

 .

UNIVERSITA’ DEGLI STUDI DI CAGLIARI

CORSO DI LAUREA IN INFORMATICA

3D RECONSTRUCTION OF VESSELS
USING ‘CGVIEW’

Advisor Candidate
Prof. Riccardo Scateni Hector Hernandez

ACADEMIC YEAR 2011-2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29404195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

I would like to thank Riccardo Scateni, my supervisor, for his support and
dedication during this research and also to my colleagues of the Computer
Graphics Group of the University of Cagliari. I also want to say thanks to my co-
tutor Antonio Berlanga de Jesus, without him this wouldn’t have been possible.

I also want to thank to Daniel Borrajo and Giorgio Giacinto, my academic
coordinators in Spain and Italy, for helping me in everything I’ve needed all this
year.

Thanks to all Erasmus and people of Cagliari that I met in this unforgettable
experience.

Thanks to my family because without them I wouldn’t be here and all the people
I’ve met during my university life, that have changed my way of thinking and
seeing things.

Finally, I don’t want to forget about a very dear person, who will feel very proud in
the top and he thought sometimes it would never end. All this work is for you.

Cagliari, September, 2012. Hector Hernandez

Contents

1. Introduction ... 9

2. Archaeological ceramics design ... 11

2.1 Introduction ... 11

2.2 Design settings ... 12

2.3 Whole vessel’s designs .. 14

2.4 Fragments design ... 18

3. CGView ... 21

3.1 Introduction ... 21

3.2 Objects and functions .. 23

3.2.1 Point .. 23

3.2.2 Vertex .. 24

3.2.3 Face ... 25

3.2.4 Mesh .. 25

3.2.5 Bounding Box .. 26

4. The project ... 27

4.1 Background .. 27

4.2 Software ... 27

4.2.1 Premises .. 27

4.2.2 Functions implemented .. 28

4.2.3 Reading input .. 29

4.2.4 Characteristic points ... 30

4.2.5 Plotting .. 31

4.2.6 Results ... 32

5. Summary and future developments .. 35

5.1. Final assessment ... 35

5.2. Potential improvements or developments ... 36

Appendix A ... 37

Estimation of the axis of rotation of sherd pottery: a multistep model based approach 37

A.1 A model of a pottery fragment .. 37

A.2 An estimation of an initial position of the axis of rotation ... 38

A.3 A robust estimation of the axis of rotation ... 39

A.4 An iterative refinement of the estimated rotation axis ... 41

Appendix B ... 42

Circle drawing .. 42

Appendix C ... 44

OpenGL functions .. 44

C.1 glLight ... 44

C.2 glBlend ... 46

Bibliography ... 47

Illustration Table

Illustration 1: (a) Archaeological fragment - (b) site of fracture and - (c) profile section. 10

Illustration 2: Vessel’s profile .. 10

Illustration 3: Classification’s example .. 11

Illustration 4: Set design .. 13

Illustration 5: Vessel’s decoration ... 14

Illustration 6: Squadron’s position .. 15

Illustration 7: ‘Rim Diameter Chart’ ... 15

Illustration 8: ‘Profilometer’ .. 16

Illustration 9: Center’s calculation ... 17

Illustration 10: Amphora.. 18

Illustration 11: Wall fragment ... 19

Illustration 12: Broken vessel .. 20

Illustration 13: 'Sherd' design…………………………………………………………………….……………………………..20

Illustration 14: CGView .. 22

Illustration 15: The main window of CGView showing the mesh, its bounding box and the axes 23

Illustration 16: Vessel’s profile. ... 27

Illustration 17: Reading input vessel’s profile with GCView. ... 29

Illustration 18: Characteristic points of vessel .. 30

Illustration 19: Phiale with their vertices .. 32

Illustration 20: Amphora with their vertices ... 33

Illustration 21: Amphora's reconstruction .. 33

Illustration 22: Phiale’s reconstruction.. 34

Illustration 23: Vessel’s reconstruction with Characteristic Points ... 35

Illustration 24: A model of a radially symmetric object O with the axis of rotation a and its

fragment F: a) surface normals ni, go through the axis a. b) a plane p perpendicular to the axis a

intersects the object O in a circle e and the fragment F in a circular arc e’ with the same center C

lying on the axis. .. 37

Illustration 25: An estimation of the axis of rotation by a circle/line fitting: a) Circle fitting. b) Line

fitting ... 40

Illustration 26: Variation of X and Z coordinates. .. 43

1. Introduction

A large number of ceramic fragments, called “sherds”, are found at every
archaeological excavation. These fragments are documented by being
photographed, measured, and drawn. Archaeological finds are traditionally
grouped by typology. Defined forms and types of vessels form codes which
simplify communication within the scientific field. The drawing and interpretation
of ceramic fragments is very time consuming and costly work, requiring trained
and qualified draftsmen. The drawing in Illustration 1, for instance, is a
representative of many other examples. The drawing is a 2D projection of the
3D object, therefore photographs of the real object have to be added.
Nevertheless, there is no 3rd dimension left in the archive drawing and a
graphic documentation done by hand also increases the possibility of errors.
There may be errors in the measuring process (diameter or height may be
inaccurate), and inconsistencies in the drawing of the fragment or the complete
vessel. However, it is not possible to achieve a consistent style, since it is very
difficult to make a drawing of an object without interpreting it. This leads to a
lack of objectivity in the documentation of the material.

Because the conventional documentation methods were shown to be
unsatisfactory, the interest in finding an automatic solution increased present a
largely automated approach for estimating polynomial models in order to
assemble virtual pots from 3D measurements of their fragments. Our approach
to pottery reconstruction is based on the following main tasks: we start with the
classification of the fragment based on its profile section provides a systematic
view of the material found and allows us to decide to which class an object
belongs. In the reconstruction phase, partial similarities of profiles can be
detected and complete pots can be reconstructed based on the already stored
data in the description At excavations most of the finds are in form of fragments,
of which only a few are still complete. It would be ideal to have one acquisition
system that covers both sorts of objects; however they have different properties
(dimensions, color, and geometry).

