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Abstract

Monte Carlo methods are often necessary for the implementation of optimal Bayesian estimators.

A fundamental technique that can be used to generate samples from virtually any target probability

distribution is the so-called rejection sampling method, which generates candidate samples from a

proposal distribution and then accepts them or not by testing the ratio of the target and proposal densities.

The class of adaptive rejection sampling (ARS) algorithms is particularly interesting because they can

achieve high acceptance rates. However, the standard ARS method can only be used with log-concave

target densities. For this reason, many generalizations have been proposed.

In this work, we investigate two different adaptive schemes that can be used to draw exactly from

a large family of univariate probability density functions (pdf’s), not necessarily log-concave, possibly

multimodal and with tails of arbitrary concavity. These techniques are adaptive in the sense that every

time a candidate sample is rejected, the acceptance rate is improved. The two proposed algorithms can

work properly when the target pdf is multimodal, with first and second derivatives analytically intractable,

and when the tails are log-convex in a infinite domain. Therefore, they can be applied in a number of

scenarios in which the other generalizations of the standard ARS fail. Two illustrative numerical examples

are shown.

Index Terms

Rejection sampling; adaptive rejection sampling; ratio of uniforms method; particle filtering; Monte

Carlo integration; volatility model.
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I. INTRODUCTION

Monte Carlo methods are often necessary for the implementation of optimal Bayesian estimators

and, several families of techniques have been proposed [5, 12, 18, 1] that enjoy numerous applications.

A fundamental technique that can be used to generate independent and identically distributed (i.i.d.)

samples from virtually any target probability distribution is the so-called rejection sampling method,

which generates candidate samples from a proposal distribution and then accepts them or not by testing

the ratio of the target and proposal densities.

Several computationally efficiencient methods have been designed in which samples from a scalar

random variable (r.v.) are accepted with high probability. The class of adaptive rejection sampling

(ARS) algorithms [11] is particularly interesting because high acceptance rates can be achieved. The

standard ARS algorithm yields a sequence of proposal functions that actually converge towards the target

probability density distribution (pdf) when the procedure is iterated. As the proposal density becomes

closer to the target pdf, the proportion of accepted samples grows (and, in the limit, can also converge

to 1). However, this algorithm can only be used with log-concave target densities. A variation of the

standard procedure, termed adaptive rejection Metropolis sampling (ARMS) [10] can also be used with

multimodal pdf’s. However, the ARMS algorithm is based on the Metropolis-Hastings algorithm, so the

resulting samples form a Markov chain. As a consequence, they are correlated and, for certain multimodal

densities, the chain can be easily trapped in a single mode (see, e.g., [23]).

Another extension of the standard ARS technique has been proposed in [14], where the same method

of [11] is applied to T -concave densities, with T being a monotonically increasing transformation,

not necessarily the logarithm. However, in practice it is hard to find useful transformations other than

the logarithm and the technique cannot be applied to multimodal densities either. The method in [6]

generalizes the technique of [14] to multimodal distributions. It involves the decomposition of the T -

transformed density into pieces which are either convex and concave on disjoint intervals and can be

handled separately. Unfortunately, this decomposition requires the ability to find all the inflection points

of the T -transformed density, which can be something hard to do even for relatively simple practical

problems.

More recently, it has been proposed to handle multimodal distributions by decomposing the log-density

into a sum of concave and convex functions [13]. Then, every concave/convex element is handled using a

method similar to the ARS procedure. A drawback of this technique is the need to decompose the target

log-pdf into concave and convex components. Although this can be natural for some examples, it can
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also be very though for some practical problems (in general, identifying the convex and concave parts

of the log-density may require the computation of all its inflection points). Moreover, the application

of this technique to distributions with an infinite support requires that the tails of the log-densities be

strictly concave. Other adaptive schemes that extend the standard ARS method for multimodal densities

have been very recently introduced in [22, 23]. These techniques include the original ARS algorithm as

a particular case and they can be relatively simpler than the approaches in [6] or [13] because they do

not require the computation of the inflection points of the entire (transformed) target density. However,

the method in [23] and the basic approach in [22] can also break down when the tails of the target pdf

are log-convex, the same as the techniques in [11, 13, 14].

In this paper, we introduce two different ARS schemes that can be used to draw exactly from a large

family of univariate pdf’s, not necessarily log-concave and including cases in which the pdf has log-

convex tails in an infinite domain. Therefore, the new methods can be applied to problems where the

algorithms of, e.g., [11, 14, 13, 22] are invalid.

The first adaptive scheme described in this work was briefly suggested in [22] as alternative strategy.

Here, we take this suggestion and elaborate it to provide a full description of the resulting algorithm. This

procedure can be easy to implement and provide good performance as shown in a numerical example.

However, it presents some technical requirements that can prevent its use with certain densities, as we

also illustrate in a second example.

The second approach introduced here is more general and it is based on the ratio of uniforms (RoU)

technique [3, 17, 25]. The RoU method enables us to obtain a two dimensional region A such that drawing

from the univariate target density is equivalent to drawing uniformly from A. When the tails of the target

density decay as 1/x2 (or faster), the region A is bounded and, in such case, we introduce an adaptive

technique that generates a collection of non-overlapping triangular regions that cover A completely. Then,

we can efficiently use rejection sampling to draw uniformly from A (by first drawing uniformly from the

triangles). Let us remark that a basic adaptive rejection sampling scheme based on the RoU technique

was already introduced in [19, 20] but it only works when the region A is strictly convex1. The adaptive

scheme that we introduce can also be used with non-convex sets.

The rest of the paper is organized as follows. The necessary background material is presented in Section

II. The first adaptive procedure is described in Section III while the adaptive RoU scheme is introduced

in Section IV. In Section V we present two illustrative examples and we conclude with a brief summary

1It can be seen as a RoU-based counterpart of the original ARS algorithm in [11], that requires the log-density to be concave.
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and conclusions in Section VI.

II. BACKGROUND

In this Section we recall some background material needed for the remaining of the paper. First, in

Sections II-A and II-B we briefly review the rejection sampling method and its adaptive implementation,

respectively. The difficulty of handling target densities with log-convex tails is discussed in Section II-C.

Finally, we present the ratio of uniforms (RoU) method in Section II-D.

