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Abstract

Functional Regression has been an active subject of research in the last

two decades but still lacks a secure variable selection methodology. Lasso

is a well known e↵ective technique for parameters shrinkage and variable

selection in regression problems. In this work we generalize the Lasso

technique to select variables in the functional regression framework and

show it performs well. In particular, we focus on the case of functional

regression with scalar regressors and functional response. Reduce the

associated functional optimization problem to a convex optimization on

scalars. Find its solutions and stress their interpretability. We apply the

technique to simulated data sets as well as to a new real data set: car

velocity functions in low speed car accidents, a frequent cause of whiplash

injuries. By “Functional Lasso” we discover which car characteristics in-

fluence more car speed and which can be considered not relevant.

Key Words: Norm one penalization; Variable selection; Algebraic re-

duction; Convex optimization; Computer algebra.

1. INTRODUCTION

Functional data analysis has received a lot of attention in the last two decades
especially after it was popularized by Ramsay and Silverman (2005, 2002). A
recent and brief overview can be found in Febrero (2008). A more formal, non
parametric approach in Ferraty and Vieu (2006), all references contain practical
problems that prove the large applicability of this new technique. We will follow
the parametric approach and will describe a variable selection procedure that
in our experiments performed well and provided easy to interpret solutions.

A random variable can be considered functional from di↵erent points of view.
For example, when its realizations can be well fitted by smooth functions. Or,
when its inertia can be explained by a function smoothness. Or again, when
data can be thought as sampled from underlying unknown smooth functions.
Functional regression is a new kind of regression where either the response vari-
able or the regressors are functional data variables. In this work we will focus on
the least studied case of a functional linear regression with functional response
Yi(t) and scalar regressors Xi,j . A case study example about this specific prob-
lem can be found in Faraway (1997). A similar problem, where Xi,j 2 {0, 1}, is
known as FANOVA and has got more attention (Cuevas et al., 2004; Faraway,
2004; Ramsay and Silverman, 2005). The theoretical problems of asymptotics
and consistency of estimators have been studied, for the simple linear model, in
Cuevas and Febrero (2002).

Given a linear model as:

Yi(t) = �0(t) + �1(t)Xi,1 + · · ·+ �J(t)Xi,J + ✏i(t) i = 1 . . . I, (1)
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✏i(t) represents an error term and has to be thought as a random variable whose
distribution is not known in detail1. We would like to establish which regressors
Xj can be considered useful and which can be safely dropped. It is often desir-
able to drop as many regressors as possible for two reasons. First, a small model
is easier to interpret than a large one. Second, its solutions have, in general, a
smaller variance. In the case of a classical regression, the response variables Yi,
all parameters �j and all regressors Xj are real numbers. There, Lasso has been
proven to be a valid technique to perform variable selection and parameters
shrinkage (Tibshirani, 1996). An overview of its origins and evolution to more
e�cient implementations can be found in Hesterberg et al. (2008). Our main
contribution in this paper is to adapt the Lasso to our functional case starting
from its original definition.

The idea in Lasso is to penalize the absolute magnitude of beta parameters and
shrink them until the cross validation error reaches a minimum. Then, discard
all estimated parameters �̄j that become too close to zero2. In the following we
will use a fake regressor X0 as a vector of ones to improve models readability.
With this convention we can write the classical Lasso estimators beginning with:

¯

�

(�)
0 . . .

¯

�

(�)
J = Argmin

�0...�J

IX

i=1

 
Yi �

JX

j=0

�jXi,j

!2

+ � ·
JX

j=1

|�j |. (2)

Changing � we find the value �̄ that minimizes the cross validation error and

call �̄j the Lasso estimators for �j ( �̄j
d
= �̄

(�̄)
j for all j ). Assuming the domain

of Yi(t) functions is [a, b], we can rewrite the Lasso optimization for a functional
regression as:

{¯�(�)
j (t)}j = Argmin

�0(t)...�J (t)

IX

i=1

Z b

a

 
Yi(t)�

JX

j=0

�j(t)Xi,j

!2

dt+ � ·
JX

j=1

||�j(t)||1 (3)

where {�0(t), . . . ,�J(t)} live in some function space to be chosen. The 1-norm is

defined, as usual, as ||�j(t)||1
d
=

R b
a |�j(t)|dt. The last summand in (3) involves

the integration of absolute values, therefore obtaining a direct analytic solution
of the optimization problem is not trivial. The idea in this paper is to replace the
penalization term

PJ
j=1 ||�j(t)||1 with

P
j,k |bj,k| where bj,k are the coordinates

of �j(t) respect to some functional BSpline basis functions B. Show that such
a replacement is actually a good approximation to the original constraint and
display evidence of its e↵ectiveness on simulated and real data sets. The problem
is reduced to an optimization on scalar values by algebraic transformations.

