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Abstract

VISUAL Sensor Networks have emerged as a new technology to bring computer

vision algorithms to the real world. However, they impose restrictions in the

computational resources and bandwidth available to solve target problems. This

thesis is concerned with the definition of new efficient algorithms to perform Human

Action Recognition with Visual Sensor Networks.

Human Action Recognition systems apply sequence modelling methods to in-

tegrate the temporal sensor measurements available. Among sequence modelling

methods, the Hidden Conditional Random Field has shown a great performance in

sequence classification tasks, outperforming many other methods. However, a pa-

rameter estimation procedure has not been proposed with feature and model selec-

tion properties. This thesis fills this lack proposing a new objective function to opti-

mize during training. The L2 regularizer employed in the standard objective function

is replaced by an overlapping group-L1 regularizer that produces feature and model

selection effects in the optima. A gradient-based search strategy is proposed to find

the optimal parameters of the objective function. Experimental evidence shows that

Hidden Conditional Random Fields with their parameters estimated employing the

proposed method have a higher predictive accuracy than those estimated with the

standard method, with an smaller inference cost.

This thesis also deals with the problem of human action recognition from multi-

ple cameras, with the focus on reducing the amount of network bandwidth required.

A multiple view dimensionality reduction framework is developed to obtain similar

low dimensional representation for the motion descriptors extracted from multiple

cameras. An alternative is proposed predicting the action class locally at each cam-

era with the motion descriptors extracted from each view and integrating the different



action decisions to make a global decision on the action performed. The reported

experiments show that the proposed framework has a predictive performance similar

to 3D state of the art methods, but with a lower computational complexity and lower

bandwidth requirements.



Abstract

LAS Redes de Sensores Visuales son una nueva tecnología que permite el desplie-

gue de algoritmos de visión por computador en el mundo real. Sin embargo,

estas imponen restricciones en los recursos de computo y de ancho de banda dis-

ponibles para la resolución del problema en cuestión. Esta tesis tiene por objeto la

definición de nuevos algoritmos con los que realizar reconocimiento de actividades

humanas en redes de sensores visuales, teniendo en cuenta las restricciones plantea-

das.

Los sistemas de reconocimiento de acciones aplican métodos de modelado de

secuencias para la integración de las medidas temporales proporcionadas por los

sensores. Entre los modelos para el modelado de secuencias, el Hidden Conditional

Random Field ha mostrado un gran rendimiento en la clasificación de secuencias,

superando a otros métodos existentes. Sin embargo, no se ha definido un procedi-

miento para la estimación de sus parámetros que incluya selección de atributos y se-

lección de modelo. Esta tesis tiene por objeto cubrir esta carencia proponiendo una

nueva función objetivo que optimizar en la estimación de los parámetros óptimos.

El regularizador L2 empleado en la función objetivo estandar va a ser remplazado

por un regularizador grupo-L1 solapado que va a producir los efectos de selección

de modelo y atributos deseados. Se va a proponer una estrategia de búsqueda con la

que obtener el valor óptimo de estos parámetros. Los experimentos realizados mues-

tran que los modelos estimados utilizando la función objetivo propuesta tienen un

mayor poder de predicción, reduciendo al mismo tiempo el coste computacional de

la inferencia.

Esta tesis también trata el problema del reconocimiento de acciones humanas

empleando multiples cámaras, centrándonose en reducir la cantidad de ancho de



xiv Abstract

banda requerida par el proceso. Para ello se propone un nueva estructura en la que

definir algoritmos de reducción de dimensionalidad para datos definidos en multi-

ples vistas. Mediante su aplicación se obtienen representaciones de baja dimensio-

nalidad similares para los descriptores de movimiento calculados en cada una de las

cámaras. También se propone un método alternativo basado en la predicción de la

acción realizada con los descriptores obtenidos en cada una de las cámaras, para

luego combinar las diferentes predicciones en una global. La experimentación rea-

lizada muestra que estos métodos tienen una eficacia similar a la alcanzada por los

métodos existentes basados en reconstrucción 3D, pero con una menor complejidad

computacional y un menor uso de la red.
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1
Introduction

Big Brother is Watching You

1984. George Orwell

IN 1966 Marvin Minsky, an Artificial Intelligence pioneer at Massachusetts Insti-

tute of Technology, asked an undergraduate student to solve “the problem of

computer vision” as a summer project. Of course he did not solve it, but a new re-

search discipline was born from that challenge. Almost fifty years have passed and a

wide variety of visual perception problems have been studied. Nowadays computers

recognize objects from their visual appearance, robots navigate in unknown envi-

ronments employing visual information, visual surveillance systems recognize faces

of wanted people and automatic quality control systems discover imperfections in

production lines. Automatic video analysis goes one step beyond, employing image

streams to study phenomena with a temporal extent. Video trackers measure speed

and location of moving objects, enabling the construction of a diversity of systems to

automate video surveillance tasks or perform human computer interaction. Despite

the advances made in the area, there are multiple problems not yet solved. One of

them is the accurate recognition of human movements.

The recognition of human movements (Aggarwal & Ryoo, 2011) has been stud-

ied by the computer vision community for more than twenty years. The develop-

ments made during this period have enabled the creation of multiple systems. Auto-

matic Surveillance, Ambient Intelligence or Human Computer Interaction are some
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of them. Abnormal behavior detection is employed in Video Surveillance Systems

to detect suspicious behaviors that might be assessed as a thread. Smart home en-

vironments analyze actions and mood of the inhabitants to adapt the environment

to their preferences, changing music or lighting conditions to make it more comfort-

able. Commercial gaming platforms employ advanced sensors to capture the real

movements of the players, providing an enhanced and more realistic experience.

However, there are still multiple challenges to be solved before moving human

action recognition technologies form controlled laboratories to the real world.

1.1 Visual Sensor Networks

For many years networks of cameras have acquired images and sent them to a cen-

tral location where they are analyzed. The usage of computer vision systems has

displaced humans from analyzing the captured images. In any case all the process-

ing has been located in a centralized system with high computing capabilities and

employing wide-band networks for image transmission. These deployments have

a high monetary cost, requiring a considerable inversion for their installation and

maintenance.

The advances made in imaging sensor technologies, network communications

and embedding computing capabilities have led to the creation of networks of smart

camera devices, called Visual Sensor Networks (VSNs) (Charfi et al. , 2009; Soro

& Heinzelman, 2009; Tavli et al. , 2011). A VSN consist of a set of camera nodes

integrating an imaging sensor, and embedded processor and a wireless transceiver.

VSNs constitute a low-cost alternative to the traditional centralized systems in order

to foster the application of computer vision in the real world.

A VSN is a distributed system to monitor the environment where it is deployed.

Camera nodes process image data locally to extract relevant information and co-

operate between them to solve a given task. A central node usually collects the
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information generated by the camera nodes in order to present it to the user.

The number of potential application domains benefited from developments in

VSN technology ranges from video-surveillance systems to elderly monitoring envi-

ronments to telepresence. Any application domain where multidimensional informa-

tion is collected from multiple sensors and processed to infer the state of an entity of

the real world is a candidate for the usage of VSNs.

Visual sensor networks might be considered as a second generation of Wireless

Sensor Networks (WSNs), augmenting their low sensing capabilities. The kind of

sensors employed in WSNs is reduced to scalar sensors measuring pressure, temper-

ature, humidity or presence. With VSNs the sensing capabilities of sensor networks

are considerably increased, as rich multidimensional information about the world

is now obtained. Unfortunately, the usage of multidimensional information is not

free, as higher computational capabilities are required at the camera nodes. The

information to send over the - narrow - network is also importantly increased.

However, the usage of standard computer vision algorithms in VSNs is limited

by the nature of the networks. The low computational performance and memory

capabilities of the embedded processors at the camera nodes restricts the usage of

state of the art methods with high accuracy but demanding a lot of computational

resources. But beyond the availability of computational resources, what restricts

even more the family of candidate methods to employ is the energy consumption

restrictions. Camera nodes in VSNs usually have a battery as power supply. Battery

life maximization is not compatible with a high computational demand from the

algorithms employed.

Other design constraint in VSNs is imposed by the network bandwidth available.

For example, the power-efficient ZigBee wireless standard commonly employed in

VSNs has a maximum transmission rate of 250 kilobits per second that forbids the

streaming of large image data at an acceptable frame rate. Thus, data has to be

processed at the camera nodes to minimize the amount of information needed to

be sent over the network. But this restriction gets in conflict with the energy and
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computational resources restrictions. Fewer data sent over the network probably

means higher energy consumption caused by computations, and sending more data

over the network also means a higher energy consumption due to transmission.

New computer vision algorithms need to be developed taking into account the

design constraints imposed by VSNs, as the focus of computer vision research has

been traditionally on accuracy and not in efficiency. They have to minimize their

memory usage and the number of operations required to obtain a meaningful result.

New data fusion paradigms for visual data are needed too, employing more abstract

data with a probably smaller size at the input.

1.2 Human Action Recognition and Visual Sensor Net-

works

The usage of multiple camera viewpoints in the characterization of human motions

has diverse advantages. It allows to construct systems robust against partial or even

full body occlusions produced by furniture or walls, something essential when the

systems should be deployed in real uncontrolled environments. Other advantage is

that the descriptors extracted from the multiple cameras provide complementary in-

formation about the performed motion, allowing the creation of systems with higher

predictive accuracy. However, current proposals for human action recognition from

multiple cameras are not well posed for their deployment in VSN infrastructure.

Traditional multi-camera human action recognition methods are based in the pro-

jection of 2D descriptors extracted from each camera into a single 3D descriptor,

employing visual geometry information. They need to send to a central node high

dimensional descriptors such silhouettes or optical flow fields requiring a lot of band-

width not available in a VSN. The usage of visual geometry requires to perform cal-

ibration of the cameras to obtain the projection matrices. Each time a camera is

moved, maybe accidentally, the camera should be recalibrated, complicating the us-
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age of VSNs in real uncontrolled environments for the recognition of human actions.

These approaches require streaming a large amount of data in the form of raw im-

ages or, at least, silhouette masks containing the objects of interest in the scene. Def-

initely they send much more information than the acceptable in a VSN, because the

local image processing made at the camera nodes is very simple. Thus, a paradigm

shift in how the information is processed for multi-camera human action recognition

systems is needed, moving processing from the central server to the camera nodes

to obtain higher levelinformation more easy to send over the network.

The Data Fusion community has studied the problem of combining measure-

ments from multiple sensors for a long time. The concepts and algorithms devel-

oped by them might be applied to guide the development of this new paradigm for

the recognition of human actions from multiple cameras.

1.3 Sequence classification, Human Action Recognition

and Visual Sensor Networks

A key component of almost any human action recognition system is the sequence

modeling method employed. Human motions not happen isolated, they have a tem-

poral extent. Thus, sequence modeling methods have a great importance in the

recognition of human actions. Multiple alternatives have been proposed to model

the temporal correlations among the visual features extracted from the images se-

quences containing human actions. They will be in depth reviewed later in chapter

2.

A popular class of sequence models employed in the recognition of human ac-

tions is based on probabilistic graphical models. Among them, generative models

based on the Hidden Markov Model have become the de facto standard model.

Multiple works have employed them and proposed variations to capture the par-

ticularities of the different recognition scenarios. Efficient exact and approximate



6 1. Introduction

algorithms exist to perform the associated inference tasks. Recently, discriminative

sequence models such the Hidden Conditional Random Field (HCRF) (Quattoni et al.

, 2007) have emerged as a promising alternative to generative models. They have

shown a higher predictive performance in different tasks than their generative coun-

terparts. However, they still have a reduced applicability spectrum and they do not

have displaced generative models.

This work wants to foster the spread of discriminative sequence models incorpo-

rating model and feature selection in the training algorithm of the HCRF sequence

classifier. Model and feature selection are two desirable properties in any machine

learning algorithm. The Occam’s Razor principle of machine learning stands that a

model should not be more complex than strictly required. Model and feature selec-

tion are two ways of implementing this principle, both reducing the complexity of

the estimated model. Model selection in the HCRF refers to the selection of the opti-

mal number of hidden state variables, while feature selection refers to the selection

of informative features in the input sequences discarding uninformative ones.

Regarding VSNs, it is desirable to accomplish with the Occam’s Razor principle.

As already mentioned, the embedded processing capabilities at the camera nodes

are restricted due to energy consumption limitations. Then, simplifying the models

employed as much as possible - but not more - will lead to accurate algorithms with

an smaller computational complexity and consuming an smaller amount of energy.

The “Green” buzzword probably might be applied to these algorithms.

1.4 Thesis objectives

This thesis is mainly concerned with the open issues discussed above; that is:

• The efficient estimation of the parameters of the Hidden Conditional Random

Field sequence classifier adjusting model complexity while maximizing the

predictive accuracy.
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• The efficient combination of multiple camera information for the prediction of

human actions, reducing the amount of information to be sent from the camera

nodes to the central server.

To accomplish the first issue a modification of the regularization strategy em-

ployed in the estimation of optimal parameters if the HCRF is proposed. However,

the search strategy employed by the standard model is no longer valid and different

algorithms will have to be employed for the task.

Two different strategies are going to be analyzed for the efficient combination of

multiple camera information, operating at different levels of abstraction. The first

combines visual features extracted from each one of the cameras. To this end a new

dimensionality reduction framework from multiple views is going to be developed.

The framework abstracts different already existing multiple view dimensionality re-

duction algorithms, and new algorithms are going to be developed under its support.

Methods to obtain approximate solutions of the framework in large scale learning are

discussed. The second proposal is going to bring the action prediction to the camera

nodes. The predictions made by the camera nodes are going to be combined to

make a global action recognition decision. A probabilistic formulation is going to be

employed to achieve this objective.

All the proposed algorithms are going to be validated employing standard datasets

for human action recognition. Their performance is going to be compared to other

state of the art methods.

In order to give an strong background supporting this proposals a review of state

of the art methods for human action recognition is provided, covering the different

steps involved in the process.

Regarding the problem of human action recognition from multiple cameras it is

going to be reviewed from the viewpoint of data fusion, employing the concepts and

frameworks developed by that community.
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1.5 Structure of the thesis

This document is structured into two conceptual blocks, the first one reviewing and

categorizing existing methods for Human Action Recognition and the second pre-

senting the proposals of this dissertation.

Chapter 2 presents a review of Human Action Recognition algorithms with the

focus in methods employing a single camera for action prediction. A review of

previous surveys of the field published along the years is presented to give the reader

the idea of how the field has evolved. The different semantic definitions proposed to

categorize human motion analysis systems are merged into a new one summarizing

all the proposed concepts. Then, different existing proposals to perform feature

extraction are reviewed. The chapter finishes describing methods to predict action

class labels from the extracted features.

Chapter 3 reviews multi-camera human action recognition systems employing the

concepts and frameworks developed by the data fusion community. The JDL process

model and Dasarathy’s Input-Output model are presented. Works in multi-camera

human action recognition are categorized according to them.

In Chapter 4 the exposition of the proposals of this dissertation begins with the

model and feature selection procedures for the HCRF. First, the HCRF standard

model is presented with inference and learning algorithms. Then, the proposed

training procedure is presented with the optimal parameter search strategy to be em-

ployed. The chapter finishes with experimental validation of the proposed methods

in the recognition of the Weizmann dataset.

Chapter 5 presents an extension of the graph embedding dimensionality reduc-

tion framework to the case when multiple views of the data are defined. The chapter

begins introducing the standard graph embedding framework and how some well-

known dimensionality reduction algorithms are instantiations of it. The chapter fol-

lows presenting the proposed extension to the graph embedding framework. Differ-

ent methods to obtain approximate solutions in large scale scenarios are presented.
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The chapter finishes with the validation of the framework in the prediction of the

IXMAS dataset.

Chapter 6 presents and alternative model to perform human action recognition

from multiple cameras. The single camera recognition method employed to process

the streams from each camera is presented. Then, some alternative rules to combine

the local predicions are discussed. Experimental evidence is reported applying the

proposed system to the prediction of IXMAS dataset showing a similar performance

to the method proposed in chapter 5.

Finally, chapter 7 presents the conclusions achieved after the realization of this

PhD dissertation, discussing future works with their origin on what has been pre-

sented here. A number of complementary appendixes are included mainly for refer-

ence purposes. In particular,

Appendix A lists the publications related to this work.

Appendix B describes the datasets and evaluation protocols employed to test the

different algorithms

Appendix C presents the auxiliary feature extraction methods employed in the

experimental evaluation of the proposed methods.

Appendix D presents the dynamic time warping distance nearest neighbor se-

quence classifier employed to predict actions in the experiments presented in chapter

5.

For further details regarding this thesis and its related publications please visit the

author’s web page ( http://www.giaa.inf.uc3m.es/miembros/rodri )
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I
State of the art





2
Human Action Recognition from

Video

If you know others and know yourself, you will

not be imperiled in a hundred battles;

if you do not know others but know yourself, you

win one and lose one;

if you do not know others and do not know

yourself, you will be imperiled in every single

battle.
The Art of War. Sun Tzu

THIS chapter presents the advances made in the field of Human Action Recog-

nition from video during the last two decades, with an special emphasis on

feature extraction algorithms and action recognition models. The general steps to

perform action recognition are introduced in first term. An analysis of the previ-

ous published surveys of the area is presented with the aim of reviewing how the

research trends have evolved over time. Then, a discussion about the meaning of

different terms such movement, action or activity and how have been employed in

the literature is presented, with the aim of fixing their usage in further chapters. After

presenting these general topics, feature extraction methods and action recognition

models are in depth reviewed. Chapter finishes with a critical discussion about the

achievements reached.
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2.1 Action Recognition Process

Multiple proposals have been developed with the common objective of bridging the

semantic gap between pixel intensity values at the input sequences and high level

descriptions about their content. Every work defines its own steps to incrementally

perform the transformation but, in general they might be grouped in two categories:

1. Feature extraction. The objective of this step is the extraction of informative at-

tributes about the motion of interest in the video. Ideally, the attributes should

be invariant towards changes in scene illumination, anthropometry or camera

viewpoint to make further steps easier. High dimensional data analysis meth-

ods are employed to provide compact representations of the features to prevent

the course of dimensionality in further steps.

2. Action modeling. At this step, the features previously computed are trans-

formed into semantic representations. Spatio-temporal correlations among the

extracted features and action labels are modeled to build predictive models for

the actions of interest.

This division will be employed later in this chapter to organize in first instance the dif-

ferent proposals related to human action recognition, including them in the category

where they make their main contribution.

Related to action recognition is multiple object tracking (MTT), as the location

and temporal labelling of the objects of interest in the input video is usually a pre-

requisite in some applications. MTT is out of the scope of this work. Readers are

referred to the specific surveys about MTT for further details (Yilmaz et al. , 2006).

2.2 Previous surveys

The field of Human Action Recognition has been surveyed by different authors in

the last twenty years. A global perspective of the research direction explored during



2.2. Previous surveys 15

Bridge The Semantic Gap

Feature 

Extraction

Action

Modeling

Images Descriptions

Walking

Figure 2.1: A general action recognition pipeline

these years might be obtained if these surveys are analyzed in sequential order.

The first survey was published back in 1995 when Cédras and Shah collected the

works of the emergent new topic (Cédras & Shah, 1995). They identified different

application areas that would be benefited from the future advances. They reflect

the first usages of motion descriptors computed from trajectories, optical flow or

silhouettes, with the first models and heuristics for motion classification. Preliminary

proposals of tracking methods for human motions were also presented.

In 1999 Gavrila published a survey centered on the representation and tracking

of the human body(Gavrila, 1999). He distinguishes between proposals in 2D with-

out explicit shape models, in 2D with explicit shape models and in 3D. Advances

in action models were presented also. He identified some challenges that would

have to be solved in future works, such the difficulty of acquiring 3D models in

uncontrolled situations or the difficulties that current systems have to handle occlu-

sions. The lack of ground truth data is presented as an issue for the fair comparison

of existing approaches. That should be addressed in subsequent works. Finally, he

postulates the usage of 3D range data as a way to improve the acquisition of human

models.

The same year Aggarwal and Cai published a complementary survey (Aggarwal

& Cai, 1999) where a lot of importance is given to human body tracking methods.

A first categorization for the action models is proposed, differentiating between tem-
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plate matching approaches and state-space based approaches.

Moeslund and Granum published their first survey in Human Motion Capture in

2001 (Moeslund & Granum, 2001). They identify 4 steps in the analysis of human

motion: initialization, tracking, pose estimation and recognition. The survey is or-

ganized according to these steps. They realize that although most of the methods

proposed until then are based on human body models in 2D or 3D, recent works

have shown promising results with model-free approaches. These methods will be-

come very popular in subsequent years as they not depend on a good human model

acquisition strategy.

Hu et al. presented in 2004 a survey from the viewpoint of video surveillance

applications (Hu et al. , 2004), presenting works in object detection, identification,

tracking and abnormal behavior detection. Particular attention is given to the fusion

of data obtained from multiple cameras. The need for systems robust towards occlu-

sions is again identified. They suggest the need to go beyond behavior recognition

and build systems to predict future behaviors in advance.

