, s

➣ Do forever

– Select an action, a, following an exploitation/exploration

strategy, and execute it

– Receive the immediate reward, r

– Observe the new state, s′

– Update the table entry for Q(s, a) as follows:

Q(s, a) = (1 − α)Q(s, a) + α{r + γ maxa′ Q(s′, a′)}
– Set s to s′

ones, and α parameter is the learning rate, which indicates
how quickly the system learns. In Table 1, the Q-learning
algorithm is described.

Q(s, a) = (1 − α)Q(s, a) + α
{
r + γ max

a′ Q(s, a′} (6)

2.2.3 Exploration versus exploitation

Choosing the next action to carry out is very important for
the convergence of the Q-learning algorithm. The quality of
the selected exploration/exploitation strategy is determinant
in the efficiency and efficacy of the learning process. The
exploitation strategy tries to use acquired previously knowl-
edge, and the exploration strategy tries to find new alterna-
tives.

A great variety of exploitation strategies could be used
in reinforcement learning problems [18]. For instance, the
e-greedy strategy tries to select the action with the greater
Q function value, with a probability of e. It chooses the ac-
tion randomly with probability (1 − e).

Another very common exploitation strategy is the Boltz-
mann strategy, that estimates the probability of choosing the
action a according to the (7), where τ is a positive para-
meter called the temperature. If the temperature is high, all
the probabilities of the actions have similar values and if the
temperature is low, it causes a great difference in the proba-
bility of selecting each action.

P(a) = e
Qt (a)

τ∑n
b=1 e

Qt (b)

τ

(7)

In Sect. 4 we will demonstrate the influence of these
strategies when the AIES is learning a pedagogical policy.

2.3 Related work

How to apply artificial intelligence techniques to automat-
ically build or maintain the different modules of intelligent
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tutoring systems has been widely studied. The objective is to
emulate the human behaviour while teaching only one stu-
dent in a classroom.

All the modules of an ITS has been studied under the
perspective of Artificial Intelligence. The domain module is
often described as part of an expert system, using frames
in TEX-Sys tutor [33] or bayesian networks [34] between
others.

The interface module can use artificial intelligence tech-
niques in order to attract the student attention. For instance,
natural language techniques has been applied in dialogue
systems as PACT Geometry Tutor [35] or CycleTalk system
[36], and annotation or search techniques has been applied
in ELM-ART system does [37], etc.

Different techniques have been used in the student mod-
ule, as stereotypes in [38], the overlay model in [39] or
bayesian networks in [34]. Inductive learning has been used
in ACM [40], ASSERT [41] or MEDD [42], with the objec-
tive of learning some properties of the students. Deductive
and supervised learning has been applied in PIXIE [43] and
the Hoppe’s system [44], for instance.

Finally, the pedagogical module has been defined as an
automated planning problem in WIP/PPP [45]. It also has
been implemented with a set of production rules in LISP
tutor [46], or with constraint rule, s as KERMIT system
does [47], combining production rules with neural net-
works. However all of then need to predefine a huge amount
of information. WIP/PPP system, for instance, needs to pre-
define presentation strategies (how to select relevant con-
tent, how to structure selected content and which medium
to use for conveying a content). On the other hand, the sys-
tems using production rules had to manually predefine the
pedagogical strategies. To define manually this information
is very expensive, because it is necessary to define a huge
amount of pedagogical strategies or presentation strategies
in order to adapt to each student in each moment of the in-
teraction and sometimes is difficult to add expert knowledge
in the system. As we have showing in the paper, Reinforce-
ment Learning can help to define these strategies automati-
cally.

Other advantage of applying reinforcement learning in
the pedagogical module is that this model absorbs noise.
For instance, it is not easy to detect current student knowl-
edge about a specific topic; if the system is wrong about
this, the reinforcement learning model could leave out this
error.