The Lasso, or L1 regularization, has been already approached in functional re-
gression during the last years. In Matsui and Konishi (2011) it is applied for
variable selection to a functional regression with functional predictors and scalar
response using Gaussian basis functions. An approach, denoted as group SCAD,
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permits grouping scalar parameters describing the same functional parameter.
In Hong and Lian (2011), the Lasso method is applied to a functional regression
with functional predictors and functional response. In this case �j are scalars
and functions are sampled on arbitrary grids to reduce the problem to a nu-
merical solvable one. In Zhao et al. (2012) the response is scalar, there is only
one functional variable to estimate, the basis is Wavelet and Lasso is used to
set to zero as many coe�cients as possible in the Wavelet basis. In this paper
we consider the case of multiple functional linear regression with functional re-
sponse and scalar predictors. We have to estimate several �j(t) parameters and
recognize which ones can be considered zero. We use the traditional BSpline
basis functions to describe the functional objects. The functional optimization
problem is reduced to a numerical optimization problem with basic algebraic
manipulations, we do not need to sample over arbitrary grids of values. Finally,
the focus is on functional variable selection, not on single scalar parameters
going to zero. We have found no need to cluster explicitly scalar parameters
pertaining to the same functional object. BSplines provide this implicitely. In-
deed, BSpline basis functions are not fully orthogonal, each of their internal
parameters is related to its closest neighbours (de Boor, 2001; Iglesias et al.,
2007). Then, if a parameter goes to zero, its neighbours will be a↵ected and
tend to get small values. Since all internal parameters are chained by their
respective neighbours, then a property of the majority of coe�cients tends to
become a property of all the coe�cients. In conclusion, if many coe�cients
are zero for a functional object described in a BSpline basis, then the whole
functional object tends to become zero.

The case of scalar regressors and functional response is, in some sense, more
troublesome than others because it requires to control a function by a set of
scalar valued regressors that are lower dimensional and less information rich.
The error terms ✏i are in this context functions ✏i(t), we can not apply familiar
distributional properties. Finally, the results of our models will be functions.
To understand if they are working, we have to compare them with other output
functions; that is, we have to compare plots. This is impractical, time consuming
and error prone but is the only serious option.

We applied our Functional Lasso method to study a new real data set. We
have a database of low speed car accidents that mimicks the tipical scenario of
whiplash injury. We want to explain/predict the speed function of an impacted
car just after the impact knowing some of the two cars characteristics as car
weight, height, length, speed di↵erence, etc. Predicting the speed function is
the first step to better understanding the whiplash injury. Whiplash is a very
common injury and has severe repercussions on society. Besides the physical
pain and discomfort of injured people, its economical costs are quite remarkable.
It has been estimated that in the U.S. whiplash costs annually $29 billions. Its
incidence is approximately 4 per 1000 persons (Eck and Hodges, 2001). The
relation between car dynamics and whiplash injury risk has been studied in Kraft
et al. (2011). There, it is shown that speed di↵erence and average acceleration
are correlated with injury severity and symptoms duration. With this article
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we intend to start a new branch of research into this topic. For the first time,
instead of using mean velocities and accelerations we use complete functional
representations of the variables of interest, in particular v(t).

The paper contains four more sections. In Section 2 we are going to detail what
is the algebraic form of the optimization problem and justify the passage from
||�j ||1 to

P
j,k |bj,k| as direct consequence of BSpline properties. In Section 3

we show the method performance on simulated data sets. In Section 4 we apply
the method to the car accidents database.

2. METHODOLOGY ILLUSTRATION

Problem (3) is a functional problem that could be di�cult or very tedious to

solve analytically. To be able to compute numerically �̄

(�)
j (t), we choose a

basis function B = {�0(t), . . . ,�K(t)} and express all functions in (3) as a
linear combination of the basis. For example, the response variables become
Yi(t) =

PK
k=0 ai,k�k(t) and beta parameters become �j(t) =

PK
k=0 bj,k�k(t). It

has to be stressed that coe�cients ai,k are known real numbers because Yi(t)
are known functions. On the contrary, bj,k are unknown reals since �j(t) are
unknown functional parameters to be estimated. We will estimate the values
of bj,k solving the following optimization problem and denote the estimates as

b̄

(�)
j,k .

{¯b(�)j,k }j,k = Argmin

bj,k

IX

i=1

Z b

a

 
KX

k=0

ai,k�k(t)�
JX

j=0

(

KX

k=0

bj,k�k(t)) Xi,j

!2

dt +

+ � ·
JX

j=1

Z b

a

�����

KX

k=0

bj,k�k(t)

����� dt .