In 2006 Moeslund et al. published a new version of their previous survey (Moes-

lund et al. , 2006). Recent developments in the areas previously covered are pre-

sented, including advances in model-free methods. A shift in the human action

recognition paradigm has started, progressively leaving model based approaches in

favour of model-free approaches. As an issue to address in future works they present

the lack of high level behaviour models for the recognition of complex activities, as

most of the works presented until then have been centered in the deep study of the

details of simple actions.

Turaga et al. publish their survey in 2008 (Turaga et al. , 2008), and for the first

time knowledge and logic-based approaches for the recognition of complex human

actions are presented. They identify as topics to be addressed in the future the adap-

tion of the systems for real-world operation, the creation of human action recognition

systems view, rate and anthropometry invariant, the exhaustive evaluation of the sys-

tems, the integration with other sensing modalities and, again, the reasoning about
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the future intentions of people.

Poppe makes an extensive review of the methods for feature extraction and recog-

nition of simple actions (Poppe, 2010). He includes different datasets for the eval-

uation of human action recognition methods published in recent years, and warns

about the need for a multidataset evaluation framework, as evaluated methods might

be biased towards some specific dataset. Furthermore, the need for application spe-

cific datasets with specialized evaluation metrics is identified, as different application

have different operational requirements.

The survey published by Weinland et al. gives a special attention to novel works

in view-invariant action recognition and temporal segmentation of actions (Weinland

et al. , 2011). He emphasizes the need for challenging action recognition datasets

in uncontrolled scenarios with the actions having a wide variability. Methods based

in local feature extraction have shown promising result in such scenarios and are

identified as a target of study as there is a lot of open problems related to them.

Aggarwal and Ryoo recently published a new survey (Aggarwal & Ryoo, 2011),

organizing the works according to the complexity of the recognized actions. An

special attention is given to group activity recognition and human-object interaction.

They point out that although a big progress has been made in recent years in the do-

main, the problem is far from being solved as still there are a lot of practical issues to

be addressed. Efficient algorithms for real-time operation, the ability to recover from

tracking errors or the recognition of complex activities by spacio-temporal features

are identified as future research lines.

A review of these surveys shows a big progress in the field of human action

recognition in the last two decades. The seminal systems proposed in the mid-90’s

recognizing basic gestures have evolved to study complex activities performed by

multiple people. Action Recognition is performed with videos in the wild i.e., se-

quences acquired in uncontrolled environments where occlusions and background

noise increase the difficulty of defining robust models. Models invariant towards

camera viewpoint changes and anthropometries have been defined, augmenting the
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robustness of the systems towards changes in the environment and enabling the trans-

ferability of models. However, the action recognition problem is still far from being

solved, as multiple opened problems of computer vision and artificial intelligence

affect the field. At the end of this chapter some of them will be discussed.

2.3 Motions, Events, Actions, Activities and all that

Hierarchy Categories

(Nagel, 1988) change, event, verb, history

(Bobick, 1997) movement, activity, action

(Bremond & Nevatia, 2000) simple events, composed events, multi-

threaded events

(Aggarwal & Ryoo, 2011) gestures, actions, interactions, group ac-

tivities

Proposed Gesture, Action, Individual activity, Inter-

actions, Group activities

Table 2.1: Different action hierarchies

The first question that must be answered when facing a human motion analysis

problem is related to the semantic definition of the motions in consideration. Differ-

ent motions have different complexities. Imagine an scenario when a person waves

his arms. The waving movement is composed of two different motions. First, the

person rises his arms. Then, the person lows his arms. The waving motion is com-

posed of the temporal concatenation of the simple motions rise and low. Complex

Motions are composed by the concatenation of simpler motions. At the same time,

the motion might have a meaning depending on the context where the motion is

performed. Even, the same motion can have different meanings in different contexts.

For example, a person waves his hands in a station to signal somebody that is there.

By contrast, when an airport marshal waves his hands to a plane, he wants to signal

the plane to stop. Motions are almost the same, but the meanings are different. Two

different abstractions have been shown related to this sample waving actions, one

related to the motions and the other related to the meaning. It is clear that some
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hierarchical structure exists related to the motions, and the problem of defining the

different levels of the motion hierarchy has been tackled by different authors, without

achieving a common consensus.

Nagel, in a first attempt to categorize the action hierarchies in video, defined

the concepts change, event, verb and history (Nagel, 1988). Bobick defines three

different semantic levels related to the amount of knowledge required to classify

each one of them (Bobick, 1997). He defines a movement as “a motion whose

execution is consistent and easily characterized by a definite space-time trajectory

in some configuration space”. An activity is defined as “ a statistical sequence of

movements”. Finally, an action is defined as an activity performed in some particular

context.

Hongeng et al. (Bremond & Nevatia, 2000) proposed a event hierarchy com-

posed of simple events, composed events and multithreaded events, allowing the

modelling of motions where more than one entity is involved. Simple events are

defined as coherent short motions described by a set of logical restrictions imposed

over a set of sub-events or directly over a set of target properties. Composed events

are defined as temporal sequences of simple events or other composed events se-

quentially ordered along time. Multithreaded events are defined imposing logical

and temporal restrictions over two or more events executed in parallel, typically to

model events involving multiple entities.

Aggarwal and Ryoo (Aggarwal & Ryoo, 2011) define four levels of abstraction,

named gestures, actions, interactions and group activities. Gestures are defined as

elementary movements of a person’s body part, and are the atomic components de-

scribing the meaningful motion of a person. Actions are defined as single-person

activities that may be composed of multiple gestures organized temporally. Interac-

tions are human activities that involve two or more persons and/or objects. Group

activities are defined as the activities performed by conceptual groups composed of

multiple persons and/or objects. The inclusion of the former category is novel with

respect to previous taxonomies.
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No action hierarchy is generally accepted, and the works in Human Action Recog-

nition employ terms such event, motion, action or activity without a clear common

meaning. The only fact generally accepted is that motions are organized in hierar-

chies, where complex motion concepts are composed of simpler ones. Although

this lack of common definitions might be understood as a handicap to understand

the works in Human Action Recognition, in practice it is not as the different works

have a similar structure. This work contributes to the confusion of terms defining five

levels of abstraction mixing the concepts formulated on previous categorizations.

1. A Gesture is defined as the elementary movement of a person’s body part, and

are considered as the atoms of motion analysis.

2. An action is built defining spatial and temporal restrictions over a set of ges-

tures. Examples of actions are “running”,"walking" or ”waving”.

3. Individual activities, or simply, activities are defined as actions performed in a

given context.

4. Interactions are defined as actions where more than one entity is involved. In-

teractions might be defined between humans or between humans and objects.

5. Group activities are defined as the motions performed by conceptual groups

composed of multiple persons and/or objects.

This hierarchy is similar to the defined by Aggarwal and Ryoo (Aggarwal & Ryoo,

2011), splitting their definition of action into actions and individual activities ac-

cording to the level of the knowledge required at each level, in the style of Bobick

(Bobick, 1997).

The works examined in this chapter and the proposals of this dissertation are re-

lated to the recognition of gestures and actions, not considering higher levels where

the meaning of the performed motions depends on scene knowledge.
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2.4 Feature extraction

The first step in the Human Action Recognition chain is to select the proper cues to

describe the actions of interests. Ideally, the selected cues have to capture the vari-

ance of the target motion while at the same time have to be robust towards the noise

in the images, scene illumination, occlusions and changes in the camera viewpoint.

There is no cue valid for every action recognition task.

The different features proposed for human action recognition are going to be

divided in three different categories:

• Model-based features, employing the parameters of a model representing target

properties.

• Global features, extracting visual information from the image region occupied

by the target.

• Local features, extracting visual information about local changes in the image

cause by the motion of the target.

Next paragraphs will review the particularities of these approaches and present

relevant works. Feature encoding methods are presented as a complement, as their

usage is widely spread to prevent the course of dimensionality and visualize the

extracted features.

2.4.1 Model-based features

The first group of features discussed here are obtained from a model fitted to the

entity under analysis. The model abstracts the shape of the entity, representing it on

some parametric space. The abstraction might be performed at different levels of de-

tail, depending of the quality of the observations of the target and the computational

resources available. Rough models are easier to compute than detailed models, at
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the cost of capturing less accurate information about the performed motion. The

object tracking survey of Yilmaz et al. (Yilmaz et al. , 2006) presents a variety of

models for the entities and techniques for the estimation of the optimal parameters.

At the lowest level of detail the entities are represented by a single point. This

is typical in far-field views where the entities are very small and there is not enough

detail in the representation to try any other approach more sophisticated. Inferences

about motion at this level are limited to reasoning about the speed of the target and

the trajectory type.

At the mid level of detail the entities are represented by a rectangular bounding

box, incorporating the spatial extent of the entity into the model. Features such the

bounding box width, height, aspect ratio or rotation are included in the model. This

enables performing simple inferences about the kind of motion and pose of people,

i.e. if it is walking, running or stopped.

At the highest level of detail the entities are represented by part based models,

where the different articulated parts of the entity are independently modeled to pro-

vide an accurate representation of the entity shape. In the case of humans these

corresponds to the body limbs. They are represented either as segments or closed

surfaces and approaches have been proposed both in 2D and 3D. Marr and Nishi-

hara introduced a hierarchical cylinder model to represent the human body in 3D

(Marr & Nishihara, 1978). Different levels of detail are defined decomposing the

cylinder containing the full human body into subcylinders containing the limbs. The

limbs are also decomposed into subcylinders to represents the different parts and

joints in the limbs. A more refined model might be built employing super-quadrics

instead of cylinders (Gavrila & Davis, 1995). The main problem of this models is that

the estimation of model parameters is very challenging because of the high number

of degrees of freedom in the models. The representation of the body limbs in 2D is

performed in a similar way, but with 2D primitives. Park and Aggarwal represent the

human body as a set of ellipses and convex hulls (Park & Aggarwal, 2004). Fanti et

al. proposes a probabilistic model to find the configuration of the body parts (Fanti
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et al. , 2005).

Temporal moments and derivatives of the model parameters are employed to

build robust features to introduce in the classifiers. A large number of the measure-

ments that might be employed is presented in (Ribeiro & Santos Victor, 2005).

These models allow inferences about detailed gestures and actions of people

(grasping, Tango dance steps (Gavrila & Davis, 1995),. . . ). However, the complexity

of recovering model parameters has relegated the usage of model based features in

favour of global and local image features.

2.4.2 Global Image features

Given the region where an object of interest is located, two different kinds of features

might be extracted:

1. Appearance features, representing how a target looks like.

2. Motion features, representing how a target moves.

2.4.2.1 Appearance features

Appearance features describe how the entity under analysis looks like at a given

instant. Information about the instant pose of people is captured by this attributes.

The variations in body shapes and clothing corrupt pose signal, but in practice is not

a real problem as multiple actors are employed for model training.

Silhouette features The temporal evolution of human silhouettes is a powerful cue

for the recognition of human actions where the relative movement of body limbs is

important, such in human computer interaction applications. Human silhouettes are

binary image masks with the pixels belonging to the human activated. The simplest

way to obtain them is to subtract a reference background image from the current
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frame and threshold the result. There are multiple methods to build background

models and perform the extraction of the silhouettes, but they are out of the scope

of this survey. Readers are referred to (Piccardi, 2004) for information in the topic.

In a seminal work in human action recognition (Yamato et al. , 1992) it was

proposed the usage of raw human silhouettes to recognize different tennis strokes.

Since then raw human silhouettes, using different coding schemes, have been a

recurrent feature to predict actions (Wang & Suter, 2008).

Other works have propose the usage of distance transforms to represent silhou-

ettes (Wang & Suter, 2008). Given a binary image with a silhouette, the value of

each pixel is replaced by the distance to the border. The resulting image has higher

values at pixels close to the skeleton and lower values at pixels close to the boundary,

representing the morphological structure of the input silhouette. Distance transforms

have experimentally shown better prediction accuracy than raw silhouettes(Wang &

Suter, 2008).

Other transform that has been proposed to code the variations in human silhou-

ettes is the R− transform (Wang et al. , 2007a), an extension of the Radon trans-

form (Helgason, 1999). The transform is invariant to image translation. In addition,

rotation and scaling of the input image have predictable effects allowing further nor-

malization.

It is also possible to employ the Discrete Fourier Transform and the Discrete

Wavelet Transform to describe the human silhouette, achieving invariance towards

rotation, translation and scale after proper normalization (Ragheb et al. , 2008)

Space-time silhouettes Any of the appearance features presented until now employ

temporal information to represent the variability of the human actions modelled.

These works relay the modelling of the temporal correlations of the extracted features

to the classifier. Although these approaches have shown to be effective, other authors

have proposed features coding the temporal evolution of the appearance.
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Temporal templates (Bobick & Davis, 2001) were proposed as a first attempt to

encode the temporal evolution of the appearance into feature vectors. At each instant,

the Motion Energy Image (MEI) employs a backward search window to look for pixels

containing the silhouette in the past, giving to them an active value in the current

binary feature vector. The Motion History Image (MHI) replaces the binary values

of the MEI with integer values proportional to the time past since a given pixel was

in the silhouette. An extension of the MHI is the Pixel Change History (Xiang &

Gong, 2006) (PCH). Instead of giving the highest value to a pixel just added to the

silhouette, it linearly increments is value along time to mitigate the effects of noisy

observations. The MHI has been extended to 3D (Weinland et al. , 2006), computing

Motion History Volumes (MHV) from visual hulls instead of silhouettes.

Other authors stack 2D silhouettes into 3D action volumes to correlate the tem-

poral evolution of the silhouettes. The surface of the generated volume can be

analyzed employing differential geometry (Yilmaz & Shah, 2005), obtaining char-

acteristic points. Others analyze the entire volume (Gorelick et al. , 2007), mea-

suring space-time saliency and orientations of the voxels, and global moments of

the entire volume. It is possible to define different moments of the volume (Achard

et al. , 2007). These 3D volumes have been employed to build models of the vari-

ations in the descriptors produced by the change of viewpoint (Lewandowski et al.

, 2010a). Instead of stacking 2D image sequences, it is also possible to stack their

R− transforms (Souvenir & Babbs, 2008). Other possibility is to segment the silhou-

ettes in different subregions and make the matching for the different parts (Ke et al. ,

2007).

The main drawback of silhouette stacking proposals is that they are not suitable

for real time applications, as the attribute extraction is made from the entire volume

needing data from the future to compute the features at a given instant.

Other appearance descriptors When the targets are not big enough or too noisy

it can be very difficult to obtain silhouettes with enough discriminative power to
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discern between the actions being performed. To this end different alternatives have

been proposed in order to compute appearance descriptors without the requirement

of the silhouette. The 2D Histogram of Oriented Gradients descriptor has been used

to track and categorize the motions of hockey players (Lu et al. , 2009). Gabor filters

have been employed to extract features at different scales and rotations (Escobar

et al. , 2009). Histograms of line orientations have been built from the output of

edge detectors (Ikizler et al. , 2008). The similarity of two video volumes might

be measured employing Tensor Canonical Correlation Analysis, without relying on

explicit target location. Grayscale intensities are employed as features, not relying

on any other feature extraction algorithm (Kim & Cipolla, 2009).

2.4.2.2 Motion features

An alternative to the usage of appearance information is motion information. Infor-

mation about the motion of body limbs is captured instead of information about their

current pose. This information is orthogonal to appearance, and in fact lot of systems

combine both to increase their robustness (Tran & Sorokin, 2008)

Optical Flow The main motion descriptors are based in optical flow. The optical

flow is defined as the apparent motion of the pixels in a sequence of images, provid-

ing a velocity vector field over the pixel built from the intensity changes. Different

methods have been proposed to solve the partial differential equations defining the

field. These methods are out of the scope of this survey. The reader can refer to

(Baker et al. , 2011) for more information about opical flow estimation.

A first approach (Cutler & Turk, 1998) segmented the motion field into motion

blobs, obtaining approximately one for each moving limb. Blob properties such size,

position or speed are employed as action descriptors.

A popular approach to process optical flow fields is the proposed by Efros et

al. (Efros et al. , 2003). The vector field is blurred in first term to remove noisy



2.4. Feature extraction 27

components. Then, the field is divided into four different channels, according to

the sign and direction of each component. A variation of this descriptor has been

proposed simply splitting the motion field into the vertical and horizontal channels

(Tran & Sorokin, 2008).

An alternative is to compute different global moments of the field, such the mean,

deviation and other high order moments (Ribeiro & Santos Victor, 2005). It is also

possible to study physical properties such divergence or vorticity from the temporal

evolution of the vector field(Ali et al. , 2010).

Histograms of Oriented Optical Flow (Chaudhry et al. , 2009) have been built

quantifying the direction of each component of the flow field and building an his-

togram of occurrences. This alternative is robust towards scaling of the target.

Recent works have employed 3D optical flows, projecting the flows computed at

multiple cameras (Holte et al. , 2011a).

Other filters Other kind of filters, usually faster to compute, have been proposed

as alternatives to optical flow to encode motion information.Infinite Impulse Re-

sponse filtering is proposed to detect the boundaries of moving limbs (Masoud &

Papanikolopoulos, 2003). The gradient of the motion features computed this way

implicitly encodes the speed and direction of local motions. The standard deviation

of the intensities in adjacent frames has been also proposed to estimate the amount of

motion (Zhang et al. , 2008). However, theses filters are only appropriate to encode

motions performed at similar executions rates.

3D Discrete Wavelet Transform has been applied to analyze video volumes(Rapantzikos

et al. , 2007). The highest coefficients in the transform correspond to the moving

body parts, and a fixed number of them is selected to build the final descriptor. Di-

verse configurations of Gabor filter banks have been employed to analyze volumes of

adjacent frames (Chomat & Crowley, 2000; Jhuang et al. , 2007; Schindler & Gool,

2008), leading to a descriptor containing the orientation patterns of the motion of

the analyzed frames.
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2.4.3 Local Image Features

The image features presented in previous section depend on the location of the

bounding box of the human to track,

An alternative is to search the image sequence for spatio-temporal points with

a particular motion and compute a local feature descriptor capturing the structure

of the local motion around the point. The main advantage of this features over

global image features is the theoretical robustness to occlusions they present, as the

modeling of the global motion of the entity is made by the sum of the detected

local motions. Other advantage is that they do not need from target localization,

being suitable to model “actions in the wild”. This techniques are adapted from the

successful local representations proposed for object detection and characterization.

The usage of this techniques is divided in two different steps. The first step is related

to the location of the spatio-temporal salient points to be employed. The second is

related to the description of the motion characteristics in the neighborhood of each

each detected salient point.

Different alternatives have been proposed to locate salient points in Image Se-

quences. The first approach to this problem was to extend the 2D Harris corner

detector and automatic scale selection to 3D (Laptev, 2005), in order to detect pixels

in video sequences with high intensity variations in space and time. Interest points

found in this way are located at spatio-temporal corners. However, many motions,

such the spinning of a wheel, do not generate spatio-temporal corners. An alterna-

tive to corner location is to employ a quadrature pair of Gabor filters defined in the

spatial and temporal dimensions (Dollar et al. , 2005), detecting the interest points

at the maxima of the filter response. This approach detects a wide variety of kinds

of motions, including “spatio-temporal corners”. However, it is not able to detect

pure translational motions as they do not generate a response in the temporal dimen-

sion. An alternative is to employ frame differencing to detect motion and then apply

Gabor filtering to the detection (Bregonzio, 2009). This way a better detection of
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the body parts generating the motion is achieved, discarding spurious detections at

highly textured background zones. The Kadir and Brady information theoretic detec-

tor (Kadir & Brady, 2001) has been also extended to 3D (Oikonomopoulos et al. ,

2006), computing a local entropy measure for salient point detection. The determi-

nant of the Hessian has been proposed as an alternative saliency measure (Willems

et al. , 2008). The usage of Non-negative matrix factorisation has been proposed to

represent input video images into spatial subspace images and a temporal coefficient

vector (Wong & Cipolla, 2007). Salient points are located in the obtained decompo-

sition. Experimental results have shown that this method outperforms (Dollar et al. ,

2005) and (Laptev, 2005). A recent approach has removed from the filter employed

the temporal dimension. A Harris corner measure is obtained for each pixel on each

frame. This measure is corrected to discard regular geometric patterns that are not

likely to be part of a human. Local maxima of each frame is obtained as interest

points, removing the static interest points.

The representation of the motion characteristics of a spatio-temporal salient point

is obtained computing an spatio-temporal descriptor around the neighborhood of the

interest point. Gaussian Derivatives and optical flow are common choices of local

attributes employed to create the description (Laptev & Lindenberg, 2006). PCA-

SIFT like descriptors are presented in (Dollar et al. , 2005), where the one based

in brightness gradients outperforms the others. The popular 2D SIFT descriptor has

been extended to 3D, showing and accuracy higher than gradient based methods

(Scovanner, 2007), but is beaten by the 3D Histogram of gradients descriptor (Klaeser

et al. , 2008). The SURF descriptor has been also extended to 3D (Willems et al. ,

2008). Other descriptors encode the alignment of a salient point with respect to

its neighbors, fitting a B-spline and taking the polynomial derivatives as the output

(Oikonomopoulos et al. , 2009).

