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1.  Introduction 

 
A large  number  of  ceramic  fragments,  called  “sherds”,  are  found  at  every 
archaeological excavation. These fragments are documented by being 
photographed, measured, and drawn. Archaeological finds are traditionally 
grouped by typology. Defined forms and types of vessels form codes which 
simplify communication within the scientific field. The drawing and interpretation 
of ceramic fragments is very time consuming and costly work, requiring trained 
and qualified draftsmen. The drawing in   Illustration   1, for instance, is   a 
representative of many other examples. The drawing is a 2D projection of the 
3D  object,  therefore  photographs  of  the  real  object  have  to  be  added. 
Nevertheless,  there  is  no  3rd  dimension  left  in  the  archive  drawing  and  a 
graphic documentation done  by hand also increases the possibility of errors. 
There may be errors in the measuring process (diameter or height may be 
inaccurate), and inconsistencies in the drawing of the fragment or the complete 
vessel. However, it is not possible to achieve a consistent style, since it is very 
difficult to make a drawing of an object without interpreting it. This leads to a 
lack of objectivity in the documentation of the material. 

 
Because the conventional documentation methods were shown to be 
unsatisfactory, the interest in finding an automatic solution increased present a 
largely  automated  approach  for  estimating  polynomial  models  in  order  to 
assemble virtual pots from 3D measurements of their fragments.  Our approach 
to pottery reconstruction is based on the following main tasks: we start with the 
classification of the fragment based on its profile section provides a systematic 
view of the material found and allows us to decide to which  class an object 
belongs.  In  the  reconstruction  phase,  partial  similarities  of  profiles  can  be 
detected and complete pots can be reconstructed based on the already stored 
data in the description At excavations most of the finds are in form of fragments, 
of which only a few are still complete. It would be ideal to have one acquisition 
system that covers both sorts of objects; however they have different properties 
(dimensions, color, and geometry). 

 
Fragments  of  vessels  are  thin  objects,  therefore  3D  data  of  the  edges  of 
fragments are not accurate. Furthermore this data cannot be acquired without 
placing  and  fixing  the  fragment  manually,  which  is  time  consuming  and 
therefore not practicable. Ideally, the fragment is placed in the measurement 
area, a range image is computed, the fragment is turned and again a range 
image is computed. This led us to the profile reconstruction method, which 
allows this kind of fast acquisition. 
 
Traditional archaeological classification and reconstruction is based on the so- 
called profile of the object, which is the cross-section of the fragment in the 
direction of the rotational axis of symmetry. This two-dimensional plot holds all 
the information needed to perform archaeological research. 
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The  correct  profile  and  the  correct  axis  of  rotation  are  thus  essential  to 
reconstruct and classify archaeological ceramics. Illustration 1 shows the inner 
side of a fragment on the left, its left side (broken surface) in the middle, and 
the profile section generated automatically on the right.  We  follow  the  profile 
approach,  as  used  by  archaeologists  for  decades,  to  reconstruct  complete 
vessels out of fragments. 

 
 
 

 
Illustration 1: (a) Archaeological fragment - (b) site of fracture and - (c) profile section. 

 
 
 
 

 
Illustration 2: Vessel’s profile 
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2. Archaeological ceramics design 
 
 

2.1 Introduction 

 
The classification of ancient vessels of pottery is a fundamental part of the study 
of history. 
 
Archaeologists around the world do this work using only hand tools like a caliber 
and a ruler. It is clearly understandable that the result is not perfect and the 
waste of time doing it, especially when it works with hundreds of pieces, is 
remarkable. 
 
The result of this classification procedure is a schematic design of the vessel 
which remarks the most important characteristics of the same thing, (see 
Illustration 3). 

 
 
 

 
Illustration 3: Classification’s example 
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The  design  complements  the  cataloguing  of  materials,  it  is  useful  to  the 
typology’s articulation, accompanies and explains in the text’s edition phase, to 
replace it with whatever concerns the morphological description. 
 
In every case, an object’s drawing must be comparable with other created 
within the same research, but also outside, and must be made according to 
unique criteria that would make its understanding universal. 
 
This requirement meets the articulation of a set of rules meant to ease the 
design, freeing it from heavy esthetics characterizations (the real picture the 
object is provided to best right from a photograph) and to give prominence to 
morphological information. 
 
The designer makes mediation and chooses to represent some details rather 
than others (delete certainly any "recent" traces derived from the deposition or 
withdrawal of the object; the photography however doesn’t document the state 
without any type of interpolation). 
 
So, it’s essential an understanding of the materials types and manufacturing 
techniques in order to understand the object before drawing it. 
 
The current trend is to free the drawing surface by redundant information (for 
example the conjunction lines of fragments) to emphasize the overall grade of 
vessel’s integrity, the moldings and the lines resulting from shaping (lathe lines, 
tracks cue, fingerprints etc.). 

 

2.2 Design settings 

 
The ceramic’s design involves transposing a three-dimensional object into a 
plane, through an orthogonal projection and by the paper’s organization in 
areas intended to clarify information about the different parts of a pot. 
 
There  will  be  primary information,  as  basic  and  indispensable,  intended  to 
exemplify  the  form  (one  or  more  sections  of  the  ceramic  body)  and  size 
(diameter of the edge and/or  bottom, height), and secondary information — 
because it depends on the first and to add  more data — documenting the 
perspective view, decoration or other interventions which are  on the vessel’s 
surface. 
 
Switching to 2D drawing involves setting one (fragments) or two (in the case of 
artifacts that preserve all the profile) horizon lines (horizontal and then parallel if 
the pot is not deformed) and an orthogonal line, median, which divides the 
space-paper in two areas: the left one is for the design of the vessel section and 
the eventual information on the intern surface, the right, however, is intended to 
outline’s perspective view of the external surface. 
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Illustration 4: Set design 

 
 
 
 
The distance between the two horizon lines is given by the pot’s height. 
 