Fragments of vessels are thin objects, therefore 3D data of the edges of
fragments are not accurate. Furthermore this data cannot be acquired without
placing and fixing the fragment manually, which is time consuming and
therefore not practicable. Ideally, the fragment is placed in the measurement
area, a range image is computed, the fragment is turned and again a range
image is computed. This led us to the profile reconstruction method, which
allows this kind of fast acquisition.

Traditional archaeological classification and reconstruction is based on the so-
called profile of the object, which is the cross-section of the fragment in the
direction of the rotational axis of symmetry. This two-dimensional plot holds all
the information needed to perform archaeological research.

9

The correct profile and the correct axis of rotation are thus essential to
reconstruct and classify archaeological ceramics. Illustration 1 shows the inner
side of a fragment on the left, its left side (broken surface) in the middle, and
the profile section generated automatically on the right. We follow the profile
approach, as used by archaeologists for decades, to reconstruct complete
vessels out of fragments.

Illustration 1: (a) Archaeological fragment - (b) site of fracture and - (c) profile section.

Illustration 2: Vessel’s profile

10

2. Archaeological ceramics design

2.1 Introduction

The classification of ancient vessels of pottery is a fundamental part of the study
of history.

Archaeologists around the world do this work using only hand tools like a caliber
and a ruler. It is clearly understandable that the result is not perfect and the
waste of time doing it, especially when it works with hundreds of pieces, is
remarkable.

The result of this classification procedure is a schematic design of the vessel
which remarks the most important characteristics of the same thing, (see
Illustration 3).

Illustration 3: Classification’s example

11

The design complements the cataloguing of materials, it is useful to the
typology’s articulation, accompanies and explains in the text’s edition phase, to
replace it with whatever concerns the morphological description.

In every case, an object’s drawing must be comparable with other created
within the same research, but also outside, and must be made according to
unique criteria that would make its understanding universal.

This requirement meets the articulation of a set of rules meant to ease the
design, freeing it from heavy esthetics characterizations (the real picture the
object is provided to best right from a photograph) and to give prominence to
morphological information.

The designer makes mediation and chooses to represent some details rather
than others (delete certainly any "recent" traces derived from the deposition or
withdrawal of the object; the photography however doesn’t document the state
without any type of interpolation).

So, it’s essential an understanding of the materials types and manufacturing
techniques in order to understand the object before drawing it.

The current trend is to free the drawing surface by redundant information (for
example the conjunction lines of fragments) to emphasize the overall grade of
vessel’s integrity, the moldings and the lines resulting from shaping (lathe lines,
tracks cue, fingerprints etc.).

2.2 Design settings

The ceramic’s design involves transposing a three-dimensional object into a
plane, through an orthogonal projection and by the paper’s organization in
areas intended to clarify information about the different parts of a pot.

There will be primary information, as basic and indispensable, intended to
exemplify the form (one or more sections of the ceramic body) and size
(diameter of the edge and/or bottom, height), and secondary information —
because it depends on the first and to add more data — documenting the
perspective view, decoration or other interventions which are on the vessel’s
surface.

Switching to 2D drawing involves setting one (fragments) or two (in the case of
artifacts that preserve all the profile) horizon lines (horizontal and then parallel if
the pot is not deformed) and an orthogonal line, median, which divides the
space-paper in two areas: the left one is for the design of the vessel section and
the eventual information on the intern surface, the right, however, is intended to
outline’s perspective view of the external surface.

12

Illustration 4: Set design

The distance between the two horizon lines is given by the pot’s height.

The above and below spaces of the horizon of upper and lower lines can be
used for further information on special particular vessel’s conformations or
decorations and outer bottom’s surface, (see Illustration 5).

13

Illustration 5: Vessel’s decoration

Horizon lines have the function to determine the object’s inclination. The design
must be oriented respect to a horizontal plane, must document the profile in a
point of maximum conservation, but can't be in any reconstructing way.

2.3 Whole vessel’s designs

The design starts from the section. These facts, invisible especially in the
presence of integral vessels, derive from the sum of the exterior and interior
profiles, detected along a vertical axis which ideally cuts the ceramic body. In
the vessel’s case, or preserving intact the whole profile, drawing was uses three
fundamental data: the external measure of upper and lower diameters, and of
the height. The profile’s inclination is given by the difference between the two
diameters. The drawing normally proceeds from bottom to top: It’s set the lower
horizon line, then the height and the upper horizon line (parallel to the bottom if
the vessel doesn’t have deformations).

Diameter measurements are easily detectable with a ruler in the whole vessel
or that conserve the edge for a superior portion to the middle circumference.
The height is also measured with an squadron or with a ruler, counting on some
precautions: in paper’s transposition on detected measure (that it’s obtained
supporting the carpenter’s square on the table vertically, tangent to the point of
maximum vessel expansion) we must count on the space more or less wide
than the instrument presented before the start of measure marks; the height
must be detected in correspondence with the superior border and not of the
external border; squadron must be placed with 90° a ngles, (see Illustration 6).

14

Illustration 6: Squadron’s position

If the circle is preserved for a lower portion in the middle is necessary to rebuild
the diameter’s measure. This operation can be done using a “Rim Diameter
Chart” (paper prepared with a series of concentric circles in a distance of 5 or
10 mm), (see Illustration 7).

Illustration 7: ‘Rim Diameter Chart’

Or using a geometric application which allows to rebuild the axes at least two
strings to the circumference arc (Theorem: in a circle, the axis of a string
passes through the Centre), axis that determine, at the intersection point, the
center.

15

Then it’s reported on the paper the external or internal circumference’s arch
conserved (making to join the vessel’s edge to the paper by using a
“profilometer”), (see Illustration 8).