A fair comparison of the performance of the different proposals for action recog-

nition based on local features has been reported (Wang et al. , 2009), showing that

there is no method outperforming the others, although the combination of gradient
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and optical flow in the descriptor seems to be a good choice.

Related to local features, Bag of Word methods for action modelling are going to

be discussed on section 2.5.1.3.

2.4.4 Feature Encoding

The curse of dimensionality in machine learning (Hughes, 1968) stands that fitting

models in high dimensional spaces is an ill-posed problem, because the volume of

the space where the attributes are defined increases exponentially with the number

of dimensions. This phenomena increases the number of required samples to accu-

rately fit model parameters, producing overfitting, i.e. generating models with low

predictive performance when new instances are presented. Most, if not all, of the ac-

tion models that will be presented in next section are learned from training samples

and most of the action descriptors presented in previous section have a high number

of dimensions. This motivates the usage of coding techniques to reduce the number

of dimensions of the human action descriptors while preserving the variance they

contain about the observed motions.

The most simple and widely used dimensionality reduction method is Principal

Component Analysis (PCA) (Pearson, 1901). It finds linear projections of the input

data maximizing their variance in the projected space. The solution to PCA is given

by the eigendecomposition of the data covariance matrix computed after normaliz-

ing the input data. The eigenvector with the highest associated eigenvalue is known

as the first principal component and so on. A vector x in a high dimensional space

Rd is projected to a low dimensional space Rm by the linear operation y = Wx ,

where W ∈ Rmxn is a projection matrix composed of the concatenation of the m

first principal components.

The main drawbacks of PCA is its linear nature and the gaussianity assumption on

the input data. Non-linear variations of the input data are not well represented in the

projected space. To overcome this limitation it is possible to apply kernel methods to
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PCA. Kernel Principal Component Analysis (KPCA) (Schölkopf et al. , 1997) is a non

linear extension of PCA, reformulating the computation of the covariance matrix in

the form on inner products of the input data. The inner products are then replaced

by kernel functions. If the kernel functions are non linear the operation is equivalent

to perform the inner products of the input data in a very high dimensional -possibly

infinite- feature space, where the variations of the data become linear.

KPCA has the side effect of allowing the transformation of non-linear high di-

mensional data, such histograms or R− transforms, to the Euclidean space employ-

ing kernel functions defined in the space where the data is defined. For example,

X 2 distance kernels allow the transformation of histograms to the Euclidean space

(Chaudhry et al. , 2009). Diffusion distance kernel allows the transformation of R

R-transforms (Souvenir & Babbs, 2008). This simplifies the visualization of the de-

scriptors and allows the application of standard techniques, defined in the Euclidean

space, in further steps.

The main drawback of KPCA, legated from Kernel Methods, is that it requires

from solving the eigendecomposition of a matrix of size NxN , being N the number

of training samples. By contrast, the complexity of solving PCA scales with the

number of input dimensions d , being linear in the number of training samples. It

still assumes that the data will be gaussian in the transformed space.

Other non linear alternative to PCA is given by graph based manifold learning

methods, not assuming the gaussianity of the data. They assume high dimensional

data might be parametrized by a manifold with a few degrees of freedom. The

structure of this manifold is modeled constructing neighborhood graphs in the high

dimensional space. To obtain the low dimensional manifold parametrizations of the

input data, an objective function is optimized to preserve some property of the man-

ifold. The Isomap (Tenenbaum et al. , 2000) algorithm finds low dimensional repre-

sentations of the input data preserving geodesic distances in the manifold between

points . Isomap is not well suited to work with high dimensional data structured

in clusters, as the approximation of the geodesic distances between data in differ-
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ent clusters is not well suited, because the space to traverse between them is empty.

To overcome this problem, Laplacian Eigenmaps (Belkin & Niyogi, 2001) find an

embedding of the input data such similar examples in the high dimensional space

remain close in the low dimensional space, preserving the cluster structure.

The main drawback of Isomap and LE is that they not provide an embedding

function, just the low dimensional embedding of the input data. Although it is possi-

ble to employ some auxiliary regression method to learn the mapping function, it is

also possible to linearize the embedding problem, obtaining a linear mapping func-

tion from the high dimensional space to the low dimensional. The linearization of

Isomap is called Isometric Projection (IsoP) (Cai et al. , 2007a), while the lineariza-

tion of LE is called Locallity Preserving Projections (LPP) (Niyogi, 2004). In a similar

way to PCA, LE and IsoP might be rewritten in terms of inner products, substituting

them by non linear kernel functions and obtaining non linear projection functions re-

spectively named Kernel Isometric Projections (KIsoP) and Kernel Locality Preserving

Projections (KLPP).

Manifold Learning methods have been applied in different works. Isomap has

been employed for the analysis of R-transform surfaces (Souvenir & Babbs, 2008).

LPP has been applied for the analysis of raw silhouettes and distance transforms

(Wang & Suter, 2008) and radial distance surfaces (Azary & Savakis, 2010) to learn

view-invariant action representations. KLPP has been applied to reduce the dimen-

sionality of Fourier and Wavelet descriptors (Wang et al. , 2008b) outperforming the

performance of KPCA. Temporal extensions of LE and Isomap have been applied to

analyze silhouette and optical flow data , improving the performance with respect to

the original methods (Lewandowski et al. , 2010b).

Other class of methods, instead of trying to find a low dimensional representa-

tion of the descriptors, apply discretization to the input data. Each input descriptor

is represented by a discrete label. In particular, this strategy is commonly employed

with local feature descriptors for the creation of bag of words models. The com-

mon strategy is to run some clustering algorithm to obtain prototype descriptors from
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training data and represent each instance with the nearest prototype. K-means clus-

tering is a common approach (Tran & Sorokin, 2008). Kohonen Self Organizing

maps have been applied to abstract the view and temporal variations of the data

(Martinez-Contreras et al. , 2009), representing data instances by the index of the

winner neuron. Maximum Mutual Information clustering has been applied to learn

discriminative codebooks to represent local descriptors (Liu & Shah, 2008), improv-

ing predictive performance. Instead of representing each local feature by the nearest

prototype, it can be represented by the linear combination of a few atoms employing

sparse coding techniques (Zhu et al. , 2011).

2.5 Action Modeling

The higher step in Human Action Recognition is to fed the attributes computed in

previous sections into an predictive model to infer the desired knowledge about

the action. The diversity of motions that have been studied has motivated different

inference tasks to be performed. A - possibly incomplete - categorization of the

high level inference tasks that might be performed related to an observed motion

sequence X = {x1, ... , xT} is:

• Classification: This is, possibly, the simplest task. Given the sequence X , the

problem to solve is to provide an action label y ∈ {y0, ... , yN} to the whole

sequence.

• Segmentation: Given the sequence X , the problem to solve is to provide a set

of action labels Y = {y1, ... , yT} to each one of the sequence instants.

• Abnormality detection: Given the sequence X , the problem is to decide if it is

coherent with a model of the expected motion.

Another categorization of the inference tasks is given by how the temporal rea-

soning is performed:
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• Filtering: Given the sequence of observations X = {x1, ... , xt}, the task is to

infer yt , the most likely state at time t.

• Smoothing: Given a sequence of observations X = {x1, ... , xt}, the task is to

infer the most probable explanation Y = {y1, ... , yT} of all the hidden states

generating the sequence. This task is performed offline.

• Fixed lag smoothing: Given the sequence of observations X = {x1, ... , xt},

the task is to infer the most probable explanation Y = {yt −T , ... , yt} for the

states in a temporal window of length t. It allows the refinement of the hidden

state values obtained with filtering.

• Prediction: Given the sequence of observations X = {x1, ... , xt}, the task is to

infer the hidden state values yt+δ in future instants, δ ≥ 1.

2.5.1 Sequence models

2.5.1.1 Exemplar based

Given a set of sequences, it is possible to compute different distance measurements

between them in order to perform classification tasks employing the nearest neighbor

classification rule. Given a set of previously observed sequences and their labels, the

label for a new observed sequence is given by the - possibly weighted - vote of the

labels corresponding to the k sequences minimizing the distance to the test example.

Different distance measures have been proposed to compare sequences. A corre-

lation measure might be defined employing a temporal window around each frame

to obtain the most similar frame from the exemplar database (Efros et al. , 2003).

Majority voting for each frame is employed to perform sequence classification. How-

ever, this approach is not appropriate to compare sequences with motions executed

at different rates.
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Different proposals have been proposed to circumvent this problem. The Dy-

namic Time Warping algorithm (Vintsyuk, 1968) performs a time alignment an nor-

malization of a pair of sequences of different lengths to provide a distance measure

by means of a temporal transformation of the sequences. It has been employed

for gesture recognition (Corradini, n.d.) and for matching of silhouette sequences

parametrized in manifold spaces (Blackburn & Ribeiro, 2007). Bicubic interpolation

has been employed to transform the query sequences to the same length and com-

pute correlation measures (Wang & Suter, 2007). Other possibility shown in the

same work is to employ the Haussdorf distance between the sequences, defined as

the median of the minimum distances between every pair of frames, without the

need of performing temporal scaling of the sequences.

The main drawback of exemplar models is that every test sequence should be

matched against the database of exemplars. Approximate matching methods (He

et al. , 2012) reduce the complexity to the logarithm of the examples in the database,

but still this is a high cost for real time applications. In practice their usage is limited

to show the efficiency of low level methods as they have a good predictive perfor-

mance.

2.5.1.2 Graphical Models

Exemplar and Bag of Words models, although effective, have a very narrow applica-

bility, as they are limited to sequence classification. Then, more advanced models

have to be defined in order to allow higher level inference tasks such sequence seg-

mentation. Structured machine learning methods allow the modelling of the prob-

ability distributions of sets of labels and observations, incorporating temporal cor-

relations between the observed variables, allowing the realization of segmentation

tasks.

Generative models Generative models represent the joint probability distribution

P (X ,Y ) = P (Y )P (X | Y ) of a set of observations X and a set of labels Y . The
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standard model to perform Human Action Recognition is the Hidden Markov Model

(Rabiner, 1989) (HMM). HMM models the joint probability distribution P (X ,Y ) of

a sequence of observations X = {x1 ... xT} and the hidden states Y = {Y1 ... yT}

generating the observations. The meaning of the hidden states Y is different de-

pending on the action recognition task being performed. In a segmentation task they

correspond to the action performed at each instant, while in other task they do not

have any special meaning and are considered a hidden model parameter.

The HMM assumes the hidden state sequence Y evolves according to a Markov

Chain, parametrized by a conditional probability distribution P (yt | yt−1), i.e, the

value of a hidden state depends on the value at the previous instant. At the same

time, each hidden state is the responsible of generating the observation x1 according

to a probability distribution P (xt | yt). Thus, the joint probability distribution of

the hidden state sequence Y and the sequence of observations X is factorized as

P (X ,Y ) = ∑
T
t=0P (xt | yt)P (yt | yt−1).

Different emission distributions P (xt | yt) have been employed to allow different

encodings of the observations sequences. Bernouilli emissions are employed in the

case of discrete observations . Gaussian distributions and Gaussian Mixture Models

are employed as conditional probability distribution in Euclidean spaces (Rabiner,

1989). Kernel Density Estimation observation distributions have been proposed to

model observations non parametrically (Piccardi & Pérez, 2007).

HMM is the simplest element of the family of generative models known as Dy-

namic Bayesian Networks (DBNs) (Murphy, 2002). More complex instances of this

family have been employed to model interactions involving different entities. Cou-

pled Hidden Markov Model (CHMM) are employed to model interactions between

people (Oliver et al. , 2000), factoring the hidden Markov chains and distributions

of the entities. The hidden Markov chains are coupled to make the state of an entity

dependant on the state of the other entities at the previous instant.

TThe Markov assumption might be too rigid to model the temporal evolution of

the hidden labels Y . To this end Hidden Semi-Markov Models (HSMM)(Hongeng
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& Nevatia, 2003) have been developed, explicitly modelling the duration of hidden

states instead of the exponential decay assumed by the Markov Assumption. The

Semi-Markov assumption has been also introduced in CHMM models (Natarajan

et al. , n.d.).

To model complex activity, with shared sub-events, HMMs can be defined hier-

archycaly. Hierarchical Hidden Markov Models (HHMM) (Nguyen et al. , 1987) are

built stacking multiple HMMs. The observations are introduced at the lowest level,

and the inferred probability distribution of the hidden state sequence Y is fed as the

observation for the next level. Efficient algorithms have been defined to compute the

probabilities of the hidden states at different levels.

The usual criteria to train Hidden Markov Models is the maximization of the like-

lihood of the joint distribution of observations, given the sequence labels if available

(in segmentation tasks) (Rabiner, 1989). Entropy minimization of the joint distribu-

tion (Brand & Kettnaker, 2000) has been shown as an alternative to obtain models

with more compact parameters, allowing a better interpretation of the action dynam-

ics and improving their predictive performance. Other alternative is to maximize the

conditional likelihood of sequence labels given the observations (Pérez et al. , 2007),

improving the predictive performance in sequence segmentation tasks.

When employing Hidden Markov Models the number of hidden states should be

properly setup in order to prevent overfitting. There are different strategies to choose

the appropriate number of hidden dimensions. Akaike Information Criterion and

Bayesian Information Criterion (Xiang & Gong, 2006) are standard metrics employed

to select the proper distribution. A specific scoring function for the hidden Markov

model has been proposed (Xiang & Gong, 2008).

Other alternative is to employ Bayesian non-parametric modelling . The Infi-

nite Hidden Markov Model employs a Dirichlet process prior to average the proper

number of hidden states (Pruteanu-Malinici & Carin, 2008). It has shown good per-

formance in abnormal sequence detection tasks.
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Other family of generative models employed in motion analysis taks are the based

on Linear Dynamical Systems (LDS). The discrete hidden variable of the HMM is re-

placed in the LDS by a continuous random vector, modeling the hidden parameters

of the system under observation. Cascades of LDS have been employed for action

sequence clustering (Turaga et al. , 2009). Non linear/non-parametric dynamical sys-

tems have been proposed under the gaussian process framewok(Wang et al. , 2008a).

Distance metrics between sequences have been defined between their correspond-

ing non-linear LDSs (Chaudhry et al. , 2009).

The main drawback of DBNs comes from their generative nature. Modelling the

joint probability distribution P (X ,Y ) requires from a large number of parameters.

Learning algorithms to fit the joint conditional distribution parameters require a lot

of training samples to obtain accurate estimates.

Discriminative models An alternative to the modelling of the joint probability dis-

tribution P (X ,Y ) made by the generative models just introduced is to model the

conditional probability distribution P (Y | X ) of the labels Y given the observations.

Discriminative models have some theoretical advantages over generative methods:

they directly model the conditional distribution that should be maximized in segmen-

tation and classification tasks, requiring to adjust fewer parameters. Thus, the number

of training samples required to learn accurate parameter estimations is smaller. By

contrast, this models are not suitable for abnormality detection tasks.

The basic discriminative model for sequences is the Conditional Random Field

(CRF), designed to perform sequence segmentation. The conditional distribution

of a set of sequence labels Y = (y1 ... yT ) given a sequence of observations X =

(x1, ... , xT ) is defined as P (Y | X ) = 1
Z
exp

(

∑t = 1Tφ (yt , yt−1) + φ (yt , xt))
)
. The

CRF might be seen as an structured extension of the logistic regression classifier·

The Hidden Conditional Random Field Model (HCRF) (Quattoni et al. , 2007) is

an extension of the CRF to perform sequence classification. A set of hidden variables

is employed to model sequence dynamics conditioned on the class label Y of the
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sequence. The HCRF model has become very popular since its recent introduction,

as it outperforms HMMs in sequence classification tasks. It has been extended with a

root filter to take into account the compatibility of the observations and the sequence

label (Wang & Mori, 2008a), improving the performance. The main drawback of the

HCRF is that the training function employed is not convex by the presence of hidden

variables. To overcome this limitation it has been formulated in a max-margin setting

(Wang & Mori, 2008b), turning the optimization problem into a convex one at the

cost of discarding the probabilistic modelling. Other alternative is to employ an

auxiliary HMM to make the hidden variable correspondences visible (Zhang & Gong,

2010b),

The Latent-Dynamic Conditional Random Field (LDCRF) (Morency et al. , 2007)ex-

tends the CRF introducing hidden variables in a similar way to the HCRF, augmenting

the predictive performance of CRFs in segmentation tasks.

Factorial Conditional Random Fields have been defined to model concurrent la-

bels (Wu et al. , 2001). Label chains are coupled as in the FHMM. Dynamic Condi-

tional Random Fields(Sutton et al. , 2007) generalize the possible factorizations made

to CRFs as the DBNs generalize the factorizations made to HMMs. Semi-Markovian

extensions of the CRF has been proposed also (van Kasteren et al. , 2010) , including

high order interactions in the sequence dynamics and improving predictions accu-

racies. Hierarchical extensions of CRF (Liao et al. , 2007) have been introduced to

model actions and places at the same time. Model and feature selection has been

proposed for the CRF employing a l1 penalty (Vail et al. , 2007). Models trained in

this way show a performance higher than those trained with the standard l2 penalty.

In fact the usage of discriminative action models is recent and not very wide-

spread. However, their performance higher than the achieved by generative models

in different tasks is popularizing them and novel extensions are proposed every year.

This thesis contributes to their development providing model and feature selection

algorithms for the HCRF.
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2.5.1.3 Local feature action models

Bag of words models are related to the usage of local features. Each video sequence is

represented by a set of spatio-temporal local descriptors computed from the detected

salient points. The number of local descriptors extracted varies between sequences,

complicating action modeling. Mechanisms to handle this peculiarity should be

included in the action model, as the observation now is not a real valued vector.

Features are encoded as occurrences of a dictionary of visual words. The ele-

mentary approach to model actions employing local descriptors is to assume the

exchangeability of the words, i.e., to discard their spatial and temporal ordering, and

build models upon the frequency of occurrence of the words in the video. This mod-

els are known as “Bag of Words” and are inspired from the language recognition

literature.

The basic bag of words model represent each video to classify with an histogram

of visual word occurrences and introduces it into a classifier to predict the category

of the action from a predefined set. The ξ2 Support Vector Machine has been a

typical choice of classifier in different works (Schuldt et al. , 2004).

Other methods model the joint probability distribution of the observed visual

words and their corresponding action label. The simplest model is the Naive-Bayes

classifier (Yang et al. , 2008), assuming that the observed features are conditionally

independent given the action class. Probabilistic latent topic models such Proba-

bilistic Latent Semantic Analysis (PLSA) (Wong et al. , 2007) and Latent Dirichlet

Allocation (Niebles et al. , 2008) have shown a better performance, as they model

the coocurrence of different words at the same time in the probability distribution.

The main problem of all these approaches is that they discard the spatio-temporal

ordering of the detected features. A discriminative boosting framework including

temporal ordering has been proposed to overcome this limitation (Nowozin et al.

, 2007). PLSA has been extended to incorporate the probability of the detected

features in a given order (Zhang & Gong, 2010a).
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2.6 Remarks

This section has presented the most relevant works related to Human Action Recogni-

tion. It has been shown that to bridge the sematic gap between pixel intensity values

and high level knowledge about the video content it is necessary to employ feature

extraction techniques to describe the motions and to employ different models to en-

code the spatio-temporal correlations among the extracted features. The different

meanings in the literature of words such action, motion or event have been reviewed

and a new hierarchy to categorize the levels of motion has been proposed. Relevant

feature extraction methods and action recognition models have been reviewed.

The main conclussion that might be achieved from this state of the art review

presented here is that there has been a paradigm shift from the first action recognition

models that had a clear sense of what they were modeling (arms, torso, legs) to recent

approaches looking into the outputs of image filters without an a priori sense but

capturing valuable information for the action recognition. The lack of interpretability

of these models is compensated by the high accuracy shown. Actions are predicted

in the presence of body limb occlusions that prevent recovering the whole body

configuration. Invariance towards viewpoint changes has been achieved at the same

time. Some proposals are already able to predict actions from images captured from

viewpoints not known during system training.

The design of the lowest levels of action recognition systems has been widely

explored. Future works will have to focus on the upper levels, as there is no general

methods yet for activity and interaction recognition. Most of the current approaches

are designed by hand. General learning methods to learn accurate rules to recognise

these categories have to be explored in order to simplify the creation of the systems.

Beyond action modelling, understanding what is going to happen in the future

might be another interesting line of research. This will lead to the identification of

risky situation before they are produced. The soon they are identified, the soon they

might be prevented.
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All this facts let us think that the problem of human action recognition is not

close from being solved and important contributions to the field have to be done in

future years.



3
Data Fusion and Human Action

Recognition

It was six men of Indostan

To learning much inclined,

Who went to see the Elephant

(Though all of them were blind),

That each by observation

Might satisfy his mind

The poems of John Godfrey Saxe

DATA fusion is the discipline studying the efficient combination of measurements

obtained from multiple sensors in order to achieve more specific inferences

than could be achieved by using a simple, independent sensor (Liggins et al. , 2008).

Previous chapter has introduced the methods and techniques employed to perform

human action recognition, with the focus on single camera systems. The purpose

of this chapter is twofold: show how human action recognition relates to data fu-

sion and employ data fusion concepts to provide a categorization of human action

recognition systems employing multiple cameras.