A. Rejection sampling

Rejection sampling [3, Chapter 2] is a universal method for drawing independent samples from a target

density po(x) ≥ 0 known up to a proportionality constant (hence, we can evaluate p(x) ∝ po(x)). Let

exp{−W (x)} be an overbounding function for p(x), i.e., exp{−W (x)} ≥ p(x). We can generate N

i.i.d. samples from po(x) according to the standard rejection sampling algorithm:

1) Set i = 1.

2) Draw samples x′ from π(x) ∝ exp{−W (x)} and u′ from U(0, 1), where U(0, 1) is the uniform pdf

in [0, 1].

3) If p(x′)
exp{−W (x)} ≥ u

′ then x(i) = x′ and set i = i+ 1, else discard x′ and go back to step 2.

4) If i > N then stop, else go back to step 2.

The fundamental figure of merit of a rejection sampler is the mean acceptance rate, i.e., the expected

number of accepted samples over the total number of proposed candidates. In practice, finding a tight

overbounding function is crucial for the performance of a rejection sampling algorithm. In order to

improve the mean acceptance rate many adaptive variants have been proposed [6, 11, 13, 14, 22].

B. An adaptive rejection sampling scheme

We describe the method in [22], that contains the the standard ARS algorithm of [11] as a particular

case. Let us write the target pdf as po(x) ∝ p(x) = exp {−V (x; g)}, D ⊂ R, where D ⊂ R is the support

if po(x) and V (x; g) is termed the potential function of po(x). In order to apply the technique of [22],

we assume that the potential function can be expressed ass the addition of n terms,

V (x; g) ,
n∑
i=1

V̄i(gi(x)), (1)

where the functions V̄i, i = 1, ..., n, referred to as marginal potentials, are convex while every gi(x),

i = 1, ..., n, is either convex or concave. As a consequence, the potential V (x; g) is possible non-convex

(hence, the standard ARS algorithm cannot be applied) and can have rather complicated forms.
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The sampling method is iterative. Assume that, after the (t−1)-th iteration, there is available a set of mt

distinct support points, St = {s1, s2, . . . , smt
} ⊂ D, sorted in ascending order, i.e., s1 < s2 < . . . < smt

.

From this set, we define mt+1 intervals of the form I0 = (−∞, s1], Ik = [sk, sk+1], k = 1, . . . ,mt−1,

and Imt
= [smt

,+∞). For each interval Ik, it is possible to construct a vector of linear functions

rk(x) = [r1,k(x), . . . , rn,k(x)] such that V̄i(ri,k(x)) ≤ V̄i(gi(x)) (see [22]) and, as a consequence,

V (x; rk) ≤ V (x; g), for all x ∈ Ik (2)

and k = 0, ...,mt. Hence, it is possible to obtain exp{−V (x; rk)} ≥ p(x), ∀x ∈ Ik. Moreover, the

modified potential V (x; rk) is strictly convex in the interval Ik and, therefore, it is straightforward to

build a linear function wk(x), tangent to V (x; rk), such that wk(x) ≤ V (x; rk) and exp{−wk(x)} ≥ p(x)

for all x ∈ Ik.

With these ingredients, we can outline the generalized ARS algorithm as follows.

1) Initialization. Set i = 1, t = 0 and choose m1 support points, S1 = {s1, ..., sm1
}.

2) Iteration. For t ≥ 1, take the following steps.

• From St, determine the intervals I0, . . . , Imt
.

• For k = 0, . . . ,mt, construct rk, V (x; rk) and wk(x).

• Let Wt(x) = wk(x), if x ∈ Ik, k ∈ {0, . . . ,mt}.

• Build the proposal pdf πt(x) ∝ exp{−Wt(x)}.

• Draw x′ from the proposal πt(x) and u′ from U(0, 1).

• If u′ ≤ p(x′)
exp{−Wt(x′)} , then accept x(i) = x′ and set St+1 = St, mt+1 = mt, i = i+ 1.

• Otherwise, if u′ > p(x′)
exp{−Wt(x′)} , then reject x′, set St+1 = St∪{x′} and update mt+1 = mt+1.

• Sort St+1 in ascending order and increment t = t+ 1. If i > N , then stop the iteration.

Note that it is very easy to draw from πt(x) because it consists of pieces of exponential densities.

Moreover, every time we reject a sample x′, it is incorporated into the set of support points and, as a

consequence, the shape of the proposal πt(x) becomes closer to the shape of the target po(x) and the

acceptance rate of the candidate samples is improved [22].

C. Log-convex tails

The algorithm of Section II-B breaks down when the potential function V (x; g) has both an infinite

support (x ∈ D = R) and concave tails (i.e, the target pdf po(x) has log-convex tails). In this case,

the function Wt(x) becomes constant over an interval of infinite length and we cannot obtain a proper
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proposal pdf πt(x). To be specific, if V (x; g) is concave in the intervals (−∞, s1], [smt
,+∞) or both,

then w0(x), wmt
(x), or both, are constant and, as a consequence,

∫ +∞
−∞ exp{−Wt(x)}dx = +∞.

This difficulty with the tails is actually shared by other adaptive rejection sampling techniques in the

literature. A theoretical solution to the problem is to find an invertible transformation G : D → D∗, where

D∗ ⊂ R is a bounded set [3, 15, 21, 26]. Then, we can define a random variable Y = G(x) with density

q(y), draw samples y(1), . . . , y(N) and then convert them into samples x(1) = G−1(y(1)), . . . , x(N) =

G−1(y(N)) from the target pdf po(x) of the r.v. X . However, in practice, it is difficult to find a suitable

transformation G, since the resulting density q(y) may not have a structure that makes sampling any

easier than in the original setting.

A similar, albeit more sophisticated, approach is to use the method of [6]. In this case, we need to build

a partition of the domain D with disjoint intervals D = ∪mi=1Di and then apply invertible transformations

Ti : Di → R, i = 1, ...,m, to the target function p(x). In particular, the intervals D1 and Dm contain

the tails of p(x) and the method works correctly if the composed functions (T1 ◦ p)(x) and (Tm ◦ p)(x)

are concave. However, finding adequate T1 and Tm is not necessarily a simple task and, even if they

are obtained, applying the algorithm of [6] requires the ability to compute all the inflection points of the

target function p(x).

D. Ratio of uniforms method

The RoU method [2, 17, 25] is a sampling technique that relies on the following result.