Illustration 8: ‘Profilometer’

Are identified on the designed arc at least three well-preserved points (three
unaligned points are passed by one circumference) and trusted then (A, B, C)
and with a compass tracing its circumferences (the arch opening of the
compass is indifferent); we draw the lines that pass in the circle’s intersection
points (corresponding to axes of strings AB, BC) and the meeting point
determines the center, (see Illustration 9).

16

Illustration 9: Center’s calculation

In the presence of a small pot, the three basic measures are sufficient to
complete the drawing of the profile: this operation is essential to the use of a
profilometer, that allow to detect with extreme precision the imprint of the object
(in order not to ruin the surface of the vase is good to push towards the needles
the piece, rather than the opposite).

In the presence of vessel larger than the length of the profilometers you must
detect other points on the external surface (more or less corresponding to the
highlights: maximum expansion of the abdomen, moldings). As for the
measurement of height, this operation is carried out with a team placed in the
vertical position, tangent to the pot: you can obtain the coordinates (x, y) to
report on paper, taking into account the arrangements already exposed.

The design of internal profile is run with the profilometer, having noted with a
caliber and in several places the thickness of the wall and the base. In the
presence of "closed" pot it’s possible that the profilometer is not usable, if not
perhaps for a short stretch corresponding to the mouth: the drawing of the
profile inside can be accomplished through a thick pad thickness variation
ceramic body, (see Illustration 10).

17

Illustration 10: Amphora

2.4 Fragments design

A fragment is drawn if it contains useful information for a morphological or
decorative repertoire classification. Must then submit an edge or a base
retained enough for the purposes of determining the orientation.

The design of a wall fragment (designed for the presence of a decoration or a
handle of type note) can be done by using, for the determination of its
inclination in space, the lines of lathe, the hull or any molding, elements that, if
enough preserved, also allow the reconstruction of the diameter.

The design of a fragment sets up a single horizon line, corresponding to the
edge or to the bottom and proceeds from bottom to top or from top to bottom
as a result of the preserved portion.

For the design of a bottom the procedure will be very similar to that adopted for
a whole vessel: the diameter measure will be rebuilt and the given diameter will
be reported on the paper corresponding to an horizon line in the lower part of
the paper; the vertical medium line will be drawn corresponding to the object's
axis for a height equivalent to the degree of the fragment conservation.

18

The inclination will be calculated supporting the bottom on the paper, so its
outside diameter matches the designed point in a way that the supporting surface
is kept adhered to the table. With a squadron the measures corresponding to the
maximum conservation point can be known (coordinates).

The external profile can be now done with the help of profilometer. The
thickness can be registered easily also with a simple scrolling caliber.

Illustration 11: Wall fragment

For the design of an edge it will be necessary to overturn the procedure: the
measures will be taken from the top. Then it will be drawn an horizon line in the
upper part of the paper and the midline will be developed with a height
corresponding to the maximum conservation of the fragment. The first useful
data is, however, the reconstruction of the diameter measure that will be given
on the paper on the horizon line.

The following measures (coordinates of one or more points) and the
fragment's inclination will be detected by supporting the edge on the paper, so
its outer diameter matches the point designed in a way that the supporting
surface is adhered to the table.

With a squadron can be detected the measures (coordinates) corresponding to
the maximum point of storage required on the paper.

19

Illustration 12: Broken vessel

Fragments of a diameter not determinable. The degree of conservation impact
not only on possibility of identifying the size of a pot (with a possible error
identification within the same functional form anyway), but also on the
determination of its inclination and its functional form (a pot becomes a cup a
dish) or, at best, its typology.

The graphic criteria for representing fragments which, while allowing the
recognition of an inclination, do not allow the reconstruction of the diameter,
provides the suppression of median line, (see Illustration 13).

Illustration 13: ‘Sherd’ design

20

3. CGView

3.1 Introduction

As the interest in Computer Graphics increased at the University of Cagliari, the
need for tools that allowed to experiment and study the topic became stronger.
While such tools, as MeshLab or OpenFlipper, are free, versatile and offer a
great number of possibilities for the development of mesh processing
algorithms, their complexity makes them quite unfriendly to the newcomer, not
allowing to easily lay hands on every aspect the term Computer Graphics
covers; moreover, teaching can benefit from tools that allow a direct
experimental approach, where the student has to deal with simple codes with
everything in sight, with no interfaces or library calls that can obscure the whole
functioning, thus allowing to endure a trial and error approach when modifying
the program code to see if the results agree with what expected.

Finally, the recent research activities carried on by the group focused on
aspects that went outside the scope of the mere Mesh Processing; these
reasons brought to the development of a simple and versatile family of
applications where each student or researcher can focus directly on the goal of
his work, from rendering to high-level data visualization, without having to deal
with the complex infrastructures that advanced tools as the ones cited before
are made of.

The need to coordinate the works of many people and help students to get
acquainted with Computer Graphics problems has brought to the development
of light, versatile and easily usable tools for visualization and processing.
Gathered under the name of CGView, these projects form a continuously work-
in-progress framework that helps the programmer to easily focus on each
aspect of the problem, from accessing GPU buffers to the visualization of data.
The CGView family is focused on two main goals: giving the student the
possibility to view and explore the 3D environment with direct understanding of
the code involved, and allowing a programmer to develop a mesh processing
algorithm without having to deal with complex interfaces.

21

Illustration 13: CGView

Based on the VCG library for mesh processing and the Qt Toolkit for its
interface, CGView is capable of opening and managing other kinds of data such
as voxel grids or topological skeletons.

The application can visualize a mesh in every usual presentation as wireframe,
points, flat or smooth shaded and can add materials into rendering. Moreover it
can visualize all the main information about the mesh, such as bounding box,
axes, normals, etcetera. However, as said before, the main goal of the
application is to give the student the possibility to experiment and easily add its
own work into the program, so the features are in constant upgrade.

