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We study the impact of parameter uncertainty in multiperiod portfolio selection with trading costs. We analytically

characterize the expected loss of a multiperiod investor, and we find that it is equal to the product of two terms. The

first term corresponds with the single-period utility loss in the absence of transaction costs, as characterized by Kan and

Zhou (2007), whereas the second term captures the multiperiod effects on the overall utility loss. To mitigate the impact

of parameter uncertainty, we propose two multiperiod shrinkage portfolios. The first multiperiod shrinkage portfolio

combines the Markowitz portfolio with a target portfolio. This method diversifies the effects of parameter uncertainty and

reduces the risk of taking inefficient positions. The second multiperiod portfolio shrinks the investor’s trading rate. This

novel technique smooths the investor trading activity and it also may help to considerably reduce the impact of parameter

uncertainty. Finally, we test the out-of-sample performance of our considered portfolio strategies with simulated and

empirical datasets, and we find that ignoring transaction costs, parameter uncertainty, or both, results into large losses in

the investor’s performance.

Key words: Estimation error, shrinkage portfolios, trading costs, out-of-sample performance.

1. Introduction

The seminal paper of Markowitz (1952) shows that an investor who cares only about the portfolio mean and

variance should hold one of the portfolios on the efficient frontier. Markowitz’s mean-variance framework is

the main foundation of most practical investment approaches, but it relies on three restrictive assumptions.

First, the investor is myopic and maximizes a one-period utility. Second, financial market are frictionless.

Third, the investor knows the exact parameters that capture asset price dynamics. In this manuscript, we
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study the case where these three assumptions fail to hold; that is, the investor tries to maximize a multi-

period utility in the presence of quadratic transaction costs and suffers from parameter uncertainty. Our

contribution is threefold. First, we characterize analytically the utility loss associated with estimation error

for a multiperiod mean-variance investor who faces quadratic transaction costs. Second, we use these result

to propose two shrinkage portfolios designed to combat the impact of parameter uncertainty. Third, we pro-

vide evidence based on simulated and empirical datasets that the proposed shrinkage portfolios substantially

outperform the portfolios of investors that ignore either parameter uncertainty or transaction costs.

There is an extensive literature on multiperiod portfolio selection in the presence of transaction costs

under the assumption that there is no parameter uncertainty. For the case with a single-risky asset and

proportional transaction costs, Constantinides (1979) and Davis and Norman (1990) show that the optimal

portfolio policy of an investor with constant relative risk aversion (CRRA) utility is characterized by a no-

trade region. The case with multiple-risky assets and proportional transaction costs is generally intractable

analytically.1 Garleanu and Pedersen (2012) show that the case with multiple-risky assets and quadratic

transaction costs is, however, more tractable; and they provide closed-form expressions for the optimal

portfolio policy of a multiperiod mean-variance investor.2

There is also an extensive literature on parameter uncertainty on portfolio selection for the case of a

myopic investor who is not subject to transaction costs. 3 Kan and Zhou (2007) characterize analytically the

utility loss of a mean-variance investor who suffers from parameter uncertainty. Moreover, they consider a

three-fund portfolio, which is a combination of the sample mean-variance portfolio, the sample minimum-

variance portfolio, and the risk-free asset. They analytically characterize those combination weights of

three-fund portfolios that minimize the investor’s utility loss from parameter uncertainty.4

1 Liu (2004), however, characterizes analytically the case where asset returns are uncorrelated for the particular case of an investor
with constant absolute risk aversion (CARA) utility.
2 Quadratic transaction costs are well suited to model market impact cost; see, for instance, Engle and Ferstenberg (2007).
3 This literature includes Bayesian approaches with diffuse priors (Klein and Bawa (1976), Brown (1978)), Bayesian approaches
with priors based on asset pricing models (MacKinlay and Pastor (2000), Pastor (2000), Pastor and Stambaugh (2000)), shrinkage
approaches Ledoit and Wolf (2004), robust optimization methods (Cornuejols and Tutuncu (2007), Goldfarb and Iyengar (2003),
Garlappi et al. (2007), Rustem et al. (2000), Tutuncu and Koenig (2004)), Bayesian robust optimization (Wang (2005)), and methods
based on imposing constraints (Best and Grauer (1992), Jagannathan and Ma (2003), and DeMiguel et al. (2009)).
4 See also Tu and Zhou (2011), who consider a combination of the sample mean-variance portfolio with the equally-weighted
portfolio.
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Our work is, to the best of our knowledge, the first to consider the impact of parameter uncertainty on

the performance of a multiperiod mean-variance investor facing quadratic transaction costs. As mentioned

above, our contribution is threefold. Our first contribution is to give a closed-form expression for the utility

loss of an investor who uses sample information to construct her optimal portfolio policy. We find that

the utility loss is the product of two terms. The first term is the single-period utility loss in the absence

of transaction costs, as characterized by Kan and Zhou (2007). The second term captures the effect of the

multiperiod horizon on the overall utility loss. Specifically, this term can be split into the losses from the

multiperiod mean-variance utility and the multiperiod transaction costs.

We also use our characterization of the utility loss to understand how the transaction costs and the in-

vestor’s impatience factor affect the investor utility loss. We observe that agents that face high transaction

costs are less affected by estimation risk. Although high trading costs do not diminish the investor’s expo-

sure to estimation risk, they delay its impact to future stages where the overall importance in the investor’s

expected utility is lower. Also, an investor with high impatience factor is less affected by estimation risk.

Roughly speaking, the investor’s impatience factor has a similar effect on the investor’s expected utility to

that of trading costs. When the investor is more impatient, the cost of making a trade takes a greater im-

portance than the future expected payoff of the corresponding trade. Hence, larger trading costs or higher

impatience factor make the investor trade less aggressively, and this offsets the uncertainty of the inputs that

define the multiperiod portfolio model.

Our second contribution is to propose shrinkage portfolios designed to combat estimation risk in the mul-

tiperiod mean-variance framework with quadratic transaction costs. From Garleanu and Pedersen (2012),

it is easy to show that, in the absence of estimation error, the optimal portfolio policy is to trade towards

the Markowitz portfolio at a fixed trading rate every period. For this reason, we propose two approaches to

combat estimation error: i) shrink the Markowitz portfolio maintaining the trading rate fixed at its nominal

value; ii) shrink the trading rate. Regarding the first approach i), we propose a shrinkage portfolio that is ob-

tained by shrinking the Markowitz portfolio towards zero. We term this portfolio as multiperiod three-fund

portfolio, because it is a combination of the current portfolio, the Markowitz portfolio, and the risk-free as-
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set. Then, we propose a second shrinkage portfolio obtained by shrinking the Markowitz portfolio towards

a target portfolio that is less affected by estimation error, and we term the resulting shrinkage portfolio as

four-fund portfolio. We show that the shrinkage intensities for the three- and four-fund portfolios are the

same as for the single-period investor and provide conditions under which it is optimal to shrink. Regarding

the second approach ii), the nominal trading rate given by Garleanu and Pedersen (2012) may not be optimal

in the presence of parameter uncertainty. Hence, we propose versions of previous four-fund portfolio where

the trading rate is also shrunk to reduce the effects of parameter uncertainty. We provide a rule to compute

the optimal trading rate and we illustrate those conditions where the investor can obtain gains by shrinking

the trading rate.

Our third contribution is to evaluate the out-of-sample performance of the proposed shrinkage portfolios

on simulated data as well as on an empirical dataset of commodity futures similar to that used by Gar-

leanu and Pedersen (2012). We find that the four-fund portfolios (either with fixed or optimal trading rate)

substantially outperform portfolios that either ignore transaction costs, or ignore parameter uncertainty. In

addition, we find that shrinking the nominal trading rate may considerably improve the investor’s out-of-

sample performance.

The outline of the paper is as follows. In Section 2, we introduce the setup of the economy, and we

characterize the investor’s expected loss when the investor uses sample information to construct the trading

strategy in Section 3. In Section 4, we introduce the shrinkage portfolios that help to reduce the effects

of estimation risk, and we test their out-of-sample performance in Section 5. We conclude in Section 6.

Appendix A contains all the proofs and additional comments on the analytical work. Appendix B and C

provide all the Tables and Figures in the paper, respectively.