Theorem 1: Let q(x) ≥ 0 be a pdf known only up to a proportionality constant. If (u, v) is a sample

drawn from the uniform distribution on the set

A =
{

(v, u) ∈ R2 : 0 ≤ u ≤
√
q(v/u)

}
, (3)

then x = v
u is a sample form q(x).

Proof: See [3, Theorem 7.1].

Therefore, if we are able to draw uniformly from A, then we can also draw from the pdf qo(x) ∝ q(x).

The cases of practical interest are those in which the region A is bounded, and A is bounded if, and

only if, both
√
q(x) and x

√
q(x) are bounded. Moreover, the function

√
q(x) is bounded if, and only if,

the target density qo(x) ∝ q(x) is bounded and, assuming we have a bounded target function q(x), the

function x
√
q(x) is bounded if, and only if, the tails of q(x) decay as 1/x2 or faster. Chung97,Wakefield91

defining different region A that could be used for fatter tails.
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Figure 1 (a) depicts a bounded set A. Note that, for every angle α ∈ (−π/2,+π/2) rad, we can

draw a straight line that passes through the origin (0, 0) and contains points (vi, ui) ∈ A such that

x = vi
ui

= tan(α), i.e., every point (vi, ui) in the straight line with angle α yields the same value of x.

From the definition of A, we obtain ui ≤ q(x) and vi = xui ≤ x
√
q(x), hence, if we choose the point

(v2, u2) that lies on the boundary of A, u2 =
√
q(x) and v2 = x

√
q(x). Moreover, we can embed the

set A in the rectangular region

R =
{

(v′, u′) : 0 ≤ u′ ≤ sup
x

√
q(x),

inf
x
x
√
q(x) ≤ v′ ≤ sup

x
x
√
q(x)

}
,

(4)

as depicted in Fig. 1 (b).

Once R is constructed, it is straightforward to draw uniformly from A by rejection sampling: simply

draw uniformly from R and then check whether the candidate point belongs to A.

(a) (b)

Fig. 1. (a) A bounded region A and the straight line v = xu corresponding to the sample x = tan(α). Every point in the

intersection of the line v = xu and the set A yields the same sample x. The point on the boundary, (v2, u2), has coordinates

v2 = x
√
q(x) and u2 =

√
q(x). (b) If the two functions

√
q(x) and x

√
q(x) are bounded, the set A is bounded and embedded

in the rectangle R.

III. ADAPTIVE REJECTION SAMPLING WITH LOG-CONVEX TAILS

In this section, we investigate a strategy proposed in [22] to obtain an adaptive rejection sampling

algorithm that remains valid the tails of the potential function V (x;g) are concave (i.e, the target pdf

po(x) has log-convex tails).

Let us assume that for some j ∈ {1, . . . , n}, the pdf defined as

q(x) ∝ exp{−V̄j(gj(x))} (5)
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is such that: (a) we can integrate q(x) over the intervals I0, I1, ..., Imt
and (b) we can sample from the

density q(x) restricted to every Ik. To be specific, let us introduce the reduced potential

V−j(x; g) ,
n∑

i=1,i6=j
V̄i(gi(x)), (6)

attained by removing V̄j(gj(x)) from V (x; g). It is straightforward to obtain lower bounds γk ≤ V−j(x; g)

by applying the procedure explained in the Appendix to the reduced potential V−j(x; g) in every interval

Ik, k = 0, ...,mt. Once these bounds are available, we set Lk , exp{−γk} and build the piecewise

proposal function

πt(x) ∝



L0 exp{−V̄j(gj(x))}, ∀x ∈ I0,
...

Lk exp{−V̄j(gj(x))}, ∀x ∈ Ik,
...

Lmt
exp{−V̄j(gj(x))}, ∀x ∈ Imt

.

(7)

Notice that, for all x ∈ Ik, we have Lk ≥ exp{−V−j(x; g)} and multiplying both sides of this inequality

by the positive factor exp{−V̄j(gj(x))} ≥ 0, we obtain

Lk exp{−V̄j(gj(x))} ≥ exp{−V (x; g)}, ∀x ∈ Ik,

hence πt(x) is suitable for rejection sampling.

Finally, note that πt(x) is a mixture of truncated densities with non-overlapping supports. Indeed, let

us define the mixture coefficients

ᾱk , Lk

∫
Ik
q(x)dx (8)

and normalize them as αk = ᾱk/
∑mt

k=0 ᾱk. Then,

πt(x) =

mt∑
k=1

αkq(x)χk(x) (9)

where χk(x) is an indicator function (χk(x) = 1 if x ∈ Ik and χk(x) = 0 if x /∈ Ik). The complete

algorithm is summarized below.

1) Initialization. Set i = 1, t = 0 and choose m1 support points, S1 = {s1, ..., sm1
}.

2) Iteration. For t ≥ 1, take the following steps.

• From St, determine the intervals I0, . . . , Imt
.

• Choose a suitable pdf q(x) ∝ exp{−V̄j(gj(x))} for some j ∈ {1, ..., n}.

• For k = 0, . . . ,mt, compute the lower bounds γk ≤ V−j(x,g), ∀x ∈ Ik, and set Lk = exp{−γk}

(see the Appendix).
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• Build the proposal pdf πt(x) ∝ Lkq(x) for x ∈ Ik, k ∈ {0, . . . ,mt}.

• Draw x′ from the proposal πt(x) in Eq. (9) and u′ from U(0, 1).

• If u′ ≤ exp{−V−j(x′;g)}
Lk

, then accept x(i) = x′ and set St+1 = St, mt+1 = mt, i = i+ 1.

• Otherwise, if u′ > exp{−V−j(x′;g)}
Lk

, then reject x′, set St+1 = St∪{x′} and update mt+1 = mt+1.

• Sort St+1 in ascending order and increment t = t+ 1. If i > N , then stop the iteration.

When a sample x′ drawn from πt(x) is rejected, x′ is added to the set of support points St+1 , St∪{x′}.

Hence, we improve the piecewise constant approximation of V−j(x; g) (formed by the upper bounds Lk)

and proposal pdf πt+1(x) ∝ Lk exp{−V̄j(gj(x))}, ∀x ∈ Ik, becomes closer to the target pdf po(x).