As for mesh processing, the application takes advantage of the methods
provided by the VCG library along with some added algorithms developed by
researchers and students using one of the satellite applications.

22

Illustration 14: The main window of CGView showing the mesh, its bounding box and the axes

3.2 Objects and functions

3.2.1 Point

A point is a set of 3 values (x, y, z) where these values indicate a point or a
vector in the Cartesian space.
A point is an object that is declared as follows:

CGPoint < name > point;

• P [i] returns the i-th value of item with which goes from 0 to 2. Values

are double.
• P. X () return the point x. Is equivalent to P [0].
• P. Y () return the point's y. Is equivalent to P [1].
• P. Z () return the point's z. Is equivalent to P [2].
• P. Norm () returns the norm of P.
• P. Normalize(); normalizes P.

23

Some operations are also defined on these objects. If A and B are objects of
type CGPoint and k is a scalar, then:

• P = A + B; P is the vector sum of A and B. P = (Ax + Ay + Bx, By, Az

+ Bz). The same effect is obtained by P [0] = A [0] + B [0]; P[1] =
• P =-P; Reverses P. = (Px, Py, Pz--).
• P = A * k; P is the result of the scalar product between A and k. P

 = (Ax, Ay * k * k, Az * k).
• P = A ^ B; P is the result of the wedge product of A and b. P is

orthogonal to vector A and b.
• A = B = returns true if the two points are equal.

There are also functions that work with points:

• vcg:: Distance (CGPoint, CGPoint b) that returns the distance

between 2 points (double).
• vcg:: Angle (CGPoint, CGPoint b) that returns the angle

between 2 vectors (double).

If you need to rotate a vector will define the rotation matrix. To do this you have
to (if not present between objects in the namespace vcg) include the 3 x 3
matrix:
include <vcg/math/matrix33.h>

Now you can declare an object vcg:: Matrix33 <double> (or vcg:: Matrix33d).
This object is like a 3 x 3 array, so you can look for an item by using the
indexes:
…
vcg:: Matrix33d rot;
…
rot [0] [0] = ...//element 0 row and 0 column
rot [1] [2] = …//element 1 and line 2 column
…
For a rotation:
rot. SetRotateDeg (<valore>, axis)
Depending on whether you want a rotation in degrees or radians, generic
around axisvector. Once set the matrix you can use P = rot * A; that assign to P
the result of A rotation.

3.2.2 Vertex

The vertex is an evolution of type CGPoint. Is defined CGVertex type and
consists of some additional features compared to CGPoint. Firstly a vertex has
both a position in space that a normal, then a color and a whole host of more or
less useful flag. Is declared like this:

CGVertex < name > Vertex

• V. P () return a CGPoint, indicating its position in space
• V. N () return a CGPoint, indicating his normal

24

• V.C () return the color as object vcg:: Color4b (). Is a vector

containing the values RGBA color.
• V. SetS () set the vertex selected.
• V. ClearS () set the vertex as unselected.
• V. IsS () returns true if the vertex is selected.
• V. SetV () set the vertex as visited.
• V. ClearV () set the vertex as unvisited.
• V. (IsV) returns true if the vertex is visited.
• V. P () = A; assigns as the position at the vertex V
• V. N () = A; assigns as normal vertex V
• V. C () = C; assigns the color C at the vertex V.

3.2.3 Face

The faces are nothing more than a collection of 3 vertices, one normal, one
color and of various flags. A face is defined as type CGFace. If F is a CGFace,
then:

• F. P (i) return the coordinates of the i-th vertex (CGPoint) ranging

from 0 to 2.
• F. V (i) return the i-th vertex (a CGVertex), which goes from 0 to 2.
• F. N () return the normal of the face (CGPoint).
• F. C () return the color of the face (Vertex).
• F. FFp (i) returns a pointer to the i-th face adjacent to F.
• F. SetS () sect face as selected.
• F. ClearS () sect face as unselected.
• F. IsS () returns true if the face is selected.
• F. SetV () sect face as visited.
• F. ClearV () sect face as unvisited.
• F. (IsV) returns true if the face is visited.

3.2.4 Mesh

A mesh is a collection of vertices, edge and triangles. In VCG has no concept of
edge in the strict sense of the term (there is an object of type Edge), for which
mesh are formed only from lists of triangles and vertices. A mesh is defined as:

CGMesh < name > mesh;
Essential attributes that need to know this kind of object are few.
If for example we M object of type CGMesh, then:

• M.vn return the number of vertices in the mesh. Is an

integer.
• M. vert [i] return the i-th vertex. The vertex is an object

type CGVertex.
• M. fn return the number of faces in the mesh. Is an integer.
• M. face [i] return the i-th face. The face is an object type

CGFace.
• M. bbox return the bounding box of the mesh in the form

of vcg:: Box3 object.
25

The vertices and faces in the mesh should be organized on the vector (i.e.
std::vector), M.vert.begin () returns the iterator to the first position of the vector,
while M.vert.end () at the end. The same things apply to faces

Through the CGMesh class you can then declare some data types, including:

• CGMesh:: VertexPointer pointer to vertex.
• CGMesh:: FacePointer pointer to the face.
• CGMesh:: VertexIterator iterator for the vector of vertices.
• CGMesh:: FaceIterator iterator for the vector of faces (or a

vector of faces).
• vcg:: tri:: Allocator <CGMesh>:: AddVertices

(<mesh>, number of vertices);
• vcg:: tri:: Allocator <CGMesh>::AddFaces (<mesh>,

number of faces);

3.2.5 Bounding Box

A bounding box is defined in VCG as an object of type Box3 (vcg:: Box3). The
inclusion to do in order to use the box is as follows:
include <vcg/space/box3.h>
Now you can instantiate objects of type Box3 and use their functions. If B is an
object of type Box3 its main functions are the following:

• b.min is the CGPoint the minimum bounding box
• b.max is the maximum of CGPoint bounding box
• b. Center () returns a CGPoint of Center of the bounding box.
• b. Diag () returns the length of the diagonal of the bounding

box. The type of the return value is dependent on the type of
bounding box.

