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Abstract

The main purpose of the work presented here is to study transformations of sequences
of orthogonal polynomials associated with a hermitian linear functional L, using spectral
transformations of the corresponding C-function F. We show that a rational spectral trans-
formation of F is given by a finite composition of four canonical spectral transformations.
In addition to the canonical spectral transformations, we deal with two new examples of
linear spectral transformations. First, we analyze a spectral transformation of L such that
the corresponding moment matrix is the result of the addition of a constant on the main
diagonal or on two symmetric sub-diagonals of the initial moment matrix. Next, we intro-
duce a spectral transformation ofL by the addition of the first derivative of a complex Dirac
linear functional when its support is a point on the unit circle or two points symmetric with
respect to the unit circle. In this case, outer relative asymptotics for the new sequences of
orthogonal polynomials in terms of the original ones are obtained. Necessary and sufficient
conditions for the quasi-definiteness of the new linear functionals are given. The relation
between the corresponding sequence of orthogonal polynomials in terms of the original one
is presented. We also consider polynomials which satisfy the same recurrence relation as
the polynomials orthogonal with respect to the linear functional L, with the restriction that
the Verblunsky coefficients are in modulus greater than one. With positive or alternating
positive-negative values for Verblunsky coefficients, zeros, quadrature rules, integral repre-
sentation, and associated moment problem are analyzed. We also investigate the location,
monotonicity, and asymptotics of the zeros of polynomials orthogonal with respect to a dis-
crete Sobolev inner product for measures supported on the real line and on the unit circle.

Keywords: Orthogonal polynomials on the real line; orthogonal polynomials on the unit
circle; Szegő polynomials on the real line; Hankel matrices; Toeplitz matrices; discrete
Sobolev orthogonal polynomials on the real line; discrete Sobolev orthogonal polynomials
on the unit circle; outer relative asymtotics; zeros; S-functions; C-functions; rational spec-
tral transformations; canonical spectral transformations.
2010 MSC: 42C05, 33C45
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Resumen

El objetivo principal de este trabajo es el estudio de las sucesiones de polinomios ortog-
onales con respecto a transformaciones de un funcional lineal hermitiano L, usando para
ello las transformaciones de la correspondiente C-función F. Un primer resultado es que
las transformaciones espectrales racionales de F están dadas por una composición finita de
cuatro transformaciones espectrales canónicas. Además de estas transformaciones canóni-
cas se estudian dos ejemplos de transformaciones espectrales lineales que son novedosos
en la literatura. El primero de estos ejemplos está dado por una modificación del funcional
lineal L, de modo que la correspondiente matriz de momentos es el resultado de la adición
de una constante en la diagonal principal o en dos subdiagonales simétricas de la matriz de
momentos original. El segundo ejemplo es una transformación de L mediante la adición
de la primera derivada de una delta de Dirac compleja cuando su soporte es un punto so-
bre la circunferencia unidad o dos puntos simétricos respecto a la circunferencia unidad.
En este caso se obtiene la asintótica relativa exterior de la nueva sucesión de polinomios
ortogonales en términos de la original. Se dan condiciones necesarias y suficientes para
que los funcionales derivados de las perturbaciones estudiadas sean cuasi-definidos, y se
obtiene la relación entre las correspondientes sucesiones de polinomios ortogonales. Se
consideran además polinomios que satisfacen las mismas ecuaciones de recurrencia que los
polinomios ortogonales con respecto al funcional lineal L, agregando la restricción de que
sus coeficientes de Verblunsky son en valor absoluto mayores que 1. Cuando estos coefi-
cientes son positivos o alternan signo, se estudian los ceros, las fórmulas de cuadratura, la
representación integral y el problema de momentos asociado. Asimismo, se estudia la local-
ización, monotonicidad y comportamiento asintótico de los ceros asociados a polinomios
discretos ortogonales de Sobolev para medidas soportadas tanto en la recta real como en la
circunferencia unidad.

Palabras claves: Polinomios ortogonales en la recta real; polinomios ortogonales en la
circunferencia unidad; polinomios de Szegő en la recta real; matrices de Hankel; matrices
de Toeplitz; polinomios discretos ortogonales de Sobolev en la recta real; polinomios ortog-
onales de Sobolev discreto en la circunferencia unidad; asintótica relativa exterior; ceros;
S-funciones; C-funciones; transformaciones espectrales racionales; transformaciones es-
pectrales canónicas.
2010 MSC: 42C05, 33C45
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3.1.1 Szegő polynomials from continued fractions . . . . . . . . . . . . . . . . . . 36
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Chapter 1

Introduction

I tend to write about what interests me, in the hope that others will also be interested.

— J. Milnor. Interview with John Milnor Raussen and Skau [2012]

Orthogonal polynomials have very useful properties in the solution of mathematical and physical
problems. Their relations with moment problems Jones et al. [1989]; Simon [1998], rational approxima-
tion Bultheel and Barel [1997]; Nikishin and Sorokin [1991], operator theory Kailath et al. [1978]; Krall
[2002], analytic functions (de Branges’s proof de Branges [1985] of the Bieberbach conjecture), inter-
polation, quadrature Chihara [1978]; Gautschi [2004]; Meurant and Golub [2010]; Szegő [1975], elec-
trostatics Ismail [2009], statistical quantum mechanics Simon [2011], special functions Askey [1975],
number theory Berg [2011] (irrationality Beukers [1980] and transcendence Day and Romero [2005]),
graph theory Cámara et al. [2009], combinatorics, random matrices Deift [1999], stochastic process
Schoutens [2000], data sorting and compression Elhay et al. [1991], computer tomography Louis and
Natterer [1983], and their role in the spectral theory of linear differential operators and Sturm-Liouville
problems Nikiforov and Uvarov [1988], as well as their applications in the theory of integrable systems
Flaschka [1975]; Golinskii [2007]; Morse [1975a,b] constitute some illustrative samples of their impact.

1.1 Motivation and main objectives

Let consider the classical mechanical problem of a 1-dimensional chain of particles with neighbor
interactions. Assume that the system is homogeneous (contains no impurities) and that the mass of each
particle is m. We denote by yn the displacement of the n-th particle, and by ϕ(yn+1 − yn) the interaction
potential between neighboring particles. We can consider this system as a chain of infinitely many
particles joined together with non-linear springs; see Figure 1.1.
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1. INTRODUCTION

Figure 1.1: A model for 1-dimensional lattice

Therefore, if
F(r) = −

d
dr
ϕ(r) = −ϕ′(r)

is the force of the spring when it is stretched by the amount r, and rn = yn+1− yn is the mutual displace-
ment, then by Newton’s law, the equation that governs the evolution is

my′′n = ϕ′(yn+1− yn)−ϕ′(yn− yn−1).

If F(r) is proportional to r, that is, when F(r) obeys Hooke’s law, the spring is linear and the potential
can be written as ϕ(r) =

κ

2
r2. Thus, the equation of motion is

my′′n = κ(yn−1−2yn + yn+1),

and the solutions y(l)
n are given by a linear superposition of the normal modes. In particular, when the

particles n = 0 and n = N + 1 are fixed,

y(l)
n = Cn sin

(
πl

N + 1

)
cos(ωlt +δl) , l = 1,2, . . . ,N,

where ωl = 2
√
κ/msin(πl/(2N + 2)), the amplitude Cn of each mode is a constant determined by the

initial conditions. In this case there is no transfer of energy between the models. Therefore, the linear
lattice is non-ergodic, and cannot be an object of statistical mechanics unless some modification is made.
In the early 1950s, the general belief was that if a non-linearity is introduced in the model, then the
energy flows between the different modes, eventually leading to a stable state of statistical equilibrium
Fermi et al. [1965]. This phenomenon was explained by the connection to solitons 1.

There are non-linear lattices which admit periodic behavior at least when the energy is not too high.
Lattices with exponential interaction have the desired properties. The Toda lattice Toda [1989] is given
by setting

ϕ(r) = e−r + r−1.

Flaschka Flaschka [1975] (see also Morse [1975a,b]) proved complete integrability for the Toda lattice
by recasting it as a Lax equation for Jacobi matrices. Later, Van Moerbeke Moerbeke [1976], following
a similar work McKean and Moerbeke [1975] on Hill’s equation Magnus and Winkler [1966], used the
Jacobi matrices to define the Toda hierarchy for the periodic Toda lattices, and to find the corresponding

1In mathematics and physics, a soliton is a self-reinforcing solitary wave (a wave packet or pulse) that maintains its shape
while it travels at constant speed. Solitons are caused by a cancellation of non-linear and dispersive effects in the medium.
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Lax pairs.

Flaschka’s change of variable is given by

an =
1
2

e−(yn+1−yn)/2, bn =
1
2

y′n.

Hence the new variables obey the evolution equations

a′n = an(bn+1−bn), (1.1)

b′n = 2(a2
n−a2

n−1), a−1 = 0, n > 0, (1.2)

with initial data bn = bn(0) = bn(0), an = an(0) > 0, which we suppose uniformly bounded 1. Set Jt to
be the semi-infinite Jacobi matrix associated with the system (1.1)-(1.2), that is

Jt =



b0(t) a0(t) 0 0 · · ·

a0(t) b1(t) a1(t) 0 · · ·

0 a1(t) b2(t) a2(t)
. . .

0 0 a2(t) b3(t)
. . .

...
...

. . .
. . .

. . .


.

We use the notation J0 = Jµ, which is the matrix of the operator of multiplication by x in the basis of
orthonormal polynomials on the real line. Favard’s theorem says that, given any Jacobi matrix J̃, there
exists a measure µ on the real line for which J̃ = Jµ. In general, µ is not unique.

Flaschka’s main observation is that the equations (1.1)-(1.2) can be reformulated in terms of the
Jacobi matrix Jt as Lax pairs

J′t = [A,Jt] = AJt −JtA,

with

A =



0 a0(t) 0 0 · · ·

−a0(t) 0 a1(t) 0 · · ·

0 −a1(t) 0 a2(t)
. . .

0 0 −a2(t) 0
. . .

...
...

. . .
. . .

. . .


= (Jt)+− (Jt)−,

where we use the standard notation (Jt)+ for the upper-triangular, and (Jt)− for the lower-triangular
projection of the matrix Jt. At the same time, the corresponding orthogonality measure dµ(·, t) goes
through a simple spectral transformation,

dµ(x, t) = e−txdµ(x,0), t > 0. (1.3)

1sup
n

(|an |+ |bn |) <∞.

3



1. INTRODUCTION

Notice that spectral transformations of orthogonal polynomials on the real line play a central role in the
solution of the problem. Indeed, the solution of Toda lattice is a combination of the inverse spectral
problem from {an}n>0, {bn}n>0 associated with the measure dµ = dµ(·,0), the spectral transformation
(1.3), and the direct spectral problem from {an(t)}n>0, {bn(t)}n>0 associated with the measure dµ(·, t).

Given the infinity matrix Jµ, which is a bounded self-adjoint operator in `2(Z+), we can define
Gesztesy and Simon [1997]; Simon [2004] the so-called S-function by

S (x) =
〈
e1, (Jµ− x)−1e1

〉
,

where {ei}i≥0 = {(δi, j) j≥0}i≥0 is a vector basis in `2(Z+). In terms of the spectral measure µ associated
with Jµ,

S (x) =

∫
I

dµ(y)
x− y

. (1.4)

In many problems, (1.4) has more simple analytical and transformation properties than the measure
µ, and, hence, S is often much more convenient for analysis. Recently, Peherstorfer, Spiridonov, and
Zhedanov Peherstorfer et al. [2007] established a correspondence between the Toda lattice and differen-
tial equations for (1.4), using an alternative approach proposed in Peherstorfer [2001]. If the coefficients
{an(t)}n>0, {bn(t)}n>0 satisfy the system of equations (1.1)-(1.2) with a0(t) and b0(t) taken as arbitrary
initial functions of time, then the corresponding S-function S (·, t) satisfies the Riccati equation

∂

∂t
S (x, t) = −1 + (x−b0(t))S (x, t)−a2

0(t)S 2(x, t).

Usually, the Toda lattice is studied using matrix spectral functions Novikov et al. [1984].

The problem of classifying all possible spectral transformations of orthogonal polynomials corre-
sponding to a rational spectral transformation of the S-function S , i.e.,

S̃ (x) =
a(x)S (x) + b(x)
c(x)S (x) + d(x)

, a(x)d(x)−b(x)c(x) , 0, (1.5)

where a, b, c, and d are coprime polynomials, in other words, the description of a generator system of
the set of rational spectral transformations, was raised by Marcellán, Dehesa, and Ronveaux Marcel-
lán et al. [1990] in 1990. Two years later, Peherstorfer Peherstorfer [1992] analyzed a particular class
of rational spectral transformations. Indeed, he deduced the relation between the corresponding linear
functionals. In 1997, Zhedanov Zhedanov [1997] proved that a generic linear spectral transformation
(c = 0) of the S-function (1.4) can be represented as a finite composition of Christoffel Szegő [1975]
and Geronimus spectral transformations Geronimus [1940a,b], and also that any rational spectral trans-
formation can be obtained as a finite composition of linear and associated elementary transformations
Zhedanov [1997]. Here a natural question arises. What we can say about the generator system for ratio-
nal spectral transformations of C-functions in the theory of orthogonal polynomials on the unit circle?
This work is organized around this question.

Surprisingly, the theory of orthogonal polynomials with respect to non-trivial probability measures
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supported on the unit circle had not been so popular until the mid-1980’s. The monographs by Szegő
Grenander and Szegő [1984]; Szegő [1975], Freud Freud [1971], and Geronimus Geronimus [1954]
were the main (and the few) major contributions to the subject, despite the fact that people working in
linear prediction theory and digital signal processing used as a basic background orthogonal polynomials
on the unit circle; see Delsarte and Genin [1990] and references therein. The recent monograph by
Simon Simon [2005] constitutes an updated overview of the most remarkable directions of research in
the theory, both from a theoretical approach (extensions of the Szegő theory from an analytic point of
view), as well as from their applications in the spectral analysis of unitary operators, GGT Geronimus
[1944]; Gragg [1993]; Teplyaev [1992] and CMV Cantero et al. [2003] matrix representations of the
multiplication operator, quadrature formulas, and integrable systems (Ablowitz-Ladik systems Nenciu
[2005], which include Schur flows as particular case), among others. Many concepts developed on
orthogonal polynomials on the real line have an analogous in this theory.

The Schur flow equation – which can be naturally called Toda lattice for the unit circle – is given by

α′n = (1− |αn|
2)(αn+1−αn−1), α−1 = 0, n > 0, (1.6)

where {αn}n>0 is a complex function sequence with |αn| < 1, initially occurred in Ablowitz and Ladik
[1975, 1976], under the name of discrete modified KdV equation, as a spatial discretization of the
modified Korteweg-de Vries equation Korteweg and de Vries [1895]

∂

∂t
f (x, t) = 6 f 2(x, t)

∂

∂x
f (x, t)−

∂3

∂x3 f (x, t).

In a very recent work Golinskii [2007], Golinskii proved that the solution of the system (1.6) re-
duces to the combination of the direct and the inverse spectral problems related by means of the Bessel
transformation

dσ(z, t) = C(t)et(z+z−1)dσ(z,0), t > 0, (1.7)

where σ is a non-trivial probability measure supported on the unit circle and C(t) is a normalization
factor. Additionally, using CMV matrices the Lax pair for this system is found, and the dynamics of the
corresponding spectral measures are described.

Given (1.4), the natural ’S-function’ in the theory of orthogonal polynomials on the unit circle is the
C-function F Simon [2004] given by

F(z) =

∫ π

−π

eiθ + z
eiθ − z

dσ(θ), (1.8)

where σ is a non-trivial probability measure supported on [−1,1]. The Cauchy kernel has the Poisson
kernel as its real part, and this is positive, so

<F(z) > 0, |z| < 1, F(0) = 1.

Hence, (1.8) is the function introduced by Carathéodory in Carathéodory [1907].
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1. INTRODUCTION

In this work – in the more general framework of hermitian linear functionals which are not nec-
essarily positive definite – we consider, sequences of orthogonal polynomials deduced from spectral
transformations of the corresponding C-function F. Our aim is to obtain and analyze the generator
system of rational spectral transformations for non-trivial C-functions given by

F̃(z) =
A(z)F(z) + B(z)
C(z)F(z) + D(z)

, A(z)D(z)−B(z)C(z) , 0, (1.9)

where A, B, C, and D are coprime polynomials. This result can be considered as a ’unit circle analogue’
of the well known result by Zhedanov for orthogonal polynomials on the real line Zhedanov [1997].
Furthermore, we introduce and study relevant examples of linear spectral transformations (C = 0) asso-
ciated with the addition of Lebesgue measure and derivatives of complex Dirac’s deltas. However, in
this, as well as in all research directions, more problems related to our original problem have arisen;
some have been solved, and the rest are in Chapter 7 as a part of the open problems formulated therein.

1.2 Overview of the text

The original contributions of this work appear in twelve articles whose content is distributed as
follows.

Chapter 3 develops the results of Castillo et al. [2012d,e]. Chapter 4 corresponds to Castillo et al.
[2010a, 2011a, 2012h]. The results of Chapter 5 are contained in Castillo [2012f]; Castillo et al. [2011b,
2012a,b]. In Chapter 6 are included the results of Castillo and Marcellán [2012c]; Castillo et al. [2010b].
Finally, the Appendixes A and B contain results discussed in Castillo et al. [2011b, 2012g].

Chapter 2 is meant for non-experts and therefore it contains some introductory and background
material. We give a brief outline of orthogonal polynomials on the real line and on the unit circle,
respectively. However, proofs of statements are not given. The emphasis is focussed on spectral trans-
formation of the corresponding S-functions and C-functions. This chapter could be omitted without
destroying the unity or completeness of the work. The original content of this work appears in the next
chapters. Let us describe briefly our main contributions.

In Chapter 3 we study the sequence of polynomials {Φn}n>0 which satisfies the following recurrence
relation

Φn+1(z) = zΦn(z) + (−1)n+1αn+1Φ∗n(z), αn+1 ∈ C, n > 0,

with the restriction |αn+1|> 1. The analysis of Perron-Carathéodory continued fractions shows that these
polynomials satisfy the Szegő orthogonality with respect to a hermitian linear functional L in P, which
satisfies a special quasi-definite condition. In two particular cases, αn > 0 and (−1)nαn > 0, respectively,
zeros of the sequence of polynomials {Φn}n>0 (real Szegő polynomials Vinet and Zhedanov [1999])
and associated quadrature rules are also studied. As a consequence of this study, we solve the following
moment problem. Given a sequence {µn}

∞
n=0 of real numbers, we find necessary and sufficient conditions
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for the existence and uniqueness of a measure µ supported on (1,∞), such that

µn =

∫ ∞

1
Tn(x)dµ(x), n > 0. (1.10)

Here {Tn}n>0 are the Chebyshev polynomials of the first kind.

It is very well known that the Gram matrix of the bilinear form in P associated with a linear func-
tional L in Λ, in terms of the canonical basis {zn}n≥0, is a Toeplitz matrix. In Chapter 4 we analyze
two linear spectral transformations of L such that the corresponding Toeplitz matrix is the result of the
addition of a constant in the main diagonal, i.e.,

〈 f ,g〉L0
= 〈 f ,g〉L+ m

∫
T

f (z)g(z)
dz

2πiz
, f ,g ∈ P, m ∈R,

or in two symmetric sub-diagonals, i.e.,

〈 f ,g〉L j
= 〈 f ,g〉L+ m

∫
T

z j f (z)g(z)
dz

2πiz
+ m

∫
T

z− j f (z)g(z)
dz

2πiz
, m ∈ C, j > 0,

of the initial Toeplitz matrix. We focus our attention on the analysis of the quasi-definite character of
the perturbed linear functional, as well as in the explicit expressions of the new orthogonal polynomial
sequence in terms of the first one. These transformations are known as local spectral transformations
of the corresponding C-function (1.8); see Chapter 6. Analogous transformations for orthogonal poly-
nomials on the real line, i.e., perturbations on the anti-diagonals of the corresponding Hankel matrix,
are also considered. We define the modification of a quasi-definite functional M by the addition of
derivatives of a real Dirac’s delta linear functional, whose action results in such a perturbation, i.e.,〈

M j, p
〉

=
〈
M j, p

〉
+ mp( j)(a), p ∈ P, m,a ∈R, j ≥ 0.

We establish necessary and sufficient conditions in order to preserve the quasi-definite character. A
relation between the corresponding sequences of orthogonal polynomials is obtained, as well as the
asymptotic behavior of their zeros. We also determine the relation between such perturbations and the
so-called canonical linear spectral transformations.

In the first part of Chapter 5 we deal with a new example of linear spectral transformation associated
with the influence of complex Dirac’s deltas and their derivatives on the quasi-definiteness and the se-
quence of orthogonal polynomials associated with L. This problem is related to the inverse polynomial
modification Cantero et al. [2011], which is one of the generators of linear spectral transformations for
the C-function (1.8), as we see in Chapter 6. We analyze the regularity conditions of a modification of
the quasi-definite linear functional L by the addition of the first derivative of the complex Dirac’s linear
functional when its support is a point on the unit circle, i.e.,

〈 f ,g〉L1
= 〈 f ,g〉L− im

(
α f ′(α)g(α)−α f (α)g′(α)

)
, m ∈R, |α| = 1,
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1. INTRODUCTION

or two symmetric points with respect to the unit circle, i.e.,

〈 f ,g〉L2
= 〈 f ,g〉L+ im

(
α−1 f (α)g′(α−1)−α f ′(α)g(α−1)

)
+ im

(
α f (α−1)g′(α)−α−1 p′(α−1)q(α)

)
, m,α ∈ C, |α| , 0,1.

Outer relative asymptotics for the new sequence of monic orthogonal polynomials in terms of the origi-
nal ones are obtained.

In the second part of Chapter 5 we assume L is a positive definite linear functional associated with a
positive measure σ. We study the relative asymptotics of the discrete Sobolev orthogonal polynomials.
We focus our attention on the behavior of the zeros with respect to the particular case,

〈 f ,g〉S 1
=

∫
T

f (z)g(z)dσ(z) +λ f ( j)(α)g( j)(α), α ∈ C, λ ∈R+, j ≥ 0.

In Chapter 6 we obtain and study the set of generators for rational spectral transformations, which
are related with the direct polynomial modification, i.e.,

〈LR, f 〉 =
〈
L,

(
z−α+ z−1−α

)
f (z)

〉
, f ∈ Λ, α ∈ C,

and the inverse of a polynomial modification, i.e.,〈
LR(−1) ,

(
z−α+ z−1−α

)
f (z)

〉
= 〈L, f 〉 , f ∈ Λ, α ∈ C,

as well as with the ±k associated polynomials Peherstorfer [1996]. We deduce the relation between the
corresponding C-functions and we study the regularity of the new linear functionals. We classify the
spectral transformations of a C-function in terms of the moments associated with the linear functional
L. We also characterize the polynomial coefficients of a generic rational spectral transformation.

In Chapter 7 some concluding remarks which include indications of the direction of future work
are presented. Finally, in Appendix A we consider the discrete Sobolev inner product associated with
measures supported on the interval (a,b) ⊆R (not necessary bounded), i.e.,

〈p,q〉D1
=

∫ b

a
p(x)q(x)dµ(x) +λp( j)(α)q( j)(α), α < (a,b), λ > 0, j ≥ 0,

generalizing some known results concerning the asymptotic behavior of the zeros of the corresponding
sequence of orthogonal polynomials. We also provide some numerical examples to illustrate the behav-
ior of the zeros. Moreover, in Appendix B, the Uvarov perturbation of a quasi-definite linear functional
by the addition of Dirac’s linear functionals supported on r different points is studied.
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Chapter 2

Orthogonal polynomials

What is true for OPRL 1is even more true for orthogonal polynomials on the unit circle (OPUC).

— B. Simon. OPUC on one foot. Boll. Amer. Math. Soc., 42:431-460, 2005

Orthogonal polynomials on the real line have attracted the interest of researchers for a long time.
This subject is a classical one whose origins can be traced to Legendre’s work Legendre [1785] on
planetary motion. The study of the algebraic and analytic properties of orthogonal polynomials in
the complex plane was initiated by Szegő in Szegő [1921a], and later continued by Szegő himself
and several authors as Geronimus, Keldysh, Korovkin, Lavrentiev, and Smirnov. An overview of the
developments until 1964, with more than 50 references on this subject, is due to Suetin Suetin [1966].
The complex analogue of the theory of orthogonal polynomials on the real line is naturally played by
orthogonal polynomials on the unit circle. Following the works of Stieltjes, Hamburger, Toeplitz and
others, Szegő investigated orthogonality on the unit circle in a series of papers around 1920 Szegő [1920,
1921b], where he introduced orthogonal polynomials, known in the literature as Szegő polynomials.

In this chapter we present a short introduction to the theory of orthogonal polynomials on the real line
(especially for comparison purposes) and orthogonal polynomials on the unit circle. We discuss recur-
rence relations, reproducing kernel, associated moment problems, distribution of their zeros, quadrature
rules, among other results that we need in the sequel. We also consider transformations of orthogonal
polynomials using spectral transformations of the corresponding S-functions and C-functions, respec-
tively. Finally, we establish the connection between measures on a bounded interval and on the unit
circle by the so-called Szegő transformation. Most of the material is classical and available in different
monographs as Chihara [1978], Freud [1971], Szegő [1975], Geronimus [1954, 1961], and the very
recent monographs by Simon Simon [2005, 2011]. Therefore formal theorems and proofs are not given.

1Orthogonal Polynomials on the Real Line.
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2. ORTHOGONAL POLYNOMIALS

2.1 Orthogonal polynomials on the real line

Definition

LetM be a linear functional in the linear space P of the polynomials with complex coefficients. We
define the moment of order n associated withM as the complex number

µn =
〈
M, xn〉 , n > 0. (2.1)

The Gram matrix associated with the canonical basis {xn}n>0 of P is given by

H =
[〈
M, xi+ j

〉]
i, j≥0

=



µ0 µ1 . . . µn . . .

µ1 µ2 . . . µn+1 . . .
...

...
. . .

...

µn µn+1 . . . µ2n . . .
...

...
...

. . .


. (2.2)

The matrices of this type, with constant values along anti-diagonals, are known as Hankel matrices Horn
and Johnson [1990].

The moment functional (2.1) is said to be quasi-definite if the moment matrix H is strongly regular,
or, equivalently, if the determinants of the principal leading submatrices Hn of order (n + 1)× (n + 1) are
all different from 0 for every n ≥ 0. In this case there exists a unique (up to an arbitrary non-zero factor)
sequence {Pn}n>0 of monic orthogonal polynomials with respect toM. We define the orthogonal monic
polynomial, Pn, of degree n, by

〈M,PnPm〉 = γ−2
n δn,m, γn , 0.

Three-term recurrence relation

One of the most important characteristics of orthogonal polynomials on the real line is the fact
that any three consecutive polynomials are connected by a simple relation which we can derive in a
straightforward way. Indeed, let consider the polynomial Pn+1(x)− xPn(x), which is of degree at most
n. Since {Pk}

n
k=0 is a basis for the linear space Pn, we can write

xPn(x) = Pn+1(x) +

n∑
k=0

λn,kPk(x), λn,k =
〈M, xPnPk〉〈
M,P2

k

〉 .

As Pn is orthogonal to every polynomial of degree at most n− 1, we have λn,0 = λn,1 = · · · = λn,n−2 = 0
and

λn,n−1 =

〈
M,P2

n

〉〈
M,P2

n−1

〉 , λn,n =

〈
M, xP2

n

〉〈
M,P2

n

〉 .
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We can thus find suitable complex numbers b0,b1, . . . and d1,d2, . . . , such that

xPn(x) = Pn+1(x) + bnPn(x) + dnPn−1(x), dn , 0, n > 0. (2.3)

This three-term recurrence relation holds if we set P−1 = 0 and P0 = 1 as initial conditions.

We next take up the important converse of the previous result. Let {bn}n>0 and {dn}n>1 be arbitrary
sequences of complex numbers with dn , 0, and let {Pn}n>0 be defined by the recurrence relation (2.3).
Then, there is a unique functional M such that 〈M,1〉 = d1, and {Pn}n>0 is the sequence of monic
orthogonal polynomials with respect toM. We refer to this result as Favard’s theorem Favard [1935].

Jacobi matrices

We can write the three-term recurrence relation (2.3) in matrix form,

xP(x) = JP(x), P = [P0,P1, . . . ]T ,

where the semi-infinite tridiagonal matrix J is defined by

J =



b0 1 0 0 · · ·

d1 b1 1 0 · · ·

0 d2 b2 1
. . .

0 0 d3 b3
. . .

...
...

. . .
. . .

. . .


.

J is said to be the monic Jacobi matrix Jacobi [1848] associated with the linear functional M. A
useful property of the matrix J is that the eigenvalues of its n× n leading principal submatrices Jn are
the zeros of the polynomial Pn. Indeed, Pn is the characteristic polynomial of Jn,

Pn(x) = det(xIn−Jn),

where In is the n×n identity matrix.

Integral representation

We can say thatM is positive definite if and only if its moments are all real and detHn > 0, n > 0.
In this case there exists a unique sequence of orthonormal polynomials {pn}n>0 with respect toM, i.e.,
the following condition is satisfied,

〈M, pn pm〉 = δn,m,

where
pn(x) = γnxn +δnxn−1 + (lower degree terms), γn > 0, n > 0.
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2. ORTHOGONAL POLYNOMIALS

From the Riesz representation theorem Riesz [1909]; Rudin [1987], we know that every positive
definite linear functionalM has an integral representation (not necessarily unique)

〈
M, xn〉 =

∫
I
xndµ(x), (2.4)

where µ denotes a non-trivial positive Borel measure supported on some infinite subset I of the real line.
For orthonormal polynomials, (2.3) becomes

xpn(x) = an+1 pn+1(x) + bn pn(x) + an pn−1(x), a2
n = dn, n > 0, (2.5)

with initial conditions p−1 = 0, p0 = µ−1/2
0 , and the recurrence coefficients are given by

an =

∫
I
xpn−1(x)pn(x)dµ(x) =

γn−1

γn
> 0,

bn =

∫
I
xp2

n(x)dµ(x) =
δn

γn
−
δn+1

γn+1
.

Therefore,
pn(x) = (anan−1 · · ·a1)−1Pn(x) = γnPn(x)

and the associated Jacobi matrix is

Jµ =



b0 a1 0 0 · · ·

a1 b1 a2 0 · · ·

0 a2 b2 a3
. . .

0 0 a3 b3
. . .

...
...

. . .
. . .

. . .


.

There are explicit formulas for orthogonal polynomials in terms of determinants. The orthonormal
polynomial of degree n is given by Heine’s formula Heine [1878, 1881]

pn(x) =
1

√
detHn detHn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 µ2 . . . µn

µ1 µ2 µ3 . . . µn+1
...

... . . .
...

...

µn−1 µn µn+1 . . . µ2n−1

1 x x2 . . . xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.6)

where the leading coefficient γn is the ratio of two Hankel determinants,

γn =

√
detHn−1

detHn
.
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In the positive definite case, Favard’s theorem can be rephrased as follows. If dn+1 > 0 and bn ∈R,
n > 0, there is a non-trivial positive Borel measure µ for which the Jacobi matrix is Jµ; equivalently, the
corresponding sequence of orthogonal polynomials obeys (2.5). In general this measure is not unique,
but a sufficient condition for uniqueness is that the recurrence coefficients are bounded or, equivalently,
the moment problem is determinate.

Moment problem

Moment problems occur in different mathematical contexts like probability theory, mathematical
physics, statistical mechanics, potential theory, constructive analysis or dynamical systems. An excel-
lent account of the history of moment problems is given in Kjeldsen [1993]. In its simplest terms, a
moment problem is related to the existence of a measure µ defined on an interval I ⊆R for which all the
moments

µn =

∫
I
xndµ(x), n ≥ 0, (2.7)

exist. If the solution to the moment problem is unique, it is called determinate. Otherwise, the moment
problem is said to be indeterminate. The monographs Akhiezer [1965] and Shohat and Tamarkin [1943]
are the classical sources on moment problems; see also Simon [1998] from a different point of view
using methods from the theory of finite difference operators.

There are many variations of a moment problem, depending on the interval I. In all of them, as
suggested above, there are two questions to be answered, namely existence and uniqueness. Three
particular cases of the general moment problem have come to be called classical moment problems,
although strictly the term describes a much wider class. These are the following:

i) The Hamburger moment problem, where the measure is supported on (−∞,∞).

ii) The Stieltjes moment problem, where the measure is supported on (0,∞).

iii) The Hausdorff moment problem, where the measure is supported on (0,1).

The Hausdorff moment problem is always determinate Hausdorff [1923]. Stieltjes, in his memoir
Stieltjes [1894, 1895] introduced and solved the moment problem which was named after him by making
extensive use of continued fractions. The necessary and sufficient conditions for determinacy of this
moment problem are given by detHn > 0, detH(1)

n > 0, n ≥ 0, where

H(1)
n =


µ1 µ2 . . . µn+1

µ2 µ3 . . . µn+2
...

...
. . .

µn+1 µn+2 . . . µ2n+1


.

In Hamburger [1920, 1921, 1921], Hamburger solved the moment problem on the whole real line,
showing that it was not just a trivial extension of Stieltjes’ work. The Hamburger moment problem is
determined if and only if detHn > 0, n ≥ 0.
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2. ORTHOGONAL POLYNOMIALS

More recent variations of these problems are the strong moment problems. In these cases, the
sequence {µn}n>0 is replaced by the bilateral sequence {µn}n∈Z of real numbers and the moment problem
can be stated as follows. Given such a sequence {µn}n∈Z of real numbers, find a measure µ such that

µn =

∫
I
xndµ(x), n ∈Z.

The strong Stieltjes and strong Hamburger moment problems can be formulated in the same way
as the classical problems. The necessary and sufficient conditions are also given in terms of Hankel
determinants involving the moments. Jones, Thron, and Waadeland Jones et al. [1980] proposed and
solved the strong Stieltjes moment problem, while Jones, Njåstad, and Thron Jones et al. [1984] solved
the strong Hamburger moment problem. In both cases, a central role was played by continued fractions.

Continued fractions

As Brezinski Brezinski [1991] points out, continued fractions were used implicitly for many cen-
turies before their real discovery. An excellent text on the arithmetical and metrical properties of regular
continued fractions is the classical work of Khintchine Khintchine [1963], which is the starting point
for the most recent book by Rocket and Szüsz Rocket and Szüsz [1992]. In addition to these texts, the
analytic theory of continued fractions is very well covered in Jones and Thron [1980]; Lorentzen and
Waadeland [1992, 2008]; Wall [1948].

A continued fraction is a finite or infinite expansion of the form

q0 +
r1

q1 +
r2

q2 +
r3

q3 + . . .

= q0 +
r1

q1
+

r2

q2
+

r3

q3
+ · · · , (2.8)

where {rn}n>0 and {qn}n>0 are real or complex numbers, or functions of real or complex variables. The
finite continued fraction,

Rn

Qn
= q0 +

r1

q1
+

r2

q2
+

r3

q3
+ · · ·+

rn

qn
,

obtained by truncation of (2.8), is called the n-th approximate of the continued fraction (2.8). The limit
of Rn/Qn when n tends to infinity is the value of the continued fraction.

The numerators Rn and denominators Qn satisfy, respectively, the Wallis recurrence relations Wallis
[1656]

Rn+1 = qn+1Rn + rn+1Rn−1, n > 1, (2.9)

Qn+1 = qn+1Qn + rn+1Qn−1, n > 1, (2.10)

with R0 = q0, Q0 = 1, R1 = q0q1 + r1, and Q1 = q1. These formulas lead directly to the connection be-
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tween orthogonal polynomials and continued fractions. If we consider the following continued fraction

1
x−b0

−
a2

1

x−b1
−

a2
2

x−b2
−

a2
3

x−b3
− · · · ,

then Qn := Pn satisfies (2.3).

Christoffel-Darboux identity

In the literature, the polynomials

Kn(x,y) =

n∑
k=0

pk(x)pk(y), n > 0,

are usually called Kernel polynomials. The name comes from the fact that for any polynomial, qn, of
degree at most n, is given by

qn(y) =

∫
I
qn(x)Kn(x,y)dµ(x).

The Kernel polynomial Kn can be represented in a simple way in terms of the polynomials pn

and pn+1 throughout the Christoffel-Darboux identity Chebyshev [1885]; Christoffel [1858]; Darboux
[1878],

Kn(x,y) = an+1
pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
,

that can be deduced in a straightforward way from the three-term recurrence relation (2.5). When y

tends to x, we obtain its confluent form

Kn(x, x) = an+1
(
p′n+1(x)pn(x)− p′n(x)pn+1(x)

)
.

This last identity is used to prove two results that we show in this section, interlacing of zeros and
Gauss-Jacobi quadrature formula.

Zeros

The fundamental theorem of algebra states that any polynomial of degree n has exactly n zeros
(counting multiplicities). When dealing with orthogonal polynomials with respect to non-trivial proba-
bility measures supported on the real line, one can say much more about their localization. Two of the
most relevant properties of zeros are the following:

i) The zeros of pn are all real, simple and are located in the interior of the convex hull 1of I.

ii) Suppose xn,1 < xn,2 < · · · < xn,n are the zeros of pn, then

xn,k < xn−1,k < xn,k+1, 1 6 k 6 n−1.
1By convex hull of a set E ⊂ C we mean the smallest convex set containing E. G ⊂ C is convex if for each pair of points

x,y ∈G the line connecting x and y is a subset of G.
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2. ORTHOGONAL POLYNOMIALS

The property ii) can also be proved using the Jacobi matrix Jµ from the inclusion principle for the
eigenvalues of a hermitian matrix Horn and Johnson [1990].

The following result is due to Wendroff Wendroff [1961]. Let Pn+1 and Pn be two monic polynomials
whose zeros are simple, real, and strictly interlacing. Then there is a positive Borel measure µ for
which they are the corresponding orthogonal polynomials of degrees n + 1 and n, respectively. All such
measures have the same starting sequence Pn+1,Pn,Pn−1, . . . ,P0.

Quadrature

A numerical quadrature consists of approximating the integral of a function f : I ⊂R→R by a finite
sum which uses only n function evaluations. For a positive Borel measure µ supported on I, an n-point
quadrature rule is a set of points x1, x2, . . . , xn and a set of associated numbers λ1,λ2, . . . ,λn, such that

∫
I

f (x)dµ(x) ∼
n∑

k=1

λk f (xk)

in some sense for a large class of functions as possible.

A Gauss-Jacobi quadrature Jacobi [1859]; Stieltjes [1894, 1895] is a quadrature rule constructed to
yield an exact result for polynomials of degree at most 2n− 1, by a suitable choice of the nodes and
weights. If we choose the n nodes of a quadrature rule as the n zeros xn,1, xn,2, . . . , xn,n of the orthogonal
polynomial, Pn, with respect to µ supported on I and if we denote the corresponding so-called Cotes or
Christoffel numbers by λn,1,λn,2, . . . ,λn,n, then for every polynomial Q2n−1 of degree at most 2n−1,

n∑
k=1

λn,k Q2n−1(xn,k) =

∫
I
Q2n−1(x)dµ(x).

The Christoffel numbers are positive and are given by

λn,k =

n−1∑
k=0

p2
k(xn,k)


−1

.

