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ABSTRACT 
While co-integration theory is an ideal framework to study linear relationships among persistent 

economic time series, the intrinsic linearity in the concepts of integration and co-integration makes it 
unsuitable to study non-linear long run relations among persistent processes. This drawback hinders 
the empirical analysis of modern macroeconomics, which often addresses asymmetric responses to 
policy interventions, multiplicity of equilibria, transitions between regimes or polynomial approximations 
to unknown functions.  

In this paper, to cope with non-linear relations and consequently to generalise co-integration, we 
formalise the idea of co-summability. It is built upon the concept order of summability developed by 
Berenguer-Rico and Gonzalo (2013), which, in turn, was conceived to address non-linear 
transformations of persistent processes. Theoretically, a co-summable relationship is balanced -in 
terms of the variables involved having the same order of summability- and describes a long run 
equilibrium that can be non-linear -in the sense that the errors have a lower order of summability. To 
test for these types of equilibria, inference tools for balancedness and cosummability are designed and 
their asymptotic properties are analysed. Their finite sample performance is studied via Monte Carlo 
experiments.  

The practical strength of co-summability theory is shown through two empirical applications. 
Specifically, asymmetric preferences of central bankers and the environmental Kuznets curve 
hypothesis are studied through the lens of co-summability.  
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1 Introduction

Co-integration theory has received a great deal of attention from economists and econometricians.

From a theoretical perspective, co-integration has played the role of properly combining persis-

tent economic time series with linear long run equilibrium relationships hypothesised by economic

theorists. In this sense, co-integration meant a positive step towards consensus in the historical

�measurement without theory� vs �theory without measurement� debate. Economic theories im-

plying co-integrating relationships among economic time series contributed to this step. From an

empiricist perspective, co-integration resulted in a clear and precise applied methodology to estimate

and test these economic hypotheses.

To provide richer descriptions of economic phenomena, researchers have ventured into the non-

linear world. However, the ideas of integration and co-integration cannot be directly used to analyse

non-linear equilibrium relationships among persistent variables as these concepts do not properly

apply. To be more precise, consider the following non-linear relationship: yt = f (xt; �) + ut. If it

were known that f (xt; �) is I (d), then the standard framework of co-integration would �t perfectly.

However, when xt is persistent, say I (1), then for many interesting non-linear transformations f the

order of integration of f (xt; �) may not be well de�ned. This failure of applicability of the de�nition

of order of integration has two important drawbacks. First, it is not possible to know whether

a postulated relationship is balanced �a necessary, although not su¢ cient, condition for having

correctly speci�ed a model. Second, the concept of co-integration cannot be directly extended to

non-linear long run relationships. These two consequences originate a clear need for theoretically

valid and empirically useful concepts that generalise those of integration and co-integration.

This paper proposes to use the idea of order of summability formalised by Berenguer-Rico and

Gonzalo (2013). It was conceived to deal both theoretically and empirically with non-linear transfor-

mations of heterogeneous and persistent processes. By making use of this new concept, co-integration

theory can be generalised by de�ning (i) balancedness �the order of summability of an explained

variable in a postulated hypothesis being equal to that of the, possibly non-linear, more persistent

and heterogeneous explanatory variables�and (ii) co-summability �the error term of the postulated

hypothesis being of a lower order of summability. These two factors are relevant for both econome-

tricians and economic theorists: for the former, when specifying, estimating, and testing econometric

models; for the latter when choosing functional forms to construct their theories.

By taking advantage of the order of summability estimator, balancedness and co-summability

can be empirically studied. To infer if a postulated relationship is balanced, the rate of convergence

estimator in McElroy and Politis (2007) and subsampling techniques can be used. Once balancedness

is achieved, researchers must distinguish between spurious and co-summable regressions. This paper

proposes a residual based test to disentangle that question; therefore, an estimate of the errors is

needed. Parametric and non-parametric approaches to estimate non-linear long run relationships
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are available in the literature. Park and Phillips (1999, 2001) and Wang and Phillips (2009) develop

parametric and non-parametric methods, respectively, from an integrated processes perspective.

Alternatively, Karlsen, Myklebust and Tj�stheim (2007) and Schienle (2011) analyse non-parametric

estimation in a recurrent Markov chains setup. Notwithstanding, all these studies assume that the

regression model speci�es a co-integrating relation, something that should be tested in practice.

There have been some �rather limited� proposals in this direction �see, for example, Kasparis

(2008) or Choi and Saikkonen (2010).

In this paper, parametric regression models that are non-linear in variables but linear in parame-

ters will be taken into consideration. A more general setting where the model is not only non-linear

in variables but also in parameters requires a di¤erent empirical, and therefore theoretical, strategy.

The non-linear in variables but linear in parameters model considered here, although simple at �rst

sight, is rich enough for empirical purposes, while, at the same time, enclosing its own theoretical

features to be analysed by itself. In this scenario, the asymptotic properties of the ordinary least

squares estimator under co-summability and no co-summability are studied. These properties guar-

antee being able to discriminate between spurious and co-summable regressions through a residual

based test, which can also be seen as a speci�cation testing procedure.

A natural question arising after �nding or de�ning a non-linear co-summable relationship is

whether an error correction representation does exist in a non-linear world. The question is natural

given that error correction mechanisms in this framework involve �rst di¤erences of non-linear

processes, which are not properly de�ned in terms of order of integration. Nevertheless, whether the

world is linear or not, modelling the reaction of endogenous variables in a system to deviations of

its equilibrium is an important issue. This paper also addresses this question �in a single equation

framework� emphasising the fact that to study non-linear error correction models, the ideas of

summability and co-summability become a key aspect. Indeed, while balancedness of the error

correction representation of a non-linear equilibrium cannot be addressed using the linear concepts

of integration and co-integration, it can be analysed using co-summability.

To show the empirical strength of the co-summability theory, the proposed tools are put into

practice with two di¤erent empirical applications where non-linear transformations of persistent

processes occur. Speci�cally, asymmetric preferences of central bankers and the environmental

Kuznets curve are analysed. The former hypothesis is translated in the literature into non-linear

Taylor rules when conducting monetary policy �see, for instance, Clarida and Gertler (1997) or

Dolado, María-Dolores and Naveira (2005). These non-linearities and the fact that the variables

involved in this type of rules are found to be persistent make co-summability appropriate in this

context. The latter hypothesis, the environmental Kuznets curve, postulates an inverted U-shaped

relationship between pollution and economic development, usually measured by CO2 emissions and

GDP, respectively. Again, this non-linear relationship, typically approximated by a polynomial
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function, jointly with the well documented persistence of these two measures makes this hypothesis

another natural economic context where co-summability theory rightly �ts. The empirical �ndings

provide new insights for the econometric treatment of these two hypotheses. In the Taylor rule

case, the linear speci�cation does not de�ne a long run relationship �co-summability does not hold�

thus suggesting a possible misspeci�cation. Following the asymmetric preferences of central bankers

literature, we �nd that a threshold Taylor rule is not rejected �co-summability holds. Speci�cally,

it is found that the Federal Reserve reacts very asymmetrically to recessions and expansions. With

respect to the environmental Kuznets curve, favourable evidence is found when variables are included

in logarithms and the polynomial function is of third degree.

The paper is organised as follows. In Section 2, balancedness and co-summability are formally

de�ned and discussed through some economic examples. Section 3 develops an empirical strategy to

test for co-summability. First, a test for balancedness is designed. Then, a test for co-summability

is proposed. The �nite sample performance of these procedures is studied via simulations. Section 4

discusses the error correction representation of a non-linear co-summable relationship, highlighting

the fundamental role of the ideas of summability and co-summability when studying this type of

representations. In Section 5, the proposed tools are applied to test for the asymmetric preferences

of central bankers and the environmental Kuznets curve hypothesis. Section 6 �nishes with some

concluding remarks. All the proofs are collected in the Appendix.

A word on notation. We use the symbol �=)�to signify convergence in distribution and weak

convergence indistinctly and �
p�!�to signify convergence in probability. By the D-space analogue

of a process ynt = yt=n
�y it is meant yn (r) = y[nr]=n

�y for 0 � r � 1 and where [:] denotes the

greatest integer part. Stochastic processes such as Dy (r) or the standard Brownian motion W (r)

are de�ned on [0; 1]. Finally, all limits given in this paper are taken as the sample size n!1.

2 Balancedness and Co-summability

2.1 Order of Summability

The subsequent theory relies on the idea of order of summability of stochastic processes. It was

�rst introduced in a heuristic way by Gonzalo and Pitarakis (2006) and subsequently formalised in

Berenguer-Rico and Gonzalo (2013) �BG hereafter.

De�nition 1 : A stochastic process fyt : t 2 Ng is said to be summable of order �, or S(�), if there
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exist a slowly varying function1 L(n) and a deterministic sequence mt such that

Sn =
1

n
1
2
+�
L(n)

nX
t=1

(yt �mt) = Op(1) as n!1; (1)

where � is the minimum real number that makes Sn bounded in probability.

The order of summability, �, gives a summary measure of the stochastic properties �persistence

and evolution of the variance�of yt without relying on a particular data generating process. The

following examples show the usefulness of this new concept and how to calculate �.

Let

�t = �t�1 + "t; (2)

with �0 = 0 and "t � i:i:d:(0; �2").