• b. DimX () returns the length of x in bounding box.
• b. DimY () as above, but for y
• b. DimZ () as above, but for the z
• b. setNull () set the box as a null.
• b. Add (CGPoint) change the bounding box in agreement with

the point passed as a parameter. If the point is within the
bounding box, nothing happens.

• b. Add (Box3) change the bounding box in agreement with the
box passed as a parameter. If the box is within the bounding
box, nothing happens.

• b. IsIn (CGPoint) returns a Boolean. True if the point is inside
the bounding box, False otherwise. The extremes of box are
included. b. IsInEx (CGPoint) returns a Boolean. True if the
point is inside the bounding box, False otherwise.

• b. Collide (Box3) returns True if the two boxes intersect.
• b. P (i) returns the i-th vertex of the box. The vertices are

CGPoint and go 0 to 7.
• b. Volume () returns the volume of the box.

26

4. The project

4.1 Background

The project is an extension of the thesis of student Daniele Zuddas (Università
degli studi di Cagliari). His thesis tried to implement a system to obtain the
profile of a vessel in 2 dimensions (see Figure 16) from a real vessel with
the help of a laser.

Illustration 15: Vessel’s profile.

The project’s objective is, from the output of Daniele Zuddas’s thesis
(vessel’s profile in 2D), to do a virtual reconstruction of the original vessel in 3
dimensions using the graphics visualization software CGView.

4.2 Software

The software we are working with is the graphic’s viewer CGView. Based on
the VCG library for mesh processing and the Qt Toolkit for its
interfaceand developed by Computer Graphics Group of the University of
Cagliari. The goal of the project consists on making a plugin of this viewer to
visualize a vessel in 3D from its profile. This plugin is called “Lathe”, (see
Section 3, CGView).

4.2.1 Premises

One of the problems of automatic representation of vessels is the infinite
variety of vessel’s types that exist and the particularity that each one of them
can show. We must not forget that these pieces are made by hand, so they
may have unique characteristics, and that they are really complex for the
archeologist to represent them.

27

For this reason, this version of the representation’s automatic system has been
made by having in mind these premises:

• The vessel is completely circular.
• Particular irregularities are not

represented.
• The decoration is ignored.

These premises decrease a lot the complexity of the project, and its typology
can be visualized more clearly.

4.2.2 Functions implemented

To modify our Mesh or input, they must be created new vertices and create
connections between them (faces). To achieve this, some functions have been
implemented:

• InitialRadix: Function to determinate the vessel’s radius. It will normally
be half the height and half profile.

• DrawBase: Function to draw vessel’s base, creating a number of faces
at the base so it stays closed.

• AddVertices: Function to create the new vertices of our Mesh. Add

360 vertices for each one which was in the beginning, to make them
rotate 360 degrees to form a circle entire.

• AddFaces: Function to create the different faces of our new Mesh. A

face is formed by the union of 3 vertices.

• UpdateBoundingBox: we need to add with CGView’s function
"bbox.Add() all vertices that were created for our mesh".

• AdequateLight: To have a good visualization of our Mesh, we will

disable the light with “disable (GL_LIGHT)” function and enable
BLEND to have a good view of the vessel.

• CaracteristicPoints: Function to calculate the diferents points where

the vessel’s curvature changes, (see 4.2.4 Characteristics points).

28

4.2.3 Reading input

The reading of the input is made from a “.ply” file which represents a number of
points in space that draw a vessel’s profile, representing the output of Daniele
Zuddas’s thesis. Knowing that this profile is in 2D we will work on the plane (X,
y), leaving the Z coordinate to 0.

.Ply format data are formed in the following way:

ply
format ascii 1.0
comment created by MATLAB
ply_write element vertex 200
property float x
property float
and property
float z
end_header
-4.460273 -26.451251 0
-4.467952 -26.267871 0
-4.475163 -26.085980 0
-4.477052 -25.919093 0
-4.479254 -25.751337 0
...

When we open the .ply file with CGView it’s showed the initial vessel’s profile,
(see Illustration 17).

Illustration 16: Reading input vessel’s profile with GCView.

29

4.2.4 Characteristic points

The calculation of profile’s characteristic points problem is a trivial problem.
We can’t calculate the discontinuity points in a mathematic sense, since there
is no way to calculate exactly when the curve makes an interesting change.

Another factor making harder this complex calculation is that vessels are
made by hand, so they don’t follow any mathematical rule and can be highly
irregular. The input is a vector of points and not a mathematic function so
it’s more difficult to make the analysis. The characteristic point concept is
questionable and relative to archeologist’s experience who follows the design
or the context where the vessel has been found.

For these reasons it has been decided to make the difference between the
characteristic points on an empirical way. This methodology has the advantage
of being simple and having the safety of working pretty well for certain types of
interest points. But it has the disadvantage that since it’s not a strong
mathematical theory, it might fail for some specific profiles.

Some typical characteristics in a vase are the following ones, (see
Illustration 18):

• EP: Vessel’s limits: high and low points of the object. These
are the first vertices, the last ones and the midpoint on
the Y coordinate.

• VT: Vertical tangents: points of maximum or minimum
curvature.

• IP: Indexing points: points where the curvature’s meaning
changes.

• CP: Corner: exchange points of pronounced curvature.

Illustration 17: Characteristic points of vessel

30

4.2.5 Plotting

To see our vessel in 3D, we must revolutionize each one of the profile’s vertices
(input) regard an axis of rotation and a certain radius. To assign this rotation
center, we must do a translation on the x-axis of the vessel’s base. The value of
this translation will be the vessel’s radius (since we have no details about the
original radius and there are many different types of vessels, we have provided
the initial radius as half of its height). Once determined the radius, it must be
done a revolution of all profiles vertices respect to the axis of rotation this way:

For each profile vertices create a new vertex while keeping the coordinate Y but
modifying the X and Z, (see Appendix B).

