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1. Introduction

When modeling the second order dynamics of univariate financial returns, it

is often observed that volatility increases are larger in response to negative than

to positive past returns of the same magnitude; see Bollerslev et al. (2006) for a

comprehensive list of references and Hibbert et al. (2008) for a behavioral explanation.

After Black (1976), this asymmetric response of volatility is popularly known as

leverage effect in the related literature. In order to represent the dynamic evolution

of conditionally heteroscedastic time series with leverage effect, this paper focuses

on Stochastic Volatility (SV) models which have been shown to have interesting

properties when compared with Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) models; see Carnero et al. (2004). Incorporating the leverage effect into

SV models can have important implications from the point of view of financial models.

For example, in the context of option valuation, Hull and White (1987) emphasize

the role of the leverage effect in the Black-Scholes formula and suggest that ignoring

it can cause significant biases. Also, Nandi (1998) points out the important role of the

correlation between volatilities and returns when pricing and hedging S&P500 index

options. More recently, Lien (2005) shows that the average optimal hedge ratios are

greater when the leverage is considered. A wide variety of alternative econometric

specifications are already available to choose among when dealing with SV models

with leverage effect. However, in this paper, we propose a further specification. Our

main motivation is that the new model, called Generalized Asymmetric SV (GASV),

nests some of the most popular asymmetric volatility specifications previously available

in the literature. In particular, it nests the asymmetric SV model originally proposed

by Taylor (1994) and Harvey and Shephard (1996) which incorporates the leverage

effect through correlation between the disturbances in the level and log-volatility

equations. The second specification obtained as a particular case of the new model
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was proposed by Demos (2002) and Asai and McAleer (2011) who suggest adding

a noise to the log-volatility equation specified as in the EGARCH model of Nelson

(1991). Finally, the third nested model is a restricted Threshold SV model in which

the constant parameter of the log-volatility equation changes depending on whether

past returns are positive or negative; see Asai and McAleer (2006) for the restricted

Threshold SV model and Breidt (1996) and So et al. (2002) for the general one.

We derive closed-form expressions of several statistical moments of the GASV

model related with the main empirical properties often observed in real financial time

series, namely, excess kurtosis, positive and persistent autocorrelations of power-transformed

absolute returns and negative cross-correlations between returns and future power-transformed

absolute returns. We show that the GASVmodel allows for a large range of combinations

of these moments and, consequently, it is flexible to represent a wide range of dynamics

of conditionally heteroscedastic time series with leverage effect. As a marginal outcome

of this analysis, we also obtain the statistical properties of the models nested within

the GASV, some of which were not previously available in the literature. Comparing

these properties, we are able to point out the advantages and limitations of each of

the restricted specifications.

A useful tool to describe the asymmetric response of volatility to positive and

negative past returns represented by alternative models is the News Impact Curve

(NIC) which was originally proposed by Engle and Ng (1993) in the context of GARCH

models. Yu (2012) proposes an extension of the NIC to SV models based on measuring

the effect of the level disturbance on the conditional volatility. However, this is a

rather difficult task due to the lack of observability of the volatility in SV models. In

this paper, we suggest an alternative definition of the NIC in the context of SV models.

Note that, a fundamental difference between GARCH and SV models is that in the

former models there is a unique disturbance while SV models have two disturbances.
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The NIC in a GARCH model relates the volatility with the unique disturbance of

the model. However, in SV models, it seems more sensible to relate the volatility

with their two disturbances. Therefore, in this paper, we propose to represent the

response of volatility by a surface called Stochastic News Impact Surface (SNIS).1

Analyzing the SNIS, we show that the asymmetric impact of the level disturbance on

the volatility can be different depending on the volatility disturbance.

Although SVmodels are attractive for modeling volatility, their empirical implementation

is limited by the difficulty involved in the estimation of their parameters which is

complicated by the lack of a closed-form expression of the likelihood. Furthermore, the

volatility itself is unobserved and cannot be directly estimated. Consequently, several

simulation-based procedures have been proposed for the estimation of parameters

and volatilities; see Broto and Ruiz (2004) for a survey. Among them, Monte Carlo

Markov Chain (MCMC) based approaches have become popular given their good

properties in estimating parameters and volatilities; see, for example, Omori et al.

(2007), Omori and Watanabe (2008), Nakajima and Omori (2009), Abanto-Valle et al.

(2010) and Tsiotas (2012) for MCMC estimators of SV models with leverage effect.

In this paper, we consider a MCMC estimator implemented in the user-friendly

and freely available WinBUGS software described by Meyer and Yu (2000). This

estimator is based on a single-move Gibbs sampling algorithm and has been recently

implemented in the context of asymmetric SV models by, for example, Yu (2012) and

Wang et al. (2013). The MCMC estimator implemented by WinBUGS is appealing

because it can handle non-Gaussian level disturbances without much programming

effort. We carry out extensive Monte Carlo experiments and show that, if the level

error distribution is known, it has adequate finite sample properties to estimate the

1The SNIS proposed in this paper should not be confused with the News Impact Surface (NIS)
defined in the context of multivariate models; see, for example, Asai and McAleer (2009), Savva
(2009) and Caporin and McAleer (2011).
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parameters and volatilities of the proposed GASV model in situations similar to

those encountered when analyzing time series of real financial returns. Furthermore,

we show that the restricted specifications can be adequately identified when the

parameters of the GASVmodel are estimated using theWinBUGS software. Therefore,

in empirical applications, researchers will be better off by fitting the general model

proposed in this paper and letting the data choose the preferred specification of the

volatility instead of choosing a particular ad hoc specification. Finally, the MCMC

estimator is implemented to estimate the volatilities and Value at Risk (VaR) of daily

S&P500 returns after fitting the new model proposed in this paper.

The rest of the paper is organized as follows. Section 2 describes the proposed

GASV model and derives its statistical properties. The properties of the restricted

specifications are analyzed and compared with each other in Section 3. Section 4

conducts Monte Carlo experiments to analyze the finite sample properties of the

MCMC estimator of the parameters and underlying volatilities. Section 5 presents

an empirical application to daily S&P500 returns. Finally, the main conclusions and

some guidelines for future research are summarized in Section 6.

2. The Generalized Asymmetric Stochastic Volatility model

In this section, we propose a new and flexible asymmetric SV model and derive its

statistical properties. In particular, we obtain closed-form expressions of the marginal

variance and kurtosis, the autocorrelations of power-transformed absolute returns and

cross-correlations between returns and future power-transformed absolute returns.

2.1. Model description

Let yt be the return at time t, σt its volatility, ht ≡ log σ2
t and ǫt be an independent

and identically distributed (IID) sequence with mean zero and variance one. The
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GASV model is defined as follows

yt = exp(ht/2)ǫt, t = 1, · · · , T (1)

ht − µ = φ(ht−1 − µ) + f(ǫt−1) + ηt−1, (2)

where f(ǫt) = αI(ǫt < 0) + γ1ǫt + γ2(|ǫt| − E|ǫt|) with I (·) being an indicator

function that takes value one when the argument is true and zero otherwise. The

volatility noise, ηt, is a Gaussian white noise with variance σ2
η. It is assumed to be

independent of ǫt for all leads and lags. The normality of ηt has been justified by

Andersen et al. (2001a) and Andersen et al. (2001b, 2003). The scale parameter, µ,

is related with the marginal variance of returns, while φ measures the persistence

of the volatility shocks and, consequently, is related with the rate of decay of the

autocorrelations of power-transformed absolute returns towards zero. The parameters

α and γ1 incorporate different asymmetries related with the leverage effect. In

particular, α is a threshold parameter that deals with changes in the scale parameter

depending on whether past returns are positive or negative. It captures the leverage

effect observed in financial returns when α > 0. On the other hand, γ1 generates

correlation between the volatility and the lagged level noise and, if negative, also

picks up leverage effect. Note that, the GASV model in equations (1) and (2) defines

the return at time t as being correlated with the volatility at time t+1; see Yu (2005)

for the adequacy of defining the leverage effect in this way rather than including

contemporaneous correlation between yt and ht as in Melino and Turnbull (1990),

Jacquier et al. (2004) or Bandi and Renò (2012). Finally, the parameter γ2 measures

the dependence of ht on past absolute return disturbances in the same form as in

the EGARCH model. As we will show later, it allows the model to generate richer
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dynamics of volatility clustering.2

It is important to mention that the only assumption made about the distribution

of the level disturbance, ǫt, is that it is an IID sequence with mean zero and variance

one. As a consequence, ǫt is strictly stationary. We are not assuming any particular

distribution of ǫt. In the related literature, different assumptions about this distribution

have been considered. For example, Jacquier et al. (1994), Harvey and Shephard

(1996) and Asai and McAleer (2011) assume that ǫt is a Gaussian process. The GASV

model with ǫt being Gaussian will be denoted as GASV-N. Although the Gaussianity

of ǫt is the most popular assumption, there has been other proposals that consider

heavy-tailed distributions such as the Student-t distribution or the Generalized Error

Distribution (GED)3; see, for example, Chen et al. (2008), Choy et al. (2008) and

Wang et al. (2011, 2013). When ǫt follows a GED distribution, the model will be

denoted as GASV-G. Finally, several authors include simultaneously both leptokurtosis

and skewness in the distribution of ǫt by assuming an asymmetric GED distribution as

in Cappuccio et al. (2004) and Tsiotas (2012) or a skew-Normal and a skew-Student-t

distributions as in Nakajima and Omori (2012) and Tsiotas (2012). However, in the

context of daily exchange rates, Cappuccio et al. (2004) conclude that skewness in

the distribution of ǫt is not important.

2.2. Statistical properties

To analyze the ability of the GASV model in capturing the main empirical features

often observed in financial returns, we now derive its statistical properties. Theorem

2In independent work, Asai et al. (2012) mention a specification of the volatility similar to the
GASV model with long-memory and Gaussian errors. However, they do not develop further the
statistical properties of the model.

3The GED distribution with parameter ν is described by Harvey (1990) and has the attractiveness
of including distributions with different tail thickness as, for example, the Normal when ν = 2, the
Double Exponential when ν = 1 and the Uniform when ν = ∞. The GED distribution has heavy
tails if ν < 2.
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2.1 establishes the sufficient conditions for stationarity of yt and derives the expression

of E(|yt|c) for any positive real number c.

Theorem 2.1. Define yt by the GASV model in equations (1) and (2). The process

{yt} is strictly stationary if |φ| < 1. Further, if ǫt follows a distribution such that

E(exp(0.5cf(ǫt))) < ∞ and E(|ǫt|c) < ∞ for any positive real number c, then {|yt|}

has finite, time-invariant moments of arbitrary order which are given by

E(|yt|c) = exp
(cµ
2

)
E(|ǫt|c) exp

(
c2σ2

η

8(1− φ2)

)
P (0.5cφi−1), (3)

where P (bi) ≡
∏∞

i=1E(exp(bif(ǫt−i))).