Example 1 : Square of a random walk

Let us consider the order of integration of

�2t = �
2
t�1 + 2�t�1"t + "

2
t : (3)

Granger (1995) points out that �2t can be seen as a random walk with drift; hence, one could think

that �2t is I(1). However,

V [�2t � �2t�1] = 4(t� 1)�4" + E["4t ]:

In fact, the variance of �d�2t depends on t regardless of the values of d, i.e. �
2
t � I (1); but this is

not a useful characterisation in practice. Instead, the order of summability can be easily obtained.

Given that

Sn =
1

n2�2"

nX
t=1

�2t =)
Z 1

0
W 2(r)dr;

�2t is S(1:5).

Example 2 : Product of Indicator Function and Random Walk

Let

ht = 1(vt � )�t; (4)

1A positive, Lebesgue measurable function L, on (0;1) is slowly varying �in the Karamata�s sense�at 1 if

L(�n)

L(n)
! 1 (n!1) 8� > 0:

(See Embrechts, Klüppelberg and Mikosh, 1999, p.564).
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where vt � i:i:d: (0; 1) is independent of "t, 1(�) is the indicator function and  is a constant. Strictly

speaking, ht � I (1) as the variance of �dht depends on t regardless of the values of d. Nevertheless,

Sn =
1

n
3
2 p�"

nX
t=1

ht =)
Z 1

0
W (r)dr;

where p = Pr (vt � ), which implies that ht is S(1).

Table 1 summarises many other univariate examples considered by BG.

Table 1: Examples: I(d) vs S(�)

DGP I (d) S (�)

y1t � i:i:d:F 2 D (�) I (?) S ((2� �)=2�)
y2t = z + "t I (?) S (1=2)
y3t � I (d) I (d) S (d)
y4t = �t�t I (1) S (1=2)
y5t = �t�

2
t I (1) S (1)

y6t = �
2
t I (1) S (3=2)

y7t = 1(vt � )�t I (1) S (1)

y8t = e
��2t I (?) S (1=2)

y9t = 1=(1 + �
2
t ) I (?) S (1=2)

y10t = log(j�tj) I (?) S (1=2)
y11t = (1 + e

��t)�1 I (?) S (1=2)
y12t = �ty12;t�1 + "t I (1) S (1)

y13t = �y13;t�1 + "t; � > 1 I (1) S (1)
D(�) denotes the domain of attraction of an �-stable law
with � 2 (0; 2] ; z � N (0; 1); "t � i:i:d: (0; 1); �t = �t�1 +
"t and �0 = 0; �t � i:i:d: (0; 1); vt � i:i:d: (0; 1); �t �
i:i:d: (1; 1). z, "t, �t, vt, and �t are independent of each
other. In all the DGPs but y3t with d = 0:5 and y10t the
slowly varying function L(n) is a constant; for y3t with
d = 0:5 and y10t, L(n) = 1=log(n).

From a multivariate perspective, an applied economist often starts the analysis from a postulated

economic relationship, say yt = g (xt; �). Then, recognising that it is just an approximation to reality

and � is typically unknown, the di¤erence ut = yt � g (xt; �) is statistically analysed.

Assumption 0.

Syn =
1

n1=2+�y

nX
t=1

yt =) Dy and Sgn =
1

n1=2+�g

nX
t=1

g (xt; �) =) Dg,

where Dy and Dg are two random variables with positive variance.

Under Assumption 0, yt � S (�y) and g (xt; �) � S (�g). This weak assumption will be particu-

larly convenient to put forward the balancedness of a theoretical hypothesis as well as to develop

the inference theory.
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2.2 Balancedness

De�nition 2 : A postulated relationship

yt = g (xt; �) ;

is said to be balanced if yt � S (�y) ; g (xt; �) � S (�g), and �y = �g:

Given a theoretical hypothesis

yt = g (xt; �) ; (5)

the order of summability of xt, �x, could di¤er from that of g (xt; �), �g. This means that given �y

and �x, there will be only some appropriate functions g that will generate balanced relationships2,

i.e., �y = �g. This is not only important for econometricians but also for economic theorists when

choosing functional forms to construct their theories.

Indeed, under Assumption 0, an unbalanced postulated model is clearly misspeci�ed �in a wide

sense. When �y > �g,
1

n1=2+�y

nX
t=1

yt =
1

n1=2+�y

nX
t=1

g(xt; �) = op (1) ;

which contradicts Assumption 0. If �y < �g,

1

n1=2+�y

nX
t=1

yt =
1

n1=2+�y

nX
t=1

g(xt; �);

with the right-hand side being unbounded. Again, a contradiction with Assumption 0. Hence,

balancedness becomes a necessary, although not su¢ cient, condition for a correct speci�cation.

Particular economic examples will show the relevance of balancedness in practice.

Example 3 : Endogenous Growth Models (Jones, 1995)

Endogenous growth theory implies that permanent changes in policy variables, such as the

investment rate in physical capital, have permanent e¤ects on the rate of economic growth. The

equation of interest is

gyt = ��� + ~Aikt; (6)

where gyt is the growth rate of the economy, �� is the rate of depreciation, ~A measures the total factor

productivity, and ikt is the investment rate in physical capital. If this equation is balanced, then

the persistence of the growth rate would be similar to that of the investment rate. Nevertheless,

using time series techniques, it is found that US growth rates exhibit no large persistent changes,

while large and permanent movements are found in investment rates. Hence, Jones (1995) argues

2 In fact, the order of summability of g (xt; �) could even depend on � �let, for instance, xt be a standard random
walk and g (xt; �) = x�t , then �g = �=2.
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that endogenous growth models are rejected by this criterion.

Balancedness will be particularly important in non-linear models involving persistent variables.

As stated in Granger (1995), non-linear transformations of heterogeneous and persistent processes

can have an important impact on their stochastic properties. This impact could be hardly con-

templated by the order of integration but can be asserted by the order of summability. The next

examples illustrate this point.

Example 4 : Central Bankers with Asymmetric Preferences

Consider a central bank with asymmetric preferences with respect to deviations of in�ation or

output from some particular target level. Under such preferences, the central bank would react

more or less aggressively when in�ation or output deviates from above, rather than from below,

the target. Di¤erent modelisations of this hypothesis based on Taylor rules can be found in the

literature. For instance, Clarida and Gertler (1997) study the following threshold type of Taylor

rule for the Bundesbank

it = �0 + �1~�t1 (~�t > 0) + �2~�t1 (~�t � 0) + �3~yt1 (~�t > 0) + �4~yt1 (~�t � 0) ; (7)

where it denotes interest rates, ~�t are deviations from the in�ation target, and ~yt is the output gap.

On the other hand, Dolado, María-Dolores and Naveira (2005), allowing for a non-linear Phillips

curve, derive the following type of optimal monetary policy rule

it = �0 + �1~�t + �2~yt + �3~�t~yt: (8)

In both cases, studying balancedness of these equations will be troublesome using the I(d) frame-

work. Even if it can be said that it, ~�t, and ~yt are I(di), I(d~�), and I(d~y), respectively, the order

of integration of ~�t1 (~�t � 0) or ~�t~yt would not be well de�ned. Nevertheless, the generality of the

order of summability makes it suitable to be used in both situations. See the empirical application

section.

Example 5 : Environmental Kuznets Curve

The environmental Kuznets curve indicates an inverted-U relationship between pollution and

economic development �see Dasgupta et al. (2001) or Brock and Taylor (2005) for an overview. The

usual shape given to this relationship is of a polynomial type. Consider the simplest

pt = �0 + �1yt + �2y
2
t ;

where pt is a measure of pollution and yt is a measure of income, typically CO2 and GDP , respec-

tively. To check whether this equation is balanced will be troublesome if the order of integration is
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used. Even if it is known that yt is I (dy), the order of integration of y2t could not be well de�ned.

As has been emphasised herein, the order of summability can help to overcome this pitfall. As it

does not rely on any particular structure of the data generating process, it is suitable to be generally

used. See the empirical application section.

Example 6 : Predictive regressions

Predictive regressions are linear speci�cations linking a noisy variable such as stock returns to

past values of a very persistent regressor with the aim of assessing the presence of predictability.

Most of the literature parameterises the regressor as a near-unit root process (Lewellen (2004),

Campbell and Yogo (2006), Gonzalo and Pitarakis (2012), Lettau and Van Nieuwerburgh (2008)):

yt+1 =  + �xt + ut+1;

with xt = �Txt�1 + vt, �T = 1 � c=T and c > 0. In the I(d) framework, this type of regression

is clearly asymptotically unbalanced (we are regressing an I(0) on a near I(1)). Phillips and Lee

(2012) propose to solve this problem by setting � = �T and letting it to go to zero asymptotically.

Alternative balanced solutions can be found under our summability framework. One possible solu-

tion in a linear setup is to consider that yt follows a stable distribution. The near unit root regressor

is summable of order one, �x = 1, while a stable i:i:d: process of parameter � is summable of order

(2 � �)=2�. Balancedness is achieved by an � = 2=3. Another possibility consists of specifying a

non-linear in variables predictive regression

yt+1 =  + �f (xt) + ut+1;

in which xt is still a near-unit root process but f (xt) � S (�f ), yt � S (�y), with �y = �f .