The reinforcement learning model has been previously
applied to the student module in ADVISOR system [48],
using simulated students to evaluate the approach, To ap-
ply reinforcement learning in this module has a main prob-
lem: the student has a lot of learning characteristics to take
into account. This is a problem in the reinforcement learn-
ing paradigm because the number of states of the system

increases, making more difficult the system to learn. More-
over, Beck’s system learns very slow due to the system is
learning from the interaction with other students with sim-
ilar learning characteristics, being difficult to find enough
students to learn appropriately. In this work we propose to
apply the reinforcement learning model in the pedagogi-
cal module, taking only into account the student knowl-
edge about each topic in the domain. In this way, the sys-
tem is able to adapt to each student interacting dynami-
cally.

On the other hand, in Beck’s system the content is se-
quenced in coarse grain (knowledge topics), pointing out
that it is more effective that sequencing in fine grain (exer-
cises, problems, etc.). In this paper we show the advantages
of sequencing the domain content structured in fine grain,
taking into account tasks sequencing (introductions, exam-
ples, problems, etc.), not only topics sequencing, choosing
at the same time the presentation format of the content.

Finally, ADVISOR uses the e-greedy exploration-
exploitation learning policy, receiving an immediate rein-
forcement. A complete study of the viability of RLATES
has been carried out in this paper, analysing different
exploration-exploitation techniques and different learning
variables trying to adapt to each student as soon as possible.
The application of Boltzmann exploration-exploitation strat-
egy could be an advantage in tutoring systems, providing the
students information about the probability of choosing the
next content of the system. Moreover, a study of reducing
the system training phase has been carried out.

3 Architecture of the proposed Adaptive and Intelligent
Educational System

The system presented in this paper (RLATES: Reinforce-
ment Learning in an Adaptive and Intelligent Educational
System) adopts the typical architecture of the AIES de-
scribed in Sect. 2.1.2, where four modules are used: the do-
main module, the student module, the interface module and
the pedagogical module.

AIES knowledge is stored in the domain module. Fig-
ure 3 shows a proposal of a hierarchical knowledge struc-
ture for a Database Design domain, consisting of knowl-
edge on the Extended Entity/Relationship Model [19]. In
the knowledge tree, each topic is divided into subtopics, and
these into other subtopics, and so on. At the same time, each
node of the tree contains sets of definitions, examples, prob-
lems, exercises, etc. in several formats (image, text, video,
etc.).

On the other hand, it is necessary, for the effectiveness of
this proposal, to construct a good student module where the
current level of knowledge of the student in each moment
of the interaction with the AIES is the main characteristic
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Fig. 3 Example of Database Design AIES knowledge model

to model. Any classic student model technique that could
represent this information could be used for the AIES. For
instance, we can use Stereotypes [20], the Overlay model
[21] or Bayesian Networks [22] in order to represent this
information. The Overlay model has been used to implement
the student model in RLATES.

The interface module of the AIES adapts the content of a
hypermedia page to each student’s goals, knowledge, pref-
erences and other student information, changing the appear-
ance of the pages and their visible links.

Finally, in the pedagogical module the AIES finds the
best way to teach the knowledge items, corresponding to the
internal nodes of the tree (topics), to the current student.
The definition of this problem as a Reinforcement Learn-
ing problem is addressed in Sect. 4, where a guide to apply
Reinforcement Learning model in Adaptive and Intelligent
Educational Systems is provided.

4 Application of Reinforcement Learning in AIES

In this section, we briefly define how Reinforcement Learn-
ing is applied in Adaptive and Intelligent Educational Sys-
tems and how an RL algorithm (the Q-learning algorithm)
is adapted to the tutoring domain. More information on this
issue can be found in [4].

4.1 Reinforcement learning components

Next, the components of a reinforcement learning problem
in the Database Design AIES environment are briefly de-
fined:

(1) Set of states (S): A state is defined as the descrip-
tion of the current student knowledge. It is represented by a
vector which stores as many representative values of learner
knowledge items (internal node of the knowledge tree) as
the student should learn. In order to simplify the example,

6



Table 2 Adaptation of the Q-learning algorithm to AIES domain

Q-learning algorithm Q-learning adapted to AIES domain

■ For each pair (s ∈ S, a ∈ A), initialize the ■ For each pair (s ∈ S, a ∈ A), initialize the

table entry Q(s, a). table entry Q(s, a).