Proof. See Appendix A.1.

Theorem 2.1 establishes the strict stationarity of yt if |φ| < 1 and the existence of

the expectation of y2t if further E(exp(f(ǫt))) < ∞. Consequently, under these two

conditions, yt is also weakly stationary. The expression of the expectation of |yt|c in

(3) is the same regardless of the distribution of ǫt. However, in order to obtain a

closed-form expression, one needs to obtain E(|ǫt|c) and the expectations involved in

P (·) that can only be derived for particular distributions of ǫt. If ǫt is assumed to have

a GED distribution with parameter ν > 1, then the conditions in Theorem 2.1 are

satisfied and a closed-form expression of E(|yt|c) can be derived; see Appendix B.1

for the corresponding expectations. Given that the Gaussian distribution is a special

case of the GED distribution when ν = 2, closed-form expressions of E(|yt|c) can

also be obtained in this case; see Appendix B.2 for the corresponding expectations.

When ν < 1, we cannot obtain an analytical expression of E(|yt|c). However, in

Appendix B.1, we show that E(|yt|c) in equation (3) is finite if γ2 + |γ1| ≤ 0. Given

that, in the GASV model, the parameter γ2 is nonnegative, this condition is only

satisfied when γ1 = γ2 = 0. Finally, if ν = 1, the condition for the existence of
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E(|yt|c) in equation (3) is γ2 + |γ1| < 2
√
2/c.4

The derivations in Appendix B.1, to obtain closed-form expressions of the moments

of |yt|, rely on the symmetry of the density of ǫt. Therefore, it is not straightforward

to derive closed-form expressions of the expectations needed to compute E(|yt|c) when

ǫt has, for example, an asymmetric GED distribution. We left these derivations for

further research.

From expression (3), it is straightforward to obtain expressions of the marginal

variance and kurtosis of yt as the following corollaries show.

Corollary 2.1. Under the conditions of Theorem 2.1 with c = 2 and taking into

account that E(yt) = 0, the marginal variance of yt is directly obtained from (3) with

c = 2 as follows

σ2
y = exp

(
µ+

σ2
η

2(1− φ2)

)
P (φi−1). (4)

If ǫt has a centered and standardized GED distribution with parameter ν > 1, then

P (φi−1) =
∞∏

i=1

{
exp

(
− φi−1γ2Γ(2/ν)√

Γ(3/ν)Γ(1/ν)

)

·
∞∑

k=0

((
Γ(1/ν)

Γ(2/ν)

)k/2
Γ((k + 1)/ν)

2Γ(1/ν)k!
φ(i−1)k

[
(γ1 + γ2)

k + exp(αφi−1)(γ2 − γ1)
k
]
)}

,

(5)

4The same condition should be satisfied when ǫt has a Student-t distribution with degrees of
freedom d > 2.
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where Γ(·) is the Gamma function. If ǫt is Gaussian, then

P (φi−1) =
∞∏

i=1

{
exp

(
−φi−1γ2

√
2/π
){

exp

(
αφi−1 +

φ2i−2(γ1 − γ2)
2

2

)
Φ(φi−1(γ2 − γ1))

+ exp

(
φ2i−2(γ1 + γ2)

2

2

)
Φ(φi−1(γ2 + γ1))

}}
,

(6)

where Φ(·) is the Normal distribution function.

Note that in order to compute P (·) as given in (5) or (6), one needs to truncate

the corresponding infinite product and summation. Our experience is that truncating

the product at 500 and the summation at 1000 gives very stable results.

Corollary 2.2. Under the conditions of Theorem 2.1 with c = 4 and E(|ǫ|4) < ∞,

the kurtosis of yt can be obtained as E(y4t )/E(y
2
t )

2 using expression (3) with c = 4

and c = 2 as follows

κy = κǫ exp

(
σ2
η

1− φ2

)
P (2φi−1)

(P (φi−1))2
, (7)

where κǫ is the kurtosis of ǫt. If ǫt has a centered and standardized GED distribution

with parameter ν > 1, then P (2φi−1) can be obtained similarly as in expression (5)

or as in (6) if ν = 2.

The kurtosis of the basic symmetric ARSV(1) model considered by Harvey et al.

(1994) is given by κǫ exp
(

σ2
η

1−φ2

)
. Therefore, in expression (7), we can observe that,

in the GASV model, this kurtosis is multiplied by the factor r = P (2φi−1)
(P (φi−1))2

. Figure 1

plots r as a function of the leverage parameters α and γ1 when γ2 = 0.1 and 0 for three

different persistence parameters, namely, φ = 0.5, 0.9 and 0.98 assuming Gaussian

errors. First of all, we can observe that the factor is always larger than 1. Therefore,

the GASV model generates returns with higher kurtosis than the corresponding basic
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ARSV(1) model. Second, the effects of the parameters α, γ1 and γ2 on the kurtosis of

returns are very different depending on the persistence. The kurtosis increases with

α, |γ1| and γ2. However, their effects are only appreciable when φ is close to 1.

When looking at the dynamic dependencies of returns defined by the GASV model,

it is easy to see that their autocorrelations are trivially zero for all positive lags.

Furthermore, returns are a martingale difference process. However, they are not

serially independent as the conditional heteroscedasticity generates non-zero autocorrelations

of power-transformed absolute returns. The following theorem derives the autocorrelation

function (acf) of power transformed absolute returns.

Theorem 2.2. Consider a stationary process yt defined by equations (1) and (2) with

|φ| < 1. If ǫt follows a distribution such that E(exp(0.5cf(ǫt))) <∞ and E(|ǫt|c) <∞

for any positive real number c, then the τ -th order autocorrelation of |yt|c is finite and

given by

ρc(τ) = (8)

E(|ǫt|c)M1 exp
(

φτ c2σ2
η

4(1−φ2)

)
P (0.5c(1 + φτ )φi−1)T (τ, 0.5cφi−1)− [E(|ǫt|c)P (0.5cφi−1)]2

E(|ǫt|2c) exp
(

c2σ2
η

4(1−φ2)

)
P (cφi−1)− [E(|ǫt|c)P (0.5cφi−1)]2

,

where M1 ≡ E(|ǫt|c exp(0.5cφτ−1f(ǫt))) and T (n, bi) ≡
n−1∏

i=1

E(exp(bif(ǫt−i))) if n > 1

while T (1, bi) ≡ 1.

Proof. See Appendix A.2.

The expectations needed to obtain closed-form expressions of the autocorrelations

in expression (8) have been derived in Appendix B.1 for the GASV-G model with

parameter ν > 1 and in Appendix Appendix B.2 for the particular case of the Normal

distribution, i.e. ν = 2. As above, when ν ≤ 1, we can only obtain conditions for
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the existence of the autocorrelations in (8). Notice that, in practice, most authors

dealing with real time series of financial returns focus on the autocorrelations of

squared and absolute returns, ρ2(τ) and ρ1(τ), respectively, which can be obtained

from (8) when c = 2 and c = 1. As these autocorrelations are highly non-linear

functions of the parameters, it is not straightforward to analyze the role of each

parameter on their shape. Furthermore, by comparing the autocorrelations in (8) for

absolute and squared returns, it is not easy to conclude whether the GASV model is

able to generate the Taylor effect according to which the autocorrelations of absolute

returns are larger than those of squares; see Ruiz and Pérez (2012) for an analysis of

the Taylor effect in the context of symmetric SV models. Consequently, in order to

illustrate how the autocorrelations of |yt| and y2t depend on each of the parameters

in the GASV model, we have considered particular GASV-N models with parameters

φ = 0.98, σ2
η = 0.05 and γ2 taking values 0 or 0.1. The leverage parameters, α and γ1,

take values between 0 and 1 and -0.25 and 0, respectively. These parameter values

have been chosen to be close to those often estimated when SV models are fitted to

real time series of financial returns.

The first order autocorrelations of squared and absolute returns, namely, ρ2(1) and

ρ1(1), are plotted in the first row of Figure 2 as functions of the leverage parameters,

γ1 and α. In the top left panel of Figure 2, which corresponds to the autocorrelations

of squares, we can observe that they are larger, the larger is γ2. However, both

surfaces are rather flat and, consequently, the leverage parameters do not have large

effects on the first order autocorrelations of squares. The corresponding first order

autocorrelations of absolute returns are plotted in the top right panel of Figure 2.

The autocorrelations of absolute returns are also larger the larger is the parameter

γ2. However, we can observe that the autocorrelations of absolute returns increase

with the threshold parameter α. The effect of γ1 on the autocorrelation of absolute

returns is much milder. Finally, comparing ρ1(1) with ρ2(1), we can conclude that,
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the Taylor effect is stronger the larger is the leverage effect, regardless of whether this

is due to α or γ1.

Figure 2 focuses on the first order autocorrelations, but gives no information on

the shape of the acf for different lags. To illustrate this shape and the role of the

distribution of ǫt on the acf of y2t and |yt|, the first two panels of the first row of Figure

3 plot the acf of squared and absolute returns for four different GASV-G models with

parameters φ = 0.98, σ2
η = 0.05, α = 0.07, γ2 = 0.1, γ1 = −0.08 and four different

values of the GED parameter, ν = 1.5, 1.7, 2 and 2.5. As expected, the acfs of |yt|

and y2t both have an exponential decay. Furthermore, fatter tails of ǫt imply smaller

autocorrelations of both absolute and squared returns; see Carnero et al. (2004) for

similar conclusions in the context of symmetric SV models.

The leverage effect is reflected in the cross-correlations between power-transformed

absolute returns and lagged returns. The following theorem gives closed-form expressions

of these cross-correlations.

Theorem 2.3. Consider a stationary process yt defined by equations (1) and (2) with

|φ| < 1. If ǫt follows a distribution such that E(exp(0.5cf(ǫt))) < ∞ and E(|ǫt|2c) <

∞ for any positive real number c, then the τ -th order cross-correlation between yt and

|yt+τ |c for τ > 0 is finite and given by

ρc1(τ) =
E(|ǫt|c) exp

(
2cφτ−1
8(1−φ2)

σ2
η

)
M2P (0.5(1 + cφτ )φi−1)T (τ, 0.5cφi−1)

√
P (φi−1)

√
E(|ǫ|2c) exp

(
c2σ2

η

4(1−φ2)

)
P (cφi−1)− [E(|ǫt|c)P (0.5cφi−1)]2

, (9)

where M2 ≡ E(ǫt exp(0.5cφ
τ−1f(ǫt))).

Proof. See Appendix A.3.

As above, the expectations needed to obtain closed-form expressions of the cross-correlations
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of the GASV-G model in (9) have been derived in Appendix B.1 for ν > 1 and in

Appendix B.2 for the particular case of ν = 2. When ν ≤ 1, we are just able to

obtain the conditions for the finiteness of the cross-correlation function (ccf). In

the second row of Figure 2, we illustrate the effect of the parameters on the first

order cross-correlations between yt and y
2
t+1 and |yt+1|, ρ21(1) and ρ11(1), respectively,

of a GASV-N model with the same parameters considered when dealing with the

autocorrelations. First of all, observe that the first order cross-correlations between

returns and future absolute and squared returns are indistinguishable for the two

values of γ2 considered in Figure 2. Second, for a given value of γ2, it is obvious that

increasing the leverage parameters α and |γ1| increases the absolute cross-correlations.