(4)

The first part of the optimization function, the sum of integrals of a square,
reduces algebraically to a quadratic form on variables bj,k but the remaining
part can not be easily simplified without further informations. To overcome this
di�culty we resort to a BSpline property, citing DeBoor “B-Spline coe�cients
model the function they represent.”, see de Boor (2001), Example IX.2. The
property is illustrated by an example in Figure 1. If we suppose we are using a
cubic spline with knots {t0, t1, . . . tn} on the domain [a, b] where t0 = t1 = t2 =
t3 = 0, tn = tn�1 = tn�2 = tn�3 = 1 and for all other ti we set � := ti+1 � ti.
Then, for each j:

5



Z b

a

�����

KX

k=0

bj,k�k(t)

����� dt = ||�j(t)||1 =

Z b

a
|�j(t)| dt

⇡
n�4X

i=3

|�j(ti)| ·� (Riemann Integral)

⇡ � ·
K�2X

k=1

|bj,k|  � ·
X

k

|bj,k| (BSplines Property)

(5)

The � value can be removed because it would only rescale � (see Eq. 4 ). We
finally get the objective function:

{b̄(�)j,k } = Argmin

bj,k

0

@
Quadratic(bj,k) + � ·

X

j,k

|bj,k|

1

A
. (6)

Fixing � (� � 0) we can easily compute (6) because it is now a numerical convex
optimization problem, (a proof con be found in the Appendix B, Proposition 1)
for which there are specialized solvers as CVX (Grant and Boyd, 2011, 2008).

The problem being convex ensures solutions b̄(�)j,k to be unique.

Figure 1: fig:the-bspline-property

3. SIMULATED DATA

In this section we will create two artificial data sets with known linear models.
Then, we will apply the Lasso technique to rediscover the underlying models.
The first example is to show how Lasso discriminates correctly the original
regressors from fake ones. The second shows that Lasso, in absence of fake
regressors to drop, reduces to least squares.
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3.1 Functional Lasso annihilates spurious regressors

The data set is made of 30 functional observations built as follows.

• Generate 6 regressors as 6 vectors of 30 random values: Xi,j ⇠ N(0,
p
5), i =

1 . . . 30, j = 1 . . . 6.3

• Define three functions �j(t), t 2 [0, 1], j = 0, 1, 2 as:

8
><

>:

�0 = 30t(1� t)3/2

�1 = 10(t� 0.6)2 + 1

�2 = Sin(4⇡t)� 2 .

(7)

• Define 30 error functions ✏i(t) in t 2 [0, 1] by generating 101 random
points Pk and then joining them continuously with a linear interpolation.
Pk := (xk, yk), xk := 1

100 k, yk ⇠ Normal(0, 0.8) for k = 0, 1, . . . , 100.
The value � = 0.8 is arbitrary but appears to be reasonably sized (see
Figure 3).

• Generate 30 functional response variables as:

yi(t) = �0(t) + �1(t)Xi,1 + �2(t)Xi,2 + ✏i(t) i = 1 . . . 30 (8)

• Get the discrete representation of the response variables as: Yi,j = yi(tj),
tj = 1

100j, j = 0, 1, . . . , 100. From this point on consider cleared the
variables yi(t), we need them to denote other objects. For a representation
of yi(t) and Yi see Figure 2.

0.2 0. 0.6 8 1 0

20

10

10

20

30

yiHtL - eiHtL

0 0. 0.6 0 0

20

10

10

20

30

yiHtL

0 0. 0.6 0 0

20

10

10

20

30

Yi, j

Figure 2: fig:generate-fake-Y

At this point we have a data set (Yi,j , Xi,1, Xi,2, Xi,3, Xi,4, Xi,5, Xi,6) where
i = 1 . . . 30, j = 0 . . . 100. We forget we know how this data has been gen-
erated. To improve readability we will use a vector notation to denote the
discrete response variables. Yi will be a vector of 101 elements whose k-th
element is Yi,k. We want to explain the response variable Yi by mean of a func-
tional linear regression model with functional response and scalar covariates
{Xi,1, Xi,2, Xi,3, Xi,4, Xi,5, Xi,6}. A well performing method will recognize that
useful regressors are only {Xi,1, Xi,2} and will find the estimated parameters
�̃0(t), �̃1(t), �̃2(t) 4 to be close to the original parameters �0(t),�1(t),�2(t).
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b2
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ei
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Figure 3: fig:initial-params

As required to apply functional regression we transform the response variables
Yi into functions. One way to do this is to fit each Yi with a function in
some predefined functions space. The choice of the functions space is in part
arbitrary, Ramsay and Silverman (2005) present some classical basis functions
and some rules of thumb to choose between them. In this case we choose order
three BSpline basis functions with ten equally spaced internal knots more three
equal knots at points 0 and 1, beginning and end of functions domain. The equal
values at the ends are required to reduce smoothness at the domain borders.