The main attributes of data fusion systems are introduced in first term. The JDL

data fusion process model and Dasarathy’s input-output model are presented as dif-

ferent frameworks to categorize data fusion systems. This frameworks are then em-
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ployed to analyze human action recognition systems, with the focus on multiple cam-

era human action recognition. The categorization presented here will be employed

to locate some of the contributions of this dissertation presented in subsequent chap-

ters.

3.1 Data fusion

Data Fusion studies the efficient combination of measurements obtained from mul-

tiple sensors or, alternatively, the temporal measurements obtained from a single

sensor, in order to achieve more specific inferences about the state of one or more

entities than the ones that could be achieved by using a single, independent, sensor

(Liggins et al. , 2008).

Although the data fusion concept is not new - human brain is a data fusion system

that efficiently combines the data gathered by the five senses-, the concepts, meth-

ods and computational models for data fusion have been developed from the 80’s,

after the great interest shown in the area by the defense community. The interest is

reflected in the amount of research and industrial contracts funded by the US De-

partment of Defense to develop new data fusion algorithms and applications. This

large funding, together with the improvements made to sensor technologies, com-

putational architectures and communication networks have enabled the creation of

real-time data fusion applications unbelievable some decades ago. But the usage of

data fusion concepts and architectures is not limited to the defense domain. Differ-

ent civil applications, involving the processing of data gathered by multiple sensors,

have been benefited from the advances made in the area. Robotics, Aerospace, Med-

ical Systems or Ambient Intelligence have successfully applied Data Fusion concepts

to improve their developments.

Data Fusion is an heterogeneous discipline, bringing the theoretical develop-

ments of multiple disciplines to practice. The theory of signal processing, artifi-

cial intelligence, computer networks, control theory or statistical estimation, among
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others, is combined to solve the problem of inferring the state of some entities of

interest.

The basis of Data Fusion is the usage of multiple measurements sampled at dif-

ferent spatial or temporal locations, instead of a single measure at a given spatio-

temporal location. When identical sensors are employed from the same location,

combining their measurements in the proper way leads to a more accurate state es-

timation, washing noise artifacts and preventing the effects of sensor malfunction.

When identical sensors are placed at different locations, complementary measure-

ments of the target are obtained, and the optimal combination of them, under appro-

priate constraints, leads to an state estimation better than the sum of the parts. An

example of this behavior is 3D visual hull reconstruction from multiple 2D silhou-

ettes. The 3d visual hull has more information than the silhouettes by themselves,

caused by the alignment of the data in the 3D space. When the field of view of the

sensors is not fully overlapped, wider areas can be observed, extending the cover-

age achieved by a single sensor. Last, but not least, when employing different kind

of sensors, the fusion of their measurements leads to a better estimate of the target

state. An example of this is the Microsoft Kinect device, combining depth and color

measurements to provide complimentary estimations of the player appearance.

The formal definition of Data Fusion was given by the Joint Directors of Labora-

tories Data Fusion Working Group in 1985, as A process dealing with the associa-

tion, correlation, and combination of data and information from single and multiple

sources to achieve refined position and identity estimates, and complete and timely

assessments of situations and threats, and their significance. The process is char-

acterized by continuous refinements of estimates, assessments and the evaluation

for the need of additional sources, or modification of the process itself, to achieve

improved results (White et al. , 1988). In fact, this definition has shown to be too

restrictive with the years, as it is focused on defense applications. Similar underlying

problems of data association and combination occur in a very wide range of engi-

neering, analysis and cognitive situations and are not covered by the definition. By
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this reason, among others, the formal definition of data fusion was simplified in 1998

to The process of combining data or information to estimate or predict entity states

(Steinberg et al. , 1998). This simplification makes the scope of data fusion wider,

as the estimation of position and identity is replaced by the more generic “entity

states”. Now this estimations are not required to be complete and timed, covering

a broader range of possible inference techniques.The removal of association is mo-

tivated because it is not something required in every data fusion application, while

the removal of correlation comes from the fact that is just an statistical technique that

might or might not be used.

But Data Fusion is not the solution to every problem, as it has some well defined

limitations (Liggins et al. , 2008):

• There is no substitute for a good sensor. If the state to be inferred does not

produce effects observable by the employed sensor, it does not matter how

much effort is put into the data fusion process. No accurate state estimations

will be obtained.

• Downstream processing cannot absolve the sins of upstream processing. The

best possible processing should be made at each level/step. Failure in the de-

sign of the lower levels unnecessary complicates the processing at the upper

levels, without ever obtaining the performance that would lead the right pro-

cessing at lower levels.

• The fused answer may be worse than the best sensor. When the quality of each

sensor measurement is not properly estimated, a high importance can be given

to untrusted sources, corrupting the result of the fusion as good measurements

get corrupted.

• There are no magic algorithms. The algorithm with optimal performance for

every situation does not exist. Different situations require from different tech-

niques with different operating characteristics. There is no free lunch.
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• There will never be enough training data. Pattern recognition methods em-

ployed for data fusion are estimated from training samples. However, there is

usually a bias between the samples used during training and the samples used

during operation. The bias decreases as the number of training samples grows,

but it is almost impossible to reflect all the possible operation conditions during

training. This fact reduces the performance of data fusion systems.

3.2 Characterization of Data fusion systems

This section presents the JDL process model and Dasarathy’s input-output model.

These are complementary frameworks for the analysis of data fusion systems whose

usage is widely extended.

3.2.1 The JDL Process Model

The JDL Data Fusion model (White et al. , 1988) is the most widely used framework

for the categorization of data fusion systems and algorithms. The first version was

published in 1985 by the US Joint Directors of Laboratories (JDL) Data Fusion Work-

ing Group with the aim of providing a common framework to facilitate the commu-

nication between the communication between data fusion stakeholders and provide

a conceptual framework for new developments. The JDL model is not an architec-

tural paradigm nor a process model for the creation of data fusion system. Instead,

it provides different levels of abstraction where the different algorithms employed

in data fusion systems might be accommodated according to the kind of processing

they perform.

The stated purpose for that model and its subsequent revisions have been to:

• Categorize different types of fusion processes.
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• Provide a technical architecture to facilitate reuse and affordability of data fu-

sion and resource management system development.

• Provide a common frame of reference for fusion discussions.

• Facilitate understanding of the types of problems for which data fusion is appli-

cable.

• Codify the commonality among problems.

• Aid in the extension of previous solutions.

• Provide a framework for investment in automation.

Level 0
Subobject

assessment

Level 1
Object

assessment

Level 2
Situation

assessment

Level 3
Impact

assessment

Level 4
Process

refinement

Data fusion domain

Local

Distributed

National

Human/
Computer
Interface

Figure 3.1: The JDL data fusion model (1998 revision)

The JDL data fusion model, after the 1998 revision (Steinberg et al. , 1998), pro-

poses five different levels of abstraction where the data fusion functions are accom-

modated (figure 3.1. These levels are:

• Level 0. Signal/Feature Assessment. This level includes the algorithms em-

ployed to enhance or combine the input signals of the fusion systems. The

inferences made at this level do not make any assumption about the causes

originating the signals. Typical operations at this level include spatial and tem-

poral data alignment, data standardization and data preconditioning for bias

removal.
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• Level 1. Entity Assessment. Algorithms employed for the estimation of the

current state of a individual entities are defined at this level. This includes target

detection, classification, location, tracking and identity estimation. Processing

at this level usually implies the association of observations to the corresponding

responsible targets.

• Level 2. Situation Assessment. A situation is a set of entities, their attributes,

and relationships. Thus, the task at this processing level is to infer the exis-

tent relationships between the analyzed entities employing the individual state

estimations.

• Level 3. Impact Assessment. The purpose of the algorithms defined at this

level is to predict future situations derived from the current and past inferred

situations. This includes the computation of expected outcomes of actions

executed to alter the current situation or the projection of the current situation

to the future to predict the possible evolution.

• Level 4. Process Assessment. This level includes the algorithms employed to

measure the real-time performance of the fusion system and improve it. This in-

cludes the reconfiguration of the sensors employed or the replacement of data

fusion algorithms by others better adapted to the current or expected scenario.

3.2.2 Dasarathy’s Input-Output Model

Dasarathy proposed an alternative categorization of Data Fusion systems according

to the level of abstraction of the information at the input and output of the fusion

system (Dasarathy, 1997). Three different levels of abstraction are defined: (1) data;

(2) features and (3) decisions. Data is the lowest level of abstraction, corresponding

to the raw measurements of the sensors, such pixel intensities or depth information.

Features are transformations of the data to enhance some property such edges or

curvature. Finally, decisions encode information about the certainty of a fact, in the
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form, among others, of probability estimates or fuzzy sets.

Data In - Data Out

Fusion

Data In - Feature Out

Fusion

Feature In - Feature Out

Fusion

Feature In - Decision Out

Fusion

Decision In - Decision Out

Fusion

Data Input

Data Input

Feature Input

Feature Input

Decision Input

Data Output

Feature Output

Feature Output

Decision Output

Decision Output

Figure 3.2: Dasarathy Input-Output model

Data fusion systems are characterized according to this abstraction of their inputs

and outputs as follows (figure 3.2):

• Data in-Data out (DAI-DAO) Fusion. At the lowest level of abstraction are sys-

tems processing data and generating data. An example of this kind of fusion

systems are multispectral imaging devices: pixel intensities are captured at dif-

ferent wavelengths to compose an image better describing the reality. High

Dynamic Range (HDR) imaging is another example of a DAI-DAO fusion sys-

tem, combining images taken with different exposition configurations to have
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a better representation of the details of dark and light regions of the scene.

• Data in- Feature Out (DAI-FEO) Fusion. At the next level of abstraction in the

hierarchy are the systems processing data to generate features. Stereo vision

systems are located at this level, as they compute disparity maps (features) from

pixel intensities (data).

• Feature in-Feature Out (FEI-FEO) Fusion. At the mid level of the hierarchy are

located systems processing features. The conceptually simpler are those gen-

erating features too. Due to the vague definition of what is a feature at this

category lie a wide variety of systems. Fusion systems combining the measure-

ments of the same state variable to provide a more robust estimation of the real

value belong to this category.

• Feature In-Decision Out (FEI-DEO) fusion. The next abstraction level is related

to pattern recognition systems, transforming features into decisions about the

class of the phenomena being recognized. At this level are defined those data

fusion systems based on introducing a set of features computed from multiple

sources into a classifier.

• Decision In-Decision Out (DEI-DEO) fusion. The highest level of abstraction

includes the system that combine independent decisions about the phenomena

to study to make a global decision about it. Decisions might be defined in

different forms, such crisp values, probabilistic distributions or fuzzy sets.

3.3 Human Action Recognition from the data fusion per-

spective

Once that the main concepts of data fusion systems have been presented, Human

action recognition is going to be analyzed employing them. First, Human Action

Recognition is characterized under the JDL process model in general terms. Then,
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the Dasarathy input-output model is employed for the characterization of works in

Human Action Recognition from multiple cameras.

Human Action Recognition applications may be considered from the viewpoint

of data fusion, as they process signals from - possibly - multiple sensors to obtain

high level knowledge of the motion being performed by the observed human.

As already seen in previous chapter, temporal integration is a key element of most

Human Action Recognition systems, as actions are performed along time. However,

Human Action Recognition applications have not been studied using the concepts

of the data fusion community, as it has been an application traditionally studied

from the pattern recognition domain. The discussion in this chapter wants to relate

Human Action Recognition with data fusion. To this end, the data fusion models are

presented and then related to Human Action Recognition techniques.

3.3.1 Human Action Recognition and the JDL process model

The Human Action Recognition algorithms introduced in previous chapter are de-

fined at the level 1 of the JDL process model, as they are related to the assessment

of the state of individual entities. The state variable to infer is a label characterizing

the kind of action. From the definition of the JDL level 0 there might be a temptation

of defining the feature extraction algorithms at that level. However, level 0 is related

to functions not considering individual entities, and most of the presented features

are computed from segmented humans. Local features are the exception, as they not

require a previous segmentation, but as their existence is related to the recognition

of actions and do not have any meaning by themselves, so they should be located

also at JDL level 1.

The recognition of interaction tasks as defined on previous chapter is located at

JDL level 2. This includes the interactions between humans or humans and objects.

Level 3 in Human Action Recognition corresponds to the prediction of the future

actions that person is going to do. However, to the best of our knowledge no applica-
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tions at this level have been defined. The plan recognition problem (Kautz & Allen,

1986), where the objective is to infer what is goal of an observed agent would be the

closer sample to this level.

Levels 4 and 5 of the JDL process models have not been very exploited from

human the human action recognition perspective. Level 4 studies how the informa-

tion is presented to the system operator. Commercial video surveillance applications

incorporate this capabilities, incorporating semantic information in the reports. Com-

mercial gaming platforms with visual inputs represent the motions performed by the

player with avatars. Fitness trainers represent with them how the player is performing

a given exercise and how they should do it, in order to correct their performance and

prevent hurts.

Level 5 would study the adaption of the algorithms employed to new conditions

of the environment, such lighting or occlusions. However, to the best of our knowl-

edge, no works have been reported proposing such applications.

3.3.2 Human Action Recognition and Dasarathy’s input output model

The Dasarathy’s input-output model provides a framework to categorize the works in

Human Action Recognition employing multiple views of the scene being analyzed.

From the viewpoint of this dissertation is the most interesting one, as it provides a

framework to easily categorize multiple camera human action recognition applica-

tions.

The employment of multiple views in human action recognition has some advan-

tages over traditional single view approaches. Among others, the most important

are:

• Viewpoint invariance. The appearance of actions changes according to the

orientation in the execution in the action with respect to the camera. Thus,

employing multiple views provides complementary information to achieve a

more robust recognition.
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• Robustness towards occlusions. In real environments there is usually multiple

furniture, walls or other objects that produce partial occlusions in the observed

target. The way to overcome this limitation and not loss important motion

information is to observe the scene from multiple viewpoints.

• Wider scene coverage. A single camera has a very limited coverage. Multiple

cameras are needed to cover full scenes.

Human Action Recognition methods employing multiple cameras are defined at

FEI-FEO, FEI-DEO and DEI-DEO levels. Although fusion at the data levels might

be employed for human action recognition, they are not considered, as this kind of

fusion is independent of the higher level task.

Diverse methods have been defined at the FEI-FEO data fusion level to combine

the information obtained from multiple cameras. Different strategies have been de-

fined at this level. It is possible to divide this works in three different categories: (1)

methods projecting 2D features to 3D; (2) methods combining features in a subspace;

(3) methods selecting the best available view.

Different 3D representation might be obtained from projecting 2D features to

3D. A popular approach is to recover the 3D shape projecting 2D silhouettes and

recovering the visual hull(Gkalelis et al. , 2009; Pehlivan & Duygulu, 2011; Peng

et al. , 2009). Visual hull reconstruction requires accurate silhouette segmentation at

the different available views. Recent works have proposed alternatives based on the

projection of optical flow to 3D (Holte & Chakraborty, 2011), or the projection of

local interest points (Holte et al. , 2011b). Other works recover the 3D star skeleton

by the correspondence of the corresponding 2D skeletons (Chen et al. , 2008). The

correspondence between action sketches might be computed from multiple views

(Yan et al. , 2008). The main drawback of all these approaches is that they need from

accurate camera calibration parameters to perform the projection of the features in

3D.

Alternative methods compute features for the 2D views available and combine
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them employing some simple scheme. The averaging of the multiple features rep-

resenting pose, global and local motion has been proposed improving the results

with respect to other alternatives (Määttä & Aghajan, 2010). A joint Bag-of-Words

histogram might be constructed with the local feature descriptors obtained for each

one of the views (Wu et al. , 2010), but a higher performance is obtained with

other fusion strategies. Projections maximizing the cross-covariance between the

R-transform derivatives computed at each view have been defined to learn a joint

subspace where the action recognition is performed (Karthikeyan et al. , 2011). Two

level Linear Discriminant Analysis is employed to learn silhouette projections maxi-

mizing the separability of the action classes (Iosifidis et al. , 2012). All this methods

provide more flexible solutions for the combination of the features obtained from

multiple cameras. However, the experimental results show a lower performance

than the methods based on 3D reconstruction.

The last class of methods is based on computing a measurement of the quality of

each view available, in order to select the best and perform the recognition with the

data from that view. A first approach to the selection of the best view is made esti-

mating the orientation of the human with respect to the camera (Shen et al. , 2007).

A measurement based on the properties of the silhouette has been proposed (Määttä

& Aghajan, 2010). Other proposed measure in the case of employing local features

is to choose the camera with the highest number of detections (Wu et al. , 2010).

Different utility measures have been proposed studying the saliency, concavity or

variations of silhouette stacks (Rudoy & Zelnik-Manor, 2011). The main drawback of

this approaches is that they do not exploit the complementary information that might

be present at each view.

The next category of works examined employing multiple views of the scene for

the recognition of human actions are those defined at the FEI-DEO level. This works

model the existing correlations among the multiple observations in the structure of

the classifier employed for the prediction of the actions. The concatenation of the

input features is the most straightforward procedure to perform the fusion (Määttä &
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Aghajan, 2010; Wu et al. , 2010). The Fused HMM (Wang et al. , 2007b) proposes

to model correlations among observations coupling the values of the hidden state

chains of parallel HMMs defined for each view. Histograms of local features have

been fused rotating the ordering of the inputs to account for the variations in the

orientation of the inputs (Srivastava et al. , 2009). The main drawback of this works

is their lack of flexibility, assuming that the camera configurations remain unchanged

between train and test steps. A procedure for the alignment of camera views where

the configuration changes from train to test steps is defined in (Ramagiri et al. , 2011),

but requiring the knowledge of relative camera placement.

The last category of works employing multiple views performs the fusion at the

DEI-DEO level, combining the outputs of action classifiers applied to each one of the

camera views. Majority voting has been the most common technique for the fusion of

decisions (Määttä & Aghajan, 2010; Naiel & Abdelwahab, 2010). A weighted voting

strategy has been proposed in (Zhu et al. , 2012), correcting each vote according to

the value of the observed feature.

3.4 Remarks

This section has presented the concepts and frameworks employed by the data fu-

sion community and related them to human action recognition. The different levels

of the JDL process model have been compared to the different steps needed to per-

form human action recognition. It has been shown that most of the human action

recognition algorithms are defined at JDL level 1. At level 2 are defined algorithms

studying interactions. Other levels have not been really exploited and they should

be targets of future research.

Dasarathy’s Input-Ouput hierarchy has been employed to categorize multicamera

human action recognition applications. Existing works have been categorized under

three conceptual classes according to the data abstractions employed. This catego-

rization will serve us to classify the algorithms for human action recognition from
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multiple cameras that are going to be introduced in subsequent chapters.
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Proposals





4
Model and Feature Selection in

Hidden Conditional Random Fields

Entia non sunt multiplicanda praeter necessitatem

William of Ockham

THE importance of sequence modeling methods in Human Action Recognition

has already been pointed in previous chapters. The Hidden Conditional Ran-

dom Field (HCRF) is a discriminative model employed in sequence classification

tasks that has shown a high predictive performance in experimental evaluations, out-

performing other existing methods. However, the standard algorithm to estimate the

optimal parameter values for the HCRF from a set of training samples does not in-

corporate model and feature selection capabilities. HCRFs trained with this method

are too complex, modeling noisy attributes of the training samples that in fact do not

provide any information to the classification process. The definition of a training pro-

cedure reducing the complexity of the result HCRF by model and feature selection

will lead to an increase of the experimental predictive performance.

This chapter presents special training algorithms performing model and feature

selection. The HCRF model with the standard training procedure is introduced in

first term, pointing out their limitations. Then the proposed training procedure is

presented. Experimental evidence in given to show that the proposed method has a

higher predictive performance than the standard training method.
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4.1 Hidden Conditional Random Fields

The HCRF (Quattoni et al. , 2007) is an undirected graphical model that belongs to

the exponential family. It might be understood as an extension of the Conditional

Random Field incorporating hidden variables to model the correlations among the

different observations. Different structured prediction tasks might be tackled with

HCRFs, but this work assumes without lot of generality sequence classification.