2.3 Co-summability

De�nition 3 : Two summable stochastic processes, yt � S (�y) and xt � S (�x), are said to be

co-summable if there exists f (xt; �f ) � S (�y) such that ut = yt�f(xt; �f ) is S(�u), with �u = �y� �

and � > 0. In short, (yt; xt) � CS(�y; �).

Some aspects of this de�nition are worth noting. First, as stated, De�nition 3 is concerned with

a bivariate relationship. The extension to a vector of regressors is straightforward. Of particular

interest for the subsequent analysis is the case in which �u = 0 �strong co-summability.

Second, even when xt is S (�x) with �x > 0, some functions f can make f(xt; �) � S (0). As in

co-integration theory, relations in which yt and f(xt; �) are S (0) will be excluded from the current

co-summability analysis. Notwithstanding, the relevance of these relationships should be emphasised
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as they allow for the relation between persistent and non-persistent time series in the long run �

such as growth rates and levels or returns and persistent macroeconomic variables in predictive

regressions� although in a non-linear way. These relations deserve further research outside the

present co-summability framework.

Third, a co-summable relationship is balanced. As already stated, balancedness is a necessary,

although not su¢ cient, condition for a correct speci�cation. In fact, when �y = �g, a postulated

relationship yt = g (xt; �) could be balanced spuriously. As in standard co-integration theory, spuri-

ousness and co-summability can be distinguished through the fact that only under co-summability

�u < �y, thus highlighting the existence of an attractor to the equilibrium relationship.

Finally, it is important to emphasise that co-summability mimics the idea of co-integration. This

fact facilitates the development of an empirical strategy to test for co-summability that inherits the

steps of testing for co-integration, although it uses new econometric tools.

Table 2 summarises the situations that can arise from the di¤erent con�gurations of orders of

summability under both co-summability and no co-summability. Two types of unbalancedness are

possible independent of whether a long run relationship exists: unbalancedness of type 1 (U1) if �y >

�g and unbalancedness of type 2 (U2) if �y < �g. A postulated model could be balanced spuriously,

both when there is and when there is not co-summability; this is the spurious (S) case. Finally, under

co-summability a postulated hypothesis could be correctly speci�ed, such that g(xt; �)�f (xt; �) = 0,

or misspeci�ed in an admissible sense, such that f(xt; �)� g (xt; �) � S (0), case (C).

Table 2: Balancedness and Co-summability

No Co-summability Co-summability
Unbalancedness U1 �y > �g U1 �y > �g

U2 �y < �g U2 �y < �g
Balancedness S �y = �g S �y = �g but f(xt; �)� g (xt; �) � S (�y)

C �y = �g with f(xt; �)� g (xt; �) � S (0)
U1: Unbalancedness of type 1; U2: Unbalancedness of type 2; S: Spuriousness; and C: Co-summability.

3 Estimation and Inference

3.1 The model

The co-summable relationship to be analysed in this section is the one described by the following

model, linear in parameters but possibly non-linear in variables,

yt = �0f(xt) + ut; (9)
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where f : R! R, �0 is unknown, f(xt) � S (�f ), �f > 0 and ut � S (0) �strong co-summability. Re-

lationship (9) can be considered to be an approximation to a more general co-summable relationship

yt = f(xt; �0) + ut, which will always be better than the standard approximation considered in co-

integration theory �linear in parameters and variables. Indeed, stopping at a linear approximation

could unbalance the model if, for instance, a higher order polynomial were a better approximation.

Moreover, model (9) is empirically very rich, and at the same time, it encloses its own particular the-

oretical features to be studied by itself. As mentioned in the Introduction, non-linear in parameters

models require a di¤erent empirical, and therefore theoretical, strategy. Notice that in that case the

order of summability of f(xt; �0) could depend on �0. Because it is unknown, balancedness cannot

be directly studied as it can be done in the setup considered in this section where f(xt; �0) = �0f(xt)

and, hence, the order of summability of f(xt; �0) does not depend on �0. To facilitate the exposi-

tion, only the bivariate case (yt; xt) will be considered but the extension to a multivariate xt or to

additively separable multiple regression models can be easily adapted.

Because f is unknown, consider that the following least squares regression is carried out

yt = �̂ng(xt) + êt; (10)

where g : R! R, xt and yt are known by the researcher, and �̂n is the parameter estimate.

Following exactly the same logic of co-integration theory, a two steps empirical strategy is devised.

Consider equation (10) and let yt � S (�y), g (xt) � S (�g) and êt � S (�ê).

Step 1. Balancedness: Test Ho : �y = �g. If it is not rejected, then go to Step 2.

Step 2. Strong Co-summability: Test Ho : �ê = 0.

3.2 Testing for Balancedness

To establish balancedness in practice, we propose to start estimating �y and �g. To carry out this

task, the order of summability estimator developed by BG is used. It is based on the convergence rate

estimation procedure in McElroy and Politis (2007) and involves a simple least squares regression.

The procedure requires the following assumption.

Assumption 1. P (Syn = 0) = P (Sgn = 0) = 0 for all n = 1; 2; 3; :::

Consider the transformation

Uyk = logS
2
yk = log

24 1

k
1
2
+�y

kX
t=1

yt

!235 ;
from which the following regression model can be derived

Yyk = �y log k + Uyk; (11)

10



where Yyk = log
��Pk

t=1 yt

�2�
and �y = 1 + 2�y. BG show that the OLS estimator of �y = 1 + 2�y

is log n-consistent. For expository purposes, we include the formal statement.

Proposition 1 : Let �̂yn be the ordinary least squares estimator of �y in (11). Under Assumption

1, if
1

n

nX
k=1

Uyk =) DyU and
1

n

nX
k=1

jUykjp = Op (1) ; (12)

for some 1 < p <1 and DyU a random variable, then

log n
�
�̂yn � �y

�
=) DyU :

Remark: As shown in McElory and Politis (2007) boundedness in probability of Uk su¢ ces

to get a consistent estimate of �y. Nevertheless, to perform inferences on �y, extra distributional

assumptions, such as those in (12), need to be imposed. Notice that

1

n

nX
k=1

Uyk =
1

n

nX
k=1

logS2yk = �
(1 + 2�)

n

nX
k=1

log

�
k

n

�
+
1

n

nX
k=1

log

24 1

n1=2+�

kX
t=1

yt

!235 :
Hence, for the case when yt is i:i:d:(0; 1), following Pötscher (2004), de Jong (2004) or Berkes and

Horvárth (2006),

1

n

nX
k=1

Uyk =) 1 +

Z 1

0
log
�
W 2 (r)

�
dr and

1

n

nX
k=1

jUykjp = Op (1) :

Similarly, if yt is a standard random walk, then from Berkes and Horvárth (2006),

1

n

nX
k=1

Uyk =) 3 +

Z 1

0
log

 �Z r

0
W (r)dr

�2!
dr and

1

n

nX
k=1

jUykjp = Op (1) :

Therefore, the asymptotic distribution of �̂yn is not invariant to the data generating process of yt.

In BG, it is shown �through simulations�that subsampling con�dence intervals can be constructed

to undertake inferences on the true �y. It is important to remark that the presence of deterministic

components in the data generating process biases the order of summability estimator, at least in

�nite samples. In BG, valid demeaning and detrending procedures are developed. Nevertheless, to

facilitate the exposition, no deterministic components will be considered in this section.

Let the regression to estimate the order of summability of g (xt), that is,

Ygk = �g log k + Ugk; (13)

where Ygk = log
��Pk

t=1 g (xt)
�2�

and �g = 1 + 2�g.

To test for balancedness, an auxiliary equation that subtracts (13) from (11) will be used, that

11



is,

Yyk � Ygk = (�y � �g) log k + Uyk � Ugk:

Let Yk = Yyk � Ygk, � = �y � �g, and Uk = Uyk � Ugk. Then, testing Ho : �y = �g is equivalent to

testing Ho : � = 0 in

Yk = � log k + Uk: (14)

Proposition 2 : Let �̂n be the ordinary least squares estimator of � in (14). Under Assumption

1, if
1

n

nX
k=1

Uk =) DU and
1

n

nX
k=1

jUkjp = Op (1) ;

for some 1 < p <1 and DU a random variable, then

log n
�
�̂n � �

�
=) DU :

Remark: Proposition 2 shows that �̂n is a consistent estimator of the di¤erence �y � �g. In

particular, under balancedness �̂n
p�! 0. Nevertheless, as before, the asymptotic distribution cannot

be tabulated in general. As in BG, we propose to use subsampling con�dence intervals to undertake

inferences. Next, their �nite sample performance is analysed via Monte Carlo experiments.

3.2.1 Finite Sample Performance

Let xyt = xy;t�1+"yt with "yt � i:i:d:N (0; 1) and xy0 = 0. xgt = xg;t�1+"gt with "gt � i:i:d:N (0; 1)

and xg0 = 0. In addition, let ut � i:i:d:N (0; 1) and vt � i:i:d:N (0; 1). "yt, "gt, ut, and vt are

independent of each other. We consider the set of data generating processes �DGPs�collected in

Table 3.

In all cases, �̂n is calculated. Then, a subsampling con�dence interval is computed and the null

hypothesis of balancedness, Ho : � = 0 � �y � �g = 0, is tested. Performance is measured by

the coverage probability of two-sided nominal 95% symmetric intervals. Hence, size and power are

measured as one minus the coverage probability that zero belongs to the corresponding subsampling

con�dence interval. The experiment is based on 1000 replicas and three di¤erent sample sizes,

n = f100, 500, 1000g. A subsample size b =
p
n has been chosen. The results are displayed in Table

4.