The faces creation is done by putting together 3 vertices (triangular faces).Each
face must have a color with the function vcg:Color4b(), this function must have
4 parameters Float type in RGBA format. A variant of the 'brown' color has been
selected for the faces with the values in RGBA = (215,180,50,0). If the vertex is
a characteristic point, we proceed to draw the face with black color RGBA =
(0,0,0,255) to differentiate it from the other points.

Once created all vertices and their matching faces we proceed to draw the
vessel’s base creating different faces with the lower object’s vertices.

When the development of the object it’s done, the BoundingBox gets updated,
adding all vertices created with the function ' bbox.Add()'.

Finally, the light and camera parameters will be changed to see more clearly the
resulting object with the GL_BLEND() and GL_LIGHT() functions, (see
Appendix C).

31

4.2.6 Results

The plugin ‘Lathe’ generates a 3D image where you can view the reconstructed
vessel with its corresponding characteristic points. CGView allows viewing only
the vertices (see illustration 19 and 20) or with all their different faces drawn
(see illustrations 21 and 22) with their corresponding color.

To see the plugin’s operation, we must run the CGView software and open the '.
ply' file with the vessel’s profile to be treated. Once opened, select the tab
Tool - > Lathe to run our plugin.

Illustration 18: Phiale with their vertices

32

Illustration 19: Amphora with their vertices

Illustration 20: Amphora's reconstruction

33

Illustration 21: Phiale’s reconstruction

.

34

5. Summary and future developments

5.1. Final assessment

This first software’s version solves successfully the initial problem proposed,
and his design is in good quality to visualize correctly the basic structure of
how the original vessel would be given his profile. The function of the
characteristic points calculation isn’t fully developed and may give some
errors to detect points in some special vessel.

Illustration 22: Vessel’s reconstruction with Characteristic Points

35

5.2. Potential improvements or developments

A possible upgrade will be modifying the characteristic points function to give
a correct result for all types of vessels and all the characteristics points.
The calculation of vessel’s base, which we have specified that are a perfect
circle, can also be improved because there’re vessels whose bases are
elliptical.

It should be implemented a system which would make a circular or elliptic
representation of the vessel depending on the profile. The vessel's radius
revolution should be stipulated as well since with only the profile's
parameters it's impossible to determinate which one is the original vessel's
radius.

Another possible software development is creating a database to
register different types or families profiles, so we can obtain more details
about the shape, dimensions, decoration or material from a profile, and obtain
more entry data to make a more realistic 3D representation. With this
database we could do statistical studies of different vessel's types that exist
and recognize their specific properties.

An plugin improvement it’s to do the vessel’s reconstruction from a vessel's
piece in 3D (sherd), where the input should be a “.ply” format file but with
real data from the 3 coordinates X, Y and Z. If we have data of the
vessel’s curvature, it’s possible to make a real estimation of the rotation axis
and his radius (see Appendix A).

There are many evolutions and different changes that can be done to the
plugin and the project, but for now is expected to create a second version
that deals with the classification problem of archaeological ceramics through
others software development faster and accurate than this version to provide
an useful tool for those that are working in the study of the history.

36

Appendix A

Estimation of the axis of rotation of sherd pottery: a multistep

model based approach

A.1 A model of a pottery fragment

During the classification of a pottery fragments, archaeologists assume that
original pots were made on a potter’s wheel. Regarding this constraint, ancient
pots can be modeled as radially symmetric objects. Such objects and its
fragments have two important geometrical properties demonstrated in
Illustration 26:

a) Normals of the object/fragment surface go through the axis of

rotation

b) A plane perpendicular to the rotation axis intersects the object in a
circle and the fragment in a circular arc with the same center lying
on the axis

Under the assumption that the original pots were radially symmetric, fragments
of archaeological pottery can be described by the same model. The geometrical
properties of a fragment do not depend on its position, thus they can be used
for an estimation of an appropriate axis of rotation. And this is the main idea of
the estimation process proposed in the following sections.

Illustration 23: A model of a radially symmetric object O with the axis of rotation a and its fragment F: a)

surface normals ni, go through the axis a. b) a plane p perpendicular to the axis a intersects the object O

in a circle e and the fragment F in a circular arc e’ with the same center C lying on the axis.

37

A.2 An estimation of an initial position of the axis of rotation

In the beginning of the estimation process, an initial position of the axis of
rotation is determined. The estimation assumes radial symmetry of ancients
pots and exploits the first property of radially symmetric objects: surface
normals go through the axis of rotation of the object. There exist two different
approaches based on this fact: Hough transform and numerical optimization.
The Hough transform inspired method is robust against outliers, but it lacks in
speed and accuracy. Regarding that, an optimization approach is used for the
initial estimation. The initial position of the axis is obtained using a standard
least squares approach as the line which minimizes the following objective
function:

(1)

Where M is the number of surface normals and d(ni,a) is the Euclidean distance
between the normal ni and the axis a. The distance can be expressed as the
length of the transversal line between the particular normal ni = Xi + ti · Ni given
the point Xi and the normal direction Ni, and the rotation axis a = Xo + to · No
given by the point Xo and the normal direction No:

(2)

Where the operators · and X denote dot and vector product of two vectors,
respectively, and ||.|| is the length of a vector. If the normals Ni and No are
parallel, the equation is reduced to:

(3)

The optimization problem is solved for the unknown rotation axis a given by the
point Xo and the normal direction No. It can be shown that the optimal position
of the point Xo depends on the direction No. Regarding that, an initial position of
the axis of rotation can be determined by an optimization process which runs
over only two dimensional searching space. Such estimation is effective, fast
and reliable.