2. General framework

We adopt the framework proposed by Garleanu and Pedersen (2012), henceforth the G&P model. In this

framework, the investor maximizes her multiperiod mean-variance utility, net of quadratic transaction costs,

by choosing the number of shares to hold from each of the N risky assets. The only difference between our

model and the G&P model is that while G&P assume that price changes in excess of the risk-free rate are
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predictable, we focus on the case where price changes are independent and identically distributed (iid) as

normal with mean µ and covariance matrix Σ, which is a common assumption in most of the transaction

costs literature; see Constantinides (1979), Davis and Norman (1990), Liu and Loewenstein (2002), and Liu

(2004).

The investor’s objective is

max
{xi}

U
(
{xi}

)
=
∞∑
i=0

(1− ρ)
i+1
(
x′iµ−

γ

2
x′iΣxi

)
− (1− ρ)i

(
λ

2
∆x′iΣ∆xi

)
, (1)

where xi ∈ IRN for i≥ 0 contains the number of shares held from each of the N risky assets at time i, ρ

is the investor’s impatience factor, and γ is the risk-aversion parameter. The term (λ/2)∆x′iΣ∆xi is the

quadratic transaction cost at the ith period, where λ is the transaction cost parameter, and ∆xi = xi− xi−1

is the vector containing the number of shares traded at the ith period.

A few comments are in order. First, quadratic transaction costs are appropriate to model market impact

costs, which arise when the investor makes large trades that distort market prices. A common assumption in

the literature is that market price impact is linear on the amount traded (see Kyle (1985)), and thus market

impact costs are quadratic.5 Second, we adopt G&P’s assumption that the quadratic transaction costs are

proportional to the covariance matrix Σ. G&P provide micro-foundations to justify this type of trading cost.6

It is easy to adapt the results in G&P to obtain a closed-form expression for the optimal portfolio policy

in our setting.

PROPOSITION 1 (Adapted from Garleanu and Pedersen (2012)). The optimal portfolio at time i is:

xi = (1−β)xi−1 +βxM , (2)

5 Several authors have shown that the quadratic form matches the market impact costs observed in empirical data; see, for instance,
Lillo et al. (2003) and Engle et al. (2012).
6 In addition, Greenwood (2005) shows from an inventory perspective that price changes are proportional to the covariance of price
changes. Engle and Ferstenberg (2007) show that under some assumptions, the cost of executing a portfolio is proportional to the
covariance of price changes. Transaction costs proportional to risk can also be understood from the dealer’s point of view. Generally,
the dealer takes at time i the opposite position of the investor’s trade and “lays it off” at time i+ 1. In this sense, the dealer has to
be compensated for the risk of holding the investor’s trade.
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where xM = 1
γ
Σ−1µ is the static mean-variance (Markowitz) portfolio, β =

√
(γ+λ̃ρ)2+4γλ−(γ+λ̃ρ)

2λ
, λ̃ =

(1− ρ)−1λ, and β ≤ 1 is the trading rate. Moreover, the monotonicity properties of the trading rate β are

as follows:

1. β is monotonically increasing with γ.

2. β is monotonically decreasing with λ.

3. β is monotonically decreasing with ρ.

Proposition 1 shows that the optimal portfolio policy is to trade every period at a trading rate β towards the

static mean-variance (Markowitz) portfolio. The intuition is that the Markowitz portfolio is optimal in terms

of the multiperiod mean-variance utility, but it is prohibitive to trade in a single period to the Markowitz

portfolio due to the impact of transaction costs.

3. Multiperiod utility loss

In this section, we study the impact of parameter uncertainty by characterizing analytically the investor’s

expected loss. We consider an investor who uses a plug-in approach to estimate the optimal portfolio policy

given by Proposition 1. Specifically, let rl for l = 1,2, . . . , T be the sample of excess price changes with

which the investor constructs the following unbiased estimator of the Markowitz portfolio: x̂M = Σ̂−1µ̂/γ,

where

µ̂=
1

T

T∑
l=1

rl, and Σ̂ =
1

T −N − 2

T∑
l=1

(rl− µ̂)
2
. (3)

Then, the estimated optimal portfolio policy is given by replacing xM in (2) with x̂M ,

x̂i = (1−β)x̂i−1 +βx̂M , (4)

which results in an unbiased estimator of the optimal trading strategy.

Like Kan and Zhou (2007) we define the investor’s expected utility loss as the difference between the

investor’s utility evaluated for the true optimal portfolio and the investor’s expected utility evaluated for the

estimated portfolio. For a single-period mean-variance investor in the absence of transaction costs, Kan and
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Zhou (2007) characterize the expected utility loss corresponding to the sample mean-variance portfolio x̂M ,

which is defined as δS(xM , x̂M) =US(xM)−E [US(x̂M)], where US(xM) = xM
′
µ− γ

2
xM
′
ΣxM :

δS(xM , x̂M) = (c− 1)
θ

2γ
+

1

2γ
c
N

T
, (5)

where c= [(T −N −2)(T −2)]/[(T −N −1)(T −N −4)].7 We observe that the expected loss for a static

investor decreases with γ and the sample length T , whereas it increases with θ = µ′Σ−1µ and the number

of available assets N .

The following proposition provides a closed-form expression for the utility loss of a multiperiod mean-

variance investor facing quadratic transaction costs that uses the plug-in approach described above.

PROPOSITION 2. A multiperiod mean-variance investor who uses the plug-in approach to estimate the

optimal portfolio policy has the following expected utility loss:

δ({xi},{x̂i}) = δS(xM , x̂M)× [AV +AC]︸ ︷︷ ︸
Multiperiod term

, (6)

where AV is the multiperiod mean-variance loss factor, and AC is the multiperiod transaction cost loss

factor:

AV =
1− ρ
ρ

+
(1− ρ)(1−β)2

1− (1− ρ)(1−β)2
− 2

(1− ρ)(1−β)

1− (1− ρ)(1−β)
, (7)

AC =
λ

γ

β2

1− (1− ρ)(1−β)2
. (8)

Proposition 2 shows that the multiperiod utility loss is equal to the single-period utility loss multiplied

by the summation of two terms. The first term captures the losses from the multiperiod mean-variance

utility, and the second term captures the losses from the multiperiod transaction costs. Note also that the

multiperiod loss factors AV and AC depend only on λ, γ, and ρ.

Figure 1 depicts the absolute multiperiod expected losses for different values of γ, λ, and ρ. We consider

a base-case investor with γ = 10−8, λ= 3× 10−7 and ρ= 1− exp(−0.1/260) and T = 500 observations,

7 Expression (5) is not the exact expected loss that we find in Kan and Zhou (2007). This has been adapted to our estimator for the
covariance matrix, that provides an unbiased estimator of the Markowitz portfolio, whereas the estimate for this element in Kan
and Zhou (2007) provides a biased estimator of the Markowitz portfolio.
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and we define µ and Σ with the sample moments of the empirical dataset of commodity futures used in the

empirical application in Section 5. We obtain three main findings from Figure 1. First, the multiperiod ex-

pected loss decreases with γ. Like in the static case, this is a natural result because as the investor becomes

more risk averse, the investor’s exposure to risky assets is lower, and then the impact of parameter uncer-

tainty is also smaller. Second, the multiperiod expected loss decreases with λ. As trading costs increase, the

investor delays the convergence to the Markowitz portfolio and in turn, the investor postpones the impact of

parameter uncertainty to future stages where the overall importance of utility losses is smaller. This makes

that the multiperiod expected loss becomes smaller with trading costs. Third, the multiperiod expected loss

decreases with ρ. Roughly speaking, the investor’s impatience factor has a similar effect on the investor’s

expected utility to that of trading costs. When the investor is more impatient, the cost of making a trade

takes a greater importance than the future expected payoff of the corresponding trade.

Although the above example gives some monotonicity properties of the absolute utility loss, for interpre-

tation it may be useful to study how the relative utility loss depends on the investor’s risk aversion parameter

γ, trading costs λ, and the investor’s impatience factor ρ. Figure 2 depicts the investor’s relative loss for

different values of γ, λ and ρ. From this figure, we observe that as the investor’s risk aversion parameter

increases, the investor’s relative loss also increases but slightly. That is, the relative loss is nearly constant

(but increasing) with the investor’s risk aversion parameter. On the other hand, Figure 2b illustrates that

larger trading costs reduce the investor’s relative loss. Finally, we observe in Figure 2c that an investor with

high impatience factor has a lower relative loss.