On the one hand, under the null hypothesis �cases S and C�the test is slightly undersized, leading

to an under rejection of the null hypothesis. The implication is a high probability to jump to Step

2 �testing for co-summability�in the proposed empirical strategy. Along the lines of Andrews and

Guggenberger (2009), a size-correction procedure could be used to account for these observed size

distortions. Nevertheless, in this case, the size corrections could be more involved given the general

nature of the problem being treated.
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On the other hand, under the alternative hypothesis �cases U1 and U2�, for a given sample size,

results show that the greater the di¤erence �y � �g in absolute value, the higher the power of the

test. Furthermore, under the alternative hypothesis, for a given DGP, the greater the sample size

the higher the power of the test. In other words, by consistency of the test, power increases as we

move far away from the null hypothesis and the sample size grows.

Overall, the performance of the test is adequate given its generality and the agnostic assumptions

upon which it is built.

Table 3: DGPs: Data Generating Processes

Under No Co-summability
* yt g (xt) * yt g (xt)

S vytxyt vgtxgt U1 xyt vgtxgt
S xyt xgt U1 x2yt vgtxgt
S 1 (vyt � 0)xyt 1 (vgt � 0)xgt U1

Pt
j=1 xyj vgtxgt

S x2yt x2gt U2 xyt x2gt
S

Pt
j=1 xyj

Pt
j=1 xgj U2 xyt x3gt

S
Pt
j=1 xyj x3gt U2 xyt

�Pt
j=1 xgj

�2
Under Co-summability

* yt g (xt) * yt g (xt)

C ln (jxgtj) + ut ln (jxgtj) U1 xgt+ut vgtxgt
C vgtxgt+ut vgtxgt U1 x2gt+ut vgtxgt
C xgt + vgt+ut xgt S xgt+ut 1 (vgt � 0)xgt
C 1 (vgt � 0)xgt+ut 1 (vgt � 0)xgt S xg1txg2t+ut x2g1t
C x2gt+ut x2gt U2 xgt+ut x2gt
C

Pt
j=1 xgj+ut

Pt
j=1 xgj U2 xgt+ut x3gt

S, C, U1, and U2 denote spuriousness, co-summability, unbalancedness of type
1, and unbalancedness of type 2, respectively �see Table 2. xyt = xy;t�1 + "yt
with "yt � i:i:d:N (0; 1) and xy0 = 0. xgt = xg;t�1+"gt with "gt � i:i:d:N (0; 1)
and xg0 = 0. In addition, ut � i:i:d:N (0; 1) and vt � i:i:d:N (0; 1). "yt, "gt,
ut, and vt are independent of each other. xg1t and xg2t are de�ned as xgt and
are independent of each other.
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Table 4: Testing for Balancedness: Size and Power

Under No Co-summability
Ho: �y= �g n Ho: �y= �g n

* �y �g 100 500 1000 * �y �g 100 500 1000

S 1/2 1/2 0.013 0.006 0.004 U1 1 1/2 0.315 0.439 0.545
S 1 1 0.056 0.028 0.033 U1 3/2 1/2 0.616 0.838 0.914
S 1 1 0.021 0.006 0.003 U1 2 1/2 0.712 0.861 0.938
S 3/2 3/2 0.004 0.001 0.000 U2 1 3/2 0.174 0.189 0.189
S 2 2 0.046 0.037 0.025 U2 1 2 0.276 0.361 0.401
S 2 2 0.053 0.034 0.032 U2 1 5/2 0.627 0.811 0.893

Under Co-summability
Ho: �y= �g n Ho: �y= �g n

* �y �g 100 500 1000 * �y �g 100 500 1000

C 1/2 1/2 0.000 0.000 0.000 U1 1 1/2 0.550 0.821 0.896
C 1/2 1/2 0.003 0.000 0.000 U1 3/2 1/2 0.882 0.998 0.998
C 1 1 0.000 0.000 0.000 S 1 1 0.007 0.002 0.001
C 1 1 0.000 0.000 0.000 S 3/2 3/2 0.076 0.030 0.033
C 3/2 3/2 0.002 0.010 0.007 U2 1 3/2 0.838 0.950 0.964
C 2 2 0.007 0.052 0.081 U2 1 2 0.743 0.900 0.918

S, C, U1, and U2 denote spuriousness, co-summability, unbalancedness of type
1, and unbalancedness of type 2, respectively �see Table 2. Hence, S and C
represent size while U1 and U2 correspond to power. See Table 3 for speci�c
details about the DGPs. Performance is measured from coverage probability
of two-sided nominal 95% symmetric intervals.

3.3 Asymptotic Properties of �̂n

The test for strong co-summability to be proposed in section 3.4. is a residual based test. Hence,

an estimate of the error term is needed. To this end, consider the OLS estimator

�̂n =

nX
t=1

g (xt) yt

nX
t=1

g2 (xt)

:

3.3.1 Under No Co-summability

To study the asymptotic properties of �̂n under no co-summability the following assumption will be

made.

Assumption NC (No Co-summability): Let yt be independent of xt and (ynt; gnt) = (yt=n�y ; g (xt) =n�g).

The D-space analog of (ynt; gnt) satis�es

(yn (r) ; gn (r)) =

 
y[nr]

n�y
;
g
�
x[nr]

�
n�g

!
=) (Dy (r) ; Dg (r)) :
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Assumption NC, for no co-summability, is similar to the assumptions in Granger and Newbold

(1974) and Phillips (1986), where linear spurious regressions were analysed. Given that �y can di¤er

from �g unbalanced regressions can be studied in the present framework. The relationship between

Assumption NC and the order of summability of yt and g (xt) follows directly from the continuous

mapping theorem �CMT�, that is, 
1

n

nX
t=1

yt
n�y

;
1

n

nX
t=1

g (xt)

n�g

!
=

�Z 1

0
yn (r) dr;

Z 1

0
gn (r) dr

�
=)

�Z 1

0
Dy (r) dr;

Z 1

0
Dg (r) dr

�
;

which implies �y = 1=2 + �y and �g = 1=2 + �g.

Proposition 3 : Under Assumption NC,

n(�g��y)�̂n =)
R 1
0 Dy (r)Dg (r) drR 1

0 D
2
g (r) dr

:

Remark: Under unbalancedness of type 1, �g � �y < 0. Hence, �̂n diverges. In a spurious

relationship, �g � �y = 0. Therefore, �̂n, without any rescaling, converges to a random variable.

Finally, under unbalancedness of type 2, �g � �y > 0. Hence, �̂n converges to zero.

3.3.2 Under Co-summability

Let

yt = �0f (xt) + ut: (15)

De�ne

vn (r) =
1p
n

[nr]X
t=1

ut;

and Fnt to be the natural �ltration of (ut; xt+1). Finally, denote E (XjFi) by EiX.

Assumption SC (Strong Co-summability):

(a)

sup
t�n

kutk2 <1:

(b)

sup
t�n

1X
k=1

k(Etut+k � Et�1ut�1+k)k2 <1 and sup
t�n

1X
k=1

jEtut+kj <1:

(c) For some � with V ar (�) � 0,

��n =
1p
n

nX
t=1

(gnt � gn;t�1)
1X
k=1

Et�1ut�1+k =) �:
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(d) The D-space analog of (fnt; gnt; vnt) satis�es,

(fn (r) ; gn (r) ; vn (r)) =

0@f �x[nr]�
n�f

;
g
�
x[nr]

�
n�g

;
1p
n

[nr]X
t=1

ut

1A =) (Df (r) ; Dg (r) ; Du (r)) :

Assumption SC describes the stochastic structure of the processes involved in the long run

relationship (15). Speci�cally, conditions (a) and (b) limit the heterogeneity and dependence, re-

spectively, of the error term �the so called Gordin conditions (Gordin, 1969). On the other hand,

condition (c) limits the dependence among the regressor and the error term. The limiting � describes

their long run dependence, which, in this non-linear framework, can be stochastic �V ar (�) � 0.

Finally, condition (d) is the non-linear counterpart of the usual assumption typically imposed to

analyse linear models with integrated time series. Notice that most of the asymptotically homoge-

neous functions studied in Park and Phillips (1999, 2001) satisfy this condition. Nevertheless, as

stated, condition (d) does not require to work under the random walk hypothesis.

Proposition 4 : Under Assumption SC, if g (xt) = f (xt) a.s., then

n�g
�
�̂n � �0

�
=)

R 1
0 Dg (r) dDu (r)R 1

0 D
2
g (r) dr

+ �:

Remark: Because co-summability mimics co-integration theory, it is not surprising that �̂n is

consistent, and its rate of convergence depends on �g. The asymptotic distribution has been derived

following Hansen (1992). It resembles the asymptotic distribution of the OLS estimator of the

co-integrating parameter in a linear model. Nevertheless, the non-linearity in variables, as well as

Assumption SC, generates a more general asymptotic distribution. The limiting integrals coincide

with those in Theorem 3.3. of Park and Phillips (2001) when their theoretical framework is used.

