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The Nakagami-m distribution is widely used for the simulation of
fading channels in wireless communications. A novel, simple and
extremely efficient acceptance-rejection algorithm is introduced for
the generation of independent Nakagami-m random variables. The pro-
posed method uses another Nakagami density with a half-integer value
of the fading parameter, mp ¼ n/2 ≤ m, as proposal function, from
which samples can be drawn exactly and easily. This novel rejection
technique is able to work with arbitrary values of m ≥ 1, average
path energy, V, and provides a higher acceptance rate than all currently
available methods.

Introduction: The Nakagami m distribution is widely used to model the
wireless fading channel because of its good agreement with empirical
channel measurements for some urban multipath environments [1].
The Nakagami probability density function (PDF) is po(x) Cpp(x),
with Cp 2mm/[VG(m)] and

p(x) x2m−1 exp
m

V
x2

( )
, x ≥ 0 (1)

where m ≥ 0.5 is the fading parameter, which indicates the fading depth,
and V . 0 is the average received power.

Several schemes for drawing samples from a Nakagami m PDF have
been proposed. On the one hand, when m is an integer or half integer
(i.e. m n/2 with n [ N), independent samples can be generated
through the square root of a sum of squares of n zero mean independent
identically distributed (IID) Gaussian random variables (RVs). On the
other hand, for m = n/2 several techniques have been proposed for
drawing correlated samples from (1) [2 4], but all of them present limit
ations in terms of complexity, applicability or poor performance for
some values of m. Alternatively, several simple and efficient accep
tance rejection methods, using different proposals and with increasing
accuracy, have been recently introduced [5 7]. Currently, the best
results are provided by [7] using a truncated Gaussian PDF as the
proposal.

In this Letter we provide an extremely efficient acceptance rejection
method for drawing independent samples from non truncated (i.e.
without any restriction in the domain) Nakagami PDFs with m ≥ 1.
As a proposal, we consider another Nakagami PDF with an integer or
half integer fading parameter, mp n/2 ≤ m, from which samples
can be easily and efficiently drawn [8]. Our approach is valid for arbi
trary values of the fading parameters m ≥ 1 (for many practical channels
1 ≤ m ≤ 15, as discussed in [9]) and V . 0. Furthermore, since our
proposal is another Nakagami PDF, the novel rejection scheme provides
a very good fit of the target, thus achieving very high acceptance rates
that tend to 100% (i.e. exact or rejectionless sampling) when
m � +1 and outperforming all the alternative techniques reported in
the literature.

Acceptance rejection algorithm: Rejection sampling (RS) is a classical
technique for generating samples from an arbitrary target PDF,
po(x) Cpp(x) with x [ D and Cp [

�
D p(x)dx]−1, using an alterna

tive simpler proposal PDF, po(x) Cpp(x) with x [ D and
Cp [

�
D p(x)dx]−1, such that p(x) ≥ p(x), i.e. p(x) is a hat function

w.r.t. p(x). RS works by generating samples from the proposal
density, x′ � po(x), accepting them when u′ ≤ p(x′)/p(x′), with u′ uni
formly distributed in [0,1], and rejecting them otherwise. The key per
formance measure for RS is the average acceptance rate,
aR

�
D p(x)/p(x)po(x)dx Cp/Cp ≤ 1. The value of aR depends on

how close the proposal is to the target, and determines the efficiency
of the approach. Hence, the main difficulty when designing an RS algor
ithm is finding a good hat function, p(x) ≥ p(x), such that p(x) and p(x)
are as close as possible and drawing samples from po(x) Cpp(x) can
be done easily and efficiently.

In this work, we consider as target density the PDF given by (1) with
m ≥ 1. As proposal PDF, we suggest using another Nakagami function
with different parameters, namely

po(x)/ p(x) apx2mp−1 exp
mp

Vp
x2

( )
, x ≥ 0 (2)
with mp n/2, n ⌊2m⌋ (with ⌊x⌋ denoting the integer part of x [ R),
and the remaining parameters (ap and Vp) adjusted to obtain the same
location and value of the maximum in the proposal as in the target:

Vp
2mp

2mp 1
x2

max V
mp(2m 1)
m(2mp 1) (3)

ap
p(xmax)

x
2mp−1
max exp ( mpx2

max/Vp)

exp(mp m) V(2m 1)
2m

( )m−mp
(4)

where xmax is the location of the maximum of the Nakagami PDF,
obtained solving dp(x)/dx 0, which results in

xmax

������������
(2m 1)V

2m

√
(5)