38

A.3 A robust estimation of the axis of rotation

In the initial estimation step, a position of the axis of rotation is estimated by a
direct least squares minimization. This type of optimization approaches is
known to be sensitive to outliers. Statisticians have developed various sorts of
robust statistical estimators. The most relevant class for an estimation of
parameters is so called M-estimators. Mathematical theory of M-estimators is
available in many books. The basic idea of robust estimation is to reduce the
influence of outliers by replacing the squared residuals in the standard
least squares minimization

(4)

by another less increasing function p of the residuals, yielding

(5)

Instead of solving directly, the minimization can be implemented as an iterative
re-weighted process

(6)

Where w is so called weight function and the superscript (k) indicates the
iteration number. There exist a wide range of weight functions with different
properties. A very popular among statisticians is Huber’s function:

(7)

Where is a robust standard deviation of residual errors and c is a tuning
constant with value c = 1.345. Another widely used weight function is Turkey’s
biweight

(8)

39

with the tuning constant c = 4.6851. The robust standard deviation of residual
errors can be estimated as

(9)

An application of the M-estimators for a robust determination of the axis of
rotation is straightforward and it leads to the following algorithm:

1. Get an initial position of the axis a = Xo + to · No by the direct least squares
minimization of Eq. 1 with distances given by Eq. 2 and Eq. 3

2. Use distances from the currently estimated axis a as residual = d(ni, a)

3. Estimate the robust standard deviation of the residual (Eq. 9)

4. Compute weights from residual by the chosen weight function w (for
example Eq.7 or Eq. 8)

5. Estimate a new position of the axis ã which minimizes the weighted least
squares problem Eq. 6

6. Convergence check: if, set a = ã and go back to the step 2

Illustration 24: An estimation of the axis of rotation by a circle/line fitting: a) Circle fitting. b) Line fitting

As can be seen, the algorithms an iterative reweighted modification of the initial
direct least squares minimization. Regarding that, it can be implemented very
easily on top of the original estimation. The application of M-estimators
preserves efficiency and reliability of the computation and adds robustness
against outliers in the data and stability to systematic errors during processing
of fragments.

40

A.4 An iterative refinement of the estimated rotation axis

The previous estimation steps are based on property of surface normals. The
problem is that the normals are typically not known in advance and they have to
be determined first. During the determination, various factors (such as noise,
outliers and systematic errors) degrade estimates of the normals and,
consequently, the whole estimation of the axis of rotation. Regarding that, the
position of the axis can be further improved by another, nonnormal based,
estimation method.

To estimate the axis of rotation of radially symmetric objects without knowledge
on their surface normals, the second property of such objects can be exploited:
a plane perpendicular to the rotation axis intersects the object in a circle and its
fragment in a circular arc with the same center lying on the axis. In our case
only an approximation of the axis is known from the previous estimation steps,
the original method cannot be used directly. Instead, the axis of rotation is
improved by the following iterative refinement process:

1. Get an initial position of the axis of rotation a by the optimization approach
described in the previous sections

2. Generate a set planes pi perpendicular to the axis a.

3. For every plane pi:

a) Detect an intersection between the plane pi and the fragment F
b) Fit the detected intersections by a circle ci
c) Estimate a center Ci of the fitted circle ci

4. Estimate a new position of the axis ã as the line which approximates the
centers ci.

5. Convergence check: if, set a = ã and go back to the step 2.

The algorithm assumes that the detected intersections are circular arcs. With
respect to the fact that the position of the axis of rotation can be inaccurate in
the beginning, such assumption can be wrong. Thus the algorithm has to cope
with distorted intersections and their influence on the circle and line fitting
phases (steps 3b and 4).

Robustness of these fittings is achieved by an application of M-estimators in the
same straightforward way as was used for the robust estimation of the axis of
rotation described in the previous section.

41

Appendix B

Circle drawing

A circle is a simple shape of Euclidean geometry consisting of those points in a
plane that are a given distance from a given point, the center. The distance
between any of the points and the center is called the radius.

Circles are simple closed curves which divide the plane into two regions: an
interior and an exterior. In everyday use, the term "circle" may be used
interchangeably to refer to either the boundary of the figure, or to the whole
figure including its interior; in strict technical usage, the circle is the former and
the latter is called a disk.

A circle can be defined as the curve traced out by a point that moves so that its
distance from a given point is constant.

To create a circle from a vertex with our software first of all I am going to create
a typedef to hold our circle properties as we call them.

typedef struct
{
This will hold the x values as we need them
float x;
This will hold the y values as we need them
float y;
Call it CIRCLE
}CIRCLE;

Then I am setting the property circle to act like the typedef CIRCLE
CIRCLE circle;

Now for the meat of this tutorial, the circle creation function
The properties this takes are:
k – the translation on the y axis
r – the radius of the circle
h – the translation on the x axis

void createcircle (int k, int r, int h) {
Now we begin drawing our lines
glBegin(GL_LINES);
Here we are setting up the vertices all in one line function; this sets every 2
vertices to a line.

First we begin our loop, this loop will cycle through, constantly changing our X
and Z values for our lines. It cycles through until it reaches 360, increasing in
intervals of 1
for (int i = 0;i < 360;i++)
{

42

Now to set up the current x value that we need for our vertex I am setting it to
the radius of the circle, times by the cosine of the current value of i, then I
amtaking h to translate it:
circle.x = r * cos(i) – h;

Then to set up the current y value that we need for our vertex, I am setting it to
the radius of the circle, times by the sine of the current value of i, then I am
adding k to translate it:
circle.z = r * sin(i) + k;

Then I am drawing the vertex:
glVertex3f(circle.x + k, circle.z – h,0);

Now for the second part of the line, I am doing the same as above, only I am
moving it 0.1 units so that I am not down to points. This also Lowers the chance
of any holes occurring in the circle:
circle.x = r * cos(i + 0.1) – h;
circle.z = r * sin(i + 0.1) + k;

Then I am drawing the vertex:
glVertex3f(circle.x + k,circle.z – h,0);
}
glEnd();
}

Illustration 25: Variation of X and Z coordinates.