Assumption AM (Admissible Misspeci�cations): (f(xt)� g (xt)) = zt is a martingale di¤er-

ence sequence with E
�
z2t jFn;t�1

�
= �2z a:s: for all t = 1; :::; n, and sup1�t�nE (jztjq jFn;t�1) < 1

a:s: for some q > 2. Moreover,

(fn (r) ; gn (r) ; zn (r) ; vn (r)) =) (Df (r) ; Dg (r) ; Dz (r) ; Du (r)) ;

where

zn (r) =
1p
n

[nr]X
t=1

zt:

Assumption AM gives conditions that ensure that the OLS estimator approaches �0 even when

the functional form is incorrect or when relevant variables are measured with error or omitted
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entirely. In this sense, this assumption shares the same spirit as Assumption 3 in White (1981)

where, in an i.i.d. setup, conditions under which the least squares estimator has desirable properties

as an approximation are provided. In summability terms, notice that under Assumption AM, f(xt)

and g (xt) are strongly co-summable, i.e., zt � S (0).

Proposition 5 : Under Assumptions SC and AM,

n�g
�
�̂n � �0

�
=) �0

R 1
0 Dg (r) dDz (r)R 1
0 D

2
g (r) dr

+

R 1
0 Dg (r) dDu (r)R 1

0 D
2
g (r) dr

+ �:

Remark: �̂n is consistent under admissible misspeci�cations and the rate of convergence depends

on �g, as in the correct speci�cation case. It seems worth mentioning that the implications of

Proposition 5 do not change under a more general characterization of zt as an S (0) process, for

instance a linear dependent process.

Assumption IM (Inadmissible Misspeci�cations): Let �m = max f�f ; �gg and znt = (f(xt)� g (xt)) =n�m

such that

(fn (r) ; gn (r) ; zn (r) ; vn (r)) =) (Df (r) ; Dg (r) ; Dz (r) ; Du (r)) ;

with

zn (r) =
z[nr]

n�m
:

Assumption IM considers cases in which the speci�ed function g (xt) is so di¤erent from f (xt)

that the OLS estimator �̂n does not consistently estimate the unknown parameter �0. Notice that un-

der Assumption IM, by the CMT, the di¤erence (f(xt)� g (xt)) � S (�m) where �m = max f�f ; �gg,

such that f(xt) and g (xt) are not co-summable.

Proposition 6 : Under Assumptions SC and IM,

(i) If �g � �f , then �̂n converges.

(ii) If �g < �f , then n�g��f
�
�̂n � �0

�
converges.

Remark: When a model is inadmissibly misspeci�ed and �g < �f , then �̂n diverges while if

�g � �f , then �̂n converges without any rescaling.

3.4 Testing for Strong Co-summability

The asymptotic properties of the OLS estimator derived in the previous section allow us to use OLS

residuals to construct a residual-based test for co-summability. The following proposition formalises

this fact.
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Proposition 7 : Let êt be the OLS residuals in yt = �̂ng(xt) + êt.

(a) Under Assumption NC,

1

n1=2+�y

nX
t=1

êt = Op (1) :

(b) Under Assumptions SC and AM,

1

n1=2

nX
t=1

êt = Op (1) :

(c) Under Assumptions SC and IM,

(i) if �g � �f ,
1

n1=2+�g

nX
t=1

êt = Op (1) :

(ii) if �g < �f ,
1

n1=2+�f

nX
t=1

êt = Op (1) :

Remark: Notice that only under Assumptions SC and AM, êt � S (0). In all the other sit-

uations, êt � S (�ê) with �ê > 0. Hence, given Proposition 7 a test for strong co-summability,

Ho : �ê = 0, can be easily constructed because under this null hypothesis the conditions of Propo-

sition 1 are satis�ed. The testing procedure can be implemented as follows. First, estimate the

order of summability of the residuals. Second, compute the corresponding subsampling con�dence

interval and check whether zero belongs to this interval or not.

As before, the �nite sample performance of the test will be studied via simulations. The consid-

ered data generating processes are those in Table 3. Again, performance has been measured by a

coverage probability of two-sided nominal 95% symmetric intervals. Size and power are measured as

one minus the coverage probability that zero belongs to the corresponding subsampling con�dence

interval. The experiment is based on 1000 replicas and three di¤erent sample sizes, n = f100, 500,

1000g. A subsample size, b =
p
n, has been chosen. The results are shown in Table 5.
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Table 5: Testing for Strong Co-summability: Size and Power

Under No Co-summability
Ho: �ê= 0 n Ho: �ê= 0 n

* �y �g 100 500 1000 * �y �g 100 500 1000

S 1/2 1/2 0.139 0.218 0.289 U1 1 1/2 0.835 0.993 0.998
S 1 1 0.634 0.954 0.993 U1 3/2 1/2 0.950 1.000 1.000
S 1 1 0.360 0.844 0.925 U1 2 1/2 0.992 1.000 1.000
S 3/2 3/2 0.853 0.998 1.000 U2 1 3/2 0.669 0.977 0.994
S 2 2 0.998 1.000 1.000 U2 1 2 0.740 0.975 0.995
S 2 2 0.997 1.000 1.000 U2 1 5/2 0.745 0.977 0.992

Under Co-summability
Ho: �ê= 0 n Ho: �ê= 0 n

* �y �g 100 500 1000 * �y �g 100 500 1000

C 1/2 1/2 0.009 0.007 0.007 U1 1 1/2 0.745 0.981 0.998
C 1/2 1/2 0.013 0.011 0.015 U1 3/2 1/2 0.956 1.000 1.000
C 1 1 0.015 0.011 0.012 S 1 1 0.237 0.501 0.594
C 1 1 0.008 0.012 0.010 S 3/2 3/2 0.715 0.995 1.000
C 3/2 3/2 0.005 0.010 0.005 U2 1 3/2 0.356 0.842 0.960
C 2 2 0.007 0.011 0.007 U2 1 2 0.450 0.882 0.968

S, C, U1, and U2 denote spuriousness, co-summability, unbalancedness of type
1, and unbalancedness of type 2, respectively �see Table 2. See Table 3 for
speci�c details about the DGPs. Hence, C represent size while S, U1 and U2
correspond to power. Performance is measured from coverage probability of
two-sided nominal 95% symmetric intervals.

As can be evidenced, the testing procedure is undersized �case C�while power increases as we

move away from the null hypothesis and the sample size grows �cases S, U1, and U2.

Remark: When a constant term is introduced in the proposed model, that is,

yt = m̂n + �̂ng(xt) + êt;

where m̂n is the OLS estimator of a constant term, then the OLS residuals satisfy

nX
t=1

êt =

nX
t=1

(yt � m̂n � �̂ng(xt)) = 0;

which implies that êt cannot be used to infer �ê. Partially demeaned residuals

~et = êt �
1

t

tX
j=1

êj ;

can be used instead in that case.
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4 Error Correction Model Representation

Error Correction Models �ECMs�have a long tradition in econometrics. From the study of its own

history, two main approaches can be distinguished: the LSE tradition, on the one hand, and the

Engle-Granger-Johansen standpoint, on the other.

The LSE tradition �with Phillips (1954, 1957), Sargan (1964), Davidson, Hendry, Srba and

Yeo (1978) or Nickell (1985)�conceived ECMs as models deriving from dynamic decision rules of

economic agents. As noted by Alogoskou�s and Smith (1991), for the LSE tradition, ECMs are

structural representations of dynamic adjustments towards an equilibrium about which economic

theory can be informative. There is another particular feature of their approach, namely, the as-

sumptions regarding exogeneity, under which single equation ECMs are mainly considered. The

single equation modelling contrasts with the Engle-Granger-Johansen approach. This second tradi-

tion considers ECMs as statistical representations of co-integrated systems, which do not distinguish

a priori between endogenous and exogenous variables. In any case, both approaches share the error

correction principle, that is, the idea that a proportion of the disequilibrium in one period is corrected

through changes in the variables of the system such that it tends to return to the equilibrium.

Given the nature of the model studied in this paper, we follow the LSE tradition as only single

equation error correction models are considered in this section. A full treatment of the Engle-

Granger-Johansen approach is beyond the scope of this paper and is under current investigation.

Consider an economic agent that tries to minimise the following quadratic loss function

Q =
1

2
(yt � y�t )

2 +
#

2
(�yt)

2 ; (16)

where # is the ratio of the marginal cost of adjustment relative to the marginal cost of being away

from equilibrium. As shown in Alogoskou�s and Smith (1991), the optimal solution of (16) can be

written as

�yt = ��y
�
t � �

�
yt�1 � y�t�1

�
; (17)

where � = (1 + #)�1. If the target level depends in a non-linear manner upon an observable variable,

xt, for instance y�t = �f (xt), (17) becomes

�yt = ���f (xt)� � (yt�1 � �f (xt�1)) ; (18)

which can be understood as a non-linear partial adjustment model. As an example of the above

minimisation problem, consider that the economic agent is a policy maker that tries to achieve a

particular targeted level of pollution y�t , which may depend non-linearly on the level of GDP per

capita xt, as predicted by the environmental Kuznets curve.
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By adding an S (0) disturbance term �t to (18), that is,

�yt = ���f (xt)� � (yt�1 � �f (xt�1)) + �t;

the ECM representation is obtained in which the term�f (xt), in contrast to the linear co-integration

case where it can be ignored without serious harm, becomes a key element to obtain a balanced

representation, ��y = ��f . As emphasised in section 2, the order of integration of�f (xt), and hence

of �yt, could not be well de�ned. Therefore, summability and co-summability become essential

concepts to study ECMs associated with non-linear equilibrium relationships.