The above and below spaces of the horizon of upper and lower lines can be 
used  for  further  information  on  special  particular  vessel’s  conformations  or 
decorations and outer bottom’s surface, (see Illustration 5). 
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Illustration 5: Vessel’s decoration 

 
Horizon lines have the function to determine the object’s inclination. The design 
must be oriented respect to a horizontal plane, must document the profile in a 
point of maximum conservation, but can't be in any reconstructing way. 

 

2.3 Whole vessel’s designs 

 
 
The design starts from the section. These facts, invisible especially in the 
presence of integral vessels, derive from the sum of the exterior and interior 
profiles, detected along a vertical axis which ideally cuts the ceramic body. In 
the vessel’s case, or preserving intact the whole profile, drawing was uses three 
fundamental data: the external measure of upper and lower diameters, and of 
the height. The profile’s inclination is given by the difference between the two 
diameters. The drawing normally proceeds from bottom to top: It’s set the lower 
horizon line, then the height and the upper horizon line (parallel to the bottom if 
the vessel doesn’t have deformations). 
 
Diameter measurements are easily detectable with a ruler in the whole vessel 
or that conserve the edge for a superior portion to the middle circumference. 
The height is also measured with an squadron or with a ruler, counting on some 
precautions: in  paper’s transposition on detected measure (that it’s obtained 
supporting the carpenter’s square on the table vertically, tangent to the point of 
maximum vessel expansion) we must  count on the space more or less wide 
than the instrument presented before the start of  measure marks; the height 
must be detected in correspondence with the superior border  and  not of the 
external border; squadron must be placed with 90° a ngles, (see Illustration 6). 
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Illustration 6: Squadron’s position 

 
 
If the circle is preserved for a lower portion in the middle is necessary to rebuild 
the diameter’s measure. This operation can be done using a “Rim Diameter 
Chart” (paper prepared with a series of concentric circles in a distance of 5 or 
10 mm), (see Illustration 7). 

 

 
Illustration 7: ‘Rim Diameter Chart’ 

 
 
Or using a geometric application which allows to rebuild the axes at least two    
strings to the circumference arc (Theorem: in a circle, the axis of a string 
passes through the Centre), axis that determine, at the intersection point, the 
center. 
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Then it’s reported on the paper the external or internal circumference’s arch 
conserved   (making  to  join  the  vessel’s  edge  to  the  paper  by  using  a 
“profilometer”), (see Illustration 8). 

 
 
 
 

 
Illustration 8: ‘Profilometer’ 

 
 
Are identified on the designed arc at least three well-preserved points (three 
unaligned points are passed by one circumference) and trusted then (A, B, C) 
and  with  a  compass  tracing  its  circumferences  (the  arch  opening  of  the 
compass is indifferent); we draw the lines that pass in the circle’s intersection 
points  (corresponding  to  axes  of  strings  AB,  BC)  and  the  meeting  point 
determines the center, (see Illustration 9). 
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Illustration 9: Center’s calculation 

 
 
 
In the presence of a small pot, the three basic measures are sufficient to 
complete the drawing of the profile: this operation is essential to the use of a 
profilometer, that allow to detect with extreme precision the imprint of the object 
(in order not to ruin the surface of the vase is good to push towards the needles 
the piece, rather than the opposite). 
 
In the presence of vessel larger than the length of the profilometers you must 
detect other points on the external surface (more or less corresponding to the 
highlights:  maximum expansion of the abdomen, moldings).  As for the 
measurement of height, this operation is carried out with a team placed in the 
vertical position, tangent to the pot: you can obtain the coordinates (x, y) to 
report on paper, taking into account the arrangements already exposed. 
 
The design of internal profile is run with the profilometer, having noted with a 
caliber and in several places the thickness of the wall and the base. In the 
presence of "closed" pot it’s possible that the profilometer is not usable, if not 
perhaps for a short stretch corresponding  to the mouth: the drawing of the 
profile  inside  can  be  accomplished  through  a  thick  pad  thickness  variation 
ceramic body, (see Illustration 10). 
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Illustration 10: Amphora 

 

2.4 Fragments design 

 
A fragment is drawn if it contains useful information for a morphological or 
decorative repertoire classification. Must then submit an edge or a base 
retained enough for the purposes of determining the orientation. 
 
The design of a wall fragment (designed for the presence of a decoration or a 
handle  of  type  note)  can  be  done  by  using,  for  the  determination  of  its 
inclination in space, the lines of lathe, the hull or any molding, elements that, if 
enough preserved, also allow the reconstruction of the diameter. 
 
The design of a fragment sets up a single horizon line, corresponding to the 
edge or to the bottom and proceeds from bottom to top or from top to bottom 
as a result of the preserved portion. 
 
For the design of a bottom the procedure will be very similar to that adopted for 
a whole vessel: the diameter measure will be rebuilt and the given diameter will 
be reported on the paper corresponding to an horizon line in the lower part of 
the paper; the vertical medium line will be drawn corresponding to the object's 
axis for a height equivalent to the degree of the fragment conservation. 
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The inclination will be calculated supporting the bottom on the paper, so its 
outside diameter matches the designed point in a way that the supporting surface 
is kept adhered to the table. With a squadron the measures corresponding to the 
maximum conservation point can be known (coordinates). 
 
The  external  profile  can  be  now  done  with  the  help  of  profilometer.  The 
thickness can be registered easily also with a simple scrolling caliber. 
 
 
 
 
 

 
Illustration 11: Wall fragment 

 
 
 
 
 
For the design of an edge it will be necessary to overturn the procedure: the 
measures will be taken from the top. Then it will be drawn an horizon line in the 
upper  part  of  the  paper  and  the  midline  will  be  developed  with  a  height 
corresponding to the maximum  conservation of the fragment. The first useful 
data is, however, the reconstruction of the diameter measure that will be given 
on the paper on the horizon line. 
 