Formally, the HCRF defines the conditional probability distribution of a discrete

random variable y ∈ {y1, ... , yN} (a.k.a. sequence label) given a sequence of random

variables x = x1, ... , xT (a.k.a. observations) employing a set of auxiliary discrete hid-

den variables h = h1, ... , hT , hi ∈ H not observed during training. These variables

are introduced to model correlations among the observations in x. In the case of se-

quence classification, these correlations correspond to the sequence dynamics. The

conditional probability of the sequence label y and the hidden variable assignments

h given the sequence of observations x is defined using the Hammersley-Clifford

theorem of Markov Random Fields:

P (y , h | x, θ) =
eΨ(y ,h,x;θ)

∑y ′ ∑h e
Ψ(y ,h,x;θ)

(4.1)

The conditional probability of the class label y given the observation sequence x

is obtained marginalizing over all the possible value assignments to hidden parts h:

P(y | x, θ) =
∑h e

Ψ(y ,h,x;θ)

∑y ′ ∑h e
Ψ(y ′,h,x;θ)

(4.2)

The potential function Ψ (y , h, x; θ) measures the compatibility of the input x with

the assignments to the hidden variables h and the class label y . There are multiple
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posibilities about the form of this function. Here it is defined as:

Ψ (y , h, x; θ) =
T

∑
t=1

φ (xt) α(ht) +
T

∑
t=1

β(ht , y ) +
T

∑
t=1

γ (ht , ht+1, y ) (4.3)

where φ (xt) ∈ Rd is the feature vector associated with the observation xt and

θ = [α β γ] is the vector of model parameters, indexed according to the values

given to the hidden variables h and label y . The first term, parameterized by α (ht) ∈

Rd measures the compatibility of the observation at instant xt with the assignment

to the hidden variable ht . The second term measures the compatibility of the values

given to the hidden parts ht with the class label y and is parameterized by β (y , hi ) ∈

R. Finally, the third term, parameterized by γ (y , ht , ht+1) ∈ R models sequence

dynamics, measuring the compatibility of adjacent hidden variable assignments ht

and ht+1 with the class y .

y

h2h1h0 h3

x0 x1 x2 x3

Figure 4.1: Graphical model representing the structure of the HCRF induced by the function Ψ

The function Ψ induces the structure of the undirected graphical model defined

by the HCRF. The structure of this graph can be observed on figure 4.1. Exact infer-

ence of the conditional probability distribution defined in equation 4.2 is possible,

as the dependencies among the values given to the hidden variables h form a chain.

Efficient inference is achieved employing belief propagation (Bishop et al. , 2006).



64 4. Model and Feature Selection in Hidden Conditional Random Fields

4.1.1 Parameter estimation

Optimal model parameters θ∗ are estimated from a set of K training samples
(
x
i , y i

)
, 1 ≤

i ≤ K , minimizing the L2 regularized negative conditional log-likelihood function:

θ∗ = arg min
θ
L (θ) = arg min

θ
−
K

∑
i=1

L
(

x
i , y i ; θ

)

+ λR (θ) . (4.4)

The first term measures how model parameters are adjusted to predict each one

of the K training samples, while the second term acts as a regularization prior over

model parameters. The standard regularization employed in the HCRF is the Ridge

regularizer, defined as R (θ) = ||θ||22, imposing a zero-mean gaussian prior on the

values of θ to prevent overfitting. The parameter λ defines a tradeoff between reg-

ularization and adjustement. A value of λ = 1
2σ2 is equivalent to a gaussian with

variance σ2. The conditional log-likelihood function L (x, y ; θ) is defined as:

L (x, y ; θ) = logP (y | x, θ) = log

(

∑h e
Ψ(y ,h,x;θ)

∑y ′ ∑h e
Ψ(y ′,h,x;θ)

)

(4.5)

Due to the presence of the hidden variables h, the objective function in equation 4.4

is non-convex (Boyd & Vandenberghe, 2004). However, a local optimum θ∗ for the

model parameter values might be obtained employing standard convex optimization

techniques, as the function in 4.4 has an smooth gradient. The partial derivative of

L (x, y ; θ) with respect to each component θ(hi ) parameter is given by:

∂L (x, y ; θ)

∂θ (hi )
=

= ∑
h

P (h | y , x; θ)
∂Ψ (y , h, x; θ)

∂θ (hi )
−∑

h,y

P (y , h | x; θ)
∂Ψ (y , h, x; θ)

∂θ (hi )

= ∑
j ,a

P (hj = a | y , x; θ) xj − ∑
j ,a,y

P (y , hj = a | x; θ) xj

(4.6)
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Similarly, partial derivatives w.r.t θ (ht , y ) parameters are given by:

∂L (x, y ; θ)

∂θ (hi , y )
=

= ∑
h

P (h | y , x; θ)
∂Ψ (y , h, x; θ)

∂θ (hi , y )
−∑

h,y

P (y , h | x; θ)
∂Ψ (y , h, x; θ)

∂θ (hi , y )

= ∑
j ,a

P (hj = a | y , x; θ)− ∑
j ,a,y

P (y , hj = a | x; θ)

(4.7)

Finally, partial derivatives w.r.t. θ (ht , ht+1, y ) parameters are given by:

∂L (x, y ; θ)

∂θ (ht , ht+1, y )
=

= ∑
h

P (h | y , x; θ)
∂Ψ (y , h, x; θ)

∂θ (ht , ht+1, y )
−∑

h,y

P (y , h | x; θ)
∂Ψ (y , h, x; θ)

∂θ (ht , ht+1, y )

= ∑
t ,a,b

P (ht = a, ht+1 = b | y , x; θ)− ∑
t ,a,b,y

P (y , ht = a, ht+1 = b | x; θ)

(4.8)

The conditional probabilities appearing on equations 4.6,4.7,4.8 are efficiently

estimated employing belief propagation.

Different search strategies might be employed to find the optimal parameter val-

ues. might be applied employing the gradient just introduced to find the minima of

the objective function. Among them, the LBFGS quasi-newton method is the most

popular (Zhu et al. , 1997), updating the descent direction with an approximation of

the Hessian based on previous gradient estimations. Others have proposed to em-

ploy an online stochastic gradient descent algorithm (Zhu et al. , 1997), achieving a

fast convergence rate but at the cost of obtaining a worst quality solution. Stochastic

gradient descent is indicated for large scale learning scenarios with a huge number

of training sequences. In any case, the non-convexity of the objective function to

optimize makes necessary to run the search multiple times from different starting

points.
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4.1.2 Limitations

The standard method to estimate HCRF optimal parameters leaves some open issues

that are going to be discussed in order to motivate the proposal in subsequent section.

These are:

• How to adjust the dimensionality of hidden state variables?. |H| i.e., the num-

ber of different values that the hidden state variables in h can take, should be

specified before parameter estimation. If very few values are given, the model

will not have enough expressivity to capture all the correlations needed to pre-

dict class values. However, if too many values are given, noisy correlations are

modeled, reducing the predictive performance of the obtained model. Thus,

it is necessary to select the proper number of values. In practice this is done

employing cross-validation, evaluating the predictive performance of optimal

parameters for different choices to select the best. The non-concavity of the

loss function in equation 4.4 makes the problem even worse, as many trials

should be made per choice in order to obtain a good estimation of the opti-

mallity of each configuration. Thus, an efficient procedure to estimate the right

number of hidden variable qvalues is needed.

• What if there are irrelevant variables in the input feature vectors φ (xt)? The

nature of the gradient of the L2 norm in equation 4.4 gives a non-zero weight

to the parameters α (ht) corresponding to irrelevant features. This fact reduces

the predictive performance of the trained model, as irrelevant features in the

input are taken into account when predicting the class of new samples. Thus,

it is necessary to incorporate a method to select relevant features in the input

and discard the irrelevants.

Other problem in the estimation of optimal HCRF parameters is how to adjust

the tradeoff between parameter fitting and regularization, i.e., what value give to

λ in equation 4.4. This problem is shared by every log-linear model trained with
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regularization. In practice, λ is adjusted employing cross-validation, needing to try

different values until the one with the best results is obtained. This adds another

cross-validation dimension, as it should be already employed in the selection of the

right number of hidden state values. The problem of estimating the right value for λ

is out of the scope of this dissertation.

4.2 Model and Feature Selection in Hidden Conditional

Random Fields

This section presents an overlapping group-L1 regularization strategy to estimate op-

timal parameters for the HCRF sequence classifier presented in previous section.

As described in previous section the components of the HCRF parameter vector

θ are divided into three groups α (ht), β (ht , y ) and γ (ht , ht+1, y ), respectively in-

dexed by the values of ht , ht and y and ht , ht+1 and y . To obtain a model selection

effect it is necessary to obtain a zero value in all the parameters related to each possi-

ble value of an unnecessary h. In a similar way, to obtain a feature selection effect, it

is necessary to get a zero value for all the parameters related to an unnecessary input

feature. The kind of target models that want to be obtained are shown on figure

4.2. It shows an HCRF with d = 2, |H | = 3 and |Y | = 2. Figure 4.2a shows that

the parameters belonging to the first observation feature have got a zero value (dark

colour). Similarly, figure 4.2b shows that the parameters for the first hidden variable

have got a zero value. Both effects at the same time are presented in figure 4.2c .

Model and feature selection in log-linear models have been achieved replacing

the L2 regularization term by a L1-regularizer (Ng, 2004), whose gradient leads to

sparse solutions. However, L1-regularization is insufficient to achieve the desired

effect, as it only gurantees to get zero values on single varibles and not on groups of

them.

The solution to the problem is given by the usage of an overlapping group L1
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γ(·, ·, 1) γ(·, ·, 2)βα

(a) Feature Selection

α β γ(·, ·, 1) γ(·, ·, 2)

(b) Model Selection

γ(·, ·, 1) γ(·, ·, 2)βα

(c) Model and Feature Selection

Figure 4.2: The parameters of an small HCRF after feature selection, model selection and model
and feature selection

regularization strategy (Huang & Zhang, 2010; Szabó et al. , 2011). Be G the power

set of the parameter vector θ, and G ⊆ G a subset of the power set. The overlapping

group-L1 regularized training of the HCRF is defined by:

θ∗ = arg min
θ
L(θ) + ∑

g∈G

λg ‖θg‖
2 (4.9)

The overlapping group-L1 norm sums the L2 norm of the different groups defined.

At the optimal, some of the groups will have a zero norm, because all the parameters

on that groups will have become zero. Depending on the way G is defined, model
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selection, feature selection, both or even other advanced selection effects might be

achieved:

• If G ≡ Gfs = ∪Dd=1 {α(·)d} feature selection is performed, as the L2 norm of

the input features is penalized. A zero weight is expected for all the parameters

corresponding to an input feature. Note that beta and gamma parameters are

also regularized in order to prevent a big value on them, causing overfitting.

• If G ≡ Gms = ∪|
H|
h=1 {α (h) ∪ β (h, ·) ∪ γ (h, ·, ·) ∪ γ (·, h, ·)} model selection

is performed, as the L2 norm of the parameters corresponding to a hidden vari-

able is minimized. A zero weight is expected to the parameters corresponding

to non necessary hidden parts.

• If G ≡ Gfs ∪ Gms both model selection and feature selection are performed at

the same time.

4.2.1 Optimization algorithms

The convex optmization methods employed in the estimation of the optimal model

parameters of the standard L2-regularized HCRF are no longer valid to recover the

optimal parameter values of the overlapping group-L1 regularized objective function

formulated on equation 4.9. The new regularization term makes the objective func-

tion non-smooth. In particular, the gradient has a singularity at the points where a

group has a zero L2 norm. It is necessary to transform the problem into a smooth

one in order to apply a gradient based method.

The unconstrained optimization problem in equation 4.9 might be reformulated
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into an equivalent constrained optimization problem as suggested by (Schmidt, 2010):

θ∗ = min
θ
L(θ) + ∑

g∈G

λghg

s .t .

∀g ‖θg‖2 ≤ hg

(4.10)

The overlapping group-L1 regularization term has been replaced by a set of con-

straints, one for each group of variables in G . Each one of the constraints in the

optimization problem above defines a norm cone of radius hg that ensures that the

L2 norm of each group is smaller than hg . A norm cone is a convex set, and the in-

tersection of a set of convex sets is also a convex set (Boyd & Vandenberghe, 2004).

Thus, the feasible region defined by the restrictions is convex. The norms of the

different groups are added to the objective function. At the optimum the constraints

are fulfilled with equality (it is trivial to probe that if they are not then it is not the

optimal).

The objective function of the optimization problem in equation 4.10 is smooth,

as the cause for the singularities has been removed. The estimation of the optimal pa-

rameters can be made employing a gradient descent method, projecting the obtained

values into the feasible set defined by the restrictions.

Dykstra’s algorithm (Bauschke & Lewis, 2000) solves the problem of projecting a

point w0 ∈ Rk into the intersection of a set of convex sets C1, C2, ... , Cq, alternately

projecting the point into each set and removing the residual from the previous step.

The pseudocode for Dykstra’s algorithm might be observed on listing 1

The projection operator PCi is the solution to the projection of a point into the

set Ci , in this case the norm cone of size hg . The projection is obtained solving the
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Algorithm 1 Dykstra’s cyclic projection algorithm
∀i , Ii ← 0;
j ← 0;
while wj is changing by more than ǫ do

for i = 1 to q do

wj ← PCi (wj−1− Ii)
Ii ← wj − (wj−1− Ii );
j ← j + 1;

end for

end while

optimization problem:

min
w ′∈Rn

‖w ′ − w‖

s .t .

‖w ′‖ ≤ g

(4.11)

The solution to this optimization problem is given by the following equation, as

shown on (Boyd & Vandenberghe, 2004):

PC2
(x , g) =







(x , g) if ‖x‖2 ≤ g(
x
‖x‖2

‖x‖2+g
2 ,

‖x‖2+g
2

)

if ‖x‖2 > g, ‖x‖2 + g > 0

(0, 0) if ‖x‖2 > g, ‖x‖2 + g ≤ 0

(4.12)

To obtain the optimal parameter values different search methods have been pro-

posed in (Schmidt, 2010). Here the Projected Quasi-Newton (PQN) optimization

method is going to be employed. This method builds a second-order approximation

of the objective function arround the current point, to find the direction minimizing

the objective function. This method avoids the evaluation of the objective function in

the neighborhood, assuming that the comptuation of projections is cheaper than the

evaluation of the objective function. Readers are refered to the original publication

for further details on the method.
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4.3 Experimental evaluation

This section presents experimental evidency about the improvements that the over-

lapping group-regularized training of the HCRF produces in the accuracy of the

trained models.

4.3.1 Experimental setup

Experiments are going to be conducted employing Weizmann Dataset (see appendix

B.1 for more information on this dataset) The evalution over Weizmann dataset is

done employing the 3072 dim descriptor containing the distance transform shown

on appendix C.2.

The models to be tested in order to evaluate the proposal are.

1. HCRF: The standard HCRF model as shown on section 4.1, employing L2 regu-

larization. Optimal model parameters are obtained with LBFGS optimization.

2. MFS-HCRF: The Hidden Conditional Random Field trained with L1 group reg-

ularization to perform feature and model selection, as shown in section 4.2.

The non-convexity of the loss functions employed to train these models forces the

employment of a monte-carlo approach to evaluate every single configuration. The
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obtained metrics are averaged over 30 trainings of each setup starting from different

random initializations.

The different models are going to be trained employing |H| = 20 hidden parts,

2× the number of action classes in Weizmann dataset.

4.3.2 Experiment I: Choosing the right regularization parameter

The first experiment to be conducted is to select the optimal regularization parameter

λ for each one of the models. The optimal regularization parameter is defined as the

one minimizing the median negative log-likelihood obtained in the prediction of a

set of test samples. Sequences from actors 2-9 are employed to train the model, while

the sequences from actor 1 are employed as test set.

Boxplots on figures 4.3 and 4.4 respectively show the negative conditional like-

lihood (see appendix E.2) obtained by each one of the models in the prediction of

Weizmann dataset. The negative log-likelihood values achieved by the MFS-HCRF

model are smaller than the achieved by HCRF model. This indicates that the MFS-

HCRF has a better predictive performance than the HCRF. The smaller negative log-

likelihood value indicates that the MFS-HCRF produces more exact inferences than

the HCRF when samples not available during training are presented. This fact con-

firms that incorporating model and feature selection to the HCRF improves predictive

accuracy.

4.3.3 Experiment II: Action Recognition Results

Previous experiment has shown that the MFS-HCRF has better predictive accuracy

than the HCRF for a single acotr. Now we conduct experiments to predictive the

whole Weizmann dataset. LOAO-CV (see appendix E.1) is employed as the evalua-

tion protocol. The regularization parameter λ for each one of the models is adjusted

to the best value found in previous experiment.
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Figure 4.3: Negative log-likelihood values achieved with different values of λ training the HCRF
model
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Figure 4.4: Negative log-likelihood values achieved with different values of λ training the MFS-
HCRF model

Figures 4.5a and 4.5b shows the predictive performance achieved by both mod-

els. The MFS-HCRF model has a performance about a 2% higher than the HCRF

in the prediciton of the whole dataset. Note that this results are far from the best

reported for Weizmann dataset. It has been reported a perfect classification in works

such (Gorelick et al. , 2007). The objective of the experiments here was to show that

when training a HCRF with the proposed algorithm the obtained model has a better

predictive performance than one trained with the standard algorithms.
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Figure 4.5: Confusion matrices obtained for the different models in the prediction of Weizmann
dataset

4.4 Remarks

This chapter has presented an overlapping group-L1 regularization strategy to recover

optimal HCRF sequence classifier parameters from a set of training samples. Model

and feature selection is performed in the HCRF, reducing model overfitting. Experi-

mental evaluation has shown that models trained with the proposed strategy have a

higher predictive performance than those trained with the standard procedure.
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5
Multiple View Learning for Human

Action Recognition

Four eyes are better than two

Proberb

THE importance of multiple camera human action recognition systems has been

already introduced in chapter 3. Robustness to occlusions, viewpoint invari-

ance and wider scene coverage have been argued as some of the advantages of

incorporating multiple cameras to human action recognition systems. The purpose

of this dissertation is to design efficient algorithms to be deployed in Visual Sensor

Networks, minimizing bandwidth usage and computational complexity to fulfill the

imposed restrictions.

This chapter presents a first alternative to design efficient algorithms to perform

human action recognition with multiple cameras. Dimensionality reduction was

shown as an important step in action recognition in chapter 2. A well-known gdimen-

sionality reduction framework is going to be extended to consider multiple views of

the data, corresponding to motion descriptors computed from the multiple cameras

observing the scene. Different algorithms are going to be defined as instantiation

of the new proposed framework. FEI-FEO data fusion systems are going to be build

to perform human action recognition. They have low computational complexity as
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they rely on linear projections of the computed motion descriptors. The bandwidth

usage is minimized as low dimensional descriptors will be sent over the network.

The chapter first presents the graph embedding framework in section 5.1. Then,

the extension to multiple views is proposed in section 5.2. The computational issues

related to obtaining the solutions of the framework are reviewed in section 5.3, pre-

senting some approximation methods. The application of the proposed algorithm to

predict humam actions from multiple cameras is presented on section 5.4. Chapter

finishes remarking the main attributes of the proposed algorithms 5.5.

5.1 The Graph Embedding Framework

The Graph Embedding framework (Yan et al. , 2007) offers an unified view to un-

derstand and explain many dimensionality reduction algorithms, such PCA (Pearson,

1901), Isomap (Tenenbaum et al. , 2000), or LPP (Niyogi, 2004). High dimensional

data is represented as the vertices of a graph, where the edges encode some statistical

or geometrical property of the data. The graph is transformed to obtain low dimen-

sional representation of the data preserving the encoded properties. Although the

graph embedding framework abstracts both supervised and unsupervised dimension-

ality reduction algorithms, here only the unsupervised case is considered, without

loss of generality.

Let X = [x1, x2, ... , xN ],xi ∈ Rm be the matrix of N high dimensional zero mean

data samples, and let Y = [y1, y2, ... , yN ],yi ∈ Rm
′

be the low dimensional repre-

sentations of the columns of X , m′ << m. However, to simplify the exposition it

is assumed that Y is one dimensional i.e., yi ∈ R. The objective of dimensionality

reduction algorithms and thus, of the graph embedding framework, is to find a map-

ping function F : Rm → Rm
′
to transform the high dimensional data X in their low
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dimensional representation Y :

Y = F (X ) (5.1)

x 1

2

x 1

3

y1 y2 y3

Reduced space

Original Data

Figure 5.1: Example of the application of a dimensionality reduction algorithm

Figure 5.1 presents an example of dimensionality reduction from a 2D space to

a 1D space. The variations in the spiral data in the original space only have a single

degree of freedom. Thus, it is possible to map the spiral points to a line encoding

the factor of variation.

The function F might be defined as an implicit mapping associating each point

in the training set defined in Rm to a point in Rm
′
; or be an explicit function to

transform every point from Rm to Rm
′
. In any case, the framework builds F from

a graph defined in the high dimensional space. Let G = {X ,W } be an undirected

weighted graph whose vertices are indexed by the columns of X and with edges

weighted according to the values of the real simetric similarity matrix W ∈ RN×N ,

where each component Wij = Wji measures the similarity of the data at vertex i

and the data at vertex j . Depending on the similarity measure employed different

algorithms are derived from the framework, as it will be shown later.
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Next paragraphs show the derivation of different solutions for the graph embed-

ding framework: the implicit embedding, the linear projection and the kernel projec-

tion. The solutions are incrementally built from the implicit embedding.

5.1.1 Implicit Embedding

The first approach to obtain the optimal low dimensional representation Y of the

data X is given by the optimal solution to the low dimensional embedding of the

graph G :

Y = arg min
YTBY=d

∑
i 6=j

‖yi − yj‖
2
Wij = arg min

YTBY=d
Y TLY (5.2)

where d is a constant and the matrix B is a restriction matrix to avoid the trivial

solution of the objective function setting Y = 0. The matrix B is tipically de identity

matrix IN , but some algorithms impose harder restrictions. The Laplacian matrix L of

the graph G is defined as:

L = D −W (5.3)

where D is a diagonal matrix obtained by the sum of the values in the rows ofW

without the diagonal:

Dii = ∑
j 6=i

Wij∀i (5.4)

The optimization problem in 5.2 finds low dimensional representations Y pre-

serving the pairwise similarities between the vertices of the graph G defined by W .