The econometric analysis and statistical treatment of the ECM representation of nonlinear equi-

librium relationships require a more general setup that the one intended in this paper. Nevertheless,

the derivation of the ECM in this section allows to catch sight of the interesting but open question

about the existence of a Granger Representation Theorem for nonlinear equilibrium relationships; a

subject that has been rarely studied in the literature. As it can be seen from the above discussion,

ECM representations of nonlinear equilibrium relations will present distinctive features that will

require additional econometric tools.

5 Empirical Application

5.1 Asymmetric preferences of central bankers

There seems to be nowadays certain consensus about the superiority of rules versus discretion in the

practice of monetary policy. As noted by Taylor (1993), the advantage of rules over discretion is like

the advantage of a cooperative over a non-cooperative solution in game theory. Optimal rules have

been traditionally derived in a linear-quadratic framework in which policy makers have a quadratic

objective function and operate in an economy that is described by a linear dynamic system �see, for

instance, Svensson (1997). Linear Taylor rules are obtained in this framework when interest rates

are taken to be the policy instrument, implying that central banks adjust interest rates according

to output and in�ation deviations from their targets. A traditional representative Taylor rule looks

like

it = �0 + �1~�t + �3~yt; (19)

where it denotes nominal interest rates and ~�t and ~yt are deviations of in�ation and output from their

targets, respectively. Using equation (19), or some slightly modi�ed version of it, several authors

have tried to quantify the parameters that de�ne the practice of monetary policy in di¤erent countries

�see, for instance, Clarida, Galí and Gertler (1998, 2000).

It is somehow surprising that little attention has been paid to the fact that the variables involved

in the Taylor rule are known to be highly persistent, something that should be taken into account
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when long time periods are analysed. There are, however, several works that address this issue, for

instance, Siklos and Wohar (2005), Österholm (2005), and Christensen and Nielsen (2009). The fact

that traditional Taylor rules do not appear to be congruent with the data once persistence is taken

into consideration �usually through integration and co-integration theory�seems to be a common

feature of these studies. This conclusion points to the possibility of an incorrect speci�cation of the

traditional Taylor rule.

On the other hand, although consistent with this conclusion, a stream of the literature has

emphasised the hypothesis of asymmetric preferences of central bankers, which is often translated

into non-linear Taylor rules. Next, the two cases described in Example 4 will be considered. Recall

that, Clarida and Gertler (1997) consider a threshold type of Taylor rule in which the reaction of

the monetary authority is di¤erent when in�ation or output deviates from above, rather than from

below, the target. Speci�cally,

it = �0 + �1~�
(k)
t 1 (vt > 0) + �2~�

(k)
t 1 (vt � 0) + �3~yt1 (vt > 0) + �4~yt1 (vt � 0) ; (20)

where ~�(k)t are deviations of the rate of in�ation between periods t and t � k, and vt can be either

~�
(k)
t or ~yt. Alternatively, Dolado, María-Dolores and Naveira (2005) derive a non-linear optimal rule

when non-linearities in the Phillips curve are allowed. The main prediction of this model is that the

optimal rule should contain the interaction between in�ation and output gaps, that is,

it = �0 + �1~�
(k)
t + �2~yt + �3~�

(k)
t ~yt: (21)

Note that if it, ~�
(k)
t , or ~yt are highly persistent, the non-linear nature of these two speci�cations

invalidate the use of standard co-integration theory to analyse the relevance of these models. Nev-

ertheless, co-summability can be used given its generality when allowing for persistence and non-

linearities at the same time. Moreover, the linearity in parameters of both equations makes suitable

the application of the tools to test for co-summability developed in section 3.

To this end, we use US monthly time series covering the period 1954:07-2013:03, which are

obtained from the Federal Reserve Bank of St. Louis. Speci�cally, we use (i) federal funds rate as

interest rates, (ii) annual (t=t�12 basis; k = 12) percentage rate in the CPI for in�ation, (iii) (logged)

industrial production index for output. Following the usual practice in the literature, to measure

the output gap, we detrend (logged) industrial production using the HP �lter with a coe¢ cient of

14.800. For the in�ation target, we use a �xed 2% level. Figure 1 shows the temporal evolution of

these three measures �it, ~�
(k)
t , and ~yt.
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Figure 1: Optimal Rules of Monetary Policy

Variables: Taylor Rule
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Table 6 reports the estimated orders of summability of all the variables contained in equations

(20) and (21) as well as their corresponding subsampling con�dence interval. All the variables have

been partially demeaned to compute their orders of summability. Moreover, to control for a possible

constant term in regression model (11) the �rst observation is subtracted �see BG for these technical

details.

Table 6: Order of Summability: Estimation and Inference

Variables �̂ IL IU
it 0.813 0.419 1.207

~�
(k)
t 0.862 0.404 1.321
~yt 0.490 0.055 0.925

~�
(k)
t ~yt 0.198 -0.381 0.778

~�
(k)
t 1

�
~�
(k)
t > 0

�
0.814 0.459 1.169

~�
(k)
t 1

�
~�
(k)
t � 0

�
0.697 0.271 1.122

~yt1
�
~�
(k)
t > 0

�
0.155 -0.502 0.813

~yt1
�
~�
(k)
t � 0

�
0.398 -0.232 1.029

~�
(k)
t 1 (~yt > 0) 0.805 0.301 1.309

~�
(k)
t 1 (~yt � 0) 0.725 0.240 1.210
~yt1 (~yt > 0) 0.496 0.129 0.862
~yt1 (~yt � 0) 0.626 0.186 1.065

�̂ denotes the estimated order of summability calculated from re-
gression (11) after subtracting the �rst observation. IL and IU
denote the lower and upper bounds of the corresponding 95%
subsampling con�dence intervals. All the variables have been par-
tially demeaned.

Results in Table 6 indicate that interest rates, it, and in�ation gap, ~�
(k)
t , have a similar order of

summability of approximately 0:8, while the estimated order of summability for the output gap, ~yt,

is approximately 0:5. It is worth emphasising that zero does not belong to any of the subsampling
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con�dence intervals of these three time series. This con�rms that persistence has to be properly

addressed when using this database. With respect to the non-linear variables, di¤erent results are

found. While the subsampling con�dence intervals for ~�(k)t ~yt, ~yt1
�
~�
(k)
t > 0

�
, and ~yt1

�
~�
(k)
t � 0

�
do

contain zero, all the other con�dence intervals do not.

Following the steps of the proposed empirical strategy to test for co-summability, balancedness

of (20) and (21) is next analysed. Given that these equations contain more than one regressor, the

test for balancedness considers as explanatory variable the sum of all the regressors. Notice that, if

they are not co-summable, then their sum must have an order of summability equal to the highest

order of summability of the regressors. When the test is carried out separately for each regressor,

the same conclusions are obtained. The corresponding results are collected in Table 7. As can be

seen, the null hypothesis of balancedness, Ho : �y = �g, is not rejected in either case �zero belongs

to the two subsampling intervals. Therefore, Step 2 in the proposed empirical strategy �testing for

co-summability�is conducted.

Table 7: Testing for Balancedness

Balancedness �̂n= �̂y��̂g IL IU
threshold 0.010 -0.377 0.397

cross product 0.096 -0.337 0.531

�̂y and �̂g denote the estimated order of summability of
the endogenous variable and the sum of the explanatory
variables, respectively. The variables have been partially
demeaned. IL and IU denote the lower and upper bounds of
the corresponding 95% subsampling con�dence intervals.

Table 8 collects the parameter estimates of equations (20) and (21) jointly with the results of

the test for co-summability associated with each regression. Some aspects are worth emphasising.

First, the traditional Taylor rule does not specify a strong co-summable relationship �zero does

not belong to the corresponding subsampling con�dence interval. Second, focusing on the non-

linear speci�cations, it can be seen that only a threshold type of Taylor rule in which the Federal

Reserve reacts asymmetrically to output deviations is not rejected �zero belongs to the interval in

this case. Finally, the di¤erence between the parameters associated to ~yt1 (~yt > 0) and ~yt1 (~yt � 0)

is remarkable. This fact clearly re�ects a greater aversion to recessions than to expansions of the

monetary authorities in the US.
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Table 8: Testing for Co-summability

Taylor Rules it it it it
1 3.641 3.606 3.603 3.781

~�
(k)
t 0.957 0.959
~yt 0.744 0.445

~�
(k)
t ~yt 0.173

~�
(k)
t 1

�
~�
(k)
t > 0

�
0.965

~�
(k)
t 1

�
~�
(k)
t � 0

�
0.916

~yt1
�
~�
(k)
t > 0

�
0.974

~yt1
�
~�
(k)
t � 0

�
0.290

~�
(k)
t 1 (~yt > 0) 1.052

~�
(k)
t 1 (~yt � 0) 0.820
~yt1 (~yt > 0) 0.119
~yt1 (~yt � 0) 0.807

�̂ê 0.428 0.471 0.437 0.403
IL 0.036 0.087 0.011 -0.005
IU 0.819 0.854 0.863 0.811

�̂ê denotes the estimated order of summability of the resid-
uals calculated from regression (11) after subtracting the
�rst observation. Pseudo residuals have been partially de-
meaned. IL and IU denote the lower and upper bounds of
the corresponding 95% subsampling con�dence intervals.