2.1.1 Classical orthogonal polynomials

The most important polynomials on the real line are the classical orthogonal polynomials Szegő
[1975]. They are the Hermite polynomials, the Laguerre polynomials, the Jacobi polynomials (some
special cases are the Gegenbauer polynomials, the Chebyshev polynomials, and the Legendre polyno-
mials). These polynomials possess many properties that no other orthogonal polynomial system does.
Among others, it is remarkable that the classical orthogonal polynomials satisfy a second order linear
differential equation Bochner [1929]; Routh [1884]

θ(x)y′′(x) +τ(x)y′(x) +λny(x) = 0,
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where θ is a polynomial of degree at most 2 and τ is a polynomial of degree 1, both independent of n.
They also can be represented by a Rodrigues’ distributional formula Cryer [1970]; Rasala [1981]

Pn(x) =
1

cnω(x)
dn

dxn
(
ω(x)θn(x)

)
,

where ω is the weight function and θ is a polynomial independent of n. Moreover, for every classical
orthogonal polynomial sequence, their derivatives constitute also an orthogonal polynomial sequence
on the same interval of orthogonality Cryer [1935]; Krall [1936]; Webster [1938].

Jacobi polynomials

The Jacobi polynomials Chihara [1978]; Szegő [1975], appear in the study of rotation groups 1and
in the solution to the equations of motion of the symmetric top McWeeny [2002]. They are orthogonal
with respect to the absolutely continuous measure dµ(α,β; x) = (1− x)α(1 + x)βdx, supported on [−1,1]
where for integrability reasons we need to take α,β > −1. These polynomials satisfy the orthogonality
condition ∫ 1

−1
P(α,β)

n (x)P(α,β)
m (x)dµ(α,β; x) =

2α+β+1

n!(2n +α+β+ 1)
Γ(n +α+ 1)Γ(n +β+ 1)

Γ(n +α+β+ 1)
δn,m,

where Γ is the Gamma function. From Rodrigues’ formula we get

P(α,β)
n (x) =

1
(−2)nn!(1− x)α(1 + x)β

dn

dxn

(
(1− x)α+n(1 + x)β+n

)
,

or, equivalently, solving the differential equation by Frobenius’ methods, the Jacobi polynomials are
defined via the hypergeometric function as follows

P(α,β)
n (x) =

2n(α+ 1)+
n

(n +α+β+ 1)+
n

2F1

(
−n,n +α+β+ 1;α+ 1;

1− x
2

)
=

(
n +α

n

) n∑
j=0

(−n)+
k (n +α+β+ 1)+

k

(α+ 1)+
k k!

(
1− x

2

)2

.

The n-th Jacobi polynomial is the unique polynomial solution of the second order linear homoge-
neous differential equation

(x2−1)y′′(x) + ((2 +α+β)x +α−β)y′(x)−n(n + 1 +α+β)y(x) = 0.

Particular cases are α = β = −1/2, given the Chebyshev polynomials of first kind,

Tn(x) = 22n (n!)2

(2n)!
P(−1/2,−1/2)

n (x).

1A rotation group is a group in which the elements are orthogonal matrices with determinant 1. In the case of three-
dimensional space, the rotation group is known as the special orthogonal group.
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2. ORTHOGONAL POLYNOMIALS

The change of variable x = cosθ gives Tn(x) = cos(nθ). The sequence {Tn}n>0 is used as an approximation
to a least squares fit, and it is a special case of the Gegenbauer polynomial with α = 0.

When α = β = −1/2, we have the Chebyshev polynomial of second kind

Un(x) = 22n+1 ((n + 1)!)2

(2n + 2)!
P(1/2,1/2)

n (x).

With x = cosθ, we get Un(x) = sin(n + 1)θ/sinθ. The sequence {Un}n>0 arises in the development of
four-dimensional spherical harmonics in angular momentum theory. {Un}n>0 is also a special case of the
Gegenbauer polynomial with α = 1.

Laguerre polynomials

The Laguerre polynomials Chihara [1978]; Szegő [1975] arise in quantum mechanics, as the radial
part of the solution of the Schrödinger’s equation for the hydrogen atom. They are orthogonal on the
positive half of the real line, satisfying∫ ∞

0
L(α)

n (x)L(α)
m (x)dµ(α; x) =

Γ(n +α+ 1)
n!

δn,m,

where dµ(α; x) = xαe−xdx and α > −1. Rodrigues’ formula for them is

L(α)
n (x) =

ex

n!xα
dn

dxn (e−xxn+α).

The polynomial L(α)
n satisfies a second order linear differential equation that is a confluent hypergeomet-

ric equation
xy′′(x) + (α+ 1− x)y′(x) + ny(x) = 0,

and the Laguerre polynomials are a terminating confluent hypergeometric series

L(α)
n (x) =

(−1)nΓ(n +α+ 1)
Γ(α+ 1) 1F1(−n,α+ 1, x) =

n∑
j=0

(
n +α

n− j

)
(−x) j

j!
.

Hermite polynomials

When dµ(x) = e−x2
dx on the whole real line, we have the Hermite polynomials Chihara [1978];

Szegő [1975], satisfying the orthogonality relation∫ ∞

−∞

Hn(x)Hm(x)dµ(x) =
√
π2nn!δn,m.

They arise in probability, such as the Edgeworth series, in numerical analysis as Gaussian quadrature,
and in physics, where they give rise to the eigenstates of the quantum harmonic oscillator. From Ro-
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drigues’ formula,

Hn(x) = (−1)nex2 dn

dxn e−x2
,

and we can deduce their explicit formula in terms of hypergeometric functions

H2n(x) = (−1)n (1/2)+
n 1F1

(
−n,

1
2

; x2
)
,

H2n+1(x) = (−1)n (3/2)+
n x1F1

(
−n,

3
2

; x2
)
.

The choice θ = 1 and τ(x) = −2x gives their characterization as the polynomial eigenfunctions of the
second order linear differential operator

L[y(x)] = y′′(x)−2xy′(x).

2.1.2 S-functions and rational spectral transformations

S-functions

The study of perturbations of the linear functional M introduced in (2.1), and their effects on the
corresponding S-function

S (x) =

〈
M,

1
x− y

〉
, (2.11)

where the functional M acts on the variable y, has a significant relevance in the theory of orthogo-
nal polynomials on the real line. S admits, as a series expansion at infinity, the following equivalent
representation

S (x) =

∞∑
k=0

µk

xk+1 , (2.12)

i.e., it is a generating function of the sequence of moments for the linear functional M (questions of
convergence are not considered). If the moments associated with µ are given by (2.7), the functions

S n(x) =

∫
I

pn(y)
x− y

dµ(y), n > 0,

constitute a second (independent) solution of the difference equation

xyn = an+1yn+1 + bnyn + anyn−1, n ≥ 0.

They are called second kind functions associated with µ. In this case, the S-function Stieltjes [1894,
1895] is given by

S 0(x) = S (x) =

∫
I

dµ(y)
x− y

.
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2. ORTHOGONAL POLYNOMIALS

One of the important properties of the S-functions is its representation in terms of continued fractions,
Stieltjes [1894, 1895]

S (x) =
1

x−b0
−

a2
1

x−b1
−

a2
2

x−b2
− . . . . (2.13)

In fact, (2.13) was a starting point for the general theory of orthogonal polynomials in pioneering
works by Chebyshev Chebyshev [1885] and Stieltjes Stieltjes [1894, 1895].

Spectral transformations

A rational spectral transformation Zhedanov [1997] of the S-function S is a new S-function defined
by

S̃ (x) =
a(x)S (x) + b(x)
c(x)S (x) + d(x)

, a(x)d(x)−b(x)c(x) , 0, (2.14)

where a, b, c, and d are coprime polynomials. When c = 0, the spectral transformation (2.14) is said to
be linear. These polynomials should be chosen in such a way that the new S-function, S̃ , has the same
asymptotic behavior as initial (2.12),

S̃ (x) =

∞∑
k=0

µ̃k

xk+1 ,

where {̃µn}n>0 is the sequence of transformed moments. Hence, in general, the coefficients of the poly-
nomials a, b, c, and d depend on the original moments {µn}n>0. In particular, this means that the spectral
transformations do not form a group. Indeed, for a given spectral transformation there exist many
different reciprocal spectral transformations. Nevertheless, it is clear that one can always construct a
composition of two spectral transformations, and moreover, for a given spectral transformation there is
at least one reciprocal.

In terms of the moments, we can classify the spectral transformations of S-functions as follows.

i) Local spectral transformations: spectral transformations under the modification of a finite number
of moments.

ii) Global spectral transformations: spectral transformations under the modification of an infinite
number of moments.

Notice that i) is a special case of linear spectral transformations related with perturbations on the anti-
diagonals of the Hankel matrix (2.2). In general, ii) can be represented by the rational spectral transfor-
mation (2.14).

Linear spectral transformations

Without loss of generality, we can assume that the measure µ is normalized, i.e., µ0 = 1. The
Christoffel transformation Szegő [1975] corresponds to a modification of the measure µ defined by

dµc(x) =
x−β
µ1−β

dµ(x), β < I. (2.15)
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The sequence of orthogonal polynomials {Pn(·;µc)}n>0 associated with this transformation is given by

(x−β)Pn(x;µc) = Pn+1(x)−
Pn+1(β)
Pn(β)

Pn(x), n > 0.

Indeed, Christoffel transformation leads to the Kernel polynomial. Denoting the transformation (2.15)
by RC(β), the corresponding S-function becomes

S C(x) = RC(β)[S (x)] =
(x−β)S (x)−1

µ1−β
. (2.16)

Conversely, if we start with a spectral transformation where a is a polynomial of first degree, b is
constant, d ≡ 1, and c≡ 0, the only choice for such a spectral transformation is (2.16). In general, a linear
spectral transformation with d ≡ 1 is equivalent to a finite composition of Christoffel transformations
Zhedanov [1997].

The reciprocal of a Christoffel transformation is the so-called Geronimus transformation Geronimus
[1940a,b], consisting of a perturbation of µ such that

dµg(x) =
(β− x)−1dµ(x) + mδ(x−β)

m + S (β)
, β < I, m ∈ R+. (2.17)

The sequence of orthogonal polynomials {Pn(·;µg)}n>0 with respect to (2.17) can be written as

Pn(x;µg) = xPn(x)−
Qn(β;m)

Qn−1(β,m)
Pn−1(x), n > 0

where P0(·;µg) = 1, and Qn(β,m) is a solution of the recurrence relation (2.3) with auxiliary parameter
β,

Qn(β,m) = S n(β) + mPn(β), n > 0.

This transformation is denoted by RG(β,m). The corresponding S-function is

S G(x) = RG(β,m)[S (x)] =
S (β) + m−S (x)

(x−β)(m + S (β))
. (2.18)

We can see that the transformation (2.18) is reciprocal to (2.16). However, in contrast to the Christof-
fel transformation, (2.18) contains two free parameters, where the second free parameter defines the
value of additional discrete mass as is seen is (2.17). In general, one can prove that a linear spectral
transformation with a ≡ 1 is equivalent to a finite composition of Geronimus transformations Zhedanov
[1997].

It is easy to see that for different values of β we have

RC(β1)◦RG(β2,m) = RG(β2,m)◦RC(β1).
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2. ORTHOGONAL POLYNOMIALS

However, for the same parameter we have the following relations

RC(β)◦RG(β,m) = I (Identity transformation),

RG(β,m)◦RC(β) = RU (β,m) (Uvarov transformation).

The Uvarov transformation Geronimus [1940a,b] consists of the addition of a real positive mass to
the measure µ,

dµu(x) =
dµ(x) + mδ(x−β)

1 + m
, β < I, m ∈ R+.

The relation between the corresponding S-functions is

S U (x) = RU (β,m)[S (x)] =
S (x) + m(x−β)−1

1 + m
.

Rational spectral transformations

In Zhedanov [1997] it was proved that by means of ±k associated transformations we can reduce
(2.14) to the linear form. Combining Christoffel transformation (2.16), Geronimus transformations
(2.18), and the ±k associated transformations we get a wide class of rational spectral transformations
(2.14).

From the sequence of monic orthogonal polynomials {Pn}n>0 we can define the sequence of associ-
ated monic polynomials Geronimus [1943], {P(k)

n }n>0, k > 1, by means of the shifted recurrence relation

P(k)
n+1(x) = (x−bn+k)P(k)

n (x)−dn+kP(k)
n−1(x), n > 0, (2.19)

with P(k)
−1 = 0 and P(k)

0 = 1. The recurrence relation (2.19) can also be written in the matrix form

xP(k)(x) = J(k)P(k)(x), P(k) =
[
P(k)

0 ,P(k)
1 , . . .

]T
,

where J(k) is the tridiagonal matrix

J(k) =



bk 1 0 0 · · ·

dk+1 bk+1 1 0 · · ·

0 dk+2 bk+2 1
. . .

0 0 dk+3 bk+3
. . .

...
...

. . .
. . .

. . .


,

i.e., we have removed in the monic Jacobi matrix J the first k rows and columns.

The S-function corresponding to the associated polynomials of order k, S (k), can be obtained using
the formula

S (k)(x) =
S k(x)

d1S k−1(x)
,
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where S k is given by
S k(x) = S (x)Pk(x)−P(1)

k−1(x).

We denote this transformation of the Stieltjes functions by R(k)[S (x)] = S (k)(x).

If we are interested to characterize the sequence of monic polynomials {Pn}n>0 orthogonal with
respect to M, we consider the associated sequence of monic polynomials

{
P(1)

n

}
n>0

and we have the
following asymptotic expansion around infinity

Pn(x)S (x)−P(1)
n−1(x) = O(x−n−1).

It plays an important role in the theory of continued fractions. Returning to the Wallis recurrence
relations (2.10), let notice that the numerators satisfy P(1)

n (x) = d1Qn+1(x), n > −1.

On the other hand, let us consider a new family of orthogonal polynomials, {P(−k)
n }n>0, which is

obtained by pushing down k rows and columns in the Jacobi matrix J, and by introducing in the upper
left corner new coefficients b−i (i = k,k− 1, ...,1) on the diagonal, and d−i (i = k− 1,k− 2, ...,0) on the
lower sub-diagonal. The monic Jacobi matrix for the new sequence of polynomials is

J(−k) =



b−k 1
d−k+1 b−k+1 1

. . .
. . .

. . .

b0 1

d1 b1
. . .

. . .
. . .


,

These polynomials are called anti-associated polynomials of order k, and were analyzed in Ronveaux
and Van Assche [1996].

Their corresponding Stieltjes formula can be obtained from Zhedanov [1997]

S (−k)(x) =
d̃kP(−k)

k−2 (x)S (x)−P(−k+1)
k−1 (x)

d̃kP(−k)
k−1 (x)S (x)−P(−k+1)

k (x)
. (2.20)

If k = 1, then the anti-associated polynomials of the first kind appear and its corresponding Stieltjes
function S (−1), given by (2.20), is

S (−1)(x) =
1

x− b̃0− d̃1S (x)
, (2.21)

where S is the Stieltjes function associated with µ, and b̃0 and d̃1 are free parameters. We denote
R

(−1)
(̃b0,d̃1)

[S (x)] = S (−1)(x). Observe that R(−1) is not a unique inverse of R(1), because of its dependence

on the free parameters b̃0 and d̃1.
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2. ORTHOGONAL POLYNOMIALS

2.2 Orthogonal polynomials on the unit circle

Definition

Let L be a linear functional in the linear space of Laurent polynomials with complex coefficients, Λ,
satisfying

cn =
〈
L,zn〉 = 〈L,z−n〉 = c−n, n ∈Z. (2.22)

L is said to be a hermitian linear functional. A bilinear functional associated with L can be introduced
in P as follows

〈 f ,g〉L =
〈
L, f (z)g(z−1)

〉
, f ,g ∈ P.

The complex numbers {cn}n∈Z are said to be the moments associated with L and the infinite matrix

T =

[〈
zi,z j

〉
L

]
i, j≥0

=



c0 c1 · · · cn · · ·

c−1 c0 · · · cn−1 · · ·

...
...

. . .
...

c−n c−n+1 · · · c0 · · ·

...
...

...
. . .


, (2.23)

is the Gram matrix of the above bilinear functional in terms of the canonical basis {zn}n>0 of P. It is
known in the literature as a Toeplitz matrix, a matrix in which each descending diagonal from left to
right is constant Horn and Johnson [1990].

If Tn, the (n+1)× (n+1) principal leading submatrix of T, is non-singular for every n > 0, L is said
to be quasi-definite, and there exists a sequence of monic polynomials {Φn}n>0, orthogonal with respect
to L,

〈Φn,Φm〉L = knδn,m, kn , 0, n > 0.

Szegő recurrence relations

We have seen that orthogonal polynomials on the real line satisfy a three-term recurrence relation.
Such a recurrence relation does not hold for orthogonal polynomials on the unit circle, but there are
also recurrence formulas. These polynomials satisfy the following forward and backward recurrence
relations

Φn+1(z) = zΦn(z) +Φn+1(0)Φ∗n(z), n > 0, (2.24)

Φn+1(z) =
(
1− |Φn+1(0)|2

)
zΦn(z) +Φn+1(0)Φ∗n+1(z), n > 0, (2.25)

where Φ∗n(z) = znΦn(z−1) = zn(Φn)∗(z) is the so-called reversed polynomial, and the complex numbers
{Φn(0)}n>1, with

|Φn(0)| , 1, n > 1,
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are known as Verblunsky, Schur or reflection coefficients. The monic orthogonal polynomials are there-
fore completely determinated by the sequence {Φ(0)}n≥1. To obtain the recurrence formula, we take
into account the fact that the reversed polynomial Φ∗n(z) is the unique polynomial of degree at most n

orthogonal to zk, 1 6 k 6 n. (2.24) and (2.25) are called either the Szegő recurrence or Szegő difference
relations. Moreover, we have

〈Φn,Φn〉L = kn =
detTn

detTn−1
, n ≥ 1, k0 = c0. (2.26)

We can derive a recurrence formula which does not involve the reversed polynomials,

Φn(0)Φn+1(z) = (zΦn(0) +Φn+1(0))Φn(z)− zρ2
nΦn+1(0)Φn−1(z), n > 0, (2.27)

if we assume Φ−1 = 0. The polynomials Φn+1 can be found from Φn−1 and Φn, if Φn(0) , 0. This is an
analogue of the three-term recurrence relation (2.3) for orthogonal polynomials on the real line, except
for the factor z in the last term. In da Silva and Ranga [2005], the authors find bounds for complex zeros
of polynomials generated by this kind of recurrence relations.

Integral representation

If c0 = 1 and detTn > 0, for every n > 0, L is said to be positive definite and it has the following
integral representation

〈L, f 〉 =
∫
T

f (z)dσ(z), f ∈ P, (2.28)

where σ is a non-trivial probability measure supported on the unit circle T. In such a case, there exists
a unique sequence of polynomials {φn}n>0 with positive leading coefficient, such that∫

T
φn(z)φm(z)dσ(z) = δm,n.

{φn}n>0 is said to be the sequence of orthonormal polynomials with respect to dσ. Denoting by κn the
leading coefficient of φn, Φn = κ−1

n φn is the corresponding monic orthogonal polynomial of degree n.
Moreover, 〈Φn,Φn〉L = ‖Φn‖

2
σ = kn > 0.

From the Pythagoras theorem, in (2.24) we get

‖Φn‖
2
σ

‖Φn−1‖
2
σ

= 1− |Φn(0)|2 > 0, n > 1. (2.29)

This shows that in the positive definite case the Verblunsky coefficients always satisfy

|Φn(0)| < 1, n > 1. (2.30)

In this situation, we have an analogous of the Favard theorem Schur [1917, 1918]; Verblunsky [1935],
formulated as follows. Any sequence of complex numbers obeying (2.30) arises as the Verblunsky
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2. ORTHOGONAL POLYNOMIALS

coefficients of a unique non-trivial probability measure supported on the unit circle.

We use the notation ρn =
√

1− |Φn(0)|2 = ‖Φn‖σ/‖Φn−1‖σ = κn−1/κn. Hence, for the orthonormal
polynomials φn, the recurrence relations (2.24)-(2.27) become

ρn+1φn+1(z) = zφn(z)−Φn+1(0)φ∗n(z), n > 0,

φn+1(z) = ρn+1zφn(z) +Φn+1(0)φ∗n+1(z), n > 0, (2.31)

ρn+1Φn(0)φn+1(z) = (zΦn(0) +Φn+1(0))φn(z)− zρnΦn+1(0)φn−1(z)(z), n > 0.

Kernel polynomials

In the case of orthogonal polynomials on the unit circle we have a simple expression for the repro-
ducing kernel Akhiezer [1965]; Freud [1971]; Simon [2005], similar to the Christoffel-Darboux formula
on the real line. The n-th polynomial kernel Kn(z,y) associated with {Φn}n>0 is defined by

Kn(z,y) =

n∑
j=0

Φ j(y)Φ j(z)
k j

=
Φ∗n+1(y)Φ∗n+1(z)−Φn+1(y)Φn+1(z)

kn+1(1− yz)
(2.32)

=
φ∗n+1(y)φ∗n+1(z)−φn+1(y)φn+1(z)

1− yz
,

and it satisfies the reproducing property,∫
T

Kn(z,y) f (z)dσ(z) = f (y), (2.33)

for every polynomial f of degree at most n. Taking into account φ∗n+1(0) = κn+1Φ∗n+1(0) = κn+1, we find
that

Φ∗n(z) =
1
κ2

n
Kn(z,0) = knKn(z,0), n ≥ 0, (2.34)

which is an expression for the reversed polynomials as a linear combination of the orthogonal polyno-
mials up to degree n.

GGT matrices

Using (2.34) and the forward recurrence formula (2.24), we are able to express zφn(z) as a linear
combination of {φk}

n+1
k=0 ,

zφn(z) =
κn

κn+1
φn+1(z)−

1
κn

Φn+1(0)
n∑

k=0

κkΦk(0)φk(z),

or, in the matrix form,
zφ(z) = Hσφ(z),
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where φ(z) =
[
φ0(z),φ1(z), . . .

]T , and the matrix Hσ is defined by

[Hσ]i, j =
〈
zφi,φ j

〉
L

=


−
κ j
κi

Φi+1(0)Φ j(0), j ≤ i,
κi
κi+1

, j = i + 1,

0, j > i + 1.

This lower Hessenberg matrix Horn and Johnson [1990], where the j-th row has at most its first j + 1
components non-zero, is called GGT representation of the multiplication by z, after Geronimus [1944];
Gragg [1993]; Teplyaev [1992].

In an analog way to the real line case, the zeros of the monic orthogonal polynomial Φn are the
eigenvalues of (Hσ)n, the n× n principal leading sub-matrix of the GGT matrix Hσ. Hence, Φn is the
characteristic polynomial of (Hσ)n,

Φn(z) = det (zIn− (Hσ)n) . (2.35)

Szegő extremum problem and S class

The measure of orthogonality dσ can be decomposed as the sum of a purely absolutely continuous
measure with respect to the Lebesgue measure and a singular part. Thus, if we denote by σ′, the Radon-
Nikodym derivative Rudin [1987] of the measure σ supported in [−π,π], then

dσ(θ) = σ′(θ)
dθ
2π

+ dσs, (2.36)

where σs is the singular part of σ.
The Szegő extremum problem on the unit circle consists of finding

λ(z) = lim
n→∞

λn(z),

with
λn(z) = inf

f (z)=1

{∫ π

−π

∣∣∣ f (eiθ)
∣∣∣2 dσ(θ); f ∈ Pn

}
.

λ(z) is said to be the Christoffel function. The solution of this problem for |z| < 1 was given by Szegő in
Szegő [1920, 1921b].

In the literature, an important class of measures is the Szegő class S. We summarize some relevant
characterizations to the S class. The following conditions are equivalent:

i) σ ∈ S. ii)
∫ π

−π
logσ′(θ)

dθ
2π

> −∞.

iii)
∞∑

n=0

|Φn(0)|2 <∞. iv) λ(0) =

∞∏
n=0

(1− |Φn+1(0)|2) < +∞.

From this we deduce that if the measure σ does not belong to the S class, the GGT matrix Hσ is unitary.
In general, Hσ satisfies
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2. ORTHOGONAL POLYNOMIALS

i) HσHH
σ = I; ii) HH

σHσ = I−λ(0)φ(0)φ(0)H .

As a part of the analysis when σ ∈ S, one can construct the Szegő function D, defined in D as

D(z) = exp
(

1
4π

∫ π

−π

eiθ + z
eiθ − z

logσ′(θ)dθ
)
, z ∈D.

Thus, |D|2 = σ′ almost everywhere on T, and the solution of the Szegő extremum problem is given by

λ(z) = (1− |z|2)|D(z)|2, z ∈D.

N class

We say that σ belongs to the Nevai class N , if

lim
n→∞

Φn(0) = lim
n→∞

φn(0)
κn

= 0.

The relation between the classes S and N can be viewed using the results in Martínez-Finkelshtein
and Simon [2011]. If σ ∈ S, then it has a normal L2-derivative behavior, i.e.,

lim
n→∞

∫ π

−π

∣∣∣φ′n(eiθ)
∣∣∣2

n2 σ′(θ)dθ


1
2

= 1,

and thus σ ∈ N . Furthermore, if σ ∈ N ,∣∣∣∣∣ Φn(z)
Φn−1(z)

− z
∣∣∣∣∣ 6 |Φn(0)|, z ∈ C \D.

Thus,
lim

n→∞

Φn(z)
Φn−1(z)

= z,

uniformly in compact subsets of C \D.

This result can be obtained under weaker conditions. A well known result of Rakhmanov Rakhmanov
[1977, 1983] states that any probability measure σ with σ′ > 0 almost everywhere on T belongs to the
class N .

CMV matrices

The GGT matrix has several constraints. If σ ∈ S, {φn}n>0 is not basis on Λ and the matrix Hσ is
not unitary. Even more, all entries above the main diagonal and the first sub-diagonal are non-zero,
and they depend on an unbounded number of Verblunsky coefficients. Consequently, the GGT matrix
is somewhat difficult to manipulate. The more useful basis was discovered by Cantero, Moral, and
Velazquez Cantero et al. [2003] (this result is one of the most interesting developments in the theory of
orthogonal polynomials on the unit circle in recent years) as a matrix realization for the multiplication
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by z, with respect to the CMV orthonormal basis {χi}i≥0,〈
zχi,χ j

〉
L

= 0, |i− j| > k, k ≥ 0.

In this case k = 2 to be compared with k = 1 for the Jacobi matrices which correspond to the real line case.
The CMV basis {χn}n>0 is obtained by orthonormalizing {1,z,z−1,z2,z−2, . . . } using the Gram-Schmidt
process and the matrix, called the CMV matrix,

C =

[〈
zχi,χ j

〉
L

]
i, j≥0

,

is five-diagonal. Its origins are outlined in Watkins [1993] (see also Simon [2007]). Remarkably, the
basis {χn}n>0 can be expressed in terms of the sequences {φn}n>0 and

{
φ∗n

}
n>0,

χ2n(z) = z−nφ∗2n(z), χ2n+1(z) = z−nφ2n+1(z), n > 0.

There is an important relation between CMV and monic orthogonal polynomials as (2.35) for the GGT
representation,

Φn(z) = det(zIn−Cn),

where Cn is the n×n principal leading sub-matrix of the CMV matrix C.

The CMV matrices play the same role in the study of orthogonal polynomials on the unit circle that
Jacobi matrices in orthogonal polynomials on the real line.

Zeros

If Φn is an orthogonal polynomial of degree n, all its zeros lie in the interior of the convex hull of
the support of the measure of orthogonality Féjer [1922], and we recover the properties of zeros for
orthogonal polynomials on the real line. From the Christoffel-Darboux formula we have for z = y,

Kn(z,z) =

n∑
k=0

|φk(z)|2 =
|φ∗n+1(z)|2− |φn+1(z)|2

1− |z|2
. (2.37)

If zn,1 is a zero of φn with |zn,1| = 1, then using (2.37) for n− 1, φ∗n(zn,1) = 0, and from the recurrence
relation (2.31) we get φn−1(zn,1) = 0. Repeating this argument, we have φk(zn,1) = 0, k ≤ n, but for k = 0,
φ0 = 1, which gives a contradiction. Hence we conclude that φn has no zeros on the unit circle, and thus
all the zeros of φn are in D.

In Section 2.1 we see that the interlacing property for the zeros of two polynomials Pn−1 and Pn,
means that they are the (n− 1)-st and n-th orthogonal polynomials associated with a measure dµ sup-
ported on the real line. In the case of the unit circle, we have an analogous result, which is known in the
literature as the Schur-Cohn-Jury criterion Barnett [1983]. A monic polynomial fn has its n zeros inside
the unit circle if and only if the sequence of parameters {hk}

n
k=0, defined by the following backward
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2. ORTHOGONAL POLYNOMIALS

algorithm

gn(z) = fn(z), fn(0) = hn,

gk(z) =
1

z
(
1− |hk+1|2

) (
gk+1(z)−hk+1g∗k+1(z)

)
, k = n−1,n−2, . . . ,0,

satisfies |hk | < 1, k > 1.

2.2.1 C-functions and rational spectral transformations

C-functions

In the sequel, we consider that
∞∑

k=0

c−kzk converges on |z| < r, r > 0, where {cn}n>0 is the sequence

of moments (2.22). Let F : E ⊂ C→ C be a complex function associated with the linear functional L,
defined as follows

F(z) =

〈
L,

y + z
y− z

〉
.

Here L acts on y. F is said to be a C-function associated with the linear functional L. Since
∞∑

k=0

c−kzk

converges on |z| ≤ r, F(z) is analytic in a neighborhood of z = 0, and we get the following representation
of F(z) as a series expansion at z = 0

F(z) = c0 + 2
∞∑

k=1

c−kzk, |z| ≤ r, (2.38)

where c0 ∈R and c−k ∈ C.

If L is positive definite and c0 = 1, there is a probability measure σ supported on the unit circle such
that F can be represented as a Riesz-Herglotz transformation Herglotz [1911]; Riesz [1911] of dσ as
follows

F(z) =

∫
T

y + z
y− z

dσ(y). (2.39)

A complex function F which has a representation of the form (2.39) is called a Carathéodory func-
tion Carathéodory [1907]. It can be shown that F is a Carathéodory function if and only if F(z) is
analytic in |z| < 1 and<F(z) > 0 for |z| < 1; see Chapter 1. From this it follows immediately that F−1 is
a Carathéodory function if and only if F is a Carathéodory function.
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Characterization of orthogonal polynomials

For a given polynomial π of degree n with leading coefficient η, the polynomial of the second kind
of π, Π, with respect to L, is defined by

Π(z) =


〈
L,

z + y
z− y

(π(y)−π(z))
〉
, deg π > 0,

−ηc0, deg π = 0,

where L acts on y.
Next, we give necessary and sufficient conditions for a polynomial to be orthogonal with respect to

a linear, not necessarily positive definite functional L, with the help of the associated C-function F. The
following statement holds Peherstorfer and Steinbauer [1995]:〈

Φn(z),zk
〉
L

= 0, k = 0, . . . ,n−1,

if and only if

Φn(z)F(z)−Ωn(z) = O
(
zn) , |z| < 1, (2.40)

Φ∗n(z)F(z) +Ω∗n(z) = O
(
zn+1

)
, |z| < 1, (2.41)

where Ωn is the polynomial of second kind associated with Φn with respect to L.
There is an interesting way to rephrase the previous result, namely, given a linear functional L and

its C-function F, and given Qn, a monic polynomial of degree n, define Ωn, a monic polynomial, by
(2.40). Then, Qn = Φn if and only if (2.41) holds.

Spectral transformations

As in the real line case, by a spectral transformation of F we mean a new C-function associated with
the hermitian linear functional L̃, a modification of L, such that

F̃(z) = c̃0 + 2
∞∑

k=1

c̃−kzk, |z| ≤ r,

where {̃cn}n>0 is the sequence of transformed moments. We refer to rational spectral transformation as
a transformation of a C-function F given by

F̃(z) =
A(z)F(z) + B(z)
C(z)F(z) + D(z)

, A(z)D(z)−B(z)C(z) , 0, (2.42)

where A, B, C, and D are coprime polynomials. If C = 0, we have the subclass of linear spectral trans-
formations. Following our classification in terms of the moments, the local spectral transformation is a
special case of linear spectral transformation related to perturbations on two symmetric sub-diagonals
of the Toeplitz matrix (2.23).
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2. ORTHOGONAL POLYNOMIALS

Linear spectral transformations

We use the C-function F as a main tool in the investigation of spectral transformations of orthogonal
polynomials. As an analog of the Christoffel transformation (2.15) for S-functions, we consider a
perturbation LR of L defined by

〈LR, f 〉 =
〈
L,

1
2

(
z−α+ z−1−α

)
f (z)

〉
, f ∈ Λ, α ∈ C. (2.43)

It constitutes an example of linear spectral transformation and it was introduced in Cantero [1997];
Suárez [1993]. It is natural to analyze the existence of the inverse transformation, i.e., if there exists a
linear functional LR(−1) such that〈

LR(−1) ,
(
z−α+ z−1−α

)
f (z)

〉
= 〈L, f 〉 , f ∈ Λ, (2.44)

as well as to analyze if the quasi-definite character of the linear functional is preserved by such a trans-
formation. Notice that this transformation does not define a unique linear functionalLR(−1) . The unique-
ness depends on a free parameter. Recently, the spectral transformations (2.43) and (2.44) have been
studied with a new approach in the framework of inverse problems for sequences of monic orthogonal
polynomials Cantero et al. [2011].

For all values of α, such that |<(α)| > 1, the Laurent polynomial z−α+ z−1 −α can be represented
as a polynomial of the form − 1

β |z− β|
2, where β ∈ R \ {0}. The particular cases (2.43) and (2.44) with

|<(α)| > 1 have been extensively covered in Garza [2008] and the references therein.

Rational spectral transformations

Two remarkable examples of rational spectral transformations are due to Peherstorfer Peherstorfer
[1996]. We denote by {Φ(k)

n }n>0 the k-th associated sequence of polynomials of order k > 1 for the monic
orthogonal sequence {Φn}n>0 that constitutes the analog of the associated polynomials, satisfying (2.19).
In this case they are generated by the recurrence relation

Φ
(k)
n+1(z) = zΦ(k)

n (z) +Φn+k+1(0)
(
Φ

(k)
n (z)

)∗
, n ≥ 0. (2.45)

Notice that {Φ(k)
n }n>0 is again a sequence of orthogonal polynomials with respect to a new hermitian

linear functional such that F(k) is the corresponding C-function.
Denoting by F (k)[F(z)] = F(k)(z) the forward transformation of F, the corresponding C-function is

a rational spectral transformation given by

F(k)(z) =

(
Φk(z) +Φ∗k(z)

)
F(z)−Ωk(z) +Ω∗k(z)(

Φk(z)−Φ∗k(z)
)
F(z)−Ωk(z)−Ω∗k(z)

,

where Ωn is the polynomial of second kind of Φn with respect to L. In other words, we remove the first
k Verblunsky coefficients from the original sequence.
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On the other hand, if we add complex numbers z1,z2, . . . ,zk with |zi| , 1, 1 6 i 6 k, to the original se-
quence of Verblunsky coefficients, we have the backward associated sequence of polynomials

{
Φ

(−k)
n

}
n>0

as a sequence of monic orthogonal polynomials generated by {zi}
k
i=1

⋃
{φn(0)}n≥1.

Denoting by F (−k)[F(z)] = F(−k)(z) the backward transformation of F, the corresponding C-function
is a rational spectral transformation given by

F(−k)(z) =
−
(
Ω̃k(z) +Ω̃∗k(z)

)
F(z)− Ω̃∗k(z) +Ω̃k(z)(

Φ̃∗k(z)− Φ̃k(z)
)
F(z) +Φ̃k(z) +Φ̃∗k(z)

,

where Φ̃k (respectively Ω̃k) is the k-th degree polynomial generated using the complex numbers z1,z2, . . . ,zk

(respectively −z1,−z2, . . . ,−zk) through the recurrence relation (2.45), i.e., Ω̃k is the polynomial of sec-
ond kind associated with Φ̃k. It is easily verified that F (k) ◦ F (−k) = I. Generally, the inverse is not
always true since it depends on the choice of free parameters.

2.2.2 Connection with orthogonal polynomials on [−1,1]

Given a non-trivial probability measure µ, supported on the interval [−1,1], then there exists a se-
quence of orthonormal polynomials {pn}n>0 such that∫ 1

−1
pn(x)pm(x)dµ(x) = δn,m.

We can define a measure σ supported on [−π,π] such that

dσ(θ) =
1
2
|dµ(cosθ)|.

In particular, if µ is an absolutely continuous measure, i.e., dµ(x) = ω(x)dx, then

dσ(θ) =
1
2
ω(cosθ)|sinθ|dθ.

This is the so-called Szegő transformation of probability measures supported on [−1,1] to probability
measures supported on T.

If µ is a non-trivial probability measure on [−1,1] (this is the reason why we introduced the factor
1/2), σ is also a symmetric probability measure on the unit circle and, as a consequence, there exists a
sequence of orthonormal polynomials {φn}n>0 such that∫ π

−π
φn(eiθ)φm(eiθ)dσ(θ) = δn,m,

as well as the corresponding sequence of monic orthogonal polynomials. In this case,

Φn(0) ∈ (−1,1), n > 1.
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There is a relation between the sequence of orthogonal polynomials associated with a measure µ
supported on [−1,1] and the sequence of orthogonal polynomials associated with the measure σ sup-
ported on the unit circle. The sequence of orthogonal polynomials {Φn}n>0 on the unit circle associated
with the measure σ has real coefficients. In addition, if 2x = z + z−1, so that x = cosθ corresponds to
z = eiθ, then

pn(x) =
κ2n

√
2(1 +Φ2n(0))

(
z−nΦ2n(z) + znΦ2n(1/z)

)
. (2.46)

From (2.46) one can obtain a relation between the coefficients of the recurrence relations (2.5) and
(2.24)-(2.25),

2an =

√
(1−Φ2n(0))

(
1−Φ2

2n−1(0)
)
(1 +Φ2n−2(0)), n > 1,

2bn = Φ2n−1(0) (1−Φ2n(0))−Φ2n+1(0) (1 +Φ2n(0)) , n > 0.

Conversely, if Rn = Pn+1/Pn, then

Φ2n(0) = Rn(1)−Rn(−1)−1, Φ2n+1(0) =
Rn(1) + Rn(−1)
Rn(1)−Rn(−1)

.

There is also a relation between the S-function and C-function associated with µ and σ, respectively,
as follows

F(z) =
1− z2

2z

∫ 1

−1

dµ(y)
x− y

=
1− z2

2z
S (x),

or, equivalently,

S (x) =
F(z)
√

x2−1
,

with 2x = z + z−1 and z = x−
√

x2−1.
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Chapter 3

On special classes of Szegő
polynomials

The notion of Schur parameters 1is fundamental not only in the theory of orthogonal polynomials . . .

— A. Mukaihira and Y. Nakamura. Mukaihira and Nakamura [2002]

From Chapter 2 we know that the Verblunsky coefficients {Φn(0)}n>1 associated with a measure
supported on the unit circle satisfy (2.30). Moreover, by the Favard theorem, any sequence obeying
(2.30) arises as the Verblunsky coefficients of a unique non-trivial probability measure supported on
the unit circle. An interesting question arises: What happens when |Φn(0)| > 1 at most for some n?
Clearly, these polynomials can not be orthogonal on the unit circle. In 1999, Vinet and Zhedanov Vinet
and Zhedanov [1999] constructed special classes of Szegő polynomials when |Φn(0)| > 1, n > 1. This
situation is more interesting, because there are sequences {Φn(0)}n>1 for which the moment problem
is indeterminate. They consider two possible choices of the Verblunsky coefficients when the support
of the associated measure lies on the real line. They note that if Φn(0) > 1, n > 1, the corresponding
orthogonality measure is supported on the negative half side of the real line. On the other hand, if
(−1)nΦn(0) > 1, n > 1, the corresponding orthogonality measure is supported on the positive half side
side of the real line. Their main tool is a mapping from symmetric polynomials on the real line to the
Szegő polynomials Delsarte and Genin [1986, 1991]; see also Chapter 1.