Figure 2 (a) illustrates the reduced potential exp{−V−j(x;g)} and its stepwise approximation

Lk = exp{−γk} built using mt = 4 support points. Figure 2 (b) depicts the target pdf po(x) jointly

with the proposal pdf πt(x), composed by weighted pieces of the function exp{−V̄j(gj(x))} (shown, in

dashed line).

This procedure is feasible only if we can find a pair V̄j , gj , for some j ∈ {1, ..., n}, such that the pdf

q(x) ∝ exp{−V̄j(gj(x))} is

• is analytically integrable in every interval I ⊂ D, given otherwise the weights α1,...,αmt
in Eq. (9)

cannot be computed in general, and

• is easy to draw from when truncated into a finite or an infinite interval, since otherwise we cannot

generate samples from it.

Note that in order to draw from πt(x) we need to be able to draw from and to integrate

analytically truncated pieces of q(x). This procedure is possible only if we have on hand a suitable

pdf q(x) ∝ exp{−V̄j(gj(x))}.

The technique that we introduce in the next section, based on ratio of uniforms method, overcomes

these constraints.

IV. ADAPTIVE ROU SCHEME

The RoU method can be a useful tool to deal with target pdf’s po(x) ∝ p(x) = exp{−V (x;g)} where

V (x;g) of the form in Eq. (1) in a infinite domain and with tails of arbitrary concavity. Indeed, as long

as the tails of p(x) decay as 1/x2 (or faster), the region A defined by the RoU transformation is bounded

and, therefore, the problem of drawing samples from the target density becomes equivalent to that of

drawing uniformly from a finite region.

In order to draw uniformly from A by rejection sampling, we need to build a suitable set P ⊇ A for

which we are able to generate uniform samples easily. This, in turn, requires knowledge of upper bounds
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(a) (b)

Fig. 2. (a) Example of the function exp{−V−j(x;g)} and its stepwise approximation Lk = exp{−γk}, k = 0, ...,mt = 4,

constructed with the proposed technique using four support points St = {s1, s2, s3, s4}. (b) Our target pdf po(x) ∝

exp{−V (x;g)} = exp{−V−j(x;g) − V̄j(gj(x))} obtained by multiplying the previous function exp{−V−j(x;g)} times

exp{−V̄j(gj(x))} (shown with dashed line). The picture also shows the shape of the proposal density πt(x) consisting of

pieces of the function exp{−V̄j(gj(x))} scaled by the constant values Lk = exp{−γk}.

for the functions
√
p(x) and x

√
p(x), as described in Section II-D. Indeed, note that to apply the RoU

transformation directly to an improper proposal πt(x) ∝ exp{Wt(x)}, with exp{Wt(x)} ≥ p(x) and∫ +∞
−∞ πt(x)dx→ +∞, provides us an unbounded region A so that this strategy is useless.

In the sequel, we describe how to adaptively build a polygonal sets Pt (t = 1, 2, ....) composed by

non-overlapping triangular subsets that embed the region A. To draw uniformly from Pt, we randomly

select one triangle (with probability proportional to its area) and then generate uniformly a sample point

from it using the algorithm in the Appendix. If the sample belongs to A, it is accepted, and otherwise is

rejected and the region Pt is improved by adding another triangular piece.

In Section IV-A below, we provide a detailed description of the proposed adaptive technique. Details

of the computation of some bounds that are necessary for the algorithm are given in Section IV-B and

in the Appendix.

A. Adaptive Algorithm

Given a set of support points

St = {s1, . . . , smt
},

we assume that there always exists k′ ∈ {0, ...,mt} such that sk′ = 0, i.e., the point zero is included

in the set of support points St. Hence, in an interval Ik = [sk, sk+1] the points sk and sk+1 are both

non-positive or both non-negative.



11

We also assume that we are able to compute upper bounds L(1)
k ≥

√
p(x), L(2)

k ≥ x
√
p(x) (for x > 0)

and L
(3)
k ≥ −x

√
p(x) (for x < 0) within every interval x ∈ Ik = [sk, sk+1], k = 0, ...,mt, where

I0 = (−∞, s1] and Imt
= [smt

,+∞).

1) Construction of Pt ⊇ A: Consider the construction in Figure 3 (a). For a pair of angles

αk , arctan(sk) and αk+1 , arctan(sk+1), we define the subset Ak , A ∩ Jk, where Jk is the

cone with vertex at the origin (0, 0) and delimited by the two straight lines that form angles αk and αk+1

w.r.t. the u axis. Note that, clearly, A = ∪mt

k=0Ak.

For each k = 0, ...,mt the subset Ak is contained in a piece of circle Ck (Ak ⊆ Ck) delimited by the

angles αk, αk+1 and radius

rk =


√(

L
(1)
k

)2
+
(
L
(2)
k

)2
, if sk, sk+1 ≥ 0√(

L
(1)
k

)2
+
(
L
(3)
k

)2
, if sk, sk+1 ≤ 0

(10)

also shown (with a dashed line) in Fig. 3 (a).

Unfortunately, it is not straightforward to generate samples uniformly from Ck, but we can easy draw

samples uniformly from a triangle in the plane R2, as explained in the Appendix. Hence, we can choose

an arbitrarily a point in the arc of circumference that delimits Ck (e.g., the point (L
(2)
k , L

(1)
k ) in Fig. 3

(a)) and calculate the tangent line to the arc at this point. In this way, we build a triangular region Tk
such that Tk ⊇ Ck ⊇ Ak, with a vertex at (0, 0).

We can repeat the procedure for every k = 0, ...,mt, with different angles αk = arctan(sk) and

αk+1 = arctan(sk+1), and define the polygonal region Pt , ∪mt

k=0Tk composed by non-overlapping

triangular subsets. Note that, by construction, Pt embeds the entire region A, i.e., A ⊆ Pt.

Figure 3 summarizes the procedure to build the set Pt. In Figure 3 (a) we show the construction of

a triangle Tk within the angles αk = arctan(sk), αk+1 = arctan(sk+1), using the upper bounds L(1)
k

and L(2)
k for a single interval x ∈ Ik = [sk, sk+1]. Figure 3 (b) illustrates the entire region Pt , ∪5k=0Tk

formed by mt + 1 = 6 triangular subsets that covers completely the region A, i.e., A ⊆ Pt.