■ Observe the current state, s ■ Test the current student knowledge,

obtaining s

■ Do forever ■ While s was not a goal state do:

◆ Select an action, a, following an ◆ Select a knowledge tree leave, a, to

exploitation strategy, and execute it show to the student, based in an

exploitation strategy derived from Q.

◆ Receive the immediate reward, r ◆ Receive the immediate reward, r .

A positive reward is received when the

AIES goal is achieved. A null reward

is obtained in any other case.

◆ Observe the new state, s′ ◆ Test the current student knowledge, s′

◆ Update the table entry for Q(s, a) as follows: ◆ Update the table entry for Q(s, a),

◆ Q(s, a) = (1 − α)Q(s, a) + α{r + γ max′
a Q(s′, a′)} that estimates the usefulness of executing

the a action when the student is

in a particular knowledge state:

◆ Q(s, a) = (1 − α)Q(s, a) + α{r + γ maxa′ Q(s′, a′)}
◆ Set s to s′ ◆ Let us s the current student

knowledge state, s’.

it is supposed that these values are defined in the set {0,1}.
Zero indicates that the student does not know the item, and
one indicates that the item has been correctly learned. The
items of the knowledge tree are enumerated in a pre-ordered
way.

(2) Set of actions (A): The actions that the tutor can carry
out are those that teach the AIES subject, in other words,
to show the knowledge items defined in the leaves of the
knowledge tree.

(3) Perception of the environment (I : S → S): This func-
tion indicates how the AIES perceives the state the student
is in. An AIES could perceive the knowledge state of the
student through evaluating his/her knowledge by tests or ex-
ams.

(4) Reinforcement (R : S × A → R): This function de-
fines the reinforcement signals (rewards) provided by the
environment. This reinforcement function supplies a maxi-
mum value to meet the goals of the tutor; that is to say, when
the student learns the totality of the contents of the AIES.

(5) Value-action function (Q : S × A → R): This func-
tion estimates the usefulness of showing leaves of the tree
to a student when s/he is in a certain knowledge state. This
function provides an evaluation method for the tutor action
policies. Therefore, the goal of the learning process is to
find the policy such that it maximizes this function, in other
words, to obtain the optimal value-action function.

In Table 2, an explanation is given regarding how the
Q-learning algorithm is adapted to the tutor domain. This is
based on the definition of the Reinforcement Learning com-
ponents for an Adaptive and Intelligent Educational System.
An example of the learning to teach process of a Database
Design AIES with the Q-learning algorithm appears in [23].

4.2 System functional phases

For the correct working of the system, three functional
phases have been defined, related to the exploration/
exploitation strategies (see Sect. 2.2.3): student clustering,
system training and system use. These phases have been
represented in Fig. 4.

1. Student Clustering. Although the system is able to adapt
its curriculum sequencing depending on each student’s
learning characteristics by updating its value-action func-
tion, Q(s, a), it is recommended that the students are
clustered according to their learning characteristics be-
fore training the system. In this way, the system will
keep a Q table for each student cluster, improving the
system adaptation to each group of students. Moreover,
the system will converge faster and better, learning bet-
ter pedagogical strategies. Notice that this phase is not
necessary, but it is recommended in order to improve the
system adaptation. In this paper, we prove that the more
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Fig. 4 System functional
phases

homogeneous the cluster, the faster and better the sys-
tem learning convergence is. A great variety of student
models and techniques has been studied [24], and any
classification technique, like C4.5 [25] or Reinforcement
Learning techniques [12], could be used to cluster stu-
dents according to their learning characteristics.

2. System training. In this phase, the system explores new
pedagogical alternatives in order to achieve the goal,
showing the course content to the students in different
sequences. At the same time, the system interacts with
the students and updates its Q table. In this way, the sys-
tem learns a good teaching strategy based only on previ-
ous interactions with other students with similar learning
characteristics (students in the same cluster).