Note that |γ1| drags ρ21(1) in an approximately linear way while the effect of α is

non-linear. On the other hand, the absolute cross-correlations between returns and

future absolute returns have an approximately linear relationship with γ1 and α and

are clearly larger than those between returns and future squared returns. Therefore,

it seems that when identifying conditional heteroscedasticity and leverage effect in

practice, it is preferable to work with absolute returns instead of squared returns.

Moreover, the shapes of the cross-correlation functions of the GASV-G model,

ρ21(τ) and ρ11(τ), are also illustrated in the last two panels of the first row of Figure

3, which show that the parameter ν of the GED distribution has a very mild influence

on the cross-correlations, especially for ρ11(τ).

To put it briefly, both ν and γ2 increase the flexibility of the model to represent

the volatility clustering while have little influence on the leverage effect. On the other

hand, γ1 affects the leverage effect and this effect is reinforced by the inclusion of α,

which could influence slightly the autocorrelations of absolute returns.

Besides the cross-correlations between returns and future power-transformed absolute

returns, another useful tool to describe the asymmetric response of volatility, proposed
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by Engle and Ng (1993) in the context of GARCH models, is the News Impact Curve

(NIC). Yu (2012) proposes to extend the NIC to SV models by defining it as a function

that relates the conditional variance to the lagged return innovation, ǫt−1, holding

constant all other variables. Given that, in SV models, the conditional variance is not

directly specified, this definition of the NIC requires solving high-dimensional integrals

using numerical methods. In this paper, we propose an alternative definition. Taking

into account the information provided by the two disturbances involved in the model,

we define the Stochastic News Impact Surface (SNIS) as the surface that relates

σ2
t with ǫt−1 and ηt−1. Therefore, evaluating the lagged volatility at the marginal

variance, the SNIS of the GASV model is given by

SNISt = exp((1− φ)µ)σ2φ
y exp (f(ǫt−1) + ηt−1) . (10)

As an illustration, the top left panel of Figure 4 plots the SNIS of a GASV-N

model with parameters {exp(µ/2), α, φ, γ1, γ2, σ2
η} given by {0.1, 0.07, 0.98, -0.08, 0.1,

0.05}. Note that due to the presence of the threshold parameter, α, this surface is

discontinuous with respect to ǫt−1. Figure 4 shows that, for a given value of the lagged

volatility shock, ηt−1, the response of volatility is stronger when ǫt−1 is negative than

when it is positive with the same magnitude. Furthermore, this asymmetric response

depends on the log-volatility noise, ηt−1. The leverage effect is clearly stronger when

ηt−1 is positive and large than when it is negative. In this latter case, there are no big

differences between the effects on future volatilities of positive and negative returns

of the same magnitude. The SNIS obtained for GED errors with 1 < ν < 2 are very

similar to that plotted in Figure 4 for Normal errors.
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3. Alternative Asymmetric SV models

As mentioned in the Introduction, one of the main motivations to propose a further

specification for asymmetric volatilities is the ability of the new model to nest some of

the most popular specifications previously available in the literature. In this section,

we review these nested models and analyze and compare their statistical properties

which can be obtained as particular cases from those of the GASV model.

3.1. A-ARSV model

Consider the following restricted volatility specification of equation (2)

ht − µ = φ(ht−1 − µ) + γ1ǫt−1 + ηt−1, (11)

which together with (1) is denoted as A-ARSV model. Define δ and σ2
η∗ such that γ1 =

δση∗ and σ2
η = (1 − δ2)σ2

η∗ . Then, the A-ARSV model with Normal errors (denoted

as A-ARSV-N) is equivalent to the most popular asymmetric SV model originally

proposed by Taylor (1994) and Harvey and Shephard (1996) that incorporates the

leverage effect through correlation between the level and volatility noises as follows

ht − µ = φ(ht−1 − µ) + η∗t−1, (12)

with ǫt and η
∗
t being jointly Normal with zero means, variances 1 and σ2

η∗, respectively,

and correlation δ; see Asai and McAleer (2011) and Yu (2012) for the equivalence

of these two specifications. Model (12) is very popular in empirical applications;

see Bartolucci and De Luca (2003), Yu et al. (2006) and Tsiotas (2012) among many

others. This model is also extended by Tsiotas (2012) by allowing the return disturbance

to follow several asymmetric and fat-tailed distributions. However, it is important

to note that the equivalence between the specifications in (11) and (12) can only be
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established when ǫt is Normal if the volatility is assumed to be Log-Normal.

The moments of the A-ARSV-G model can be obtained from those in Section

2 by imposing α = γ2 = 0. These moments have been already derived in the

literature when ν = 2; see Taylor (1994, 2007), Demos (2002), Ruiz and Veiga

(2008) and Pérez et al. (2009). Particularly, the marginal variance and kurtosis of yt,

given in (4) and (7), reduce to σ2
y = exp(µ) exp

(
σ2
η+γ2

1

2(1−φ2)

)
and ky = kǫ exp

(
σ2
η+γ2

1

1−φ2

)
,

respectively. Note that σ2
η + γ21 = σ2

η∗. As a consequence, several authors conclude

that, in the basic A-ARSV-N model, the variance and kurtosis of yt do not depend on

whether there is leverage effect or not; see Taylor (1994), Ghysels et al. (1996) and

Harvey and Shephard (1996). One can always find a symmetric model with a larger

variance of the errors that has the same variance and kurtosis as a given asymmetric

model.

Expressions of the autocorrelations of |yt|c and the cross-correlations between yt

and |yt+τ |c of the A-ARSV-G model can be also derived from the corresponding

expressions (8) and (9). As an illustration, Figure 3 plots the acfs and ccfs of the

A-ARSV-G models for the same parameter values of the GASV-G models represented

in the first row of Figure 3 except that α = γ2 = 0. We can observe that the

autocorrelations of squared and absolute returns and the absolute cross-correlations

are slightly smaller than those of the corresponding GASV-G models. Therefore,

including γ2 and α in the GASV model allows for stronger volatility clustering

and leverage effect. Smaller autocorrelations are observed when the tails of the

distribution of the return disturbance, ǫt, are fatter. Once more, the thickness of the

tails has very mild influence on the cross-correlations and, therefore, on the leverage

effect.

Finally, consider the SNIS of the A-ARSV-N model which is obtained from (10)

with α = γ2 = 0 and ν = 2. The top right panel of Figure 4 illustrates the SNIS
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of an A-ARSV-N model with the same parameters as in the illustration of SNIS of

the GASV-N model, i.e., {exp(µ/2), φ, γ1, σ2
η} = {0.1, 0.98,−0.08, 0.05}. Given ηt−1,

the SNISt is an exponential function with exponent γ1. Thus, bad news generates

a higher impact on volatility than good news of the same size. The magnitude of

this difference increases with ηt−1. Moreover, it is magnified (mitigated) by positive

(negative) ηt−1. However, for the particular model considered in Figure 4, the leverage

effect is very mild when compared with that of the GASV-N model.

3.2. E-SV model

Consider now the following specification of ht based on the EGARCH model with

an added noise

ht − µ = φ(ht−1 − µ) + γ1ǫt−1 + γ2 {|ǫt−1| − E(|ǫt−1|)}+ ηt−1, (13)

where all the parameters and processes are defined and interpreted as in the GASV

model in (2). The model in (1) and (13), denoted as E-SV, can be obtained as a

particular case of the GASV when α = 0. Note that the E-SV model with Normal ǫt

(denoted as E-SV-N) can also be obtained as a particular case of the model proposed

by Demos (2002), who derives the acf of yt and the ccf between yt and y
2
t ; see also

Asai and McAleer (2011).5 Moreover, note that it nests the A-ARSV-N model when

γ2 = 0.

The E-SV model with ǫt having a GED distribution is denoted as E-SV-G. Comparing

the A-ARSV-G and E-SV-G models, we can study the role of γ2 while the role of α

can be established by comparing the GASV-G and E-SV-G models.

5It is important to point out that the E-SV-N model has also been implemented by specifying the
log-volatility using yt−1 instead of ǫt−1 in equation (13); see Danielsson (1998) and Asai and McAleer
(2005). In this case, although the estimation of the parameters is usually easier, the derivation of
the properties is harder.
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The third row of Figure 3 plots the autocorrelations and cross-correlations for four

E-SV-G models with the same parameter values of the GASV-G models considered

above except that α = 0. Comparing the plots of the A-ARSV-G and E-SV-G models

in Figure 3, we can observe that adding |ǫt−1| into the A-ARSV-G model generates

larger autocorrelations of squares and absolute returns but not larger Taylor effect.

However, as expected, the cross-correlations are almost identical. Therefore, the

E-SV-G model is more flexible than the A-ARSV-G to represent wider patterns of

volatility clustering but not of volatility leverage.

Figure 3 also illustrates that the E-SV-G model is not identified when the parameter

of the GED distribution of ǫt, ν, is not fixed. Observe that, given a particular E-SV-G

model, we can also find an A-ARSV-G model with almost the same autocorrelations

and cross-correlations. Compare, for example, the autocorrelations of the E-SV-G

model with ν = 2 and those of the A-ARSV-G model with ν = 2.5. Further, the

cross-correlations are indistinguishable in any case. Therefore, if the parameter ν

is a free parameter, we cannot identify the parameters γ2 and σ2
η. Only by fixing

the distribution of ǫt, i.e. choosing a particular value of ν, both parameters can be

properly identified.

Finally, by comparing the GASV-G and E-SV-G models, we can observe that the

autocorrelations are almost identical. Only the autocorrelations of absolute returns of

GASV-G are slightly larger; see also Figure 2. Including α only has a paltry effect on

the volatility clustering that the model can represent. However, the cross-correlations

of the GASV-G model are stronger than those of the E-SV-G model. Therefore, α

allows for a more flexible pattern of the leverage effect.

The SNIS of the E-SV-N model is illustrated in the bottom left panel of Figure

4 for a model with the same parameters chosen for the GASV-N model with α = 0.

Comparing the SNIS of the E-SV model with that of the A-ARSV model, we can
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observe that these two surfaces are similar. We can identify the important role of α

in the response of volatility by comparing the SNIS of the E-SV and GASV models.