K = {0, 0, 0, 0, 0.1, 0.2, . . . , 0.8, 0.9, 1, 1, 1, 1} (9)

The knots sequence has been chosen by trading o↵ simplicity and e↵ectiveness.
Other ways to place the knots are surely possible. A cross validation could be
used to determine, in some sense, the optimal number of knots, but the amount
of smoothness required for each case study remains largely dependent on the
eye of the modeler (Faraway, 1997). Using the knots sequence K we obtain a 13
element cubic BSpline basis functions B = {�0(t),�1(t), . . .�12(t)}, we compute
them with Mathematica 8.0 BSplineBasis built-in command. An introduction
to symbolic BSplines manipulation with Mathematica can be found in Iglesias
et al. (2007). The analysis proceeds as follows:

• We standardize all variables. Standardized regressors will be denoted with
XSj and computed naturally as:

XSj := Standardize((X1,j , X2,j , . . . X30,j)) for j 2 {1, . . . , 6}, (10)

response variables Yi are standardized all together as:

Standardize((Y1,0, . . . , Y1,100, Y2,0, . . . , Y2,100, . . . , Y30,0, . . . , Y30,100)), (11)

their standardized versions are denoted YSi.

• Fit each YSi to a function yi(t) in the functions space determined by B
minimizing the squared error.

• Set XS0 to be a length 30, vector of ones and and define a linear model
Mi(t) to explain each of yi(t) as Mi(t) :=

P6
j=0 �j(t) ·XSi,j . 5
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• A solution in this context is an estimation of the �j(t) parameters giving a
best fit to the data. We find here two kinds of solutions and compare them,
the common Least Squares solution and the new Functional Lasso solution,
each of them will be denoted respectively as LS and FL. Parameters that
are LS solution will be denoted as �̂j(t), FL solution will be denoted as
�̄j(t).

{ˆ�j}j=0...6 := Argmin

{�j}j=0...6

30X

i=1

Z 1

0

(yi(t)�Mi(t))
2

(12)

{¯�(�)
j }j=0...6 := Argmin

{�j}j=0...6

30X

i=1

Z 1

0

(yi(t)�Mi(t))
2
+ � ·

X

j=1...6

||�j(t)||1 (13)

• Observe explicitly that �̂j = �̄

(0)
j , then we are computing them in this way.

We are going to reduce the sum of integrals to a quadratic forms in bj,k by
means of Mathematica computer algebra capabilities. Reduce

P
||�j(t)||1

to
P

|bj,k| as illustrated in the previous section and solve the resulting
unconstrained convex optimization problem Argmin

bj,k

Quadratic(bj,k)+� ·
P

|bj,k| by Matlab CVX package. The part that takes more time is the
algebraic reduction of integrals, more or less half an hour with a mid-range
laptop, the optimization part is faster and takes around a minute.

• We compute �̄

(�)
j for many values of � and look for the value �̄ that

minimizes the five-out cross validation error. Once found, we define the

FL parameters as �̄j(t) := �̄

(�̄)
j for j = 0 . . . 6.

The estimated parameters computed by least squares (�̂j(t)) and by the Func-
tional Lasso (�̄j(t)) can be seen in Figure 4 and Figure 5. In Figure 4 there

is a direct comparison between �̂j(t) (in dashed red stroke) and �̄j(t) (in full
black) for each j. It can be seen that Lasso shrinks all spurious parameters
{�3(t), . . . ,�6(t)} to zero while ordinary least squares keep them fluctuating
around the x-axis without annihilating them. It is exactly the same thing that
happens in ordinary multiple regression. The di↵erence here is that, instead
of scalars, whole functional parameters are set to zero. It is much easier to
decide which is a useless regressor using Lasso solution. The shape of estimated
{�0,�1,�2} are similar to their original values for both methods, only at do-
main borders there is a little discrepancy. The cross validation is minimal for
the Lasso solutions, we shrunk the parameters but we actually improved the
performance of the model. We must stress that parameter selection in this case
has been very easy since some of them have been completely shut down to zero.
In general, it will not always be so clear, therefore we set a formal rule to decide
if a parameter has to be dropped.

Fact 1. Rule of magnitude. We consider a regressor variable Xj spurious,
or not e↵ective, if its associated functional parameter is too small in magnitude:
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Figure 4: fig:plate-1

max

t2[0,1]
|�j(t)|  0.01. This rule is a conservative extension to the functional

context of the one implicitly used in Tibshirani (1996). It makes sense only
when variables are standardized or transformed to lay near zero. Parameter
0.01 is arbitrary.

In Figure 5 the parameter shrinkage process is shown. We change the penal-
ization term � in the interval [0, 0.02] and observe how parameters do change.
It is manifest that spurious parameters change a lot. On the contrary, e↵ective
parameters remain almost unvaried. In this case we know in advance which
parameter should be dropped but, in general, this could be a useful explorative
technique to decide if a parameter has to be retained or dropped. If, increas-
ing �, some parameters change far more than others then these parameters are
likely spurious parameters.