After analyzing the expected utility loss of an investor who uses sample information to construct her

optimal portfolio, in section 4 we propose several shrinkage portfolios that help to reduce the effects of

estimation risk on the performance of multiperiod portfolios.

4. Multiperiod shrinkage portfolios

In this section we propose several shrinkage portfolios that mitigate the impact of estimation error on the

multiperiod mean-variance utility of an investor who faces quadratic transaction costs. We consider two
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approaches to shrink the plug-in portfolio policy defined in Equation (4): (i) shrink the estimated Markowitz

portfolio xM , and (ii) shrink the trading rate β.

4.1. Shrinking the Markowitz portfolio

The optimal portfolio at period i, in the absence of estimation error, allocates the investor’s wealth into three

funds: the risk-free asset, the portfolio at period i−1, and the Markowitz portfolio. However, this solution is

not optimal when the investor suffers from parameter uncertainty. For the single period case, Kan and Zhou

(2007) show that shrinking the Markowitz portfolio helps to mitigate the impact of parameter uncertainty.

We generalize their analysis to the multiperiod case. In particular, we consider two different approaches to

shrink the Markowitz portfolio. First, we consider shrinking the Markowitz portfolio towards the portfolio

that invests solely on the risk-free asset; that is, towards x = 0. We term the resulting shrinkage portfolio

as multiperiod three-fund portfolio because the optimal portfolio at period i allocates the investor’s wealth

into three different funds: the portfolio at time i− 1, the Markowitz portfolio, and the risk-free asset. The

resulting portfolio can be written as:

x̂3F
i = (1−β)x̂3F

i−1 +βηx̂M , (9)

where η is the shrinkage intensity.

Second, we consider a multiperiod portfolio that combines the Markowitz portfolio with a target portfo-

lio. This combination may diversify the effects of estimation error in the sample mean-variance portfolio

and reduce the risk of taking inefficient positions. We choose as a target portfolio the minimum-variance

portfolio x̂Min = (1/γ)Σ−1ι, which is known to be less sensitive to estimation error than the mean-variance

portfolio.8 We term the resulting shrinkage portfolio as four-fund portfolio:

x̂4F
i = (1−β)x̂4F

i−1 +β(ς1x̂
M + ς2x̂

Min), (10)

where ς1 and ς2 are the combination parameters for the Markowitz portfolio and the minimum-variance

portfolio, respectively.

8 Notice that the minimum-variance portfolio does not consider γ. However, for expository reasons, we multiply the unscaled
minimum-variance portfolio with (1/γ) to simplify the analysis.
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Note that while Kan and Zhou (2007) consider a static mean-variance investor that is not subject to

transaction costs, we consider a multiperiod mean-variance investor subject to quadratic transaction costs.

Given this, one would expect that the optimal shrinkage intensities for our proposed multiperiod shrinkage

portfolios would differ from those obtained by Kan and Zhou (2007) for the single-period case, but the

following proposition shows that the optimal shrinkage intensities for the single-period and multiperiod

cases coincide.

PROPOSITION 3. The optimal shrinkage intensities for the three-fund and four-fund portfolios that min-

imize the utility loss of a multiperiod mean-variance investor δ({xi},{x̂i}) coincide with the optimal

shrinkage intensities for the single-period investor who ignores transaction costs. Specifically, the optimal

shrinkage intensity for the three-fund portfolio η and the optimal combination parameters for the four-fund

portfolio ς1 and ς2 are:

η= c−1, (11)

ς1 = c−1
Ψ2

Ψ2 + N
T

, (12)

ς2 = c−1
N
T

Ψ2 + N
T

× µ
′Σ−1ι

ι′Σ−1ι
, (13)

where c= [(T − 2)(T −N − 2)]/[(T −N − 1)(T −N − 4)] and Ψ2 = µ′Σ−1ι− (µ′Σ−1ι)2/(ι′Σ−1ι)> 0.

Note that the optimal shrinkage intensities for the multiperiod three-fund an four-fund portfolios do not

depend on transaction costs, given by parameter λ, and as a result they coincide with the optimal shrinkage

intensities for the single-period case in the absence of transaction costs.

The following corollary shows that the optimal multiperiod portfolio policy that ignores estimation error

is inadmissible in the sense that it is always optimal to shrink the Markowitz portfolio. Moreover, the three-

fund shrinkage portfolio is also inadmissible in the sense that it is always optimal to shrink the Markowitz

portfolio towards the target minimum-variance portfolio. The result demonstrates that the shrinkage ap-

proach is bound to improve performance under our main assumptions.

COROLLARY 1. It is always optimal to shrink the Markowitz portfolio; that is, η < 1. Moreover, it is always

optimal to combine the Markowitz portfolio with the target minimum-variance portfolio; that is, ς2 > 0.
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As expected from Corollary 1, the relative improvement in the investor’s expected utility when using the

proposed shrinkage portfolios in (9) and (10) is larger than that when using the plug-in portfolio in (4). In

particular, Figure 3 shows that for our base-case investor, the relative loss when using the shrinkage three-

fund portfolio in (9) is about eight times smaller than that when using the plug-in three fund portfolio in

(4). And the relative loss when using the shrinkage four-fund portfolio in (10) is about 11% less than that

when using the three-fund portfolio in (9).

4.2. Shrinking the trading rate

In this section we study the additional utility gain associated with shrinking the trading rate in addition to

the target portfolio. For the proposed shrinkage portfolios in (9) and (10), note that the nominal trading

rate β as given in Proposition 1 may not be optimal in the presence of parameter uncertainty. To mitigate

even more this effect, we propose to optimize the trading rate in order to minimize the investor’s utility loss

from estimation risk. In particular, a multiperiod mean-variance investor who uses the shrinkage four-fund

portfolio in (10) may reduce the impact of parameter uncertainty by minimizing the corresponding expected

utility loss, δ({xi},{x̂4F
i (β)}), respect to the trading rate β.

The following proposition formulates an equivalent optimization problem to obtain the optimal trading

rate for the shrinkage four-fund portfolio in (10). Notice that we can apply the same proposition to the

shrinkage three-fund portfolio in (9) simply by considering ς2 = 0 and ς1 = η.

PROPOSITION 4. For the shrinkage four-fund portfolio in (10), the optimal trading rate β that minimizes

the expected utility loss δ({xi},{x̂4F
i (β)}) can be obtained by solving the following optimization problem:

max
β

Excess return︷ ︸︸ ︷
V1(x−1−xC)′µ−1

2

Variability + Trading costs︷ ︸︸ ︷(
E
[
x̂C
′
Σx̂C

]
V2 +x′−1Σx−1V3 +x′−1Σx

CV4

)
, (14)

where x−1 is the investor’s initial position, xC = ς1x
M + ς2x

Min,

E
[
x̂C
′
Σx̂C

]
= (c/γ2)

(
ς21
(
µ′Σ−1µ+ (N/T )

)
+ ς22 ι

′Σ−1ι
)

+ (c/γ2)
(
2ς1ς2µ

′Σ−1ι
)
, (15)

and the Vi=2,3,4 account for the accumulated variability and trading costs:

V1 =
(1− ρ)(1−β)

1− (1− ρ)(1−β)
(16)
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V2 = γ

(
1− ρ
ρ

+
(1− ρ)(1−β)2

1− (1− ρ)(1−β)2
− 2

(1− ρ)(1−β)

1− (1− ρ)(1−β)

)
+ λ̃

(1− ρ)β2

1− (1− ρ)(1−β)2
, (17)

V3 = γ
(1− ρ)(1−β)2

1− (1− ρ)(1−β)2
+ λ̃

(1− ρ)β2

1− (1− ρ)(1−β)2
, (18)

V4 = 2γ

(
(1− ρ)(1−β)

1− (1− ρ)(1−β)
− (1− ρ)(1−β)2

1− (1− ρ)(1−β)2

)
− 2λ̃

(1− ρ)β2

1− (1− ρ)(1−β)2
. (19)

From Proposition 4 we observe that as β goes to zero, V2 and V4 also approximate to zero. This implies

that V3 is the only element that defines the expected variability and trading costs of the multiperiod investor.