The aim of this chapter is to study the properties of the sequence of monic orthogonal polynomials
{Φn}n>0, which satisfy the same recurrence relation as orthogonal polynomials on the unit circle (Szegő
orthogonality) with

Φn(0) ∈ C, |Φn(0)| > 1, n > 1.

In our development a central role is played by continued fractions. We emphasize the natural parallelism

1Verblunsky coefficients.
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existing between the theories of orthogonal polynomials on the real line and those on the unit circle. An
analysis of the Perron-Carathéodory continued fractions Jones et al. [1986] shows that these polynomials
satisfy the Szegő orthogonality, where the linear functional L defined in (2.22) satisfies

c−n = cn, (−1)n(n+1)/2 detTn > 0, n > 0.

The relations between the polynomials Φn(ω; z) = Φn(z)−ωzΦn−1(z), ω, 1, and the para-orthogonal
polynomials Jones et al. [1986], Φn(z) + τΦ∗n(z), |τ| = 1 are also analysed. In the two particular cases
considered in Vinet and Zhedanov [1999], the zeros of the Szegő polynomials, those of para-orthogonal
polynomials, and the associated quadrature rules have been studied. As a consequence of this study,
we solve the moment problem (1.10) associated with the Chebyshev polynomials of the first kind. This
chapter could be considered in many aspects as a continuation of the introductory theory of orthogonal
polynomials, using a different approach to the subject based on continued fractions and their modified
approximates.

3.1 Special class of Szegő polynomials

The treatment of this section is similar to that is given in Jones et al. [1989], where the authors
assume that |Φn(0)| , 1, n ≥ 1. The results given here, in addition to making the chapter self-contained,
help the reader to see the specific properties satisfied by the associated Toeplitz and Hankel determinants
when |Φn(0)| > 1, n ≥ 1.

3.1.1 Szegő polynomials from continued fractions

We start with the so-called Perron-Carathéodory continued fraction

β0−
2β0

1
−

1
α1z
−

(
|α1|

2−1
)
z

α1
−

1
α2z
− · · · , (3.1)

where we assume that β0 > 0 and |αn| > 1, n ≥ 1. This continued fraction was introduced in Jones
et al. [1986]; see also Jones et al. [1987, 1989]. If we compare (3.1) with (2.8), then we have q0 = β0,
r1 = −2β0, q1 = 1, r2n = −1, r2n+1 = −

(
|αn|

2−1
)
z, q2n = αnz, and q2n+1 = αn, n > 1.

Let {An}n>0 and {Bn}n>0 be the sequence of numerator and denominator polynomials of (3.1), re-
spectively. Then these polynomials satisfy the recurrence relationsA2n(z)

B2n(z)

 = αnz

A2n−1(z)
B2n−1(z)

− A2n−2(z)
B2n−2(z)

 , n ≥ 1, (3.2)A2n+1(z)
B2n+1(z)

 = αn

A2n(z)
B2n(z)

− (
|αn|

2−1
)
z

A2n−1(z)
B2n−1(z)

 , n ≥ 1, (3.3)

where B0 = 1, B1 = 1, A0 = β0, and A1 = −β0. From these recurrence relations, since αn , 0, n ≥ 1, we
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get A2n+2(z)
B2n+2(z)

 =

(
αn+1

αn
z−1

)A2n(z)
B2n(z)

− αn+1

αn

(
|αn|

2−1
)
z

A2n−2(z)
B2n−2(z)

 , n ≥ 1,

with B0 = 1, B2(z) = α1z−1, A0 = β0, A2(z) = −β0(α1z + 1), andA2n+3(z)
B2n+3(z)

 =

(
z−

αn+1

αn

)A2n+1(z)
B2n+1(z)

− αn+1

αn

(
|αn|

2−1
)
z

A2n−1(z)
B2n−1(z)

 , n ≥ 1.

Here B1 = 1, B3(z) = z−α1, A1 = −β0, and A3(z) = −β0(z+α1). From these recurrence relations one can
easily observe that both B2n and B2n+1 are polynomials of exact degree n. Likewise, both A2n and A2n+1

are polynomials of exact degree n. More precisely,

B2n(z) = αnzn + . . .+ (−1)n, B2n+1(z) = zn + . . .+ (−1)nαn,

A2n(z) = −β0(αnzn + . . .+ (−1)n−1), A2n+1(z) = −β0
(
zn + . . .+ (−1)n−1αn

)
, n ≥ 1.

Using the above recurrence relations one can also easily conclude that

A∗2n+1(z) = znA2n+1(1/z) = znA2n+1(1/z) = (−1)n+1A2n(z), n ≥ 0, (3.4)

B∗2n+1(z) = znB2n+1(1/z) = znB2n+1(1/z) = (−1)nB2n(z), n ≥ 0. (3.5)

Moreover, from these recurrence relations we obtain

A2n+2(z)
B2n+2(z)

−
A2n(z)
B2n(z)

=



2β0αn+1

n∏
r=1

(
|αr |

2−1
)zn+1 +O

(
zn+2

)
,

−

2β0α
−1
n

n∏
r=1

(
|αr |

2−1
)z−n +O

(
z−(n+1)

)
, n ≥ 1,

A2n+3(z)
B2n+3(z)

−
A2n+1(z)
B2n+1(z)

=



2β0α
−1
n

n∏
r=1

(
|αr |

2−1
)zn +O

(
zn+1

)
,

−

2β0αn+1

n∏
r=1

(
|αr |

2−1
)z−(n+1) +O

(
z−(n+2)

)
, n ≥ 1,

A2n+1(z)
B2n+1(z)

−
A2n(z)
B2n(z)

=


−

2β0α
−1
n

n∏
r=1

(
|αr |

2−1
)zn +O

(
zn+1

)
,

−

2β0α
−1
n

n∏
r=1

(
|αr |

2−1
)z−n +O

(
z−(n+1)

)
, n ≥ 1.

Thus, there exists a pair of formal power series

F(z) = c0 + 2
∞∑

n=1

c−nzn, |z| < 1, F∞(z) = −c0−2
∞∑

n=1

cnz−n, |z| > 1, (3.6)
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3. ON SPECIAL CLASSES OF SZEGŐ POLYNOMIALS

with c0 = β0 and c−1 = c1 = β0α1, such that

F(z)−
A2n(z)
B2n(z)

=

2β0αn+1

n∏
r=1

(
|αr |

2−1
)zn+1 +O

(
zn+2

)
, n ≥ 1,

F∞(z)−
A2n(z)
B2n(z)

= −

2β0α
−1
n

n∏
r=1

(
|αr |

2−1
)z−n +O

(
z−(n+1)

)
, n ≥ 1,

F(z)−
A2n+1(z)
B2n+1(z)

=

2β0α
−1
n

n∏
r=1

(
|αr |

2−1
)zn +O

(
zn+1

)
, n ≥ 1, (3.7)

F∞(z)−
A2n+1(z)
B2n+1(z)

= −

2β0αn+1

n∏
r=1

(
|αr |

2−1
)z−(n+1) +O

(
z−(n+2)

)
, n ≥ 1.

That is, (3.1) corresponds to the formal power series expansions F and F∞. Using the reciprocal prop-
erties (3.4)-(3.5), we also conclude that these formal power series expansions are such that

c−n = cn, n ≥ 1. (3.8)

If we write B2n+1(z) =

n∑
r=0

bn,rzr and A2n+1(z) =

n∑
r=0

an,rzr, then from (3.7),

F(z)
n∑

r=0

bn,rzr −

n∑
r=0

an,rzr = γnzn +O
(
zn+1

)
, n ≥ 1,

F∞(z)
n∑

r=0

bn,rzr−n−

n∑
r=0

an,rzr−n = O
(
z−n−2

)
, n ≥ 1,

where γn = (−1)n2β0

n∏
r=1

(|αr |
2 − 1). This leads to two systems of n + 1 linear equations and n + 1 un-

knowns as follows
A1b = a + c, A2b = −a,

where a = [an,0,an,1, . . . ,an,n−1,an,n]T , b = [bn,0,bn,1, . . . ,bn,n−1,bn,n]T , c = [0,0, . . . ,0,γn]T ,

A1 =



c0 0 · · · 0 0
2c−1 c0 · · · 0 0
...

...
. . .

...
...

2c−n+1 2c−n+2 · · · c0 0
2c−n 2c−n+1 · · · 2c−1 c0


, A2 =



c0 2c1 · · · 2cn−1 2cn

0 c0 · · · 2cn−2 2cn−1
...

...
. . .

...
...

0 0 · · · c0 2c1

0 0 · · · 0 c0


,
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or, equivalently, the linear system

c0 c1 · · · cn−1 cn

c−1 c0 · · · cn−2 cn−1
...

...
...

...

c−n+1 c−n+2 · · · c0 c1

c−n c−n+1 · · · c−1 c0





bn,0

bn,1
...

bn,n−1

bn,n


=

1
2



0
0
...

0
γn


. (3.9)

Applying Cramer’s rule for the coefficient bn,n = 1 we get

detT0 = c0 = β0, detTn =

(−1)nβ0

n∏
r=1

(|αr |
2−1)

detTn−1, n ≥ 1.

Therefore,

detTn =

(−1)nβ0

n∏
r=1

(
|αr |

2−1
)

(−1)n−1β0

n−1∏
r=1

(
|αr |

2−1
)detTn−1 = . . . ,

=

(−1)nβ0

n∏
r=1

(
|αr |

2−1
)

(−1)n−1β0

n−1∏
r=1

(
|αr |

2−1
) . . .

(−1)β0

1∏
r=1

(
|αr |

2−1
)
β0

 ,
= (−1)n(n+1)/2βn+1

0

n∏
m=1

 m∏
r=1

(
|αr |

2−1
) .

Hence, if β0 > 0, then

detT0 = β0 > 0, (−1)n(n+1)/2 detTn = βn+1
0

n∏
m=1

 m∏
r=1

(
|αr |

2−1
) > 0, n ≥ 1.

Since (−1)n(n+1)/2 = (−1)b(n+1)/2c, if we look at the Hankel determinants

detH(0)
1 = c0, detH(−n)

n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c−n c−n+1 · · · c0

c−n+1 c−n+2 · · · c1
...

...
...

c0 c1 · · · cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which can be obtained by a rearrangement of rows of the Toeplitz determinants detTn, then we have

detH(−n)
n+1 > 0, n ≥ 0. (3.10)
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3. ON SPECIAL CLASSES OF SZEGŐ POLYNOMIALS

Applying Cramer’s rule in (3.9) for the coefficient bn,0 = (−1)nαn, we obtain

αn =
1

detTn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 · · · cn

c0 · · · cn−1
...

...

c−n+2 · · · c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1
detTn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c−1 · · · cn−2

c−2 · · · cn−3
...

...

c−n · · · c−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The above determinant expression follows by considering the transpose and then using (3.8). Hence,
through an interchanging of rows in the determinants,

detH(−n+2)
n = detH(−n)

n = αn detH(−n+1)
n , n ≥ 1. (3.11)

Since |αn| > 1, this means ∣∣∣∣detH(−n+2)
n

∣∣∣∣ =
∣∣∣∣detH(−n)

n

∣∣∣∣ > detH(−n+1)
n > 0, n ≥ 1.

Now, with respect to the formal power series expansions F and F∞ in (3.6), we define the linear

functional L on Λ. If lr,s(z) =

s∑
m=r

λmzm, λm ∈ C and −∞ < r ≤ s <∞, then

〈
L, lr,s

〉
=

s∑
m=r

λmcm.

Therefore, from (3.9), we have for the monic polynomials Φn = B2n+1,

〈
Φn(z),zm〉

L =
1
2
γnδn,m, 0 ≤ m ≤ n, n ≥ 1.

Also, from (3.2) and (3.4)-(3.5),

Φn(z) = zΦn−1(z) + (−1)nαnΦ∗n−1(z), n ≥ 1,

with Φ0 = 1, Φ1(z) = z− α1. Based on these facts, we refer to {B2n+1}n≥0 as the sequence of Szegő
polynomials generated by the Perron-Carathéodory continued fraction (3.1).

3.1.2 Szegő polynomials from series expansions

Under the conditions (3.8) and (3.10), L is referred to as an sq-definite moment functional, meaning
’special quasi-definite moment functional’. When the moments are also real, the name rsq-definite
moment functional is used.

The sequence of polynomials {Φn}n>0 is defined by Φ0 = 1, and Φn a monic polynomial of degree
n orthogonal with respect to the sq-definite linear functional L. Then, with the condition (3.10), these
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polynomials always exist. In fact, we can easily obtain an analog result to (2.6),

Φn(z) =
1

detTn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn−1 cn

c−1 c0 · · · cn−2 cn−1
...

...
...

c−n+1 c−n+2 · · · c0 c1

1 z · · · zn−1 zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1. (3.12)

Moreover, 〈
Φn(z),zm〉

L =
〈
Φ∗n(z),zn−m〉

L =
detTn

detTn−1
δn,m, m ≤ n, n ≥ 1. (3.13)

The information on
〈
Φ∗n(z),zn−m〉

L follows from (3.8), and with this symmetric property we have

〈
lr,s(z),zm〉

L =
〈
zm, lr,s(z)

〉
L , lr,s ∈ Λ. (3.14)

We call {Φn}n>0 the sequence of Szegő polynomials associated with the sq-definite moment functional
L.

Theorem 3.1.1. Let αn = (−1)nΦn(0), n ≥ 1, where {Φn}n>0 is the sequence of Szegő polynomials asso-

ciated with the sq-definite moment functional L. Then the following statements hold:

i) The polynomials {Φn}n>0 satisfy the recurrence relations

Φ∗n(z) = (−1)nαnzΦn−1(z) +Φ∗n−1(z), n ≥ 1,

Φn(z) = (−1)nαnΦ∗n(z)−
(
|αn|

2−1
)
zΦn−1(z), n ≥ 1.

ii) |αn| > 1, n ≥ 1.

iii) If we set B2n(z) = (−1)nΦ∗n(z), B2n+1(z) = Φn(z), n ≥ 0, then {Bn}n>0 is the sequence of the denom-

inator polynomials of (3.1).

Proof. Set
A(z) = Φ∗n(z)−αnzΦn−1(z)−Φ∗n−1(z), n ≥ 1,

where αn = −
〈
Φ∗n−1(z),zn

〉
L

/〈
Φn−1(z),zn−1

〉
L

. We consider A as a polynomial of degree n, and we will
show that it is identically zero. Clearly,

〈
A,zm〉

L = 0, 1 ≤ m ≤ n. (3.15)

Since A(0) = 0, we can write A∗(z) =

n−1∑
k=0

an,kΦk(z), and hence

A(z) =

n−1∑
k=0

an,kzn−kΦ∗k(z).
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3. ON SPECIAL CLASSES OF SZEGŐ POLYNOMIALS

Using here the results of (3.15) for m = n, m = n−1 until m = 1 and noting at each stage that
〈
L,Φ∗n−m

〉
,

0, we successively obtain that a0 = 0, a1 = 0 until an−1 = 0. Hence, A = 0 and thus

Φ∗n(z) = αnzΦn−1(z) +Φ∗n−1(z).

Comparing the coefficients of zn, we obtain αn = Φn(0), thus the first of the recurrence relations follows.

Now, to prove the second recurrence relation, we set

A(z) = Φn(z)− (−1)nαnΦ∗n(z) +αnzΦn−1(z), n ≥ 1

with αn = −
〈
Φn(z),zn〉

L

/〈
Φn−1(z),zn−1

〉
L

. Hence,

〈
A,zm〉

L = 0, 1 ≤ m ≤ n.

Since A(0) = 0, we can follow the same procedure as above and we get A = 0. Thus,

Φn(z) = (−1)nαnΦ∗n(z)−αnzΦn−1(z).

Comparing the coefficients of zn, we obtain αn = |αn|
2−1, thus the second of the recurrence relations is

deduced.

Since (2.26), we obtain from the above recurrence relation,

detTn

detTn−1
=

〈
Φn(z),zn〉

L = (−1)nαn
〈
Φ∗n(z),zn〉

L−
(
|αn|

2−1
)〈

Φn−1(z),zn−1
〉
L

= −
(
|αn|

2−1
) detTn−1

detTn−2
, n ≥ 1.

Thus,

|αn|
2−1 = −

detTn detTn−2

detT2
n−1

, n ≥ 1.

By convention, detT−1 = 1. We can easily verify that to get (3.10) is sufficient to establish that |αn|
2−1>

0, n ≥ 1, and with this, ii).

To verify iii), let notice that by setting B2n(z) = (−1)nΦ∗n(z), B2n+1(z) = Φn(z), n ≥ 0, we obtain
from i),

B2n(z) = αnzB2n−1(z)−B2n−2(z), n ≥ 1

B2n+1(z) = αnB2n(z)− (|αn|
2−1)zB2n−1(z), n ≥ 1,

with B0 = B1 = 1. Hence, from the theory of continued fractions the result follows. �

42



Since αn = (−1)nΦn(0), from (2.26) we obtain, such as in (3.11),

αn =
detH(−n+2)

n

detH(−n+1)
n

=
detH(−n)

n

detH(−n+1)
n

, n ≥ 1. (3.16)

Since αn , 0, from i) of the above theorem, the following recurrence relation always holds,

Φn+1(z) = (z−βn+1)Φn(z)−ςn+1zΦn−1(z), n ≥ 1, (3.17)

where Φ0 = 1, Φ1(z) = z−β1, β1 = α1, ςn+1 = βn+1
(
|αn|

2−1
)

and βn+1 =
αn+1

αn
, n ≥ 1.

3.1.3 Polynomials of second kind

Let {Ωn}n>0 be the polynomials of the second kind of {Φn}n>0. It is easily verified that Ωn is a
polynomial of exact degree n. More precisely,

Ωn(z) = −c0
(
zn + . . .+ (−1)n−1αn

)
.

Theorem 3.1.2. Let {Φn}n>0 be the Szegő polynomials associated with the sq-definite moment functional

L. Then, the polynomials of second kind Ωn satisfy:

i) Ωn(z) =

〈
L,

z + y
z− y

(
zk

yk Φn(y)−Φn(z)
)〉
, 0 ≤ k ≤ n−1, n ≥ 1.

ii) −Ω∗n(z) =

〈
L,

z + y
z− y

(
zk

yk Φ∗n(y)−Φ∗n(z)
)〉
, 1 ≤ k ≤ n, n ≥ 1.

iii) −Ω∗n(z) = (−1)nαnzΩn−1(z)−Ω∗n−1(z), Ωn(z) = (−1)n+1αnΩ∗n(z)−
(
|αn|

2−1
)
zΩn−1(z), n ≥ 1.

iv) For n ≥ 0, if we set A2n(z) = (−1)n+1Ω∗n(z), A2n+1(z) = Ωn(z), then {An}n>0 is the sequence of

numerator polynomials of (3.1), with β0 = c0 and αn = (−1)nΦn(0), n ≥ 1.

Proof. The proof of the results in this theorem is the same as in Jones et al. [1989]. �

From the above theorem, it also follows that the polynomials {Ωn}n>0 satisfy the three term recur-
rence relation

Ωn+1(z) =
(
z−βn+1

)
Ωn(z)−ςn+1zΩn−1(z), n ≥ 1, (3.18)

with R0 = −c0 and Ω1(z) = −c0(z +α1). The values of ςn and βn are as in (3.17).

3.1.4 Para-orthogonal polynomials

For ω ∈ C, we consider the sequence of polynomials {Φn(ω; ·)}n≥0 and {Ωn(ω; ·)}n≥0 given by
Φ0(ω; ·) = 1, Ω0(ω; ·) = −c0, and

Φn(ω;z) = Φn(z)−ωzΦn−1(z), Ωn(ω;z) = Ωn(z)−ωzΩn−1(z), n ≥ 1.
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3. ON SPECIAL CLASSES OF SZEGŐ POLYNOMIALS

Obviously, Φn(0;z) = Φn(z) and for any ω,

Φn(ω;0) = Φn(0) = (−1)nαn , 0, n ≥ 1.

Theorem 3.1.3. Let αn = (−1)nΦn(0), n ≥ 1, where {Φn}n>0 is the sequence of Szegő polynomials asso-

ciated with the sq-definite moment functional L. Then, the following hold:

i)
〈
Φn(ω;z),zm〉

L = 0, 1 ≤ m ≤ n−1.

ii) Ωn(ω;z) =

〈
L,

z + y
z− y

(
zk

yk Φn(ω;y)−Φn(ω;z)
)〉

, 1 ≤ k ≤ n−1, n ≥ 2.

iii) −Ω∗n(ω;z) =

〈
L,

z + y
z− y

(
zk

yk Φ∗n(ω;y)−Φ∗n(ω;z)
)〉

, 1 ≤ k ≤ n−1, n ≥ 2.

Proof. The proof of i) is immediate. To prove ii), we can write using i) of Theorem 3.1.2,

Ωn(ω;z) = Ωn(z)−ωzΩn−1(z), n ≥ 2,

=

〈
L,

z + y
z− y

(
zk

yk Φn(y)−Φn(z)
)〉
−ωz

〈
L,

z + y
z− y

(
zk−1

yk−1 Φn−1(y)−Φn−1(z)
)〉
, 1 ≤ k ≤ n−1.

This leads us to the required result. Similarly, iii) follows from ii) of Theorem 3.1.2. �

For convenience, we write Φ̂n(ω;z) = Φn(z)−ωzΦn−1(z) and R̂n(ω;z) = Rn(z)−ωzRn−1(z), n ≥ 1.
Hence, observe that

Φ∗n(ω;z) = znΦn(ω;1/z) = znŜ n(ω;1/z) = Φ∗n(z)−ωΦ∗n−1(z), n ≥ 1.

From the recurrence relations for Φn in Theorem 3.1.1,

Φn(1;z) = (−1)nαnΦ∗n−1(0;z), Φn(−|αn|
2 + 1;z) = (−1)nαnΦ∗n(0;z), n ≥ 1. (3.19)

Theorem 3.1.4. Let αn = (−1)nΦn(0), n ≥ 1, where {Φn}n>0 are the Szegő polynomials associated with

the sq-definite moment functional L. If ν =
1−ω− |αn|

2

1−ω
, then

i) Φ∗n(ν;z) = znΦ̂n(ν;1/z) =
1− ν

(−1)nαn
Φn(ω;z); ii) Ω∗n(ν;z) = znR̂n(ν;1/z) =

1− ν
(−1)n−1αn

Ωn(ω;z), n ≥

1;

iii)
dΦ∗n(ν;z)

dz
= nzn−1Φ̂n(ν;1/z)− zn−2Φ̂′n(ν;1/z) =

1− ν
(−1)nαn

Φ′n(ω;z), n ≥ 1.

In particular, if ωn = 1− ξαn, with |ξ| = 1, then

iv) Φ∗n(ωn;z) = znΦ̂n(ωn;1/z) = (−1)nξΦn(ωn;z), n ≥ 1;

v) Ω∗n(ωn;z) = znR̂n(ωn;1/z) = (−1)n−1ξΩn(ωn;z), n ≥ 1;
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vi) nzn−1Φ̂n(ωn;1/z)− zn−2Φ̂′n(ωn;1/z) = (−1)nξΦ′n(ωn;z), n ≥ 1.

Here, Φ̂′n(ω;z) =
dΦ̂n(ω;z)

dz
and Φ′n(ω;z) =

dΦn(ω;z)
dz

.

Proof. Since ω and ν are different from 1, the proof of i) follows from the relations in (3.19). ii),
especially when n ≥ 2, follows from Theorem 3.1.3. iii) is obtained from i) by taking derivatives. To
obtain the remaining parts, we let ω = ν = ωn and this gives |ωn−1|2 = |αn|

2. �

Notice that we can also write

Φn(ωn;z) = Φn(1− ξαn;z) =
|αn|

2− ξαn

|αn|2−1
(
Φn(z) +τΦ∗n(z)

)
, (3.20)

where τ = (−1)nαn

αn

1− ξαn

ξ−αn
. Again, following the notation used in the case of the classical Szegő

polynomials Jones et al. [1989], we refer to the polynomials Φn(z) + τΦ∗n(z), when |τ| = 1, as the para-
orthogonal polynomial of degree n associated with {Φn}n>0. Since |τ| = 1, whenever |ξ| = 1, the polyno-
mials Φn(ωn; ·) are hence para-orthogonal polynomials multiplied by constant factors.

From i) of Theorem 3.1.3, we have for n ≥ 1,

F(z)−
Ωn(ω;z)
Φn(ω;z)

= O
(
zn) , F∞(z)−

Ωn(ω;z)
Φn(ω;z)

=



O

(
1

zn+1

)
, ω = 0,

O

(
1

zn−1

)
, ω = 1,

O

(
1
zn

)
, ω , {0,1}.

(3.21)

Let consider the sequence of polynomials {χ(1)
n (ω; ·)}n>1 and {χ(2)

n (ω; ·)}n>1,

χ(1)
n (ω;z) = Ωn(ω;z)Φn−1(z)−Ωn−1(z)Φn(ω;z), n > 1,

χ(2)
n (ω;z) = Φ′n(ω;z)Φn−1(z)−Φ′n−1(z)Φn(ω;z), n > 1.

From the recurrence relations (3.17) and (3.18),

χ(1)
n (ω;z) = Ωn(z)Φn−1(z)−Ωn−1(z)Φn(z),

= −ςnςn−1z2(Ωn−2(z)Φn−3(z) +Ωn−3(z)Φn−2(z)) = . . .

= ςnςn−1 . . . ς3ς2zn−1(−Ω0(z)Φ1(z) +Ω1(z)Φ0(z)) = −2c0α1ς2 · · ·ςnzn−1, n ≥ 2, (3.22)

χ(2)
n (ω;z) = αnz

(
Φn−2(z)Φ′n−1(z)−Φ′n−2(z)Φn−1(z)

)
−ςnΦn−2(z)Φn−1(z) + (1−ω)Φ2

n−1(z)

= ςnςn−1z2
(
Φ′n−2(z)Φn−3(z)−Φ′n−3(z)Φn−2(z)

)
−ςnΦn−2(z)Φn−1(z)+

+ (1−ω)Φ2
n−1(z) +ςnzΦ2

n−2(z)−ςnςn−1zΦn−2(z)Φn−3(z)

= ςnςn−1z2χ(2)
n−2(0;z) + (1−ω)Φ2

n−1(z) +αnβn−1Φ2
n−2(z), n ≥ 2, (3.23)

with χ(1)
1 (ω;z) = −2c0α1, α1χ

(2)
0 (ω;z) = 0, and χ(2)

1 (ω;z) = 1−ω.
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The proof of the following result follows to the same method of the proof given in da Silva and
Ranga [2005].

Theorem 3.1.5. Let αn = (−1)nΦn(0), n ≥ 1, where {Φn}n>0 are the Szegő polynomials associated with

the sq-definite moment functional L. Then, for ω , 1, the zeros of Φn(ω; ·) are the eigenvalues of the

following lower Hessenberg matrix,

η1 ς2 0 · · · 0 0
η1 η2 ς3 · · · 0 0
...

...
...

...
...

η1 η2 η3 · · · ςn−1 0

η1 η2 η3 · · · ηn−1
ςn

(1−ω)
η1 η2 η3 · · · ηn−1

ηn

(1−ω)


,

where η1 = α1, ηr = αrᾱr−1, and ςr = αrᾱr−1−αr/αr−1, r = 2, . . . ,n.

Proof. From (3.17) and the definition of {Φn(ω, ·)}n>0, we have

Φn(ω;z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z−β1 −ς2 0 · · · 0 0
−z z−β2 −ς3 · · · 0 0
0 −z z−β3 0 0
...

...
...

. . .
...

...

0 0 0 · · · z−βn−1 −ςn

0 0 0 · · · −z (1−ω)z−βn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

or, equivalently, Φn(ω;z) = det(zAn−Bn), where An and Bn are matrices of order n given by

An =



1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

. . .
...

0 0 0 . . . 1−ω


, Bn =



β1 ς2 0 · · · 0
0 β2 ς3 · · · 0
0 0 β3 · · · 0
...

...
...

. . .
...

0 0 0 · · · βn


.

Since An is non-singular, Φn(ω;z) = detAn det
(
zIn−A−1

n Bn
)

= (1−ω)detGn, where

Gn =



z−β1 ς2 0 · · · 0 0
β1 z− (ς2 +β2) α3 · · · 0 0
...

...
...

...
...

β1 ς2 +β2 ς3 +β3 · · · z− (ςn−1 +βn−1) ςn
β1

1−ω
ς2 +β2

1−ω
ς3 +β3

1−ω
· · ·

ςn−1 +βn−1

1−ω
z(1−ω)− (ςn +βn)

1−ω


.
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Thus, the result follows. �

3.2 Polynomials with real zeros

Let L be an rsq-definite moment functional. That is, all the moments {cn}n∈Z are real and the
properties (3.8) and (3.10) hold. Clearly, the associated Szegő polynomials {Φn}n>0 are all real and, in
particular, we can state the following theorem.

Theorem 3.2.1. Let αn = (−1)nΦn(0), n ≥ 1, where {Φn}n>0 are the Szegő polynomials associated with

the rsq-definite moment functional L. Then, the following statements are equivalent.

i) detH(−n)
n > 0, n ≥ 1.

ii) αn > 1, n ≥ 1.

iii) The zeros of the polynomials Φn(ω; ·), n ≥ 1, when ω < 1, are simple and lie on the positive half

side of the real line.

Proof. If L is an rsq-definite moment functional then their moments are real and detH(−n+1)
n > 0, n ≥ 1.

Hence, from (3.16), detH(−n)
n > 0, n ≥ 1, and αn > 1, n ≥ 1. On the other hand, if αn > 1, n ≥ 1, then

detH(−n)
n > 0, n ≥ 1, follows from (3.11). Therefore i) and ii) are equivalent.

We now prove the equivalence of ii) and iii). Suppose that all zeros of Φn(ω; ·), n ≥ 1, are positive.
Since the leading coefficient 1−ω of Φn(ω; ·) is positive, αn = (−1)nΦn(ω;0) > 0, n ≥ 1. Combining this
with the fact that L is an rsq-definite moment functional, ii) follows. On the other hand, if αn > 1, n ≥ 1,
then, from (3.23) and by induction, we can prove that χ(2)

n (ω;z) > 0, n ≥ 1, for ω < 1 and for any real
values of z. Using this with the additional conditions (−1)nΦn(0) > 0, n ≥ 1, we easily establish that the
zeros of Φn(ω; ·) are positive and simple (and, even more, interlace with the zeros of Φn−1). This proves
the equivalence of ii) and iii). Consequently, our theorem is proved. �

The recurrence relation (3.17), which corresponds to the conditions of the above theorem, has been
studied, for instance, in Ranga et al. [1995].

Remark 3.2.1. One can also establish in an analog way (or using the polynomials Ψn(z) = (−1)nΦn(−z),
n ≥ 1) the equivalence of the statements.

i) (−1)n detH(−n)
n > 0 n ≥ 1.

ii) (−1)nαn > 1 n ≥ 1.

iii) The zeros of the polynomials Φn(ω; ·), n ≥ 1, when ω < 1, are simple and lie on the negative half

side of the real line.
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In fact, when (−1)nαn > 1, n ≥ 1, the polynomials {Φn}n>0 are the denominator polynomials of a
positive continued fraction,

λ1z
1 +η1z

+
λ2z

1 +η2z
+

λ3z
1 +η3z

+ · · · , λn > 0, ηn > 0, n ≥ 0.

This kind of continued fractions are known as T -fractions. We can thus also use some known results
on the denominator polynomials of a positive T -fraction given in Jones et al. [1980]. From now on we
restrict our analysis to the case when αn > 1, n ≥ 1, and we refer to the associated moment functional as
an rsq-definite moment functional on (0,∞).

The results given from here can be easily extended to the case when (−1)nαn > 1, n ≥ 1, that is, when
the moment functional is an rsq-definite moment functional on (−∞,0).

Corollary 3.2.1. Let {Φn}n>0 be the sequence of Szegő polynomials associated with an rsq-definite

moment functional L on (0,∞). Then, for the zeros zn,r(ω) of Φn(ω; ·), we have

i) 0 < zn,1(ω) < zn,2(ω) < . . . < zn,n−1(ω) < zn,n(ω), ω < 1.

ii) zn,1(ω) < 0 < zn,2(ω) < . . . < zn,n−1(ω) < zn,n(ω), ω > 1.

Proof. All we need to verify is that when ω > 1, the zeros of Φn(ω; ·) are still real and simple, and that
one of the zeros is of the opposite sign. We verify this using the monic polynomial (1−ω)−1Φn(ω; ·).
Substituting z = 0 and z = zn,r(0), r = 1,2, . . . ,n, in the definition of Φn(ω; ·),

n∏
r=1

zn,r(ω) = (1−ω)−1
n∏

r=1

zn,r(0)

and
(1−ω)−1Φn

(
ω;zn,r(0)

)
=

ω

ω−1
zn,r(0)Φn−1

(
zn,r(0)

)
, r = 1,2, . . . ,n.

Since the zeros of Φn(0; ·) = Φn are positive, simple and interlace with the zeros of Φn−1, we can
conclude that the zeros of Φn(ω; ·) interlace with the zeros of Φn, proving that they are real and simple.
Moreover, at the most one zero of Φn(ω; ·) can have negative sign, which certainly happens if (1−ω) is
negative. �

We can now state the following results on the quadrature rules associated with the polynomials
{Φn(ω; ·)}n≥0.

Theorem 3.2.2. Let ω < 1 and let {Φn}n>0 be the Szegő polynomials associated with an rsq-definite

moment functional L on (0,∞). Then, the following statements hold.

i)
Ωn(ω;z)
Φn(ω;z)

=

n∑
r=1

zn,r(ω) + z
zn,r(ω)− z

λn,r(ω), λn,r(ω) =
Ωn

(
ω;zn,r(ω)

)
−2zn,r(ω)Φ′n

(
ω;zn,r(ω)

) , n ≥ 1.

ii) λn,r(ω) > 0,
n∑

r=1

λn,r(ω) = c0 , 1 ≤ r ≤ n.
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iii) For any n ≥ 1, if lk,s(z) =
∑s

j=k a jz j is a Laurent polynomial such that −n + 1 ≤ k ≤ s ≤ n−1, then

the quadrature rule holds 〈
L, lk,s

〉
=

n∑
r=1

λn,r(ω)lk,s
(
zn,r(ω)

)
.

Proof. To prove i), first observe that the zeros of Φn(ω; ·) are simple and lie within (0,∞). Hence, a
partial fraction decomposition of the given type verifies i).

Notice that λn,r(ω) can be written as

λn,r(ω) =
−Ωn(ω;zn,r(ω))Φn−1(z)/zn,r(ω) +Ωn−1(zn,r(ω))Φn(ω;zn,r(ω))

2Φ′n(ω;zn,r(ω))Φn−1(z)−Φ′n−1(z)Φn(ω;zn,r(ω))

=
−χ(1)

n
(
ω;zn,r(ω)

)
/zn,r(ω)

2χ(2)
n

(
ω;zn,r(ω)

) ,

=
c0(|α1|

2−1)(|α2|
2−1) . . . (|αn−1|

2−1)αnzn−2
n−r (ω)

χ(2)
n

(
ω;zn,r(ω)

) ,

where χ(1)
n (ω; ·) and χ(2)

n (ω; ·) are as in (3.22) and (3.23). Since αn > 1 for n ≥ 1, one can easily verify
that the numerator and denominator above are positive and, hence ii) is established.

When n = 1, iii) clearly follows from ii). To obtain iii) when n ≥ 2, we note that l̃k,s(y) = yn−1lk,s(y) ∈
P2n−2. Hence, the interpolation on the zeros of Φn(ω; ·) gives

l̃k,s(y) =

n∑
r=1

Φn(ω;y)(
y− zn,r(ω)

)
Φ′n

(
ω;zn,r(ω)

) l̃k,s
(
zn,r(ω)

)
+ l̃k,s

(
zn,1(ω), . . . ,zn,n(ω);y

)
Φn(ω;y).

Here, we use the divided difference l̃k,s(zn,1(ω), . . . ,zn,n(ω);y) ∈ Pn−2, and therefore,〈̃
lk,s(zn,1(ω), . . . ,zn,n(ω);y)Φn(ω;y),yn−1

〉
L

= 0.

This means, 〈
L, lk,s

〉
=

〈̃
lk,s,y−n+1

〉
L

=

n∑
r=1

λ̃n,r(ω)
(
zn,r(ω)

)n−1lk,s
(
zn,r(ω)

)
,

where
λ̃n,r(ω) =

〈
Φn(ω;y)(

y− zn,r(ω)
)
Φ′n

(
ω;zn,r(ω)

) ,yn−1
〉
L

.

Taking into account

Ωn(ω;z) + 2zn
〈

Φn(ω;y)
y− z

,y−n+1
〉
L

= Φn(ω;z)
〈
L,

y + z
y− z

〉
,

we get the statement of our theorem. �

Moreover, using the results given in Theorem 3.1.4 and Theorem 3.2.2 the following results can also
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3. ON SPECIAL CLASSES OF SZEGŐ POLYNOMIALS

be easily verified. If ω < 1 and ν =
1−ω− |αn|

2

1−ω
, then for n ≥ 1,

zn,r(ω) = 1/zn,n−r+1(ν), λn,r(ω) = λn,n−r+1(ν), r = 1,2, . . . ,n. (3.24)

The results in Theorem 3.2.2 allow one to define the step function µn(ω; .) by

µn(ω;y) =


0, 0 < y ≤ zn,1(ω),

s∑
r=1

λn,r(ω), zn,s(ω) < y ≤ zn,s+1(ω),

c0, zn,n(ω) < y <∞.

Then, from i) of Theorem 3.2.2 we get

Ωn(ω;z)
Φn(ω;z)

=

∫ ∞

0

y + z
y− z

dµn(ω;y), n ≥ 1

and hence, from (3.21), for n ≥ 1,

cs =

∫ ∞

0
ysdµn(ω;y), −n + 1 ≤ s ≤ n−1.

Helly’s selection principle Chihara [1978] states that a sequence of functions which is locally of
bounded total variation has a convergent subsequence. Hence, using the Helly selection theorem, there
exists a subsequence {nk} such that {µnk (ω)} converges to a bounded non-decreasing function µ defined
on the positive half side of the real line. The function µ is such that it has infinitely many points of
increase in (0,∞) and

lim
k→∞

Ωnkω;z)
Φnk (ω;z)

= lim
k→∞

∫ ∞

0

y + z
y− z

dµnk (ω; t) =

∫ ∞

0

y + z
y− z

dµ(t), 0 < arg(z) < 2π.

The convergence is also uniform for compact subsets within 0 < arg(z) < 2π. The points of increase
(support) of µ lie entirely on the positive half side of the real line. Moreover,

cn =

∫ ∞

0
yndµ(y), n ∈Z, (3.25)

and ∫ ∞

0
y−mΦn(y)dµ(y) =

∫ ∞

0
y−n+mΦ∗n(y)dµ(y) =

detTn

detTn−1
δn,m, 0 ≤ m ≤ n, n ≥ 1. (3.26)

Assuming L to be an rsq-definite moment functional on (0,∞), we now consider the sequence of
polynomials {Φn(ω̂n; ·)}n≥0, where ω̂n = 1−αn. The zeros of Φn(ω̂n; ·) are on the positive half side of
the real line. Using the results given in Theorem 3.1.4, we can say more about these zeros and also the
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quadrature weights λn,r(ω̂n) which follow from Theorem 3.2.2.

zn,r(ω̂n) = 1/zn,n−r+1(ω̂n), λn,r(ω̂n) = λn,n−r+1(ω̂n), r = 1,2, . . . ,n, n ≥ 1.