The following measures (coordinates of one or more points) and the 
fragment's inclination will be detected by supporting the edge on the paper, so 
its outer diameter matches the point designed in a way that the supporting 
surface is adhered to the table. 
 
With a squadron can be detected the measures (coordinates) corresponding to 
the maximum point of storage required on the paper. 
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Illustration 12: Broken vessel 

 
 
 
 
Fragments of a diameter not determinable. The degree of conservation impact 
not only on  possibility of identifying the size of a pot (with a possible error 
identification  within  the   same  functional  form  anyway),  but  also  on  the 
determination of its inclination and its functional form (a pot becomes a cup a 
dish) or, at best, its typology. 
 
The graphic criteria for representing fragments which, while allowing the 
recognition of an inclination, do not allow the reconstruction of the diameter, 
provides the suppression of median line, (see Illustration 13). 

 
 
 
 

 
 

Illustration 13: ‘Sherd’ design 
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3. CGView 
 
 

3.1 Introduction 
 
 
As the interest in Computer Graphics increased at the University of Cagliari, the 
need for tools that allowed to experiment and study the topic became stronger. 
While such tools, as  MeshLab  or OpenFlipper, are free, versatile and offer a 
great  number  of  possibilities  for   the  development  of  mesh  processing 
algorithms, their complexity makes them quite unfriendly to the newcomer, not 
allowing  to  easily lay  hands on  every  aspect  the  term  Computer  Graphics 
covers;  moreover,  teaching  can  benefit  from  tools  that  allow  a   direct 
experimental approach, where the student has to deal with simple codes with 
everything in sight, with no interfaces or library calls that can obscure the whole 
functioning, thus allowing to endure a trial and error approach when modifying 
the program code to see if the results agree with what expected. 
 
Finally,  the  recent  research  activities  carried  on  by  the  group  focused  on 
aspects  that  went  outside  the  scope  of  the  mere  Mesh  Processing;  these 
reasons  brought  to  the  development  of  a  simple  and  versatile  family  of 
applications where each student or researcher can focus directly on the goal of 
his work, from rendering to high-level data visualization, without having to deal 
with the complex infrastructures that advanced tools as the ones cited before 
are made of. 

 
The need to coordinate the works of many people and help students to get 
acquainted with Computer Graphics problems has brought to the development 
of  light,  versatile  and  easily  usable  tools  for  visualization  and  processing. 
Gathered under the name of CGView, these projects form a continuously work- 
in-progress  framework  that  helps  the  programmer  to  easily  focus  on  each 
aspect of the problem, from accessing GPU buffers to the visualization of data. 
The  CGView  family  is  focused  on  two  main  goals:  giving  the  student  the 
possibility to view and explore the 3D environment with direct understanding of 
the code involved, and allowing a programmer to develop a mesh processing 
algorithm without having to deal with complex interfaces. 
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Illustration 13: CGView 

 
 
 
 
 

Based on  the  VCG  library  for  mesh  processing  and  the  Qt  Toolkit  for  its 
interface, CGView is capable of opening and managing other kinds of data such 
as voxel grids or topological skeletons. 
 
The application can visualize a mesh in every usual presentation as wireframe, 
points, flat or smooth shaded and can add materials into rendering. Moreover it 
can visualize all the main information about the mesh, such as bounding box, 
axes, normals, etcetera.  However, as   said before, the main goal of the 
application is to give the student the possibility to experiment and easily add its 
own work into the program, so the features are in constant upgrade. 
 
As for mesh processing, the application takes advantage of the methods 
provided by the VCG library along with some added algorithms developed by 
researchers and students using one of the satellite applications. 
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Illustration 14: The main window of CGView showing the mesh, its bounding box and the axes 

 
 

 
 
 

3.2 Objects and functions 

 

3.2.1 Point 

 
 
A point is a set of 3 values (x, y, z) where these values indicate a point or a 
vector in the Cartesian space. 
A point is an object that is declared as follows: 

 
CGPoint < name > point; 

 
• P [i] returns the i-th value of item with which goes from 0 to 2. Values 

are double. 
• P. X () return the point x. Is equivalent to P [0].  
• P. Y () return the point's y. Is equivalent to P [1].  
• P. Z () return the point's z. Is equivalent to P [2].  
• P. Norm () returns the norm of P. 
• P. Normalize(); normalizes P. 
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Some operations are also defined on these objects. If A and B are objects of 
type CGPoint and k is a scalar, then: 

 
• P = A + B; P is the vector sum of A and B. P = (Ax + Ay + Bx, By, Az 

+ Bz). The same effect is obtained by P [0] = A [0] + B [0]; P[1] = .... 
• P =-P; Reverses P. = (Px, Py, Pz--). 
• P = A * k; P is the result of the scalar product between A and k. P 

                  = (Ax, Ay * k * k, Az * k). 
• P = A ^ B; P is the result of the wedge product of A and b. P is 

orthogonal to vector A and b. 
• A = B = returns true if the two points are equal. 

 
There are also functions that work with points: 

 
• vcg:: Distance (CGPoint, CGPoint b) that returns the distance 

between 2 points (double). 
• vcg::  Angle  (CGPoint,  CGPoint  b)  that  returns  the  angle 

between 2 vectors (double). 
 
If you need to rotate a vector will define the rotation matrix. To do this you have 
to (if not  present between objects in the namespace vcg) include the 3 x 3 
matrix: 
# include <vcg/math/matrix33.h>  

 
Now you can declare an object vcg:: Matrix33 <double> (or vcg:: Matrix33d ). 
This object is  like a 3 x 3 array, so you can look for an item by using the 
indexes: 
… 
vcg:: Matrix33d rot; 
… 
rot [0] [0] = ...//element 0 row and 0 column 
rot [1] [2] = …//element 1 and line 2 column 
… 
For a rotation: 
rot. SetRotateDeg ( <valore>, axis ) 
Depending  on  whether  you  want  a  rotation  in  degrees  or  radians,  generic 
around axisvector. Once set the matrix you can use P = rot * A; that assign to P 
the result of A rotation. 