It has been shown (Cai et al. , 2007b) that it can be reformulated as an equivalent
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maximization problem without the need of computing the graph Laplacian L.

Y = arg max
YTBY=d

Y TWY (5.5)

The solution to the optimization problem in equation 5.5 is obtained solving the

generalized eigenvalue problem:

Wy = λBy (5.6)

Let λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0 ∈ R be the m different solution eigenvalues

with corresponding eigenvectors y1, y2, ... , ym of the eigenproblem above. The m′-

dimensional embedding of the graph G is given by the concatenation of the first m′

eigenvectors: Y = [y1y2 ... ym′ ].

This approach provides an implicit mapping from the high dimensional space

Rm to the low dimensional space Rm
′
. The main drawback of this formulation is

that it does not define an explicit mapping function from the high dimensional space

Rm to the low dimensional space Rm
′
, needed to transform new high dimensional

points not available during training.

5.1.2 Linearization

The simplest way to obtain a mapping function from the high dimensional space

Rm to the low dimensional space Rm
′

is to define it as a linear mapping Y = XT ξ

Where ξ ∈ Rm is a projection direction. Thus, the optimization problem in equation

5.2 is transformed to:

ξ = arg min
ξTXBXT ξ=d

∑
i 6=j

∥
∥
∥ξT xi − ξT xj

∥
∥
∥

2
Wij = arg min

ξTXBXT ξ=d
ξTXLXT ξ

= arg max
ξTXBXT ξ=d

ξTXWXT ξ

(5.7)



82 5. Multiple View Learning for Human Action Recognition

The projection directions are obtained as the solutions to the generalized eigen-

value problem:

XWXT ξ = λXBXT ξ (5.8)

Let λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0 ∈ R be the m different solution eigenvalues with corre-

sponding eigenvectors ξ1, ξ2, ... , ξm of the eigenproblem above. The m′-dimensional

linear projection matrix is given by the concatenation of the first m′ eigenvectors:

Ξ = [ξ1ξ2 ... ξm′ ].

5.1.3 Kernelization

The linearity assumption in the function F can be sometimes very hard. A non-linear

mapping function might be obtained applying the kernel trick to the optimization

problem in 5.7. Kernel methods (Smola & Schölkopf, 1998) provide a procedure to

transform linear algorithms based on inner products of the input data to non-linear,

mapping the input data xi ∈ X , where X is some inner product space, to a high

dimensional feature space φ (xi) ∈ F :

φ : xi = (x1i , ... , xmi)→ φ (xi) = (φ1 (xi ) , ... , φN (xi)) (m << N)

The original algorithm is applied in the high dimensional feature spaceF , but the

mapping from the input to the feature space is not explicitly made. Instead, the inner

products in the input space X computed by the original algorithm are replaced by

inner products in the feature space F . This inner products are computed employing

kernel functions. A kernel is a function K (x , z), such that for all x , z ∈ X

K (x , z) =< φ (x) · φ (z) > (5.9)
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To formulate the graph embedding framework in terms of inner products in the

input spaceRm, the direction of projection might be defined as the projection of the

data X into some direction α:

ξ = Xα (5.10)

Introducing it into the optimization problem in equation 5.7 an algorithm de-

pending just on inner products of the inputs is obtained:

α∗ = arg min
αTXTXBXTXα=d

αTXTXLXTXα = arg min
αTKBKα=d

αTKLKα

= arg max
αTKBKα=d

αTKWKα
(5.11)

where Kij =< φ (xi) , φ (xj ) > is the gram matrix of the input data. In this work

we employ a radial basis kernel:

K (x , z) = e
− 1

2σ2 ‖x−z‖
2

(5.12)

where σ is a parameter controling the bandwidth of the gaussian.

The solution to the optimization problem in equation 5.11 is given by the solu-

tions of the generalized eigenvalue problem:

KWKα = λKBKα (5.13)

Let λ1 ≥ λ2 ≥ ... ≥ λm ≥ 0 ∈ R be the m different solution eigenvalues

with corresponding eigenvectors α1, α2, ... , αm of the eigenproblem above. The m′-

dimensional projection matrix from the feature space F spanned by the kernel K to

the low dimensional spaceRm
′
is given by the concatenation of the first m′ eigenvec-

tors: A = [α1α2 ... αm′ ].
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5.1.4 Relationship to Principal Component Analysis

Principal Component Analysis (PCA) (Pearson, 1901) and Kernel Principal Compo-

nent Analysis (Schölkopf et al. , 1997) (KPCA) are special cases of the linearization

and kernelization of the graph embedding framework. The Principal Component

directions are defined as the solution eigenvectors of the eigenvalue problem:

Cξ = λξ (5.14)

where C is the empirical covariance matrix of the data. It is straightforward to show

that this optimization problem is the same that the one in equation 5.8 settingW =

WPCA = 1
N
IN , as C = XWPCAX

T .

In the case of KPCA the empirical covariance matrix of the data is computed in

a feature space instead of in the input space. The optimization problem solved by

KPCA is equivalent to the one in equation 5.13 settingW = WPCA, as the covariance

in the feature space is computed in a similar way as C = KWPCAK
T

5.1.5 Relationship to Isomap / Isometric Projections

The Isomap (Tenenbaum et al. , 2000), Isometric Projection (IsoP) and Kernel Iso-

metric Projection (KIsoP) (Cai et al. , 2007a) algorithms are dimensionality reduction

algorithms finding low dimensional representations of the data best preserving the

geodesic distances between pairs of data along the manifold. Geodesic distances are

approximated employing a neighborhood graph, capturing the local manifold struc-

ture. In this thesis the K-neighbor criteria is employed to build neighborhood graphs.

The neighborhood graph NN = (X ,D) has vertices indexed by the N training sam-

ples and edges weighted by:

Dij =







‖xi − xj‖2 if xj ∈ NeighK (xi)

∞ otherwise
(5.15)
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where NeighK (xi ) denotes the set of K nearest neighbors of the point xi . Once

the neighborhood graph has been built, with local distances D, the approximate

geodesic distances DG are obtained computing the shortest path between every pair

of points employing the Dijkstra algorithm.

The optimization problem solved by Isomap is defined as:

y = arg min
y
‖τ (DG )− τ (DY )|L (5.16)

The matrix DY contains the Euclidean distance between every pair of points in

the low dimensional space. The function τ (DG ) = −HSH/2, with H = I − 1
N
eeT

and Sij = D2
Gij

transforms the geodesic distances into similarities. Thus, the optimal

embedding is the one best preserving the similarities obtained from the geodesic

distances in the projected space. The Isomap formulation is equivalent to set up the

matrix W = WIsomap = τ(DG ) in the direct embedding formulation of equation

5.5. Similarly, the formulation of IsoP and KIsoP correspond respectively to the

linearization an kernelizations of the graph embedding framework in equations 5.7

and 5.11 settingW toW = WIsomap

5.2 Multiview Graph Embedding

Previous section has presented the graph embedding dimensionality reduction frame-

work. A contribution of this thesis is the extension of the graph embedding frame-

work to the case with multiple views of the data. Multiple views of the data refers to

data defined in multiple feature spaces with the same underlying information about

an event to predict on them. The idea behind the extension is that the data on each

view might be parameterized on a low dimensional manifold, and that the manifolds

on each view are homeomorphic between them. Thus, it is possible to find a trans-

formation producing similar low dimensional representations for each point at each

view.
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Figure 5.2: Example of multiple view dimensionality reduction

Figure 5.2 illustrates the application of the proposed framework. The spiral exam-

ple shown on previous section is extended to the multiple view case, where the spiral

data is rotated in the different views. However, the 1D representations obtained are

similar.

Assume there is K different views of the high dimensional input dataset X k =

[xk0 , · · · , xkN ], x
k
i ∈ R

mk . The objective is to find an embedding function F : Rm
1
×

...×Rm
K
→ Rm

′
to transform the data X to a low dimensional space.

Y = F
(

X 1, ... ,XK
)

(5.17)

This function is going to be decomposed as the sum of invidual transformations

of the data obtained from each view:

Y =
K

∑
i=1

F i (X i ) (5.18)

Thus, a different embedding Y i is obtained for each one of the views of the high
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dimensional data X i :

Y i = F i
(

X i
)

(5.19)

The functions F 1, ... ,FK are going to be jointly derived following the graph em-

bedding framework formalism, obtaining implicit embedding, linear projection and

kernel projection formulations.

The derivation starts with the definition of the graphG . LetG =

(
⋃

1≤k≤K

X k ,
⋃

1≤i ,j≤K

W ij

)

be an undirected weighted graph with vertices indexed by the union of the K views

of the data, and edges weighted by the set of weight matricesW ij , denoting intraview

similarities when i = j and interview similarities when i 6= j . Again, different forms

of measuring similarity between pairs of data will lead to different algorithms, as it

will be shown later.

The implicit embedding, linear projection and kernel projection solutions of the

graph embedding framework are derived for the multiple view case in next sections,

employing the new definition of the graph G . The derivations are similar to the

described on previous section.

5.2.1 Implicit embedding

The implicit embedding formulation for the different views of the data is defined as

the solution to the optimization problem:

Y = arg min ∑
∀k ,l

∑
i 6=j

∥
∥
∥y ki − y

l
j

∥
∥
∥wklij = arg min

YTBY=d
Y TLY

= arg max
YTBY=d

Y TWY

(5.20)

where Y =
[
Y 1
...Y K

]
denotes the concatenation of the embedded components

for the different views of the data. The matrixW is obtained by the concatenation of
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the interview and intraview submatrices:

W =








W 11
... W 1K

...
. . .

...

WK1
... WKK








(5.21)

The low dimensional representations for the different views are obtained solving

the eigenproblem in equation 5.6, as in the single view case.

5.2.2 Linearization

The linearization of the multiple view graph embedding is made defining the explicit

mapping Y = XT ξ, where X =








X 1

. . .

XK








is defined as a block diagonal

matrix containings the different views of the data, and ξ =








ξ1

...

ξK








is the concatena-

tion of the projection directions ξk for the K different views of the data:

ξ = arg min ∑
∀k ,l

∑
i 6=j

∥
∥
∥ξkxki − ξlx lj

∥
∥
∥wklij = arg min

ξTXBXT ξ=d
ξTXLXT ξ

= arg max
ξTXBXT ξ=d

ξTXWXT ξ

(5.22)

The projections directions are obtained as the solution to the generalized eigen-

value problem in equation 5.8, plugging the new definitions of X andW .
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5.2.3 Kernelization

The kernelization of the multiple view direct graph embedding is made defining

each vector ξk = X kαk as the projection of the data at view k into some direction

αk . Plugging this definition into equation 5.22 leads to the optimization problem:

α∗ = arg min
αTXTXBXTXα=d

αTXTXLXTXα = arg min
αTKBKα=d

αTKLKα

= arg max
αTKBKα=d

αTKWKα
(5.23)

where K =








K 11

. . .

KKK








is the block-diagonal matrix with the kernel

matrices obtained at each one of the views of the data.

Again, the projection directions α are solved plugging the new definitions of K

andW into the generalized eigenvalue problem described at equation 5.13.

5.2.4 Relationship to Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) (Hardoon et al. , 2004) is a multiple view

dimensionality reduction method finding set of projections maximizing the corre-

lation among the transformed variables. The objective of CCA is to find a pair of

linear projections maximizing the correlation in the projected space between a pair

of multivariate random variables . Given the zero mean random variables in the

input space X 1 and X 2 with dimensions m1 and m2, CCA finds a pair of linear trans-

formations ξ1, ξ2, such that one component within each set of transformed variables

is correlated with a single component in the other set. The correlation between the

corresponding components is called canonical correlation, and there can be at most

d = min (d1, d2) canonical correlations. The first canonical correlation is defined as:
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ρ =max
ξ1,ξ2

〈
ξT1 x1 · ξ

T
2 x2

〉

√
〈
‖ξT1 x1‖

2
〉 〈
‖ξT2 x2‖

2
〉 (5.24)

=max
ξ1,ξ2

ξT1
〈
x1x
T
2

〉
ξ2

√

ξT1
〈
x1x
T
1

〉
ξ1ξT2

〈
x2x
T
2

〉
ξ2

(5.25)

where
〈
x1x
T
1

〉
,
〈
x2x
T
2

〉
and

〈
x1x
T
2

〉
are estimated as Σ̃11, Σ̃22 and Σ̃12 respectively,

i.e, the different minors of the empirical covariance matrix Σ̃ =




Σ̃11 Σ̃12

Σ̃21 Σ̃22



 of

a set of training data x = (x1, x2). The remaining canonical correlation directions

are orthogonal to ξ1 and ξ2 respectively. They are computed as the solutions of the

generalized eigenvalue problem:




Σ̃11 Σ̃12

Σ̃21 Σ̃22








ξ1

ξ2



 = (1 + ρ)




Σ̃12 0

0 Σ̃21








ξ1

ξ2





The standard CCA model is defined for only two random variables x1 and x2.

Bach and Jordan (Bach & Jordan, 2003) generalize it to K random variables. The

generalized eigenvalue problem to solve is defined as:








Σ̃11 · · · Σ̃1K

...
...

Σ̃K1 · · · Σ̃KK















ξ1

...

xiK








= λ








Σ̃11 · · · 0
...

...

0 · · · Σ̃KK















ξ1

...

ξK








where








Σ̃11 · · · Σ̃1K
...

...

Σ̃K1 · · · Σ̃KK








denotes the empirical covariance matrix of a set of

training data x = (x1, ... , xK )
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This optimization problem is equivalent to the lineariztion of the multiple view

graph embedding framework with the matrixW set toW =WCCA =








1
N
IN ...

1
N
IN

...
. . .

...
1
N
IN ...

1
N
IN








and the matrix B = 1
N
IKN

Following the same reasoning it can be shown that the formulation for Kernel

Canonical Correlation Analysis (KCCA) (Bach & Jordan, 2003) is equivalent to the

kernelization of the multiple view graph embedding framework with the same defi-

nitions of theW and B matrices.

5.2.5 Relationship with the Joint Manifolds Framework

An extension of Isomap for multiple view dimensionality reduction has been pro-

posed by (Davenport et al. , 2010) with the general idea of obtaining the joint pa-

rameterization of the data into the same low dimensional manifold.

Let Dk denote the matrix of Euclidean distances of the data at view k . The work

defines the matrix D = ∑
K
k=1D

k and runs the Isomap algorithm employing D as

input to obtain the embeddings of the data Y 1 = Y 2 = ... = Y k . The solution

proposed in their work is equivalent to set the matrix W in the direct embedding

framework of equation 5.20 to:

WJMIsoMap =








τ (DG )
. . .

τ (DG )








(5.26)

Note that the solution eigenvectors of the eigenproblem that arises is the concate-

nation of the eigenvectors of τ (DG ), resulting in a simpler eigenvalue problem. The

linearization and kernelization of their proposal is obtained pluggingWJMIsoMap into

equations 5.22 and 5.23. These method will be respectively denoted as JMIsoP and

JMKIsoP in subsequent sections.
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5.2.6 Multiview Isomap, Multiview Isometric Projections and Mul-

tiview Kernel Isometric Projections

Previous section has shown an extension of Isomap to the case of multiple views

of the data. Here an alternative is explored, based on the definition of graphs con-

necting the representations of the data between the different views of the data. It is

possible to define these weights in multiple ways. Here the distances between the

representation of each sample at the different views is defined to be zero, as ideally

the representation in the reduced space of a point in the different views should be

zero:

∥
∥
∥xki − x

l
i

∥
∥
∥

2

.
= 0 ∀i , k , l (5.27)

This definition is employed to build the k -nearest neighbor graph of each view.

The distance between a pair of points is defined to be the minimum distance across

the different views:

Dij =
∥
∥
∥x li − x

l
j

∥
∥
∥

2

.
= min

(∥
∥
∥x1
i − x

1
j

∥
∥
∥

2
, ... ,

∥
∥
∥xKi − x

K
j

∥
∥
∥

2
,
)

∀l (5.28)

This implies that the intraview and interview distances are all the same. Thus,

the matrixW is defined as:

W =












K
︷ ︸︸ ︷

τ(DG ) ... τ(DG )
...

. . .
...

τ(DG ) ... τ(DG )







K












(5.29)

Pluggin the definition of W into optimization problems for the implicit embed-

ding, linearization and kernelization will lead to algorithms denoted in subsequent

sections as MVIsomap, MVIsoP and MVKIsoP. The special structure of the matrix
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W provides some computational advantages that are going to be exploited later to

efficiently solve the problem.

5.3 Computational issues

Computing solutions to the graph embedding framework presented on section 5.1 is

an ill possed problem in terms of the number of samples. The solution to the direct

embedding formulation on equation 5.6 requires to compute the eigendecomposi-

tion of a - possibly - dense N × N matrix. The linearization formulation in equation

5.8 requires the multiplication of very large dense matrices and the eigendecompo-

sition of a matrix of size m ×m. The Kernelization in equation 5.13 is even worse,

as it needs to multiply N × N matrices and then compute the eigendecomposition

of a matrix of size N × N . Beyond temporal complexities, the problem for large N

is that the matrices does not fit in memory, so it is not possible to apply in a direct

way the framework to large scale learning problems. Fortunately, there exist different

proposals to compute approximate solutions to the graph embedding framework for

large N .

The multiview graph embedding framework makes the storage problem even

worse, as the matrices involved in the calculus are of size KN × KN . However, for

some types of matrices the computations might be reduced to eigenproblems of size

N × N .

This section presents some computational tricks that has bee proposed to make

tractable the computation of solutions of the graph embedding framework and, by

extension, to the multiple view graph embedding framework. It is also covered the

case when theW matrix in the multiple view framework has an special structure, as

it is the case in JIsoMap/JIsoP/JKIsoP.
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5.3.1 The Spectral Regression Framework

The spectral regression framework (Cai et al. , 2007b) has been proposed to transform

the eigenproblems appearing in the linearization and kernelization formulations of

the graph embedding framework relating their solution to the solution of the direct

embedding problem. This way the multiplication of large - possibly dense - matrices

is avoided.

A theorem appearing in (Cai et al. , 2007b) stands that if y is the eigenvector of

eigenproblem in Eqn. (11) with eigenvalue λ then, if XT a = y , a is the eigenvector

of eigenproblem in Eqn. (12) with the same eigenvalue λ. If Kα = y , then α is the

eigenvector of eigen-problem in Eqn. (13) with the same eigenvalue λ.

This theorem implies that the solutions of the linear and kernelized formulations

of the graph embedding framework and, by extension, of the multiple view graph

embedding framework, might be obtained with multivariate regression from the so-

lution to the direct embedding formulation,

The solution in this way has some additional advantages, such the possibility of

incorporating regularization to the graph embedding framework, leading to more

robust solutions. The usage of sparse regularizers also leads to compact projections

functions, less prone to overfitting and with a reduced computational cost. The study

of this effects is outside the scope of this dissertation.

Note that this approximation is only possible when the matrix W does not have

a trivial eigenvalue decomposition as is the case of PCA and CCA.

5.3.2 The Nystrom Approximation

The computation and storage of the full matrixW ∈ RN×N is not tractable. However,

it is possible to compute and approximation of the eigenvectors and eigenvalues of

W from an approximation matrix W̃ build from a set of l << N columns. Let C

be the N × l matrix with the sampled columns, and A be the l × l matrix with the
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intersection of the sampled l columns with the corresponding l rows of G . Without

loss of generality the matrixW might be rearranged such:

W =




A WT21

W21 W22



 (5.30)

C =




A

W21



 (5.31)

A popular method to build the approximation W̃ is the Nyström method. It

has been employed to obtain approximate solutions of large scale kernel problems

(Williams & Seeger, 2001), and proposed as a method to get approximate soltuions

of the graph embedding framework (Talwalkar et al. , 2008). The Nyström approxi-

mation method defines the approximation W̃ as:

W ≈ W̃ = CA+CT (5.32)

where A+ is the Moore-Penrose pseudoinverse of A. As the number of sampled

columns l increases, W̃ converges toW . The approximate eigenvalues Σ̃ and eigen-

vectors Ũ ofW are given by:

Σ̃ =
N

L
ΣW (5.33)

Ũ =

√

L

N
CUWΣ+

W (5.34)

whereW = UWΣWU
T
W .

This way the computational complexity of obtaining the top k eigenvalues and

eigenvectors ofW is reduced from O
(
N3
)

to O
(
L3 + kLN

)

The approximation implies that the graph weights should only be given from the
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set of L sampled points to the N total points. In the case of the Isomap related al-

gorithms where the Dijkstra algorithm should be employed to compute the geodesic

pairwise distances the complexity is reduced from O
(
N2 logN

)
to O (LN logN).

However, the nearest neighbor graph should be first constructed with a cost of

O
(
N2
)
.