Precisely, the investor’s expected variability and trading costs are defined by ((1− ρ)/ρ)x′−1Σx−1, which

is the accumulated variability of the investor’s initial portfolio. Notice that when β is zero, trading costs do

not affect the investor’s expected utility.

In addition, we can observe that as the investor’s initial position x−1 approximates to the static portfo-

lio xC , the expected return of the investor’s initial portfolio in excess of the expected return of the static

portfolio xC , approximates to zero. Consequently, the optimal trading rate that we obtain from (14) must

minimize the expected portfolio variability and trading costs.

To analyze the benefits of optimizing the trading rate, we study the relative loss for the multiperiod four-

fund portfolio optimizing the trading rate as in (14), and the corresponding relative loss of the multiperiod

four-fund portfolio with the nominal trading rate β as in (1). Figure 4 depicts the relative loss for our base-

case investor with γ = 10−8, λ = 3 × 10−7, ρ = 1 − exp(−0.1/260), and T = 500. As in the previous

section, we define µ and Σ with the sample moments of the empirical dataset of commodity futures that we

use in Section 5.

Figures 4a, 4b and 4c depict the relative loss for an investor whose initial portfolio is x−1 = 0.1× xM

and we observe that the benefits from using the multiperiod four-fund portfolio that shrinks the trading rate

are large. Moreover, we observe that the relative loss of the different multiperiod portfolios remain almost

invariant to changes in γ, λ and ρ. In addition, from Figure 4d we find that when the investor’s initial

portfolio is close to the static mean-variance portfolio, shrinking the trading rate β provides substantial
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benefits. In particular, when x−1 ' 0.5× xM , one can reduce the relative loss to almost zero by shrinking

the trading rate. In turn, shrinking the nominal trading rate may result into a considerable reduction of the

investor’s expected loss, specially in those situations where the investor’s initial portfolio is close to the

static mean-variance portfolio. However, it does not increase the investor’s expected loss when the investor’s

initial portfolio is not close to the true static mean-variance portfolio.

5. Out-of-sample performance evaluation

In this section, we compare the out-of-sample performance of the multiperiod shrinkage portfolios with that

of the portfolios that ignore either transaction costs, parameter uncertainty, or both. We run the analysis with

both simulated and empirical datasets.

5.1. Portfolio policies

We consider seven different portfolio policies. We first consider three buy-and-hold portfolios based on

single-period policies that ignore transaction costs. First, the sample Markowitz portfolio, which is the

portfolio of an investor who ignores transaction costs and estimation error (S-M). Second, the single period

two-fund shrinkage portfolio, which is the portfolio of an investor who ignores transaction costs, but takes

into account estimation error by shrinking the Markowitz portfolio (S-2F). Specifically, this portfolio can

be written as

xS2F = ηx̂M , (20)

where, as Kan and Zhou (2007) show, the optimal single-period shrinkage intensity η is as given by Propo-

sition (3). The third portfolio is the single-period three-fund shrinkage portfolio of an investor who ignores

transaction costs but takes into account estimation error by shrinking the Markowitz portfolio towards the

minimum variance portfolio (S-3F-Min). Specifically, this portfolio can be written as

xS3F = ς1x̂
M + ς2x̂

Min, (21)

where the optimal single-period combination parameters are given in Proposition (3).

We then consider four multiperiod portfolios that take transaction costs into account. The first portfo-

lio is the optimal portfolio policy of a multiperiod investor who takes into account transaction costs but
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ignores estimation error (M-M), which is given by Proposition 1. The second portfolio is the multiperiod

three-fund shrinkage portfolio of an investor who shrinks the Markowitz portfolio (M3F), as given by Propo-

sition (3). The third portfolio is the multiperiod four-fund shrinkage portfolio of an investor who combines

the Markowitz portfolio with the minimum-variance portfolio (M4F-Min), as given by Proposition (3). The

fourth portfolio is a modified version of the multiperiod four-fund shrinkage portfolio, where in addition the

investor shrinks the trading rate by solving the optimization problem given by Proposition 4 (O-M4F-Min).

5.2. Evaluation methodology

We evaluate the out-of-sample portfolio gains for each strategy using a rolling-window approach similar to

DeMiguel et al. (2009). We compute the portfolio Sharpe ratio of all the considered trading strategies with

the time series of the out-of-sample portfolio gains:

SRi =
rh

σh
, (22)

where (σh)2 =
1

L−T − 1

L−1∑
l=T

(
xh
′

i rl+1− rh
)2

, (23)

rh =
1

L−T

L−1∑
l=T

(
xh
′

l rl+1

)
, (24)

where xhl is the vector of asset holdings at time l for portfolio strategy h, rl is the vector of price changes at

time l, L is the total number of observations in the dataset, and T is the estimation window. To account for

transaction costs in the empirical analysis, the definition of portfolio return is corrected by the implied cost

of trading:

rhl+1 = xh
′

l rl+1− λ̃∆xh
′

l Σ∆xhl , (25)

where xhl denotes the estimated portfolio h at period l, and Σ is the covariance matrix of asset prices.9 In

the empirical analysis, expressions (22)-(24) are computed using portfolio returns discounted by transaction

costs. We estimate the different portfolios using an estimation window of T=500 observations.10

9 For the simulated data, we use the population covariance matrix, whereas for the empirical dataset with commodity futures we
construct Σ with the sample estimate of the entire dataset.
10 To compute those portfolios that account for parameter uncertainty, we need to estimate the optimal combination parameters,
which require the true population moments. To mitigate the impact of parameter uncertainty in these parameters, we use the
shrinkage vector of means proposed in DeMiguel et al. (2013), and the shrinkage covariance matrix by Ledoit and Wolf (2004).
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We measure the statistical significance of the difference between the adjusted Sharpe ratios with the

stationary bootstrap of Politis and Romano (1994) with B=1000 bootstrap samples and block size b=5.11

Finally, we use the methodology suggested in (Ledoit and Wolf 2008, Remark 2.1) to compute the resulting

bootstrap p-values for the difference of every portfolio strategy with respect to the four-fund portfolio M4F-

Min.

We consider an investor with a risk aversion parameter of γ = 10−8, which corresponds with a relative

risk aversion of one for a manager who has $100M to trade. Garleanu and Pedersen (2012) consider an

investor with a lower risk aversion parameter, but because our investor suffers from parameter uncertainty,

it is reasonable to establish a higher risk aversion parameter. We use a discount factor ρ equal to 1 −

exp(−0.1/260), which corresponds with an annual discount of 10%. Finally, we consider transaction costs

with λ= 3× 10−7 as in Garleanu and Pedersen (2012). We subsequently test the robustness of our results

to the values of these three parameters and observe that our main insights are robust.

Finally, we report the results for two different starting portfolios: the portfolio that is fully invested on the

risk-free asset and the true Markowitz portfolio.12 We have tried other starting portfolios such as the equally

weighted portfolio and the portfolio that is invested in a single risky asset, but we observe that the results

are similar and thus we do not report these cases to conserve space.