3. System use. Finally, once the system has converged to a
good pedagogical strategy, this strategy can be used to
teach other students with similar learning characteristics.

Although the students’ interaction with the system has been
divided into two phases (training and use phases), the sys-
tem never ends its learning process (it is always updating its
Q table). In this paper, this division enhances the difference
between exploration (at the training phase) and exploitation
(at the use phase). The ideal situation for the system is when
the training phase is reduced as much as possible. This paper
studies how to minimize the training phase in Sect. 5.

5 Experiments

Numerous experiments are necessary in order to obtain gen-
eral conclusions on evaluating an educational system, and
therefore, a lot of students are needed to interact with the
system. Normally, it is difficult to convince one student to

interact with a system in evaluation. We are unlikely to con-
vince as many as we need to complete the experiments.
Thus, most of the pedagogical systems use simulated stu-
dents in its evaluation, such as the ADVISOR system [12],
the STEP system [26] and the VanLehn system in [27].

5.1 Experimentation setup

In this section we present the experiments carried out with
simulated students on the AIES learning process in order
to test five issues. (1) the system converges to a policy; (2)
the policy obtained only requires a few actions to teach the
AIES content to the current student, that it is to say, the sys-
tem converges to a near optimal policy; (3) the AIES only
needs a few students to converge to get close to the op-
timal pedagogical policy; (4) important differences at the
system convergence of the system are found when different
exploration/exploitation strategies are chosen; (5) the train-
ing phase of the system can be minimized if the Q table is
initialized. We have divided the experimentation into three
different sequences. Firstly, in Sect. 5.2 the system learning
convergence is studied and the first three issues are validated
using different learning parameters. Next, in Sect. 5.3, is-
sue (4) is tested studying the role of exploration/exploitation
strategies in the application of RL to AIES. And finally, in
Sect. 5.4, issue (5) has been studied, studying a method for
reducing the Training.

The domain of an educational system is stochastic, be-
cause the students could pass or not pass a test depending
on several characteristics. Because of this, the experimen-
tation with simulated students has been carried numerous
times and statistical measures like average and standard de-
viation are used in order to analyze the results [28]. More-
over, series of t -tests in every experiment presented in this
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Fig. 5 Example of Database
Design AIES knowledge model

section indicated that the differences among the learning
curves in each figure are statistically significant with a con-
fidence level of 95%.

It is important to notice that, although we experiment
with simulated students, real situations are evaluated. Thus,
simulated students interact with the system and, at the same
time, the system updates its teaching strategies in order to
adapt to each student, just as interactions with real students
are supposed to happen.

5.1.1 RLATES domain model

For the experiments in this work, we use the knowledge
model shown in Fig. 5. This example presents eight topics
(knowledge items) and fifty-two tasks, where most of the
topics have two definitions tasks, two introductions tasks
and four examples tasks, all of them in two different for-
mats: text and video. The red arrows in this figure represent
is-prerrequisite relationships between topics. Note that this
information is only used for the description of the simulated
students behaviour for the experimentation of this paper (see
Sect. 5.1.3), but this kind of information is not necessary
for the system in order to sequence the AIES content. We
propose to learn the sequence of AIES contents by using
the Reinforcement Learning model (see Sect. 4), learning
good pedagogical strategies for each group of students based
only on previous interaction with other students with simi-
lar learning characteristics, not based on information from a
human expert.

5.1.2 RLATES interface model

In the experiments presented in this paper, we have not used
the interface model, because the system has interacted with

simulated students. However, two issues to keep in mind are
introduced. Firstly, the AIES decides the sequence and the
format of the material in order to find the best possible way
to show the contents to the students according to the student
needs. This is a pedagogical module concern, because the
reinforcement learning model applied to the AIES is able to
decide how the student prefers an item of knowledge to be
explained (format, sequence, etc.).