5.3.3 Solving the Multiview Isomap problem

The matrix WMVIsoMap presented in section 5.2.6 has an special structure allowing

the simple computation of their eigendecomposition. Here a theorem is derived to

show how to do it.

Theorem 1. Let A be a symetric semi-positive definite matrix with eigenvalues λA1 ≥

λA2 ≥ ...λ
A
N ≥ 0 ∈ R and associated eigenvectors ξA1 , ξA2 , ... , ξAN . Let B a block

matrix defined by the concatenation of matrix A vertically and horizontally K times:

B =








A · · · A
...

. . .
...

A · · · A








(5.35)

B has at most N non-zero eigenvalues given by λBi = kλAi , 1 ≤ i ≤ N . The

eigenvectors of B are given by the concatenation of the eigenvectors of A K times:

ξBi =








ξAi
...

ξAi








Proof. The proof starts reasoning about the range of the matrix B. It is straightfor-

ward to show that N × (K − 1) rows/columns of B are a linear combination of the

remaining K rows/columns of B: they are the same. Thus, B has at most N non-zero

eigenvalues.
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The eigenvalues λA and eigenvectors ξA of the matrix A are defined as the solu-

tions to the problem:

AξA = λξA (5.36)

The eigenvalues λB and eigenvectors ξB of the matrix B are defined as the solu-

tions to the problem:

BξB =








A · · · A
...

. . .
...

A · · · A















ξA

...

ξA








= λBξB (5.37)

From here it might be stated that:

K

∑
k=1

AξA = kAξA = λBξB = KλAξA (5.38)

That completes the proof.

Employing this theorem, the solution to MVIsoMap is reduced from the eigende-

composition of a KN ×KN matrix to the eigendecomposition of a N ×N matrix.

5.4 Application: Multiple Camera Human Action Recog-

nition

The performance of the multiple view dimensionality reduction algorithms instanci-

ated from the multiple view graph embedding framework presented in this chapter

is going to be evaluated in a multiple camera human action recognition task, em-

ploying the 5 camera views in the IXMAS dataset (see appendix B.2 for details). The

application of the multiple view graph embedding framework for the recognition of
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Figure 5.3: Strucuture of the system for human action recognition from multiple cameras build
to evaluate the multiple view graph embedding framework

human actions from multiple cameras might be understood as a FEI-FEO data fusion

method as the presented on chapter 3.

5.4.1 Experimental Setup

The system build to test the framework is shown on figure 5.3. For each one of the

frames grabbed by the cameras in the system the motion descriptor proposed by (Tran

& Sorokin, 2008) and described in appendix C.1 is extracted. The motion descriptor

has a dimensionality m = 286. Linear and Kernel projections are learned to reduce

the dimensionality of the motion descriptors. Different instantiations of the graph

embedding framework are going to be employed: CCA, KCCA, JMISOP, JMKISOP,

MVISOP and MVKISOP. The direct embedding formulations are not tested as they

do not provide a way to transform unknown samples to the projected space. The

learned subspaces are going to be learned with dimensionalities m′ = 10, 15, 20, 25

to study the effect of their variation in the final result. Once the frames of each se-

quence have been projected they are introduced into a K-Nearest Neighbor classifier

based on the Dynamic Time Warping (DTW) Distance. The classifier is going to be

tested with K = 5 and K = 10 neighbors. This classifierhas been selected for the

simplicity and speed of its usage. More complex classifiers are expected to have a



5.4. Application: Multiple Camera Human Action Recognition 99

better performance. See appendix D for additional details on this classifier.

Due to the large number of samples (N ≈ 20000), the Nyström approximation

presented in section 5.3.2 is applied to obtain approximate solutions in the case of

JMIsoP, JMKIsoP, MVIsoP and MVKIsoP with a subsample of l = 3000 points. The

radial basis kernel is fixed with a parameter σ = 0.5.

The kernel ridge regression for MVKIsoP and JMKIsoP is not tractable, and it is

going to be approximated employing the Nyström methods as proposed in (Talwalkar,

2010) with L = 1000 samples. Regularization parameters for the ridge regression are

set to λ = 0.1. Experimental evidence has shown that the final results are not very

sensitive to small perturbations of this value.

The accuracy of the system is going to be evaluated employing Leave One Actor

Out Cross-Validation. See Appendix E.1 for additional information. The performance

of every fusion model involving sampling - all except CCA - is measured 30 times

following a Monte-Carlo approach.

Finally, to measure the improvement produced by the fusion method in the pre-

dictive performance, a baseline model is going to be employed. Actions are going

to be predicted with the same experimental configuration but employing data from

a single camera. PCA is going to be employed to compute the projections.

5.4.2 Results

In order to visualize the effect of the feature fusion algorithms, the three most signifi-

cant features obtained by CCA and PCA baseline are shown on figures 5.4-5.5. The

results obtained by other methods are quite similar to the obtained by CCA and are

thus ommited for space reasons. The projections have been obtained with the data

of actors 2-10. It can be observed that the fused features have a stroger class structure

than the features obtained by the PCA baselines, although they do not seem to be

separated in any case. This is something normal in the action recognition domain,

as the different action sequences usually share common frames, being their temporal



100 5. Multiple View Learning for Human Action Recognition

evolution the real discriminative factor to predict action classes. Another surprising

result is the similar class structure that the fused features have independently of the

fusion method employ.

d
CCA KCCA JMIsoP JMKIsoP MVIsoP MVKIsoP

k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10
10 .8889 .8949 .8936 .879 .7283 .0.7269 .7485 .7522 .8768 .8705 .8868 .8682
15 .8859 .8679 .8943 .8902 .8572 .8515 .8661 .8640 .8958 .8893 .8858 .88418
20 .8919 .8799 .8934 .8986 .8897 .8791 .8921 .8815 .9049 .9068 .8968 .89299
25 .8799 .8739 .9016 .8959 .8918 .8793 .9012 .8922 .9115 .9063 .9098 .91261

Table 5.1: Results obtained by the fusion methods

d
CAM 1 CAM 2 CAM 3 CAM 4 CAM 5

k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10 k=5 k=10
10 .6066 .6126 .6577 .6186 .5736 .5345 .6066 .5916 .7297 .7297
15 .6246 .6156 .6096 .5766 .5976 .5586 .6637 .6156 .7417 .7117
20 .6096 .5616 .6126 .5676 .6036 ..5736 .6577 .6126 .7147 .6456
25 .5829 .5522 .6034 .5522 .5836 .5422 .6486 .5946 .6817 0.6006

Table 5.2: Results obtained by the PCA baseline for each one of the cameras

Table 5.2 shows the accuracy achieved by the baseline method for each one of

the cameras, and table 5.1 shows the accuracy achieved after employing the fused

features. An increase of about a 20% in the accuracy is observed. The proposed

multiple view extension of Isomap, MVIsoP achieves the best performance on the

task, although the overall performance of all the methods is very similar. This might

be caused because the information shared by the different descriptors is easy to

extract and it is not necessary to employ very complex methods. Confusion matrices

for the best classifiers found for each fusion method are shown on figure 5.6. It can be

observed that the different classifiers fail discriminating between classes ’wave’ and

’scratch head’. We think this failure is motivated by the feature extraction method

employed, as we have observed this phenomena in other experiments employing

the same feature vector.

Finally, table 6.4 compares the results of the presented proposal to others. The

presented approach compares good to other multicamera human action recognition

methods applied to the Ixmas dataset, achieving an accuracy a bit smaller than meth-

ods employing 3D features. Note that these works employ HMM classifiers for the

prediction, probably producing results better than ours.
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Figure 5.4: Projection of the 3 most significant features obtained using PCA of camera 1 data
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Figure 5.5: Projection of the 3 most significant features obtained using CCA of camera 1 data
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(e) MVIsoP
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(f) MVIsoP

Figure 5.6: Confusion matrices for the best classifiers found for each one of the data fusion
methods
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Method Accuracy Type
Srivastava et al. (Srivastava et al. , 2009) 81.4 Decision-in Decision-out

Our’s Best 91.26 2D Feature-in Feature-out
Weinland et al. (Weinland et al. , 2006) 93.33 2D Feature-in 3D Feature-out

Peng et al. (Peng et al. , 2009) 94.59 2D Feature-in 3D Feature-out

Table 5.3: Comparison of the accuracy of our method to others

5.5 Remarks

This section has proposed an extension of the graph embedding framework to deal

with data defined in multiple feature spaces. It has been shown that different multiple

view dimensionality reduction algorithms already existent are special cases of the

proposed framework. A new multiple view dimensionality reduction algorithm has

been developed. The framework has been applied to the recognition of human

actions from multiple cameras. The validity of the proposed model has been shown

predicting IXMAS dataset with an accuracy similar to the reported by 3D visual hull

models.



6
Decision fusion for Human Action

Recognition

The whole is greater than the sum of its parts

Metaphysica. Aristotle

PREVIOUS chapter has presented a multiple view dimensionality reduction frame-

work that was employed as a FEI-FEO data fusion method for multiple camera

human action recognition. This chapter presents an alternative approach for the

recognition of human actions from multiple cameras that is located at the DEI-DEO

data fusion level of Dasarathy’s hierarchy (see chapter 3). The proposal in previous

assumed that all the cameras provide the same information to predict action class

label. However, that assumption is probably false. Probably a camera is better to pre-

dict some actions while others are better predicted by other cameras. The DEI-DEO

fusion approach in this chapter wants to handle that uncertainty in order to explore

an alternative approach.

6.1 System overview

Figure 6.1 illustrates the proposed multicamera action recognition architecture. K

different cameras observe a scene from different viewpoints. It is assumed that there
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is only a single individual in the scene. This way, we can ignore data for tracking

association problems. Without loss of generality, it is also assumed that all K cam-

eras always have a perception of the individual in the scene, although the number

of cameras observing the individual may be different at every instant t. This should

simplify ongoing formulations. The goal of the system is to select the action α per-

formed by the individual from a set of N predefined actions A = (a1, ... , aN) known

a priori given a set of image sequences {I (x , y , t)k}, 1 ≤ t ≤ T , 1 ≤ k ≤ K , of

length T simultaneously acquired by the K cameras observing the scene.

Figure 6.1: Overview of the proposed system

The first step in order to make this decision is to compute an action descriptor

f kt ∈ X from the data grabbed from each view k . X is the inner product space

where the descriptor is defined and typically X ≡ RD , although other choices are

also possible, for example when using histogram descriptors (Chaudhry et al. , 2009).

f kt must capture enough variability in the data to be able to differentiate the actions in

A. Another desirable property is that X should be compact in order to overcome the

problems caused by the curse of dimensionality. Dimensionality reduction methods

as the introduced in chapter 4 might be employed to project the original descriptors

into a more compact subspace, if necessary.
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Once an action descriptor f kt has been obtained, a probabilistic classifier is used

to create a posterior probability distribution on the performed action given the ob-

served descriptor, p(ai | f kt ), ai ∈ A, ∑
N
i=1 p

(
ai | f

k
t

)
= 1. This posterior proba-

bility distribution measures the uncertainty of the observed descriptors of being an

instance of each one of the categories.

The posterior probability distributions computed for each one of the K views of

the scene are combined using a classifier fusion algorithm, generating a posterior

distribution p
(
αt | f 1

t ... f
K
t

)
on the action performed given the descriptor computed

by the different views.

Finally, the posterior probability distributions created at each instant t are entered

into a sequence classifier to generate a single posterior distribution on the performed

action given the observation sequence p
(
α | f 1

1 ... f
K
T

)
. This distribution will be

finally used to predict the action of the observed individual.

This architecture distributes the decision making process across multiple nodes,

following the DEI-DEO data fusion paradigm shown on chapter 3. Each node pro-

cesses the image grabbed from each camera, and makes a partial decision on the

action using the information contained just in that image. A central node then grabs

the decisions taken by each node and combines them to make the final decision on

the performed action. One advantage of this approach is that if a camera breaks

the action recognition decision can still be made, as the central node would be still

collecting the decisions made by the other nodes. Other advantage is that the com-

putational resources needed to process the image sequences are allocated across

different nodes, reducing the amount of resources needed at the central node.

A possible alternative way of structuring the system would be to first classify

each sequence at each camera and then sending just one posterior distribution to

the central node, as in (Srivastava et al. , 2009). However, we are interested in

performing frame by frame action segmentation at the central node in the future,

assuming different actions happen on the input sequences. If the system would be

structured in such way it would be more difficult to make this extension.
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6.2 Single view processing

6.2.1 Human action representation

The first step in the proposed architecture is to compute a descriptor to capture the

variability of the actions to predict. The motion descriptor employed in this systems

is the proposed in (Tran & Sorokin, 2008) shown on appendix C.1 and already em-

ployed in previous chapter.

6.2.2 Dimensionality reduction

The action descriptor employed has a large dimensionality (DTRAN = 286), and

needs to be projected into a lower dimensional space in order to prevent the prob-

lems derived from ”the curse of dimensionality”. Any method in the graph em-

bedding framework might be employed for this task. Here PCA (see chapter 4) is

employed. Previous chapter only focused on unsupervised dimensionality reduc-

tion methods, i.e., methods not employing class information to compute the low

dimensional representation of the data. Supervised dimensionality reduction meth-

ods might be also understood as instantiations of the graph embedding framework.

Linear Discriminant Analysis is the supervised counterpart of PCA and is going to be

also employed. Detail on the formulation of LDA in the graph embedding framework

might be found on (Yan et al. , 2007).

6.2.3 Action classification

The action descriptor f kt computed at each frame is introduced into a probabilistic

classifier in order to generate the posterior probabilities of the performed action given

the evidence grabbed at that instant. A parametric (k-means + naive Bayes) and a

non-parametric (Nearest neighbor conditional density estimator) density estimators

are going to be employed to test the proposed system. The parametric splits the
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feature space in different regions, estimating the conditional probabilities of each

class at each region. The non-parametric estimates the conditional probabilities of

each class according to the neighbourhood of a test point. This way the possibility

of using a local or a global approaches to classification is incorporated to the system.

6.2.3.1 Nearest neighbor conditional density estimator

The nearest neighbor conditional density estimator (kNN) (Bishop et al. , 2006) is

a well-known non-parametric conditional density estimator. The estimator locally

captures the conditional density around a given test point x . Let K be a fixed neigh-

borhood size and Ki , ∑i Ki = K the number of neighbors of class ai

p (x | ai ) =
Ki

K
(6.1)

6.2.3.2 K-means + naive Bayes

The space of feature descriptors f ct will be quantified using a codebook of size K .

Each feature vector will be associated with its nearest center to obtain the word wk .

Codebook centers are computed using the k-means algorithm.

p (wk | ai ) =
p (ai | wk) p (wk)

p (ai )
(6.2)

6.3 Action fusion

After extracting a set of posterior probability distributions p(akt | f
k
t ) from the frame

descriptor f kt computed for each view, they have to be combined to generate a joint

posterior probability distribution p(αt | f 1
t , ... , f Kt ) representing the uncertainty in

the classification with respect to the evidence perceived by the different cameras at

an instant t.
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Two different algorithms will be tested for this task. The first is a voting scheme.

The second is a Bayesian network modeling the errors in local classifications.

6.3.1 Voting

The first algorithm that we tested for the fusion of single view soft classifications is

defined as the product of the posterior probabilities.

p
(

αt | f
1
t , ... , f Kt

)

∝
K

∏
k=1

p
(

ak | f
k
t

)

(6.3)

This algorithm is tested as baseline to measure the efficiency of the bayesian

network.

6.3.2 Bayesian network

The second algorithm that we tested for the fusion of single view soft classifications

is based on the Bayesian network shown in Figure 6.2. The network is composed

of observation nodes f kt , representing the observation at instant t and camera k , a

node αt representing the activity at time t and a set of latent nodes akt to model the

single view classification.

Given a set of frame descriptors ft = f 1
t , ... , f Kt , a set of latent variables at =

a1
t , ... , a

K
t , and the activity label αt , their joint probability is factorized as

P (αt , at , ft) = P (αt | at)P(at | ft)P(ft) (6.4)

.

The conditional probability given ft is then:

P (αt , at | ft) =
P (αt , at , ft)

P(ft)
= P (αt | at)P(at | ft) (6.5)
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.

The probability P (αt , at , ft) is defined as a product of independent factors, as-

suming hidden variables act to be independent:

P (αt | at)
.
=

K

∏
k=1

P
(

αt | a
k
t

)

(6.6)

.

With this assumption we rule out modeling correlations between local classifica-

tion errors. In this way, this assumption reduces to two the exponential number of

probability distributions that would otherwise need to be estimated. Thus, equation

6.5 can be rewritten as

P (αt , at | ft) =
K

∏
k=1

p
(

αt | a
k
t

)

p
(

akt | f
k
t

)

(6.7)

.

Marginalizing over akt :

P (αt | ft) =
K

∏
k=1

∑
ak

p
(

αt | a
k
t

)

p
(

akt

)

p
(

f kt | a
k
t

)

(6.8)

.

Figure 6.2: Plate model of the Bayesian network used to combine the outputs from the classifiers
at each camera

Bayesian network parameters are estimated using labeled training samples. p
(
akt | f

k
t

)

is known, being provided by the single view soft classifiers, so only p (αt | atk) needs

to be estimated. LetOk =
(
ok1 , ... , okL

}
be the set of L training frame descriptors com-

puted at camera c with their respective activity labels Y c = {y c1 , ... , y cL}, y
c
l ∈ A.
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Figure 6.3: Dynamic Bayesian network for sequence classification

Model parameters are estimated as

p
(
αt = ai | a

c
t = aj

)
=

L

∑
l=1

γlp
(

akt = aj | o
K
l

)

N

∑
n=1

L

∑
l=1

γlp
(

akt = an | o
k
l

)
(6.9)

where γl = 1 if yl = aj and γl = 0 otherwise.

6.4 Sequence classification

Human actions are not isolated occurrences, they happen in sequence. By this time,

the reader will probably have noted the t subscript in our formulation. The method

proposed until now considers individual frame descriptors, but ignores sequence

dynamics. So, given a sequence of frame descriptors computed at each camera

F =
{
f 1
1 , ... , f K1 , ... , f 1

T , ... , f KT
}

, we need to associate it with their respective activity

α, assuming that there is only one activity performed in the sequence. The sequence

length T is not needed to be the same for all sequences.

In this paper a discriminative Hidden Markov Model (HMM) (Rabiner, 1989)



6.5. Experiments 113

is employed for this task. The probability of a path of hidden node values H =

α1, ... , αT given an action class α and an observed sequence F is defined as

p (H | F , α) =p (α1 | α) p
(

α1 | f
1

1 ... f
K

1

)

T

∏
t=2

p (αt | αt−1, α) p
(

αt | f
1
t ... f

K
t

) (6.10)

where p (αt | αt−1, α) is a transition model for each action. This factorization

of the probability distribution is graphically shown on figure 6.3. The action α∗

performed given a sequence of observed actions F is

α∗ = arg max
α
p (α | F ) (6.11)

where p (α | F ) is defined as

p (α | F ) ∝ ∑
αT

p (αT | F , α) p (α) (6.12)

The above quantity can be recursively estimated using the standard forward-

backward procedure (Rabiner, 1989).

The parameters of the model, p (α1 | α) and p (αt | αt−1, α), can be estimated

from labeled training samples in a similar way as for the Bayesian network in section

6.3.2. We assume a uniform prior on p (α).

6.5 Experiments

6.5.1 Experimental setup

The performance of the proposed systems is going to be evaluating employed IXMAS

dataset (see section B.2 for additional details), employing the LOAO-CV evaluation

protocol as was done to test the system in previous chapter.
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PCA and LDA are used to project the frame descriptors into a lower dimensional

subspace. In the case of PCA, it has been tested for d = {10, 15, 20, 25}.

The size of the codebook used in the BN classifier has been experimentally ad-

justed to k = 300 words. The k-NN density estimators will be tested using k = 3,

k = 5 and k = 7 neighbors.

A different dimensionality reducer and classifier is trained for each camera in the

system, with the images they grabbed. Classifier fusion and sequence classifiers are

then run on the results provided by these classifiers.

6.5.2 Results

6.5.2.1 Single camera classification

Table 6.1 shows the accuracy of the single frame classifiers. Irrespective of the frame

descriptors used, the results reported for cameras 1− 4 are quite similar, whereas the

accuracy drops by around 10% for camera 5.

PCA projections seems to have a better performance than LDA when the number

of dimensions is high enough. Regarding the classification algorithms employed, k-

NN algorithms are more accurate than the BN algorithm for almost all the choices

of projection algorithm. As regards the choice of the number of neighbors to use,

7-NN was found to return better results than 3-NN and 5-NN, but the difference is

not substantial.