5.2 Environmental Kuznets Curve

The environmental Kuznets curve �EKC�suggests an inverted U-shaped relationship between pol-

lution and economic development. The argument is as follows. Agents living in poor economies are

more concerned with labor and income than with the environment; consequently, environmental reg-

ulation is limited at poorer stages. As economies gain in wealth, agents value more the environment,

production becomes cleaner, and more e¢ cient regulatory institutions are formed �see Dasgupta et

al. (2001).

This hypothesis has been controversial, prompting con�icting views from researchers and policy-

makers. The literature �see Grossmann and Krueger (1995) or Brock and Taylor (2005)�identi�es,

mainly, three di¤erent channels linking pollution and economic activity: scale, composition, and

technique e¤ects. Ceteris paribus (i) emissions rise when the scale of economic activity, as measured

by real GDP, increases; (ii) emissions fall through the composition e¤ect when the goods produced

in an economy become cleaner; (iii) emissions fall when the techniques of production are less conta-

minating. The EKC hypothesis depends on the relative relevance of these three e¤ects. To identify

them, a structural modelling should be carefully undertaken. Nevertheless, the empirical literature

on the EKC has mainly used a reduced form approach. Typically, polynomial relationships between
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pollution and income have been considered, that is,

pt = �0 + �1yt + �2y
2
t + :::+ �ky

k
t ; (22)

where pt is a measure of pollution and yt is a measure of income. Several empirical issues arise

in this setup. A �rst issue is concerned with the measures chosen for pt and yt. While GDP has

been used as a measure of income many measures of pollutants have been used. Commonly used

measures for pt are CO2, NOx, and SO2. Empirical evidence is mixed for di¤erent pollutants. A

second issue relates to the curvature of the EKC. There seems not to be a clear agreement about the

order of the polynomial to be used. Grossman and Krueger (1995) used a cubic speci�cation, while

Holtz-Eakin and Selden (1995) preferred the quadratic one. Other authors tend to compare both

speci�cations in practice. A third empirical ambiguity arises as pt and yt are sometimes treated in

levels (Grossman and Krueger, 1995), other times in logarithms (Hong and Wagner, 2008), and, still

at other times, both cases are compared (Holtz-Eakin and Selden, 1995). Finally, it is surprising

that only a few authors have taken into consideration persistence of the variables involved in the

EKC. Some exceptions include Perman and Stern (2003), Hong and Wagner (2008) and Jalil and

Mahmud (2009). When persistence is taken into consideration, the empirical evidence on the EKC

is mixed.

As an illustration, we apply co-summability theory to disentangle some of the empirical features

on the EKC. We use annual GDP and CO2 emissions per capita in the US during the period 1870-

2007. GDP and population are taken from Angus Maddison and CO2 emissions from the Carbon

Dioxide Information Analysis Centre. Figure 2 shows the evolution of GDP and CO2 emissions per

capita, both in levels �co2pcus, gdppcus�and logarithms �lco2pcus, lgdppcus.
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Figure 2: Environmental Kuznets Curve Hypothesis

Variables: Environmental Kuznets Curve
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Table 9 reports the estimated orders of summability of all the variables contained in (22) for

k = 4. The corresponding subsampling con�dence intervals are provided as well. As expected,

the order of summability of GDP per capita increases as successive powers are taken. In general,

these results show that persistence must be taken into account �zero does not belong to any of the

con�dence intervals.

Table 9: Order of Summability: Estimation and Inference

Variables �̂ IL IU
co2pc 0.893 0.286 1.500
gdppc 1.424 0.599 2.249
gdppc2 1.779 0.795 2.763
gdppc3 2.090 0.952 3.229
gdppc4 2.391 1.082 3.699
lco2pc 0.705 0.160 1.250
lgdppc 0.876 0.195 1.557
lgdppc2 0.950 0.255 1.645
lgdppc3 1.017 0.270 1.764
lgdppc4 1.112 0.260 1.963

�̂ denotes the estimated order of summability calculated
from regression (11) after subtracting the �rst observation.
IL and IU denote the lower and upper bounds of the cor-
responding 95% subsampling con�dence intervals. All the
variables have been partially detrended.
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Figure 3 plots the relationship between GDP and CO2 emissions per capita in levels and log-

arithms. Although it seems there is a diminishing marginal propensity to pollute, the postulated

inverted U-shape should be more carefully and formally analysed.

Figure 3: Environmental Kuznets Curve Hypothesis
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Results of testing for balancedness are reported in Table 10. Notice that when variables are in

levels, balancedness is only achieved under the linear speci�cation. However, when variables are in

logarithms, balancedness is obtained under quadratic and cubic polynomials.

Table 10: Testing for Balancedness

Balancedness �̂n= �̂y��̂g IL IU
co2

gdp -0.104 -0.995 0.787
gdp2 -2.494 -4.809 -0.179

lco2

lgdp 0.530 0.054 1.007
lgdp2 -0.216 -0.979 0.545
lgdp3 -0.865 -1.957 0.225
lgdp4 -1.534 -2.944 -0.124

�̂y and �̂g denote the estimated order of summability of the en-
dogenous variable and the sum of the explanatory variables, re-
spectively. The variables have been partially detrended. IL and
IU denote the lower and upper bounds of the corresponding 95%
subsampling con�dence intervals.

Results to test for co-summability are collected in Tables 11 and 12 for levels and logarithms,

respectively. From Table 11, it is clear that co-summability does not hold either for the linear or the

quadratic speci�cation. The latter result was expected given the balancedness test. Nevertheless,
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in Table 12, results are more optimistic. Co-summability is not rejected for the cubic speci�cation,

which is compatible with the shape observed in Figure 3. These results are invariant to the inclusion

of a deterministic trend. Summarising, from the co-summability results, we recommend to use the

logarithmic transformation and polynomials of third degree when empirically studying parametric

reduced forms of the EKC in the US.

Table 11: Testing for Co-summability

EKC co2 co2 co2 co2

1 2190.538 1090.780 470.265 749.636
t 54.820 39.204
gdp 0.149 -0.098 0.520 0.112
gdp2 -1.249e-005 -4.752e-006

�̂ê 1.750 0.883 1.447 0.989
IL 0.945 0.143 0.483 0.322
IU 2.556 1.623 2.411 1.656

�̂ê denotes the estimated order of summability of the resid-
uals calculated from regression (11) after subtracting the
�rst observation. Pseudo residuals have been partially de-
meaned. IL and IU denote the lower and upper bounds of
the corresponding 95% subsampling con�dence intervals.

Table 12: Testing for Co-summability

EKC lco2 lco2 lco2 lco2 lco2 lco2

1 2.290 10.023 -42.883 -41.941 -280.718 -290.421
t 0.019 0.001 -0.003
lgdp 0.646 -0.359 10.665 10.501 90.013 92.866
lgdp2 -0.551 -0.546 -9.340 -9.623
lgdp3 0.323 0.333

�̂ê 1.503 1.351 0.792 0.796 0.240 0.247
IL 0.724 0.529 0.189 0.172 -0.342 -0.305
IU 2.281 2.172 1.395 1.419 0.823 0.801

�̂ê denotes the estimated order of summability of the residuals
calculated from regression (11) after subtracting the �rst obser-
vation. Pseudo residuals have been partially demeaned. IL and
IU denote the lower and upper bounds of the corresponding 95%
subsampling con�dence intervals.

6 Concluding Remarks

Co-integration theory is not designed to deal with situations in which non-linearities and persistence

occur simultaneously. Accordingly, there is a clear need for theoretically valid and empirically useful

concepts that generalise the concepts of integration and co-integration to non-linear environments.
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The order of summability concept has made it possible to de�ne non-linear long run relationships

between persistent processes under exactly the same logic as that of co-integration theory. It has

easily allowed for (i) the de�nition of balancedness of a postulated model �a necessary condition

for a correct speci�cation; and (ii) the de�nition of non-linear long run relationships by means of

the concept of co-summability �a direct extension of co-integration valid for non-linear equilibria.

These two pieces are relevant for both econometricians and economic theorists: for the former when

specifying, estimating, and testing econometric models; for the latter when choosing functional forms

to construct their theories.

Further research is going in two directions: (i) non-linear in parameters regression models and

(ii) vector error correction models.

7 Appendix

Proof of Proposition 1: See Berenguer-Rico and Gonzalo (2013).

Proof of Proposition 2: The estimator of interest is

�
�̂n � �

�
=

Pn
k=1 Uk log kPn
k=1 log

2 k
;

or equivalently

log n
�
�̂n � �

�
=

1
n logn

Pn
k=1 Uk log k

1
n log2 n

Pn
k=1 log

2 k
:

The denominator satis�es
1

n log2 n

nX
k=1

log2 k �! 1:

The numerator can be written as

1

n log n

nX
k=1

Uk log k =
1

n log n

nX
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Uk log
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k

n
n
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n log n
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+ log n

�

=
1

n

nX
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Uk +
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log n

 
1

n

nX
k=1

Uk log

�
k

n

�!
:

Now, let q be such that 1=p+ 1=q = 1. By Hölder�s inequality,

1

n

nX
k=1

����Uk log�kn
����� �

 
1

n

nX
k=1

jUkjp
!1=p 

1

n

nX
k=1

����log�kn
�����q
!1=q

;
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hence,

1

n

nX
k=1

Uk log

�
k

n

�
� 1

n

nX
k=1

����Uk log�kn
����� �

 
1

n

nX
k=1

jUkjp
!1=p 

1

n

nX
k=1

����log�kn
�����q
!1=q

:

Therefore,
1

n

nX
k=1

Uk log

�
k

n

�
= Op (1) ;

which implies that the numerator satis�es

1

n log n

nX
k=1

Uk log k =
1

n

nX
k=1

Uk + op (1) =) DU :

All together gives the stated result

log n(�̂ � �) =
1

n logn

Pn
k=1 Uk log k

1
n log2 n

Pn
k=1 log

2 k
=) DU :

Q.E.D.