Secondly, it is necessary to maintain the attention of the
student at every moment, providing him/her with the sensa-
tion of control of the interaction with the system. This issue
involves the interface and pedagogical modules. The sys-
tem provides the student with the possibility of learning by
Direct Guidance (DG), a hypermedia technique for adapta-
tion to the user [29]. In this technique, it is the system that
chooses the next topic to show to the student in a specific
format when the student pushes the next link. In this paper,
we propose to modify the traditional DG technique, provid-
ing the student with more than one Web page to visit next.
When the student pushes the next button in RLATES, the
system provides the student with several actions to execute
next (several Web pages to show next). Moreover, the sys-
tem provides the student with information on how much it
recommends visiting each Web page next, according pre-
vious interactions with other student with similar learning
characteristics using the Boltzmann probability distribution
introduced in Sect. 2.2.3. In this way, the student is the re-
sponsible for his/her own learning, choosing the next page
to visit based on the advice of the system.

5.1.3 Simulated students

In this work, three clusters of students have been defined for
the experimentation, depending on only two characteristics
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Fig. 6 MDP for cluster 2
students learning the reduced
domain module shown in Fig. 5

Table 3 Student clusters and their characteristics

Student cluster Tasks Formats

Cluster 1 Definitions (100%) Image (100%)

Cluster 2 Definitions (25%) and Image (100%)

exercises (75%)

Cluster 3 Definitions (25%) and Image (75%) and

introductions (25%) and text (25%)

exercises (50%)

(in order to simplify the example): what kind of tasks must
be used in order for them to learn (definition, introduction
or exercise) and which format the material must be shown in
(video or text). Table 3 shows the three clusters of students
used in the experimentation in order to simulate the student’s
behaviour. A 100% cluster 1 students require the definition
task and the image format to learn. Cluster 2 students re-
quire, like cluster 1 students, the image format, but 75% of
them learn only with exercise tasks and the other 25% learn
only with definition tasks. Finally, cluster 3 students may re-
quire definition, introduction and exercise tasks; definitions
and introductions will be learned with a probability of 25%
each and exercises with a probability of 50%. With respect
to the page format, 75% of the students will learn with the
image format and 25% of them with the text format. There-
fore, the cluster 1 is the most homogeneous student cluster
and the cluster 3 is the most heterogeneous student cluster.

Each cluster of students with their learning characteris-
tics can be considered for the construction of simulated stu-
dents for the experimental phase of this proposal. In this pa-
per, we have defined the behaviour of the simulated students
as Markov Decision Process (MDP) based on the cluster de-
finition, where it does not matter which states the student
has visited, but only the current state of the student is nec-
essary to know if s/he is able to learn the Web page’s con-
tent. The MDP has been represented by circles and arcs. The
MDP states are represented by circles with the number of the
state within, and the actions are represented by arcs between
states. The first number that appears on the arc is the num-
ber of the action that produces the state transition, whereas

the number that appears in parentheses is the probability of
this transition. Different actions can share the same arc. That
means that the state transition can be produced for any of the
actions in the arc with their probability associated.

An example of an MDP for a cluster 2 student in the do-
main model of Fig. 5 is shown in Fig. 6, where only the
actions that produce state transitions appear. It is supposed
that the student does not change his/her state when a differ-
ent action (an action that does not appear in the state) is car-
ried out. For the construction of the MDP of the clusters, the
is-prerequisite relationships between topics shown in Fig. 5
are taken into account. For instance, one student could not
learn the Cardinality topic if s/he does not yet know the De-
gree topic. In Fig. 6 we can see how when the student is in
the state 0 and the action 12 is carried out, the student will
stay at the same state with a probability of 75% and will
change his/her state to the state 1 with a probability of 25%.

5.2 Experimental results varying the system learning
parameters

Firstly, in this experiment sequence, we extend the experi-
mentation carried out in [30] varying some of the learning
parameters of the system. All of these experiments show
how these parameters affect the convergence of the AIES
learning, dealing with the goal of the AIES: first, to con-
verge; second, to minimize the time spent in the teaching
process (measured in number of students needed in order to
converge to a near optimal policy); and third, to minimize
the number of actions carried out by the pedagogical policy
learned.