This means that the distribution given by the step function µn(ω̂n; ·) satisfies

dµn(ω̂n;y) = −dµn(ω̂n;1/y), y ∈ (0,∞).

Hence, applying the Helly selection theorem we can state the following result.

Theorem 3.2.3. Let αn = (−1)nΦn(0), where {Φn}n>0 are the Szegő polynomials associated with L,

which is an rsq-definite moment functional on (0,∞). Then there exists a bounded non-decreasing

function µ, with all its points of increase on (0,∞), such that dµ(y) = −dµ(1/y). Moreover, (3.25) and

(3.26) hold.

Let 0 ≤ a < b ≤ ∞. We say that the strong positive measure ν, defined on (a,b), belongs to the
symmetric class S3[ξ,β,b] if

dν(y)
yξ

= −
dν(β2/y)
(β2/y)ξ

, y ∈ [a,b],

where 0 < β < b, a = β2/b and 2ξ ∈ Z. The classification of the symmetry is according to the value of ξ
Bracciali et al. [1999]; Common and McCabe [1996]; Ranga et al. [1995]. Notice that our orthogonality
measure µ is classified as the class S3(0,1,b), 1 < b ≤∞.

To be able to talk about Szegő polynomials on a positive interval [a,b], it is important that the
measure belongs to the class S3(0,1,b). Otherwise, the monic polynomials {Φn}n>0 defined on [a,b] by
(3.26) do not satisfy i) of Theorem 3.1.1. For example, if the measure belongs to the class S3(1/2,1,b),
then for the monic polynomials {Φn}n>0 defined by (3.26) we would have, instead of i in Theorem 3.1.1,

Φn(z) = δ̃nΦn(z) = zΦn−1(z) + δ̃nΦn−1(z)− α̃nzΦn−2(z), n ≥ 2,

where δ̃n = Φn(0) and α̃n > 0.

We now look at some properties of the sequences of polynomials {Φn(ω̂n; ·)}n≥0 and {Φn(ω̌n; ·)}n≥0,
where ω̂n = 1−αn as above, and ω̌n = 1 +αn, when L is an rsq-definite moment functional on (0,∞).
From Theorem 3.1.4 and Corollary 3.2.1, the only negative zero of Φn(ω̌n; ·) is −1.

In (3.20), letting ξ = αn/|αn| and ξ = −αn/|αn|, we have for the monic polynomials Φn(ω̂n;z)/|αn|

and −Φn(ω̌n;z)/|αn|,

Φn(ω̂n;z)
|αn|

=
Φn(z) +τnΦ∗n(z)

1 + |αn|
,

Φn(ω̌n;z)
−|αn|

=
Φn(z)−τnΦ∗n(z)

1− |αn|
, n ≥ 1,
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3. ON SPECIAL CLASSES OF SZEGŐ POLYNOMIALS

where τn = (−1)nαn/|αn|. Hence, from i) of Theorem 3.1.1, we obtain

Φn+1(ω̂n+1;z)
|αn+1|

=

(
z−
|αn|

αn

αn+1

|αn+1|

)
Φn(ω̂n;z)
|αn|

−
|αn|

αn

αn+1

|αn+1|
(|αn| −1)(|αn−1|+ 1)z

Φn−1(z) + τ̃n−1Φ∗n−1(z)
1 + |αn−1|

,

Φn+1(ω̌n+1;z)
−|αn+1|

=

(
z−
|αn|

αn

αn+1

|αn+1|

)
Φn(ω̌n;z)
−|αn|

−
|αn|

αn

αn+1

|αn+1|
(|αn|+ 1)(|αn−1| −1)z

Φn−1(z)− τ̃n−1Φ∗n−1(z)
1− |αn−1|

,

where τ̃n−1 = (−1)n−1 α2
n

|αn|2
|αn+1|

αn+1
. Consequently, these lead to recurrence relations for

Φn(ω̂n;z)
|αn|

and

−Φn(ω̌n;z)
|αn|

, since τ̃n−1 = τn−1 when αn > 1, n ≥ 1.

Theorem 3.2.4. Let αn = (−1)nΦn(0), where {Φn}n>0 are the Szegő polynomials associated with L,

which is an rsq-definite moment functional on (0,∞). Then,

Φn+1(ω̂n+1;z)
αn+1

= (z−1)
Φn(ω̂n;z)

αn
− (αn−1)(αn−1 + 1)z

Φn−1(ω̂n−1;z)
αn−1

, n ≥ 1,

Φn+1(ω̌n+1;z)
−αn+1

= (z−1)
Φn(ω̌n;z)
−αn

− (αn + 1)(αn−1−1)z
Φn−1(ω̌n−1;z)
−αn−1

, n ≥ 1,

with
Φ1(ω̂1;z)

α1
= z−1,

Φ0(ω̂0;z)
α0

= 1,
Φ1(ω̌1;z)
−α1

= z + 1, and
Φ0(ω̌0;z)
−α0

= 0.

Let L be an rsq-definite moment functional on (0,∞) defined as in (3.8)-(3.10) and satisfying the
conditions of Theorem 3.2.1. If Φn denotes the n-th Szegő polynomial associated with this moment
functional, then the zeros zn,r of Φn are positive. We arrange them in an increasing order

0 < zn,1 < zn,2 < · · · < zn,n−1 < zn,n.

In what follows we denote by z∗n,r and kn,r the zeros of Φ∗n and Kn(α, ·), respectively. Interesting
inequalities between zeros of these polynomials follow from Theorem 3.1.1 and from (2.32). Our results
read as follows.

Theorem 3.2.5. The zeros of Φn and Φ∗n interlace. More precisely,

0 < z∗n,1 < zn,1 < zn−1,1 < · · · < z∗n,n−1 < zn,n−1 < zn−1,n−1 < z∗n,n < zn,n.

Proof. By Theorem 3.1.1, we have

Φn(z) = (−1)nαnΦ∗n(z)− (|αn|
2−1)zΦn−1(z), n ≥ 1.
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Since the zeros of Φn and Φn−1 interlace, we obtain from the above relation

sgn
(
(−1)nΦ∗n(zn,r)

)
= sgn

(
Φn−1(zn,r)

)
and

sgn
(
Φn(zn−1,r)

)
= sgn

(
(−1)nΦ∗n(zn−1,r)

)
.

Hence there exist z∗n,r, r = 1, . . . ,n, zeros of Φ∗n, such that

0 < z∗n,1 < zn,1 < zn−1,1 < · · · < z∗n,n−1 < zn,n−1 < zn−1,n−1 < z∗n,n < zn,n,

thus proving the theorem. �

Theorem 3.2.6. If α < 0, then the zeros of Φn and Kn(α, ·) satisfy the interlacing property

0 < z∗n,1 < zn,1 < kn−1,1 < · · · < z∗n,n−1 < zn,n−1 < kn−1,n−1 < z∗n,n < zn,n.

Proof. By (2.32)
kn(1−αz)Kn−1(z,α) = Φ∗n(α)Φ∗n(z)−Φn(α)Φn(z).

Since (−1)n(n+1)/2 detTn > 0 and (2.26), we have sgn(kn) = (−1)n. We also have sgn(Φn(α)) = (−1)n and
Φ∗n(α) > 0. On the other hand, by Theorem 3.2.5, Φn and Φ∗n have interlacing zeros. Therefore, from the
above relation

(−1)nsgn
(
Kn−1(zn,r,α)

)
= sgn

(
Φ∗n(zn,r)

)
, 1 ≤ r ≤ n,

and
sgn

(
Kn−1(z∗n,r,α)

)
= −sgn

(
Φn(z∗n,r)

)
, 1 ≤ r ≤ n.

Hence, there exist zeros kn−1,r, r = 1, . . . ,n− 1, of Kn−1(z,α), satisfying 0 < z∗n,1 < zn,1 < kn−1,1 < · · · <

z∗n,n−1 < zn,n−1 < kn−1,n−1 < z∗n,n < zn,n. �

3.2.1 Associated moment problem

The necessary and sufficient conditions for the existence of a solution of the strong Stieltjes moment
problem introduced in Chapter 1 are the following

detH(−n)
n > 0, detH(−n+1)

n > 0, n ≥ 0.

From the Hamburger moment problem, these conditions become

detH(−2n)
2n > 0, detH(−2n+1)

2n+1 > 0, n ≥ 0.

The objective of this section is to solve the moment problem (1.10) formulated in the introduction.
We can easily verify that the modified moments associated with the Chebyshev polynomials can be
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rewritten as follows

cn =

∫ ∞

0
Tn(cosh θ) dµ̃(cosh θ) = −

1
2

∫ 0

−∞

enθ dµ̃(cosh θ) +
1
2

∫ ∞

0
enθ dµ̃(cosh θ).

Substituting x = eθ, we obtain

cn = −
1
2

∫ 1

0
xndµ̃

(
x + x−1

2

)
+

1
2

∫ ∞

1
xndµ̃

( x + x−1

2

)
=

∫ ∞

0
xndµ(x),

where µ is a non-decreasing distribution function supported on (0,∞)

dµ(x) =


−

1
2

dµ̃
(

x + x−1

2

)
, 0 < x ≤ 1;

1
2

dµ̃
(

x + x−1

2

)
, 1 ≤ x <∞.

Hence, our moment problem can be stated as follows. Given a sequence of real numbers {cn}n>0 find
necessary and sufficient conditions for the existence of a measure µ supported on (0,∞), with the sym-
metry dµ(x) = −dµ(1/x), such that,

cn =

∫ ∞

0
xn dµ(x), n ≥ 0. (3.27)

Remark 3.2.2. Consider the following moment problem: Given a sequence {cn}n>0 of real numbers find

necessary and sufficient conditions for the existence of a measure µ̂ supported on the whole real line,

with the symmetry dµ̂(θ) = −dµ̂(−θ), such that

µn =

∫ ∞

−∞

enθdµ̂(θ), n ≥ 0.

Notice that with the substitution t = eθ and x = cosh(θ) this moment problem is equivalent to the moment

problem (3.27).

Theorem 3.2.7. The moment problem associated with the Chebyshev polynomials of the first kind has

at least one solution if and only if cn = c−n, and

detH(−n)
n+1 > 0, detH(−n−1)

n+1 > 0, n ≥ 0.

Proof. The existence of the measure µ follows immediately from Theorem 3.2.3. Conversely, let µ be a
measure supported on (0,∞). Given the following quadratic form

J(n, l) =

n∑
i=−n

n∑
j=−n

µi+ j+lviv j, l ≥ 0, n ≥ 1,
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it is easily verified that

J(n, l) =

n∑
i=−n

n∑
j=−n

(∫ ∞

0
ti+ j+ldµ(x)

)
viv j =

∫ ∞

0
tl
( n∑

i=−n

xivi

)2
dµ(x) > 0.

Since J(n, l) is positive definite, we can establish that

detH(−2n+l)
k+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c−2n+l c−2n+1+l · · · c−2n+k+l

c−2n+1+l c−2n+2+l · · · c−2n+k+1+l
...

...
. . .

...

c−2n+k+l c−2n+k+1+l · · · c−2n+2k+l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0, k = 0,1,2, . . . ,2n.

Thus, for l = 0 ( l = 1) with k = 2n and k = 2n−1 ( k = 2n−1 and k = 2n−2), the result follows. �

Theorem 3.2.8. Let αn = (−1)nΦn(0), where {Φn}n≥0 are the Szegő polynomials orthogonal with respect

to the symmetric measure µ. The moment problem associated with the Chebyshev polynomials of the

first kind is determinate if and only if

∞∑
n=1

en =∞, or
∞∑

n=1

dn =∞, (3.28)

where e1 =
1

c0α1
, d1 =

1
µ0

,

d2n =
1
α2n

n∏
r=2

 α2
2r−1

α2
2r−1−1

α2
2r−2−1

α2
2r−2

 α2
1

α2
1−1

, e2n =
1

α2n−1

n∏
r=2

 α2
2r−1

α2
2r−1−1

α2
2r−2−1

α2
2r−2

 α2
1

α2
1−1

,

d2n+1 =
1

α2n+1

n∏
r=1

α2
2r−1−1

α2
2r−1

 α2
2r

α2
2r −1

 , e2n+1 =
1
α2n

n∏
r=1

α2
2r−1−1

α2
2r−1

 α2
2r

α2
2r −1

 .
Proof. From ii) of Theorem 3.1.1, and iii) of Theorem 3.1.2, we have the following Perron-Carathéodory
continued fraction,

Ωn(z)
Φn(z)

= c0−
2c0

1
−

1
α1z
−

(α2
1−1)z
α1

− · · ·−
1

αn−1z
−

(α2
n−1)z
αn

. (3.29)

The results in Theorem 3.2.2 allow us to define the step function µn by

µn(x) =


0, 0 < x ≤ zn,1,

s∑
r=1

λn,r, zn,s < x ≤ zn,s+1,

µ0, zn,n < x <∞,
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where zn,r are the zeros of the polynomial Φn. Then, from i) of Theorem 3.2.2,

Ωn(z)
Φn(z)

=

∫ ∞

0

x + z
x− z

dµn(x), n ≥ 1,

and
cs =

∫ ∞

0
xsdµn(x), −n + 1 ≤ s ≤ n−1, n ≥ 1,

from the previous consideration, we have

w
2

(
c0Φn(−w) +Ωn(−w)

Φn(−w)

)
=

∫ ∞

0

w
x + w

dµ̂n(x),

where dµ̂(x) = xdµ(x). Expanding
∫ ∞

0

w
x + w

dµ̂n(x), we can easily verify that

Ω̂n(w)

Φ̂n(w)
=

−a−1w−a−2w2− . . .−a−nwn +O
(
w(n+1)

)
,

a0 + a1w−1 + . . .+ an−1w−(n−1) +O
(
w−n) ,

where
Ω̂n(w) = (−1)n w

2
(c0Φn(−w) +Ωn(−w)) , Φ̂n(w) = (−1)nΦn(−w).

From Theorem 3.2.7, detH(−2n+l)
k+1 > 0, k = 0,1, . . . ,2n, l = 0,±1,±2, . . ., we can prove that the Hankel

determinants

detĤ(r)
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ar ar+1 . . . ar+n−1

ar+1 ar+2 . . . ar+n
...

...
. . .

...

ar+n−2 ar+n−1 . . . ar+2n−3

ar+n−1 ar+n · · · ar+2n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n ≥ 1, (3.30)

satisfy the following conditions,

detĤ(−n)
n+1 > 0, n ≥ 0,

detĤ(−2n)
2n > 0, detĤ(−(2n−1))

2n−1 < 0, n ≥ 1. (3.31)

Therefore, the Chebyshev moment problem can be identified as a strong Stieltjes moment problem.
Then there exists a solution if (3.31) holds Jones et al. [1980]. Obviously, dµ̂(x) = xdµ(x) is a solution,
taking into account that

an =

∫ ∞

0
(−x)ndµ̂(x), n ∈Z.
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Furthermore, we have∫ ∞

0

w
x + w

dµ̂2n(x) =
Ω̂2n(w)

Φ̂2n(w)
<

∫ ∞

0

w
x + w

dµ̂(x) <
Ω̂2n+1(w)

Φ̂2n+1(w)
=

∫ ∞

0

w
x + w

dµ̂2n+1(x), w > 0.

Moreover, there also exist solutions dµ̂(0)(x) and dµ̂(1)(x), limits of dµ̂2n(x) and dµ̂2n+1(x), respectively,
such that ∫ ∞

0

w
x + w

dµ̂(0)(x) ≤
∫ ∞

0

w
x + w

dµ̂(t) ≤
∫ ∞

0

w
x + w

dµ̂(1)(x).

If Ω̂n
/
Φ̂n converges, then the uniqueness of the solution is proved. Hence, we need to verify the conver-

gence of the following Perron-Carathéodory continued fraction

Ωn(z)
Φn(z)

=
α1w
w +β1

+
α2w
w +β2

+
α3w
w +β3

+ · · · , (3.32)

where α1 = c1, βn = αn
/
αn−1, and αn = βn(α2

n−1−1). Notice that (3.32) can be expressed as follows

Ωn(z)
Φn(z)

=
w

e1 + d1ω
+

w
e2 + d2ω

+
w

e3 + d3ω
+ · · · , (3.33)

where

e1 =
1

µ0α1
, d1 =

1
µ0
, d2n =

n∏
r=1

(
α2r−1

α2r

)
, e2n = β2nd2n,

d2n+1 =
1

α2n+1d2n
, e2n+1 = β2n+1d2n+1, n ≥ 1.

By Jones et al. [1980], the Perron-Carathéodory continued fraction (3.33) converges uniformly on
compact subsets of {w; |arg(w)| < π} if and only if (3.28) holds, as required. �
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Chapter 4

Spectral transformations of moment
matrices

Our hero is the intrepid, yet sensitive matrix A.

Our villain is E, who keeps perturbing A.

When A is perturbed he puts on a crumpled hat: Ã = A + E.

— G. W. Stewart and J. -G. Sun. Matrix perturbation theory. Academic Press, New York, 1990

It is very well known that the Gram matrices of the bilinear functionals associated with (2.1) and
(2.22) in the canonical basis {zn}n≥0 of P are Hankel and Toeplitz matrices, respectively. The main
objective of this chapter is to study the perturbation of a fixed moment of the corresponding moment
matrix. We refer to Álvarez-Nodarse and Petronilho [2004]; Álvarez-Nodarse et al. [1998]; Arvesú
et al. [2004]; Belmehdi and Marcellán [1992]; Cachafeiro et al. [2003, 2007]; Godoy et al. [1997]; Krall
[1940]; Marcellán and Maroni [1992]; Nevai [1979] for other contributions involving related perturba-
tions of moment functionals.

This chapter is divided into two parts. In the first one, given a strongly regular Hankel matrix, and
its associated sequence of moments – which defines a quasi-definite moment linear functionalM – we
study the perturbation on one anti-diagonal of the corresponding Hankel matrix. We define a linear
functional M j, whose action results in such a perturbation and we establish necessary and sufficient
conditions in order to preserve the quasi-definite character. A relation between the corresponding se-
quences of orthogonal polynomials is obtained, as well as the asymptotic behavior of their zeros. In the
second one, we analyze a linear spectral transformation of L, L j, such that the corresponding Toeplitz
matrix is the result of the addition of a constant in two symmetric sub-diagonals of the initial Toeplitz
matrix. We focus our attention on the analysis of the quasi-definite character of the perturbed linear
functional, as well as on the explicit expressions of the new monic orthogonal polynomial sequence in
terms of the first one. Some illustrative examples are pointed out.
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

4.1 Hankel matrices

Before introducing the problem to be analyzed in this section, let us briefly discuss one rather
straightforward but interesting example where the moments are modified in a natural way. Instead of
the canonical basis of P, let us consider the basis {1, (x−a), (x−a)2, . . .}, where a ∈ R. Then, the new
sequence of moments {υn}n≥0 is given by

υn =
〈
M, (x−a)n〉 =

〈
M,

n∑
j=0

(
n
j

)
(−1)n− jan− jx j

〉
=

n∑
j=0

(
n
j

)
(−1)n− jan− jµ j, n ≥ 0. (4.1)

As a consequence, Ĥ the Hankel matrix associated with the new basis is

Ĥ =
[〈
M, (x−a)i+ j

〉]
i, j≥0

=



µ0 µ1 + m1 · · · µn + mn · · ·

µ1 + m1 µ2 + m2 · · · µn+1 + mn+1 · · ·

...
...

. . .
... · · ·

µn + mn µn+1 + mn+1 · · · µ2n+1 + m2n+1 · · ·

...
...

...
...

. . .


,

where m0 = 0 and mi =

i−1∑
j=1

(
i
j

)
(−1)i− jai− jµ j. Thus, if M is a quasi-definite moment linear functional,

then the polynomials

P̂n(x) =
1

detĤn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

υ0 υ1 υ2 · · · υn

υ1 υ2 υ3 · · · υn+1
...

... · · ·
...

...

υn−1 υn υn+1 · · · υ2n−1

1 (x−a) (x−a)2 · · · (x−a)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n > 0, (4.2)

constitute a sequence of monic polynomials orthogonal with respect toM, using the new basis, where
P̂n(x) = Pn(x). Notice that this simple change of the basis results in a perturbation on the anti-diagonals
of the original moment matrix (2.2). Namely, the j-th anti-diagonal is perturbed by the addition of the
constant m j. In the remaining of the manuscript, we will use the basis {1, (x− a), (x− a)2, . . .}, since
most of the required calculations can be performed in a most simple way. Now a natural question arises:
Is there a linear functionalM j such that its action results on a perturbation of (only) the moment υ j or,
equivalently, the ( j + 1)-th anti-diagonal of the corresponding Hankel matrix H̃? In other words, we are
interested in the properties of the functionalM j whose moments are given by

υ̃n = 〈M j, (x−a)n〉 =

υn, n , j,

υn + m, n = j,
(4.3)
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for some m ∈R.

4.1.1 Perturbation on the anti-diagonals of a Hankel matrix

In order to state our main result, we need some definitions. Given a moment linear functionalM,
the usual distributional derivative DMMaroni [1991] is given by

〈DM, p〉 = −〈M, p′〉, p ∈ P.

In particular, if j is a non-negative integer, then

〈D( j)δ(x−a), p(x)〉 = (−1) j p( j)(a).

In the last years, modifications by means of real Dirac’s deltas have been considered by several au-
thors from different points of view (hypergeometric character, holonomic equations that these polyno-
mials satisfy, electrostatic interpretation of zeros, asymptotic properties, among others). In a pioneering
result by Krall Krall [1940] were obtained three new classes of polynomials orthogonal with respect to
measures which are not absolutely continuous with respect to the Lebesgue measure; the resulting poly-
nomials satisfy a fourth-order linear differential equation. Nevai Nevai [1979] considered the addition
of finitely many mass points to a positive measure supported on a bounded subset of the real line, and
studied the asymptotic behavior of the corresponding orthogonal polynomials.

We begin with a simple but important remark. The moment linear functionalM j discussed in the
introduction of this chapter is given by

〈M j, p〉 = 〈M, p〉+ (−1) j m j

j!
〈D( j)δ(x−a), p(x)〉 = 〈M, p〉+

m j

j!
p( j)(a), a ∈R. (4.4)

It is easy to see that all the moments associated with M j are equal to the moments {υn}n>0 of M
in the basis {1, (x− a), (x− a)2, . . .}, except for the j-th one, which is equal to υ j + m j. Notice that this
perturbation is the simplest one that preserves the Hankel structure of the moment matrix. We can now
state the result, which establishes necessary and sufficient conditions in order to the linear functionalM j

preserves the quasi-definite character, and we provide the relation between the corresponding sequences
of monic orthogonal polynomials.

Theorem 4.1.1. Let M be a quasi-definite moment linear functional and {Pn}n>0 its corresponding

sequence of monic orthogonal polynomials. Then, the following statements are equivalent:

i) The moment linear functionalM j, defined in (4.4), is quasi-definite.
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

ii) The matrix I j+1 + K j+1D j+1, where

D j+1 =
m
j!


(

j
j

)
· · · 0

...
. . .

...

0 · · ·
(

j
0

)
 , K j+1 =


K( j,0)

n−1 (a,a) K( j−1,0)
n−1 (a,a) · · · K(0,0)

n−1 (a,a)
K( j,1)

n−1 (a,a) K( j−1,1)
n−1 (a,a) · · · K(0,1)

n−1 (a,a)
...

...
. . .

...

K( j, j)
n−1 (a,a) K( j−1, j)

n−1 (a,a) · · · K(0, j)
n−1 (a,a)


,

is non-singular, and

〈M j,Pn( j; ·)Pn〉 = 〈M,P2
n〉+


P( j)

n (a)
P( j−1)

n (a)
...

Pn(a)



T

D j+1(I j+1 + K j+1D j+1)−1


Pn(a)
P(1)

n (a)
...

P( j)
n (a)


, 0.

Moreover, if bothM andM j are quasi-definite, and {Pn( j; ·)}n≥0 is the sequence of monic orthogonal

polynomials with respect toM j, then

Pn( j; x) = Pn(x)−


K( j,0)

n−1 (a, x)
K( j−1,0)

n−1 (a, x)
...

K(0,0)
n−1 (a, x)



T

D j+1(I j+1 + K j+1D j+1)−1


Pn(a)
P(1)

n (a)
...

P( j)
n (a)


. (4.5)

Proof. Suppose thatM j is a quasi-definite moment linear functional. Since {Pn}n>0 is the sequence of
monic orthogonal polynomials with respect toM, there exist constants λn,0, . . . ,λn,n−1 such that

Pn( j; x) = Pn(x) +

n−1∑
k=0

λn,kPk(x). (4.6)

Thus, by the orthogonality property,

λn,k = −
m j

j!

r∑
l=0

(
j
l

)
P( j−l)

n ( j;a)P(l)
k (a)

〈M,P2
k〉

, r = min{k, j}, 0 ≤ k ≤ n−1.

Substituting the above expression in (4.6), and taking the i-th derivative of Pn( j; ·), we obtain

P(i)
n ( j; x) = P(i)

n (x)−
m j

j!

j∑
l=0

(
j
l

)
P( j−l)

n ( j;a)K(l,i)
n−1(a, x), i = 0,1, . . . , j. (4.7)
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Evaluating (4.7) at x = a, we have the following linear system

(
I j+1 + K j+1D j+1

)


Pn( j;a)
P(1)

n ( j;a)
...

P( j)
n ( j;a)


=


Pn(a)
P(1)

n (a)
...

P( j)
n (a)


.

SinceM j is quasi-definite, there exists a unique sequence of monic orthogonal polynomials with respect
to M j. Thus, the linear system has a unique solution and therefore the ( j + 1)× ( j + 1) matrix I j+1 +

K j+1D j+1 is non-singular. Furthermore, (4.7) with i = 0 reduces to (4.5).

On the other hand, notice that for m = 0,1, . . . ,n−1, we have

〈M j,Pn( j; ·)Pm〉 = 〈M,PnPm〉−
m j

j!

j∑
l=0

(
j
l

)
P( j−l)

n ( j;a)P(l)
m (a) +

m j

j!
(Pn( j; x)Pm(x))( j)

∣∣∣∣
x=a

= 0,

and

0 , 〈M j,Pn( j; ·)Pn〉 = 〈M,P2
n〉+


P( j)

n (a)
P( j−1)

n (a)
...

Pn(a)



T

D j+1(I j+1 + K j+1D j+1)−1


Pn(a)
P(1)

n (a)
...

P( j)
n (a)


. (4.8)

For the converse, let us assume that ii) holds, and define {Pn( j; ·)}n≥0 as in (4.5). Then it is straight-
forward to show that {Pn( j; ·)}n≥0 is the sequence of monic orthogonal polynomials with respect toM j,
and its quasi-definite character is proved. �

4.1.2 Zeros

In this subsection we assume that the linear functionalM is positive definite, i.e., it has an associated
positive measure supported on some interval I ⊆ R, and that M j is quasi-definite. We show some
properties regarding the zeros of its corresponding sequence of monic orthogonal polynomials.

Let x1, . . . , xr be the zeros of Pn( j; ·) on I with odd multiplicity, and define Qr(x) = (x− x1) . . . (x− xr).
Then, Pn( j; x)Qr(x)(x−a)2k, where k is the smallest integer such that k > ( j + 1)/2, is a polynomial that
does not change sign on I and, furthermore, we have

〈M j,Pn( j; x)Qr(x)(x−a)2k〉 = 〈M,Pn( j; x)Qr(x)(x−a)2k〉 , 0.

From the orthogonality of Pn( j; ·) with respect toM j we have

Theorem 4.1.2. For n > 2k, the polynomial Pn( j; ·) has at least n− 2k different zeros with odd multi-

plicity on I.
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

We now analyze the asymptotic behavior of the zeros of {Pn( j; ·)}n≥0 when the mass m j tends to
infinity. Notice that,

Pn( j; x) =
1

detH̃n−1



υ0 · · · υ j + m j · · · υn
...

...
...

υ j + m j υ2 j υn+ j
...

...
. . .

...

υn−1 υn+ j−1 υ2n−1

1 · · · (x−a) j · · · (x−a)n


. (4.9)

On the other hand, let {Rk
n(a; ·)}n≥0 be the sequence of monic orthogonal polynomials with respect to

the linear functional M̂ defined by

〈M̂, p〉 = 〈M, (x−a)k p(x)〉, k ≥ 0.

Here, we assume that a is not a zero of the polynomials {Pn}n>0 in order M̂ to be quasi-definite. The
Hankel matrix associated with M̂ is

H(k) =



µk µ1+k . . . µn+k . . .

µ1+k µ2+k . . . µn+1+k . . .
...

...
. . .

...

µn+k µn+1+k . . . µ2n+k . . .
...

...
...

. . .


.

From (4.2),

R2( j+1)
n− j−1(a; x) =

1

detH(2 j+2)
n− j−2



υ2 j+2 υ2 j+3 · · · υn+ j υn+ j+1

υ2 j+3 υ2 j+4 · · · υn+ j+1 υn+ j+2
...

...
. . .

...
...

υn+ j υn+ j+1 · · · υ2n−2 υ2n−1

1 (x−a) · · · (x−a)n− j−2 (x−a)n− j−1


, n > j + 1,

If the matrix in (4.9) is block partitioned into

A B
C D

 , where A is a ( j + 1)× ( j + 1) matrix, then

∣∣∣∣∣∣∣A B
C D

∣∣∣∣∣∣∣ = detDdet(A−BD−1C).

It is clear that detD = detH(2 j+2)
n− j−2(x− a) j+1R2( j+1)

n− j−1(a; x). Moreover, BD−1C is a ( j + 1)× ( j + 1) matrix
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Table 4.1: Zeros of T2( j; ·) for a = 3, j = 1 for some values of m
m x2,1( j;m) x2,2( j;m)
0 −0.707107 0.707107
0.1 −0.4034 1.61713
0.5 −0.317089 3.16098
1 −0.355225 3.74581
5 −0.95446 4.54373
10 −2.39228 4.881
102 3.18582 + 1.08651i 3.18582−1.08651i
103 3.01522 + 0.317155i 3.01522−0.317155i
104 3.0015 + 0.0995593i 3.0015−0.0995593i
105 3.00015 + 0.0314605i 3.00015−0.0314605i

that does not depend on m, and thus

Pn( j; x) =
detH(2 j+2)

n− j−2(x−a) j+1R2( j+1)
n− j−1(a; x)Q(m j)

detH(2 j+2)
n− j−2R(m j)

, (4.10)

where Q(m j) and R(m j) are monic polynomials in m j of degree j + 1. Therefore,

lim
m j→∞

Pn( j; x) = (x−a) j+1R2( j+1)
n−( j+1)(a; x), (4.11)

and we conclude

Theorem 4.1.3. The zeros xn,k( j;m j), k = 1, . . . ,n, of the polynomial Pn( j; ·) converge to the zeros of the

polynomial (x−a) j+1R2( j+1)
n−( j+1)(a; ·) when m j tends to infinity.

Observe that when m j tends to infinity the mass point a attracts j + 1 zeros of Pn( j; ·).
A rather natural question is if xn,k( j;m j), considered as functions of m j, tend to the zeros of (x−

a) j+1R2( j+1)
n−( j+1)(a; x) in a monotonic way. For the particular case when j = 0, it was proved Dimitrov

et al. [2010,b] that the zeros of the so-called Laguerre and Jacobi type orthogonal polynomials, which
are particular cases of the Uvarov spectral transformation, behave monotonically with respect to m j.
Unfortunately, this phenomenon does not occur for every positive integer j. We have performed some
numerical experiments with specific classical measures. For example, if the initial measure is the one
associated with the Laguerre polynomials L(α)

n , j = 1, and a = 0, then the zeros xn,k(1;m) of the corre-
sponding polynomials Ln(1; ·) converge to those of x2Lα+4

n−2 (x), although they are not monotonic functions
of m j when it varies in (0,∞).

We present some tables that show the behavior of the zeros of Tn( j; ·) as a function of m j, when the
initial measure is dµ(−1/2,−1/2; x) (Chebyshev polynomials of the first kind; see Chapter 1) for j = 1
and n = 2,3.

Notice that there exist complex zeros depending on the values of the parameter m j. It is also observed
that two zeros of the polynomial approach the point x = a as m j increases, as established in Theorem
4.1.3.
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Table 4.2: Zeros of T3( j; ·) for a = 3, j = 1 for some values of m
m x3,1( j;m) x3,2( j;m) x3,3( j;m)
0 −0.866025 0 0.866025
0.1 −0.801321 0.51227 3.61105
0.5 −1.18576 0.0479705 3.7638
1 −3.70458 −0.305553 3.86415
5 −0.510437 3.38703 + 0.805069i 3.38703−0.805069i
10 −0.525903 3.15823 + 0.549961i 3.15823−0.549961i
102 −0.538469 3.01358 + 0.167363i 3.01358−0.167363i
103 −0.539661 3.00134 + 0.052716i 3.00134−0.052716i
104 −0.539779 3.00013 + 0.0166637i 3.00013−0.0166637i
105 −0.539791 3.00001 + 0.0052693i 3.00001−0.0052693i

4.2 Toeplitz matrices

From the point of view of perturbations of positive definite hermitian Toeplitz matrices or, equiv-
alently, probability measures supported on the unit circle, there is a wide literature Branquinho et al.
[1999]; Daruis et al. [2007]; Geronimus [1954]; Godoy and Marcellán [1991, 1993]; Li and Marcellán
[1999]; Marcellán et al. [1996, 1997], emphasizing the analytic properties of orthogonal polynomials
with respect to the perturbed measures. In Cachafeiro et al. [2003] a spectral transformation associated
with a modification of a measure on the unit circle by the addition of the normalized Lebesgue measure
was introduced. The translation, in terms of the entries of the new Toeplitz matrix, means that we only
perturb the main diagonal of the original Toeplitz matrix. In the introduction of their work the authors
emphasized that this problem is strongly related with the method introduced by Pisarenko Pisarenko
[1973] for retrieving harmonics from a covariance function. Four years later in Cachafeiro et al. [2007],
the same authors generalized their previous result and studied the sequence of orthogonal polynomials
associated with the sum of a measure supported on the unit circle in the class S and a Berstein-Szegő
measure Simon [2005]. Indeed, they deduced that the corresponding measure belongs to the S class and
obtained several properties about the norms of the associated sequence of orthogonal polynomials.

4.2.1 Diagonal perturbation of a Toeplitz matrix

Let L be the moment linear functional introduced in (2.22). We define a new linear functional L0

such that its associated bilinear form satisfies

〈 f ,g〉L0
= 〈 f ,g〉L+ m

∫
T

f (z)g(z)
dz

2πiz
, f ,g ∈ P, m ∈R. (4.12)

Assume that L is a positive definite linear functional and let σ be its corresponding measure as defined
in (2.28). Then, this transformation can be expressed in terms of the corresponding measure σ as

dσ̃(z) = dσ(z) + m
dz

2πiz
, (4.13)
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i.e., the addition of a Lebesgue measure to σ. We assume m ∈ R+ in order σ̃ to be a positive Borel
measure supported in T. The moments {̃ck}k∈Z associated with L0 are given by

c̃0 = c0 + m, c̃k = ck, k ∈Z. (4.14)

As a consequence, the C-function of the linear functional L0 is

F0(z) = F(z) + m. (4.15)

Notice that T̃, the Toeplitz matrix associated with L0, is

T̃ = T + mI, (4.16)

i.e., a constant is added to the main diagonal of T. We now proceed to obtain the sequence of monic
orthogonal polynomials with respect to L0.

Theorem 4.2.1. Let L be a positive definite linear functional, and denote by {Φn}n>0 its associated se-

quence of monic orthogonal polynomials. Then, {Ψn}n>0, the sequence of monic polynomials orthogonal

with respect to L0 defined by (4.12), is given by

Ψn(z) = Φn(z)−KT
n−1(z,0)(m−1D−2

n + Pn−1PT
n−1)−1Φn(0), (4.17)

with Kn−1(z,0) =
[
Kn−1(z,0),K(0,1)

n−1 (z,0), . . . ,K(0,n−1)
n−1 (z,0)

]T
, Dn = diag

{
1
0! , . . . ,

1
(n−1)!

}
, Φn(0) = [Φn(0),

Φ
′

n(0), . . . ,Φ(n−1)
n (0)]T , and

Pn−1 =


φ0(0) φ1(0) · · · φn−1(0)

0 φ
′

1(0) · · · φ
′

n−1(0)
... 0

. . .
...

0 · · · 0 φ(n−1)
n−1 (0)


.

Proof. Set

Ψn(z) = Φn(z) +

n−1∑
k=0

λn,kΦk(z),

where, for 0 6 k 6 n−1,

λn,k =
1
kk
〈Ψn,Φk〉L0 −m

∫
T

Ψn(y)Φk(y)
dy

2πiy
= −

m
kk

∫
T

Ψn(y)Φk(y)
dy

2πiy
.

Thus,

Ψn(z) = Φn(z)−m
∫
T

Ψn(y)Kn−1(z,y)
dy

2πiy
= Φn(z)−m

n−1∑
j=0

Ψ
( j)
n (0)
j!

K(0, j)
n−1 (z,0)

j!
. (4.18)
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In particular, for 0 6 i 6 n−1, we get

Ψ
(i)
n (0) = Φ

(i)
n (0)−m

n−1∑
j=0

Ψ
( j)
n (0)
j!

K(i, j)
n−1(0,0)

j!
. (4.19)

So, we have the following system of n linear equations and n unknowns

Ψ
(i)
n (0) = Φ

(i)
n (0)−m

n−1∑
j=0

Ψ
( j)
n (0)
j!

K(i, j)
n−1(0,0)

j!
, i = 0,1, . . . ,n−1,

which reads as
(In + mRn−1D2

n)Ψn(0) =Φn(0), (4.20)

where Ψn(0) =
[
Ψn(0), . . . ,Ψ(n−1)

n (0)
]T

,

Rn−1 =


K(0,0)

n−1 (0,0) K(0,1)
n−1 (0,0) · · · K(0,n−1)

n−1 (0,0)
K(1,0)

n−1 (0,0) K(1,1)
n−1 (0,0) · · · K(1,n−1)

n−1 (0,0)
...

...
. . .

...

K(n−1,0)
n−1 (0,0) K(n−1,1)

n−1 (0,0) · · · K(n−1,n−1)
n−1 (0,0)


, (4.21)

As a consequence, (4.20) becomes Ψn(0) = m−1(m−1In + Rn−1D2
n)−1Φn(0). Thus, (4.18) can be written

Ψn(z) = Φn(z)−mKT
n−1(z,0)D2

nΨn(0) = Φn(z)−KT
n−1(z,0)(m−1D−2

n + Rn−1)−1Φn(0),

which is (4.17), since Rn−1 = Pn−1PT
n−1. �

On the other hand, considering the derivatives of order j with respect to the variable z in the
Christoffel-Darboux formula (2.32) we get

K( j,0)
n−1 (z,y) =

Φ∗n(y)
kn

(
Φ∗n(z)
1− yz

)( j)

−
Φn(y)

kn

(
Φn(z)
1− yz

)( j)

.

Thus,

K( j,0)
n−1 (0,y) =

Φ∗n(y)
kn

(
Φ∗n(z)
1− yz

)( j)

(0)−
Φn(y)

kn

(
Φn(z)
1− yz

)( j)

(0).