Fact 2. Rule of inertia. Increasing the penalization term �, in a functional
Lasso, shrinks and changes the shape of parameters �j(t). The most inertial
parameters, the ones who change less while increasing �, tend to be the most
influential ones.

The result synthesised in the last Rule of inertia has been observed during
experimentations with di↵erent linear models and error function realizations.
In this paper it can be seen applied again on the real data set, see Figure 14.
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Figure 5: fig:plate-2

3.2 Functional Lasso does not annihilate useful regressors

What happens if there are not spurious regressors? Does Lasso try to drop the
useful ones? The answer is no. In case all parameters are useful, Lasso selects
all of them and reduces to the LS solution. An example can be realized using
the same method of the previous simulation with a few changes.

• Define four functions �j(t), t 2 [0, 1], j = 0, 1, 2, 3, as:

8
>>>><

>>>>:

�0 = 30t(1� t)3/2

�1 = 10(t� 0.6)2 + 1

�2 = Sin(4⇡t)� 2

�3 = Cos(4⇡t+ 0.5) + 1 .

(14)

• Generate 30 functional response variables depending on three regressors

yi(t) = �0(t)+�1(t)Xi,1+�2(t)Xi,2+�3(t)Xi,3+✏i(t) i = 1 . . . 30 (15)

• Reduce functions yi(t) to numerical observations Yi by sampling, then
standardize Yi and Xi,j regressors.

• Apply the Functional Lasso technique to the data set (Yi, Xi,1, Xi,2, Xi,3)
for i = 1 . . . 30. Observe this time we have exactly the same regressors we
used in the model. If the technique performs well it has to recognize that
all regressors are useful and rebuild the parameters �0(t) . . .�3(t) as best
as possible.

11



The cross validation error is represented in Figure 7. It is monotonically increas-
ing as � increases and the minimum is at � = 0. Then, the solution reduces
to least squares. �j(t) shapes are correctly estimated, as can be seen in Figure
6. Their di↵erences in scale are a consequence of standardization. This result
has occurred repeatedly in our experiments, so we conjecture the result holds
in general and spell it as a rule.

Fact 3. Reduction to LS. In case there will be no regressors to drop Lasso
method will choose, as best �, the value �̄ = 0 and FL solution will reduce to
the LS solution.
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Figure 6: fig:3-reg-betas
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4. CASE STUDY: LOW SPEED CAR ACCIDENTS AND WHIPLASH
INJURY

In this section we are going to use the Functional Lasso to predict the velocity
of an impacted car in a low speed accident. This study is part of a larger project
for the understanding and control of whiplash injury risk.

Whiplash injury is very common and its incidence is about 4 per 1000 persons.
It happens when sudden acceleration-deceleration forces are applied to the neck
and the upper trunk. The term “whiplash” was introduced in 1928. Before,
the injury was referred to as “railway spine” since the most frequent cause of
it were train accidents. Nowadays, the most frequent cause are car accidents.

12



Victims are usually sitting in a car standing still when another car hits it in the
back. Whiplash injuries are usually not life threatening but they are common,
expensive and can give long term consequences. It has been estimated that the
U.S. annual economic cost related to whiplash is $3.9 billion, including medical
care, sick leave and lost work productivity. Taking into account also litigation
costs the number rises to $29 billion (Eck and Hodges, 2001).

Whiplash risk is correlated with the impacted car speed variation and its average
acceleration (Kraft et al., 2011). In the following we will try to predict the
impacted car speed function v(t). Half of the data base we are using is publicly
available, in raw form, at AGU (Arbeitsgruppe für Unfallmechanik). The other
half comes from proprietary AXA documentation. AGU data contains high
frequency speed and acceleration measurements for a set of more than a hundred
car accidents. For each car in each crash we extracted some car charatheristics
from AXA documentation resources as car weight, length, etc.

From all the car accidents we selected a set of 25 that are particularly homoge-
neous. In each selected accident there are two cars, A and B. Car B is initially
motionless. Car A is initially traveling at some known constant low6 speed until
it hits car B in its back. Cars A and B are perfectly aligned: from the top view
their symmetry axes lay on the same line. Car B does not have the rear hook.
For each car we have available the following variables: initial speed (vi), weight
(wei) , length (len), width (wid), height (hei), and we know the speed, as a
function of time, of car B after it has been hit (v(B)(t)). Our aim is to model
and predict v

(B)(t) for the first 0.2 seconds after the impact, from the impact
characteristics.

The problem can be seen as functional linear regression. The response variable
v

(B)(t) is functional and { vi, wei, len, wid, hei } are scalar regressors. Instead
of using directly these regressors, mechanics considerations suggest we use their
standardized di↵erences { AviS,�weiS,�lenS,�widS,�heiS }. For example,
�weiS is the standardized vector of di↵erences in weight between car B and
A, �lenS is the standardized vector of length di↵erences and so on for all
other variables. The only exception is AviS, since Bvi is always zero, we only
standardized car A speeds. Correlations between regressors are shown in Table
1.