43

Appendix C

OpenGL functions

C.1 glLight

glLight sets the values of individual light source parameters. Light names are
a symbolic name of the form GL_LIGHT i, where i ranges from 0 to the value
of GL_MAX_LIGHTS - 1. pname specifies one of ten light source
parameters, again by symbolic name. params is either a single value or a
pointer to an array that contains the new values.

To enable and disable lighting calculation, call to glEnable and glDisable
with argument GL_LIGHTING. Lighting is initially disabled. When it is enabled,
light sources that are enabled contribute to the lighting calculation. Light
source i is enabled and disabled using glEnable and glDisable with argument
GL_LIGHT i.

The seven light parameters are as follows:

GL_AMBIENT

params contains four integer or floating-point values that specify the ambient
RGBA intensity of the light. Integer values are mapped linearly such that the
most positive performable value maps to 1.0, and the most negative
performable value maps to -1.0. Floating-point values are mapped directly.
Neither integer nor floating-point values are clamped. The initial ambient light
intensity is (0, 0, 0, 1).

GL_DIFFUSE

params contains four integer or floating-point values that specify the diffuse
RGBA intensity of the light. Integer values are mapped linearly such that the
most positive performable value maps to 1.0, and the most negative
performable value maps to -1.0. Floating-point values are mapped directly.
Neither integer nor floating-point values are clamped. The initial value for
GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial value is (0, 0, 0, 1).

GL_SPECULAR

params contains four integer or floating-point values that specify the specular
RGBA intensity of the light. Integer values are mapped linearly such that the
most positive performable value maps to 1.0, and the most negative
performable value maps to -1.0.Floating-point values are mapped directly.
Neither integer nor floating-point values are clamped. The initial value for
GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial value is (0, 0, 0, 1).

44

GL_POSITION

params contains four integer or floating-point values that specify the position of
the light in homogeneous object coordinates. Both integer and floating-point
values are mapped directly. Neither integer nor floating-point values are
clamped. The position is transformed by the modelview matrix when glLight is
called (just as if it were a point), and it is stored in eye coordinates. If the w
component of the position is 0, the light is treated as a directional source.
Diffuse and specular lighting calculations take the light's direction, but not its
actual position, into account, and attenuation is disabled. Otherwise, diffuse and
specular lighting calculations are based on the actual location of the light in eye
coordinates, and attenuation is enabled. The initial position is (0, 0, 1, 0); thus,
the initial light source is directional, parallel to, and in the direction of the -z axis.

GL_SPOT_DIRECTION

params contains three integer or floating-point values that specify the direction
of the light in homogeneous object coordinates. Both integer and floating-point
values are mapped directly. Neither integer nor floating-point values are
clamped. The spot direction is transformed by the upper 3x3 of the modelview
matrix when glLight is called, and it is stored in eye coordinates. It is significant
only when GL_SPOT_CUTOFF is not 180, which it is initially. The initial
direction is (0,0,-1).

GL_SPOT_EXPONENT

params is a single integer or floating-point value that specifies the intensity
distribution of the light. Integer and floating-point values are mapped directly.
Only values in the range [0,128] are accepted.

Effective light intensity is attenuated by the cosine of the angle between the
direction of the light and the direction from the light to the vertex being lighted,
raised to the power of the spot exponent. Thus, higher spot exponents result in
a more focused light source, regardless of the spot cutoff angle (see
GL_SPOT_CUTOFF, next paragraph). The initial spot exponent is 0, resulting
in uniform light distribution.

GL_SPOT_CUTOFF

params is a single integer or floating-point value that specifies the maximum
spread angle of a light source. Integer and floating-point values are mapped
directly. Only values in the range [0,90] and the special value 180 are accepted.
If the angle between the direction of the light and the direction from the light to
the vertex being lighted is greater than the spot cutoff angle, the light is
completely masked. Otherwise, its intensity is controlled by the spot exponent
and the attenuation factors. The initial spot cutoff is 180, resulting in uniform
light distribution.

45

C.2 glBlend

In RGBA mode, pixels can be drawn using a function that blends the incoming
(source) RGBA values with the RGBA values that are already in the frame
buffer (the destination values). Blending is initially disabled. Use glEnable and
glDisable with argument GL_BLEND to enable and disable blending.

glBlendFunc defines the operation of blending when it is enabled. sfactor
specifies which method is used to scale the source color components. dfactor
specifies which method is used to scale the destination color components. The
possible methods are described in the following table. Each method defines
four scale factors, one each for red, green, blue, and alpha. In the table and in
subsequent equations, source and destination color components are referred to
as (Rs,Gs,Bs,As) and (Rd,Gd,Bd,Ad). The color specified by glBlendColor is
referred to as (Rc,Gc,Bc,Ac). They are understood to have integer values
between 0 and (kR,kG,kB,kA), where and (mR,mG,mB,mA) is the number of red,
green, blue and alpha bitplanes.

Source and destination scale are referred to as (sR,sG,sB,sA) and (dR,dG,dB,dA).
All scale factors have range [0,1].

46

Bibliography

[1] T.Davis, J.Neider, and M.Woo, OpenGL Programming Guide. Addison-
Wesley, 1993.

[2] D.Zuddas, “Clasificazione automatica di cocci di vasi antichi”. Cagliari, 2009

[3] M.Kampel and R.Sablatnig, “Computer aided classification of ceramics” in
VAST’00, 200.

[4] F.Melero, A.León, F.Contreras, and J.Torres, “A new system for interactive
vessel reconstruction and drawing” April 2003

[5] C.Maiza, “Classification d’objets de révolution: application aux poteries
sigillées” . Toulouse, December 2008

[6] Mara & Sablating. “Determination of ancient manufacturing techniques of
ceramics by 3D shape estimation”. 2006

.

47