Now, by Leibniz rule (
Φn(z)
1− yz

)( j)

=

j∑
k=0

(
j
k

)
Φ

( j−k)
n (z)

k!yk

(1− yz)k+1 ,

the evaluation at z = 0 yields

j!
j∑

k=0

Φ
( j−k)
n (0)

( j− k)!
yk = j!

j∑
k=0

Φ
( j−k)
n (0)

( j− k)!
yk = j!T ∗j (Φn(y);0),
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where T j(p(y);0) denotes the j− th Taylor polynomial of p(y) around y = 0. In an analog way,

j!
j∑

k=0

Φ∗
( j−k)

n (0)
( j− k)!

yk = j!T ∗j (Φ∗n(y);0).

Therefore, we have proved

Theorem 4.2.2.
K(0, j)

n−1 (z,0) = j!
(
Φ∗n(z)

kn
T ∗j (Φ∗n(z);0)−

Φn(z)
kn

T ∗j (Φn(z);0)
)
.

From the previous theorem, if we denote

T(Φn(z);0) =
[
T ∗0 (Φn(z);0),T ∗1 (Φn(z);0), . . . ,T ∗n−1(Φn(z);0)

]T
,

then, (4.17) becomes

Ψn(z) = Φn(z)−
Φn(z)

kn
TT (Φn(z);0)D−1

n (m−1D−2
n + Pn−1PT

n−1)−1Φn(0)

−
Φ∗n(z)

kn
TT (Φ∗n(z);0)D−1

n (m−1D−2
n + Pn−1PT

n−1)−1Φn(0) = an(z)Φn(z) + bn(z)Φ∗n(z), (4.22)

where

an(z) = 1−
1
kn

TT (Φn(z);0)D−1
n (m−1D−2

n + Pn−1PT
n−1)−1Φn(0),

bn(z) = −
1
kn

TT (Φ∗n(z);0)D−1
n (m−1D−2

n + Pn−1PT
n−1)−1Φn(0).

Example: Bernstein-Szegő polynomials

Let us consider the measure σ such that

dσ(θ) =
1− |β|2

|eiθ −β|2
dθ
2π
, |β| < 1, (4.23)

and apply the transformation studied in this section, i.e., let us define a new measure σ̃

dσ̃(θ) =
1− |β|2

|eiθ −β|2
dθ
2π

+ m
dθ
2π
, m ∈R+. (4.24)

Our aim is to find the sequence of monic polynomials orthogonal with respect to (4.24), that will be
denoted by {Ψn}n>0. (4.23) is known in the literature as Bernstein-Szegő measure, and its corresponding
sequence of monic orthogonal polynomials is Simon [2005], Φn(z) = zn−1(z− β), n > 1. Furthermore,
we have Φ∗n(z) = 1−βz, n > 1. Notice that for n = 1, from (4.22) we get

Ψ1(z) =

(
1−β2

(
1− |β|2

) (
m +

(
1− |β|2

)−1
))

(z−β)−
(
β
(
1− |β|2

) (
m +

(
1− |β|2

)−1
))

(1−βz).
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For n> 2, T j(Φn(0);0) = 0, 06 j6 n−2, and Tn−1(Φn(z);0) =−βzn−1. Thus, T(Φn(z);0) =
[
0,0, . . . ,−β

]T
.

On the other hand, T0(Φ∗n(0);0) = 1, and T j(Φ∗n(z);0) = 1− βz, 1 6 j 6 n− 1. Therefore, T(Φ∗n(z);0) =[
1,z−β,z(z−β), . . . ,zn−2(z−β)

]T
. Furthermore, in this case

Pn−1 =
1√

1− |β|2
D−1

n Bn,

where

Bn =



1 β 0 · · · 0

0 1 β
. . .

...
...

. . .
. . .

. . . 0
...

. . . 1 β

0 · · · · · · 0 1


. (4.25)

Denoting by

Nn = D−1
n

(
m−1D−2

n + Pn−1PT
n−1

)−1
=

(
m−1In +

1
1− |β|2

BnBt
n

)−1

Dn,

and taking into account that Φn(0) = [0,0, · · · ,−(n−1)!β]T , we get

an(z) = 1−
|β|2

1− |β|2
(n−1)!nn−1,n−1, bn(z) = −

β

1− |β|2
(n−1)!

n0,n−1 + (z−β)
n−2∑
i=0

ni+1,n−1zi

 ,
where ni, j, 0 6 i, j 6 n−1, are the entries of Nn. From this, all elements on (4.22) are known and we can
compute Ψn. The corresponding Verblunsky coefficients for n > 2 are

Ψn(0) = bn(0) =
β

1− |β|2
(n−1)!(βn1,n−1−n0,n−1).

The first 20 Verblunsky coefficients for different values of m and β are shown in Figure 4.1(a), namely
m = 5, β = −0.2 (blue discs) and m = 10, β = −0.5 (purple square).

Example: Chebyshev polynomials

Let us consider the measure
dσ(θ) = |eiθ −1|2

dθ
2π
, (4.26)

and its corresponding sequence of monic orthogonal polynomials, given by Simon [2005]

Φn(z) =
1

n + 1

n∑
k=0

(k + 1)zk, n > 0. (4.27)
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We introduce the perturbation defined in this section and obtain

dσ̃(θ) = dσ(θ) + m
dθ
2π
. (4.28)

We now proceed to get an explicit expression for the sequence of monic polynomials orthogonal with
respect to σ̃. Notice that

T j(Φn(z);0) =
1

n + 1

j∑
k=0

(k + 1)zk, 0 6 j 6 n−1,

and, as a consequence,

T ∗j (Φn(z);0) =
1

n + 1

j∑
k=0

(k + 1)z j−k, 0 6 j 6 n−1.

On the other hand, since

Φ∗n(z) =
1

n + 1

n∑
k=0

(k + 1)zn−k, n > 0,

we get

T j(Φ∗n(z);0) =
1

n + 1

j∑
k=0

(n + 1− k)zk, 1 6 j 6 n−1,

and, thus,

T ∗j (Φ∗n(z);0) =
1

n + 1

j∑
k=0

(n + 1− k)z j−k, 1 6 j 6 n−1.

Therefore, T(Φn(0);0) =
1

n + 1
[1,2, . . . ,n]T and T(Φ∗n(0);0) =

1
n + 1

[n + 1,n,n−1, . . . ,2]T . Furthermore,
since

φn(z) =

√
2

(n + 1)(n + 2)

n∑
k=0

(k + 1)zk, n > 0, (4.29)

are the orthonormal polynomials with respect to σ, we obtain

Pn−1 = D−1
n AnΛn (4.30)

where

An =



1 1 · · · 1

0 1
. . .

...
...

. . . 1 1
0 · · · 0 1


, Λn =



1 0 · · · 0

0 p1
. . .

...
...

. . .
. . . 0

0 · · · 0 pn−1


,
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Figure 4.1: Verblunsky coefficients for Bernstein-Szegő and Chebyshev polynomials

and p j =

√
2

( j + 1)( j + 2)
. Finally, we have Φn(0) = 1

n+1 [1,2!, · · · ,n!]T , and we can obtain Ψn(z) ex-

plicitly from (4.22). Figure 4.1(b) shows the behavior of the corresponding Verblunsky coefficients for
different values of m, namely m = 10 (blue discs) and m = 100 (purple square).

This example can be generalized as follows. Let σ be an absolutely continuous measure whose
Radon-Nikodyn derivative with respect to the Lebesgue measure is σ

′

= |z−α|2, z = eiθ, i.e., a positive
trigonometric polynomial of degree 1. Applying the transformation introduced in this section, with
m ∈R+, and assuming α ∈ C, we obtain

m + |z−α|2 = m + 1−αz−1−αz + |α|2, z = eiθ, (4.31)

i.e., another positive trigonometric polynomial that can be represented by |δz−γ|2, where δ ∈R,γ ∈ C.
Indeed, as

|δz−γ|2 = δ2−δγz−1−δγz + |γ|2, z = eiθ,

the comparison of the coefficients with (4.31) yields 1 + |α|2 + m = δ2 + |γ|2 and α = δγ. Thus,

1 + |α|2 + m =
|α|2

δ2 +δ2,

so we can get δ and γ in terms of m and α. In other words, in this case we can express the addition to a
Chebyshev measure of a Lebesgue measure (multiplied by a constant m) as (4.26).

4.2.2 General perturbation of a Toeplitz matrix

In this subsection we generalize the previous perturbation, adding a mass m to any sub-diagonal of
the Toeplitz matrix. Let L j be a linear functional such that its associated bilinear functional satisfies

〈 f ,g〉L j
= 〈 f ,g〉L+ m

∫
T

z j f (z)g(z)
dz

2πiz
+ m

∫
T

z− j f (z)g(z)
dz

2πiz
, m ∈ C, j ≥ 0. (4.32)
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Assume L is a positive definite linear functional. Then, in terms of the corresponding measures, the
above transformation can be expressed as

dσ̃(z) = dσ(z) + 2<(mz j)
dz

2πiz
. (4.33)

From (4.32), if F j is the C-function associated with L j, then

F j(z) = F(z) + 2mz j, (4.34)

i.e., a linear spectral transformation of F. The infinite Toeplitz matrix T̃ associated with L j, is

T̃ = T + mZ j + m
(
ZT

) j
,

where Z is the shift matrix with ones on the first lower-diagonal and zeros on the remaining entries, and
ZT is its transpose. Equivalently,

T̃ = T +



0 · · · m 0 · · ·

... 0 · · · m · · ·

m
...

. . .
...

. . .

0 m · · · 0 · · ·

...
...

. . .
...

. . .


.

Assume that L is a positive definite linear functional, and denote by {Φn}n>0 its corresponding
sequence of monic orthogonal polynomials. We now proceed to determine necessary and sufficient
conditions for L j to be a quasi-definite functional, as well as the relation between {Φn}n>0 and {Ψn}n>0,
the sequence of monic orthogonal polynomials with respect to L j.

Theorem 4.2.3. Let L be a positive definite moment linear functional and {Φn}n>0 its corresponding

sequence of monic orthogonal polynomials. Then, the following statements are equivalent:

i) L j is a quasi-definite linear functional.

ii) The matrix In + Sn is non-singular, and

k̃n = kn + WT
n (0)(In + Sn)−1Yn(0) + m

Φ
(n− j)
n (0)

(n− j)!
, 0, n > 1, (4.35)

with Yn(0) =

[
mΦ

( j)
n (0)
j! , . . . ,mΦ

(2 j)
n (0)
(2 j)! + mΦ

(0)
n (0)
(0)! , . . . ,mΦ

(n)
n (0)
(n)! + mΦ

(n−2 j)
n (0)
(n−2 j)! , . . . ,m

Φ
(n− j−1)
n (0)
(n− j−1)!

]T
,
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Wn(0) = [Φn(0)−mn!C(0,n−1;n)], Φn(0) = [Φn(0),Φ
′

n(0), . . . ,Φ(n−1)
n (0)]T ,

Sn =


mA(0, j−1;0, j−1) B(0, j−1; j,n− j−1) mC(0, j−1;n− j,n−1)

mA( j,n− j−1;0, j−1) B( j,n− j−1; j,n− j−1) mC( j,n− j−1;n− j,n−1)

mA(n− j,n−1;0, j−1) B(n− j,n−1; j,n− j−1) mC(n− j,n−1;n− j,n−1)

 ,
where A,B, and C are matrices whose elements are given by

as,l =
K(s,l+ j)

n−1 (0,0)

(l)!(l + j)!
, bs,l = m

K(s,l+ j)
n−1 (0,0)

(l)!(l + j)!
+ m

K(s,l− j)
n−1 (0,0)

(l)!(l− j)!
, cs,l =

K(s,l− j)
n−1 (0,0)

(l)!(l− j)!
.

Moreover, {Ψn}n>0, the corresponding sequence of monic orthogonal polynomials with respect to L j, is

given by

Ψn(z) = An(z)Φn(z) + Bn(z)Φ∗n(z), n > 1, (4.36)

with

An(z) = 1 +
1
kn

WT
n (0)(In + Sn)−1DnT (Φn(z);0) + m

T ∗n− j(Φn(z);0)

kn
,

Bn(z) = −
1
kn

WT
n (0)(In + Sn)−1DnT (Φ∗n(z);0)−m

T ∗n− j(Φ
∗
n(z);0)

kn
,

T (Φn(z);0) =
[
mT ∗j (Φn(z);0), . . . ,mT ∗2 j(Φn(z);0) + mT ∗0 (Φn(z);0), . . . ,mT ∗n−1(Φn(z);0)+

mT ∗n−2 j−1(Φn(z);0), . . . ,mT ∗n− j−1(Φn(z);0)
]T
.

Proof. Let us write Ψn(z) = Φn(z) +

n−1∑
k=0

λn,kΦk(z), where, for 0 6 k 6 n−1,

λn,k = −
m
kk

∫
T

y jΨn(y)Φk(y)
dy

2πiy
−

m
kk

∫
T

y− jΨn(y)Φk(y)
dy

2πiy
.

Therefore,

Ψn(z) = Φn(z)−m
∫
T

y jΨn(y)Kn−1(z,y)
dy

2πiy
−m

∫
T

y− jΨn(y)Kn−1(z,y)
dy

2πiy
.

Taking into account that

y jΨn(y) =

n∑
l=0

Ψ
(l)
n (0)
l!

yl+ j =

n+ j∑
l= j

Ψ
(l− j)
n (0)

(l− j)!
yl,
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and, for |y| = 1, Kn−1(z,y) =

n−1∑
l=0

K(0,l)
n−1 (z,0)

l!
1
yl , we obtain

∫
T

y jΨn(y)Kn−1(z,y)
dy

2πiy
=

n−1∑
l= j

Ψ
(l− j)
n (0)

(l− j)!

K(0,l)
n−1 (z,0)

(l)!
=

n− j−1∑
l=0

Ψ
(l)
n (0)
(l)!

K(0,l+ j)
n−1 (z,0)

(l + j)!
.

In an analog way,

∫
T

y− jΨn(y)Kn−1(z,y)
dy

2πiy
=

n− j∑
l=0

Ψ
(l+ j)
n (0)

(l + j)!

K(0,l)
n−1 (z,0)

(l)!
=

n∑
l= j

Ψ
(l)
n (0)
(l)!

K(0,l− j)
n−1 (z,0)

(l− j)!
.

Thus, we get

Ψn(z) = Φn(z)−m
n− j−1∑

l=0

Ψ
(l)
n (0)
(l)!

K(0,l+ j)
n−1 (z,0)

(l + j)!
−m

n∑
l= j

Ψ
(l)
n (0)
(l)!

K(0,l− j)
n−1 (z,0)

(l− j)!
, (4.37)

or, equivalently,

Ψn(z) = Φn(z)−m
j−1∑
l=0

Ψ
(l)
n (0)
(l)!

K(0,l+ j)
n−1 (z,0)

(l + j)!
−m

n∑
l=n− j

Ψ
(l)
n (0)
(l)!

K(0,l− j)
n−1 (z,0)

(l− j)!
,

−

n− j−1∑
l= j

Ψ
(l)
n (0)
(l)!

m
K(0,l+ j)

n−1 (z,0)

(l + j)!
+ m

K(0,l− j)
n−1 (z,0)

(l− j)!

 . (4.38)

In particular, for 0 6 s 6 n,

Ψ
(s)
n (0) = Φ

(s)
n (0)−m

j−1∑
l=0

Ψ
(l)
n (0)
(l)!

K(s,l+ j)
n−1 (0,0)

(l + j)!
−m

n∑
l=n− j

Ψ
(l)
n (0)
(l)!

K(s,l− j)
n−1 (0,0)

(l− j)!
,

−

n− j−1∑
l= j

Ψ
(l)
n (0)
(l)!

m
K(s,l+ j)

n−1 (0,0)

(l + j)!
+ m

K(s,l− j)
n−1 (0,0)

(l− j)!

 ,
i.e., we obtain a system of n + 1 linear equations and n + 1 unknowns as follows

Ψ
(s)
n (0) = Φ

(s)
n (0)−m

j−1∑
l=0

as,lΨ
(l)
n (0)−

n− j−1∑
l= j

bs,lΨ
(l)
n (0)−m

n∑
l=n− j

cs,lΨ
(l)
n (0).

Thus, if M(s1,s2;l1,l2) = [ms,i]s16s6s2;l16l6l2 , then

(In+1 + Sn+1)


Ψ

(0)
n (0)
...

Ψ
(n)
n (0)

 =


Φ

(0)
n (0)
...

Φ
(n)
n (0)

 .
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

Notice that the entries in the last row of the above matrix vanish, which is consistent with the fact that
Ψ

(n)
n (0) = Φ

(n)
n (0) = n!. Therefore, if we denote by

Ψn(0) = [Ψn(0),Ψ
′

n(0), . . . ,Ψ(n−1)
n (0)]T ,

then the above (n + 1)× (n + 1) linear system can be reduced to a n×n linear system as follows

(In + Sn)Ψn(0) = Wn(0). (4.39)

Since L j is a quasi-definite linear functional, there exists a unique family of monic polynomials orthog-
onal with respect to L j. Therefore, the matrix In + Sn is non-singular, according to the existence and
uniqueness of the solution of the above linear system. As a consequence, if

Kn−1(z,0) =



m
K(0, j)

n−1 (z,0)
j!
...

m
K(0,2 j)

n−1 (z,0)
(2 j)! + m

K(0,0)
n−1 (z,0)

(0)!
...

m
K(0,n−1)

n−1 (z,0)
(n−1)! + m

K(0,n−2 j−1)
n−1 (z,0)
(n−2 j−1)!

...

m
K(0,n− j−1)

n−1 (z,0)
(n− j−1)!



, (4.40)

then (4.38) becomes

Ψn(z) = Φn(z)−ΨT
n (0)DnKn−1(z,0)−m

K(0,n− j)
n−1 (z,0)

(n− j)!
.

Thus, from (4.39) and Theorem 4.2.2, (4.36) holds. Furthermore,

0 , 〈Ψn,Φn〉L j

= kn + m
n− j∑
l=0

Ψ
(l)
n (0)
(l)!

Φ
(l+ j)
n (0)

(l + j)!
+ m

n∑
l= j

Ψ
(l)
n (0)
(l)!

Φ
(l− j)
n (0)

(l− j)!
= kn +ΨT

n (0)Yn(0) + m
Φ

(n− j)
n (0)

(n− j)!
,

so (4.35) follows. For the converse, assume In +Sn is non-singular for every n ≥ 1 and define {Ψn}n>0 as
in (4.36). We show that {Ψn}n>0 is orthogonal with respect to L j. Indeed, for 0 6 k 6 n− 1 and taking
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into account (4.37), we get

〈Ψn,Φk〉L j = 〈Φn,Φk〉L−m
〈n− j−1∑

l=0

Ψ
(l)
n (0)
(l)!

K(0,l+ j)
n−1 (z,0)

(l + j)!
,Φk(z)

〉
L

−m
〈 n∑

l= j

Ψ
(l)
n (0)
(l)!

K(0,l− j)
n−1 (z,0)

(l− j)!
,Φk(z)

〉
L

+ m
n− j−1∑

l=0

Ψ
(l)
n (0)
(l)!

Φ
(l+ j)
k (0)

(l + j)!
+ m

n∑
l= j

Ψ
(l)
n (0)
(l)!

Φ
(l− j)
k (0)

(l− j)!
= 0.

On the other hand,

k̃n = 〈Ψn,Φn〉L j

= kn + m
n− j∑
l=0

Ψ
(l)
n (0)
(l)!

Φ
(l+ j)
n (0)

(l + j)!
+ m

n∑
l= j

Ψ
(l)
n (0)
(l)!

Φ
(l− j)
n (0)

(l− j)!
= kn +ΨT

n (0)Yn(0) + m
Φ

(n− j)
n (0)

(n− j)!
, 0,

since (4.35) is assumed. Thus, we conclude that L j is quasi-definite. �

Remark 4.2.1. The caseL0 ( j = 0) reduces to the linear functional analyzed in the previous subsection,

with mass<m. In such a case, k̃0 = k0 +<m. On the other hand, for j > 1, it follows from (4.32) that

k̃l = kl for 0 6 l 6 j− 1. In other words, we only need (4.35) for n > j. Notice that for a given j, the

polynomials of degree n < j remain unchanged. In such a case, (4.35) and (4.36) still hold, with the

convention that the negative derivatives are zero.

Finally, applying the Szegő transformation to (4.34), we get

S̃ (x) = S (x) + 2m
(x−
√

x2−1) j
√

x2−1
,

and thus S̃ , the Stieltjes function for the corresponding perturbed measure on the real line, can not be
expressed as a linear spectral transform of S , since square roots appear for any value of j. Therefore,
we conclude that a perturbation on the moments of a measure supported on T does not yield a linear
spectral transformation of the corresponding Stieltjes function. Conversely, if we consider a similar
perturbation of the moments of a measure on the real line, then

S̃ (x) = S (x) +
m

x j+1 .

Applying the Szegő transformation,

F0(z) = F(z) + m
1− z2

2z(x) j+1 = F(z) + 2 jm
(1− z2)z j

(z2 + 1) j+1 ,

which is a linear spectral transformation of F. In the special case when j = 0,

F0(z) = F(z)−m
z2−1
z2 + 1

.
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4. SPECTRAL TRANSFORMATIONS OF MOMENT MATRICES

As a conclusion, the study of linear spectral transformations on the unit circle is far more complicated
than the real line case.

Example: Lebesgue polynomials

We present an example of the previous transformation when σ is the normalized Lebesgue measure
and j = 1, i.e., the transformation

〈 f ,g〉L1
=

∫
T

f (z)g(z)
dz

2πiz
+ m

∫
T

z f (z)g(z)
dz

2πiz
+ m

∫
T

z f (z)g(z)
dz

2πiz
, m ∈ C, (4.41)

where m ∈ C. Our purpose is to obtain necessary and sufficient conditions for L1 to be a positive
definite (quasi-definite) functional. Consequently, we deduce its corresponding family of orthogonal
polynomials, as well as the sequence of Verblunsky coefficients. Notice that in this case, Φn(z) = zn,
n > 0, as well as kn = 1, n > 0. Thus,

K(0,l)
n−1 (z,0) = l!zl, 0 6 l 6 n−1.

So,Kn−1(z,0) =
[
mz,mz2 + mz0, . . . ,mzn−1 + mzn−3,mzn−2

]T
and Φn(0) = 0T , n > 1. On the other hand,

K(s,l)
n−1 (0,0) =

s!l! if s = l,

0 otherwise,

and, therefore,

as,l =
K(s,l+1)

n−1 (0,0)

(l)!(l + 1)!
= δs,s−1, bs,l = m

K(s,l+1)
n−1 (0,0)

(l)!(l + 1)!
+ m

K(s,l−1)
n−1 (0,0)

(l)!(l−1)!
= mδs,s−1 + mδs,s+1,

cs,l =
K(s,l−1)

n−1 (0,0)

(l)!(l−1)!
= δs,s+1,

where δs,l is the Kronecker’s delta. Thus,

In + Sn =



1 m

m 1
. . .

. . .
. . . m
m 1 m

m 1


, n > 2.

Notice that for n > 2, In + Sn is T̃n−1, the n× n Toeplitz matrix associated with L1. We thus need
to establish the conditions on m for T̃n−1 be non-singular. Since T̃n−1 is hermitian, their eigenvalues
{λk}

n
k=1 are real numbers. Moreover, T̃n−1 is quasi-definite if and only if λk , 0, for every 1 6 k 6 n Horn
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and Johnson [1990]. From Theorem 2.4 in Böttcher and Grudsky [2005], the eigenvalues of T̃n−1 are

λk = 1 + 2|m|cos
πk

n + 1
, k = 1, . . . ,n.

Thus, L1 is a quasi-definite linear functional if and only if

|m| , −
(
2cos

πk
n + 1

)−1

, k = 1, . . . ,n, n ≥ 1,

or, equivalently,
πk

cos−1
(
− 1

2|m|

) <N. (4.42)

Assuming that (4.42) holds, {Ψn}n>0 can be obtained using (4.36), since all elements are known. Since
Kn−1(0,0) = (0,m,0, . . . ,0)T and Wn = [0, . . . ,0,−m(n− 1)!)], the sequence of Verblunsky coefficients
can be computed using (A.1.2). It is not difficult to see that

Ψn(0) = −m2(n−1)!`n,2,

where `i, j = (In + Sn)−1
i, j . An explicit expression for `n,2 can be obtained using the method described in

Usmani [1994]. Indeed,

`n,2 =
(−1)n+2mn−2

θn

where θn is the solution of the recurrence relation

θi = θi−1− |m|2θi−2, i = 2, . . . ,n,

with initial conditions θ0 = θ1 = 1. Thus,

θn =

2−(n+1) +
2−(n+1)√
1− |m|2

((1− √
1− |m|2

)n
+

(
1 +

√
1− |m|2

)n)
,

and therefore we get

Ψn(0) =
(−1)n+3mn−2m(n−1)!(

2−(n+1) + 2−(n+1)
√

1−|m|2

) ((
1−

√
1− |m|2

)n
+

(
1 +

√
1− |m|2

)n) . (4.43)

From (4.43) notice that |Ψn(0)| grows as n increases, and it grows faster for values |m| > 1. Using
small values of m, the first Verblunsky coefficients are small (close to zero), but then begin to grow as
n increases. Since (4.43) is an increasing function, we deduce that the functional L1 defined by (4.41),
for small values of m, is quasi-definite.
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Chapter 5

Spectral transformations associated
with mass points

. . . then we get a µ (measure) for which mass points do not attract zeros . . .

— E. B. Saff and V. Totik. Saff and Totik [1995]

In Chapter 4 we consider the addition of a Lebesgue measure to the hermitian linear functional L
defined in (2.22). In other words, we perturb the main diagonal of the Toeplitz matrix (2.23). The
generalization of the previous perturbations to affect any sub-diagonal of the Toeplitz matrix (2.23) is
also considered. As we see, they are linear spectral transformations of the corresponding C-function
(2.38).

One of the goals of this chapter is to show two new examples of linear spectral transformations
associated with the first derivative of a complex Dirac’s linear functional. The first one appears when
the support of the Dirac’s linear functional is a point on the unit circle. The second one corresponds to
a Dirac’s linear functional supported in two symmetric points with respect to the unit circle. Necessary
and sufficient conditions for the quasi-definiteness of the new linear functional are obtained. Outer
relative asymptotics for the new sequence of monic orthogonal polynomials in terms of the original
ones are studied. We also prove that this spectral transformation can be decomposed as an iteration of
particular cases of the canonical spectral transformations (2.43) and (2.44).

The last part of this chapter is devoted to the study of a relevant family of orthogonal polynomials
associated with perturbations of the original orthogonality measure by means of mass points: discrete
Sobolev orthogonal polynomials. We compare the discrete Sobolev orthogonal polynomials with the
original ones. Finally, we analyze the behavior of their zeros and provide some numerical examples to
illustrate it. An analogous inner product for measures supported on the real line is study in Appendix A.
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5. SPECTRAL TRANSFORMATIONS ASSOCIATED WITH MASS POINTS

5.1 Adding the derivative of a Dirac’s delta

Let L be a hermitian linear functional given by (2.22). Its derivative DL Tasis [1989] is defined by

〈DL, f 〉 = −i
〈
L,z f ′(z)

〉
, f ∈ Λ.

In this section we first consider a perturbation of a linear functional L by the addition of a derivative of
a Dirac’s delta, i.e.,

〈L1, f 〉 = 〈L, f 〉+ m 〈Dδα, f 〉 , m ∈R, |α| = 1. (5.1)

Let LU be a linear functional such that

〈LU , f 〉 = 〈L, f 〉+ m f (α), m ∈R, |α| = 1.

We say that LU is the Uvarov spectral transformation of the linear functional L Daruis et al. [2007].
The connection between the corresponding sequences of monic orthogonal polynomials as well as the
associated GGT matrices using LU and QR factorization has been studied in Daruis et al. [2007]. The
iteration of Uvarov transformations has been considered in Geronimus [1954]; Li and Marcellán [1999];
see also Appendix B. Asymptotic properties for the corresponding sequences of orthogonal polynomials
have been studied in Wong [2009]. Notice that the addition of a Dirac’s delta derivative (on a point
of the unit circle) to a linear functional can be considered as the limit case of two Uvarov spectral
transformations with equal masses and opposite sign, located on two nearby points on the unit circle
α1 = eiθ1 and α2 = eiθ2 , 0 6 θ1, θ2 6 2π, when θ1 → θ2, but the difficulties to deal with them yield a
different approach.

5.1.1 Mass point on the unit circle

In terms of the associated bilinear functional (5.1) becomes

〈 f ,g〉L1
= 〈 f ,g〉L− im

(
α f ′(α)g(α)−α f (α)g′(α)

)
. (5.2)

In the next theorem we obtain necessary and sufficient conditions for L1 to be a quasi-definite linear
functional, as well as an expression for its corresponding family of orthogonal polynomials.

Theorem 5.1.1. Let us assume L is a quasi-definite linear functional and denote by {Φn}n>0 its corre-

sponding sequence of monic orthogonal polynomials. Let consider L1 as in (5.2). Then, the following

statements are equivalent:

i) L1 is quasi-definite.

ii) The matrix D(α) + mKn−1(α,α), with

Kn−1(α,α) =

Kn−1(α,α) K(0,1)
n−1 (α,α)

K(1,0)
n−1 (α,α) K(1,1)

n−1 (α,α)

 , D(α) =

 0 −iα

iα−1 0

 ,
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is non-singular, and

kn + mΦn(α)H (D(α) + mKn−1(α,α))−1Φn(α) , 0, n > 1. (5.3)

Furthermore, the sequence {Ψn}n>0 of monic orthogonal polynomials associated with L1 is given by

Ψn(z) = Φn(z)−m

Kn−1(z,α)
K(0,1)

n−1 (z,α)

T

(D(α) + mKn−1(α,α))−1Φn(α), (5.4)

where Φn(α) =
[
Φn(α),Φ

′

n(α)
]T

.

Proof. AssumeL1 is quasi-definite and denote by {Ψn}n>0 its corresponding family of monic orthogonal
polynomials. Let us consider the Fourier expansion

Ψn(z) = Φn(z) +

n−1∑
k=0

λn,kΦk(z),

where, for n ≥ 1,

λn,k =
〈Ψn(z),Φk(z)〉L

kk
=

im
(
αΨ

′

n(α)Φk(α)−αΨn(α)Φ′k(α)
)

kk
, 0 ≤ k ≤ n−1.

Thus,

Ψn(z) = Φn(z) +

n−1∑
k=0

im
(
αΨ

′

n(α)Φk(α)−αΨn(α)Φ′k(α)
)

kk
Φk(z),

= Φn(z) + im
(
αΨ

′

n(α)Kn−1(z,α)−αΨn(α)K(0,1)
n−1 (z,α)

)
. (5.5)

Taking the derivative with respect to z in the previous expression and evaluating at z = α, we obtain the
linear system

Ψ
(i)
n (α) = Φ

(i)
n (α) + im

(
αΨ

′

n(α)K(i,0)
n−1 (α,α)−αΨn(α)K(i,1)

n−1 (α,α)
)
, i = 0,1 ,

which yields Φn(α)
Φ
′

n(α)

 =

1 + imαK(0,1)
n−1 (α,α) −imαKn−1(α,α)

imαK(1,1)
n−1 (α,α) 1− imαK(1,0)

n−1 (α,α)

 Ψn(α)
Ψ
′

n(α)

 ,
and denoting Q = [Q,Q

′

]T , we get

Φn(α) = (I2 + mKn−1(α,α)D(α))Ψn(α).

Thus, the necessary condition for regularity is that I2 + mKn−1(α,α)D(α) must be non-singular. Taking
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into account D−1(α) = D(α) we have the first part of our statement. Furthermore, from (5.5),

Ψn(z) = Φn(z) + m
(
Kn−1(z,α),K(0,1)

n−1 (z,α)
)  0 iα

−iα 0

 Ψn(α)
Ψ′n(α)


= Φn(z)−m

Kn−1(z,α)
K(0,1)

n−1 (z,α)

T

(D(α) + mKn−1(α,α))−1Φn(α).

This yields (5.4). Conversely, if {Ψn}n>0 is given by (5.5), then, for 0 6 k 6 n−1,

〈Ψn,Ψk〉L1 =
〈
Φn(z) + im

(
αΨ

′

n(α)Kn−1(z,α)−αΨn(α)K(0,1)
n−1 (z,α)

)
,Ψk(z)

〉
L1

=
〈
Φn(z) + im

(
αΨ

′

n(α)Kn−1(z,α)−αΨn(α)K(0,1)
n−1 (z,α)

)
,Ψk(z)

〉
L

− im
(
αΨ

′

n(α)Ψk(α)−αΨn(α)Ψ′k(α)
)

= 0.

On the other hand, for n > 1,

k̃n = 〈Ψn(z),Ψn(z)〉L1 = 〈Ψn(z),Φn(z)〉L1

=
〈
Φn(z) + im

(
αΨ

′

n(α)Kn−1(z,α)−αΨn(α)K(0,1)
n−1 (z,α)

)
,Φn(z)

〉
L

− im
(
αΨ

′

n(α)Φn(α)−αΨn(α)Φ′n(α)
)

= kn + mΦn(α)H (D(α) + mKn−1(α,α))−1Φn(α) , 0,

where we are using the reproducing property (2.33). As a conclusion, {Ψn}n>0 is the sequence of monic
orthogonal polynomials with respect to L1. �

Using the Christoffel-Darboux formula (2.32), another way to express (5.4) is the following.

Corollary 5.1.1. Let {Ψn}n>0 the sequence of monic orthogonal polynomials associated to L1 defined

as in (5.2). Then,

(z−α)2Ψn(z) = A(z,n,α)Φn(z) + B(z,n,α)Φ∗n(z), (5.6)

where A(z,n,α) and B(z,n,α) are polynomials of degree 2 and 1, respectively, in the variable z, given by

A(z,n,α) = (z−α)2−
mα

kn∆n−1

(
(Y1,1Φn(α) + Y1,2Φ′n(α))Φn(α)(z−α)

+
(
Y2,1Φn(α) + Y2,2Φ′n(α))(Φn(α)(z−α) +αΦn(α)z)

)
,

B(z,n,α) =
mα

kn∆n−1

(
(Y1,1Φn(α) + Y1,2Φ′n(α))Φ∗n(α)

+
(
Y2,1Φn(α) + Y2,2Φ′n(α))(Φ∗n(α)

′
(z−α) +αΦ∗n(α)z)

)
,

where Y1,1 = mK(1,1)
n−1 (α,α), Y1,2 = imαK(0,1)

n−1 (α,α), Y2,1 = −imαK(1,0)
n−1 (α,α), Y2,2 = mαKn−1(α,α), and

∆n−1 is the determinant of the matrix D(α) + imKn−1(α,α).
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5.1.1.1 Outer relative asymptotics

In this subsection we assume L is a positive definite linear functional, with an associated positive
Borel measure σ. We are interested in the asymptotic behavior of the orthogonal polynomials associated
with the addition of the derivative of a Dirac’s delta on the unit circle given in (5.6). We assume that σ
is regular in the sense of Stahl and Totik Stahl and Totik [1992], so that

lim
n→∞

κ1/n
n = 1.

Regularity is a necessary and sufficient condition for the existence of n-th root asymptotics, i.e., lim
n→∞

|φn|
1/n <∞. It is easy to see that the existence of the ratio asymptotics lim

n→∞
φn/φn−1 implies the existence

of the root asymptotics, and, in general, the converse is not true. Therefore, ratio asymptotics does not
must hold for regular measures.

In particular, we study its ratio asymptotics with respect to {Φn}n>0. First, we state some results that
are useful in our study.

Theorem 5.1.2. Levin and Lubinsky [2007] Let σ be a regular finite positive Borel measure supported

on (−π,π]. Let J ∈ (−π,π) be a compact subset such that σ is absolutely continuous in an open set

containing J. Assume that σ′ is positive and continuous at each point of J. Let i, j be non-negative

integers. Then, uniformly for θ ∈ J, z = eiθ,

lim
n→∞

zi− j

ni+ j
K(i, j)

n (z,z)
Kn(z,z)

=
1

i + j + 1
.

Lemma 5.1.1. Gonchar [1975] Let f,g be two polynomials in P with degree at least j. Then

f ( j)(z)
g( j)(z)

=
g( j−1)(z)
g( j)(z)

(
f ( j−1)(z)
g( j−1)(z)

)′
+

f ( j−1)(z)
g( j−1)(z)

.

Using the previous lemma, the outer ratio asymptotics for the derivatives of orthonormal polynomi-
als are deduced.

Lemma 5.1.2. Assume L is a positive definite linear functional, with an associated positive Borel

measure σ and denote by {φn}n>0 its corresponding sequence of orthonormal polynomials. If σ ∈ N ,

then uniformly in C\D

lim
n→∞

φ
( j)
n+1(z)

φ
( j)
n (z)

= z, lim
n→∞

φ
( j)
n (z)

φ
( j+1)
n (z)

= 0, j > 0.

Proof. According to Lemma 5.1.1,

φ
( j)
n+1(z)

φ
( j)
n (z)

=
φ

( j−1)
n (z)

φ
( j)
n (z)

φ( j−1)
n+1 (z)

φ
( j−1)
n (z)


′

+
φ

( j−1)
n+1 (z)

φ
( j−1)
n (z)

. (5.7)
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5. SPECTRAL TRANSFORMATIONS ASSOCIATED WITH MASS POINTS

Using induction in j, we get uniformly in C\D,

lim
n→∞

φ( j−1)
n+1 (z)

φ
( j−1)
n (z)


′

= 1, lim
n→∞

φ
( j−1)
n (z)

φ
( j)
n (z)

= 0.

Therefore, if n tends to infinity in (5.7), the result follows. �

Corollary 5.1.2. If σ ∈ N , then uniformly in C\D

lim
n→∞

φ
∗( j)
n (z)

φ
( j)
n (z)

= 0, lim
n→∞

K(l,r)
n−1(z,y)

φ(i)
n (z)φ( j)

n (y)
= 0, 0 6 l < i,0 6 r < j.

Proof. From Lemma 5.1.1, we have

φ
∗( j)
n (z)

φ
( j)
n (z)

=
φ

( j−1)
n (z)

φ
( j)
n (z)

φ∗( j−1)
n (z)

φ
( j−1)
n (z)

′+ φ
∗( j−1)
n (z)

φ
( j−1)
n (z)

. (5.8)

Using a similar argument as in the proof of the previous lemma, the first statement follows. The
second statement is a straightforward consequence of the first part of this corollary and Lemma 5.1.2.

�

Theorem 5.1.3. Let L be a positive definite linear functional, whose associated measure σ satisfies

the conditions of Theorem 5.1.2. Let {Ψn}n>0 the sequence of monic orthogonal polynomials associated

with L1 defined as in (5.2). Then, uniformly in C \D,

lim
n→∞

Ψn(z)
Φn(z)

= 1.

Proof. From the expression (5.6),

Ψn(z)
Φn(z)

=
A(z,n,α)
(z−α)2 +

B(z,n,α)
(z−α)2

Φ∗n(z)
Φn(z)

.

Since, for z ∈ C \D by Corollary 5.1.2,

lim
n→∞

Φ∗n(z)
Φn(z)

= 0,

it suffices to show that, for |α| = 1,

lim
n→∞

A(z,n,α)
(z−α)2 = 1.

Notice that lim
n→∞

Φn(α) = O(1), lim
n→∞

Φ
′

n(α) = O(n), lim
n→∞

Φ∗n(α) = O(1), lim
n→∞

Φ∗
′

n (α) = O(n), and lim
n→∞

Kn

(α,α) = O(n).