3.3. RT-SV model

The last nested model considered in this paper is the threshold SV (T-SV) model,

which specifies the log-volatility with different parameters depending on the sign of

past returns. In particular, assuming normality of ǫt, the T-SV-N model, proposed

by Breidt (1996) and So et al. (2002), is given by

ht = α + α′I(ǫt−1 < 0) + (φ+ φ′I(ǫt−1 < 0))ht−1 + η̃t−1, (14)

where η̃t is a Gaussian noise with mean zero and variance σ2
η̃ + σ2′

η̃ I(ǫt < 0). The

T-SV-N model in (14) allows the constant, persistence and the variance of the volatility

noise to change depending on whether one-lagged returns are positive or negative.

More recently, Chen et al. (2008) considers a standardized Student-t distribution for

the return errors.

Deriving analytical properties of the T-SV-N model in (14) seems to be a difficult

task. Consequently, we analyze them by simulation. The model kurtoses, first

order autocorrelations of squares and first order cross-correlations between squares

and levels, reported in Table 1, are obtained as the averages of the corresponding

sample moments computed from R = 1000 series of size T = 5000 simulated from

several T-SV-N models. Table 1 also reports the corresponding Monte Carlo standard

deviations. The parameter values considered to simulate the time series reported in

Table 1 have been chosen to be in concordance with the estimates often obtained when

fitting the T-SV-N model to real financial returns; see So et al. (2002), Muñoz et al.

(2007), Chen et al. (2008), Smith (2009), Montero et al. (2010) and Elliott et al.

(2011), among others. Table 1 considers three types of T-SV-N models. The first
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type are models with fixed persistence and variance of η̃t and in which the constant

is allowed to change. Second, we consider models in which the persistence changes

depending on the sign of lagged returns while both the constant and the variance

are fixed. Finally, the third group of models have fixed constant and autoregressive

parameter with the variance changing according to the sign of lagged returns. Table

1 shows that, in the models in which the autoregressive parameter changes, the

autocorrelations of squares are not significantly different from zero. Therefore, changes

in the autoregressive parameter destroy the volatility clustering and the conditional

heteroscedasticity disappears. Note also that when the autoregressive parameter

changes, the cross-correlations are not significantly different from zero in any of

the models considered. On the other hand, when looking at the results for the

models in which the variance of the volatility noise changes, we can observe that

they generate significant autocorrelations of squares and, consequently, conditional

heteroscedasticity. However, in these models the cross-correlations between returns

and future squared returns are not significantly different from zero. Therefore, changes

in the variance seem to generate conditionally heteroscedastic series without leverage

effect. It is also important to note that, in these models, the kurtoses are too large

when compared with those usually observed in real financial returns. Finally, consider

the group of models in which both the autoregressive parameter and the variance are

fixed and the constant changes. In these models, we observe that the autocorrelations

of squares and the cross-correlations between returns and future squared returns are

significantly different from zero when the difference between these two constants is

large enough. Consequently, we focus the analysis on the following specification of

volatility

ht − µ = αI(ǫt−1 < 0) + φ(ht−1 − µ) + ηt−1, (15)

with the parameters and processes defined as in (2). The model defined by equations
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(1) and (15) is denoted as restricted T-SV (RT-SV) model. This model has also been

considered by Asai and McAleer (2006) who assume normality of ǫt. In this case, we

denote it as RT-SV-N. Note that when the constrains γ1 = γ2 = 0 are imposed on

the GASV-N model in (2), the RT-SV-N model is obtained.

The statistical properties of the RT-SV-G model with ǫt ∼ GED can be obtained

from those of GASV-G model obtained in the previous section by restricting γ1 = γ2 =

0. The last row of Figure 3 illustrates the shape of the autocorrelations of squared and

absolute returns and the cross-correlations between returns and future squared and

absolute returns, for a RT-SV-G model with the same values of the parameters φ, σ2
η

and ν as those considered for the GASV-G model. Comparing the autocorrelations of

squares and absolute returns of the GASV-G and RT-SV-G models, we can observe

that the latter are slightly smaller than the former. However, the cross-correlations

are clearly smaller in the RT-SV-G model. Actually, these cross-correlations are the

smallest among those of all the models considered. It seems that the presence of α in

the GASV model is reinforcing the role of the leverage parameter γ1.

Finally, the bottom right panel of Figure 4 illustrates the SNIS of this particular

RT-SV-N model which can be obtained from (10). The main characteristic of the

SNIS plotted is its discontinuity with respect to ǫt−1. This surface represents different

responses of volatility to positive and negative returns due to the inclusion of α. By

comparing the SNIS of the GASV and RT-SV models, we can clearly observe the

added flexibility to explain the leverage effect incorporated by having both α and γ1

in the model.

4. Finite sample performance of a MCMC estimator of the parameters

Stochastic volatility models are attractive because of their flexibility to represent

a high range of the dynamic properties of time series of financial returns often
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observed when dealing with real data. This flexibility can be attributed to the

presence of a further disturbance associated with the volatility process. However,

as a consequence of the volatility being unobservable, it is not possible to obtain an

analytical expression of the likelihood function. Furthermore, one needs to implement

filters to obtain estimates of the latent unobserved volatilities. Thus, the main

limitation of SV models is the difficulty involved in the estimation of the parameters

and volatilities; see Broto and Ruiz (2004) for a survey on alternative procedures

to estimate SV models. In this context, simulation based MCMC procedures are

becoming very popular because of their good properties and flexibility to deal with

different specifications and distributions of the errors.6 The first Bayesian MCMC

approach to estimate SV models with leverage effect was developed by Jacquier et al.

(2004). After that, there have been several proposals that try to improve the properties

of the MCMC estimators. For example, Omori et al. (2007), Omori and Watanabe

(2008) and Nakajima and Omori (2009) implement the efficient sampler of Kim et al.

(1998) to SV models with Student-t errors and leverage effect based on log y2t . Based

on the work of Shephard and Pitt (1997) andWatanabe and Omori (2004), Abanto-Valle et al.

(2010) estimate an asymmetric SV model assuming scale mixtures of Normal return

distributions while SV models with skew-Student-t and skew-Normal return errors are

estimated by Tsiotas (2012) using MCMC. Among the alternative MCMC estimators

available in the literature, in this paper, we consider the estimator described by

Meyer and Yu (2000) who propose to estimate the A-ARSVmodel using the user-friendly

and freely available WinBUGS software. The estimator uses the single-move Gibbs

sampling algorithm; see Yu (2012) andWang et al. (2013) for empirical implementations.

6There are several alternative procedures proposed in the literature to estimate SV models with
leverage effect. For example, Bartolucci and De Luca (2003) propose a likelihood estimator based on
the quadrature methods of Fridman and Harris (1998). Alternatively, Harvey and Shephard (1996)
propose a Quasi Maximum Likelihood procedure while Sandmann and Koopman (1998) implement
a Simulated Maximum Likelihood procedure. Finally Liesenfeld and Richard (2003) propose a
Maximum Likelihood approach based upon an efficient importance sampling.
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This estimator is attractive because it reduces the coding effort allowing its empirical

implementation to real time series of financial returns.

Next, we describe briefly the algorithm. Let p(θ) be the joint prior distribution of

the unknown parameters θ = {µ, φ, α, γ1, γ2, σ2
η, ν}. Following Meyer and Yu (2000),

the prior densities of φ and σ2
η are φ = 2φ∗ − 1 with φ∗ ∼ Beta(20, 1.5) and σ2

η =

1/τ 2 with τ ∼ IG(2.5, 0.025), respectively, where IG(·, ·) is the inverse Gaussian

distribution.7 The remaining prior densities are chosen to be uninformative, that is,

µ ∼ N(0, 10), α ∼ N(0.05, 10), γ1 ∼ N(−0.05, 10), γ2 ∼ N(0.05, 10) and ν ∼ U(0, 4).

These priors are assumed to be independent. The joint prior density of θ and h is

given by

p(θ,h) = p(θ)p(h0)
T+1∏

t=1

p(ht|ht−1,θ). (16)

The likelihood function is then given by

p(y|θ,h) =
T∏

t=1

p(yt|ht,θ). (17)

Note that the conditional distribution of yt given ht and θ is yt|ht,θ ∼ GED(ν).

We make use of the scale mixtures of Uniform representation of the GED distribution

proposed byWalker and Gutiérrez-Peña (1999) for obtaining the conditional distribution

of yt given ν and ht, which is given by

yt|u, ht ∼ U

(
− exp(ht/2)√

2Γ(3/ν)/Γ(1/ν)
u1/ν ,

exp(ht/2)√
2Γ(3/ν)/Γ(1/ν)

u1/ν

)
, (18)

where u|ν ∼ Gamma(1 + 1/ν, 2−ν/2). Given the initial values (θ(0),h(0)), the Gibbs

sampler generates a Markov Chain for each parameter and volatility in the model

7Although the prior of φ∗ is very informative, when it is changed to Beta(1, 1), the results are
very similar.

24



through the following steps:

θ
(1)
1 ∼ p(θ1|θ(0)2 , . . . , θ

(0)
K , h(0),y);

...

θ
(1)
K ∼ p(θ1|θ(1)2 , . . . , θ

(1)
K−1, h

(0),y);

h
(1)
1 ∼ p(h1|θ(1), h(0)2 , . . . , h

(0)
T+1,y);

...

h
(1)
T+1 ∼ p(hT+1|θ(1), h(1)1 , . . . , h

(1)
T ,y).

The estimates of the parameters and volatilities are the means of the Markov Chain.

The posterior joint distribution of the parameters and volatilities is given by

p(θ,h|y) ∝ p(θ)p(h0)
T+1∏

t=1

p(ht|ht−1,y,θ)
T∏

t=1

p(yt|ht,θ). (19)

In this section, we carry out extensive Monte Carlo experiments to analyze the

finite sample performance of the MCMC estimator when estimating both the parameters

and the underlying volatilities. As mentioned in Section 3, one possible problem is the

parameter identification when estimating the GASV-G model. Therefore, we consider

two designs for the Monte Carlo experiments. First, we treat ν as known and estimate

the other parameters in the model. In this case, R replicates are generated by the

GASV-N model with parameters (µ, φ, α, γ1, γ2, σ
2
η) = (0, 0.98, 0.07,−0.08, 0.1, 0.05).

Second, R replicates are generated by the GASV-G model with the same parameters

and ν = 1.5. All the parameters are then estimated using the MCMC estimator. The

total number of iterations in the MCMC procedure is 20,000 after a burn-in of 10,000.

The results are based on R = 500 replicates of series with sample sizes T = 500, 1000

and 2000.
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The left panels of Table 2 report the average and standard deviation of the

posterior means together with the average of the posterior standard deviations of each

parameter through the Monte Carlo replicates for the first design when ν is fixed and

equal to its true value, ν = 2. Once we fix ν and estimate the rest of the parameters,

we observe that the Monte Carlo averages of the posterior means are rather close

to the true parameter values, indicating almost no finite sample biases for series of

sizes T = 1000 and 2000. Also, it is important to point out that the average of the

posterior standard deviations is rather close to the Monte Carlo standard deviation

of the posterior means. Consequently, inference based on the posterior distributions

seems to be adequate when the sample size is as large as 1000. When T = 500, the

estimation could suffer from small parameter bias.