6.5.2.2 Classifier fusion

Table 6.2 shows the accuracies achieved after applying the classifier fusion algo-

rithms to the posterior distribution generated from each camera. We find that whereas

the voting algorithm always improves the accuracy of the NB classifiers at least a little,

this is not the case for the k-NN classifiers, where the final accuracy is always worse
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Classifier

Camera Reducer NB 3-NN 5-NN 7-NN

1

LDA 0.4740 0.4650 0.4878 0.4952
PCA10 0.4292 0.4295 0.4495 0.4611
PCA15 0.4355 0.4736 0.4908 0.4970
PCA20 0.4432 0.4864 0.5045 0.5123
PCA25 0.4549 0.5064 0.5179 0.5218

2

LDA 0.4908 0.4848 0.5072 0.5162
PCA10 0.4108 0.4161 0.4360 0.4415
PCA15 0.4249 0.4564 0.4742 0.4784
PCA20 0.4440 0.4797 0.5001 0.5012
PCA25 0.4534 0.4948 0.5095 0.5145

3

LDA 0.4732 0.4652 0.4866 0.4969
PCA10 0.4241 0.4508 0.4653 0.4707
PCA15 0.4660 0.5049 0.5214 0.5249
PCA20 0.4693 0.5236 0.5416 0.5453
PCA25 0.4779 0.5283 0.5447 0.5501

4

LDA 0.5084 0.5066 0.5282 0.5390
PCA10 0.4315 0.4341 0.4541 0.4638
PCA15 0.4487 0.4759 0.4911 0.4966
PCA20 0.4650 0.4976 0.5131 0.5199
PCA25 0.4799 0.5227 0.5389 0.5444

5

LDA 0.3407 0.3209 0.3517 0.3604
PCA10 0.3656 0.4005 0.4244 0.4373
PCA15 0.3652 0.4231 0.4458 0.4545
PCA20 0.3710 0.4348 0.4536 0.4568
PCA25 0.3650 0.4444 0.4562 0.4568

Table 6.1: Results obtained after single camera classification of the IXMAS dataset

than for the best single view classifier. However, the accuracy provided by the BN

algorithm is always better than the best single view classifier by about 10%− 20%.

6.5.2.3 Sequence classification

Finally, the results for sequence classification are shown in table 6.3. The accuracy

improvement is notable when compared with frame-by-frame classification. Confu-

sion matrix of the best classifier found is shown on figure 6.4

The behavior of the sequence classification algorithm depends on the origin of

the instant classification posteriors that it combines. When using the output from the

NB classifier fusion algorithm, the result varies slightly with respect to the number of

dimensions used in the frame descriptor for any given classifier. In the case of k-NN

classifiers some overfitting can be observed, as the final accuracy starts to drop as the

dimensionality grows. When using the voting algorithm, the variation of the results
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Classifier

Fusion method Reducer NB 3-NN 5-NN 7-NN

Vote

LDA 0.6193 0.4121 0.4769 0.5140
PCA10 0.5603 0.4400 0.4942 0.5178
PCA15 0.5773 0.4775 0.5246 0.5507
PCA20 0.5915 0.4950 0.5390 0.5674
PCA25 0.5932 0.5042 0.5512 0.5713

Bayesian Network

LDA 0.6198 0.6310 0.6475 0.6523
PCA10 0.5501 0.5894 0.6055 0.6111
PCA15 0.5712 0.6292 0.6404 0.6450
PCA20 0.5834 0.6505 0.6609 0.6629
PCA25 0.5854 0.6601 0.6679 0.6698

Table 6.2: Accuracy obtained after applying classifier fusion algorithms to the IXMAS dataset

pi
ck

upkic
k

pu
nc

h
wav

e
walk

tu
rn

ar
ou

nd

ge
t u

p

sit
do

wn

sc
ra

tch
he

ad

cr
os

s ar
m

s

ch
ec

k watc
h

check watch
cross arms

scratch head
sit down

get up
turn around

walk
wave

punch
kick

pick up

Figure 6.4: Confusion matrix for the best system configuration found

Classifier

Fusion Method Reducer NB 3-NN 5-NN 7-NN

Vote

LDA 0.8649 0.8559 0.8649 0.8589
PCA10 0.8018 0.8348 0.8438 0.8228
PCA15 0.8348 0.8468 0.8709 0.8649
PCA20 0.8438 0.8619 0.8799 0.8859
PCA25 0.8529 0.8709 0.8769 0.8709

Bayesian Network

LDA 0.8348 0.9009 0.8979 0.8979
PCA10 0.5075 0.8589 0.8468 0.8348
PCA15 0.5886 0.9009 0.8949 0.8859
PCA20 0.6096 0.9159 0.9069 0.9009
PCA25 0.6246 0.8919 0.9009 0.8979

Table 6.3: Accuracy obtained after applying the sequence classification algorithm to the IXMAS
dataset
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is greater. While the behavior is similar to BN’s when applied to Tran’s descriptor,

the result quickly overfits when applied to the MHI descriptor and drops with the

dimensionality.

6.5.3 Discussion

The BN classifier fusion algorithm has been proved to outperform the voting algo-

rithm. The reason is that the BN attaches different weights to the posteriors pro-

duced by each camera, according to a model of the usual errors in the classification,

whereas the voting algorithm does not use any prior information about classification

accuracy.

The results for sequence classification, when compared to instant classification,

show that actions are not isolated occurrences, but happen in sequence. It is not

enough to consider just one instant in order to recognize actions, and, whenever

already available, the past and the future frames have to be employed to make the

decision about what is happening or happened.

When globally examining the results, there is one discouraging observation: the

best algorithm configuration found for one tier of the system does not guarantee

that the best accuracy will be achieved on the next tier up. We observed many

times that the accuracy given after the classifier fusion by the classifiers with the

best single frame performance is smaller than the reported for other classifiers with

a worse performance at the single frame level. There are also similar examples of

these phenomena involving the classifier fusion and sequence classification results.

This implies that action recognition systems cannot be constructed incrementally in

order to find the best configuration, as the configuration with the best result at the

highest level is not the configuration with the best result at intermediate levels.

The accuracy of the proposed system is compared to other proposals reporting

results on the IXMAS dataset. Table 6.4 compares the proposed system to other

alternatives. All algorithms are deterministic for a fixed training set. To the best
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Method Accuracy Type

(Tran & Sorokin, 2008) 81 2D
(Srivastava et al. , 2009) 81.4 Multicamera

Chapter 5 91.26 Multicamera
Proposed 91.59 Multicamera

(Weinland et al. , 2006) 93.33 3D
(Peng et al. , 2009) 94.59 3D

Table 6.4: Comparison of the accuracy of the proposed method to other works evaluated with
IXMAS dataset

of our knowledge, the proposed system achieves an accuracy similar to the best

reported to date (Peng et al. , 2009). Let us stress that while the best result was based

on the classifications of the 3D visual hull, this proposal relies on only well-known

simple 2D pattern recognition techniques, without any need of recovering camera

calibration parameters.

Finally, we want to point out that the accuracy of the system proposed here is

almost the same than the reported for the system on chapter 5. This is quite surpris-

ing because the philosophies that have ruled the development of both systems are

completely different. Proposal on previous chapter models the correlations among

the observation extracted from each camera, while the proposed here is based on

modelling the failure in the prediction of the different actions produced by the dif-

ferent cameras. A look into the reported confusion matrices points out that the main

errors are not exactly the same, so both approaches might have a complementary

behavior that might be exploited to create new systems.

6.6 Remarks

This paper has presented a distributed human action recognition system. 2D de-

scriptors have been extracted for the frames captured at each one of the available

views. They have been projected into a lower dimensional space and introduced

into a probabilistic classifier to generate a posterior probability of the performed ac-
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tion. The posteriors for the different cameras have been merged using a classifier

fusion algorithm, whose results have been fed into a sequence classifier to make the

final decision on the performed action. The system has been tested with different

algorithms, exploiting the flexibility provided by the well-defined interfaces between

levels. As result, the system achieves an accuracy similar to the state-of-the-art of

human action recognition algorithms for classifying the IXMAS dataset.
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7
Conclusions

I’m Mr. Wolf. I solve problems

Pulp Fiction

Human Action Recognition is one of the main topics of current research by the

computer vision community. The arise of VSNs has impossed new restrictions to

the complexity of the algoritms employed for the task. Computational complexity,

bandwidth usage and energy consuption have to be minimized in order to deploy

human action recognition systems with VSNs.

The main objective of this thesis was to design new algorithms taking into ac-

count these design constraints and, in the way to fulfill these requirements different

general approaches for solving problems have been designed.

The main contributions of this thesis might be summarized as follows:

• A procedure to train HCRF sequence classifiers performing model and feature

selection. Employing the right features and the proper model complexity not

only reduces the computational load compared to the standard model, it also

increases the predictive accuracy of the models. The Occam’s Razor principle

of machine learning has shown to be true.

• A multiple view dimensionality reduction framework has been proposed as

an extension to the graph embedding framework. The framework abstract the
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formulation of existing multiple view dimensionality reduction algorithms and

allows the formulation of new ones. The usage of approximate methods allows

obtaining solutions for the framework in large scale learning scenarios. The

framework has been validated in a multicamera human action recognition task,

achieving state of the art results.

• An alternative proposal to perform human action recognition from multiple

cameras has been developed bringing action prediction to the camera nodes.

A probabilistic formulation allows the combination of the decision made at

the camera nodes to make a global one. This method has also shown results

similar to the achieved by state of the art proposals.

This dissertation has shown that accurate multicamera human action recognition

methods might be designed without the need of performing the 3D reconstruction

of the scene at a central node. Bringing processing to the camera nodes reduces

the amount of data that should be streamed over the network, allowing the usage of

human action recognition methods in resource-constrained environments.

This dissertation has also provided a review of the state of the art methods for

the recognition of human actions. The different steps that should be performed in

order to bridge the semantic gap between pixel intensity values and descriptions

have been discussed. The recognition of human actions from multiple cameras has

been analyzed from the view points of data fusion systems. Dasarathy’s Input-Output

model has shown to be an effective framework to categorize existing works.

7.1 Future Work

Future research lines that arise from the work presented here are going to be dis-

cussed now.
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7.1.1 New instantiations of the multiple view dimensionality reduc-

tion framework

This dissertation has only proposed one new algorithm employing the formalism

of the multiple view graph embedding framework, extending the Isomap algorithm.

This extension has been made with the nature of the motion data to be analyzed

in mind. However, different single view graph embedding algorithms might be ex-

tended to the multiple view case. Extensions of Laplacian Eigenmaps or Locally

Linear Embedding might be proposed. These extensions would lead to multiple

dimensionality reduction algorithm to analyze data structured in high dimensional

clusters, instead of data with a continuous distribution in the high dimensional space.

7.1.2 Beyond Model and Feature selection for the HCRF

This thesis has proposed a procedure to train HCRF sequence classifiers incorporat-

ing model and feature selection. HCRFs belong to the general class of log-linear

models. Other models in this family also incorporate the usage of hidden variables,

such the Latent-Dynamic Hidden Conditional Random Field (LD-HCRF) (Morency

et al. , 2007) or the more general Dynamic Conditional Random Fields (DCRFs) (Sut-

ton et al. , 2007). The procedure for model selection presented in this thesis might

be applied also for these models, defining appropriate group structures. In particular,

the usage of LD-HCRFs allows to perform sequence segmentation tasks, a problem

more challenging than just sequence classification with a great importance for the

recognition of human actions in real time.

This thesis has employed batch optimization algorithms, where the optimization

direction is computed employing all the training samples. In large scale learning

scenarios, online optimization algorithms, where the direction is computed with

an small subset of the training samples or even a single one, has shown a faster

convergence rate. However, to the best of our knowledge, an online optimization

algorithm for parameter estimation of overlapping group-L1 regularized log-linear



124 7. Conclusions

models has not been proposed yet. Defining such an algorithm will be a challenging

task.

7.1.3 Multicamera Human Action Recognition with sparse coding

Sparse coding methods (Lee et al. , 2007) have received an increasing attention in

recent works, with application to a wide variety of computer vision tasks. Sparse

coding algorithms reconstruct a signal employing only a few atoms of an overcom-

plete dictionary. Multiple algorithms have been proposed to obtain the optimal

reconstruction coefficients and to learn optimal overcomplete dictionaries for signal

reconstruction.

A feature fusion method as the proposed in this thesis might be built employing

sparse coding. The algorithms to obtain the optimal reconstruction coefficients have

to be extended to account for the multiple views of the data. The existing algorithm

to learn the overcomplete dictionaries probably are already prepared to deal with the

multiple view case.

7.1.4 View-Invariant action recognition

With the multiple-view learning framework introduced in this thesis a subspace has

been learned representing the information shared by the multiple cameras observing

the scene. With the spectral regression framework transformation from the high

dimensional space to the low dimensional have been learned, one for each camera.

The low dimensional representations obtained for the different camera viewpoints

in this way are similar. What if a single function is learned, instead of one for each

camera? What if that function is employed to project action sequences captured

from camera viewpoints not known during training? Would it project them to points

similar to the known cameras? How many viewpoints are needed to estimate this

hypothetical function? It is not clear if that function exists, but if it does, it would be a
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way to achieve viewpoint invariance in the prediction of human actions. Viewpoint

invariance allows fast deployment of human action recognition systems, as they don’t

have to be trained from the viewpoint that they will employ.
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Published Results

THIS appendix lists the specific works that have to do with this thesis:

• R. Cilla, M.A. Patricio, A. Berlanga, and J.M. Molina. A probabilistic, dis-

criminative and distributed system for the recognition of human actions from

multiple views. Neurocomputing, 2011.

• R. Cilla, M. Patricio, A. Berlanga, and J. Molina. On the process of design-

ing an activity recognition system using symbolic and subsymbolic techniques.

International Symposium on Distributed Computing and Artificial Intelligence

2008 (DCAI 2008), pages 729–738, 2009.

• R. Cilla, M. Patricio, A. Berlanga, and J. Molina. Fusion of single view soft

k-nn classifiers for multicamera human action recognition. Hybrid Artificial

Intelligence Systems, pages 436-443, 2010.

• R. Cilla, M. Patricio, A. Berlanga, and J. Molina. Evaluating manifold learn-

ing methods and discriminative sequence classifiers in view-invariant action

recognition. User-Centric Technologies and Applications, pages 11–18, 2011.

• R. Cilla, M. Patricio, A. Berlanga, and J. Molina. Improving the accuracy of ac-

tion classification using view-dependent context information. Hybrid Artificial

Intelligent Systems, pages 136–143, 2011.
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tion. In 4th International Work-Conference on the Interplay Between Natural
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2011.

• R. Cilla, M.A. Patricio, A. Belanga, and J.M. Molina. Non-supervised discov-

ering of user activities in visual sensor networks for ambient intelligence appli-

cations. In Applied Sciences in Biomedical and Communication Technologies,

2009. ISABEL 2009. 2nd International Symposium on, pages 1–6. IEEE, 2009.

• R. Cilla, M.A. Patricio, A. Berlanga, and J.M. Molina. Creating human activity

recognition systems using pareto-based multiobjective optimization. Advanced

Video and Signal Based Surveillance, 2009. AVSS’09. Sixth IEEE International

Conference on, pages 37–42. IEEE, 2009.

• R. Cilla, M.A. Patricio, A. Berlanga, and J.M. Molina. Phd forum: Non super-

vised learning of human activities in visual sensor networks. In Distributed

Smart Cameras, 2009. ICDSC 2009. Third ACM/IEEE International Conference

on, pages 1–2. IEEE, 2009.



B
Datasets Employed

THIS appendix shows the datasets employed to validate the proposals introduced

in this dissertation.

B.1 Weizmann

Weizmann dataset contains 90 low-resolution video sequences showing 9 different

people performing 10 different actions. Images are recorded at 50 fps with a reso-

lution of 180 x 144 pixels. Weizmann dataset is one of the most simple testbeds

to evaluate single camera human action recognition methods. Many works have re-

ported perfect prediction for them. The actions contained in the video are: (1) run,

(2) walk, (3) skip, (4) jumping-jack (or shortly jack), (5) jump-forward-on-two-legs

(or jump), (6) jump-in-place-on-two-legs (or pjump), (7) gallopsideways (or side), (8)

wave-two-hands (or wave2), (9)wave-one-hand (or wave1) and (10) bend. Sample

frames of these actions are shown on figure B.1.

B.2 Ixmas

IXMAS (Inria Xmas Motion Acquisition Sequences) dataset (Weinland et al. , 2006)

contains 13 actions performed by 12 different actors at least 3 times. The action
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sequences are simultaneously recorded from 5 different viewpoints at 23 fps with

a resolution of 390x291 pixels. IXMAS dataset is the standard testbed to measure

the performance of multicamera human action recognition methods and viewpoint

invariant action recognition methods. Experiments reported in the literature have

limited their predictions to a subset of 11 actions employing only 10 actors. These

actions are: (1) check watch, (2) cross arms, (3) scratch head, (4) sit down, (5) get up,

(6) turn arround, (7) walk, (8) wave, (9) punch, (10) kick and (11) pick up. A sample

frame of the kick action observed by the 5 viewpoints is presented in figure B.2
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(a) Bend (b) Jack (c) Jump

(d) PJump (e) Run (f) Side

(g) Skip (h) Walk (i) Wave1

(j) Wave2

Figure B.1: Sample frames from Weizmann dataset
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(a) Cam 0 (b) Cam 1

(c) Cam 2 (d) Cam 3

(e) Cam 4

Figure B.2: A frame belonging to the action kick of IXMAS dataset seen from the 5 available
views



C
Feature Extraction

THIS appendix presents the motion descriptors employed in the different experi-

ments that has been shown in this thesis.

C.1 Tran’s descriptor

The actor descriptor proposed in (Tran & Sorokin, 2008) combines optical flow and

appearance information. It has been choosen to be employed in the systems vali-

dated with Ixmas dataset because it has shown a high experimental performance on

single camera applications.

To compute it, the bounding box of the human being is normalized to a square

box preserving aspect ratio. Shape and optical flow are extracted from the box.

Vertical and horizontal planes of the optical flow are split and blurred with a median

filter. Then, each box has three channels: silhouette, vertical flow and horizontal

flow. The box is divided into 4 tiles, and a radial 18-bin histogram is computed from

each tile and each channel. The obtained histograms are concatenated to obtain

a 216-d vector. Lastly, PCA reduction of the surrounding past, present and future

vectors is appended to finally generate a descriptor of dTRAN = 286 dimensions.

Readers are referred to (Tran & Sorokin, 2008) for more details.
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Figure C.1: Tran’s descriptor, reproduced from (Tran & Sorokin, 2008)

C.2 Euclidean Distance Transform

The distance transform of an object replaces each pixel by the sortest distance to the

outside of the object. Be S the set of pixels of a given binary image I . The distance

transform is formally defined for every pixel s ∈ S as:

DT (s) =







minq ‖s − q‖ : I (q) = 0, q ∈ S if I (s) = 1

0 if I (s) = 0
(C.1)

The distance transform is computed for the silhouettes of the Weizmann dataset.

Silhouettes are rescaled to a box of 64x48 pixels. Distance transform is computed for

each pixel. Pixel values are concatenated to form a descriptor with dimensionality

dDT = 3072.



D
Dynamic Time Warping Nearest

Neighbor Sequence Classification

GIVEN two temporal sequences X = x1, x2, ... , xN and Y = y1, y2, ... , yM of

respective lengths N and M, the Dynamic Time Warping (DTW) distance

between the sequences, denoted by dDTW (X ,Y ) measures the cost of transforming

one qsequence into the other in the sense of the number of movements, insertions

and deletions required for the transformation.

Given a dataset of D =
{
X i ,Y

(
X i
)}

, 1 ≤ i ≤ N of sequences X i with their

corresponding labels Y
(
X i
)
∈ {y1, ... , yC}, a nearest neighbor classifier might be

build employing the DTW distance. Given a test sequence X ′, the set NK (Y ) de-

notes the K sequences in the dataset D closer to X ′ in the sense of the nearest

neighbor distance. The nearest neighbor score of each class is given by:

NNc
(
X ′
)
= ∑
X∈NK (Y )

δ (c ,Y (X ))

ddtw (X ,X ′)2
(D.1)

wher the function δ (a, b) = 1 if a = b and δ (a, b) = 0 otherwise. The class of a

test sequence X ′ is that maximizing the nearest neighbor score:

Y
(
X ′
)
= arg max

c
NNc

(
X ′
)

(D.2)
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E
Evaluation Protocols and Metrics

THIS appendix presents the evaluation protocol employed for the validation of the

different proposed methods and the metrics to be employed for their quantita-

tive comparison.

E.1 Leave One Actor Out Cross-Validation

The evaluation protocol employed to measure the performance of the proposed meth-

ods is Leave One Actor Out - Cross-Validation (LOAO-CV). Examples in the dataset

are split in different folds according to the actor performing the actions. Models are

trained leaving one fold out, employed for validation. This process is repeated until

the folds from every actor have been employed once for system validation.

E.2 Metrics

Two different measures are going to be employed to asses the performance of the

proposed methods:

• Recognition Rate. It is defined as the number of correctly classified samples

divided by the number of total samples. It is commonly employed in pattern
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recognition applications to measure the experimental performance. It is de-

fined as:

Recognition Rate =
# of correct predictions

# of samples
(E.1)

• Negative Log-likelihood. Given a probabilistic model λ and a sample x , it is

defined as:

nll = − logP (x | λ) (E.2)

This measure is employed to show that the HCRF learned with the proposed

regularization strategy predicts better unknown samples than those trained with

the standard procedure.
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