The learning variables used are: the learning rate para-
meter (α) of the Q update equation (see (6)), which varies
from 0.9 (the system learns quickly) to 0.1 (the system learns
slowly); and the homogeneity of the student cluster, and
hence, the determinism of the domain. The simulated stu-
dents defined in Table 3 have interacted with the system in
order to test its convergence. Cluster 1 is the most deter-
ministic cluster, because all of the Cluster 1 students have
similar learning characteristics and Cluster 3 is the most sto-
chastic one, given that the students learn the system content
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Fig. 7 AIES learning curve for
cluster 2 students and e = 0.9.
Curve varying the learning rate
parameter (α)

Fig. 8 AIES standard deviation
curve for cluster 2 students and
e = 0.9, varying the learning
rate parameter (α)

Fig. 9 AIES learning curve
when different clusters students
interact with the system. e = 0.9
and α = 0.5

in different ways. In these experiments, the e-greedy explo-
ration/exploitation strategy has been implemented and the e

exploration parameter has been fixed at 0.9.
Figures 7 and 8 summarize the learning performance for

different values of α when Cluster 2 students interact with
the system. Figure 7 shows that when the value of α de-
creases, the system behaviour is worse. For instance, when
α = 0.1, almost 65 students are needed in order for the sys-
tem to converge to an action policy that requires 230 actions
to teach to a student. However, when α = 0.5, the system
only needs around 15 students to converge to pedagogical

strategies that only need 15 actions to be carried out. If we
compare the learning curve when α = 0.5 and α = 0.9, we
can see that they are almost similar: when α = 0.9 the sys-
tem needs fewer students to converge (only 10 students), but
more actions are needed to be carried out (20 actions). On
the other hand, in Fig. 8 we can see at the standard deviation
curve that the system behaves in a more stable manner when
α = 0.5 than when α = 0.9, there been fewer differences
between the student interactions.

Figure 9 shows that the more heterogeneous the system
is, the worse the system behaves. For instance, when clus-
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Fig. 10 AIES standard
deviation curve when different
clusters students interact with
the system. e = 0.9 and α = 0.5

Fig. 11 AIES learning curve
for cluster 2 students and
α = 0.5. Curve varying the e

parameter of the e-greedy
exploration policy

ter 1 students interact with the system, it needs only 15 stu-
dents to converge carrying out an average of 8.5 actions.
However, when cluster 3 students interact with the system
it needs an average of 28 actions in order for the student to
learn the course content. Furthermore, in Fig. 10 we can see
that the more determinist the students are, the more similar
their interactions are and the more stable the system behav-
iour is.

Figures 9 and 10 show the system performance when stu-
dents of different clusters interact with the system. For the
experiment, we have fixed the α parameter to 0.5.

After these experiments, we can conclude that the system
is able to converge to almost optimal pedagogical strategies,
interacting with few students. Moreover, we have demon-
strated that 0.5 and 0.9 are good values for the α parameter.
Finally, we have demonstrated that the more homogeneous
the students in a cluster are, the faster and better the system
converges.

5.3 Experimental results comparing e-greedy and
Bolztmann exploration/exploitation policies

In this experiment sequence, the differences between the
e-greedy and Boltzmann exploration/exploitation strategies
are widely studied. We use the Cluster 2 students and we

have fixed α to 0.5. Then we have modified the e parame-
ter of e-greedy from 0 (the system chooses the next action
to carry out randomly) to 1 (the system chooses the next
action trusting in the Q values obtained by the previous ex-
perience). We have used values of the τ parameter of Boltz-
mann from 1 (all the actions have similar probabilities of
being chosen by the system) to 0.01 (the actions have very
different probabilities of being chosen based on the Q ta-
ble).