On the other hand, the right panels of Table 2 report the results for the second

design when ν is estimated as a further parameter. We observe that, due to the lack

of identifiability mentioned above, the estimates of γ2, σ
2
η and ν suffer biases that do

not disappear with the sample size. Both σ2
η and ν are underestimated while γ1 is

over estimated. The correlation between the estimates of γ2 and σ2
η is almost -0.7

while the correlation between the estimates of ν and γ2 is as high as -0.8. So the

estimator cannot identify these parameters correctly. Also note that although the

average posterior standard deviations of γ2 are similar when ν is estimated and when

it is fixed, the standard deviations of the posterior means of γ2 are clearly larger

when ν is estimated. Therefore, inference of γ2 based on the posterior distribution

can be non-reliable when ν is estimated along with all other parameters in the model.

Finally, comparing the standard deviation of the posterior means with the average of

the posterior standard deviations of ν, we observe that the latter are clearly smaller

than the former. Consequently, inference based on the posterior distribution of ν can

be misleading as we could believe that the uncertainty associated with the estimated

parameter of the GED distribution is smaller than the true uncertainty.
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We also want to check whether by fitting the new model proposed in this paper

we are able to identify the true restricted specifications when the distribution of ǫt

is known. With this purpose, we generate R = 500 replicates of sizes T = 500 and

1000 from each of the restricted models with Normal return errors and fit the new

GASV-N model. The results, reported in Table 3, provide evidence that when ν is

known it is possible to identify the true data generating process (DGP) by fitting the

more general GASV-N model even when the sample size is as small as T = 500.

Summarizing the Monte Carlo results on the MCMC estimator considered in this

paper, we can conclude that: i) Some of the parameters of the GASV model are not

identified when the distribution of ǫt is modeled as a GED distribution with unknown

parameter. ii) If ν is known and the sample size is moderately large, the posterior

distribution gives an adequate representation of the finite sample distribution with

the posterior mean being an unbiased estimator of the true parameter value. iii) The

true restricted specifications are correctly identified after fitting the proposed GASV

model when ν is known.

When dealing with conditional heteroscedastic models, practitioners are interested

not only in the parameter estimates but also, and more importantly, in the volatility

estimates. Consequently, in the Monte Carlo experiments above, at each time period

t and for each replicate i, we also compute the relative prediction error of volatility,

e
(i)
t = (σ

(i)
t − σ̂

(i)
t )/σ

(i)
t , where σ

(i)
t is the simulated true volatility at time t in the i-th

replicate and σ̂
(i)
t is its MCMC estimate. Table 4 reports the average and standard

deviation through time ofmt =
∑R

i=1 e
(i)
t /R together with the average through time of

the standard deviations given by st =

√∑R
i=1(e

(i)
t −mt)2/(R− 1) when T = 500 and

1000. These quantities have been computed when the GASV-N model is fitted to the

series generated by the general model and by each of the restricted models assuming

that ν = 2. We also compute the relative volatility errors when ν is estimated as a
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further parameter. Consider first the results when the GASV-N is the true DGP. We

observe that the estimates of the volatility are unbiased. Further, when the restricted

models are the DGPs but the general GASV-N model is fitted, the errors are also

insignificant and with similar standard deviations. Finally, if the GASV-G model

is fitted, the estimates of the volatility have a negative bias that does not disappear

when the sample size increases. Therefore, when ν is estimated, the MCMC estimated

volatilities are larger than the true underlying volatilities. Also note that the standard

deviation almost does not decrease with the sample size.

5. Empirical application

5.1. Data description and estimation results

In this section, the GASV model is fitted to represent the dynamic dependence

of daily S&P500 returns observed from June 17, 1996 to May 4, 2012 with T = 4000

observations. The returns, computed as usual as yt = 100×△ logPt, where Pt is the

adjusted close price from yahoo.finance on day t, have kurtosis 9.601 and skewness

0.042 which is not statistically significant. Therefore, it seems that it is not necessary

to consider a skewed distribution of the return errors. The raw prices together

with their corresponding returns are plotted in Figure 5 which suggests the presence

of volatility clustering with episodes of large volatilities associated with periods of

negative movements in prices. Furthermore, this association between large volatilities

and negative returns can also be observed in the negative cross-correlations between

returns and future squared and absolute returns plotted in Figure 6. It is clear that

the volatility clustering and leverage effect are present in the daily S&P500 returns.

Consequently, the GASV model is fitted first estimating ν as a free parameter and

second assuming that the errors are Gaussian. Our objective is to observe empirically

whether the estimated volatilities and the corresponding Value at Risk (VaR) are
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affected by the distribution of ǫt. Recall that, according to our conclusions, both

on the statistical properties of the GASV model and the simulations, if ν = ν0, we

may find another model with ν 6= ν0 and different parameter values that represent

the same dynamics of |yt|c and the same cross-correlations between yt and |yt+τ |c.

For completeness, we also fit the other six restricted models. All the parameters and

volatilities have been estimated implementing the MCMC estimator of WinBUGS.

Table 5 reports the posterior mean and the 95% credible interval of the MCMC

estimator of each parameter. First, we can observe that when the GASV model is

fitted, the credible intervals for the threshold parameter α contain the zero regardless

of whether ν is estimated as a free parameter or is fixed at ν = 2. Furthermore,

the DIC of the RT-SV model is larger than those of the other models regardless of

whether ν is estimated or fixed; see Berg et al. (2004), Wang et al. (2013) and Tsiotas

(2012) for using the DIC to compare models in the context of SV models. The Monte

Carlo experiments in the previous section suggest that fitting the general GASV

model proposed in this paper, one could identify the true restricted specification of

the log-volatilities if the distribution of ǫt is known. Consequently, it seems that the

threshold parameter is not needed to represent the conditional heteroscedasticity of

the S&P500 returns. Therefore, we focus now on the results of the E-SV model. The

estimate of the parameter of the GED distribution is ν̂ = 1.7 which, according to

our Monte Carlo results, could be underestimating the true value of ν. Comparing

the estimated parameters obtained when ν is estimated with those obtained when

ν = 2, we observe that in the first case γ2 is larger and σ2
η is smaller. Recall that σ2

η

is underestimated while γ2 is overestimated. Therefore, the empirical estimates are

in concordance with the simulation results. The DIC seems to indicate a better fit of

the E-SV-G model which is, in any case, very close to the A-ARSV-G model.

Figure 6 plots the plug-in moments implied by the estimated asymmetric SV
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models together with the corresponding sample moments. First, note that for the

same model with different level error distributions, GED and Normal, the plug-in

moments are indistinguishable. Second, the plug-in moments of all models but the

RT-SV model are similar among them and rather close to the sample moments. The

RT-SV plug-in moments are somehow further away. Therefore, the RT-SV model

seems not able to represent the properties of daily S&P500 returns as well as the

other three asymmetric SV models which are rather similar.

Given the apparent similarity between the A-ARSV and E-SV specifications, we

next check whether they can generate significant differences when predicting the VaRs.

5.2. Forecasting VaR

In this subsection, we perform an out-of-sample comparison of the ability of the

alternative asymmetric SV models considered in this paper, with ǫt following either

a GED or a Normal distribution, when evaluating the one-step-ahead VaR of the

daily S&P500 returns. Given the extremely heavy computations involved in the

estimation of the one-step-ahead VaR based on the MCMC estimator, we compute it

using data from Jan 3, 2005 to Dec 31, 2010. The parameters are estimated using a

rolling-window scheme fixing T = 990 observations.8 Moreover, one-step-ahead VaRs

are obtained starting on January 4, 2010 until the end of 2010 as

V aRt+1|t(m) = qσ̂t+1|t, (20)

with q being the 5% quantile of the distribution with parameter ν estimated in model

m or the 5% quantile of the Normal distribution when ν = 2 and σ̂t+1|t is the estimated

one-step-ahead volatility. Finally, we obtain 252 one-step-ahead VaRs.

8Checking the estimates obtained, we observe that all the estimates are very stable over the year
considered in the rolling window estimation.
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In order to evaluate the adequacy of the interval forecasts provided by the VaRs

computed as in equation (20) for each of the models, we carry out the coverage tests

of Christoffersen (1998), namely, the unconditional coverage (LRuc), independence

(LRind) and unconditional coverage and independence (LRcc) tests. Table 6 reports

the failure rates and the likelihood ratios together with the p-values of the tests

statistics. Even though the failure rate is always larger than 0.05, we do not reject

the adequacy of any of the estimated VaRs.

Next, we compare the VaRs pairwise applying the Conditional Predictive Ability

(CPA) statistic proposed by Giacomini and White (2006) which is based on the

following asymmetric linear loss function for model m

L̂t+1(m) = (0.05− I(êt+1(m) < 0))êt+1(m), (21)

where êt+1(m) = yt+1 − V aRt+1|t(m). Given the loss function in equation (21), the

null hypothesis of the CPA test is that the expected loss functions resulting from any

two models, f and g are equal:

H0 : E(L̂t+1(f)− L̂t+1(g) | Ft) = 0, (22)

where Ft denotes the information set available at time t. The CPA statistic is

computed as nR2, where n and R2 are the number of observations and the uncentered

R2 of the artificial regression of Dt+1 = L̂t+1(f)− L̂t+1(g) on the vector λt = (1, Dt),

respectively. It has an asymptotic χ2 distribution with 2 degrees of freedom.

Table 7 reports the CPA statistics of pairwise tests of equal conditional predictive

ability along with the corresponding p-values in parentheses. We can observe that

the p-values are always rather large. Therefore, all models have indistinguishable

prediction ability in predicting the VaRs of the S&P500 returns. For example, Figure
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7 represents a scatter plot of the VaRs estimated using the GASV-G model against

the VaRs estimated by the GASV-N model. We can observe that both models provide

nearly the same VaRs.

6. Conclusions

In this paper, we propose and derive the statistical properties of a new asymmetric

SV model, the GASV, which nests some of the most popular asymmetric SV models

usually implemented when modeling heteroscedastic series with leverage effect. In

particular, it nests the A-ARSV model which incorporates the leverage effect through

the correlation between the disturbances in the level and log-volatility equations,

the E-SV model which adds a noise to the log-volatility equation specified as an

EGARCH model and a restricted T-SV model, in which the constant of the volatility

equation is different depending on whether one-lagged returns are positive or negative.

As a marginal outcome, we also obtain the properties of all these nested models,

some of which were previously unknown in the literature, and analyze the role of

each parameter in the model. Closed-form expressions of the variance, kurtosis,

autocorrelations of power-transformed absolute returns and cross-correlations between

returns and future power-transformed absolute returns are obtained when the disturbance

of the log-volatility equation is Gaussian and the disturbance of the level equation

follows a GED distribution with parameter strictly larger than 1. We show that

some of the parameters of the model can be non-identified when the parameter of the

GED distribution is allowed to change as, in this case, the moments of returns can

be undistinguishable for different combinations of the parameters and distributions.