 

3.2.2 Vertex 
 
 
The vertex is an evolution of type CGPoint. Is defined  CGVertex type and 
consists of some additional features compared to CGPoint. Firstly a vertex has 
both a position in space that a normal, then a color and a whole host of more or 
less useful flag. Is declared like this: 

 
CGVertex < name > Vertex 

 
• V. P () return a CGPoint, indicating its position in space 
• V. N () return a CGPoint, indicating his normal 
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•   V.C () return the color as object vcg:: Color4b (). Is a vector 

containing the values RGBA color. 
•   V. SetS () set the vertex selected. 
•   V. ClearS () set the vertex as unselected. 
•   V. IsS () returns true if the vertex is selected. 
•   V. SetV () set the vertex as visited. 
•   V. ClearV () set the vertex as unvisited. 
•   V. (IsV) returns true if the vertex is visited. 
•   V. P () = A; assigns as the position at the vertex V 
•   V. N () = A; assigns as normal vertex V 
•   V. C () = C; assigns the color C at the vertex V. 

 

3.2.3 Face 

 
 
The faces are nothing more than a collection of 3 vertices, one normal, one 
color and of various flags. A face is defined as type CGFace. If F is a CGFace, 
then: 

 
•   F. P (i) return the coordinates of the i-th vertex (CGPoint) ranging 

from 0 to 2. 
•   F. V (i) return the i-th vertex (a CGVertex), which goes from 0 to 2. 
•   F. N () return the normal of the face (CGPoint). 
•   F. C () return the color of the face (Vertex). 
•   F. FFp (i) returns a pointer to the i-th face adjacent to F. 
•   F. SetS () sect face as selected. 
•   F. ClearS () sect face as unselected. 
•   F. IsS () returns true if the face is selected. 
•   F. SetV () sect face as visited. 
•   F. ClearV () sect face as unvisited. 
•   F. (IsV) returns true if the face is visited. 

 

3.2.4 Mesh 
 
 
A mesh is a collection of vertices, edge and triangles. In VCG has no concept of 
edge in the strict sense of the term (there is an object of type Edge), for which 
mesh are formed only from lists of triangles and vertices. A mesh is defined as: 

 
CGMesh < name > mesh;  
Essential attributes that need to know this kind of object are few. 
If for example we M object of type CGMesh, then: 

 
•    M.vn return the number of vertices in the mesh. Is an 

integer. 
•    M. vert [i] return the i-th vertex. The vertex is an object 

type CGVertex. 
•    M. fn return the number of faces in the mesh. Is an integer. 
•    M. face [i] return the i-th face. The face is an object type 

CGFace. 
•    M. bbox return the bounding box of the mesh in the form 

of vcg:: Box3 object. 
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The vertices and faces in the mesh should be organized on the vector (i.e. 
std::vector), M.vert.begin () returns the iterator to the first position of the vector, 
while M.vert.end () at the end. The same things apply to faces 
 
Through the CGMesh class you can then declare some data types, including: 
 

•    CGMesh:: VertexPointer pointer to vertex. 
•    CGMesh:: FacePointer pointer to the face. 
•    CGMesh:: VertexIterator iterator for the vector of vertices.  
•    CGMesh:: FaceIterator iterator for the vector of faces (or a 

vector of faces). 
•    vcg:: tri:: Allocator <CGMesh>:: AddVertices 

(<mesh>, number of vertices); 
•    vcg:: tri:: Allocator <CGMesh>::AddFaces (<mesh>, 

number of faces); 
 

3.2.5 Bounding Box 

 
 
A bounding box is defined in VCG as an object of type Box3 (vcg:: Box3). The 
inclusion to do in order to use the box is as follows: 
# include <vcg/space/box3.h>  
Now you can instantiate objects of type Box3 and use their functions. If B is an 
object of type Box3 its main functions are the following: 
 

• b.min is the CGPoint the minimum bounding box 
• b.max is the maximum of CGPoint bounding box 
• b. Center () returns a CGPoint of Center of the bounding box. 
• b. Diag () returns the length of the diagonal of the bounding 

box. The type of the return value is dependent on the type of 
bounding box. 

• b. DimX () returns the length of x in bounding box. 
• b. DimY () as above, but for y 
• b. DimZ () as above, but for the z 
• b. setNull () set the box as a null. 
• b. Add (CGPoint) change the bounding box in agreement with 

the point  passed  as a parameter. If the point is within the 
bounding box, nothing happens. 

• b. Add (Box3) change the bounding box in agreement with the 
box passed as a parameter. If the box is within the bounding 
box, nothing happens. 

• b. IsIn (CGPoint) returns a Boolean. True if the point is inside 
the bounding box, False otherwise. The extremes of box are 
included. b. IsInEx (CGPoint) returns a Boolean. True if the 
point is inside the bounding box, False otherwise. 

• b. Collide (Box3) returns True if the two boxes intersect. 
• b. P (i) returns the i-th vertex of the box. The vertices are 

CGPoint and go 0 to 7. 
• b. Volume () returns the volume of the box. 
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4. The project 

 

4.1 Background 

 
The project is an extension of the thesis of student Daniele Zuddas (Università 
degli studi di Cagliari). His thesis tried to implement a system to obtain the 
profile of a vessel in 2 dimensions (see Figure 16) from a real vessel with 
the help of a laser. 

 

 
Illustration 15: Vessel’s profile. 

 
The project’s objective is, from the output of Daniele Zuddas’s thesis 
(vessel’s profile in 2D), to do a virtual reconstruction of the original vessel in 3 
dimensions using the graphics visualization software CGView. 