5.3. Simulated and empirical datasets

We first use simulation to generate two datasets with number of risky assets N = 25 and 50. The advantage

of using simulated datasets is that they satisfy the assumptions underlying our analysis. Specifically, we

simulate price changes from a multivariate normal distribution. We assume that the starting prices of all

N risky assets are equal to one, and the annual average price changes are randomly distributed from a

uniform distribution with support [0.05,0.12]. In addition, the covariance matrix of asset price changes is

diagonal with elements randomly drawn from a uniform distribution with support [0.1,0.5].13 Without loss

11 We also compute the p-values when b=1, but we do not report these results to preserve space. These results are, however,
equivalent to the block size b=5.
12 For the commodity dataset, we assume the true Markowitz portfolio is constructed with the entire sample.
13 Notice that for our purpose of evaluating the impact of parameter uncertainty in an out-of-sample analysis, assuming that the
covariance matrix is diagonal is not a strong assumption as we know that the investor’s expected loss is proportional to θ= µ′Σ−1µ.
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of generality, we set the return of the risk-free asset equal to zero. Under these specifications, a level of

transaction costs of λ= 3× 10−7 corresponds with a market that, on average, has a daily volume of $4.66

million.14

To understand the impact of data departing from the iid normal assumption, we consider an empirical

dataset similar to that used by Garleanu and Pedersen (2012). Concretely, we construct a dataset with

commodity futures of Aluminum, Copper, Nickel, Zinc, Lead, and Tin from the London Metal Exchange

(LME), Gas Oil from the Intercontinental Exchange (ICE), WTI Crude, RBOB Unleaded Gasoline, and

Natural Gas from the New York Mercantile Exchange (NYMEX), Gold and Silver from the New York

Commodities Exchange (COMEX), and Coffee, Cocoa, and Sugar from the New York Board of Trade

(NYBOT). We consider daily data from July 7th, 2004 until September 19th, 2012. We collect data from

those commodity futures with 3-months maturity, and for those commodity futures where we do not find

data with that contract specification (i.e. 3 months maturity), we collect the data of the commodity future

with the largest time series. Some descriptive statistics and the contract multiplier for each commodity is

provided in Table 1.15

5.4. Discussion of the out-of-sample performance

Table 2 reports the out-of-sample Sharpe ratios of the seven portfolio policies we consider on the three

different datasets, together with the p-value of the difference between the Sharpe ratio of every policy and

that of the multiperiod four-fund shrinkage portfolio. Panels A and B give the results for a starting portfolio

that is fully invested in the risk-free asset and a starting portfolio equal to the true Markowitz portfolio,

respectively.

Comparing the multiperiod portfolios that take transaction costs into account with the static portfolios

that ignore transaction costs, we find that the multiperiod portfolios substantially outperform the static

14 To compute the trading volume of a set of assets worth 1$, we use the rule from Engle et al. (2012), where they assume that
trading 1.59% of the daily volume implies a price change of 0.1%. Hence, for our first case we calculate the trading volume as
1.59%×Trading Volume× 3× 10−7 × 0.32 × 0.5 = 0.1%.
15 The contract multiplier specifies the number of units that are traded for each commodity in each contract. Also, notice that we do
not report the trading volume. Unfortunately, we have not been able to obtain that type of data. However, we use the same level of
transaction costs, which may be slightly high for the standard deviations of price changes that we have.
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portfolios. That is, we find that taking transaction costs into account has a substantial positive impact on

performance.

Comparing the shrinkage portfolios with the portfolios that ignore transaction costs, we observe that

shrinking helps both for the static and multiperiod portfolios. Specifically, we find that the portfolios that

shrink only the Markowitz portfolio (S2F for the static case and M3F for the multiperiod case) outperform

the equivalent portfolios that ignore estimation error (S-M for the static case and M-M for the multiperiod

case). Moreover, we find that shrinking the Markowitz portfolio towards the minimum-variance portfolio

improves performance substantially. Specifically, we observe that the S3F-Min and M4F-Min considerably

outperform the shrinkage portfolios that shrink only the Markowitz portfolios (S2F and M3F).

Finally, our out-of-sample results confirm the insight from Section 4.2 that shrinking the trading rate may

help when the starting portfolio is close to the true mean-variance portfolio. Specifically, we see from Panel

A that shrinking the trading rate (in addition to shrinking the Markowitz portfolio towards the minimum-

variance portfolio) does not result in any gains when the starting portfolio is fully invested in the risk-free

asset, but Panel B shows that it may lead to substantial gains when the starting portfolio is the true mean-

variance portfolio.

Overall, the best portfolio policy is the O-M4F-Min portfolio that shrinks the Markowitz portfolio towards

the minimum-variance portfolio and, in addition, shrinks the trading rate while taking transaction costs

into account. This portfolio policy outperforms the M4F-Min portfolio when the starting portfolio is close

to the true minimum-variance portfolio, and it performs similar to the M4F-Min for other starting points.

These two policies O-M4F-Min and M4F-Min appreciably outperform all other policies, which shows the

importance of taking into account both transaction costs and estimation error.

We carry out an additional analysis to test the robustness of our results for different values of the risk-

aversion parameter γ, and number of observations T . However, we do not report robustness checks for

trading costs because only modifying parameter γ can provide equivalent results to those when we fix γ
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and modify λ.16 We report these results in Table 3. We consider a base-case investor with an initial portfolio

equal to the true Markowitz portfolio, γ = 10−8, λ= 3× 10−7, and T = 500.

In general, we observe that our main insights are robust to these parameters. There are substantial losses

associated with ignoring both transaction costs and estimation error, and overall the best portfolio policies

are M4F-Min and O-M4F-Min. We observe that for the simulated datasets shrinking the trading rate gener-

ally helps (that is, O-M4F-Min outperforms M4F-Min), although the difference between the Sharpe ratios

of these two policies are not significant.

We also observe that the static portfolio policies are very sensitive to the risk-aversion parameter, and their

performance is particularly poor for the case with low risk aversion γ. This is because investors with low

risk aversion invest more on the risky assets and thus are more vulnerable to the impact of estimation error,

which is particularly large for the static investors who ignore transaction costs. The multiperiod portfolio

policies are more stable because taking transaction cots into account helps to combat estimation error, even

for the case with low risk aversion. In particular, the difference of performance between static portfolios

and multiperiod portfolios is large when the investor’s risk aversion parameter is equal to γ = 10−9.

Finally, we observe that the performance of the static portfolio strategies is also very sensitive to the

choice of estimation window T . Specifically, static portfolios perform poorly when the estimation window

is small and has T = 250 observations. For this estimation window, the difference between static mean-

variance portfolios and multiperiod portfolios is large.

Summarizing, the out-of-sample losses associated with ignoring either transaction costs or parameter

uncertainty are large. Moreover, overall the multiperiod four-fund shrinkage portfolio that combines the

Markowitz portfolio with the minimum-variance portfolio achieves the best out-of-sample Sharpe ratio net

of transaction costs. We also observe that shrinking the trading rate may provide considerable benefits,

specially when the investor’s initial portfolio is near the Markowitz portfolio.

16 In particular, if we transform γ and λ by multiplying them with 10−z and 10z , respectively, we obtain the same multiperiod
trading rate β, and in turn results are equivalent to those before the transformation. Then, if we want to study the impact of an
increment/reduction on trading costs, we can simply reduce/increase γ by the same factor.
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6. Concluding remarks

Our work is among the first to consider the impact of parameter uncertainty on multiperiod portfolio se-

lection with transaction costs. We first provide a closed-form expression for the utility loss associated with

using the plug-in approach to construct multiperiod portfolios. We observe from this closed-form expres-

sion that the investor’s expected loss decreases with trading costs, the investor’s impatience factor and the

investor’s risk aversion parameter.

Second, we propose a four-fund multiperiod shrinkage portfolio that mitigates the effects of estimation

risk. We give closed-form expressions for the optimal shrinkage intensities, and we show that these inten-

sities coincide with the shrinkage intensities for the corresponding single-period portfolio. In addition, we

analytically characterize under which circumstances the four-fund shrinkage portfolio reduces the impact

of parameter uncertainty, and we show that it is prohibitive to use the plug-in multiperiod portfolio and the

four-fund portfolio that only shrinks the Markowitz portfolio.

Third, we propose a novel technique that reduces the investor’s trading rate to the static mean-variance

portfolio, and we show that this methodology can substantially improve the investor’s performance. In

particular, we show that this methodology improves the investor’s performance when the investor’s initial

position is close to the Markowitz portfolio.