Figures 11 and 12 summarize the learning performance
for different values of e when the e-greedy exploration strat-
egy has been used. In Fig. 11, the system learning conver-
gence is shown. We can see how the higher the e parameter
is (more greedy is the policy used and the system exploits
its knowledge more), the faster (with fewer students) and
better (executing fewer actions) the system learns to behave.
For instance, when e = 0.9 the system converges when only
15 students have interacted with it, carrying out an average
of 15 actions. However, when e = 0.1, the system needs al-
most the double the amount of students (around 30 students)
in order to converge; furthermore, the pedagogical strategy
is not so good (it needs around 150 actions to be carried
out before the students finished the interaction). Besides,
we have studied the standard deviation between the inter-
actions.
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Fig. 12 AIES standard
deviation curve for cluster 2
students and α = 0.5, varying
the e parameter of the e-greedy
exploration policy

Fig. 13 AIES learning curve
for cluster 2 students and
α = 0.5. Curve varying the τ

parameter of the Boltzmann
exploration policy

Fig. 14 AIES standard
deviation curve for cluster 2
students and α = 0.5, varying
the τ parameter of the
Boltzmann exploration policy

In Fig. 12 we can see how the greedier the policy is, the
lower the difference is between the student interactions with
our system.

On the other hand, Figs. 13 and 14 show the importance
of choosing a good value for the temperature parameter (τ )
of the Boltzmann exploration policy. In Fig. 13 we can see
that the lower the value of the τ parameter, the faster and bet-
ter the system learns. Moreover, in Fig. 14 the standard devi-
ation shows that the system is more stable when the value of
τ is low. For instance, when τ = 0.01 the systems behavior
is very good.

Then, a question is posed: if the system is able to con-
verge with both exploitation/exploration strategies (e-greedy
and Boltzmann), which of them is the most appropriate
to use when real students interact with the system? In or-
der to answer this question, first of all it is interesting
to compare the system learning curves with both explo-
ration/exploitation strategies with the values of the parame-
ters that provide the best results. In Fig. 15 we can see how
the system converges to almost 19 actions when the e-greedy
strategy is used and it converges to 24 actions when the
Boltzmann strategy is used. In both cases, the system con-
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Fig. 15 AIES learning curve
comparing e-greedy and
Boltzmann exploration
strategies. Cluster 2 students,
α = 0.5, τ = 0.01 and e = 0.9

Fig. 16 AIES standard
deviation curve comparing
e-greedy and Boltzmann
exploration strategies. Cluster 2
students, α = 0.5, τ = 0.01 and
e = 0.9

verges when only 20 students have interacted with it. How-
ever, in Fig. 16 we can see how the system behaves in a more
stable manner when the Boltzmann strategy has been used,
given that the standard deviation is always very low. This is
a very important property on an AIES, because in this way,
all the students have similar interactions with the system.

In conclusion, we can extract from these experiments that
the system is able to converge with both, the e-greedy and
the Boltzmann exploration/exploitation strategies. More-
over, we have proved that the greedier the strategy, the faster
and better the system converges for this situation. Further-
more, the convergence to pedagogical strategies is nearly
similar using both strategies, but there are smaller differ-
ences between the students interaction when the system uses
de Boltzmann exploration strategy. This exploration strategy
has been chosen for the following experiments.

5.4 Experimental results in attempting to reduce the
system training phase

We have demonstrated that the system is able to learn al-
most optimal pedagogical policies training the system with
few students when, initially, it has no knowledge at all of
pedagogical tactics. However, the students could get bored

when the system is not teaching with a good pedagogical
policy, carrying out more actions than students need.

Then, a new question arises: is it possible to reduce the
number of students necessary for the system training?

Reducing the training phase is desirable because during
this phase the students interacting with the system do not
learn in the best way because the system has not yet learned
to teach.

Sometimes in educational systems, simulated students
have been used in order to train teachers [31]. Moreover,
in RL problems, the systems are sometimes initialized with
information from previous interactions [32]. In this experi-
mental sequence we propose to initialize the Q table of the
system with information coming from the interaction with
other students with different learning characteristics.

In this sense, there are two possibilities:

1. If the current student has the same learning characteris-
tics as the previous students, the system does not need to
adapt its Q table, so the size of the system training phase
is equal to 0.