 
 
 

4.2 Software 

 
The software we are working with is the graphic’s viewer CGView. Based on 
the VCG  library  for  mesh  processing  and  the  Qt  Toolkit  for  its  
interfaceand developed by Computer Graphics Group of the University of 
Cagliari. The goal of the project consists on making a plugin of this viewer to 
visualize a vessel in 3D from its profile. This plugin is called “Lathe”, (see 
Section 3, CGView). 

 

4.2.1 Premises 

 
One of the problems of automatic representation of vessels is the infinite 
variety of vessel’s types that exist and the particularity that each one of them 
can show. We must not forget that  these pieces are made by hand, so they 
may have unique characteristics, and that they are really complex for the 
archeologist to represent them. 
 

27 

 



 
 
For this reason, this version of the representation’s automatic system has been 
made by having in mind these premises: 

 
•   The vessel is completely circular. 
•   Particular irregularities are not 

represented.  
•   The decoration is ignored. 

 
These premises decrease a lot the complexity of the project, and its typology 
can be visualized more clearly. 

 
 
 

4.2.2 Functions implemented 

 
To modify our Mesh or input, they must be created new vertices and create 
connections between them (faces). To achieve this, some functions have been 
implemented: 
 

•    InitialRadix: Function to determinate the vessel’s radius. It will normally 
be half the height and half profile. 
 

•    DrawBase: Function to draw vessel’s base, creating a number of faces 
at the base so it stays closed. 

 
•     AddVertices: Function to create the new vertices of our Mesh. Add 

360 vertices for each one which was in the beginning, to make them 
rotate 360 degrees to form a circle entire. 

 
•     AddFaces: Function to create the different faces of our new Mesh. A 

face is formed by the union of 3 vertices. 
 

•     UpdateBoundingBox: we need to add with CGView’s function 
"bbox.Add() all vertices that were created for our mesh". 

 
•     AdequateLight: To have a good visualization of our Mesh, we will 

disable the light with “disable (GL_LIGHT)” function and enable 
BLEND to have a good view of the vessel. 

 
•     CaracteristicPoints: Function to calculate the diferents points where 

the vessel’s curvature changes, (see 4.2.4 Characteristics points). 
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4.2.3 Reading input 

 
The reading of the input is made from a “.ply” file which represents a number of 
points in space that draw a vessel’s profile, representing the output of Daniele 
Zuddas’s thesis. Knowing that this profile is in 2D we will work on the plane (X, 
y), leaving the Z coordinate to 0. 

 
.Ply format data are formed in the following way: 
 
ply 
format ascii 1.0 
comment created by MATLAB 
ply_write element vertex 200 
property float x 
property float 
and property 
float z 
end_header 
-4.460273 -26.451251 0 
-4.467952 -26.267871 0 
-4.475163 -26.085980 0 
-4.477052 -25.919093 0 
-4.479254 -25.751337 0 
... 

 
When we open the .ply file with CGView it’s showed the initial vessel’s profile, 
(see Illustration 17). 

 
 
 
 

 
 

Illustration 16: Reading input vessel’s profile with GCView. 
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4.2.4 Characteristic points 

 
The calculation of profile’s characteristic points problem is a trivial problem. 
We can’t calculate the discontinuity points in a mathematic sense, since there 
is no way to calculate exactly when the curve makes an interesting change. 
 
Another factor making harder this complex calculation is that vessels are 
made by hand, so they don’t follow any mathematical rule and can be highly 
irregular. The input is a vector of points and not a mathematic function so 
it’s more difficult to make the analysis. The characteristic point concept is 
questionable and relative to archeologist’s experience who follows the design 
or the context where the vessel has been found. 
 
For these reasons it has been decided to make the difference between the 
characteristic points on an empirical way. This methodology has the advantage 
of being simple and having the safety of working pretty well for certain types of 
interest points.  But  it  has  the  disadvantage  that  since  it’s  not  a  strong 
mathematical theory, it might fail for some specific profiles. 

 
Some typical characteristics in a vase are the following ones, (see 
Illustration 18): 
 

•   EP: Vessel’s limits: high and low points of the object. These 
are the  first  vertices,  the  last  ones  and  the  midpoint  on  
the  Y coordinate. 

•   VT: Vertical tangents: points of maximum or minimum 
curvature.  

•   IP: Indexing points: points where the curvature’s meaning 
changes. 

•   CP:  Corner: exchange points of pronounced curvature. 
 
 
 
 

 
Illustration 17: Characteristic points of vessel 
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4.2.5 Plotting 

 
To see our vessel in 3D, we must revolutionize each one of the profile’s vertices 
(input) regard  an axis of rotation and a certain radius. To assign this rotation 
center, we must do a translation on the x-axis of the vessel’s base. The value of 
this translation will be the vessel’s radius (since we have no details about the 
original radius and there are many different types of vessels, we have provided 
the initial radius as half of its height). Once determined the radius, it must be 
done a revolution of all profiles vertices respect to the axis of rotation this way: 

 
For each profile vertices create a new vertex while keeping the coordinate Y but 
modifying the X and Z, (see Appendix B).  
 

The faces creation is done by putting together 3 vertices (triangular faces).Each 
face must have a color with the function vcg:Color4b(), this function must have 
4 parameters Float type in RGBA format. A variant of the 'brown' color has been 
selected for the faces with the values in RGBA = (215,180,50,0). If the vertex is 
a characteristic point, we proceed to draw the face with black color RGBA = 
(0,0,0,255) to differentiate it from the other points. 

 
Once created all vertices and their matching faces we proceed to draw the 
vessel’s base creating different faces with the lower object’s vertices. 

 
When the development of the object it’s done, the BoundingBox gets updated, 
adding all vertices created with the function ' bbox.Add()'. 

 
Finally, the light and camera parameters will be changed to see more clearly the 
resulting object with the GL_BLEND() and GL_LIGHT() functions, (see 
Appendix C). 
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4.2.6 Results 

 
The plugin ‘Lathe’ generates a 3D image where you can view the reconstructed 
vessel with its corresponding characteristic points. CGView allows viewing only 
the vertices (see illustration 19 and 20) or with all their different faces drawn 
(see illustrations 21 and 22) with their corresponding color. 