Finally, our out-of-sample analysis with simulated and empirical datasets shows that the losses associated

with ignoring transaction costs, parameter uncertainty, or both, are large, and that the four-fund shrinkage

portfolio achieves good out-of-sample performance. In addition, we observe that shrinking the trading rate

helps to mitigate the impact of parameter uncertainty and helps to attain high risk-adjusted expected returns.
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Appendix A: Proofs and additional analytical comments
A.1. Proof Proposition 1
To solve the investor’s problem, we first guess that the value function at any time i:

V (xi) =−1

2
x′iAxi +x′iBµ+ c. (26)

Therefore, the Bellman equation becomes:

x′iµ−
γ

2
x′iΣxi−

λ̃

2
∆x′iΣ∆xi + (1− ρ)

(
−1

2
x′iAxi +x′iBµ+ c

)
, (27)

where λ̃= (1− ρ)−1λ. The right hand side can be simplified as follows:

V (xi) =−1

2
x′iJxi +x′ih+ l, (28)

where J = (γ + λ̃)Σ + (1− ρ)A, h = µ+ λ̃Σxi−1 + (1− ρ)Bµ, and l = − λ̃
2
xi−1Σxi−1 + (1− ρ)c. The

first-order necessary condition to solve the above problem give the optimal solution:

xi = J−1h. (29)

Now, plugging the solution into the value function in (28), we obtain:

V ∗(xi) =
1

2
h′J−1h+ d. (30)

From the above expression and using (26), we obtain that A = −λ̃2ΣJ−1Σ + λ̃Σ and B =
λ̃ΣJ−1 (I + (1− ρ)B). Thus, A= αΣ, which implies that

α=− λ̃2

γ+ λ̃+ (1− ρ)α
+ λ̃. (31)

Solving the above equation, we have that α=

√
(γ+λ̃ρ)2+4γλ−(γ+λ̃ρ)

2(1−ρ) . On the other hand, the solution for B
is straightforward. It takes the form

B =
λ̃

γ+ ρλ̃+ (1− ρ)α
I. (32)

Thus, the optimal solution, xi = J−1h, can be expressed as follows:

xi =
λ̃

γ+ λ̃+ (1− ρ)α
xi−1 +

γ+ (1− ρ)γB

γ+ λ̃+ (1− ρ)α

1

γ
Σµ. (33)

The above expression can be simplified as follows (see Garleanu and Pedersen (2012)):

xi = (1−β)xi−1 +β
1

γ
Σµ. (34)

where β = α/λ̃.
To prove the monotonicity of the convergence rate β, we only need to analyze the derivative of β with
respect to γ, λ and ρ.
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First, we show that the convergence rate β is a monotonic and nondecreasing function with respect to γ.
Thus, we show that the derivative of β with respect to γ is always positive for any γ, λ, ρ ≥ 0. To do that, it
suffices to show that

2× (1− ρ)× ∂α
∂γ
≥ 0.

Then,

2× (1− ρ)× ∂α
∂γ

=
1

2

2
(
γ+ λ̃ρ

)
+ 4λ√(

γ+ λ̃ρ
)2

+ 4γλ

− 1> 0⇒
(
γ+ λ̃ρ

)
+ 2λ≥

√(
γ+ λ̃ρ

)2

+ 4γλ. (35)

Now, we take the square of the above inequality, which is a monotone transformation and does not affect
the results. Then: (

γ+ λ̃ρ
)2

+ 4λ2 + 4λ
(
γ+ λ̃ρ

)
≥
(
γ+ λ̃ρ

)2

+ 4γλ⇒ (36)

⇒ 4λ2 + 4γλ+ 4λλ̃ρ≥ 4γλ. (37)

Inequality (37) is always true for any γ, λ, ρ ≥ 0.
To prove that the rate of convergence β is a monotonic decreasing function with respect to λ, we show

that the derivative of β with respect to λ is negative. First, let us define φ= ρ/(1− ρ). Thus,

2×

(
(γ+λφ)φ+2γ√
(γ+λφ)2+4γλ

−φ
)
λ−

(√
(γ+λφ)2 + 4γλ− (γ+λφ)

)
4λ2

< 0. (38)

To prove that the above inequality holds, it suffices to prove that the numerator is negative. Thus,(
1

2

2(γ+λφ)φ+ 4γ√
(γ+λφ)2 + 4γλ

−φ

)
λ−

(√
(γ+λφ)2 + 4γλ− (γ+λφ)

)
< 0. (39)

After some straightforward manipulations, we have that

((γ+λφ)φ+ 2γ)λ< (γ+λφ)2 + 4γλ−
√

(γ+λφ)2 + 4γλ× γ. (40)

The above inequality can be expressed as:

γφλ+λ2φ2 + 2γλ< γ2 +λ2φ2 + 2γφλ+ 4γλ−
√

(γ+ γφ)2 + 4γλ× γ, (41)

which may be simplified as

0<γ2 + γφλ+ 2γλ−
√

(γ+ γφ)2 + 4γλ× γ. (42)

Dividing by γ, and taking the square, we have:

(γ+λφ)2 + 4γλ< (γ+λφ)2 + 4λ2 + 4(γ+λφ)λ⇒ (43)
⇒ 0< 4λ2 + 4λ2φ, (44)

which shows that for any γ, λ, ρ > 0, the rate of convergence β is a monotonic decreasing function with
respect to λ.
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Finally, to prove that the rate of convergence β is a monotonic decreasing function with respect to ρ, we
show that:

2×λ× ∂β
∂ρ

=
1

2

2
(
γ+λ ρ

1−ρ

)
λ

(1−ρ)2√(
γ+λ ρ

1−ρ

)2

+ 4γλ

− λ

(1− ρ)2
< 0. (45)

After some straightforward manipulations, we have that(
γ+λ

ρ

1− ρ

)
<

√(
γ+λ

ρ

1− ρ

)2

+ 4γλ. (46)

Now, taking the square of the above inequality, we have:(
γ+λ

ρ

1− ρ

)2

<

(
γ+λ

ρ

1− ρ

)2

+ 4γλ, (47)

which holds for any γ, λ, ρ > 0, and thus it completes the proof that ensures that the rate of convergence β
is a monotonic decreasing function with respect to ρ.
A.2. Proof of Proposition 2
To prove Proposition 2, we first write the investor’s expected loss:

δ({xi},{x̂i}) =
∞∑
i=0

(1− ρ)i+1

{
x′iµ−

γ

2
x′iΣxi−

λ̃

2
∆x′iΣ∆xi

−E

[
x̂′iµ−

γ

2
x̂′iΣx̂i−

λ̃

2
∆x̂′iΣ∆x̂i

]}
. (48)

And from the above expression, it is easy to see that the investor’s expected loss is:

δ({xi},{x̂i}) =
∞∑
i=0

(1− ρ)i+1

{
E

[
γ

2
x̂′iΣx̂i +

λ̃

2
∆x̂′iΣ∆x̂i

]
− γ

2
x′iΣxi−

λ̃

2
∆x′iΣ∆xi

}
. (49)

Now, we can plug the estimated investor’s optimal strategy in (49) to obtain a simplified expression
of the investor’s expected loss. Moreover, all those elements that are linear functions with respect to the
sample Markowitz portfolio disappear due to the unbiasedness of the estimator. Then, we use the following
expression for the estimated multiperiod portfolio:

x̂i = (1−β)i+1x−1 +βξix̂
M and ∆x̂i = φix−1 +β(1−β)ix̂M , (50)

where ξi =
∑i

j=0(1−β)j and φ= ((1−β)i+1− (1−β)i). Then, after some straightforward manipulations,
we obtain that the investor’s expected loss is:

δ({xi},{x̂i}) =
1

2γ

(
E
[
µ̂′Σ̂−1ΣΣ̂−1µ̂

]
− θ
)
×
∞∑
i=0

(1− ρ)i+1 [AVi +ACi] , (51)

where θ = µ′Σ−1µ, AVi = β2ξ2i stands for the accumulated portfolio variability and ACi = β2(λ̃/γ)(1−
β)2i stands for the accumulated trading costs. Then, we can substitute (1/2γ)(E

[
µ̂′Σ̂−1ΣΣ̂−1µ̂

]
− θ) with

δ(xM , x̂M), and make the following simplifications for geometric series:

ξi =
i∑

j=0

(1−β)j =
1− (1−β)i+1

β
. (52)
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In turn, we obtain that

β2

∞∑
i=0

(1− ρ)i+1ξ2i =
∞∑
i=0

(1− ρ)i+1 +
∞∑
i=0

(1− ρ)i+1
[
(1−β)2i+2− 2(1−β)i+1

]
. (53)

Because (1−ρ) and (1−β) are positive elements and smaller than one, we can express the above geometric
series as follows:

AV = β2

∞∑
i=0

(1− ρ)i+1ξ2i =
1− ρ
ρ

+
(1− ρ)(1−β)2

1− (1− ρ)(1−β)2
− 2

(1− ρ)(1−β)