Table 1: Regressor correlations for the car speeds problem.

AviS �weiS �heiS �widS �lenS

AviS 1.00 0.61 0.16 0.61 0.44
�weiS 0.61 1.00 0.16 0.87 0.81
�heiS 0.16 0.16 1.00 0.05 -0.23
�widS 0.61 0.87 0.05 1.00 0.84
�lenS 0.44 0.81 -0.23 0.84 1.00

Each response variables v(B)
i (t) is originally represented as a set of (x, y) coordi-
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nates of varying length. We rescale the x coordinate to [0, 1] interval and stan-
dardize respect to y. This means we standardize a curve speed value respect to
all 25 curve speed values. Then, we approximate each curve points with a Spline
function minimizing the least square error. In Figure 8, plot (a) are represented
the original car accelerations. In plot (b) car velocites. Finally, in plot (c) the
standardized BSplines smoothed velocities we will use in our functional regres-
sion. The BSpline basis is the same used in the simulated data example, order 3
with equally spaced knots sequence: K = {0, 0, 0, 0, 0.1, 0.2, . . . , 0.8, 0.9, 1, 1, 1, 1}.
The basis is chosen for its simplicity.
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Figure 8: fig:curves-acc-vel

Model 0. By the same procedure illustrated in the previous section we find
the best parameter estimation �̂0(t), . . . , �̂5(t) for the linear model

vi(t) = �0(t) + �1(t) AviS + �2(t) �weiS + �3(t) �lenS +

�4(t) �widS + �5(t) �heiS + ✏i(t).
(16)
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Compare two kinds of solutions, the ordinary one given by least squares (LS)
with the new one provided by functional Lasso (FL). All solutions are obtained
working with an 11-out cross validation sample, almost half of the set. The
first 11 curves of the set are left out and considered test set, see Figure 9 for
an illustration. The first FL solution we obtain is not practically useful but
interesting. Looking at Figure 10 we see that there is a minimum in the cross
validation error (� ⇡ 0.82) but globally that minimum gives a very small gain
respect to larger values of �. So, the prediction error is not notably small
compared to the one of a trivial model containing only �0(t). In Figure 11 we
can see parameters estimated by LS in dashed red, FL in solid green. According
to the Rule of magnitude, LS accepts all parameters.� heiS and AviS are
smaller than the other ones but not always less than 0.01. On the contrary, FL
rejects (sets to zero) all parameters except� widS. FL solution is already better
respect to LS because it is more compact, only one regressor has been selected
and the cross validation error is smaller. This solution is not very informative
because the cross validation error is very near to the one at � ! 1 and last,
but not least, the only variable selected is� widS, this clashes with our physical
intuition.

Figure 9: fig:cross-in-out-real
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Figure 10: fig:CV-con-width

Model 1. Looking at Table 1 it is easy to see what happened,� widS is highly
correlated with� weiS and� lenS. The weight, an expected dominant variable
in every dynamics problem has been shaded by another, linearly correlated but
much humbler. We prefer weight to be in our model respect to width, so we
annihilate� widS setting a constraint in the optimization phase:

P12
k=0 |b5,k| 
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10-7. Then, we estimate again the LS and FL parameters. From Figure 12 we
observe preliminarily how the cross validation error minimum is now one order
of magnitude deeper. The CV minimum at � ⇡ 0.50 is better than LS (� = 0)
and also better than the trivial model (� ! 1). Next, observing Figure 13
we see that FL has dropped two variables, { �heiS, �lenS } and shrunk the
other two, {AviS, �weiS }. We can conclude that FS solution is better than
LS because it is simpler (it has fewer regressors) and has stronger predictive
power (smaller cross validation error).
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Model 2. In our curve set there are three elements that could be considered
unusual or outliers. Looking at Figure 9 we can clearly see them. One is the
curve reaching highest values, the other two are always laying below the x-axis.
We removed these observations and performed again LS and FL with 5-out
and 10-out (half-out) cross validation. LS still selects all variables while FL
indicates now there is no variable worth keeping. FL reaches the minimum
cross validation error when all parameter values become extremely small.

Model 3. Retaining outliers as observations but using them only in the cross
validation part (half-out cross validation). LS still selects all variables. FL
selects AviS, �weiS and drops the others.