 
To see the plugin’s operation, we must run the CGView software and open the '. 
ply' file with  the  vessel’s profile to be treated. Once opened, select the tab 
Tool - > Lathe to run our plugin. 

 
 
 
 
 
 

 
 

Illustration 18: Phiale with their vertices 
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Illustration 19: Amphora with their vertices 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Illustration 20: Amphora's reconstruction 
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Illustration 21: Phiale’s reconstruction 

 
 
 
 
 
 
 
 
 
 
. 
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5. Summary and future developments 
 
 

5.1. Final assessment 

 
This first software’s version solves successfully the initial problem proposed, 
and his design is in good quality to visualize correctly the basic structure of 
how the original vessel would be given his profile. The function of the 
characteristic points calculation isn’t fully developed and may give some 
errors to detect points in some special vessel. 

 

 
 
 

 
Illustration 22: Vessel’s reconstruction with Characteristic Points 
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5.2. Potential improvements or developments 

 
A possible upgrade will be modifying the characteristic points function to give 
a correct result for all types of vessels and all the characteristics points. 
The calculation of vessel’s base, which we have specified that are a perfect 
circle, can also be improved because there’re vessels whose bases are 
elliptical. 
 
It should be implemented a system which would make a circular or elliptic 
representation of the vessel depending on the profile. The vessel's radius 
revolution should be stipulated as well since with only the profile's 
parameters it's impossible to determinate which one is the original vessel's 
radius. 

 
Another  possible  software  development  is  creating  a  database  to  
register different types  or families profiles, so we can obtain more details 
about the shape, dimensions, decoration or material from a profile, and obtain 
more entry data to make a more realistic 3D representation. With this 
database we could do statistical studies of different vessel's types that exist 
and recognize their specific properties. 

 
An plugin improvement it’s to do the vessel’s reconstruction from a vessel's 
piece in 3D (sherd), where the input should be a “.ply” format file but with 
real data  from  the  3  coordinates  X, Y  and  Z.  If we have data of the 
vessel’s curvature, it’s possible to make a real estimation of the rotation axis 
and his radius (see Appendix A). 

 
There are many evolutions and different changes that can be done to the 
plugin and the project, but for now is expected to create a second version 
that deals with the classification problem of archaeological ceramics through 
others software development faster and accurate than this version to provide 
an useful tool for those that are working in the study of the history. 
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Appendix A 
 
 

Estimation of the axis of rotation of sherd pottery: a multistep 

model based approach 

 

A.1 A model of a pottery fragment 

 
During the classification of a pottery fragments, archaeologists assume that 
original pots were made on a potter’s wheel. Regarding this constraint, ancient 
pots can be modeled as radially symmetric objects. Such objects and its 
fragments have two important geometrical properties demonstrated in 
Illustration 26: 

 
a) Normals of the object/fragment surface go through the axis of 

rotation 
 

b) A plane perpendicular to the rotation axis intersects the object in a 
circle and the fragment in a circular arc with the same center lying 
on the axis 

 
Under the assumption that the original pots were radially symmetric, fragments 
of archaeological pottery can be described by the same model. The geometrical 
properties of a fragment do not depend on its position, thus they can be used 
for an estimation of an appropriate axis of rotation. And this is the main idea of 
the estimation process proposed in the following sections. 
 
 

 
Illustration 23: A model of a radially symmetric object O with the axis of rotation a and its fragment F: a) 

surface normals ni, go through the axis a. b) a plane p perpendicular to the axis a intersects the object O 

in a circle e and the fragment F in a circular arc e’ with the same center C lying on the axis. 
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A.2 An estimation of an initial position of the axis of rotation 

In the beginning of the estimation process, an initial position of the axis of 
rotation is determined. The estimation assumes radial symmetry of ancients 
pots  and  exploits  the  first  property  of  radially  symmetric  objects:  surface 
normals go through the axis of rotation of the object. There exist two different 
approaches based on this fact: Hough transform and numerical optimization. 
The Hough transform inspired method is robust against outliers, but it lacks in 
speed and accuracy. Regarding that, an optimization approach is used for the 
initial estimation. The initial position of the axis is obtained using a standard 
least squares approach as the line which minimizes the following objective 
function: 

 
 
 

(1)  

 

 
Where M is the number of surface normals and d(ni,a) is the Euclidean distance 
between the normal ni and the axis a. The distance can be expressed as the 
length of the transversal line between the particular normal ni = Xi + ti · Ni given 
the point Xi and the normal direction Ni, and the rotation axis a = Xo + to · No 
given by the point Xo and the normal direction No: 

 
(2)   

 
 
Where the operators · and X denote dot and vector product of two vectors, 
respectively, and ||.|| is the length of a vector. If the normals Ni and No are 
parallel, the equation is reduced to: 

 
(3)   

 

 
The optimization problem is solved for the unknown rotation axis a given by the 
point Xo and the normal direction No. It can be shown that the optimal position 
of the point Xo depends on the direction No. Regarding that, an initial position of 
the axis of rotation can be determined by an optimization process which runs 
over only two dimensional searching space. Such estimation is effective, fast 
and reliable. 
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A.3 A robust estimation of the axis of rotation 

 
In the initial estimation step, a position of the axis of rotation is estimated by a 
direct least squares minimization. This type of optimization approaches is 
known to be sensitive to outliers. Statisticians have developed various sorts of 
robust statistical estimators.  The most relevant class for an estimation of 
parameters is so called M-estimators. Mathematical theory of M-estimators is 
available in many books. The basic idea of robust estimation is to reduce the 
influence of outliers by replacing the squared residuals in the standard 
least squares minimization 

 

(4)  

 

 
by another less increasing function p of the residuals, yielding 

 
(5)  

 

 
Instead of solving directly, the minimization can be implemented as an iterative 
re-weighted process 