1− (1− ρ)(1−β)
. (54)

Now, applying the same arguments, we can simplify the following expression:

AC =
∞∑
i=0

(1− ρ)i+1β2 λ̃

γ
(1−β)2i =

λ

γ

β2

1− (1− ρ)(1−β)2
. (55)

In turn, we obtain that the investor’s expected loss is

δ({xi},{x̂i}) = δ(xM , x̂M)× [AV +AC]. (56)

A.3. Proof of Proposition 3
We now prove that the optimal combination parameter of multiperiod portfolios coincide with the optimal
combination parameter in the static framework. First, let us define the investor’s initial portfolio as x−1.
Then, we can write the investor’s four-fund portfolio as:

x̂i = (1−β)i+1x−1 +βξix̂
C , (57)

where x̂C = (ς1x̂
M + ς2x̂

Min), and

∆x̂i = φix−1 +β(1−β)ix̂C , (58)

where ξi =
∑i

j=0(1− β)j and φ= ((1−β)i+1− (1−β)i). Then, the investor’s expected utility is defined
as:

E

[
∞∑
i=0

(1− ρ)i+1
{

(1−β)i+1x′−1µ+βξix̂
C′µ

− γ

2

(
(1−β)2ix′−1Σx−1 +β2ξ2i x̂

C′Σx̂C + 2(1−β)i+1ξix
′
−1Σx̂

C
)

− λ̃

2

(
φ2
ix
′
−1Σx−1 +β2(1−β)2ix̂C

′
Σx̂C + 2φiβ(1−β)ix′−1Σx̂

C
)}]

(59)

The above expression can be simplified with the following properties of geometric series:

βξi = β
1− (1−β)i+1

β
= 1− (1−β)i+1 (60)

β2ξ2i = 1 + (1−β)2+2− 2(1−β)i+1 (61)

r1 =
∞∑
i=0

(1− ρ)i+1(1−β)i+1 =
(1− ρ)(1−β)

1− (1− ρ)(1−β)
(62)

r2 =
∞∑
i=0

(1− ρ)i+1(1−β)2i+2 =
(1− ρ)(1−β)2

1− (1− ρ)(1−β)2
(63)
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r3 =
∞∑
i=0

(1− ρ)i+1(1−β)2i =
(1− ρ)

1− (1− ρ)(1−β)2
(64)

r4 =
∞∑
i=0

(1− ρ)i+1(1−β)2i+1 =
(1− ρ)(1−β)

1− (1− ρ)(1−β)2
(65)

r5 =
∞∑
i=0

(1− ρ)i+1 =
(1− ρ)

ρ
(66)

And in turn, the investor’s expected utility can be simplified as follows:

r1(x−1−xC)′µ+
1− ρ
ρ

xC
′
µ− γ

2

{
r2x
′
−1Σx−1 + (r5 + r2− 2r1)E(x̂C

′
Σx̂C)

+2x−1Σx
C(r1− r2)

}
− λ̃

2

{
β2r3x

′
−1Σx−1 +E(x̂C

′
Σx̂C)β2r3 + 2β(r4− r3)x′−1ΣxC

}
(67)

Now, we develop the first order conditions with respect to ς1, and we obtain that the optimal value is:

ς1 =
E
[
x̂M
′
µ
]

γE [x̂M ′Σx̂M ]

W1

W2

−
x′−1Σx

M

γE [x̂M ′Σx̂M ]

W3

W2

− ς2
E
[
x̂M
′
Σx̂Min

]
E [x̂M ′Σx̂M ]

, (68)

whereW1 = r5−r1,W2 = (r5+r2−2r1)+(λ̃/γ)β2r3, andW3 = γ(r1−r2)+λ̃β(r4−r3). We numerically
verify that W1/W2 = 1 and W3 = 0, so that the optimal parameter ς1 takes the following expression:

ς1 =
E
[
x̂M
′
µ
]

γE [x̂M ′Σx̂M ]
− ς2

E
[
x̂M
′
Σx̂Min

]
E [x̂M ′Σx̂M ]

. (69)

Accordingly, the optimal value of ς2 is

ς2 =
E
[
x̂Min′µ

]
γE [x̂Min′Σx̂Min]

− ς1
E
[
x̂M
′
Σx̂Min

]
E [x̂Min′Σx̂Min]

. (70)

Therefore, one can solve the system given by (69)-(70) to obtain the optimal values of ς1 and ς2. This
corresponds with the system of linear equations that one has to solve to obtain the optimal combination
parameters in the static framework. In turn, we obtain; see Kan and Zhou (2007):

ς1 = c−1
Ψ2

Ψ2 + N
T

, (71)

ς2 = c−1
N
T

Ψ2 + N
T

× µ
′Σ−1ι

ι′Σ−1ι
, (72)

where c= [(T − 2)(T −N − 2)]/[(T −N − 1)(T −N − 4)] and Ψ2 = µ′Σ−1ι− (µ′Σ−1ι)2/(ι′Σ−1ι)> 0.
Accordingly, one can obtain the optimal value of η by setting ς2 = 0 in equation (69), and we obtain that the
optimal value of η is:

η=
E
[
x̂M
′
µ
]

γE [x̂M ′Σx̂M ]
= c−1

µ′Σ−1µ

µ′Σ−1µ
= c−1. (73)
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A.4. Proof of Corollary 1
We know from Proposition 3 that the optimal combination parameters coincide with the optimal combina-
tion parameters of the static case. Then, we can show that it is optimal to shrink the static mean-variance
portfolio if the derivative of the investor’s (static) expected utility with respect to parameter η is negative
when η = 1. Deriving the investor’s expected utility with respect to η and setting η = 1, we obtain the it is
optimal to have η < 1 when:

E
(
x̂M
′
µ
)
<γE

(
x̂M
′
Σx̂M

)
. (74)

If we characterize the expectations from the above expression, we obtain that η < 1 if 1 < c, where
c= [(T −N − 2)(T − 2)]/[(T −N − 1)(T −N − 4)]. Because, c > 1, we observe that it is always optimal
to shrink the static mean-variance portfolio.

Now, if we take derivatives of the investor’s (static) expected utility with respect to parameter ς2, and then
set ς2 = 0, this derivative if positive (an in turn it is optimal to have ς2 > 0) if

E
(
x̂T
′
µ
)
>γς1E

(
x̂M
′
Σx̂T

)
. (75)

Now, characterizing the above expectations, we obtain that ς2 > 0 if 1> ς1c. From the optimal expression
of ς1, we obtain that 1 > ς1c if 1 > Ψ2/(Ψ2 +N/T ), which always holds because Ψ2 can be written as
Ψ2 = (µ − µg)′Σ−1(µ − µg), where µg = (ι′Σ−1µ)/(ι′Σ−1ι), and in turn Ψ2 is nonnegative. Moreover,
from the optimal expression for ς2, we observe that the optimal value is always positive because Ψ2 =
µ′Σ−1ι− (µ′Σ−1ι)2/(ι′Σ−1ι)> 0, and it means that µ′Σ−1ι should be positive, otherwise Ψ2 > 0 would
not hold. this means that all the elements require to compute the optimal ς2 are positive, and in turn the
optimal ς2 is positive.
A.5. Proof of Proposition 4
Writing the expected utility for an investor using the four-fund portfolio as in (67), it is straightforward to
see that we can obtain the optimal β that minimizes the investor’s expected loss by solving the following
problem:

V1(x−1−xC)′µ− 1

2

(
E
[
x̂C
′
Σx̂C

]
V2 +x′−1Σx−1V3 +x′−1Σx

CV4

)
, (76)

where Vi accounts for the accumulated variability and trading costs of x̂C and the investor’s initial position
x−1, and they take the form:

V1 =
(1− ρ)(1−β)

1− (1− ρ)(1−β)
(77)

V2 = γ

(
(1− ρ)

ρ
+

(1− ρ)(1−β)2

1− (1− ρ)(1−β)2
− 2

(1− ρ)(1−β)

1− (1− ρ)(1−β)

)
+ λ̃

(1− ρ)β2

1− (1− ρ)(1−β)2
, (78)

V3 = γ
(1− ρ)(1−β)2

1− (1− ρ)(1−β)2
+ λ̃

(1− ρ)β2

1− (1− ρ)(1−β)2
, (79)

V4 = 2γ

(
(1− ρ)(1−β)

1− (1− ρ)(1−β)
− (1− ρ)(1−β)2

1− (1− ρ)(1−β)2

)
− 2λ̃

(1− ρ)β2

1− (1− ρ)(1−β)2
. (80)

Now, we characterize E
[
x̂C
′
Σx̂C

]
, which is defined as:

E
[
x̂C
′
Σx̂C

]
=

c

γ2

(
ς21

(
µ′Σ−1µ+

N

T

)
+ ς22 ι

′Σ−1ι+ 2ς1ς2µ
′Σ−1ι

)
, (81)

where c= [(T −N − 2)(T − 2)]/[(T −N − 1)(T −N − 4).
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Appendix B: Tables

Table 1 Commodity futures:

This table provides some descriptive statistics of the data from the commodity futures, as well as the contract multiplier.