The second contribution of this paper is the proposal of the SNIS to describe the

asymmetric response of volatility to positive and negative past returns in the context

of SV models. We show that, in the new model proposed in this paper, the asymmetric
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response of volatility is different depending on the size and sign of the volatility shock.

Third, we analyze the finite sample properties of a MCMC estimator of the parameters

and volatilities using the WinBUGS software. We show that estimating the proposed

GASV model allows to correctly identify the true data generating process when the

distribution of the level disturbance is known. However, when this distribution is

assumed to be a GED and its parameter is estimated as a further parameter, we show

that the MCMC estimates can be biased as a consequence of the lack of identifiability

mentioned above. Finally, the GASV model is fitted to estimate the volatilities of

S&P500 daily returns. For this particular data set, the threshold parameter is not

significant. In any case, when estimating the VaRs all models are indistinguishable

regardless of the distribution of ǫt.

Several possible extensions of this paper could be of interest. First, our focus is on

univariate models. Extending the new asymmetric SV model proposed in this paper

to a multivariate framework is worth to be considered; see, for example, Harvey et al.

(1994), Asai and McAleer (2006), Chan et al. (2006), Chib et al. (2006), Jungbacker and Koopman

(2006) and Yu and Meyer (2006) for multivariate SV models with leverage effect.

Second, Bandi and Renò (2012) and Yu (2012) argue that the leverage effect found

in many real time series of financial returns can be time-varying. Extending the

model and results derived in this paper to include time-varying leverage effect is also

in our research agenda. Finally, Rodŕıguez and Ruiz (2012) compare the properties

of alternative asymmetric GARCH models to see which is closer to the empirical

properties often observed when dealing with financial returns. Comparing the properties

of the new model proposed in this paper with those of the best candidates within the

GARCH family is also left for further research.
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Figure 1: Ratio between the kurtoses of the GASV model and the symmetric ARSV(1) model with
Gaussian errors when γ2 = 0.1 (left column) and 0 (right column) for three different values of the
persistence parameter, φ = 0.5 (first row), φ = 0.9 (middle row) and φ = 0.98 (bottom row).
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Figure 2: First order autocorrelations of squares (top left), first order autocorrelations of absolute
returns (top right), first order cross-correlations between returns and future squared returns (bottom
left) and first order cross-correlations between returns and future absolute returns (bottom right) of
different GASV-N models with parameters φ = 0.98 and σ2

η = 0.05.
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Figure 3: Autocorrelations of squares (first column), autocorrelations of absolute returns (second
column), cross-correlations between returns and future squared returns (third column) and
cross-correlations between returns and future absolute returns (fourth column) for different
specifications of asymmetric SV models. The first row corresponds to a GASV-G model with
α = 0.07, φ = 0.98, σ2

η = 0.05, γ1 = −0.08, γ2 = 0.1 and ν = 1.5 (solid lines), ν = 1.7 (dashed
lines), ν = 2 (dotted lines) and ν = 2.5 (dashdot lines). The second row corresponds to the
A-ARSV-G with α = γ2 = 0. The third row matches along with the E-SV-G model while α = 0.
Finally, the last row plots the corresponding moments of the RT-SV-G model when γ1 = γ2 = 0.
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Figure 4: SNIS of different SV models with leverage effect: GASV-N (left top panel), A-ARSV-N

(right top panel), E-SV-N (left bottom panel) and RT-SV-N (right bottom panel) with parameters
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2
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Figure 6: Sample autocorrelations of squares (first column), autocorrelations of absolute returns

(second column), cross-correlations of returns and future squared returns (third column) and

cross-correlations between absolute returns and lagged returns (fourth column) together with the

corresponding plug-in moments obtained after fitting the GASV (first row), A-ARSV (second row),

E-SV (third row) or RT-SV(fourth row) models to the daily S&P500 returns. The continuous lines

correspond to the moments implied by the models estimated with a GED distribution while the

dotted lines correspond to the models estimated when the distribution is Normal.
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α α′ φ φ′ σ2
η̃ σ2′

η̃ Variance Kurtosis ρ2(1) ρ21(1)

-0.2 0.2 0.98 0 0.05 0
0.014 11.481 0.254 −0.038

(0.003) (4.6000) (0.061) (0.039)

-0.3 0.3 0.98 0 0.05 0
0.001 15.365 0.270 −0.057

(3.730 × 10−4) (11.042) (0.070) (0.045)

-0.4 0.4 0.98 0 0.05 0
1.409× 10−4 20.300 0.284 −0.073

(4.301 × 10−5) (21.217) (0.078) (0.052)

0 0 0.9 0.08 0.05 0
1.243 4.654 0.138 -0.012

(0.077) (0.533) (0.032) (0.022)

0 0 0.5 0.48 0.05 0
1.065 3.424 0.044 -0.021

(0.026) (0.139) (0.019) (0.016)

0 0 0.5 0.4 0.05 0
1.053 3.340 0.033 -0.014

(0.025) (0.118) (0.016) (0.015)

0 0 0.98 0 0.01 0.59
51.237 156.122 0.304 -0.015

(72.848) (173.042) (0.123) (0.118)

0 0 0.98 0 0.2 0.4
144.414 207.445 0.310 -0.008

(267.859) (210.925) (0.130) (0.135)

0 0 0.98 0 0.2 0.1
22.315 103.519 0.308 -0.005

(21.424) (114.620) (0.116) (0.107)

Table 1: Monte Carlo means and standard deviations (in parenthesis) of the sample variance,

kurtosis, first order autocorrelation of squares and first order cross-correlation between returns and

future squared returns for several T-SV-N models.

GASV-N GASV-G
µ φ α γ1 γ2 σ2

η µ φ α γ1 γ2 σ2
η ν

True 0 0.98 0.07 -0.08 0.1 0.05 0 0.98 0.07 -0.08 0.1 0.05 1.5

T=500
Mean 0.289 0.965 0.096 -0.074 0.145 0.041 0.186 0.961 0.095 -0.075 0.184 0.024 1.462

(1.572) (0.019) (0.113) (0.061) (0.168) (0.026) (1.435) (0.023) (0.110) (0.064) (0.234) (0.018) (0.323)

s.d. 1.922 0.014 0.109 0.059 0.115 0.021 1.861 0.016 0.111 0.060 0.117 0.017 0.178

T=1000
Mean 0.080 0.974 0.083 -0.077 0.139 0.045 -0.041 0.973 0.082 -0.077 0.181 0.027 1.427

(1.431) (0.010) (0.076) (0.040) (0.106) (0.019) (1.468) (0.011) (0.076) (0.042) (0.181) (0.017) (0.216)

s.d. 1.737 0.008 0.078 0.042 0.081 0.015 1.710 0.009 0.077 0.041 0.084 0.014 0.112

T=2000
Mean -0.078 0.977 0.078 -0.078 0.119 0.048 -0.07 0.973 0.086 -0.074 0.210 0.023 1.390

(1.281) (0.006) (0.055) (0.028) (0.064) (0.011) (1.438) (0.011) (0.078) (0.044) (0.152) (0.016) (0.209)

s.d. 1.453 0.005 0.058 0.030 0.058 0.011 1.694 0.009 0.077 0.041 0.079 0.012 0.109

Table 2: Monte Carlo results of the MCMC estimator of the parameters of the GASV model.

Reported are the values of the Monte Carlo average and standard deviation (in parenthesis) of the

posterior means together with the Monte Carlo average of the posterior standard deviation.
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T=500 T=1000
µ φ α γ1 γ2 σ2

η µ φ α γ1 γ2 σ2
η

A-ARSV-N

True 0 0.98 0 -0.08 0 0.05 0 0.98 0 -0.08 0 0.05

Mean 0.010 0.962 -0.003 -0.085 0.087 0.041 -0.009 0.973 0.002 -0.083 0.047 0.047

(1.508) (0.025) (0.109) (0.059) (0.173) (0.022) (1.451) (0.010) (0.076) (0.042) (0.112) (0.017)

s.d. 1.844 0.016 0.109 0.059 0.111 0.022 1.682 0.009 0.078 0.041 0.084 0.015

E-SV-N

True 0 0.98 0 -0.08 0.1 0.05 0 0.98 0 -0.08 0.1 0.05

Mean 0.043 0.964 0.002 -0.082 0.190 0.036 -0.039 0.973 0.005 -0.081 0.148 0.042

(1.497) (0.020) (0.106) (0.061) (0.149) (0.020) (1.382) (0.010) (0.072) (0.041) (0.100) (0.015)

s.d. 1.885 0.015 0.107 0.059 0.109 0.020 1.697 0.009 0.077 0.041 0.079 0.015

RT-SV-N

True 0 0.98 0.07 0 0 0.05 0 0.98 0.07 0 0 0.05

Mean 0.209 0.961 0.101 0.011 0.022 0.046 0.077 0.973 0.083 0.006 0.018 0.048

(1.470) (0.023) (0.107) (0.062) (0.189) (0.030) (1.372) (0.011) (0.072) (0.041) (0.122) (0.019)

s.d. 1.876 0.017 0.111 0.060 0.124 0.023 1.721 0.010 0.078 0.041 0.088 0.016

Table 3: Monte Carlo results of MCMC estimator of the parameters of the GASV-N model fitted to

series simulated from different asymmetric SV models. Reported are the values of the Monte Carlo

average and standard deviation (in parenthesis) of the posterior means together with the Monte

Carlo average of the posterior standard deviation.