2) Adaptive sampling: To generate samples uniformly in Pt, we first have to select a triangle

proportionally to the areas |Tk|, k = 0, ...,mt. Therefore, we define the normalized weights

wk ,
|Tk|∑mt

i=0 |Ti|
, (11)

and then we choose a triangular piece by drawing an index k′ ∈ {0, ...,mt} from the probability

distribution P (k) = wk. Using the method in the Appendix, we can easily generate a point (v′, u′)

uniformly in the selected triangular region Tk′ . If this point (v′, u′) belongs to A, we accept the sample
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(a) (b)

Fig. 3. (a) A region A constructed by the RoU method and a triangular region Tk defining by the vertices v1, v2 and v3 built

using the upper bounds L(1)
k , L(2)

k for the functions
√
p(x) and x

√
p(x) for all x ∈ Ik = [sk, sk+1]. The dashed line depicts

the piece of circumference Ck with radius rk =

√
(L

(1)
k )2 + (L

(2)
k )2. The set Tk embeds the subset Ak = A ∩ Jk where

Jk is the cone defined as v ∈ Jk if and only if v = θ1v2 + θ2v3 and θ1, θ2 ≥ 0. (b) Construction of the polygonal region

Pt = ∪5
k=0Tk using mt = 5 support points, i.e., St = {s1, s2, s3 = 0, s4, s5}. Observe that each triangle Tk has a vertex at

(0, 0). The set Pt covers completely the region A obtained by the RoU method, i.e., A ⊂ Pt.

x′ = v′/u′ and set mt+1 = mt, St+1 = St and Pt = Pt. Otherwise, we discard the sample x′ = v′/u′

and incorporate it to the set of support points, St+1 = St ∪ {x′}, so that mt+1 = mt + 1 and the region

Pt is improved by adding another triangle.

3) Summary of the algorithm: The adaptive RS algorithm to generate N samples from p(x) using

RoU is summarized as follows.

1) Initialization. Start with i = 1, t = 0 and choose m1 support points, S1 = {s1, ..., sm1
}.

2) Iteration. For t ≥ 1, take the following steps.

• From St, determine the intervals I0, . . . , Imt
.

• Compute the upper bounds L(j)
k , j = 1, 2, 3, for each k = 0, ...,mt (see Section IV-B and the

Appendix).

• Construct the triangular regions Tk as described in Section IV-A1, k = 0, ...,mt.

• Calculate the area |Tk| of every triangle, and compute the normalized weights

wk ,
|Tk|∑mt

i=0 |Ti|
(12)

with k = 0, ...,mt.

• Draw an index k′ ∈ {0, ...,mt} from the probability distribution P (k) = wk.



13

• Generate a point (v′, u′) uniformly from the region Tk′ (see the Appendix).

• If u′ ≤
√
p
(
v′

u′

)
, then accept the sample x(i) = x′ = v′

u′ , set i = i + 1, St+1 = St and

mt+1 = mt.

• Otherwise, if u′ >
√
p
(
v′

u′

)
, then reject the sample x′ = v′

u′ , set St+1 = St ∪ {x′} and

mt+1 = mt + 1.

• Sort St+1 in ascending order and increment t = t+ 1. If i > N , then stop the iteration.

It is interesting to note that the region Pt is equivalent, in the domain of x, to a proposal function

πt(x) formed by pieces of reciprocal uniform distributions scaled and translated (as seen in Section II-D),

i.e., πt(x) ∝ 1/(λkx+ βk)
2 in every interval Ik, for some λk and βk.

B. Bounds for other potentials

In this section we provide the details on the computation of the bounds L(j)
k , j = 1, 2, 3, needed for

the implementation of the algorithm above.

We associate a potential V (j) to each function of interest. Specifically, since p(x) ∝ exp{−V (x; g)}

we readily obtain that√
p(x) ∝ exp

{
− V (1)(x; g)

}
, with V (1)(x; g) ,

1

2
V (x; g),

x
√
p(x) ∝ exp

{
− V (2)(x; g)

}
, with V (2)(x; g) ,

1

2
V (x; g)− log(x), (x > 0),

−x
√
p(x) ∝ exp

{
− V (3)(x; g)

}
, with V (3)(x; g) ,

1

2
V (x; g)− log(−x), (x < 0),

(13)

respectively.

Note that it is equivalent to maximize the functions
√
p(x), x

√
p(x), −x

√
p(x) w.r.t. x and to minimize

the corresponding potentials V (j), j = 1, 2, 3, also w.r.t. x. As a consequence, we may focus on the

calculation of lower bounds γ(j)k ≤ V (j)(x; g) in an interval x ∈ Ik, related to the upper bounds as

L
(j)
k = exp{−γ(j)k }, j = 1, 2, 3 and k = 0, ...,mt. This problem is far from trivial, though. Even for

very simple marginal potentials, V̄i, i = 1, . . . , n, the potential functions, V (j), j = 1, 2, 3, can be highly

multimodal w.r.t. x [23].

In the Appendix we describe a procedure to find a lower bound γk for the potential V (x; g). We can

apply the same technique to the function V (1)(x; g) = 1
2V (x; g), associated to the function

√
p(x), since

V (1) is a scaled version of the generalized system potential V (x; g). Therefore, we can easily compute

a lower bound γ(1)k ≤ V
(1)(x; g) in the interval Ik.

The procedure in the Appendix can also be applied to find upper bounds for x
√
p(x), with x > 0, and

−x
√
p(x) with x < 0. Indeed, recalling that the associated potentials are V (2)(x; g) = 1

2V (x; g)−log(x),
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x > 0, and V (3)(x; g) = 1
2V (x; g)−log(−x), x < 0, it is straightforward to realize that the corresponding

modified potentials

V (2)(x; rk) ,
1

2
V (x; rk)− log(x),

V (3)(x; rk) ,
1

2
V (x; rk)− log(−x),

(14)

are convex in Ik, since the functions − log(x) (x > 0) and − log(−x) (x < 0), are also convex. Therefore,

it is always possible to compute lower bounds γ(2)k ≤ V
(2)(x; g) and γ(3)k ≤ V

(3)(x; g).

The corresponding upper bounds are L(j)
k = exp{−γ(j)k }, j = 1, 2, 3 for all x ∈ Ik.