Proof of Proposition 3: The OLS estimator can be rewritten as

n(�g��y)�̂n =

1
n

nX
t=1

g(xt)
n�g

yt
n�y

1
n

nX
t=1

g2(xt)

n2�g

=

R 1
0 gn (r) yn (r) drR 1

0 g
2
n (r) dr

:

Hence, under Assumption NC, by the CMT,

n(�g��y)�̂n =)
R 1
0 Dg (r)Dy (r) drR 1

0 D
2
g (r) dr

:

Q.E.D.

Proof of Proposition 4: Let

Vnt � Vn;t�1 =
utp
n
;

and write
1p
n

nX
t=1

f (xt)

n�f
ut =

Z 1

0
fn (r) dVn (r) :

Following Hansen (1992), de�ne

�t =
1X
k=0

(Etut+k � Et�1ut+k) ; zt =

1X
k=1

Etut+k;

such that

ut = �t + zt�1 � zt; Et�1�t = 0:
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In this scenario, a martingale di¤erence approximation can be used, that is,

Z 1

0
fn (r) dVn (r) =

Z 1

0
fn (r) dYn (r) + �

�
n;

with Ynt = Yt=
p
n, Yt =

Pt
i �i, and

��n =
1p
n

nX
t=1

(fnt � fn;t�1) zt�1 �
1p
n
fnnzn:

Let �nt = �t=
p
n. To apply Theorem 3.1. in Hansen (1992), that is,

Z 1

0
fn (r) dYn (r) =)

Z 1

0
Df (r) dDu (r) ;

it must be showed that:

(i)
nX
t=1

E�2nt <1;

and (ii)

sup
t�n

jYnt � Vntj
p�! 0:

With respect (i), note that

nX
t=1

E�2nt � sup
t�n
E�2t =

�
sup
t�n

kut + zt � zt�1k2
�2

�
�
sup
t�n

kutk2 + sup
t�n

kzt � zt�1k2
�2

=

 
sup
t�n

kutk2 + sup
t�n


1X
k=1

(Etut+k � Et�1ut�1+k)

2

!2

�
 
sup
t�n

kutk2 + sup
t�n

1X
k=1

k(Etut+k � Et�1ut�1+k)k2

!2
<1;

by conditions (a) and (b) of Assumption SC.

With respect (ii), note that

sup
t�n

jYnt � Vntj � 2
1p
n
sup
t�n

jztj

= 2
1p
n
sup
t�n

�����
1X
k=1

Etut+k

����� p�! 0;

by condition (b).
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It remains to analyse

��n =
1p
n

nX
t=1

(fnt � fn;t�1) zt�1 �
1p
n
fnnzn:

The second component of the right hand side satis�es

1p
n
fnnzn � sup

t�n

1p
n
jfntztj � sup

t�n
jfntj sup

t�n

1p
n
jztj :

By condition (d) of Assumption SC,

sup
t�n

jfntj = Op (1) ;

and by condition (b)
1p
n
sup
t�n

jztj
p�! 0;

implying
1p
n
fnnzn

p�! 0:

Hence, by condition (c)

��n =) �:

All together gives

n�g
�
�̂n � �0

�
=

1p
n

nX
t=1

g(xt)
n�g ut

1
n

nX
t=1

g2(xt)

n2�g

=

R 1
0 fn (r) dYn (r)R 1
0 f

2
n (r) dr

+ ��n =)
R 1
0 Df (r) dDu (r)R 1

0 D
2
f (r) dr

+ �;

as stated. Q.E.D.

Proof of Proposition 5: The OLS estimator in terms of ut, g (xt), and f (xt),

�̂n = �0

nX
t=1

g (xt) f (xt)

nX
t=1

g2 (xt)

+

nX
t=1

g (xt)ut

nX
t=1

g2 (xt)

;

can be rewritten as

�̂n = �0

nX
t=1

g (xt) (f (xt) + g (xt)� g (xt))

nX
t=1

g2 (xt)

+

nX
t=1

g (xt)ut

nX
t=1

g2 (xt)

= �0+�0

nX
t=1

g (xt) (f (xt)� g (xt))

nX
t=1

g2 (xt)

+

nX
t=1

g (xt)ut

nX
t=1

g2 (xt)

:
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Equivalently,

n�g
�
�̂n � �0

�
= �0

1p
n

nX
t=1

g(xt)
n�g (f (xt)� g (xt))

1
n

nX
t=1

g2(xt)

n2�g

+

1p
n

nX
t=1

g(xt)
n�g ut

1
n

nX
t=1

g2(xt)

n2�g

: (23)

By Assumption AM, convergence of the �rst summand of the right hand side of (23) follows from

results in Kurtz and Protter (1991). Convergence of the second summand follows from Proposition

4. In particular,

n�g
�
�̂n � �0

�
=) �0

R 1
0 Dg (r) dDz (r)R 1
0 D

2
g (r) dr

+

R 1
0 Dg (r) dDu (r)R 1

0 D
2
g (r) dr

+ �:

Q.E.D.

Proof of Proposition 6: The OLS estimator can be written as

n�g��m
�
�̂n � �0

�
= �0

1
n

nX
t=1

g(xt)
n�g

(f(xt)�g(xt))
n�m

1
n

nX
t=1

g2(xt)

n2�g

+

1
n1+�m

nX
t=1

g(xt)
n�g ut

1
n

nX
t=1

g2(xt)

n2�g

:

By Proposition 4,

n�g��m
�
�̂n � �0

�
= �0

1
n

nX
t=1

g(xt)
n�g

(f(xt)�g(xt))
n�m

1
n

nX
t=1

g2(xt)

n2�g

+ op (1) :

Now,

(i) If �g � �f , then �g � �m = 0 and

�
�̂n � �0

�
= �0

1
n

nX
t=1

g(xt)
n�g

(f(xt)�g(xt))
n�m

1
n

nX
t=1

g2(xt)

n2�g

+ op (1) =) �0

R 1
0 Dg (r)Dz (r) �drR 1

0 D
2
g (r) dr

:

(ii) If �g < �f , then �g � �m = �g � �f = �g � �f < 0 and �̂n diverges since

n�g��f
�
�̂n � �0

�
= �0

1
n

nX
t=1

g(xt)
n�g

(f(xt)�g(xt))
n
�f

1
n

nX
t=1

g2(xt)

n2�g

+ op (1) =) �0

R 1
0 Dg (r)Dz (r) drR 1

0 D
2
g (r) dr

:

Q.E.D.

Proof of Proposition 7:

(a) Under NC, n�g��y �̂n converges, hence
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1

n1=2+�y

nX
t=1

êt =
1

n1=2+�y

nX
t=1

yt � n�g��y �̂n
1

n1=2+�g

nX
t=1

g (xt) = Op (1) :

(b) Under Assumptions SC and AM, n�g
�
�̂n � �0

�
converges, hence

1

n1=2

nX
t=1

êt =
1

n1=2

nX
t=1

�
yt � �̂ng (xt)

�
=

1

n1=2

nX
t=1

�
�0f (xt) + ut + �0g (xt)� �0g (xt)� �̂ng (xt)

�
=

1

n1=2

nX
t=1

ut � n
�g
�
�̂n � �0

� 1

n1=2+�g

nX
t=1

g (xt) + �0
1

n1=2

nX
t=1

(f (xt)� g (xt))

= Op (1) :

(d) Under Assumptions SC and IM

(i) If �g � �f , then �̂n converges. Therefore,

1

n1=2+�g

nX
t=1

êt =
1

n1=2+�g

nX
t=1

ut +
�
�̂n � �0

� 1

n1=2+�g

nX
t=1

g (xt) + �0
1

n1=2+�g

nX
t=1

(f (xt)� g (xt))

=
�
�̂n � �0

� 1

n1=2+�g

nX
t=1

g (xt) + �0
1

n1=2+�g

nX
t=1

(f (xt)� g (xt)) + op (1)

= Op (1) :

(ii) If �g < �f , then n�g��f
�
�̂n � �0

�
converges. Hence,

1

n1=2+�f

nX
t=1

ût =
1

n1=2+�f

nX
t=1

ut + n
�g
�
�̂n � �0

� 1

n1=2+�f+�g

nX
t=1

g (xt) + �0
1

n1=2+�f

nX
t=1

(f (xt)� g (xt))

= n�g��f
�
�̂n � �0

� 1

n1=2+�g

nX
t=1

g (xt) + �0
1

n1=2+�f

nX
t=1

(f (xt)� g (xt)) + op (1)

= Op (1) :

Q.E.D.
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