We can conclude that only two variables can not be discarded if we take into
account all the data we have accumulated, the speed and weight of the two
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cars. This is in agreement with the classical mechanics notion of momentum
and the law of conservation of mechanical energy. The estimated parameters
in Figure 13 display also that car A velocity has an influence in time only
between 0.2 and 0.4 (standardized time units) while� wei is influential for
a much larger time period. The sign of AviS should not cause confusion, if
that variable would have been standardized as all others we would have had
std(Bvi � Avi) = std(�Avi) = �AviS so the function would have appeared
reversed and ultimately, more appealing to intuition. The large outlying value
is for a crash where car A was 650 Kg heavier than car B

7. The two small
outliers have di↵erent characterizations. The one in which vB(t) decays in the
right part of the plot is for two cars with very similar weight (�wei = 21Kg),
the other is a case in which car B is far heavier than car A (588 Kg more).
This confirms (or implies) the parameters analysis in Figure 13,� weiS has a
durable impact, in time, on vB(t).

17



5. CONCLUSIONS

In this paper we presented a new method for variables selection in functional
regression with functional response and scalar regressors. The method is an
extension to the well known Lasso technique to the functional case. We applied
the FL (Functional Lasso) to artificial datasets as well as to a new real data set.
The results are very promising. On the artificial data sets the FL procedure dis-
criminated active regressors from fake ones. Moreover, the estimated functional
parameters turn out to be easily interpretable, they do not display confusing
humps common in fuctional regression solutions. Three phenomenological rules
are set to guide the general process of variable selection: Rule of magnitude,
Rule of inertia and Rule of reduction to Least Squares.

As a real data set benchmark we studied low speed car accidents, a frequent
whiplash injury cause. We related the speed function of the struck car to the
initial di↵erence in speed between the two cars, their weight, their height, their
width and length. Studying a set of 25 accidents we can conclude that the
only two variables can be considered significant: the weight di↵erence and the
pre-impact speed di↵erence. The weight di↵erence has a more durable e↵ect in
respect to the speed di↵erence.

The choice of BSpline basis gives many benefits. In functional data analysis we
suppose our data consists of noisy samples from some underlying, inaccessible
functions. With BSplines we can roughly control these functions variability, in
their domain, while defining the knots sequence. They allow the description
of non periodic functions. BSpline coe�cients approximate the fitted function
values and this permitted us to approximate each ||�j(t)||1 with

P
k bj,k that is,

to solve a Lasso on functional objects by a Lasso on scalars. Lastly, BSpline basis
functions are not orthogonal, this at first seems a negative characteristic but it
is what gives our estimators interpretability. Indeed, if many coe�cients of a
functional object go to zero, then they tend to pull to zero all their neighbours,
that is all other coe�cients of the same object.

APPENDIX A: FOOTNOTES

1We are assuming ✏i(t) has, in some sense, mean zero.

2Implicitly, Tibshirani (1996) defines “too small” as smaller, in absolute value, than 0.01.

3Normal distribution will be always written as N(µ,� ).

4Here �̃j(t) denotes the estimation of a parameter �j(t) by some method left to determine.

5XSi,j is the i-th element in vector XSj.

6Low speed here means a speed inferior to 30 Km/h.

7Consider an average a car in Spain weights approximately 1250 Kg. Figure computed on
1200 cases whiplash accident closed by AXA in 2011.
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APPENDIX B: CONVEXITY PROOF

Lemma 1. If {f1, . . . , fn} are convex functions and {w1, . . . , wn} are non nega-
tive real numbers then

Pn
i=1 wifi is a convex function (Boyd and Vandenberghe,

2004).

Proposition 1. Problem (6) is a convex optimization problem.

Proof. For an optimization problem to be a convex optimization problem the
objective function and the constraints have to be convex functions (Boyd and
Vandenberghe, 2004). In expression (6) there are no constraints, the domain
is the whole RK+J+2, so we have only to check that (Q(b) + � ·

P
|bj,k|) is a

convex function. Q(b) is a quadratic form, a quadratic form is a convex function
i↵ it is positive semidefinite that is, i↵ Q(b) � 0, for all b.

Q(b) :=
IX

i=1

Z 1

0

0

@
KX

k=0

(ai,k �
JX

j=0

bj,kXi,j)�k(t)

1

A
2

dt � 0, for all b (17)

Whatever b is chosen as argument, Q(b) is a sum of integrals of non-negative
functions which implies it is always a non-negative value. The absolute value is
a convex function, |bi,j | is convex. Then, using Lemma(1) we get that

P
|bi,j |

is convex and, remembering � � 0, also that Q(b) + �

P
|bi,j | is convex.

19



References

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge Uni-
versity Press.

Cuevas, A. and Febrero, M. (2002). Linear functional regression: The case
of fixed design and functional response. Canadian Journal of Statistics,
30(2):285–300.

Cuevas, A., Febrero, M., and Fraiman, R. (2004). An anova test for functional
data. Computational statistics & data analysis, 47:111–122.

de Boor, C. (2001). A practical guide to splines. Springer-Verlag.

Eck, J. and Hodges, S. (2001). Whiplash: a review of a commonly misunderstood
injury. The American journal of medicine, 110:651–656.

Faraway, J. (1997). Regression analysis for a functional response. Technometrics,
39(3):254–261.