C. Heavier tails

The standard RoU method can be easily generalized in this way: given the area

Aρ =
{

(v, u) : 0 ≤ u ≤ [p(v/uρ)]1/(ρ+1)
}
, (15)

if we are able to draw uniformly from it the pair (v, u) then x = v
uρ is a sample form po(x) ∝ p(x).

The region Aρ is bounded if [p(x)]1/(ρ+1) and x [p(x)]ρ/(ρ+1) are bounded. It occurs when p(x) is

bounded and the its tails decay as 1/x(ρ+1)/ρ or faster. Hence, for ρ > 1 we can handle pdf’s with fatter

tails than with the standard RoU method.

In this case the potentials associated to our target pdf po(x) ∝ exp{−V (x; g)} are

V (1)(x; g) ,
1

ρ+ 1
V (x; g),

V (2)(x; g) ,
ρ

ρ+ 1
V (x; g)− log(x), for x > 0

V (3)(x; g) ,
ρ

ρ+ 1
V (x; g)− log(−x), for x < 0

(16)

Obviouly, we can use the technique in the Appendix to obtain lower bounds and to build an extended

adaptive RoU scheme to tackle target pdf’s with fatter tails. Moreover, the constant parameter ρ affects

to the shape of Aρ and, as a consequence, also the acceptance rate of a rejection sampler. Hence, in

some case it is interesting to find the optimal value of ρ that maximizes the acceptance rate.

V. EXAMPLES

In this section we illustrate the application of the proposed techniques. The first example is devoted to

compare the performance of the first adaptive technique in Section III and the adaptive RoU algorithm in

Section IV using an artificial model. In the second example, we apply adaptive RoU scheme as a building

block of an accept/reject particle filter [18] for inference in a financial volatility model. In this second

example the first adaptive technique cannot implemented. Moreover, note that the other generalizations

of the standard ARS method proposed in [6, 11, 13, 14] cannot be applied in both examples.
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A. Artificial example

Let x be a positive scalar signal of interest, x ∈ R+, with exponential prior, q(x) ∝ exp{−λx}, λ > 0,

and consider the system with three observations, y = [y1, y2, y3] ∈ Rn=3,

y1 = a exp(−bx) + ϑ1, y2 = c log(dx+ 1) + ϑ2, and y3 = (x− e)2 + ϑ3, (17)

where ϑ1, ϑ2, ϑ3 are independent noise variables and a, b, c, d, e are constant parameters. Specifically,

ϑ1 and ϑ2 are independent with generalized gamma pdf Γg(ϑi;αi, βi) ∝ ϑαii exp{−ϑβii }, i = 1, 2, with

parameters α1 = 4, β1 = 2 and α2 = 2, β2 = 2, respectively. The variable ϑ3 has a Gaussian density

N(ϑ3; 0, 1/2) ∝ exp{−ϑ23}.

Our goal is to generate samples from the posterior pdf p(x|y) ∝ p(y|x)q(x). Given the system (17)

our target density can be written as

po(x) = p(x|y) ∝ exp{−V (x; g)}, (18)

where the potential is

V (x; g) =(y1 − a exp(−bx))2 − log[y1 − a exp(−bx))4]+

+ (y2 − c log(dx+ 1))2 − log[(y2 − c log(dx+ 1))2]+

+ (y3 − (x− e)2)2 + λx.

(19)

We can interpreted it as

V (x; g) = V̄1(g1(x)) + V̄2(g2(x)) + V̄3(g3(x)) + V̄4(g4(x)) (20)

where the marginal potentials are Ṽ1(ϑ) = ϑ2− log[ϑ4] with minimum at µ1 =
√

2, Ṽ2(ϑ) = ϑ2− log[ϑ2]

with minimum at µ2 = 1, Ṽ3(ϑ) = ϑ2 with minimum at µ3 = 0 and Ṽ4(ϑ) = λ|ϑ| with minimum at

µ4 = 0 (we recall that λ > 0 and x ∈ R+). Moreover, the vector of nonlinearities is

g(x) = [g1(x) = a exp(−bx), g2(x) = c log(dx+ 1), g3(x) = (x− e)2, g4(x) = x]. (21)

Since all marginal potentials are convex and all nonlinearities are convex or concave, we can apply the

proposed adaptive RoU technique. Moreover, since exp{−V̄4(g4(x))} = exp{−λx} is easy to draw from,

we can also applied the first technique described in Section III.

Note, however, that

1) the potential V (x;g) in Eq. (19) is not convex,

2) the target function p(x|y) ∝ exp{−V (x;g)} can be multimodal,

3) the tails of the potential V (x;g) are not convex and
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4) it is not possible to study analytically the first and the second derivatives of the potential V (x;g).

Therefore, the techniques in [11, 6, 13, 14] and the basic strategy in [22] cannot be used.

The procedure in Section III can be used because of the pdf q4(x) ∝ exp{−V4(g4(x))} = exp{−x} can

be easily integrated and sampled, even if it is restricted in a interval Ik. In this case, the reduced potential

is V−4(x;g) = V̄1(g1(x)) + V̄2(g2(x)) + V̄3(g3(x)) and the corresponding function exp{−V−4(x;g)} is

the likelihood, i.e., p(y|x) = exp{−V−4(x;g)}, since q4(x) coincides with the prior pdf. Moreover, in

order to use the RoU method we additionally need to study the potential functions V (1)(x; g) = 1
2V (x; g)

and V (2)(x; g) = 1
2V (x; g)−log(x). Since we assume x ≥ 0, it is not necessary to study V (3) as described

in Section IV-B.

We set, e.g., a = −2, b = 1.1, c = −0.8, d = 1.5, e = 2, λ = 0.2 and y = [2.314, 1.6, 2], and we start

with the set of support points S0 = {0, 2−
√

2, 2, 2 +
√

2} (details of the initialization step are explained

in [22]). Figure 4 (a) shows the posterior density p(x|y) and the corresponding normalized histogram

obtained by the first adaptive rejection sampling scheme. Figure 4 (b) depicts, jointly, the likelihood

function p(y|x) = exp{−V−4(x;g)} and its stepwise approximation exp{−γk} ∀x ∈ Ik, k = 0, ...,mt.

The computation of the lower bounds γk ≤ V−4(x;g) has been explained in Appendix and Section III.

Figure 4 (c) depicts the set A (solid) obtained by way of the RoU method, corresponding to the

posterior density p(x|y) and the region ∪mt

k=0Tk formed by triangular pieces, constructed as described in

Section IV-A with mt = 9 support points.