On the other hand, dividing the numerator and denominator of
A(z,n,α)
(z−α)2 − 1 by n2Kn−1(α,α), and
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using Theorem 5.1.2, we obtain

lim
n→∞

Φn(α)Y2,1

n2Kn−1(α,α)
= O(1/n), lim

n→∞

Φ
′

n(α)Y2,2

n2Kn−1(α,α)
= O(1/n),

lim
n→∞

Φn(α)Y1,1

n2Kn−1(α,α)
= O(1), lim

n→∞

Φ
′

n(α)Y1,2

n2Kn−1(α,α)
= O(1),

so that the numerator of
A(z,n,α)
(z−α)2 −1 behaves as O(1). Similarily, one can shows that the denominator

behaves as O(n) and, therefore,

lim
n→∞

A(z,n,α)
(z−α)2 = 1.

The same arguments can be applied to B(z,n,α), what ensures the result. �

Example: Lebesgue polynomials

We now study one example that illustrates the behavior of the Verblunsky coefficients associated

with the Lebesgue measure dσ(θ) =
dθ
2π

and to the perturbation (5.2) given by

dσ̃(θ) =
dθ
2π

+ mδ
′

α,

where m ∈R and |α| = 1. It is very well known that Φn(z) = zn is the n-th monic orthogonal polynomial
with respect to dσ, and thus Ψn(z), the n-th monic orthogonal polynomial with respect to dσ̃, can be
obtained using (5.6). Indeed, evaluating these polynomials at z = 0, for the special case α = 1, is not
difficult to show that

Ψn(0) =

(
n(n−1)(n + 1)

6
−

in
m

)(
n2(n−1)(n + 1)

12
−

1
m2

)−1

. (5.9)

From the last expression we are able to obtain the regularity condition in terms of the mass, by
setting |Ψn(0)| , 1, n > 1. Notice that |Ψn(0)| → 0, as it can be seen from (5.9). Thus, there exists a
non-negative integer n0, depending on m, such that |Ψn(0)| < 1 for n > n0, but some of the preceding
Verblunsky coefficients will be of modulus greater than 1, destroying the positivity of the perturbed
functional. Indeed, from (5.3), we obtain that the positivity condition for this perturbation is

m2 <
12

n2(n2−1)
, n > 2.

Since the right side is a positive monotonic decreasing sequence, we only have a positive definite case
if m = 0.

87



5. SPECTRAL TRANSFORMATIONS ASSOCIATED WITH MASS POINTS

5.1.2 Mass points outside the unit circle

Now, consider a hermitian linear functional L2 such that its associated bilinear functional satisfies

〈 f ,g〉L2
= 〈 f ,g〉L+ im

(
α−1 f (α)g′(α−1)−α f ′(α)g(α−1)

)
+ im

(
α f (α−1)g′(α)−α−1 p′(α−1)q(α)

)
,

with m,α ∈ C, |α| , 0, and |α| , 1. As in the previous section, we are interested in the regularity condi-
tions for this linear functional and the corresponding family of orthogonal polynomials. Assuming that
L2 is a quasi-definite linear functional and following the method used in the proof of Theorem 5.1.1,
we get

Ψn(z) = Φn(z) + im
(
αΨ

′

n(α)Kn−1(z,α−1)−α−1Ψn(α)K(0,1)
n−1 (z,α−1)

)
+ im

(
α−1Ψ

′

n(α−1)Kn−1(z,α)−αΨn(α−1)K(0,1)
n−1 (z,α)

)
. (5.10)

Evaluating the above expression and its first derivative in α and α−1, we get the following linear systemsΦn(α)
Φ
′

n(α)

 =

1 + imα−1K(0,1)
n−1 (α,α−1) −imαKn−1(α,α−1)

imα−1K(1,1)
n−1 (α,α−1) 1− imαK(1,0)

n−1 (α,α−1)

 Ψn(α)
Ψ
′

n(α)

 (5.11)

+

imαK(0,1)
n−1 (α,α) −imα−1Kn−1(α,α)

imαK(1,1)
n−1 (α,α) −imα−1K(1,0)

n−1 (α,α)

 Ψn(α−1)
Ψ
′

n(α−1)

 ,Φn(α−1)
Φ
′

n(α−1)

 =

imα−1K(0,1)
n−1 (α−1,α−1) −imαKn−1(α−1,α−1)

imα−1K(1,1)
n−1 (α−1,α−1) −imαK(1,0)

n−1 (α−1,α−1)

 Ψn(α)
Ψ
′

n(α)

 (5.12)

+

1 + imαK(0,1)
n−1 (α−1,α) −imα−1Kn−1(α−1,α)

imαK(1,1)
n−1 (α−1,α) 1− imα−1K(1,0)

n−1 (α−1,α)

 Ψn(α−1)
Ψ
′

n(α−1)

 ,
which yields into the system of 4 linear equations with 4 unknowns Φn(α)

Φn(α−1)

 =

I2 + mKn−1(α,α−1)D(α) mKn−1(α,α)D(α−1)
mKn−1(α−1,α−1)D(α) I2 + mKn−1(α−1,α)D(α−1)

  Ψn(α)
Ψn(α−1)

 ,

where (Q,R)T = (Q,Q′,R,R′)T . Thus, in order L2 to be a quasi-definite linear functional, we need that
the 4×4 matrix defined as above must be non-singular. On the other hand,

 Ψn(α)
Ψn(α−1)

 =

I2 + mKn−1(α,α−1)D(α) mKn−1(α,α)D(α−1)
mKn−1(α−1,α−1)D(α) I2 + mKn−1(α−1,α)D(α−1)

−1  Φn(α)
Φn(α−1)

 .
As a consequence, from (5.10), we get

Ψn(z) = Φn(z)−m

Kn−1(z,α−1)
K(0,1)

n−1 (z,α−1)

T

D(α)Ψn(α)−m

Kn−1(z,α)
K(0,1)

n−1 (z,α)

T

D(α−1)Ψn(α−1), (5.13)
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where Ψn(α) and Ψn(α−1) can be obtained from the above linear system. Assuming that the regularity
conditions hold, and following the method used in the proof of Theorem 5.1.1, it is not difficult to show
that {Ψn}n>0, defined as in (5.13), is the sequence of monic orthogonal polynomials with respect to L2.

5.1.2.1 Outer relative asymptotics

The following result was proved in Foulquié et al. [1999] using a different method, and it has been
generalized for rectifiable Jordan curves or arcs in Branquinho et al. [2002]. We show here another
proof of the same result.

Lemma 5.1.3. If σ ∈ N , then uniformly in C\D,

lim
n→∞

K(i, j)
n−1(z,y)

φ(i)
n (z)φ( j)

n (y)
=

1
zy−1

, i, j > 0.

Proof. From the Christoffel-Darboux formula (2.32), we obtain

φ∗n(z)φ∗( j)
n (y)−φn(z)φ( j)

n (y) = (1− zy)K(0, j)
n−1 (z,y)− jzK(0, j−1)

n−1 (z,y),

and, as a consequence,

φ∗(i)n (z)φ∗( j)
n (y)−φ(i)

n (z)φ( j)
n (y) = (1− zy)K(i, j)

n−1(z,y)− kyK(i−1, j)
n−1 (z,y)

− j
(
zK(i, j−1)

n−1 (z,y) + kK(k−1, j−1)
n−1 (z,y)

)
.

Thus, dividing by φ(i)
n (z)φ( j)

n (y) and using Corollary 5.1.2 when n tends to infinity, the result follows. �

Remark 5.1.1. Notice that

lim
n→∞

K( j, j)
n−1 (α,α)

|φ
( j)
n (α)|2

=
1

|α|2−1
, |α| > 1, j > 1.

It is possible to obtain a generalization of Theorem 5.1.3 for the sequence of monic orthogonal
polynomials associated with (5.10). As above, we can express (5.13) as in (5.6). Using the Christoffel-
Darboux formula (2.32), we obtain

Ψn(z) =
(
1 + Ã(z,n,α)

)
Φn(z) + B̃(z,n,α)Φ∗n(z),
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with

Ã(z,n,α) = imα−1 Φ′n(α−1)(1−α−1z) + zΦn(α−1)
kn(1−α−1)2 Ψn(α)− imα

Φn(α−1)
kn(1−α−1z)

Ψ′n(α)

+ imα
Φ′n(α)(1−αz) + zΦn(α)

kn(1−α)2 Ψn(α−1)− imα−1 Φn(α)
kn(1−αz)

Ψ′n(α−1),

B̃(z,n,α) = imα
Φ∗n(α−1)

kn(1−α−1z)
Ψ′n(α)− imα−1 Φ′

∗

n (α−1)(1−α−1z) + zΦ∗n(α−1)
kn(1−α−1)2 Ψn(α)

+ imα−1 Φ∗n(α)
kn(1−αz)

Ψ′n(α−1)− imα
Φ′
∗

n (α)(1−αz) + zΦ∗n(α)
kn(1−α)2 Ψn(α−1),

where the values of Ψn(α),Ψ′n(α),Ψn(α−1), and Ψ′n(α−1) can be obtained by solving the 4× 4 linear
system shown above. Denoting the entries of the 2× 2 matrices in (5.11) - (5.12) by {bi, j}, {ci, j}, {ai, j}

and {di, j}, respectively, we get

Ψn(α) =
(
d1,1Φn(α) + d1,2Φ′n(α) + c1,1Φn(α−1) + c1,2Φ′n(α−1)

)
/∆,

Ψ′n(α) =
(
d2,1Φn(α) + d2,2Φ′n(α) + c2,1Φn(α−1) + c2,2Φ′n(α−1)

)
/∆,

Ψn(α−1) =
(
a1,1Φn(α) + a1,2Φ′n(α) + b1,1Φn(α−1) + b1,2Φ′n(α−1)

)
/∆,

Ψn(α−1) =
(
a2,1Φn(α) + a2,2Φ′n(α) + b2,1Φn(α−1) + b2,2Φ′n(α−1)

)
/∆,

where ∆ is the determinant of the 4× 4 matrix. To get the asymptotic result, it suffices to show that
Ã(z,n,α)→ 0 and B̃(z,n,α)→ 0 as n→∞. First, notice that applying the corresponding derivatives to
the Christoffel-Darboux formula (2.32), we obtain

K(0,1)
n−1 (z,y) =

Φ∗
′

n (y)Φ∗n(z)−Φ′n(y)Φn(z)
kn(1− yz)

+
zKn−1(z,y)

1− yz
,

K(1,0)
n−1 (z,y) =

Φ∗n(y)Φ∗
′

n (z)−Φn(y)Φ′n(z)
kn(1− yz)

+
yKn−1(z,y)

1− yz
,

K(1,1)
n−1 (z,y) =

Φ∗
′

n (y)Φ∗
′

n (z)−Φ′n(y)Φ′n(z)
kn(1− yz)

+
zK(1,0)

n−1 (z,y) + yK(0,1)
n−1 (z,y) + Kn−1(z,y)

1− yz
.

On the other hand, if L is positive definite, and its corresponding measure σ ∈ N , then by Corollary
5.1.2 (see also Maté et al. [1987]) we have Φn(α) = O(αn), Φ′n(α) = O(nαn), and

lim
n→∞

Φn(α)
Φ∗n(α)

= 0, |α| < 1, lim
n→∞

Φ∗n(α)
Φn(α)

= 0, |α| > 1.

Assume, without loss of generality, that |α| < 1. If |α| < 1 and σ ∈ S, notice that Φn(α) and Φ∗n(α) are
O(αn), then lim

n→∞
Kn(α,α) <∞ and Kn(α−1,α−1) = O(|α|−2n), as well as Kn(α,α−1) = Kn(α−1,α) = O(n).

Observe that, except for the entries containing Kn−1(α,α) and their derivatives, all other entries of the
4×4 matrix diverge, and thus its determinant diverges much faster than any other term in the expressions
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for Ψn(α),Ψ′n(α),Ψn(α−1) and Ψ′n(α−1), so that Ã(z,n,α)→ 0 and B̃(z,n,α)→ 0 as n tends to ∞. As a
consequence,

Theorem 5.1.4. Let L be a positive definite linear functional, whose associated measure σ ∈ S. Let

{Ψn}n>0 the sequence of monic orthogonal polynomials associated to L2 defined as in (5.10). Then,

uniformly in C \T,

lim
n→∞

Ψn(z)
Φn(z)

= 1.

5.1.3 C-functions and linear spectral transformations

First, we assume that |α| = 1. Let us consider the moments associated with L1. Notice that c̃0 = c0.
For k > 1, we have c̃k =

〈
zk,1

〉
L1

= ck − imkαk. In a similar way, c̃−k = c−k + imkαk. Therefore,

F1(z) = c̃0 + 2
∞∑

k=1

c̃−kzk = c0 + 2
∞∑

k=1

(c−k + imkαk)zk = F(z) + 2im
∞∑

k=1

kαkzk

= F(z) +
2imα
z−α

+
2imα2

(z−α)2 .

This means that the resulting C-function is a perturbation of F by the addition of a rational function with
a double pole at z = α.

Now, we assume |α| > 1, and let consider the moments associated with L2. Notice that ĉ0 = c0. For
k ∈N, we have from (5.10),

ĉk = ck − imkαk − imkα−k, ĉ−k = c−k + imkαk + imkα−k,

and, as a consequence,

F2(z) = ĉ0 + 2
∞∑

k=1

ĉ−kzk = F(z)−
2imα
z−α

+
2imα2

(z−α)2 −
2imα−1

z−α−1 +
2imα−2

(z−α−1)2
. (5.14)

This means that the resulting C-function is a perturbation of the initial one by the addition of a rational
function with two double poles at α and α−1.

Connection with special linear transformations

We show that perturbations (5.10) can be expressed in terms of special cases of the spectral trans-
formations (2.43) and (2.44). Let FC(α) and FG(α,m) be linear spectral transformations associated with
the modification of the original functional L given by

〈LC , f 〉 =
〈
L, |z−α|2 f (z)

〉
(5.15)

and 〈
LG, |z−α|2 f (z)

〉
= 〈L, f 〉+ mδα, |α| = 1, m ∈R, (5.16)
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respectively Godoy and Marcellán [1991, 1993]. The polynomial coefficients associated with FC(α)
and FG(α,m) are

AC(z) = DG(z) = (z−α)(1−αz), DC(z) = AG(z) = z,

BC(z) = −αc0z2 + (αc−1−αc1)z +αc0, BG(z) = α̃c0z2 + 2i=(q0)z− α̃c0,

where q0 is a free parameter that depends on the mass used in (5.16). Now, consider the following
product of transformations

FD = FG2 (α,m2)◦FG1 (α,m1)◦FC2 (α)◦FC1 (α). (5.17)

It is not difficult to show that FD, the C-function associated with FD, is given by

FD(z) = F(z) +
BC1 (z)
DG1 (z)

+
BG2 (z)
DG2 (z)

+
BC2 (z)AG1 (z)
DG1 (z)DG2 (z)

+
BG1 (z)AG2 (z)
DG1 (z)DG2 (z)

= F(z) +
BC1 (z) + BG2 (z)
(z−α)(1−αz)

+
z(BC2 (z) + BG1 (z))
(z−α)2(1−αz)2 .

Assuming that all transformations are normalized, i.e., all of the first moments are equal to 1, and
denoting K1 = αc−1 −αc1 + 2i=(q(1)

0 ) and K2 = αc−1 −αc1 + 2i=(q(2)
0 ), where q(1)

0 and q(2)
0 are the free

parameters associated with FG1 and FG2 , respectively, we obtain

FD(z) = F(z) +
K2z

(z−α)(1−αz)
+

K1z2

(z−α)2(1−αz)2

= F(z) +
L1

(z−α)
+

L2

(z−α)2 +
L3

(z−α−1)
+

L4

(z−α−1)2
, (5.18)

for some constants L1,L2,L3, and L4, satisfying

−αK2 = L1 + L3,

(1 + |α|2)K2 + K1 = −(α+ 2α−1)L1 + L2− (2α+α−1)L3 + L4,

−αK2 = (α−2 + 2αα−1)L1−2α−1L2 + (α2 + 2α−1α)L3−2αL4,

0 = −αα−2L1 +α−2L2−α
2α−1L3 +α2L4.

Furthermore, comparing (5.14) and (5.18), we have L2 = −αL1 and L4 = −α−1L3. Solving the above
system we arrive at

L1 =
α|α|2

1− |α|2
K2, L3 = −

α

1− |α|2
K2,

and thus, we conclude that transformation (5.17) is equivalent to F2(α−1,m), the transformation associ-
ated with (5.10) , with

m =
|α|2

2i(1− |α|2)
K2.
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5.2 Non-standard inner products

In the last few years, some attention has been paid to the asymptotic properties of orthogonal poly-
nomials with respect to non-standard inner products. In particular, the algebraic and analytic properties
of orthogonal polynomials associated with a Sobolev inner product have attracted the interest of many
researchers, see Marcellán and Ronveaux [2012] for an updated overview with more than 300 refer-
ences.

A discrete Sobolev inner product in C \D is given by

〈 f ,g〉S =

∫
T

f (z)g(z)dσ(z) + f(Z) A g(Z)H , (5.19)

where
f(Z) =

(
f (α1), . . . , f (l1)(α1), . . . , f (αm), . . . , f (lm)(αm)

)
,

A is an M×M positive semi-definite hermitian matrix, with M = l1 + . . .+ lm +m, and |αi|> 1, i = 1, . . . ,m.
Since A is positive semi-definite, the inner product (5.19) is positive definite. Therefore, there exists a
sequence of polynomials {ψn}n>0,

ψn(z) = γnzn + (lower degree terms), γn > 0,

which is orthonormal with respect to (5.19). We are interested in the outer relative asymptotic behavior
of {ψn}n>0 with respect to the sequence {φn}n>0 of orthonormal polynomials with respect to σ. We show
that if σ ∈ N and A is positive definite, then this outer relative asymptotics follows. Similar results have
been obtained for the case when the measure is supported on a bounded interval of the real line López
et al. [1995]; Marcellán and Van Assche [1993].

5.2.1 Outer relative asymptotics

In Foulquié et al. [1999]; Li and Marcellán [1996]; Marcellán and Moral [2002], the relative asymp-
totic behavior of orthogonal polynomials with respect to a discrete Sobolev inner product on the unit
circle was studied. In this section, we propose a slightly modified outline.

The nondiagonal structure of the matrix A makes the analysis of the situation much more difficult.
First of all, let us prove an important result which gives precise information about the matrix A.

Lemma 5.2.1. The outer relative asymptotic behavior of orthogonal polynomials with respect to the

inner product (5.19) does not depend on the matrix A.

Proof. Let
{
ψ̃n

}
n>0

be the sequence of orthonormal polynomials with respect to the inner product

〈 f ,g〉S̃ =

∫
T

f (z)g(z)dσ(z) + f(Z) B g(Z)H ,

where B is an arbitrary positive definite hermitian matrix of order M. Expanding ψn in terms of {φn}n>0,
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we have

ψn(z) =
γn

κn
φn(z) +

n−1∑
k=0

λn,kφk(z) (5.20)

where
λn,k =

∫
T

ψn(z)φ(z)dσ(z) = −ψn(Z)Aφn(Z).

Substituting this expresion in (5.20), we obtain

ψn(z) =
γn

κn
φn(z)−ψn(Z) A Kn(z,Z)T , (5.21)

where Kn(z,Z) = (Kn(z,α1), . . . ,K(0,l1)
n (z,α1)), . . . ,Kn(z,αm), . . .K(0,lm)

n (z,αm)) and K(i, j)
n (z,y) denotes the

i-th (resp. j-th) partial derivative of Kn(z,y) with respect to the variable z (resp. y). In an analogous way,
we get

ψ̃n(z) =
γ̃n

κn
φn(z)− ψ̃n(Z) B Kn(z,Z)T , (5.22)

where γ̃n is the leading coefficient of ψn. From (5.21) and (5.22) and following the method used in the
proof of Theorem 5.1.1, we get Foulquié et al. [1999]; Li and Marcellán [1996]

γ̃n

γn

ψ̃n(z)
ψn(z)

=
det (I + ATn)
det (I + BTn)

det (I + BKn)
det (I + AKn)

,(
γ̃n

γn

)2

=
det (I + BKn)
det (I + AKn)

det (I + AKn+1)
det (I + BKn+1)

,

where Kn is a positive definite matrix of order M, n ≥ M, which can be described by blocks. The r, s

block ofKn is the (lr + 1)× (ls + 1) matrix(
K(i, j)

n (zr,zs)
) j=0,...,ls

i=0,...,lr
, r, s = 0, . . . ,m.

Tn is obtained through the following equationTn =Kn +Vn,whereVn =−
1

φn(z)
Kn(z,Z)Tφn(Z). Since

Foulquié et al. [1999]; Marcellán and Moral [2002]

lim
n→∞

det (I + AKn)
det (I + BKn)

= lim
n→∞

det (I + ATn)
det (I + BTn)

=
detA
detB

,

we can deduce that

lim
n→∞

γ̃n

γn

ψ̃n(z)
ψn(z)

= 1, lim
n→∞

(
γ̃n

γn

)2

= 1,

and the lemma is proved. �

For the discrete Sobolev inner product with a single mass point associated with (5.19),

〈 f ,g〉S 1
=

∫
T

f (z)g(z)dσ(z) +λ f ( j)(α)g( j)(α), |α| > 1, (5.23)
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we have

Lemma 5.2.2. Let {ψn;1}n>0, ψn;1 = γn;1zn + (lower degree terms) be the sequence of orthonormal poly-

nomials with respect to (5.23). If σ ∈ N , then

lim
n→∞

γn,1

κn
=

1
|α|
.

Proof. From (5.21) we have

ψn;1(z) =
γn;1

κn
φn(z)−λψ( j)

n;1(α)K(0, j)
n−1 (z,α). (5.24)

Taking derivatives in (5.24) and evaluating at z = α, we get

ψ
( j)
n;1(α) =

γn;1/κn φ
( j)
n (α)

1 +λK( j, j)
n−1 (α,α)

. (5.25)

Thus, (5.25) yields (
βn

αn

)2

=
1 +λK( j, j)

n−1 (α,α)

1 +λK( j, j)
n (α,α)

.

Using the previous identity and Lemma 5.1.2,

lim
n→∞

γ2
n,1

κ2
n

= lim
n→∞

1 +λK( j, j)
n−1 (α,α)

1 +λK( j, j)
n (α,α)

= lim
n→∞

|φ
( j)
n−1(α)|2

|φ
( j)
n (α)|2

=
1
|α|2

,

and the lemma is proved. �

Using the previous lemma, we prove the relative asymptotics in C\D.

Theorem 5.2.1. If σ ∈ N , then uniformly in C\D

lim
n→∞

ψn;1(z)
φn(z)

= B(α), B(α) =
α(z−α)
|α|(αz−1)

. (5.26)

Proof. From (5.24), we have

ψn;1(z)
φn(z)

=
γn;1

κn
−λψ

( j)
n;1(α)φ( j)

n (α)
K(0, j)

n−1 (z,α)

φn(z)φ( j)
n (α)

. (5.27)

Using (5.25), we obtain

lim
n→∞

λψ
( j)
n;1(α)φ( j)

n (α) =

(
|α| −

1
|α|

)
. (5.28)

The outer relative asymptotics (5.26) follows letting n tends to infinity in (5.27), using Lemma 5.2.2,
Lemma 5.1.3, and (5.28). �
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From Theorem 5.2.1 we can see that the outer relative asymptotic behavior of orthogonal polynomi-
als associated with (5.23) does not depend on the specific choice of j and λ.

Lemma 5.2.3. σ ∈ N , then S 1 ∈ N .

Proof. Assume, without loss of generality, that j = 0 and λ = 1. From (5.24) and (5.25) we get

ψn;1(z) =
γn;1

κn
φn(z)−

φn(α)
1 + Kn−1(α,α)

Kn−1(z,α). (5.29)

The evaluation at z = 0 of this last expression yields

ψn;1(0)
γn;1

=
φn(0)
κn
−

|φn(α)|2

1 + Kn−1(α,α)
Kn−1(0,α)

γn;1φn(α)
,

and using the Christoffel-Darboux formula (2.32), we obtain

Kn−1(0,α)

γn;1 φn(α)
=

κn

γn;1

φ∗n(α)

φn(α)
−
φn(0)
κn

 . (5.30)

From Corollary 5.1.2, under our conditions, the following limit holds lim
n→∞

φ∗n(α)

φn(α)
= 0. Since Kn(α,α)

is an increasing sequence and lim
n→∞

1
φn(α)

= 0, applying the Stolz-Césaro criterion, we have

lim
n→∞

|φn(α)|2

1 + Kn(α,α)
=

(
1−

1
|α|2

)
. (5.31)

On the other hand, from (5.29) we can deduce the following identity

|φn(α)|2

1 + Kn(α,α)
= 1−

1 + Kn−1(α,α)
1 + Kn(α,α)

= 1−
(
γn;1

κn

)2

. (5.32)

Thus,
lim

n→∞

Kn−1(0,α)

γn;1 φn(α)
= 0

and the result follows. �

We are now in a position to sumarize the results obtained above, in the following statement.

Theorem 5.2.2. Let {ψn}n>0 be the sequence of monic orthogonal polynomials associated with the inner

product (5.19). Then, uniformly in C \D,

lim
n→∞

ψn(z)
φn(z)

=

m∏
i=1

B(αi)li+1.
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Proof. First of all, we prove the result for

f(Z) = fm(Z) =
(

f (l1)(α1), . . . , f (lm)(αm)
)
,

and Am a positive definite hermitian matrix of order m. Let {ψn;m}n>0 be the sequence of orthonormal
polynomials with respect to (5.19) for f(Z) = fm(Z). We can assume, without loss of generality, Am = Im

by Lemma 5.2.1. Therefore, the relative asymptotics can be written as follows

lim
n→∞

ψn;m(z)
φn(z)

= lim
n→∞

ψn;1(z)
φn(z)

m∏
i=2

ψn;i(z)
ψn;i−1(z)

,

which, using Lemma 5.2.3 and Theorem 5.2.1, immediately yields

lim
n→∞

ψn;m(z)
φn(z)

=

m∏
i=1

B(αi).

Finally, the proof for a general f(Z) is a straightforward consequence of the previous analysis. �

5.2.2 Zeros

In this subsection we study the asymptotic behavior of the zeros of orthogonal polynomials asso-
ciated with the discrete Sobolev inner product (5.23). In contrast with the real line case Alfaro et al.
[1996]; Bruin [1993]; Dimitrov et al. [2010,b]; Marcellán and Rafaeli [2011]; Pérez and Piñar [1993]
(see also Appendix A), there is not a well developed theory for zeros of discrete Sobolev orthogonal
polynomials on the unit circle.

The monic version of (5.27) is

Ψn(z) = Φn(z)−
λΦ

( j)
n (α)

1 +λK( j, j)
n−1 (α,α)

K(0, j)
n−1 (z,α). (5.33)

Thus, 
Ψ0(z)
Ψ1(z)
...

Ψn−1(z)


= Ln


Φ0(z)
Φ1(z)
...

Φn−1(z)


,

where Ln is a n× n lower triangular matrix with 1 as entries in the main diagonal, and the remaining
entries are given by (5.33), i.e.,

lm,k = −
1

‖Φk‖
2
σ

λΦ
( j)
m (α)Φ( j)

k (α)

(1 +λK( j, j)
m−1(α,α))

, 1 6 m 6 n, 0 6 k 6 m−1.
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GGT matrices

One of our aim is to find a relation between HΨ, the Hessenberg matrix associated with the monic
orthogonal polynomials {Ψn}n>0, and Hσ. In particular, we get

z


Φ0(z)
Φ1(z)
...

Φn−1(z)


= (Hσ)n


Φ0(z)
Φ1(z)
...

Φn−1(z)


+Φn(z)


0
0
...

1


,

and, on the other hand,

z


Ψ0(z)
Ψ1(z)
...

Ψn−1(z)


= (HΨ)n


Ψ0(z)
Ψ1(z)
...

Ψn−1(z)


+Ψn(z)


0
0
...

1


. (5.34)

Substituting in (5.34), we obtain

zLn


Φ0(z)
Φ1(z)
...

Φn−1(z)


= (HΨ)nLn


Φ0(z)
Φ1(z)
...

Φn−1(z)


+Φn(z)


0
0
...

1


+ An


Φ0(z)
Φ1(z)
...

Φn−1(z)


,

where

An =


0 . . . . . . 0
...

...

0 . . . . . . 0
ln,0 . . . . . . ln,n−1


.

As a consequence,

z


Φ0(z)
Φ1(z)
...

Φn−1(z)


=

(
L−1

n (HΨ)nLn + L−1
n An

)


Φ0(z)
Φ1(z)
...

Φn−1(z)


+Φn(z)


0
0
...

1


,

so
(Hσ)n = L−1

n (HΨ)nLn + L−1
n An

and therefore, since
L−1

n An = An,

we have
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Theorem 5.2.3. Let (Hσ)n and (HΨ)n be the n×n truncated GGT matrices associated with {Φn}n>0 and

{Ψn}n>0, respectively. Then,

(HΨ)n = Ln((Hσ)n−An)L−1
n .

As a consequence, the zeros of Ψn+1 are the eigenvalues of the matrix (Hσ)n−An, a rank one perturba-

tion of the matrix (Hσ)n.

In the previous theorem we have characterized the eigenvalues of the GGT matrix associated with
the discrete Sobolev polynomials as the eigenvalues of a rank one perturbation of the GGT matrix
associated with the measure.

Notice that An = (0, . . . ,0,1)T (ln,0, ln,1, . . . , ln,n−1) and, since ln,k = 0 for k < j, then

An =
λΦ

( j)
n (α)

1 +λK( j, j)
n−1 (α,α)


0
...

0
1


0, . . . ,0, Φ

( j)
j (α)

‖Φ j‖2
, . . . ,

Φ
( j)
n−1(α)

‖Φn−1‖2

 .

As an example, if dσ(θ) =
dθ
2π

is the Lebesgue measure, it is not difficult to see that in such a case, if
α = 0, then An = 0, n , j, and

A j =
λ( j!)2

1 +λ( j!)2


0
...

0
1


[
0, . . . , 0, 1, 0, . . . , 0

]
,

where the one is in the position j. On the other hand, if α = 1, then for n > j,

An =
λ (n)!

(n− j)!

1 +λ

n−1∑
k= j

(
k!

(k− j)!

)2


0
...

0
1


[
0, . . . , 0, j!, ( j + 1)!, . . . , (n−1)!

(n− j−1)!

]
.

Asymptotic behavior

First, denote by {φn(·;dσ j+1)}n>0 the corresponding sequence of orthonormal polynomial with re-
spect to

dσ j(z) = |z−α|2( j+1)dσ(z), j ≥ 0,
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5. SPECTRAL TRANSFORMATIONS ASSOCIATED WITH MASS POINTS

i.e., the product of j + 1 transformations as (5.15). For any j ≥ 0, the relation between φn(·;dσ j+1) and
φn(·,dσ) is given by Marcellán and Moral [2002]

(z−α) j+1φn− j−1(z,dσ j+1) =
ηn− j−1

αn

φn(z)−
j∑

k=0

γn,kK(0,k)
n−1 (z,α)

 , (5.35)

where ηn is the leading coefficient of φn(·,dσ j+1), and γn,k is the k-th component of the vector

[
φn(α) φ′n(α) . . . φ

( j)
n (α)

]


Kn−1(α,α) K(0,1)
n−1 (α,α) . . . K(0, j)

n−1 (α,α)
K(1,0)

n−1 (α,α) K(1,1)
n−1 (α,α) . . . K(1, j)

n−1 (α,α)
...

...
. . .

...

K( j,0)
n−1 (α,α) K( j,1)

n−1 (α,α) . . . K( j, j)
n−1 (α,α)



−1

.

If σ ∈ N , then Marcellán and Moral [2002]

lim
n→∞

φn(z;dσ j+1)
φn+ j+1(z)

=

(
α

|α|

1
αz−1

) j+1

, (5.36)

holds uniformly in |z| > 1 if |α| > 1, and in |z| > 1 if |α| > 1.

On the other hand, by Theorem 5.2.1, for |α| > 1,

lim
n→∞

ψn(z)
φn(z)

=
α

|α|

z−α
αz−1

, (5.37)

uniformly on every compact subset of |z| > 1. From (5.36) and (5.37), we have(
|α|

α
(αz−1)

) j

(z−α) lim
n→∞

φn(z;dσ j+1)
φn+ j+1(z)

= lim
n→∞

ψn+ j+1(z)
φn+ j+1(z)

.

Hence,

lim
n→∞

ψn(z)
φn− j−1(z;dσ j+1)

=

(
|α|

α
(αz−1)

) j

(z−α),

uniformly |z| > 1. The following result follows immediately from Hurwitz’s Theorem Conway [1978].

Theorem 5.2.4. There is a positive integer n0 such that, for n > n0, the n-th Sobolev monic orthogonal

polynomial Ψn defined by (5.23), with |α| > 1, has exactly 1 zero in C \D accumulating in α, while the

remaining zeros belong to D.

This result is analogous to the well known result of Meijer Meijer [1993] for Sobolev orthogonal
polynomials on the real line; see also Appendix A. We now turn our attention to the case when λ tends
to infinity. For a fixed n, j = 0 and λ tends to infinity, n−1 zeros of ψn tend to the zeros of φn−1(z,dσ1),
and the remaining zero tends to z = α. On the other hand, for j = 1, the zeros of ψn tend to the zeros of a
linear combination of Φn(z), (z−α)Φn−1(z,dσ1), and (z−α)2Φn−2(z,dσ2) when λ→∞. This result can
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be generalized for arbitrary j. Indeed, from (5.35), notice that

−γn, jK
(0, j)
n−1 (z,α) = (z−α) j+1φn− j−1(z,dσ j+1)−

ηn− j−1

αn
φn(z) +

j−1∑
k=0

γn,kK(0,k)
n−1 (z,α).

Applying the last formula recursively for k = 0,1, . . . , j−1, we obtain

Theorem 5.2.5. Let {ψn}n>0 be the sequence of orthonormal polynomials with respect to (5.23), with

j ≥ 0. Then ψn(z) is a linear combination of φn(z), (z−α)φn−1(z,dσ1), . . . , (z−α) j+1φn− j−1(z,dσ j+1). As

a consequence, the zeros of ψn(z) tend to the zeros of such a linear combination when λ→∞.

Now, we provide an extremal characterization for the limit discrete Sobolev polynomials, when the
mass tends to infinity. Notice that when λ tends to infinity in (5.33), we get the limit polynomial

Ψ̃n(z) = Φn(z)−
Φ

( j)
n (α)

K( j, j)
n−1 (α,α)

K(0, j)
n−1 (z,α). (5.38)

It is easily seen that Ψ̃
( j)
n (α) = 0, as well as Ψ̃n is orthogonal to the linear space span{1,z−α, . . . , (z−

α) j−1, (z− α) j+1, . . . , (z− α)n−1} ∈ Pn. Assume that Ψ̂n is a monic polynomial of degree n such that
Ψ̂

( j)
n (α) = 0. Then, we can write

Ψ̂n(z) = Φn(z) +

n−1∑
k=0

λn,kφk(z), (5.39)

for some (unique) complex numbers λn,k, and therefore

Φ
( j)
n (α) +

n−1∑
k=0

λn,kφ
( j)
k (α) = 0.

On the other hand, from Cauchy-Schwarz inequality, we get

∣∣∣∣Φ( j)
n (α)

∣∣∣∣2 6 n−1∑
k=0

|λn,k |
2

n−1∑
k=0

|φ
( j)
k (α)|2 = K( j, j)

n−1 (α,α)
n−1∑
k=0

|λn,k |
2,

and taking norms with respect to µ in (5.39), we obtain

‖Ψ̂n‖
2
σ = ‖Φn‖

2
σ +

n−1∑
k=0

|λn,k |
2.

Thus,

‖Ψ̂n‖
2
σ = ‖Φn‖

2
σ +

n−1∑
k=0

|λn,k |
2 > ‖Φn‖

2
σ +

|Φ
( j)
n |

2

K( j, j)
n−1 (α,α)

.

But the term in the right hand side is precisely ‖Ψ̃n‖
2
σ. As a consequence, we have proved the following
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5. SPECTRAL TRANSFORMATIONS ASSOCIATED WITH MASS POINTS

extremal characterization for the limit polynomial Ψ̃n.

Theorem 5.2.6. Let Ψ̃n be the limit monic polynomial of degree n defined by (5.38), then

‖Ψ̃n‖
2
σ = min

{∫
T

|Ψ̂n(z)|2dµ(z); Ψ̂n(z) = zn + (lower degree terms), Ψ̂
( j)
n (α) = 0

}
.

Example: Lebesgue polynomials

For the normalized Lebesgue measure, it is very well known that its corresponding monic orthogonal
polynomial sequence is Φn(z) = zn, n > 0; see example in Section 4.2.1. Thus,

Φ
( j)
n (α) =

n!
(n− j)!

αn− j, K(0, j)
n−1 (z,α) =

n−1∑
k= j

k!
(k− j)!

zkᾱk− j, K( j, j)
n (α,α) =

n∑
k= j

(
k!

(k− j)!

)2

|α|2(k− j).

When n, j, and λ are fixed and α varies, we were able to identify some ’critical’ values of α that
change the behavior of the zeros of ψn. Of course, such values of α will depend on n, j, and λ. The
following table illustrates such a situation when n = 30, j = 2, and λ = 10.

Table 5.1: Critical values for n = 30, j = 2, and λ = 10
α Behavior of zeros
0 < |α| < 0.8202 All zeros approximately aligned and in-

crease with α
|α| ∼ 0.8202 One of the zeros (zi) breaks the pattern
0.8202 < |α| < 1.3194 zi increases with α
|α| ∼ 0.1.3194 zi changes sign
1.1394 < |α| < 1.6263 zi decreases with α
|α| ∼ 1.6263 zi goes back to the aligned pattern
|α| > 1.6263 All zeros approximately aligned and de-

crease with α

Figures 5.1(a) illustrates the information in Table 5.1, showing the location of the zeros of ψ30 for
several values of α. Namely, the zeros corresponding to α = 0.4+0.4i (blue discs), α = 0.7+0.7i (purple
square), α = 1.05 + 1.05i (yellow diamonds), and α = 1.6 + 1.6i (green triangles) were plotted. On the
other hand, Figure 5.1(b) illustrates the behavior of the zeros of ψn as n→∞. The zeros corresponding
to n = 10, n = 20, n = 30, and n = 100 were plotted. Notice that one of the zeros approaches the value of
α as n increases, as stated in Theorem 5.2.4.

Example: Bernstein-Szegő polynomials

In order to analyze the behavior of the zeros according to the location of α, we present some numeri-
cal computations of such zeros for the orthogonal polynomials associated with perturbations of the form
(5.23) for one special case of probability measures on the unit circle: the Bernstein-Szegő measures.
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Figure 5.1: Zeros for Lebesgue polynomials with n = 30, j = 2, λ = 10

For the Bernstein-Szegő measure Simon [2005] dσ(θ) =
1− |b|2

|1−bz|2
dθ
2π

with |b| < 1 (see example in

Section 4.2.1), we have φn(z) = zn−1(z− b̄), n > 1. Thus, we get

φ
( j)
n (α) =

n!
(n− j)!

αn− j− b̄
(n−1)!

(n− j−1)!
αn− j−1,

K(0, j)
n−1 (z,α) =

n−1∑
k= j

(zk − b̄zk−1)
(

k!
(k− j)!

ᾱk− j− b̄
(k−1)!