Faraway, J. (2004). An F test for linear models with functional responses.
Statistica Sinica, 14:1239–1257.

Febrero, M. (2008). A present overview on functional data analysis. Bolet́ın de
Estad́ıstica e Investigación Operativa. BEIO, 24(1):6–12.

Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis: theory
and practice. Springer.

Grant, M. and Boyd, S. (2008). Graph implementations for nonsmooth convex
programs. Lecture Notes in Control and Information Sciences. Springer-Verlag
Limited. http://stanford.edu/

~

boyd/graph_dcp.html.

Grant, M. and Boyd, S. (2011). CVX: Matlab Software for Disciplined Convex
Programming, version 1.21. http://cvxr.com/cvx/.

Hesterberg, T., Choi, N., Meier, L., and Fraley, C. (2008). Least angle and l1
penalized regression: A review. Statistics Surveys, 2:61–93.

Hong, Z. and Lian, H. (2011). Inference of genetic networks from time course ex-
pression data using functional regression with lasso penalty. Communications
in Statistics - Theory and Methods, 40:1768–1779.
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CAPTIONS

• Figure 1. A function f(x) = 2 + x + Sin(10 · x) in [0, 1] has been
plotted in blue, it has been sampled in 101 points xi = i · 0.01 for
i = 0, . . . , 100 and finally fitted by an order 3 BSplines with 17 knots
K = {0, 0, 0, 0, 0.1, 0.2, . . . , 0.8, 0.9, 1, 1, 1, 1}. The initial and final re-
peating values are needed for f(x) non periodicity. The BSpline func-
tions basis is composed of 13 elements {�0(t), . . . ,�12(t)}. To that ba-
sis f(x) is represented as

P12
i=0 bi�i(t). The red points have coordinates

(xi, yi) := (0.1 · (i � 1), bi) for i = 1 . . . 11, and lay all tight around the
function graph. We could include extreme basis coe�cients averaging.

• Figure 2. Generation of an artificial data set Yi,j by known func-
tional parameters {�0(t),�1(t),�2(t)}. The first plot, on the left, rep-
resents fi(t) = �0(t) + �1(t)Xi,1 + �2(t)Xi,2. The second plot displays
yi(t) = fi(t)+✏i(t) and the third one finally all Yi,j . It should not surprise
too much that there is a line far from the others, it happened that some
of the Xi,j was large, it is X12,2 ⇡ �7.6, it lays between 3� and 4� from
the mean(Xi,j) = 0.

• Figure 3. Initial parameters {�j(t)}j=0,1,2 and a realization of the error
function ✏i(t).

• Figure 4. The first two plots starting from the top left corner show
the cross validation error as a function of �. It can be seen it reaches a
minimum at � ⇡ 0.18. The remaining plots compare the Least Squares
versus the Lasso estimation of all parameters �j(t). Least Squares esti-
mations are drawn in dashed red lines, Lasso in thick black. It is evident
how lasso shrunk to zero all the spurious parameters �3(t) . . .�6(t).

• Figure 5. E↵ect of the penalization term � on the size and shape of
functional lasso parameters �̄j(t). Here � takes values in the arithmetic
sequence from 0 to 0.02 with 0.002 step. As we can see the e↵ective param-
eters {�0,�1,�2} are far less sensitive to � changes respect to the spurious
ones {�3,�4,�5,�6}. This can be considered a valuable explorative tool
when it is unsure if a parameter should be discarded looking only at its
magnitude.

• Figure 6. On the left, we draw the original �j(t) parameters. On the

right, their estimation �̂j(t) on standardized data.

• Figure 7. Cross validation error for the data set with 3 active regres-
sors. The error is monotone increasing and has minimum in � = 0.

• Figure 8. Acceleration and speed curves for car B, the impacted car.
Plot (a) for accelerations, (b) for velocities and (c) for standardized and
smoothed velocities.
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• Figure 9. Cross validation “in” and “out” of the sample curves.
Black curves are used to estimate model parameters, red curves as cross
validation test. Attention, the outlier is “in”.

• Figure 10. Cross validation error for FL including variable� widS.
There is a minimum at � ⇡ 0.82 but the minimum CV value is not so
di↵erent respect to CV at � ! 1.

• Figure 11. Parameters of car speed problem including var� widS

estimated by LS and FL. FL (green curves) annihilates all regressors esti-
mated by LS (red curves) excepted� widS that is severely shrunk.

• Figure 12. Cross validation error for car accident problem, functional
lasso model excluding� widS regressor.

• Figure 13. Estimated parameters for car accident problem without
regressor� widS. Red dashed curves are parameters estimated by Least
Squares, green ones are estimated with functional Lasso.

• Figure 14. Parameters shape and size changes increasing � for the
car accident problem excluding variable width. Color codes are the same
used in previous plots.
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