The simulations shows that both method attain very similar acceptance rates2. In Figure 5 (a)-(b)

are shown the curves of acceptance rates (averaged over 10,000 independent simulation runs) versus

the first 1000 accepted samples using the technique described in Section III and the adaptive RoU

algorithm explained in Section IV, respectively. More specifically, every point in these curves represent

the probability of accepting the i-th sample. We can see that the methods are equal efficient, and the

rates converge quickly close to 1.

B. Stochastic volatility model

In this example, we study a stochastic volatility model where only the adaptive RoU scheme can be

applied. Let be xk ∈ R+ the volatility of a financial time series at time k, and consider the following

2We define the acceptance rate Ri as the mean probability of accepting the i-th sample from an adaptive RS algorithm.

In order to estimate it, we have run M = 10, 000 independent simulations and recorded the numbers κi,j , j = 1, ...,M ,

of candidate samples that were needed in order to accept the i-th sample. Then, the resulting empirical acceptance rate is

R̂i =
∑M

j=1 κ
−1
i,j /M .
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(a) (b) (c)

Fig. 4. (a) The target function po(x) = p(x|y) and the normalized histogram obtained by the adaptive RoU scheme. (b)

The function exp{−V−4(x;g)} obtained using the reduced potential V−4(x;g) = V (x;g)− V̄4(g4(x)) and its constant upper

bounds exp{−γk}, k = 0, ...,mt. In this example, the function p(y|x) = exp{−V−4(x;g)} coincides with the likelihood.

(c) The set A corresponding to the target pdf p(x|y) using the RoU method and the region ∪mt=9
k=0 Tk, formed by triangles,

constructed using the second adaptive rejection sampling scheme.
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Fig. 5. (a) The curve of acceptance rates (averaged over 10,000 simulations) as a function of the first 1000 accepted samples

using the first adaptive scheme described in Section III. (b) The curve of acceptance rates (averaged over 10,000 simulations)

as a function of the first 1000 accepted samples using the proposed adaptive RoU technique.

state space system [5, Chapter 9]-[16] with scalar observation, yk ∈ R, log(x2k) = β log(x2k−1) + ϑ2,k,

yk = log(x2k) + ϑ1,k,
(22)

where k ∈ N denotes discrete time, β is a constant, ϑ2,k ∼ N(ϑ2,k; 0, σ2) is a Gaussian noise, i.e.,

p(ϑ2,k) ∝ exp{−ϑ22,k/2σ2}, while ϑ1,k has a density p(ϑ1,k) ∝ exp{ϑ1,k/2 − exp(ϑ1,k)/2} obtained

from the transformation ϑ1,k = log[ϑ20,k] of a standard Gaussian variable ϑ0,k ∼ N(ϑ0,k; 0, 1).
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Given the system in Eq. (22), the transition (prior) pdf

p(xk|xk−1) ∝ exp

{
−

log(x2k)− β log(x2k−1)

2σ2

}
, (23)

and the likelihood function

p(yk|xk) ∝ exp

{
yk − log(x2k)

2
−

exp(yk − log(x2k))

2

}
=

= exp

{
yk − log(x2k)

2
−

exp(yk)− 1/x2k
2

}
,

(24)

We can apply the proposed adaptive scheme to implement an particle filter. Specifically, let {x(i)k−1}
N
i=1

be a collection of samples from p(xk−1|y1:k−1). We can approximate the predictive density as

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

≈ 1

N

N∑
i=1

p(xk|x
(i)
k−1) (25)

and then the filtering pdf as [4]

p(xk|y1:k) ∝ p(yk|xk)
1

N

N∑
i=1

p(xk|x
(i)
k−1). (26)

If we can draw exact samples {x(i)k }
N
i=1 from (26) using a RS scheme, then the integrals of measurable

functions I(f) =
∫
f(xk)p(xk|y1:k)dxk w.r.t. to the filtering pdf can be approximated as I(f) ≈ IN (f) =

1
N

∑N
i=1 f(x

(i)
k ).

To show it, we first recall that the problem of drawing from the pdf in Eq. (26) can be reduced to

generate an index j ∈ {1, ..., N} with uniform probabilities and then draw a sample from the pdf

x
(i)
k ∼ po,j(xk) ∝ p(yk|xk)p(xk|x

(j)
k−1). (27)

Note that, in order to take advantage of the adaptive nature of the proposed technique, one can draw first

N indices j1, ..., jr, ...jN , with jr ∈ {1, ..., N}, and then we sample Nr particles from the same proposal,

x
(m)
k ∼ po,jr(xk), m = 1, ..., Nr, where Nr is the number of times the index r ∈ {1, ..., N} has been

drawn. Obviously, N1 +N2 + ...+NN = N .

The potential function associated with the pdf in Eq. (27) is

V (xk; g) = −
yk − log(x2k)

2
+

exp{yk}
2

+
1

2x2k
+

(
log(x2k)− αk

)2
2σ2

(28)

where αk = β log
[
(x

(j)
k−1)

2
]

is a constant and g(xk) = [g1(xk) , log(x2k), g2(xk) , − log(x2k) + αk].

The potential function in Eq. (28) can be expressed as

V (xk; g) = V̄1
(
g1(xk)

)
+ V̄2

(
g2(xk)

)
, (29)
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where the marginal potentials are V̄1(ϑ1) = 1
2

(
− ϑ1 + exp{ϑ1}

)
and V̄2(ϑ2) = 1

2σ2ϑ22. Note that in this

example:

• Since the potential V (xk; g) is in general a non-convex function and the study of the first and the

second derivatives is not analytically tractable, the methods in [6, 11] cannot be applied.

• Moreover, since the potential function V (xk; g) has concave tails, as shown in Figure 6 (a), the

method in [13] and the basic adaptive technique described in [22] cannot be used either.

• In addition, we also cannot apply the first adaptive procedure in Section III because there are

no simple (direct) techniques to draw from (and to integrate) the function exp{−V̄1(g1(xk))} or

exp{−V̄2(g2(xk))}.