Note that we always have mp ≤ m, with mp being an integer or half
integer value. Thanks to this choice of mp and the parameters derived
in (3) and (4), we can ensure that: (a) we can draw samples exactly
from po(x)/ p(x) [8]; (b) p(x) ≥ p(x) for all x ≥ 0, as proved in the
sequel. Fig. 1a shows an example of the target, p(x), our proposal,
p(x), and the proposal used in [7] for an unbounded domain, which
fits the true PDF in a much looser way than ours, thus leading to
worse acceptance rates.
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Fig. 1 Example (Fig. 1a) of Nakagami PDF (solid line) with m ¼ 1.8 and
V ¼ 5, our proposal (dashed line), and Gaussian proposal, p(x) ¼
p(xmax) exp(2m/V(x 2 xmax)

2) used in [7] for an unbounded domain
(circles). The two functions (Fig. 1b), ln(ap) + b x2 (dashed line) and
2(m 2 mp)ln(x) (solid line) in (9), when m ¼ 1.8 and V ¼ 5

Therefore, our algorithm follows these three simple steps: (a) calculate
the parameters of the proposal PDF, po(x)/ p(x); (b) draw a sample x′

from po(x) using the direct approach described in [8]: generate 2mp IID
Gaussian RVs, zk � N(0, 1) for 1 ≤ k ≤ 2mp, and set

x′

�����������
Vp

2mp

∑2mp

k 1
z2

k

√
(6)

(c) accept x′ with probability p(x′)/p(x′) and discard otherwise. Steps (b)
and (c) are repeated until the desired number of samples has been
obtained.

Proof of RS inequality: To apply the RS technique we need to ensure
that p(x) ≥ p(x), i.e.

apx2mp−1 exp
mpx2

Vp

( )
≥ x2m−1 exp

mx2

V

( )
∀x ≥ 0 (7)

Alternatively, (7) can be easily rewritten as

ap exp (bx2) ≥ x2(m−mp), ∀x ≥ 0 (8)

where b W m/V mp/Vp and x2(m−mp) presents a sub linear growth,
since 0 ≤ 2(m mp) , 1. Finally, taking the logarithm on both sides
of (8),

lnap + bx2 ≥ 2(m mp) ln x, ∀x ≥ 0 (9)

Now, since m ≥ mp and Vp is given by (3), we note that

b
m

V

mp

Vp

m

V
1

2mp 1

2m 1

( )
≥ 0 (10)

Hence, since we have ap . 0 from (4), the parabola on the left hand side
of (9) is an increasing function with an increasing first derivative (i.e. a
convex function). Moreover, since m ≥ mp, the logarithmic function on
the right hand side of (9) is also an increasing function, but with a
1
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ecreasing first derivative (i.e. a concave function). Consequently, since
oth functions are increasing for x ≥ 0, but lnap + bx2 is convex and
(m mp) ln x is concave, they can have at most two intersection
oints. However, as shown in Fig. 1b, the two functions are tangent at

xmax, which is the only contact point between both curves. To
rove this, we need to show that both functions are equal at x xmax, i.e.

lnap + bx2
max 2(m mp) ln xmax

(m mp) ln
V(2m 1)

2m

( ) (11)

nd also that their first derivatives are equal, i.e.

d(lnap + bx2)
dx

∣∣∣∣
x xmax

d(2(m mp) ln x)
dx

∣∣∣∣
x xmax

2(m mp)
xmax

���������������
8m(m mp)2
(2m 1)V

√ (12)

herefore, since x2 grows faster than ln x, we can guarantee that
nap + bx2 ≥ 2(m mp) ln x ∀x ≥ 0, with equality only at x xmax,
nd the RS inequality in (7) is satisfied.

esults: To analyse the performance of the algorithm, we have com
ared the acceptance rate (AR), aR, of our approach and the Gaussian
roposal used in [7] to draw samples from a Nakagami PDF without
runcation. The AR of our technique can be obtained analytically:

aR1 (2e)m−mp
G(m)(2mp 1)mp

G(mp)(2m 1)m (13)

ith G(m) denoting the gamma function, whereas the AR for the propo
al used in [7] can be approximated for m ≥ 4 as

aR2 ≃ em−1/2G(m)(2m 1)1/2−m��
p

√
2m+1/2

(14)

ote that in both cases the AR is independent of the average received
ower, V. Fig. 2 shows this AR, obtained empirically after drawing

6 × 105 independent samples, for both approaches and several
alues of the fading depth, m. It can be seen that our technique is extre
ely efficient, outperforming the proposal used in [7] and providing the

est results ever reported in the literature for m ≥ 1. Furthermore, our
echnique provides exact sampling (i.e. aR1 1) when m is an integer
r half integer, since our proposal is equal to the target in these cases.
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ig. 2 Acceptance rate (AR) using our proposal (continuous line) and the
ne from [7] for an unbounded domain (dashed line) for 1 ≤ m ≤ 50
onclusion: We have proposed a rejection sampling (RS) scheme for
enerating Nakagami random variables, with arbitrary values of
≥ 1 and V, where the proposal PDF is itself another Nakagami m

ensity. The proposed algorithm is simple and extremely efficient, pro
iding the best acceptance rates ever reported in the literature for m ≥ 1.
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