 
 
 

(6)  

 
Where w is so called weight function  and the superscript  (k) indicates the 
iteration  number. There exist a wide range of weight functions with different 
properties. A very popular among statisticians is Huber’s function: 

 
(7)  

 
Where is a robust standard deviation of residual errors and c is a tuning 
constant with value c = 1.345. Another widely used weight function is Turkey’s 
biweight 

 
(8)  
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with the tuning constant c = 4.6851. The robust standard deviation of residual 
errors can be estimated as 

 
(9)  

 
 
An application of the M-estimators for a robust determination of the axis of 
rotation is straightforward and it leads to the following algorithm: 

 
1. Get an initial position of the axis a = Xo + to · No by the direct least squares 
minimization of Eq. 1 with distances given by Eq. 2 and Eq. 3 

 
2. Use distances from the currently estimated axis a as residual = d(ni, a) 

 
3. Estimate the robust standard deviation of the residual (Eq. 9) 

 
4. Compute  weights  from  residual by  the  chosen  weight  function  w  (for 
example Eq.7 or Eq. 8) 

 
5. Estimate a new position of the axis ã which minimizes the weighted least 
squares problem Eq. 6 

 
6. Convergence check: if, set a = ã and go back to the step 2 

 

 
Illustration 24: An estimation of the axis of rotation by a circle/line fitting: a) Circle fitting. b) Line fitting 

 
 
As can be seen, the algorithms an iterative reweighted modification of the initial 
direct least squares minimization.  Regarding that, it can be implemented very 
easily on top of the original estimation.  The application of M-estimators 
preserves efficiency and reliability of the computation and adds robustness 
against outliers in the data and stability to systematic errors during processing 
of fragments. 
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A.4 An iterative refinement of the estimated rotation axis 

 
The previous estimation steps are based on property of surface normals. The 
problem is that the normals are typically not known in advance and they have to 
be determined first. During the determination, various factors (such as noise, 
outliers and systematic errors) degrade estimates of the normals and, 
consequently, the whole estimation of the axis of rotation. Regarding that, the 
position of the axis can be further improved by another, nonnormal based, 
estimation method. 

 
To estimate the axis of rotation of radially symmetric objects without knowledge 
on their surface normals, the second property of such objects can be exploited: 
a plane perpendicular to the rotation axis intersects the object in a circle and its 
fragment in a circular arc with the same center lying on the axis. In our case 
only an approximation of the axis is known from the previous estimation steps, 
the original method cannot be used directly. Instead, the axis of rotation is 
improved by the following iterative refinement process: 

 
1. Get an initial position of the axis of rotation a by the optimization approach 
described in the previous sections 

 
2. Generate a set planes pi perpendicular to the axis a. 

 
3. For every plane pi: 

a) Detect an intersection between the plane pi and the fragment F 
b) Fit the detected intersections by a circle ci 
c) Estimate a center Ci of the fitted circle ci 

 
4. Estimate a new position of the axis ã as the line which approximates the 
centers ci. 

 

5. Convergence check:  if, set a = ã and go back to the step 2. 
 
The algorithm assumes that the detected intersections are circular arcs. With 
respect to the fact that the position of the axis of rotation can be inaccurate in 
the beginning, such assumption can be wrong. Thus the algorithm has to cope 
with  distorted  intersections  and  their  influence  on  the  circle  and  line  fitting 
phases (steps 3b and 4). 
 
Robustness of these fittings is achieved by an application of M-estimators in the 
same straightforward way as was used for the robust estimation of the axis of 
rotation described in the previous section. 
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Appendix B 

 

Circle drawing 
 
 
A circle is a simple shape of Euclidean geometry consisting of those points in a 
plane that are a given distance from a given point, the center. The distance 
between any of the points and the center is called the radius. 

 
Circles are simple closed curves which divide the plane into two regions: an 
interior and an exterior.  In everyday use, the term  "circle"  may  be  used 
interchangeably to refer to  either the boundary of the figure, or to the whole 
figure including its interior; in strict technical usage, the circle is the former and 
the latter is called a disk. 

 
A circle can be defined as the curve traced out by a point that moves so that its 
distance from a given point is constant. 

 
To create a circle from a vertex with our software first of all I am going to create 
a typedef to hold our circle properties as we call them. 

 
typedef struct  
{ 
This will hold the x values as we need them 
float x;  
This will hold the y values as we need them 
float y;  
Call it CIRCLE 
}CIRCLE;  

 
Then I am setting the property circle to act like the typedef CIRCLE 
CIRCLE circle;  

 
Now for the meat of this tutorial, the circle creation function 
The properties this takes are: 
k – the translation on the y axis 
r – the radius of the circle 
h – the translation on the x axis 

 
void createcircle (int k, int r, int h) { 
Now we begin drawing our lines 
glBegin(GL_LINES);  
Here we are setting up the vertices all in one line function; this sets every 2 
vertices to a line. 

 
First we begin our loop, this loop will cycle through, constantly changing our X 
and Z values for our lines. It cycles through until it reaches 360, increasing in 
intervals of 1 
for (int i = 0;i < 360;i++)  
{ 
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Now to set up the current x value that we need for our vertex I am setting it to 
the radius of the circle, times by the cosine of the current value of i, then I 
amtaking h to translate it: 
circle.x = r * cos(i) – h; 
 
Then to set up the current y value that we need for our vertex, I am setting it to 
the radius of the circle, times by the sine of the current value of i, then I am 
adding k to translate it: 
circle.z = r * sin(i) + k; 
 
Then I am drawing the vertex: 
glVertex3f(circle.x + k, circle.z – h,0);  

 
Now for the second part of the line, I am doing the same as above, only I am 
moving it 0.1 units so that I am not down to points. This also Lowers the chance 
of any holes occurring in the circle: 
circle.x = r * cos(i + 0.1) – h; 
circle.z = r * sin(i + 0.1) + k;  
 
Then I am drawing the vertex: 
glVertex3f(circle.x + k,circle.z – h,0);  
} 
glEnd();  
} 

 
 
 

 
Illustration 25: Variation of X and Z coordinates. 
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Appendix C 
 
 
 
 

OpenGL functions 

 
 
 

C.1 glLight 

 
glLight sets the values of individual light source parameters. Light names are 
a symbolic name of the form GL_LIGHT i, where i ranges from 0 to the value 
of GL_MAX_LIGHTS - 1. pname specifies one of ten light source 
parameters, again by  symbolic name. params is either a single value or a 
pointer to an array that contains the new values. 