But, since the marginal potentials V̄1 and V̄2 are convex and we also know the concavity of the

nonlinearities g1(xk) and g2(xk), we can apply the proposed adaptive RoU scheme. Therefore, the

used procedure can be summarized in this way: at each time step k, we draw N time from the set

of index r ∈ {1, ..., N} with uniform probabilities and denote as Nr the number of repetition of index

r (N1 + ...+NN = N ). Then we apply the proposed adaptive RoU method, described in Section IV-A,

to draw Nr particles from each pdf of the form of Eq. (27) with j = r and r = 1, ...., N .

Setting the constant parameters as β = 0.8 and σ = 0.9, we obtain an acceptance rate ≈ 42% (averaged

over 40 time steps in 10, 000 independent simulation runs). It is important to remark that it is not easy to

implement a standard particle filter to make inference directly about xk (not about log(xk)), because it

is not straightforward to draw from the prior density in Eq. (23). Indeed, there are no direct methods to

sample from this prior pdf and, in general, we need to use a rejection sampling or a MCMC approach.

Figure 6 (b) depicts 40 time steps of a real trajectory (solid line) of the signal of interest xk generated

by the system in Eq. (22), with β = 0.8 and σ = 0.9. In dashed line, we see the estimated trajectory

obtained by the particle filter using the adaptive RoU scheme with N = 1000 particles. The shadowed

area illustrates the standard deviation of the estimation obtained by our filter. The mean square error

(MSE) achieved in the estimation of xk using N = 1000 particles is 1.48.

The designed particle filter is specially advantageous w.r.t. to the bootstrap filter when there is a

significant discrepancy between the likelihood and prior functions.

VI. CONCLUSIONS

We have proposed two adaptive rejection sampling schemes that can be used to draw exactly from a

large family of pdfs, not necessarily log-concave. Probability distributions of this family appear in many
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(a) (b)

Fig. 6. (a) An example of potential function V (xk; g) defined in Eq. (28), when αk = 1, yk = 2 and σ = 0.8. The right

tail is concave. (b) An example of trajectory with 40 time steps of the signal of interest xk. The solid line illustrates the real

trajectory generated by the system in Eq. (22) with β = 0.8 and σ = 0.9 while the dashed line shows the estimated trajectory

attained by the particle filter with N = 1000 particles. The shadowed area shows the standard deviation of the estimation.

inference problems as, for example, localization in sensor networks [18, 22, 23], stochastic volatility [5,

Chapter 9], [16] or hierarchical models [12, Chapter 9], [7, 8, 9].

The new method yields a sequence of proposal pdfs that converge towards the target density and, as

a consequence, can attain high acceptance rates. Moreover, it can also be applied when the tails of the

target density are log-convex.

The new techniques are conceived to be used within more elaborate Monte Carlo methods. It enables,

for instance, a systematic implementation of the accept/reject particle filter of [18]. There is another

generic application in the implementation of the Gibbs sampler for systems in which the conditional

densities are complicated. Since they can be applied to multimodal densities also when the tails are log-

convex, these new techniques has an extended applicability compared to the related methods in literature

[6, 11, 13, 20, 22], as shown in the two numerical examples.

The first adaptive approach in Section III is easier to implement. However, the proposed adaptive

RoU technique is more general than the first scheme, as show in our application to a stochastic volatility

model. Moreover using the adaptive RoU scheme to generate a candidate sample we only need to draw two

uniform random variates but, in exchange, we have to find bound for three (similar) potential functions.
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VIII. APPENDIX

A. Calculation of lower bounds

In some cases, it can be useful to find a lower bound γk ∈ R such that

γk ≤ min
x∈Ik

V (x; g), (30)

in some interval Ik = [sk, sk+1].

If we are able to minimize analytically the modified potential V (x; rk), we obtain

γk = min
x∈Ik

V (x; rk) ≤ min
x∈Ik

V (x; g). (31)

If the analytical minimization of the modified potential V (x; rk) remains intractable, since the modified

potential V (x; rk) is convex ∀x ∈ Ik, we can use the tangent straight line wk(x) to V (x; rk) at an

arbitrary point x∗ ∈ Ik to attain a bound. Indeed, a lower bound ∀x ∈ Ik = [sk, sk+1] can be defined as

γk , min[wk(sk), wk(sk+1)] ≤ min
x∈Ik

V (x; rk) ≤ min
x∈Ik

V (x; g). (32)

The two steps of the algorithm in Section II-B are described in the Figure 7 (a) shows an example

of construction of the linear function wk(x) in a generic interval Ik ⊂ D. Figure 7 (b) illustrates the

construction of the piecewise linear function Wt(x) using three support points, mt = 3. Function Wt(x)

consists of segments of linear functions wk(x). Figure 8 (b) depicts this procedure to obtain a lower

bound in an interval Ik for a system potential V (x; g) (solid line) using a tangent line (dotted line) to

the modified potential V (x; rk) (dashed line) at an arbitrary point x∗ ∈ Ik.

B. Sampling uniformly in a triangular region

Consider a triangular set T in the plane R2 defined by the vertices v1, v2 and v3. We can draw

uniformly from a triangular region [24], [3, p. 570] with the following steps:

1) Sample u1 ∼ U([0, 1]) and u2 ∼ U([0, 1]).

2) The resulting sample is generated by

x′ = v1 min[u1, u2] + v2(1−max[u1, u2]) + v3(max[u1, u2]−min[u1, u2]). (33)

The samples x′ drawn with this convex linear combination are uniformly distributed within the triangle

T with vertices v1, v2 and v3.
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(a) (b)

Fig. 7. (a) Example of construction of the linear function wk(x) inside a generic interval I = [sk, sk+1]. The picture shows

a non-convex potential V (x; g) in solid line while the modified potential V (x; rk) is depicted in dashed line for ∀x ∈ Ik. The

linear function wk(x) is tangent to V (x; rk) at a arbitrary point x∗ ∈ Ik. (b) Example of construction of the piecewise linear

function Wt(x) with three support points St = {s1, s2, smt=3}. The modified potential V (x; rk), for x ∈ Ik, is depicted with

a dashed line. The piecewise linear function Wt(x) consists of segments of linear functions wk(x) tangent to the modified

potential V (x; rk).

Fig. 8. The picture shows the potential V (x; g), the modified potential V (x; rk) an the tangent line wk(x) to the modified

potential at an arbitrary point x∗ in Ik. The lower bound γk is obtained as γk = min[wk(sk), wk(sk+1)]. In this picture, we

have γk = wk(sk).
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