GASV-N A-ARSV-N E-SV-N RT-SV-N GASV-G

T=500

Mean -0.035 -0.049 -0.049 -0.031 -0.065

(0.016) (0.061) (0.047) (0.018) (0.022)

s.d. 0.235 0.252 0.238 0.242 0.283

T=1000

Mean -0.030 -0.036 -0.036 -0.027 -0.059

(0.016) (0.047) (0.042) (0.015) (0.018)

s.d. 0.219 0.229 0.222 0.226 0.279

Table 4: Monte Carlo results of the relative volatility prediction errors. Reported are the values of

the time average and standard deviation (in parenthesis) of mt =
∑R

i=1 e
(i)
t /R together with the

time average of st =

√∑R

i=1(e
(i)
t −mt)2/(R− 1), where e

(i)
t = (σ

(i)
t − σ̂

(i)
t )/σ

(i)
t .
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GASV-G A-ARSV-G E-SV-G RT-SV-G GASV-N A-ARSV-N E-SV-N RT-SV-N

µ -1.059 -1.738 -1.715 -6.584 -1.254 -1.756 -1.724 -6.514

(-2.516, 0.645) (-1.944,-1.540) (-1.891, -1.545) (-8.206, -5.250) (-2.619, 0.429) (-1.972,-1.548) (-1.932, -1.519) (-8.044,-5.269)

φ 0.982 0.981 0.979 0.979 0.980 0.981 0.980 0.979

(0.975, 0.988) (0.975, 0.986) (0.972, 0.986) (0.972, 0.986 ) (0.975, 0.985) (0.974, 0.986) (0.974, 0.986) (0.973, 0.985)

α -0.024 0.207 -0.018 0.205

(-0.083, 0.030) (0.152,0.263) (-0.082, 0.039) (0.161,0.251)

γ1 -0.139 -0.138 -0.133 -0.145 -0.137 -0.135

(-0.169, -0.115) (-0.159, -0.113) (-0.145,-0.119) (-0.173, -0.119) (-0.164, -0.114) (-0.159,-0.111)

γ2 0.045 0.109 0.042 0.028

(-0.002,0.099) (0.069,0.136) (-0.013,0.081) (-0.018,0.073)

σ2
η 0.011 0.014 0.006 0.018 0.013 0.015 0.013 0.019

(0.006, 0.016) (0.007,0.018) (0.004,0.009) (0.012, 0.027) (0.008, 0.019) (0.011,0.021) (0.009,0.019) (0.014, 0.025)

ν 1.788 1.869 1.706 1.851

(1.658,1.905) (1.682, 2.068) (1.637, 1.791) (1.721, 2.020)

DIC 355.021 332.90 338.850 464.63 4892.570 4854.730 4888.580 4907.130

Table 5: MCMC estimates of the parameters of alternative asymmetric SV models for S&P500 daily

returns. The values reported are the mean and 95% credible interval (in parenthesis) of the posterior

distributions.

Failure Rate
Coverage Test

LRuc LRind LRcc

A-ARSV-G 0.071 2.163 0.082 2.393

(0.141) (0.775) (0.302)

E-SV-G 0.068 1.465 0.024 1.629

(0.226) (0.877) (0.443)

RT-SV-G 0.071 2.163 0.082 2.393

(0.141) (0.775) (0.302)

GASV-G 0.071 2.163 0.082 2.393

(0.141) (0.775) (0.302)

A-ARSV-N 0.068 1.465 0.024 1.629

(0.226) (0.877) (0.443)

E-SV-N 0.071 2.163 0.082 2.393

(0.141) (0.775) (0.302)

RT-SV-N 0.068 1.465 0.024 1.629

(0.226) (0.877) (0.443)

GASV-N 0.071 2.163 0.082 2.393

(0.141) (0.775) (0.302)

Table 6: Failure rates and statistics with p-values (in parenthesis) of the LRuc, LRind and LRcc

tests.

Asymmetric SV models E-SV-G RT-SV-G GASV-G A-ARSV-N E-SV-N RT-SV-N GASV-N

A-ARSV-G 1.453 2.266 1.359 0.183 0.010 3.406 0.430

(0.484) (0.322) (0.507) (0.913) (0.995) (0.182) (0.806)

E-SV-G 1.130 0.415 0.409 0.589 1.410 0.272

(0.568) (0.813) (0.815) (0.745) (0.494) (0.873)

RT-SV-G 1.460 0.925 0.759 0.122 1.155

(0.482) (0.630) (0.684) (0.941) (0.561)

GASV-G 0.598 0.755 1.533 0.265

(0.742) (0.686) (0.465) (0.876)

A-ARSV-N 0.043 2.526 1.049

(0.979) (0.283) (0.592)

E-SV-N 1.547 0.620

(0.462) (0.734)

RT-SV-N 2.218

(0.330)

Table 7: CPA statistics with corresponding p-values in parenthesis.
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Appendix A. Proof of Theorems

Appendix A.1. Proof of Theorem 2.1

Consider yt, which, according to equation (1), is given by yt = ǫt exp (ht/2). From

equation (2), ht can be written as

ht − µ =
∞∑

i=1

φi−1(f(ǫt−i) + ηt−i). (A.1)

First, note that if |φ| < 1 and x = (x1, x2, · · · ) ∈ R∞, then Ψ(x) =
∑∞

i=1 φ
i−1xi

is a measurable function. Given that for any x0 and ∀ς > 0, we can find a value

of δ =
√

1− φ2ς, such that ∀x satisfying |x − x0| =
√∑∞

i=1(xi − x0i )
2 < δ, we have

|Ψ(x)−Ψ(x0)| = |
∑∞

i=1 φ
i−1(xi−x0i )|. Using the Cauchy-Schwarz inequality, it follows

that |Ψ(x)− Ψ(x0)| ≤
√∑∞

i=1 φ
2i−2
√∑∞

i=1(xi − x0i )
2 < δ√

1−φ2
= ς. Therefore, Ψ(x)

is continuous, and consequently, measurable.

Second, given that ǫt and ηt are both IID and mutually independent for any lag

and lead, then {f(ǫt) + ηt} is also an IID sequence. Lemma 3.5.8 of Stout (1974)

states that an IID sequence is always strictly stationary. Therefore, in (A.1), if

|φ| < 1, ht is expressed as a measurable function of a strictly stationary process and,

consequently, according to Theorem 3.5.8 of Stout (1974), ht is strictly stationary.

As σt is a continuous function of ht, σt is also strictly stationary. The level noise ǫt is

independent of σt and strictly stationary by definition. Therefore, it is easy to show

that yt = σtǫt is strictly stationary.

When |φ| < 1, yt and σ2
t are strictly stationary and, consequently, any existing

moments are time invariant. Next we show that σt and |yt| have finite moments of

arbitrary positive order c when E(|ǫt|c) < ∞ and ǫt follows a distribution such that

E(exp(0.5cf(ǫt))) < ∞. Consider yt, which, according to equation (1), is given by

yt = σtǫt. Therefore, given that σt and ǫt are contemporaneously independent, the
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following expression is obtained

E(|yt|c) = E(σc
t )E(|ǫt|c). (A.2)

Given that E(|ǫt|c) <∞, we only need to show that if |φ| < 1 and E(exp(0.5cf(ǫt))) <

∞, E(σc
t ) is finite for all c. From expression (A.1), the power-transformed volatility

can be written as follows

σc
t = exp(0.5cµ) exp

(
0.5c

∞∑

i=1

φi−1(f(ǫt−i) + ηt−i)

)
. (A.3)

Given that ǫt and ηt are mutually independent for all lags and leads, the following

expression is obtained after taking expectations on both sides of equation (A.3)

E(σc
t ) = exp(0.5cµ)E

[
exp

(
0.5c

∞∑

i=1

φi−1f(ǫt−i)

)]
E

[
exp

(
0.5c

∞∑

i=1

φi−1ηt−i

)]
.

(A.4)

As ηt is Gaussian, the last expectation in (A.4) can be evaluated using the expression

of the moments of the Log-Normal. Furthermore, given that ηt and ǫt are both IID

sequences, it is easy to show that (A.4) becomes

E(σc
t ) = exp(0.5cµ) exp

(
c2σ2

η

8 (1− φ2)

) ∞∏

i=1

E
[
exp

(
0.5cφi−1f (ǫt−i)

)]
. (A.5)

Replacing formula (A.5) into (A.2) yields the following required expression

E (|yt|c) = exp(0.5cµ)E (|ǫt|c) exp
(

c2σ2
η

8 (1− φ2)

)
P (0.5cφi−1)), (A.6)

where P (bi) ≡
∏∞

i=1E(exp(bif(ǫt−i))).

Finally, we need to show that P (0.5cφi−1) is finite. In general, we are going to

prove that when
∑∞

i=1 |bi| < ∞ and E(exp(bif(ǫt−i))) < ∞, then P (bi) is always

finite.

45



Define ai = E(exp(bif(ǫt−i))). As 0 < ai < ∞, according to Section 0.25 of

Ryzhik et al. (2007), the sufficient and necessary condition for the infinite product

∏∞
i=1 ai to converge to a finite, nonzero number is that the series

∑∞
i=1(ai−1) converge.

Expanding ai in Taylor series around bi = 0, we have

ai − 1 = O(bi) as bi → 0.

Consequently, for some ς > 0, there exist a finite M independent of i such that

sup
|bi|<ς,bi 6=0

|O(bi)| < M |bi|.

∑∞
i=1 |bi| <∞ implies

∑∞
i=1 |ai − 1| <∞, therefore

∑∞
i=1(ai − 1) <∞. Thus P (bi) =

∏∞
i=1 ai <∞.

Here bi = 0.5cφi−1. Therefore, if |φ| < 1,
∑∞

i=1 |bi| = 0.5c
1−φ

<∞. Thus, the product

∏∞
i=1E(exp(0.5cφ

i−1f(ǫt−i))) and, consequently, E(|yt|c) are finite when E(exp(bif(ǫt−i))) <

∞.

Note that when |φ| < 1, E(exp(0.5cf(ǫt))) <∞ insures that E(exp(0.5cφi−1f(ǫt−i))) <

∞ for any positive integer i. Then we complete the proof.

Appendix A.2. Proof of Theorem 2.2

Consider yt as given in equations (1) and (2). We first compute the τ -th order

auto-covariance of |yt|c which is given by

E(|ǫt|cσc
t |ǫt−τ |cσc

t−τ )− [E(|yt|c)]2. (A.7)

Note that from equation (2), σc
t = exp {0.5cht} can be written as follows

σc
t = exp {0.5cµ(1− φτ )} exp

{
0.5c

τ∑

i=1

φi−1(f(ǫt−i) + ηt−i)

}
σcφτ

t−τ . (A.8)
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The following expression of the auto-covariance is obtained using (A.6) and after

substituting (A.8) into (A.7)

cov(|yt|c, |yt−τ |c) =

E

(
|ǫt|c|ǫt−τ |c exp(0.5cµ(1− φτ )) exp

(
τ∑

i=1

0.5cφi−1(f(ǫt−i) + ηt−i)

)
σ
c(φτ+1)
t−τ

)

−
{
exp(0.5cµ)E (|ǫt|c) exp

(
c2σ2

η

8 (1− φ2)

)
P (0.5cφi−1))

}2

. (A.9)

Given that ǫt and ηt are IID sequences mutually independent for any lag and lead

and that σt−τ only depends on lagged disturbances, equation (A.9) can be written as

follows

cov(|yt|c, |yt−τ |c) =

exp(cµ)E (|ǫt|c) exp
(

1 + φτ

4 (1− φ2)
c2σ2

η

)
E
(
|ǫt|c exp

(
0.5cφτ−1f (ǫt)

)) τ−1∏

i=1

E
(
exp

(
0.5cφi−1f (ǫt−i)

))

·
∞∏

i=1

E
(
exp

(
0.5c (1 + φτ )φi−1f (ǫt−i)

))
− exp(cµ)(E(|ǫt|c))2 exp

(
c2σ2

η

4 (1− φ2)

)
[P (0.5cφi−1)]2.

The required expression of ρc(τ) follows directly from ρc(τ) = cov(|yt|c,|yt−τ |c)
E(|yt|2c)−[E(|yt|c)]2

,

where the denominator can be obtained from (A.6).