(k− j−1)!
ᾱk− j−1

)
,

K( j, j)
n (α,α) =

n∑
k= j

∣∣∣∣∣ k!
(k− j)!

ᾱk− j− b̄
(k−1)!

(k− j−1)!
ᾱk− j−1

∣∣∣∣∣2 ,
and, we obtain again the expression of ψn(z) using (5.24). We perform a similar numerical analysis of
the zeros of ψ30 as a function of α as in the Lebesgue case. Figure 5.2(a) shows the behavior of the zeros
of ψ30 for fixed j, λ, and b, and several values of α, namely α = 0.4 + 0.4i (blue discs), α = 0.7 + 0.7i

(purple square), α = 1.08 + 1.08i (yellow diamonds), and α = 2.2 + 2.2i (green triangles). As before, the
behavior of the zeros as n→∞ is illustrated in Figure 5.2(b), using the same values of n plotted in the
Lebesgue case.

On the other hand, the behavior of the zeros of ψn when λ→∞ is shown in Figure 5.2.2. According
to Theorem 5.2.5, the zeros of ψn tend to a linear combination of φn(z), (z− α)φn−1(z,dµ1) and (z−
α)φn−2(z,dµ2), when j = 1. We computed the zeros of such polynomials for the Lebesgue (Fig. 5.3(a))
and Bernstein-Szegő (Fig. 5.3(b)) cases.

The points on the outer diameter correspond to the zeros of the above mentioned linear combination.
Notice that when λ increases, the zeros of ψn approach the outer diameter, as per Theorem 5.2.5.
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(b) n = 30, α = 1 + i

Figure 5.2: Zeros of Bernstein-Szegő polynomials with b = 0.8 + 0.8i, j = 2, and λ = 1
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Figure 5.3: Zeros of Lebesgue and Bernstein-Szegő polynomials with n = 8, j = 1
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Chapter 6

Generators of rational spectral
transformations for C-functions

. . . Stieltjes function(s) 1with polynomial coefficients can be presented as a finite superposition of four fundamental elementary

transforms . . .

— A. Zhedanov. Zhedanov [1997]

In this chapter we deal with transformations of sequences of orthogonal polynomials associated
with the linear functional L using spectral transformations of the corresponding C-function F. First, we
study the modifications obtained by multiplying a hermitian functional by a polynomial of any degree,
in short, polynomial modifications. We characterize when two functionals are related by a polynomial
modification. We are interested in those modifications which preserve their hermitian character. The
possibility of considering modifications that do not preserve the hermitian character of the functional
leads to left and right orthogonality Baxter [1961]. Hence, the preservation of the hermiticity calls
for the use of Laurent polynomials as perturbations. Laurent polynomial modifications of hermitian
linear functional have been previously considered in Cantero [1997]; Daruis et al. [2007]; Garza [2008];
Godoy and Marcellán [1991, 1993]; Marcellán and Hernández [2008]; Suárez [1993].

Next, we distinguish two related problems: to characterize the quasi-definiteness character of the
direct polynomial modification (2.43) and the inverse polynomial modification (2.44) from the origi-
nal functional. Due to the non-uniqueness of the inverse problem we pay special attention to this one.
Finally, we show that a linear spectral transformation of F can be obtained as a finite composition of
spectral transformations (2.43)-(2.44), and also that any rational spectral transformations can be ob-
tained as a finite composition of linear and ±k associated spectral transformations.

1S- functions.
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6. GENERATORS OF RATIONAL SPECTRAL TRANSFORMATIONS FOR C-FUNCTIONS

6.1 Hermitian polynomial transformation

Let L be the hermitian linear functional introduced in (2.22). The polynomial modification fL is
defined by

〈 fL,g〉 = 〈L, f g〉 , f ,g ∈ Λ.

This polynomial modification is hermitian if and only if f is a hermitian Laurent polynomial, i.e., f = f∗,
which is equivalent to state that f = p + p∗, p ∈ P. Such a polynomial p can be uniquely determined by
f simply requiring p(0) ∈R.

Féjer-Riesz’s Theorem Féjer [1915]; Riesz [1915] states that any Laurent polynomial f which is
non-negative on T can be factorized f (eiθ) = |p(eiθ)|2, where p is a polynomial whose zeros all lie in
D or, in other words, one can find p whose zeros are all in C \D. By analyticity, f (z) = p(z)p(1/z).
Thus, fL is positive definite for a positive definite linear functional L if f also satisfies Féjer-Riesz’s
condition. Its analog on the real line, that is, P(x) > 0 on R implies P(x) = Q(x)Q(x) where Q has all its
zeros in C+ it is well known.

Another way of characterizing a hermitian Laurent polynomial modification is through the poly-
nomial g = zdegp f of degree 2degp. The condition f = f∗ means that g is self-reciprocal, i.e., g = g∗.
Therefore, hermitian polynomial modifications are related with self-reciprocal polynomials of even de-
gree. The zeros zi of a self-reciprocal polynomial lie on the unit circle or appear in symmetric pairs zi,
1/zi. Indeed, this property characterizes the self-reciprocal polynomials up to numerical factors. This
implies that any self-reciprocal polynomial of even degree factorizes into a product of self-reciprocal
polynomials of degree 2. As a consequence, an arbitrary hermitian polynomial modification fL can
be factorized as a product of elementary ones of degree one. In the sequel we assume for simplicity
that the polynomial modification f is a monic hermitian Laurent polynomial from which we can deduce
immediately the more general case.

We denote by W⊥n 1the orthogonal complement in Pn of a subspace W ⊂ Pn.

Theorem 6.1.1. Tasis [1989] Let L be a hermitian linear functional such that the corresponding se-

quence of monic orthogonal polynomials {Φn}n>0 exists. Then,
{
zkΦn(z)

}r

k=1

⋃ {
zkΦ∗n(z)

}r

k=1
is a basis of

(zrPn−r−1)⊥n+r for n ≥ r ≥ 1 and a generator system of Pn+r for r > n ≥ 0.

As an immediate consequence of Theorem 6.1.1 we have the following result.

Corollary 6.1.1. Cantero et al. [2011] Let L be a hermitian linear functional such that there exists

the corresponding sequence of monic orthogonal polynomials {Φn}n>0. Then, every polynomial Ψn(z) ∈
(zrPn−r−1)⊥n+r has a unique decomposition, Ψn(z) = C(z)Φn(z) + D(z)Φ∗n(z), C ∈ Pr, D ∈ Pr−1, for n ≥

r ≥ 1, and every polynomial Ψn ∈ Pn+r has infinitely many decompositions for r > n ≥ 0.

To study the hermitian polynomial modifications we have the next theorem.

1The orthogonal complement W⊥n of a subspace W of an inner product space V is the set of all vectors in V that are orthogonal
to every vector in W.
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Theorem 6.1.2. Cantero et al. [2011] Let L and L̃ be hermitian linear functionals with finite segments

of monic orthogonal polynomials {Φ j}
n
j=0, {Ψ j}

n+r
j=0, respectively, and let f (z) = p(z)+ p∗(z) = z−rg(z) with

f be a polynomial of degree r. Then, the following statements are equivalent:

i) L̃ = fL in Pn.

ii) There exist C j ∈ Pr, D j ∈ Pr−1 with C j(0) , 0 such that

g(z)Ψ j = C j(z)Φ j+r(z) + D j(z)Φ∗j+r(z), j > 0.

iii) There exist C j ∈ Pr, D j ∈ Pr−1 with C j(0) , 0 such that

g(z)Ψ∗j(z) = zD∗j(z)Φ j+r(z) +C∗j (z)Φ∗j+r(z), D∗j(z) = D∗r−1
j (z), j > 0.

The polynomials C j ∈ Pr, D j ∈ Pr−1 satisfying ii) or iii) are unique, degC j = r, C j(0) ∈R and C∗j (0) =

g(0).

The above theorem has the following consequence for quasi-definite functionals.

Corollary 6.1.2. Cantero et al. [2011] Let L and L̃ be quasi-definite hermitian linear functionals with

sequence of monic orthogonal polynomials {Φn}n>0, {Ψn}n>0, respectively, and let f (z) = p(z) + p(z)∗ =

z−rg(z) with f be a polynomial of degree r. Then, L = pL̃ if and only if there exist polynomials Cn ∈Pr,

Dn ∈ Pr−1 with Cn(0) , 0 such that

g(z)Ψn(z) = Cn(z)Φn+r(z) + Dn(z)Φ∗n+r(z), n ≥ 0,

or, equivalently,

g(z)Ψ∗n(z) = zD∗n(z)Φn+r(z) +C∗n(z)Φ∗n+r(z), n ≥ 0.

6.2 Laurent polynomial transformation: Direct problem

The direct problem deals with the case where we suppose that a hermitian linear functional L
associated with the sequence of orthogonal polynomials {Φn}n>0, and a hermitian polynomial of degree
1 are given, i.e., we consider the spectral transformation (2.43). Then, we obtain information about the
functional LR and its sequence of monic orthogonal polynomials {Ψn}n>0.

From (2.44), we get
c̃−k = c−(k+1) + c−(k−1)− (α+α)c−k, (6.1)

where {̃cn}n>0 is the sequence of moments associated with LR. Notice that if a = −2<(α), and using
(6.1), we obtain

T̃ = ZT + aT + TZT ,

where T̃ is the Toeplitz matrix associated with LR, and Z is the shift matrix with ones on the first
upper-diagonal and zeros on the remaining entries.
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6. GENERATORS OF RATIONAL SPECTRAL TRANSFORMATIONS FOR C-FUNCTIONS

6.2.1 Regularity conditions and Verblunsky coefficients

If L is quasi-definite, necessary and sufficient conditions for LR to be also quasi-definite have been
studied. Moreover, the explicit expression for sequences of monic polynomials orthogonal with respect
to LR have been obtained Cantero [1997]; Suárez [1993].

Theorem 6.2.1. Suárez [1993]

i) If |<α| , 1, and b1,b2 are zeros of the polynomial z2− (α+ ᾱ)z+1, thenLR is quasi-definite if and

only if K∗n(b1,b2) , 0, n > 0. In addition, if {Ψn}n>0 denotes the sequence of monic polynomials

orthogonal with respect to LR, then

Ψn−1(z) =
Φn(z)K∗n−1(b1,b2)−K∗n−1(z,b2)Φn(b1)

K∗n−1(b1,b2)(z−b1)
, n > 1, (6.2)

and

Ψn−1(0) =
Φn(b1)Φn−1(b2)−Φn(b2)Φn−1(b1)

K∗n−1(b1,b2)(b1−b2)kn−1
, n > 1. (6.3)

ii) If |<α| = 1, and b is the double zero of the polynomial z2 − (α+ ᾱ)z + 1, then LR is quasi-definite

if and only if K∗n(b,b) , 0, n > 0. In addition,

Ψn−1(z) =
Φn(z)K∗n−1(b,b)−K∗n−1(z,b)Φn(b)

K∗n−1(b,b)(z−b)
, n > 1, (6.4)

and

Ψn−1(0) = −b
Φn(0)K∗n−1(b,b)kn−1−Φn−1(b)Φn(b)

K∗n−1(b,b)kn−1
, n > 1. (6.5)

According to Corollary 6.1.2, (6.2) and (6.4) can be written as follows.

Corollary 6.2.1.

i) If |<α| , 1, and b1,b2 are the zeros of the polynomial z2− (α+ ᾱ)z + 1, then

(z−b1)(z−b2)Ψn(z) = z
(
z−b2−

Φn+1(b1)Φ∗n(b2)
knK∗n(b1,b2)

)
Φn(z)

+

(
(z−b2)Φn+1(0) +

b2Φn+1(b1)Φn(b2)
knK∗n(b1,b2)

)
Φ∗n(z).

ii) If |<α| = 1, and b is the double zero of the polynomial z2− (α+ ᾱ)z + 1, then

(z−b)2Ψn(z) = z
(
z−b−

Φn+1(b)Φ∗n(b)
knK∗n(b,b)

)
Φn(z)

+

(
(z−b)Φn+1(0) +

bΦn+1(b)Φn(b)
knK∗n(b,b)

)
Φ∗n(z).
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There is another equivalent condition for the quasi-definiteness of LR and, consequently, an expres-
sion for the corresponding Verblunsky coefficients.

Theorem 6.2.2. Cantero [1997] The linear functional LR is quasi-definite if and only if Πn(b1) , 0,

n > 0, where

Πn(x) =

∣∣∣∣∣∣∣ xΦn(x) Φ∗n(x)
x−1Φn(x−1) Φ∗n(x−1)

∣∣∣∣∣∣∣ .
Moreover, the families of Verblunsky coefficients {Ψn(0)}n>1 are given by

Yn(0) =
(
b1−b−1

1

) Φn(b1)Φn(b−1
1 )

Πn(b1)
, n > 1. (6.6)

In Garza [2008] it was obtained the relation between the corresponding GGT matrices as well as an
explicit expression for the Verblunsky coefficients of associated with this perturbation is given. Thus,
the invariance of the Szegő class of bounded variation measures follows.

6.2.2 C-functions

From the relation between the moments (6.1) we get that the C-function associated with LR is

FR(z) =
1
2

((
z + z−1− (α+α)

)
F(z) + c0

(
z− z−1

)
+ c1− c−1

)
. (6.7)

In a more general situation, if we consider a finite composition of LR with order k ≥ 0 defined by

LR(k) =<

 k∏
i=1

(z−αi)

L, αi ∈ C, (6.8)

we can prove the following result.

Theorem 6.2.3. A generic rational spectral transformation with C = 0 and D = 1 is equivalent to (6.8).
Furthermore,

A(z) =
1
2
<p(z), B(z) = P(z)−P∗(z), (6.9)

where P is the polynomial of second kind associated with

p(z) =

k∏
i=1

(z−αi)

with respect to the linear functional (6.8).

Proof. From (6.7) we get that LR is a spectral transformation with C = 0 and D = 1. On the other hand,
if we start with a generic spectral transformation where C = 0, B is a hermitian Laurent polynomial of
degree one, and D = 1, A should be a hermitian Laurent polynomial of degree one (see Section 6.4), and
the only choice for this spectral transformation is (6.7) containing one free parameter α.
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6. GENERATORS OF RATIONAL SPECTRAL TRANSFORMATIONS FOR C-FUNCTIONS

If we consider the linear functional (6.8), from (6.7) we have

F̃(z) = A(z)F(z) + B(z), (6.10)

where
A(z) = (z + z−1− (α1 +α1)) · · · (z + z−1− (αk +αk))

is a hermitian Laurent polynomial of degree k. This transformation contains k free parameters αk. B is
a polynomial of the same type and degree as A.

Conversely, if we start with a generic spectral transformation where

A = (z + z−1− (α1 +α1)) · · · (z + z−1− (αk +αk))

is a hermitian Laurent polynomial of degree k, C ≡ 0, and D ≡ 1, then B should be a hermitian Laurent
polynomial of same degree as A, in order to satisfy A ≡ A∗ (see Section 6.4). Moreover, it is easily seen
that for (6.8) the polynomial B is uniquely determined by means of the sequence of moments {cn}n∈Z

associated with the linear functional L. Furthermore, (6.9) follows immediately from the definition of
(6.8). �

6.3 Laurent polynomial transformations: Inverse problem

In this section we study the inverse polynomial modification given by (2.44). More precisely, given
a hermitian functional L whose corresponding sequence of monic orthogonal polynomials is denoted
by {Φn}n>0 and a hermitian Laurent polynomial of degree 1, we obtain information about the hermitian
solutionsLR(−1) of (2.44) and their sequence of monic orthogonal polynomials {Ψn}n>0. IfL is a positive
definite linear functional, necessary and sufficient conditions in order LR(−1) to be a quasi-definite linear
functional are given. The relation between the corresponding sequences of monic orthogonal polynomi-
als is presented. We also obtain the relations between the corresponding C-functions in such a way that
a linear spectral transformation appears.

We can describe the hermitian solutions of LR(−1) starting from a particular one LR(−1)
0

Cantero et al.
[2011]. This approach shows that the inverse problem is related to the study of the influence of Dirac’s
deltas and their derivatives on the quasi-definiteness and the sequence of monic orthogonal polynomials
of a hermitian functional.

We are only interested in those values of α such that 0 < |<(α)| < 1. However, in this case the zeros
b and b of z2 − (α+α)z + 1 are complex conjugate and, furthermore, |b| = 1. We denote by σ and σ(−1)

R

the measures associated with the positive definite case of L and LR(−1) , respectively, i.e.,

dσ(−1)
R (z) =

dσ(z)
2<(z−α)

+ m1δ(z−b) + m2δ(z−b), m1,m2 ∈R.

Here, σ is a non-trivial probability measure supported on T, which can be decomposed as in (2.36).
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Thus, if σs = 0, then the integral

c̃n =

∫ 2π

0

einθω(θ)
z + z−1− (α+α)

dθ
2π

=
1

2πi

∫
T

znω(z)
z2− (α+α)z + 1

dz,

has singularities in z = b and z = b. These singularities can be removed if we consider

c̃n =
1

2πi

∫
T

znω(θ)
z2− (α+α)z + 1

dz

=
1

2πi(b−b)

∫
T

zn (ω(z)−ω(b))
z−b

dz−
∫
T

zn
(
ω(z)−ω(b)

)
z−b

dz +
1
2

bnω(b)−
1
2

b
n
ω(b)

 , (6.11)

assuming thatω ∈C2+; that is, ω satisfies the Lipschitz condition 1of order τ (0< τ6 1) onTVolkovyski
et al. [1972]. Notice that this is also valid if σs , 0, as long as σs has a finite number of mass points
different from b and b.

From (2.44) we get
c−k = c̃−(k+1) + c̃−(k−1)− (α+α)̃c−k. (6.12)

If a = −2<(α), and using (6.12), we obtain

T = ZT̃ + aT̃ + T̃ZT

Furthermore, the hermitian Toeplitz matrices can be characterized as T = T∗ together with ZTZT = T,
and, therefore,

TZT = T̃B,

where B = I+aZT + (ZT )2 is an infinite lower triangular matrix with ones in the main diagonal, with the
following structure

B =


A 0 . . .

AT A
. . .

0
. . .

. . .

 ,

where A =

1 0
a 1

. On the other hand, is not difficult to show that

B−1 =



A1 0 0 . . .

A2 A1 0
. . .

A3 A2 A1
. . .

...
. . .

. . .
. . .


,

1 |ω(z)−ω(y)| 6C|x− y|τ, C > 0, z,y ∈T.
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where A1 = A−1, Ak = (−1)k−1A−1Mk−1, k > 2, and

M = A−1AT =

 1 a

−a 1−a2

 .
In other words, B−1 is a lower triangular block matrix, with Toeplitz structure. Finally,

TS = T̃,

where S is given by

S = ZT B−1 =



ZT
1 0 0 . . .

Z1 ZT
1 0

. . .

0 Z1 ZT
1

. . .

...
. . .

. . .
. . .





A1 0 0 . . .

A2 A1 0
. . .

A3 A2 A1
. . .

...
. . .

. . .
. . .


,

with Z1 =

0 1
0 0

, i.e., S is also a lower triangular block matrix with Toeplitz structure.

6.3.1 Regularity conditions and Verblunsky coefficients

Assume that LR(−1) is quasi-definite and let {Ψn}n>0 be its corresponding sequence of monic orthog-
onal polynomials with leading coefficients κ̃n. We next state the relation between {Ψn}n>0 and {Φn}n>0.

Theorem 6.3.1. Let L be a positive definite linear functional. If LR(−1) , given as in (2.44), is a quasi-

definite linear functional, then Ψn, the n-th monic polynomial orthogonal with respect to LR(−1) , is

Ψn(z) =

z +
k̃n

kn−1

Φn−1(z) +

Φn(0)−
k̃n

kn−1
Ψn+1(0)

Φ∗n−1(z). (6.13)

Conversely, if {Ψn}n>0 is given by (6.13) and assuming that |Ψn(0)| , 1, n > 1, then {Ψn}n>0 is the

sequence of monic polynomials orthogonal with respect to LR(−1) .

Proof. Let

Ψn(z) = Φn(z) +

n−1∑
m=0

λn,mΦm(z). (6.14)

Multiplying the above expression by Φm and applying L, for 0 6 m 6 n−1, we get〈
L,ΨnΦm

〉
= λn,mkm,

or, equivalently, 〈
LR(−1) ,

(
z + z−1− (α+α)

)
Ψn(z)Φm(z)

〉
= λn,mkm.
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Thus,
λn,m =

1
km

〈
LR(−1) ,

(
z + z−1− (α+α)

)
Ψn(z)Φm(z)

〉
, 0 6 m 6 n−1.

If m = n−1, then

λn,n−1 =
1

kn−1

(〈
LR(−1) ,zΨn(z)Φn−1(z)

〉
+

〈
LR(−1) ,z−1Ψn(z)Φn−1(z)

〉)
=

k̃n

kn−1

(
1−Ψn+1(0)Φn−1(0)

)
.

On the other hand, for 0 6 m 6 n−2,

λn,m =
1

km

〈
LR(−1) ,zΨn(z)Φm(z)

〉
= −

k̃n

km
Ψn+1(0)Φm(0).

Substituting these values into (6.14), we obtain

Ψn(z) = Φn(z) +
k̃n

kn−1
Φn−1(z)− k̃nΨn+1(0)

n−1∑
m=0

Φm(0)Φm(z)
km

= Φn(z) +
k̃n

kn−1
Φn−1(z)−

k̃n

kn−1
Ψn+1(0)Φ∗n−1(z).

(6.15)

Using the recurrence relation, we get

Ψn(z) = zΦn−1(z) +Φn(0)Φ∗n−1(z) +
k̃n

kn−1
Φn−1(z)−

k̃n

kn−1
Ψn+1(0)Φ∗n−1(z)

=

z +
k̃n

kn−1

Φn−1(z) +

Φn(0)−
k̃n

kn−1
Ψn+1(0)

Φ∗n−1(z),
(6.16)

which proves the first statement of the theorem.

Notice that evaluating (6.15) at z = 0, we get

Ψn(0) =
k̃n

kn−1
Φn−1(0) +Φn(0)−

k̃n

kn−1
Ψn+1(0), (6.17)

and thus (6.16) becomes

Ψn(z) =

z +
k̃n

kn−1

Φn−1(z) +

Ψn(0)−
k̃n

kn−1
Φn−1(0)

Φ∗n−1(z).

If we denote νn = k̃n+1/kn and ln = Ψn+1(0)−νnΦn(0), considering the reversed polynomial of Ψn+1,
we obtain the following linear transfer equationΨn+1(z)

Ψ∗n+1(z)

 =

z + νn ln
lnz νnz + 1

 Φn(z)
Φ∗n(z)

 .
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Notice that the determinant of the above transfer matrix is

(z + νn)(νnz + 1)− |ln|2z = νnz2 +
(
ν2

n + 1− |ln|2
)
z + νn

= νn(z2 + 1) +
(
ν2

n(1− |Φn(0)|2) + 1− |Ψn+1(0)|2
)
z

+ νn
(
Ψn+1(0)Φn(0) +Ψn+1(0)Φn(0)

)
z

= νn(z2− (α+α)z + 1),

where the last equality becomes clear looking at (6.18) in the following theorem. Furthermore, we get

Φn(z) =
(νnz + 1)Ψn+1(z)− lnΨ∗n+1(z)

νn
(
z2− (α+α)z + 1

) , Φ∗n(z) =
(z + νn)Ψ∗n+1(z)− lnzΨn+1(z)

νn
(
z2− (α+α)z + 1

) ,

and thus we obtain the following alternative expression that relates both sequences of polynomials(
z2− (α+α)z + 1

)
Φn(z) = Ψn+2(z) + ν−1

n

(
Ψn+1(z)−Φn+1(0)Ψ∗n+1(z)

)
.

We now prove that the sequence of monic polynomials {Ψn}n>0 given in (6.13) is orthogonal with
respect to LR(−1) . Notice that Ψn+1(z)−Ψn+1(0)Ψ∗n(z) is a polynomial of degree n + 1 that vanishes at
z = 0 and, thus, Ψn+1(z)−Ψn+1(0)Ψ∗n(z) = zp(z), where p(z) is a polynomial of degree n. Then,

zp(z) = (z + νn)Φn(z) + lnΦ∗n(z)−Ψn+1(0)
(
ln−1zΦn−1(z) + (νn−1z + 1)Φ∗n−1(z)

)
= z(z + νn−1)Φn−1(z) + zln−1Φ∗n−1(z) = zΨn(z),

where the fourth equality follows from (2.29) and (6.17). That is, {Ψn}n>0 satisfies a recurrence relation
like (2.24), and it is therefore an orthogonal sequence with respect to some linear functional L̃. We will
prove that L̃ =LR(−1) . For 0 6 k 6 n−1, consider〈

L̃,
(
z + z−1 −(α+α)

)
Φn(z)zk

〉
=

〈
L̃,

(
z2− (α+α)z + 1

)
Φn(z)zk+1

〉
=

〈
L̃,Ψn+2(z)zk+1

〉
+ ν−1

n

〈
L̃,

(
Ψn+1(z)−Φn+1(0)Ψ∗n+1(z)

)
zk+1

〉
= 0.

On the other hand, for k = n we get〈
L̃,Ψn+2(z) + ν−1

n

(
Ψn+1(z)−Φn+1(0)Ψ∗n+1(z)

)
zk+1

〉
= ν−1

n k̃n+1 = kn.

Thus, {Φn}n>0 is the sequence of monic polynomials orthogonal with respect to
(
z + z−1− (α+α)

)
L̃. But

then
(
z + z−1− (α+α)

)
L̃ =L and, therefore, L̃ =LR(−1) . �

Theorem 6.3.2. Let L be a positive definite linear functional and σ its associated measure. If LR(−1) is

a quasi-definite linear functional, then

i)
(
=(̃c1)

)2 , (1−
(
<(α)

)2 )̃c2
0−<(α)̃c0−

1
4

.
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ii)
(
1− |Φn(0)|2

)
ν2

n + An+1νn + 1− |Ψn+1(0)|2 = 0, n > 1,

where An = Ψn(0)Φn−1(0) +Ψn(0)Φn−1(0) +α+α.

Proof. From (6.12), for k = 0 and assuming that c0 = 1, we have

<(̃c1) =
1
2

+<(α)̃c0.

In addition, in order to be LR(−1) a quasi-definite functional, we need

det T̃1 =

∣∣∣∣∣∣∣ c̃0 c̃1

c̃−1 c̃0

∣∣∣∣∣∣∣ = c̃2
0−

(
<(̃c1)

)2
−

(
=(̃c1)

)2 , 0,

where T̃ is the Toeplitz matrix associated withLR(−1) , and T̃n is its corresponding (n+1)× (n+1) leading
principal submatrix. Therefore, for the choice of α, we get

(
=(̃c1)

)2 , c̃2
0−

(
1
2

+<(α)̃c0

)2

,

which is i). Thus, c̃0 and =(̃c1) are free parameters, while<(̃c1) is determined by c̃0 and the choice of
α.

Furthermore, we have

kn = 〈Φn,Φn〉L = 〈Ψn,Φn〉L =
〈(

z + z−1− (α+α)
)
Ψn(z),Φn(z)

〉
LR(−1)

= −
(
Ψn+1(0)Φn(0) +α+α

)
k̃n + 〈Ψn(z),zΦn(z)〉LR(−1) .

On the other hand, from (6.15),

〈Ψn(z),zΦn(z)〉LR(−1) = −Ψn+1(0)Ψn(0)̃kn−
k̃n

kn−1
k̃n +

k̃n

kn−1
Ψn+1(0)Φn−1(0)̃kn,

and from (6.17),

〈Ψn(z),zΦn(z)〉LR(−1) = −Ψn+1(0)Ψn(0)̃kn−
k̃n

kn−1
k̃n

+

Ψn(0)−Φn(0) +
k̃n

kn−1
Ψn+1(0)

Ψn+1(0)̃kn

= −Ψn+1(0)Φn(0)̃kn−
k̃n

kn−1
k̃n +

k̃n

kn−1
|Ψn+1(0)|2k̃n.
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Thus, if An+1 = Ψn+1(0)Φn(0) +Ψn+1(0)Φn(0) +α+α, then

kn = −An+1k̃n +
(
|Ψn+1(0)|2−1

) k̃n

kn−1
k̃n,

1− |Φn(0)|2 = −An+1
k̃n

kn−1
+

∣∣∣∣∣∣ k̃n

kn−1
Ψn+1(0)

∣∣∣∣∣∣
2

−

 k̃n

kn−1

2

.

Since, from (6.17), k̃n
kn−1

Ψn+1(0) =
k̃n

kn−1
Φn−1(0) +Φn(0)−Ψn(0), we obtain

1− |Ψn(0)|2 = −An
k̃n

kn−1
−

(
1− |Φn−1(0)|2

) k̃n

kn−1

2

.

Therefore, (
1− |Φn−1(0)|2

) k̃n

kn−1

2

+ An
k̃n

kn−1
+ 1− |Ψn(0)|2 = 0, (6.18)

which is ii). �

Now, from (6.17),

Ψn+1(0) = Φn−1(0) + [Φn(0)−Ψn(0)]
kn−1

k̃n
=

(Φn(0)−Ψn(0))
n−1∏
k=1

(
1− |Φk(0)|2

)
n∏

k=1

(
1− |Ψk(0)|2

)
c̃0

+Φn−1(0), n > 1.

We can thus build an algorithm to compute recursively the sequence {Ψn+1(0)}n>1, starting from Ψ1(0);
see Algorithm 6.1.

Example: Chebyshev polynomials

Let dσ(θ) the measure associated with the Chebyshev polynomials defined in (4.26). It is well
known Simon [2005] that the family of Verblunsky coefficients associated with dσ is

Φn(0) =
1

n + 1
, n > 1.

Now, let us consider the perturbation

dσ̃(θ) =
|z−1|2

z + z−1− (α+α)
dθ
2π
, |z| = 1,
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Algorithm 6.1 Check Regularity
input α, c̃0, {Φn(0)}n>1

1: <(̃c1) = 1
2 +<(α)̃c0

2: if Theorem 6.3.2 i) then

3: Ψ1(0) = −
c̃1

c̃0
4: end if
5: for n = 1,2, . . . do

6: Ψn+1(0) =

(Φn(0)−Ψn(0))
n−1∏
k=1

(
1− |Φk(0)|2

)
n∏

k=1

(
1− |Ψk(0)|2

)
c̃0

+Φn−1(0)

7: if |Ψn+1(0)| = 1 then
8: break
9: end if

10: end for
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(b) n = 103

Figure 6.1: Verblunsky coefficients for Chebyshev polynomials with<α = 0.8 and a = 0.5i

where<(α) = 0.6. Notice that b = 0.6 + 0.8i. Then, according to (6.11),

c̃0 =
1

1.6i

(∫ 2π

0

|eiθ −1|2−0.8
1− (0.6 + 0.8i)e−iθ

dθ
2π
−

∫ 2π

0

|eiθ −1|2−0.8
1− (0.6−0.8i)e−iθ

dθ
2π

)
= −1,

and

c̃1 =
1

1.6i

(∫ 2π

0

(|eiθ −1|2−0.8)eiθ

1− (0.6 + 0.8i)e−iθ
dθ
2π
−

∫ 2π

0

(|eiθ −1|2−0.8)eiθ

1− (0.6−0.8i)e−iθ
dθ
2π

+
1
2

(0.6 + 0.8i)(0.8)−
1
2

(0.6−0.8i)(0.8)
)

= 0.4.

Observe that part i) of Theorem 6.3.2 holds. Applying the algorithm, the first 500 Verblunsky coeffi-
cients are shown in Figure 6.1(a). Notice that all of the new Verblunsky coefficients are real. They are
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distributed on both sides of the origin, in nearly symmetric intervals. If we repeat the computation for
n = 1500, the values accumulate over such intervals. This is shown in Figure 6.1(b).

Example: Geronimus polynomials

In this subsection we consider a linear functional such that the corresponding measure is supported
on an arc of the unit circle. Such a situation appears Geronimus [1954]; Simon [2005] when Φn(0) = a,
n > 1, with 0 < |a| < 1. Here the measure σ associated with {Φn(0)}n>1 is supported on the arc

∆ν = {eiθ : ν 6 θ 6 2π− ν},

with cos(ν/2) =
√

1− |a|2, but it can have a mass point located on T. The orthogonality measure σ is
given by

dσ(θ) =

√
sin

(
θ+ν

2

)
sin

(
θ−ν

2

)
2πsin

(
θ−τ

2

) dθ+ mτδ(z− eiτ), (6.19)

where eiτ =
1−a
1−a

and

mτ =


2|a|2−a−a
|1−a|

, if |1−2a| > 1,

0, if |1−2a| 6 1.

Moreover, the orthonormal polynomials associated with σ are given by

ϕn(z) =
1

(1− |a|2)n/2

(z + a)
zn

1− zn
2

z1− z2
− z

(
1− |a|2

) zn−1
1 − zn−1

2

z1− z2

 , n ∈N,

with

z1 =
z + 1 +

√
(z− eiν)(z− e−iν)

2
, z2 =

z + 1−
√

(z− eiν)(z− e−iν)
2

.

Consider a perturbation of (6.19) given by

dσ̃(z) =
dσ(z)

z + z−1− (α+α)
,

with<α = 0.8 and a = 0.5i. Notice that in this case b = 0.8 + 0.6i and thus b < ∆ν. Then,

c̃0 =

∫ 5π
3

π
3

√
sin

(
1
2θ+ 1

6π
)
sin

(
1
2θ−

1
6π

)
2(cosθ−0.8)πsin(θ/2)

dθ = −0.45876,

c̃1 =

∫ 5π
3

π
3

(cosθ+ isinθ)
√

sin
(

1
2θ+ 1

6π
)
sin

(
1
2θ−

1
6π

)
2(cosθ−0.8)πsin(θ/2)

dθ = 0.13299,

118



-10 -5 5 10

ReHYnH0LL

-1.0

-0.5

0.5

1.0

ImHYnH0LL

(a) n = 500

-10 -5 5 10

ReHYnH0LL

-1.0

-0.5

0.5

1.0

ImHYnH0LL

(b) n = 103

Figure 6.2: Verblunsky coefficients for Geronimus polynomials with<α = 0.8 and a = 0.5i

and i) holds. In such a situation, the algorithm becomes

Ψn+1(0) =
[a−Ψn(0)](1− |a|2)n−1

n∏
k=1

(1− |Ψk(0)|2 )̃c0

+ a, n > 1,

and the first 500 Verblunsky coefficients are shown in Figure 6.2(a). As it is shown in this figure, the
Verblunsky coefficients associated with the modified measure have the same argument with respect to
a certain point (the value of a). That is, they are located on a straight line, on both sides of a. When n

increases, the density of the points on the line increases, as shown in Figure 6.2(b).

6.3.2 C-functions

Assuming that LR(−1) is a quasi-definite linear functional, we denote its associated C-function by
FR(−1) . Multiplying (6.12) by zk, k > 1, and replacing in (2.38), we get

∞∑
k=1

c−kzk =

∞∑
k=1

c̃−(k+1)zk +

∞∑
k=1

c̃−(k−1)zk − (α+α)
∞∑

k=1

c̃−kzk,

F(z)−1 =
(
z + z−1− (α+α)

)
FR(−1)(z) + c̃0

(
z− z−1 + (α+α)

)
− 2̃c−1.

Therefore

FR(−1) (z) =
F(z) + (z−1− z− (α+α))̃c0 + 2̃c−1−1

z + z−1− (α+α)
.

Notice that from (6.12), 1 + (α+α)̃c0 = c̃1 + c̃−1, and thus

FR(−1) (z) =
zF(z)− c̃0z2 + (̃c−1− c̃1)z + c̃0

z2− (α+α)z + 1
, (6.20)
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which is equivalent to

FR(−1) (z) =
zF(z)

z2− (α+α)z + 1
+ m1

z + b
z−b

+ m2
z + b

z−b
, (6.21)

where b, b are the zeros of z2− (α+α)z + 1, with |b| = 1, and

m1 = −
1
2

(̃
c0 +
=(̃c1)
=(b)

)
, m2 = −

1
2

(̃
c0−
=(̃c1)
=(b)

)
.

On the other hand, from (6.21)

FR(−1)(z) =

 b

(b−b)(z−b)
−

b

(b−b)(z−b)

F(z)−m1(1 + bz)
∞∑

k=0

zk

bk −m2(1 + bz)
∞∑

k=0

bkzk

=

 ∞∑
k=1

bk −b
k

b−b
zk

F(z)−m1

1 + 2
∞∑

k=1

b
k
zk

−m2

1 + 2
∞∑

k=1

bkzk

 ,

and thus

c̃0 + 2
∞∑

k=1

c̃−kzk =

 ∞∑
k=1

bk −b
k

b−b
zk


1 + 2

∞∑
k=1

c−kzk

−m1

1 + 2
∞∑

k=1

b
k
zk

−m2

1 + 2
∞∑

k=1

bkzk

 .

Therefore, comparing coefficients of zn on both sides of the last expression, we have for n > 2,

c̃−n =

n−1∑
k=1

bk −b
k

b−b
c−(n−k) +

1
2

bn−b
n

b−b
−m1b

n
−m2bn.

Comparing the independent terms and the coefficients for z we can deduce (6.12) for n = 0 and n = 1.
Furthermore, denoting this transformation by FR(−1) ,

FR(α)◦FR(−1) (α) = I, FR(−1) (α)◦FR(α) = FU (b, m̂1)◦FU (b, m̂2),

that follows in a straightforward way from the definition of FR and FR(−1) .

Denoting H(z) = (FR(−1) (α)◦FR(α))[F(z)],

H(z) =
zFR(z)− c̃0z2 + (̃c−1− c̃1)z + c̃0

z2− (α+α)z + 1
= F(z) + m̂1

z + b
z−b

+ m̂2
z + b

z−b
,
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with m̂1 = m̃1 + m1, m̂2 = m̃2 + m2, and

m̃1 =
1
2

(
1 +
=(c1)
=(b)

)
, m̃2 =

1
2

(
1−
=(c1)
=(b)

)
.

As in (6.8), given a finite composition of order k ∈N of LR(−1) defined by

L =<

 k∏
i=1

(z−αi)

LR(−k) , αi ∈ C, (6.22)

we can deduce

Theorem 6.3.3. A generic spectral transformation with A = 1 and C = 0 is equivalent to (6.22). Fur-

thermore, B and D are given by

B(z) = P̃(z)− P̃∗(z), D(z) =<p(z), (6.23)

where P̃ is the polynomial of second kind of

p(z) =

k∏
i=1

(z−αi)

with respect to the linear functional (6.22).

Proof. From Theorem 6.23 it is straightforward to show that the C-function FLR(−1) is the reciprocal
of FLr . However, in contrast to FR, FR(−1) contains three free parameters α, c0 and =c1, while <c1 is
determined by c0 and the choice of α.

Conversely, if we start with a spectral transformation with A = 1, B is a hermitian Laurent polynomial
of degree one and C = 0, then D is a hermitian Laurent polynomial of degree one with three restrictions
for their coefficients. We hence get just (6.20). Using an analog of Theorem 6.23 we can complete the
proof. �

Notice that for different values α1,α2, . . . ,αr and β1,β2, . . . ,βr, FR(k) [F] = FR(k) and FR(−k) [F] = FR(−k)

we get

FR(k) (α1,α2, . . . ,αr)◦FR(−k) (β1,β2, . . . ,βr) = FR(−k) (β1,β2, . . . ,βr)◦FR(k) (α1,α2, . . . ,αr).