 
To enable and disable lighting calculation, call to glEnable and glDisable 
with argument GL_LIGHTING. Lighting is initially disabled. When it is enabled, 
light sources that are enabled contribute to the lighting calculation. Light 
source i is enabled and disabled using glEnable and glDisable with argument 
GL_LIGHT i. 

 
The seven light parameters are as follows: 

 
GL_AMBIENT  

 
params contains four integer or floating-point values that specify the ambient 
RGBA intensity  of the light. Integer values are mapped linearly such that the 
most positive performable value maps to 1.0, and the most negative 
performable value maps to -1.0.  Floating-point values are mapped directly. 
Neither integer nor floating-point values are clamped. The initial ambient light 
intensity is (0, 0, 0, 1). 

 
GL_DIFFUSE 

 
params contains four integer or floating-point values that specify the diffuse 
RGBA  intensity  of the light. Integer values are mapped linearly such that the 
most  positive   performable  value  maps  to  1.0,  and  the  most  negative 
performable value maps to  -1.0. Floating-point values are mapped directly. 
Neither integer nor floating-point values are clamped. The initial value for 
GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial value is (0, 0, 0, 1). 

 
GL_SPECULAR  

 
params contains four integer or floating-point values that specify the specular 
RGBA  intensity of the light. Integer values are mapped linearly such that the 
most  positive   performable  value  maps  to  1.0,  and  the  most  negative 
performable value maps to  -1.0.Floating-point values are mapped directly. 
Neither integer nor floating-point values are clamped. The initial value for 
GL_LIGHT0 is (1, 1, 1, 1); for other lights, the initial value is (0, 0, 0, 1). 
 
 
 

44 
 
 



 
 
 
GL_POSITION 

 
params contains four integer or floating-point values that specify the position of 
the light in  homogeneous object coordinates. Both integer and floating-point 
values are mapped directly. Neither integer nor floating-point values are 
clamped. The position is transformed by the modelview matrix when glLight is 
called (just as if it were a point), and it is stored in eye coordinates. If the w 
component of the position is 0, the light is treated as a directional source. 
Diffuse and specular lighting calculations take the light's direction, but not its 
actual position, into account, and attenuation is disabled. Otherwise, diffuse and 
specular lighting calculations are based on the actual location of the light in eye 
coordinates, and attenuation is enabled. The initial position is (0, 0, 1, 0); thus, 
the initial light source is directional, parallel to, and in the direction of the -z axis. 

 
GL_SPOT_DIRECTION 

 
params contains three integer or floating-point values that specify the direction 
of the light in homogeneous  object coordinates. Both integer and floating-point 
values are mapped directly. Neither integer nor floating-point values are 
clamped. The spot direction is transformed by the upper 3x3 of the modelview 
matrix when glLight is called, and it is stored in eye coordinates. It is significant 
only when GL_SPOT_CUTOFF is not 180, which it is initially. The initial 
direction is (0,0,-1). 

 
GL_SPOT_EXPONENT 

 
params is a single integer or floating-point value that specifies the intensity 
distribution of  the light. Integer and floating-point values are mapped directly. 
Only values in the range [0,128] are accepted. 

 
Effective light intensity is attenuated by the cosine of the angle between the 
direction of the light and the direction from the light to the vertex being lighted, 
raised to the power of the spot exponent. Thus, higher spot exponents result in 
a more focused light source, regardless of the spot cutoff angle (see 
GL_SPOT_CUTOFF, next paragraph). The initial spot exponent is 0, resulting 
in uniform light distribution. 

 
GL_SPOT_CUTOFF 

 
params is a single integer or floating-point value that specifies the maximum 
spread angle  of a light source. Integer and floating-point values are mapped 
directly. Only values in the range [0,90] and the special value 180 are accepted. 
If the angle between the direction of the light and the direction from the light to 
the  vertex  being  lighted  is  greater  than  the  spot  cutoff  angle,  the  light  is 
completely masked. Otherwise, its intensity is controlled by the spot exponent 
and the attenuation factors. The initial spot cutoff is 180, resulting in uniform 
light distribution. 
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C.2 glBlend 

 
 
 
In RGBA mode, pixels can be drawn using a function that blends the incoming 
(source) RGBA values with the RGBA values that are already in the frame 
buffer (the destination values). Blending is initially disabled. Use glEnable and 
glDisable with argument GL_BLEND to enable and disable blending.  
 

glBlendFunc  defines  the  operation  of  blending  when  it  is  enabled.  sfactor 
specifies which method is used to scale the source color components. dfactor 
specifies which method is used to scale the destination color components. The 
possible methods are described in the following table. Each method defines 
four scale factors, one each for red, green, blue, and alpha. In the table and in 
subsequent equations, source and destination color components are referred to 
as (Rs,Gs,Bs,As) and  (Rd,Gd,Bd,Ad). The  color  specified  by  glBlendColor  is 
referred  to  as  (Rc,Gc,Bc,Ac). They  are  understood  to  have  integer  values 
between 0 and (kR,kG,kB,kA), where and (mR,mG,mB,mA) is the number of red, 
green, blue and alpha bitplanes. 

 
Source and destination scale are referred to as (sR,sG,sB,sA) and (dR,dG,dB,dA). 
All scale factors have range [0,1]. 
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