Appendix A.3. Proof of Theorem 2.3

The calculation of the cross-covariance between |yt|c and yt−τ is obtained following

the same steps as in Appendix A.2. That is

cov (|yt|c, yt−τ ) = exp(0.5(c+ 1)µ)E (|ǫt|c) exp
(
1 + c2 + 2cφτ

8 (1− φ2)
σ2
η

)
E
(
ǫt exp

(
0.5cφτ−1f (ǫt)

))

·
∞∏

i=1

E
(
exp

(
0.5 (1 + cφτ )φi−1f (ǫt−i)

)) τ−1∏

i=1

E
(
exp

(
0.5cφi−1f (ǫt−i)

))
.

(A.10)

Finally, ρc1(τ) =
cov(|yt|c,yt−τ )√

E(|yt|2c)−E2(|yt|c)
√

E(y2t )
together with (A.6) and (A.10) yields the

required equation (9).
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Appendix B. Expectations

Appendix B.1. Expectations needed to compute E(|yt|c), corr(|yt|c, |yt+τ |c) and corr(yt, |yt+τ |c)
when ǫ ∼ GED(ν)

Assume that all parameters are defined as in equations (1) and (2). If ǫ has a

centered and standardized GED distribution, with parameter 0 < ν ≤ ∞, then, the

density function of ǫ is given by ψ(ǫ) = C0 exp
(
− |ǫ|ν

2λν

)
, where C0 ≡ ν

λ21+1/νΓ(1/ν)
and

λ ≡
(
2−2/νΓ (1/ν) /Γ(3/ν)

)1/2
, with Γ(·) being the Gamma function. Thus, given

that the distribution of ǫ is symmetric with support (−∞,∞), if p is a nonnegative

finite integer, then

E(|ǫ|p) = C0

∫ +∞

−∞

|ǫ|p exp
(
−|ǫ|ν
2λν

)
dǫ

= 2C0

∫ +∞

0

ǫp exp

(
− ǫν

2λν

)
dǫ.

Substituting s = ǫν

2λν and solving the integral yields

E(|ǫ|p) = 2
p
ν λpΓ ((p+ 1)/ν) /Γ (1/ν) . (B.1)

On the other hand,

E(|ǫ|p exp(bf(ǫ))) =
∫ +∞

−∞

|ǫ|p exp(bαI(ǫ < 0) + bγ1ǫ+ bγ2(|ǫ| − E|ǫ|))C0 exp

(
−|ǫ|ν
2λν

)
dǫ

= C0 exp(−bγ2E|ǫ|)
[∫ 0

−∞

(−ǫ)p exp(bα) exp(b(γ1 − γ2)ǫ) exp

(
−(−ǫ)ν

2λν

)
dǫ

+

∫ +∞

0

ǫp exp(b(γ1 + γ2)ǫ) exp

(
− ǫν

2λν

)]
dǫ.
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Integrating by substitution with s = −ǫ in the first integral, we obtain

E(|ǫ|p exp(bf(ǫ))) = C0 exp(−bγ2E|ǫ|)
[∫ +∞

0
sp exp(bα) exp(b(γ2 − γ1)s) exp

(
− sν

2λν

)
ds

+

∫ +∞

0
ǫp exp(b(γ1 + γ2)ǫ) exp

(
− ǫν

2λν

)]
dǫ

= C0 exp(−bγ2E|ǫ|)
∫ +∞

0
ǫp exp

(
− ǫν

2λν

)
[exp(bα) exp(b(γ2 − γ1)ǫ) + exp(b(γ1 + γ2)ǫ)] dǫ.

(B.2)

We can rewrite equation (B.2) by replacing ǫ with λ(2y)1/ν as follows

E(|ǫ|p exp(bf(ǫ))) = C0 exp(−bγ2E|ǫ|)
λp+12

1+p
ν

ν

·
∫ +∞

0

y−1+ 1+p
ν exp(−y)

[
exp(bα) exp(b(γ2 − γ1)λ2

1
ν y

1
ν ) + exp(b(γ1 + γ2)λ2

1
ν y

1
ν )
]
dy.

Expanding the expression within the square brackets in a Taylor series and substituting

C0 and E(|ǫ|) as given in (B.1), the following expression is obtained

E(|ǫ|p exp(bf(ǫ))) = exp
(
−bγ22

1
ν λΓ (2/ν) /Γ (1/ν)

) λp2
p
ν
−1

Γ
(
1
ν

)

∫ +∞

0

+∞∑

k=0

[
exp(bα)

(
bλ2

1
ν (γ2 − γ1)

)k
+
(
bλ2

1
ν (γ1 + γ2)

)k] y−1+ 1+p+k
ν exp(−y)

k!
dy.

(B.3)

Define ∆ = max
{
|bλ21/ν(γ1 + γ2)|,max(exp(bα), 1)|bλ21/ν(γ2 − γ1)|

}
. Then, we

can use the results in Nelson (1991) to show that if ν > 1 then the summation and

integration in (B.3) can be interchanged. Further, applying Formula 3.381 #4 of

Ryzhik et al. (2007) yields the following required expression9

E(|ǫ|p exp(bf(ǫ))) = exp
[
−bγ221/νλΓ(2/ν)/Γ(1/ν)

]
2p/νλp

·
∞∑

k=0

(21/νλb)k
[
(γ1 + γ2)

k + exp(bα)(γ2 − γ1)
k
] Γ((p+ k + 1)/ν)

2Γ(1/ν)k!
<∞.

(B.4)

9See Nelson (1991) for the proof of finiteness of the formula.
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Following the same steps, the following required expression is obtained when ν > 1,

E(ǫp exp(bf(ǫ))) = exp
[
−bγ221/νλΓ(2/ν)/Γ(1/ν)

]
2p/νλp

·
∞∑

k=0

(21/νλb)k
[
(γ1 + γ2)

k + (−1)p exp(bα)(γ2 − γ1)
k
] Γ((p+ k + 1)/ν)

2Γ(1/ν)k!
<∞.

(B.5)

Note that the expectations (B.4) and (B.5) are only valid when ν > 1. When 0 <

ν ≤ 1, it is not possible to obtain closed-form expression of the required expectations.

In this case, we can only obtain the condition for the expectations to be finite. Note

that

E(|ǫ|p exp(bf(ǫ))) = (−1)p
∫ 0

−∞

ǫp exp(bf(ǫ))ψ(ǫ)dǫ+

∫ ∞

0

ǫp exp(bf(ǫ))ψ(ǫ)dǫ

and

E(ǫp exp(bf(ǫ))) =

∫ 0

−∞

ǫp exp(bf(ǫ))ψ(ǫ)dǫ+

∫ ∞

0

ǫp exp(bf(ǫ))ψ(ǫ)dǫ.

Therefore, E(|ǫ|p exp(bf(ǫ))) is finite if and only E(ǫp exp(bf(ǫ))) is finite. On the

other hand, E(ǫp exp(bf(ǫ))) = exp(bα)E(ǫp exp(bg(ǫ))|ǫ < 0)P (ǫ < 0)+E(ǫp exp(bg(ǫ))|ǫ ≥

0)P (ǫ ≥ 0), where g(ǫ) = γ1ǫ+γ2(|ǫ|−E(|ǫ|)) and P (ǫ < 0) is the probability of ǫ < 0.

Thus, the conditions for the existence of E(ǫp exp(bf(ǫ))) and E(|ǫ|p exp(bf(ǫ))) are

the same as those of E(ǫp exp(bg(ǫ))), which are given by the Theorem A1.2 in Nelson

(1991).

Therefore, if ν < 1, E(ǫp exp(bf(ǫ))) and E(|ǫ|p exp(bf(ǫ))) are finite if and only

if

bγ2 + |bγ1| ≤ 0.

Finally if ǫ ∼ GED with ν = 1 or ǫ ∼ Student-t with degrees of freedom d > 2

and ǫ is centered and standardized to satisfy E(ǫ) = 0 and var(ǫ) = 1, according to
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Nelson (1991), E(ǫp exp(bf(ǫ))) and E(|ǫ|p exp(bf(ǫ))) are finite if and only if

bγ2 + |bγ1| <
√
2.

Appendix B.2. Expectations needed to compute E(|yt|c), corr(|yt|c, |yt+τ |c) and corr(yt, |yt+τ |c)
when ǫ ∼ N(0, 1)

Assume that all the parameters are defined as in equations (1) and (2). When

ǫ ∼ N(0, 1), using the expression (B.2) and the formula 3.462-1 of Ryzhik et al.

(2007), the following expressions for any positive integer p and any real number b are

derived

E(|ǫ|p exp(bf(ǫ))) = 1√
2π

exp

(
−bγ2

√
2

π

)

{
exp(bα)Γ(p+ 1) exp

(
b2(γ1 − γ2)

2

4

)
D−p−1(b(γ1 − γ2))

+Γ(p+ 1) exp

(
b2(γ1 + γ2)

2

4

)
D−p−1(−b(γ1 + γ2))

}

(B.6)

and

E(ǫp exp(bf(ǫ))) =
1√
2π

exp

(
−bγ2

√
2

π

)

·
{
(−1)p exp(bα)Γ(p+ 1) exp

(
b2(γ1 − γ2)

2

4

)
D−p−1(b(γ1 − γ2))

+Γ(p+ 1) exp

(
b2(γ1 + γ2)

2

4

)
D−p−1(−b(γ1 + γ2))

}
,

(B.7)

where D−a(·) is the parabolic cylinder function. Particularly, when p = 0, 1 or 2, the

expressions are reduced to
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E(exp(bf(ǫ))) = exp

(
−bγ2

√
2

π

)
{
exp(bα) exp

(
Ā
)
Φ(C̄) + exp

(
B̄
)
Φ(D̄)

}
,

E(ǫ exp(bf(ǫ))) =
1√
2π

exp

(
−bγ2

√
2

π

)

·
{
− exp(bα)

[
1 +

√
2πC̄ exp(Ā)Φ ¯(C)

]
+
[
1 +

√
2πD̄ exp(B̄)Φ(D̄)

]}
,

E(|ǫ| exp(bf(ǫ))) = 1√
2π

exp

(
−bγ2

√
2

π

)

·
{
exp(bα)

[
1 +

√
2πC̄ exp(Ā)Φ(C̄)

]
+
[
1 +

√
2πD̄ exp(B̄)Φ(D̄)

]}

and

E(|ǫ|2 exp(bf(ǫ))) = 1√
2π

exp

(
−bγ2

√
2

π

)

·
{
exp(bα)

[
C̄ +

√
2π(C̄2 + 1) exp(Ā)Φ(C̄)

]
+
[
D̄ +

√
2π(D̄2 + 1) exp(B̄)Φ(D̄)

]}
,

where Φ(·) is the Normal distribution function, Ā = b2(γ1−γ2)2

2
, B̄ = b2(γ1+γ2)2

2
, C̄ =

−b(γ1 − γ2) and D̄ = b(γ1 + γ2).
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