2. Otherwise, the system needs to adapt its Q table accord-
ing to the learning characteristics of the current student.

The following experiments are going to prove that by initial-
izing the Q table we can reduce the system training phase,
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Fig. 17 AIES learning curve
initializing the system Q table
with cluster 3 students. Then
cluster 2 students begin to
interact with the system.
α = 0.5 and τ = 0.01

Fig. 18 AIES learning curve
initializing the system Q table
with cluster 2 students. Then
cluster 3 students begin to
interact with the system.
α = 0.5 and τ = 0.01

even when this initialization is not the best for the current
student cluster. In order to carry out these experiments, we
have initialized the system pedagogical strategies (its Q ta-
ble) interacting with enough students of a specific cluster, X.
Then, when the system has converged to a near optimal ped-
agogical strategy for cluster X students, learners with dif-
ferent learning characteristics, belonging to another cluster,
begin to interact with the system. Then, we can analyze the
size of the system training phase and if the system is able
to learn an optimal pedagogical strategy. Similarly to exper-
iments carried out in Sect. 5.3, in these experiments we have
varied only the temperature of the Boltzmann exploitation
strategy.

Results are summarized in Figs. 17 and 18. On the one
hand, in Fig. 17 we can see how the system converges to
good pedagogical strategies for cluster 3 students interacting
with 20 students; then cluster 2 students begin to interact
with the system and only 10 students are needed in order for
the system to adapt its pedagogical strategy according to the
learning characteristics of the new kind of students. On the
other hand, in Fig. 18 we can see the reverse experiment;
first the system has been initialized with cluster 2 simulated
students and then cluster 3 students begin to interact with
the system; the results obtained are similar to the previous
experiment.

These experiments are summarized in Fig. 19, present-
ing the AIES learning curve when the system has been pre-
viously initialized and when the system has not been pre-
viously initialized. This figure shows the main conclusions
extracted from these experiments: how the system training
phase has been reduced to the half when the system is ini-
tialized. Moreover, sometimes the pedagogical strategy is
better, as in cluster 2, carrying out fewer actions when the
system has previously explored the appropriate actions for
the current cluster of students, although sometimes it could
be worse, as in cluster 3, where the system has not been suf-
ficiently explored.

The practical application of these experiments is to ini-
tialize the system with simulated students and to use it with
real students.

6 Conclusions and further research

In this paper different experiments have been carried out by
applying the Reinforcement Learning model in a Database
Design (DBD) Adaptive and Intelligent Educational System
(AIES). The experiments have been performed with simu-
lated students and have been divided into three sequences
of experiments, showing how the system learns to teach by
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Fig. 19 AIES learning curves
summarizing the Figs. 17 and 18

trial and error at the same time as simulated students learn
the AIES material. In the first sequence, the system viabil-
ity has been tested by demonstrating three important issues.
First, that the system converges. Second, that it converges to
an almost optimal pedagogical policy, measured in number
of actions that the system must carry out in order to teach all
the AIES material to the student. And third, that the system
does not need many students to learn to teach optimally.

In the second sequence, we have proven that choosing a
good exploration and exploitation strategy is determinant for
the efficacy and efficiency of the convergence of the system.
Two typical exploration/exploitation strategies in RL prob-
lems have been studied in order to analyze the differences
between them when the system teaches the material of the
course to simulated students: the e-greedy exploration pol-
icy and the Boltzmann exploration strategy. After collect-
ing the results of these experiments, we can conclude that
using both strategies provides accurate pedagogical poli-
cies, but that the Boltzmann exploration/exploitation strat-
egy achieves more stable learning curves.

Finally, in the third sequence, we have proven that ini-
tializing the AIES pedagogical strategies reduces the system
training phase, even when this initialization is not the best
for the current cluster of students.

Currently, we are involved in empirically prove real sit-
uations where, if we assume that a group of students can
be modelled as a Markov Decision Process (MDP), or at
least, that a set (or cluster) of students behaves following an
unknown and underlying MDP then, could the pedagogical
module of an AIES be developed automatically through Re-
inforcement Learning?
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is also focused on connecting classical planning methods with learn-
ing mechanism that allow to behave in dynamic and stochastic envi-
ronments. Applications of his research include robot soccer, adaptive
educational systems, and tourism support tools.
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