Commodity Average
Price

Volatility
price changes

Contract
multiplier

Aluminium 56,231.71 888.37 25
Copper 161,099.45 3,268.96 25
Nickel 127,416.45 3,461.62 6
Zinc 54,238.84 1,361.69 25
Lead 45,925.04 1,227.02 25
Tin 78,164.60 1,733.53 5
Gasoil 69,061.48 1,571.89 100
WTI Crude 75,853.55 1,798.93 1000
RBOB Crude 88,503.62 2,780.74 42,000
Natural Gas 63,553.35 3,4439.78 10,000
Coffee 58,720.11 940.55 37,500
Cocoa 23,326.21 458.50 10
Sugar 18,121.58 462.35 112,000
Gold 94,780.87 1,327.11 100
Silver 87,025.94 2,415.69 5,000

Table 2 Sharpe ratio discounted with transaction costs
This table reports the annualized out-of-sample Share ratio for the different portfolio strategies that we
consider. Sharpe ratios are discounted by quadratic transaction costs with λ = 3 × 10−7. The number in
parentheses are the corresponding p-values for the difference of each portfolio strategy with the four-fund
portfolio that combines the static mean-variance portfolio with the minimum-variance portfolio. Our con-
sidered base-case investor has an absolute risk aversion parameter of γ = 10−8 and an impatience factor of
ρ= 1− exp(−0.1/260).

Panel A: Start from zero Panel B: Start from xM

N=25 N=50 Com. N=25 N=50 Com.
Static trading strategies
S-M -0.266 -0.345 -0.459 -0.266 -0.337 -0.452

( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000)

S2F 0.076 0.105 0.102 0.068 0.101 0.106
( 0.000) ( 0.000) ( 0.050) ( 0.000) ( 0.000) ( 0.036)

S3F-Min 0.678 0.633 0.739 0.678 0.637 0.769
( 0.000) ( 0.000) ( 0.126) ( 0.000) ( 0.000) ( 0.148)

Multiperiod trading strategies
M-M 0.150 0.297 0.056 0.153 0.295 0.052

( 0.000) ( 0.008) ( 0.036) ( 0.004) ( 0.008) ( 0.042)

M3F 0.202 0.307 0.269 0.212 0.298 0.259
( 0.004) ( 0.004) ( 0.106) ( 0.000) ( 0.008) ( 0.094)

M4F-Min 0.765 0.771 0.874 0.772 0.764 0.868
( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000)

O-M4F-Min 0.765 0.771 0.874 0.911 0.865 0.895
( 0.786) ( 0.774) ( 0.628) ( 0.144) ( 0.376) ( 0.742)
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Table 3 Sharpe ratio: some robustness checks (RC)
This table reports the annualized out-of-sample Share ratio for the different portfolio strategies that we consider. Our considered
base-case investor has an absolute risk aversion parameter of γ = 10−8 and an impatience factor of ρ= 1 − exp(−0.1/260) and
faces quadratic transaction costs with λ= 3× 10−7. The number in parentheses are the corresponding p-values for the difference
of each portfolio strategy with the four-fund portfolio that combines the static mean-variance portfolio with the minimum-variance
portfolio.

Panel A: RC for different γ Panel B: RC for different T
γ = 10−9 γ = 10−7 T=250 T=750

N=25 N=50 Com. N=25 N=50 Com. N=25 N=50 Com. N=25 N=50 Com.
Static trading strategies
S-M -3.623 -4.020 -2.636 0.141 0.248 -0.044 -1.126 -1.458 -0.766 -0.023 0.207 -0.156

( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.004) ( 0.006) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.110)
S2F -1.242 -1.383 -1.625 0.209 0.272 0.324 -0.186 -0.096 -0.073 0.087 0.435 -0.100

( 0.000) ( 0.000) ( 0.000) ( 0.004) ( 0.004) ( 0.112) ( 0.000) ( 0.000) ( 0.008) ( 0.000) ( 0.010) ( 0.174)
S3F-Min -0.195 -0.425 -0.740 0.765 0.748 0.984 0.349 0.416 0.089 0.718 0.822 0.417

( 0.000) ( 0.000) ( 0.000) ( 0.066) ( 0.076) ( 0.030) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.000) ( 0.900)
Multiperiod trading strategies
M-M 0.086 0.219 -0.067 0.179 0.306 0.034 0.055 0.218 0.635 0.216 0.545 0.049

( 0.000) ( 0.000) ( 0.030) ( 0.000) ( 0.000) ( 0.018) ( 0.000) ( 0.000) ( 0.752) ( 0.000) ( 0.044) ( 0.310)
M3F 0.194 0.305 0.115 0.226 0.290 0.311 0.171 0.321 0.515 0.179 0.569 -0.122

( 0.000) ( 0.006) ( 0.086) ( 0.004) ( 0.008) ( 0.102) ( 0.000) ( 0.000) ( 0.476) ( 0.000) ( 0.036) ( 0.142)
M4F-Min 0.752 0.767 0.767 0.779 0.762 0.936 0.633 0.734 0.730 0.775 0.909 0.441

( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000) ( 1.000)
O-M4F-Min 0.895 0.887 0.843 0.918 0.845 0.921 0.742 0.905 0.711 0.831 0.949 0.536

( 0.166) ( 0.318) ( 0.432) ( 0.108) ( 0.488) ( 0.846) ( 0.182) ( 0.156) ( 0.512) ( 0.552) ( 0.768) ( 0.104)
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Appendix C: Figures

Figure 1 Absolute loss of multiperiod investor

This plot depicts the investor’s absolute expected loss for different values of γ, λ, and ρ. Our base-case investor is defined with γ = 10−8,
λ = 3 × 10−7 and ρ = 1 − exp(−0.1/260). We consider an investor that has 500 observations to construct the optimal trading strategy
whose parameters are defined with the sample moments of the empirical dataset formed with commodities that we consider in the empirical
application.
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Figure 2 Relative loss of multiperiod investor

This plot depicts the investor’s relative loss for different values of γ, λ, and ρ. Our base-case investor is defined with γ = 10−8, λ= 3×10−7

and ρ= 1− exp(−0.1/260). We consider an investor that has 500 observations to construct the optimal trading strategy whose parameters
are defined with the sample moments of the empirical dataset of commodity futures that we consider in the empirical application.
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Figure 3 Relative loss of different multiperiod investor

This plot depicts the investor’s relative loss of the plug-in multiperiod investor (M-M), the multiperiod investor that shrinks the static mean-
variance portfolios (M3F), and the multiperiod four-fund portfolio that combines the static mean-variance portfolio with the minimum-
variance portfolio (M4F-Min). Our base-case investor is defined with γ = 10−8, λ= 3 × 10−7 and ρ= 1 − exp(−0.1/260). The investor
has 500 observations to construct the optimal trading strategy whose parameters are defined with the sample moments of the empirical dataset
of commodity futures that we consider in the empirical application.
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Figure 4 Nominal Vs Optimal four-fund portfolios: Comparison of relative losses

This plot depicts the investor’s relative loss for different values of γ, λ, and ρ. Our base-case investor is defined with γ = 10−8, λ= 3×10−7

and ρ= 1− exp(−0.1/260). We consider an investor that has 500 observations to construct the optimal trading strategy whose parameters
are defined with the sample moments of the empirical dataset of commodity futures that we consider in the empirical application.
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