Moreover, for the same parameters, we have the following relations

(
FR(−k) ◦FR(k)

)
(α1,α2, . . . ,αr) = I(

FR(k) ◦FR(−k)
)
(α1,α2, . . . ,αr) = FU (α1, . . . ,αr)◦FU (ᾱ1, . . . , ᾱr),

where FU (α1, . . . ,αk) is the so-called general Uvarov spectral transformation as the result of the addition
of masses at the points z = α1,z = α2, . . . ,z = αr; see Appendix B.
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6.4 Rational spectral transformations

Spectral transformations under the modification of a finite number of moments are given by

F̃ j(z) = F(z) + E(z),

where E(z) =
∑
j∈G

m jz j for m j ∈ C and G a finite subset of non-negative integer numbers. Hence, a

generator system of local spectral transformations follows immediately from Chapter 4.

Theorem 6.4.1. A local spectral transformation can be obtained as a finite composition of spectral

transformations associated with the linear functionals L j defined in (4.32).

In general, a global spectral transformation can be represented by the following rational expression
(2.42). In order to prove our main results in the following lemma we characterize the polynomial
coefficients of (2.42).

Lemma 6.4.1. Only one of the following two statements holds:

i) The polynomial coefficients in (2.42) are hermitian Laurent polynomials of the same degree such

that

A∗(z) = A(z), B∗(z) = −B(z), C∗(z) = −C(z), D∗(z) = D(z).

ii) The polynomial coefficients in (2.42) are self-reciprocal polynomials of the same degree such that

A∗(z) = A, B∗(z) = −B(z), C∗(z) = −C(z), D∗(z) = D(z).

Proof. Since F is the rational spectral transformation associated with (2.42) given by

F(z) =
−D(z)F̃(z) + B(z)

C(z)F̃(z)−A(z)
, (6.24)

multiplying and dividing (6.24) for zl, where l is the minimum non-negative integer number such that
zlA(z), zlB(z), zlC(z), and zlD(z) are polynomials, and using the characterization of orthogonal polyno-
mials with respect to the functional L (2.40)-(2.41), we immediately get

zl(−Φn(z)D(z)−Ωn(z)C(z))F̃(z)− zl(−Φn(z)B(z)−Ωn(z)A(z)) = O(zn+ν),

zl(−Φ∗n(z)D(z) +Ω∗n(z)C(z))F̃(z) + zl(Φ∗n(z)B(z)−Ω∗n(z)A(z)) = O(zn+1+ν),

where ν is a positive integer such that

zl(A(z)−C(z)F̃(z)) = O(zν).

Therefore, we can deduce that the new polynomial coefficients zlA(z), zlB(z), zlC(z), and zlD(z) satisfy
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the following relations

(zlA(z))∗ = zlA(z), (zlB(z))∗ = −zlB(z), (zlC(z))∗ = −zlC(z), and (zlD(z))∗ = zlD(z).

Suppose that l , 0. Then, A, B, C, and D are Laurent hermitian polynomials of the same degree
l, which prove i). On the other hand, if we suppose that l = 0, then A, B, C, and D are self-reciprocal
polynomials of the same degree. Thus, ii) follows. �

If we have a generic rational spectral transformation with self-reciprocal polynomial coefficients
of odd degree, then it can not be transformed into a equivalent rational spectral transformation with
hermitian Laurent polynomial coefficients. We use the following result concerning the symmetrization
of sequence of orthogonal polynomials to study this problem.

Theorem 6.4.2. Marcellán and Sansigre [1991] There exists one and only one sequence of monic poly-

nomials {Ψn}n>0 orthogonal with respect to a hermitian linear functional such that

Ψ2n(z) = Φn(z2), n > 0.

Furthermore,

Ψ2n+1(z) = zΦn(z2), n > 0.

Notice that the odd Verblunsky coefficients for the new sequence, {Ψ(0)n}n>0, are zero. A linear
functional L is said to be symmetric if all its moments of odd order are 0, i.e.,〈

L,z2n+1
〉

= 0, n ≥ 0.

It is interesting to recall that in the real line case if we look for {Qn}n>0, which is a sequence of monic
orthogonal polynomials and such that Q2n+1(x) = xPn(x2), there is not a unique solution, i.e., we can
find an infinity number of sequences of polynomials {Rn}n>0 such that Q2n(x) = Rn(x2).

Theorem 6.4.3. A generic rational spectral transformation with self-reciprocal polynomial coefficients

of odd degree has symmetric generators to the corresponding symmetric rational spectral transforma-

tion which has hermitian Laurent polynomial coefficients.

Proof. Let
{
Φ̃n

}
n>0

be the sequence of monic orthogonal polynomials associated with the C-functions,
F̃, a rational spectral transformation of F given by (2.42). We assume that A, B, C, and D are self-
reciprocal polynomials of odd degree. From Theorem 6.4.2 there is an unique sequence of monic or-
thogonal polynomials {ψn}n>0 (respectively

{
ψ̃n

}
n>0

) such that

ψ̃2n(z) = φ̃n(z2), ψ2n(z) = φn(z2), n ≥ 0,

with respect to the symmetric linear functionalD (respectively D̃).
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On the other hand, the corresponding symmetric C-functions associated with the symmetric func-
tionalsD and D̃ are FD(z) = F(z2) and F

D̃
(z) = F̃(z2), respectively. Therefore,

F
D̃

(z) =
A(z2)FD(z) + B(z2)
C(z2)FD(z) + D(z2)

is a rational spectral transformation associated with FD with self-reciprocal polynomial coefficients
of even degree. Thus, F

D̃
is equivalent to a rational spectral transformation with hermitian Laurent

polynomial coefficients. �

According to the previous theorem, throughout this chapter we consider only hermitian Laurent
polynomial coefficients.

Example: Aleksandrov transformation

Notice that if the coefficients A, B, C, and D of (2.42) are constant, then A and D are real numbers
and B and C are pure imaginary numbers. An example of this is the Aleksandrov transformation Simon
[2005].

Let {Φn(0)}n>1 be the family of Verblunsky coefficients, and let λ be a complex number with |λ| = 1.
When we consider a new family of Verblunsky coefficients defined by {Φλ

n(0)}n>1, with Φλ
n(0) = λΦn(0),

n ≥ 0, the resulting transformation is called Aleksandrov transformation. The C-functions are related by

Fλ(z) =
(λ+ 1)F(z) +λ−1
(λ−1)F(z) +λ+ 1

.

6.4.1 Generator system for rational spectral transformations

Theorem 6.4.4. A generic linear spectral transformation can be obtained as a finite composition of

spectral transformations associated with a modification of the functional by the real part of a polynomial

and its inverse.

Proof. Let H = F [F] be the C-function obtained from (2.38) after a generic linear spectral transforma-
tion with hermitian Laurent polynomial coefficients. Hence, we can apply to F the finite composition
of LR given in (6.23). Thus, we get a new C-function as a result of the composition

FR(k) [H(z)] =
1/2(<p(z))A(z)F(z) + 1/2(<p(z))B(z) + (P(z)−P∗(z))D(z)

D(z)

with some polynomials such that the zeros of the polynomial p can be chosen as the parameters of the
spectral transformation. Hence, we can always choose<p = τD, where τ is a constant. Thus, we get

FR(k) [H(z)] = τA(z)F(z) +τB(z) + P(z)−P∗(z). (6.25)

This transformation is reduced to the case considered in (6.10). Therefore, from Theorem 6.23 the
C-function FR(k) [H] is obtained from (2.38) by means of a finite composition of (2.43).
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On the other hand, from (6.25) and using a finite composition of (2.44), we get the C-function

H(z) = FR(−k)
[
FR(k) [F [F(z)]]

]
,

and so our statement holds. �

Theorem 6.4.5. A generic rational spectral transformation can be obtained as a finite composition of

linear and associated canonical spectral transformations.

Proof. Assuming hermitian Laurent polynomial as coefficients of the perturbed linear functional, the
application of backward transformations with even degree 2k to the real spectral transformation (2.42)
of degree k yields a new rational spectral transformation where the transformed Laurent polynomial C̃

is hermitian and is given by

C̃(z) = zk (A(z) +C(z)) (φ̃2k)∗(z) + z−k (C(z)−A(z)) φ̃2k(z).

Notice that the polynomial φ̃2k can be chosen in an arbitrary way. Indeed, instead of choosing
arbitrary 2k Verblunsky parameters we can choose the polynomial φ̃2k satisfying |φ̃2k(0)| , 1, and from
the Schur-Cohn-Jury criterion we obtain a sequence of complex numbers φ̃2k(0), . . . , φ̃1(0) with modulus
different of 1. Let (φn(0))n≥1 be the Verblunsky coefficients of the hermitian linear functional associated
with (2.42). Then, by Favard’s theorem (φ̃i(0))2k

i=1
⋃

(φn(0))n≥1 arises as a new sequence of Verblunsky
coefficients of a hermitian linear functional. Notice that it is unique.

On the other hand, in order to preserve the hermitian character of C̃, the principal leading coefficients
of A and C are different and not symmetric with respect to the origin. Thus,

deg (A(z) +C(z)) = deg(C(z)−A(z)) = k.

Moreover, without loss of generality, the polynomial zk(A(z) +C(z)) evaluated at z = 0 can be chosen in
such a way that its modulus is different from one. Therefore, we can choose the polynomial φ̃2k such
that

φ̃2k(z) = −zk(C(z) + A(z)).

Using Lemma 6.4.1 we obtain the reciprocal polynomial

(φ̃2k)∗(z) = z−k(C(z)−A(z)),

leading to C̃ = 0. But this means that we can reduce our rational spectral transformation to a linear
spectral transformation and the result follows. �
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Chapter 7

Conclusions and open problems

’Would you tell me, please, which way I ought to go from here?’

’That depends a good deal on where you want to get to,’ said the Cat.

’I don’t much care where —’ said Alice.

’Then it doesn’t matter which way you go,’ said the Cat.

’— so long as I get SOMEWHERE,’ Alice added as an explanation.

’Oh, you’re sure to do that,’ said the Cat, ’if you only walk long enough.’

— L. Carroll. Alice’s Adventures in the Wonderland. Random House, New York, 1865

7.1 Conclusions

The results showed in this work have been focussed on the study of spectral transformations of
linear functionals.

We have presented an alternative approach to the theory of orthogonal polynomials, giving a central
role to continued fractions. The results have been proved under the assumption that the Verblunsky
coefficients {Φn(0)}n≥0 satisfy |Φn(0)| > 1. As a consequence, we have obtained specific properties
of the corresponding Hankel and Toeplitz determinants which we have used to deduce necessary and
sufficient conditions for the existence of the moment problem associated with Chebyshev polynomials
of the first kind.

We also proved that the zeros of orthogonal polynomial Φn(ω; ·) satisfy, for Φn(0) > 1, n ≥ 1,

0 < zn,1(ω) < zn,2(ω) < . . . < zn,n−1(ω) < zn,n(ω), ω < 1,

zn,1(ω) < 0 < zn,2(ω) < . . . < zn,n−1(ω) < zn,n(ω), ω > 1.

and, for Φn(0) < 1, n ≥ 1,

zn,1(ω) < zn,2(ω) < . . . < zn,n−1(ω) < zn,n(ω) < 0, ω < 1,

127



7. CONCLUSIONS AND OPEN PROBLEMS

zn,1(ω) < zn,2(ω) < . . . < zn,n−1(ω) < 0 < zn,n(ω), ω > 1.

The properties of the zeros allowed us to define a step function, and by using Helly’s selection
principle we have showed that an rsq-definite linear functional has an integral representation in terms
of a measure that belongs to the class S3(0,1,b). This result played a key role to find conditions for the
determinacy of our moment problem.

Motivated by applications in integrable systems, we have obtained explicit expressions of the or-
thogonal polynomials associated with the perturbations of a hermitian linear functional in terms of the
first one. In the same direction, we defined a perturbation of a quasi-definite linear functional by the
addition of the first derivative of the Dirac linear functional when its support is a point on the unit circle
or two points symmetric with respect to the unit circle. In both cases we get

lim
n→∞

Ψn(z)
Φn(z)

= 1, z ∈ C \D,

where {Ψn}n>0 is the sequence of orthogonal polynomials associated with the corresponding perturbed
functional. Nevertheless, we are far from achieving our initial goals.

We have analyzed the previous results for asymptotics of the discrete Sobolev polynomials and
their zeros when the mass tends to infinity. The study of these systems was motivated by the search
of efficient algorithms for computing Fourier expansions of a function in terms of discrete Sobolev
orthogonal polynomials. In this direction very few results are known in the literature. We have stated
that the resulting polynomials tend to a linear combination of polynomial perturbations of several orders,
i.e.,

φn(z), (z−α)φn−1(z,dσ1), . . . , (z−α) j+1φn− j−1(z,dσ j+1).

We have characterized the eigenvalues of the Hessenberg matrix (HΨ)n associated with the discrete
Sobolev polynomials, i.e., the zeros of the discrete Sobolev polynomials, as the eigenvalues of a rank
one perturbation of the Hessenberg matrix associated with the measure σ, i.e.,

(HΨ)n = Ln(Hn−An)L−1
n ,

where An and Ln are known. As a consequence, the zeros of Ψn are the eigenvalues of the matrix
Hn −An, a rank one perturbation of the matrix Hn. We also proved a characterization for the limit of
these discrete Sobolev polynomials, when the mass tends to infinity as extremal polynomials. The results
have been deduced for measures on the Nevai class, so in this sense they are sharp. We also showed that,
as an analog of the real line case, a generic rational spectral transformation of the C-function is a finite
composition of four canonical spectral transformations which we have studied in detail. To obtain this
result it was essential our classification and characterization of the polynomial coefficients of rational
spectral transformations obtained from the characterization of orthogonal polynomials with respect to
a functional given by Peherstorfer and Steinbauer. All our results are based on the strong relationship
between the theory of orthogonal polynomials on the real line and on the unit circle.
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7.2 Open problems

In this section we formulate some open questions which have arisen during our research.

Zeros of Szegő-type polynomials

The Szegő-type polynomials Lamblém [2011]; Lamblém et al. [2010] are orthogonal with respect
to a moment linear functional T , such that their moments

cn =
〈
T ,zn〉 = c−n, n > 0,

are all complex. If the linear functional T is such that {cn}n∈Z is real and (−1)n(n+1)/2detTn > 0, n > 0,
then the zeros of associated polynomials have been studied in Chapter 3. We were unable to obtain the
localization and asymptotic behavior of the zeros of Szegő-type orthogonal polynomials. In Lamblém
[2011]; Lamblém et al. [2010] the authors establish that the hypergeometric functions

Φn(b;z) =
(2b + 1)+

n

(b + 1)+
n

2F1(−n,b + 1;2b + 2;1− z), 2b ,Z−, n ≥ 0,

are the Szegő-type polynomials with respect to a moment functional with moments {cn(b)}n≥0,

c0(b) = 2, cn(b) = 2
(−b)+

n

(b + 1)+
n

= c−n(b), n ≥ 1.

Figure 7.1 shows the behavior of the zeros of Φn(b; ·) for fixed n = 100 and several values of the
parameter b, namely b = 1000 (green triangles) b = 100i (blue discs), b = 5 + 6i (purple square), and
b = 11 (yellow diamonds).
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Figure 7.1: Zeros of the Szegő-type polynomial 2F1(−100,b + 1;2b + 2;1− z)
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Perturbations on anti-diagonals of Hankel matrices

Given j ≥ 0 it is natural to ask if the corresponding perturbationM j, studied in Chapter 4, preserves
the positive definiteness ofM. Of course, the necessary and sufficient conditions are given in Theorem
4.1.1. However, if one is interested in the existence of a neighborhood (τ1, τ2) such that the functional
M j is positive definite for every m j ∈ (τ1, τ2), then to determine such an interval can be very complicated.
An open problem is to analyze if there exists a different approach that allows one to determine the values
of m j such thatM j is positive definite. Certainly, the interval (τ1, τ2) should depend essentially on the
initial functionalM and the point a.

Another question that might be of interest is if given two positive definite moment functionalsM and
M̃, then there exists a sequence of perturbationsM jk such that we can obtain M̃ from the consecutive
applications of those perturbations toM, i.e.,

M
M j1
−−−→M(1)

M j2
−−−→M(2)

M j3
−−−→ ·· ·

M jk
−−−→M(k)→M̃,

with the condition that the positiveness must be preserved in each step. As an example, consider the
linear functionals M1 and M2, associated with the Chebyshev polynomials of first and second kind,
respectively. When using the basis {1, (x− 1), (x− 1)2, . . .}, it is easy to see that one of the sequences
of moments can be obtained from the other one by means of a shift. Thus, as explained in Chapter 4,
one can go from M1 to M2 applying a sequence of perturbations M jk =Mk, k = 0,1, . . ., with a = 1,
and m jk . However, proceeding in such a way, the positive definiteness would be lost after second step.
Nevertheless, another sequenceM jk which preserves the positive definiteness may still exist.

Zeros of Sobolev orthogonal polynomials on the real line

Several people have studied the zeros of the polynomials S n(λ,c,r; ·), with λ = (λ0,λ1, . . . ,λr) and
c = (c0,c1, . . . ,cr), orthogonal with respect to the discrete Sobolev inner product of the form

〈p,q〉Dr =

∫
I

p(x)q(x)dµ(x) +

r∑
i=0

λi p(i)(ci)q(i)(ci), ci ∈R, λi ≥ 0, r ≥ 0, (7.1)

where µ is a positive Borel measure supported on I ⊆ R. In the Appendix A we consider a particular
case of (7.1).

We now formulate some questions: fix λi, i = 0,1, . . . ,k− 1,k + 1, . . . ,r, in (7.1), and consider the
zeros of S n as functions of λk. Then, how many zeros of S n lie in the interior of the convex hull of
I? Moreover, are these zeros monotonic functions with respect to the parameter λk? Do they converge
when λk goes to infinity? If so, what is the speed of convergence? For some partial results towards
these problems, for specific measures and vectors λ, we refer to Alfaro et al. [1992, 2010]; Meijer
[1993]; Pérez and Piñar [1993], Rafaeli [2010] and the references therein. The most general result in
this direction was obtained in Alfaro et al. [1996]. There it is stated that every S n(λ,c,r; ·) possesses at
least n− r zeros in the interior of the convex hull of I, when c0 = c1 = . . . = cr.
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Infinity discrete Sobolev inner products on a rectifiable Jordan curve or arc

The sequences of orthogonal polynomials associated with an orthogonality measure with finitely
many point masses outside a curve or arc have also been studied by Kaliaguine and Kononova Kaliaguine
[1993, 1995]; Kaliaguine and Kononova [2010]. The case of an infinity number of mass point for mea-
sures of the Szegő supported on the real line is considered by Peherstorfer and Yuditskii in Peherstorfer
and Yuditskii [2001]. Let f (z) be a function of one variable and let

Z = (z1, . . . ,z1︸    ︷︷    ︸
l1

,z2, . . . ,z2︸    ︷︷    ︸
l2

, . . . ,zm, . . .zm︸   ︷︷   ︸
lm

, . . . )

be an infinite vector. Denote

f (Z) = ( f (z1), . . . , f (l1)(z1), . . . , f (zm), . . . f (lm)(zm), . . . ).

The infinite discrete Sobolev inner product in the complex plane is defined by

〈 f ,g〉S I
=

∫
C

f (z)g(z)ω(z)|dz|+ f(Z) A g(Z)H , (7.2)

where C is a rectifiable Jordan curve or arc in the complex plane; AM , the principal M ×M hermitian
submatrix of the infinity matrix A, is quasi-definite; zi ∈ Ω, i = 1,2, . . . , and Ω denotes the connect
component ofC\C such that∞∈Ω. It is thus fundamental to ask: What can be said about the asymptotic
behavior of discrete Sobolev orthogonal polynomial with respect to the inner product (7.2)?

Toda lattices

The study of integrable systems on the unit circle is not so performant as in the real line case, and
its development started at the end of the previous century Ammar and Gragg [1994], Faybusovich and
Gekhtman [1999], when the system of non-linear differential-difference equations (1.6) was studied.
The main focus was based on the spectral theory of the GGT matrix H. It was found that the resulting
GGT matrices satisfy a Lax equation

H
′

= [(H + H−1)+,H], .

More recently, some developments in this direction have been done; see Chapter 1. In Golinskii
[2007], the author considers the equations (1.6) with a similar approach, but using an alternative matrix
representation of the multiplication operator for Laurent orthogonal polynomials, the CMV matrix. The
corresponding CMV matrices satisfy a Lax equation

C
′

= [B,C],

where B is an upper triangular matrix with two non-zero diagonals above the main diagonal, whose
entries are also expressed in terms of the Verblunsky coefficients. In this situation, the non-linear
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differential-difference equation of their associated sequence of monic orthogonal polynomials satisfy

Φ
′

n(z, t) = Φn+1(z, t)− (z +Φn+1(0, t)Φn(0, t))Φn(z, t)− (1− |Φn(0, t)|2)Φn−1(z, t),

and the orthogonality measure associated with the Verblunsky coefficients is given by (1.7).
An interesting open problem is the study of Schur flows associated with the canonical linear spec-

tral transformation of C-functions obtained in Chapter 6. Another interesting question is to analyze
the analog of the Lax equations for the corresponding GGT and CMV matrices associated with such
perturbations.
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Appendix A

Discrete Sobolev orthogonal
polynomials on the real line

Let {Qn(λ,c, j; ·)}n≥0 be the sequence of orthogonal polynomials with respect to the discrete Sobolev
inner product

〈p,q〉D1 =

∫ b

a
p(x)q(x)dµ(x) +λp( j)(c)q( j)(c), c < (a,b), λ ∈R+, j ≥ 0, (A.1)

where µ is a positive Borel measure supported in the interval (a,b) (either a or b can be infinity) and p,
q are polynomials with real coefficients. In what follows we assume all orthogonal polynomials, both
those with respect to µ and the Sobolev ones, to be monic.

In this appendix we prove that the zeros of discrete Sobolev orthogonal polynomials are monotonic
functions of the parameter λ and establish their asymptotics when either λ converges to zero or to infinity.
The precise location of the extreme zeros is also analyzed.

A.1 Monotonicity and asymptotics of zeros

Let xn,k(λ,c, j), k = 1, . . . ,n, be the zeros of Qn(λ,c, j; ·). For λ = 0 or n ≤ j, the polynomials Pn =

Qn(λ,c, j; ·) are orthogonal with respect to the inner product

〈p,q〉µ =

∫ b

a
p(x)q(x)dµ(x).

When λ > 0 and n > j some natural questions arise. Are the zeros of Qn(λ,c, j; ·) all real and do they
belong to (a,b)? If so, do the zeros of Qn(c,λ, j; ·) interlace with the zeros of Pn? Moreover, are the
zeros xn,k(λ,c, j) monotonic functions with respect to the parameter λ? Do the zeros xn,k(λ,c, j) converge
when λ goes to infinity? If so, what is the speed of convergence?

The answer of the first two questions was given in Meijer [1993]. He proved that the polynomial
Qn(λ,c, j; ·) possesses n real simple zeros and at most one of them is located outside the interval (a,b).
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In addition, he showed the following interlacing property. If c ≤ a, then

xn,1(λ,c, j) < xn,1 < xn,2(λ,c, j) < xn,2 < · · · < xn,n(λ,c, j) < xn,n. (A.2)

If c ≥ b, then
xn,1 < xn,1(λ,c, j) < xn,2 < xn,2(λ,c, j) < · · · < xn,n < xn,n(λ,c, j). (A.3)

In this appendix our main contribution deals with the remaining questions posed above. Our result
is general in three aspects: the measure involved is any positive Borel measure, the point c is any value
outside (a,b), and j is any positive integer. We obtain a new interlacing property, the monotonicity of
xn,k(λ,c, j) with respect to λ, as well as their convergence – when λ tends to infinity – to the zeros of
some polynomial with a speed of convergence of order 1/λ. For this propose we define the polynomial
Gn(c, j; ·) by

Gn(c, j; x) = Pn(x)−
P( j)

n (c)

K( j, j)
n−1 (c,c)

K( j,0)
n−1 (c, x), (A.4)

where K(r,s)
n−1 denotes the generalized Kernel polynomial of degree n−1,

K(r,s)
n−1 (x,y) =

n−1∑
k=0

P(r)
k (x)P(s)

k (y)

〈Pk,Pk〉µ
.

Notice that when r = s = 0, Kn−1 = K(0,0)
n−1 is the usual Kernel polynomial.

Theorem A.1.1. Let λ > 0 and yn,1(c, j), . . . ,yn,n(c, j) be the zeros of the polynomial Gn(c, j; ·) defined

by (A.4). For every n > j and c ≤ a, then

yn,1(c, j) < xn,1(λ,c, j) < xn,1 < · · · < yn,n(c, j) < xn,n(λ,c, j) < xn,n.

Moreover, each xn,k(λ,c, j) is a decreasing function of λ, for each k = 1, . . . ,n.

On the other hand, if c ≥ b, then

xn,1 < xn,1(λ,c, j) < yn,1(c, j) < · · · < xn,n < xn,n(λ,c, j) < yn,n(c, j). (A.5)

In addition, each xn,k(λ,c, j) is an increasing function of λ, for 1 ≤ k ≤ n.

In both cases, when λ goes to infinity,

lim
λ→∞

xn,k(λ,c, j) = yn,k(c, j)

and

lim
λ→∞

λ
(
yn,k(c, j)− xn,k(λ,c, j)

)
=

Pn(yn,k(c, j))

K( j, j)
n−1 (c,c)G′n(c, j;yn,k(c, j))

. (A.6)

Proof. Let us consider the following expression for the discrete Sobolev orthogonal polynomial Mar-
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cellán and Ronveaux [1990],

Qn(λ,c, j; x) = Pn(x)−
λP( j)

n (c)

1 +λK( j, j)
n−1 (c,c)

K( j,0)
n−1 (c, x). (A.7)

Considering the normalization

Q̃n(λ,c, j; x) =
(
1 +λK( j, j)

n−1 (c,c)
)
Qn(λ,c, j; x),

we derive a simple representation for the n-th discrete Sobolev orthogonal polynomial

Q̃n(λ,c, j; x) = Pn(x) +λK( j, j)
n−1 (c,c)Gn(c, j; x).

Observe that Gn(c, j; x) = lim
λ→∞

Qn(λ,c, j; x) is independent of λ . Then, evaluating the above expression
in the zeros of Pn and Qn(λ,c, j; ·), we conclude that

sgn
(
Q̃n(λ,c, j; xn,k)

)
= sgn

(
Gn(c, j; xn,k)

)
, sgn

(
Pn(xn,k(λ,c, j)

)
= −sgn

(
Gn(c, j; xn,k(λ,c, j))

)
,

for every k = 1, . . . ,n− 1. Therefore, using (A.2) and (A.3), Gn(c, j; ·) changes sign n− 1 times at the
zeros of Qn(λ,c, j; ·) and Pn. In other words, each interval (xn,k, xn,k+1) and (xn,k(λ,c, j), xn,k+1(λ,c, j)),
1 ≤ k ≤ n− 1, contains one zero of Gn(c, j; ·). It remains to find the location of one zero of Gn(c, j; ·).
Taking into account that the polynomial Gn(c, j; ·) has a positive leader coefficient and the location of
the point c with respect to the interval (a,b), we obtain the inequalities stated.

To prove the monotonicity of the zeros xn,k(λ,c, j) with respect to λ, for every non-negative ε, we
consider the polynomial

Q̃n(λ+ε,c, j; x) = Pn(x) + (λ+ε)K( j, j)
n−1 (c,c)Gn(c, j; x) = Q̃n(λ,c, j; x) +εK( j, j)

n−1 (c,c)Gn(c, j; x).

Thus, for ε > 0,
Q̃n(λ+ε,c, j; xn,k(λ,c, j)) = εK( j, j)

n−1 (c,c)Gn(c, j; xn,k(λ,c, j)),

and
Q̃n(λ+ε,c, j; xn,k+1(λ,c, j)) = εK( j, j)

n−1 (c,c)Gn(c, j; xn,k+1(λ,c, j))

have opposite sign. Therefore, each interval (xn,k(λ,c, j), xn,k+1(λ,c, j)) contains at least one zero of
Q̃n(λ+ε,c, j; x). In addition, if c ≤ a, then

sgn
(
Q̃n(λ+ε,c, j; xn,1(λ,c, j))

)
= (−1)n+1, lim

x→−∞
Q̃n(λ+ε,c, j; x) =

+∞, n even;

−∞, n odd.

Hence,
xn,1(λ+ε,c, j) < xn,1(λ,c, j) < · · · < xn,n(λ+ε,c, j) < xn,n(λ,c, j).
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In the other situation, if c ≥ b, then

sgn
(
Q̃n(λ+ε,c, j; xn,n(λ,c, j))

)
= −1, lim

x→+∞
Q̃n(λ+ε,c, j; x) = +∞.

Hence,
xn,1(λ,c, j) < xn,1(λ+ε,c, j) < · · · < xn,n(λ,c, j) < xn,n(λ+ε,c, j).

It remains to prove the limit relations stated in the theorem. For this purpose, we define the polyno-
mial Q̂n(λ,c, j; ·) by

Q̂n(λ,c, j; x) =
1
λ

Pn(x) + K( j, j)
n−1 (c,c)Gn(c, j; x).

Notice that the zeros of Qn(λ,c, j; ·) and Q̂n(λ,c, j; ·) are the same for each λ > 0. Since

lim
λ→∞

Q̂n(λ,c, j; x) = Gn(c, j; x),

by Hurwitz’s Theorem Szegő [1975], the zeros xn,k(λ,c, j) of Qn(λ,c, j; ·) converge to the zeros yn,k(c, j)
of Gn(c, j; ·) when λ tends to infinity, that is,

lim
λ→∞

xn,k(λ,c, j) = yn,k(c, j), k = 1, . . . ,n.

On the other hand, by the Mean Value Theorem, there exist real numbers θn,k between yn,k(c, j) and
xn,k(λ,c, j), k = 1, . . . , n, such that

λGn(c, j;yn,k(c, j))−λGn(c, j; xn,k(λ,c, j))
yn,k(c, j)− xn,k(λ,c, j)

= λG′n(c, j;θn,k),

or, equivalently,

λ
(
yn,k(c, j)− xn,k(λ,c, j)

)
=

Pn(xn,k(λ,c, j))

K( j, j)
n−1 (c,c)G′n(c, j;θn,k)

.

Since lim
λ→∞

xn,k(λ,c, j) = yn,k(c, j) and θn,k is located between yn,k(c, j) and xn,k(λ,c, j) we also have
lim
λ→∞

θn,k = yn,k(c, j). Thus

lim
λ→∞

λ
(
yn,k(c, j)− xn,k(λ,c, j)

)
= lim
λ→∞

Pn(xn,k(λ,c, j))

K( j, j)
n−1 (c,c)G′n(c, j;θn,k)

=
Pn(yn,k(c, j))

K( j, j)
n−1 (c,c)G′n(c, j;yn,k(c, j))

,

and our statements hold. �

We used for the proof of Theorem A.1.1 the technique developed in Rafaeli [2010] and the refer-
ences therein concerning the zeros of a linear combination of two polynomials of the seam degree with
interlacing zeros. We emphasize an interesting consequence of this theorem. It says that, when λ goes
from zero to infinity, each zero xn,k(λ,c, j) runs monotonically over the entire interval (yn,k(c, j), xn,k) or
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(xn,k, yn,k(c, j)). In other words, if c ≤ a, then

xn,k(λ,c, j) ∈ (yn,k(c, j) = sup
λ
{xn,k(λ,c, j)}, xn,k = inf

λ
{xn,k(λ,c, j)})

and, if c ≥ a, then

xn,k(λ,c, j) ∈ (xn,k = inf
λ
{xn,k(λ,c, j)}, yn,k(c, j) = sup

λ
{xn,k(λ,c, j)}).

Meijer Meijer [1993] obtained the inequalities (A.2) and (A.3) for j = 1 using another technique.
Furthermore, for n ≥ 3 he showed that for some choice of c in (a,b), Qn(λ,c,1; ·) has two complex
zeros, if λ is sufficiently large. Earlier Marcellán, Pérez, and Piñar Marcellán et al. [1992] had shown
the interlacing properties (A.2) and (A.3) when j = 1. Moreover, the monotonicity of xn,k(λ,c,1) with
respect to λ, and the convergence of one of the extreme zeros to c when n goes to +∞ were established
in Marcellán et al. [1992].

In the sequel we analyze the location of the smallest (resp. greatest) zero of Qn(λ,c, j; ·) with respect
to the point a (resp. b).

Corollary A.1.1. Let n > j and λ > 0.

i) If c ≤ a and yn,1(c, j) < a, then the smallest zero xn,1(λ,c, j) satisfies

xn,1(λ,c, j) > a, λ < λ0,

xn,1(λ,c, j) = a, λ = λ0,

xn,1(λ,c, j) < a, λ > λ0,

where
λ0 = λ0(n,a,c, j) =

Pn(a)

K( j,0)
n−1 (c,a)P( j)

n (c)−K( j, j)
n−1 (c,c)Pn(a)

.

ii) If c ≥ b and yn.n(c, j) > b, then the largest zero xn,n(λ,c, j) satisfies

xn,n(λ,c, j) < b, λ < λ0,

xn,n(λ,c, j) = b, λ = λ0,

xn,n(λ,c, j) > b, λ > λ0,

where λ0 = λ0(n,b,c, j).

The proofs are an immediate consequence of determining the value of the polynomial Qn(λ,c, j; ·) via
(A.7), together with the fact that Gn(c, j;a)Pn(a)< 0 if yn,1(c, j)< a or Gn(c, j;b)Pn(b)< 0 if yn,n(c, j)> b.
Observe that for c < [a,b] we derive explicitly the value λ0 of the mass, such that for λ > λ0 one of the
zeros is located outside (a,b).

A similar result about the mutual location of c and the extreme zeros of Qn(λ,c, j; ·) is the following
corollary.

Corollary A.1.2. Let n > j and λ > 0.
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i) If c ≤ a and yn,1(c, j) < c, then the smallest zero xn,1(λ,c, j) satisfies

xn,1(λ,c, j) > c, λ < λ1,

xn,1(λ,c, j) = c, λ = λ1,

xn,1(λ,c, j) < c, λ > λ1,

where λ1 = λ1(n,c, j) =
Pn(c)

K( j,0)
n−1 (c,c)P( j)

n (c)−K( j, j)
n−1 (c,c)Pn(c)

.

ii) If c ≥ b and yn,n(c, j) > c, then the largest zero xn,n(λ,c, j) satisfies

xn,n(λ,c, j) < c, λ < λ1,

xn,n(λ,c, j) = c, λ = λ1,

xn,n(λ,c, j) > c, λ > λ1,

where λ1 = λ1(n,c, j).

It means that, depending on the value of the parameter λ, one zero can be located outside the interval
(min{a,c},max{b,c}).

A.1.1 Jacobi polynomials

Let {Q(α,β)
n (λ,c, j; ·)}n>0 be the polynomials which are orthogonal with respect to the discrete Sobolev

inner product (A.1) with dµ = dµ(α,β; ·); see Chapter 1. Let us denote by xn,k(α,β) and xn,k(λ,c, j;α,β)
the zeros of P(α,β)

n and Q(α,β)
n (λ,c, j; ·), respectively.

To illustrate the results obtained in Corollary A.1.1 and A.1.2 we consider two figures. In the Figure
A.1(a) we consider n = 3, α = −1/2, β = 1/2, j = 2, and c = 1 for some values of λ. In the Figure A.1(b)
we take the same values of n, α, β, and j but we choose c = 2, that is, now c is not an endpoint of (−1,1)
and we vary the parameter λ. We see that in both figures at least one zero of

Q(−1/2,1/2)
3 (λ,c,2; x) = x3−

384cλ+π

2(64λ+π)
x2 +

192cλ−96λ−π
2(64λ+π)

x +
384cλ+π

8(64λ+π)

is outside of the support (−1,1). Moreover, one zero coincides with b = 1 when λ = λ0 = π/(128(3c−1))
and with c when λ = λ1 = π(1− 4c− 4c2 + 8c3)/(256c2(4c− 3)). In Figure A.1(a) observe that since
b = c = 1 then λ0 = λ1.
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Table A.1: Zeros of Q(−1/2,1/2)
4 (λ,1,2; x) = x4 − (1/2 + 2400λ/(π + 1664λ))x3 + [−3/4 + 960λ/(π +

1664λ)]x2 + [1/4 + 1320λ/(π+ 1664λ)]x + 1/16−240λ/(π+ 1664λ) for some values of λ
λ x4,1(λ,1,2;−1/2,1/2) x4,2(λ,1,2;−1/2,1/2)
1/3000 −0.74365 −0.09607
1/2000 −0.73703 −0.07079
λ0 = λ1 = π/4096 −0.72955 −0.04152
1 −0.69680 0.08019
10 −0.69676 0.08032
100 −0.69675 0.08034
λ x4,3(λ,1,2;−1/2,1/2) x4,4(λ,1,2;−1/2,1/2)
1/3000 0.59496 0.96120
1/2000 0.63516 0.97465
λ0 = λ1 = π/4096 0.68774 1
1 0.85899 1.69721
10 0.85907 1.69940
100 0.85908 1.69962
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(a) Q(−1/2,1/2)
3 (λ,1,2; x)
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Λ=Λ0

Λ<Λ0

(b) Q(−1/2,1/2)
3 (λ,2,2; x)

Figure A.1: Location of the smallest and greatest zero of Qn(λ,c, j; x)

We also provide two tables illustrating the monotonicity of the zeros of Q(α,β)
n (λ,c, j; ·) as functions

of λ, and the convergence of these zeros to the zeros of G(α,β)
n (c, j; ·), which are the polynomials defined

in (A.4). In Table A.1 we can observe the behavior of the zeros of Q(α,β)
4 (λ,c, j; ·) when α = −1/2,

β = 1/2, j = 2 and c = 1, for some values of λ. It is quite clear that the zeros are increasing functions of
λ, and they converge to the zeros of G(−1/2,1/2)

4 (1,2; ·), which are −0.696751, 0.0803371, 0.859082, and
1.69964.

In Table A.2 we present the zeros of Q(α,β)
4 (λ,c, j; ·) when α = −1/2, β = 1/2, j = 2, c = 2 for several

choices of λ. In this table, since the zeros of G(−1/2,1/2)
4 (2,2; ·) are −0.659576, 0.160050, 0.886989, and

3.76418, we observe that the zeros have the same monotonic and asymptotic behavior when the point c

does not coincide with an endpoint of the interval (−1,1).
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Table A.2: Zeros of Q(−1/2,1/2)
4 (λ,2,2; x) = x4 − (1/2 + 28512λ/(π+ 7808λ))x3 + (−3/4 + 12960λ/(π+

7808λ))x2 + (1/4 + 14904λ/(π+ 7808λ))x + 1/16−3240λ/(π+ 7808λ) for some values of λ
λ x4,1(λ,2,2;−1/2,1/2) x4,2(λ,2,2;−1/2,1/2)
λ0 = π/54400 −0.71792 −0.02081
1/3000 −0.67724 0.11537
λ1 = 17π/133376 −0.67465 0.12258
1 −0.65958 0.16003
10 −0.65958 0.16005
100 −0.65958 0.16005
λ x4,3(λ,2,2;−1/2,1/2) x4,4(λ,2,2;−1/2,1/2)
λ0 = π/54400 0.69706 1
1/3000 0.87010 1.84630
λ1 = 17π/133376 0.87350 2
1 0.88699 3.76274
10 0.88699 3.76403
100 0.88699 3.76416

A.1.2 Laguerre polynomials

Let xn,k(λ,c, j;α) be the zeros of the polynomials {Q(α)
n (λ,c, j; ·)}n>0 which are orthogonal with

respect to the discrete Sobolev inner product (A.1) with dµ = dµ(α; ·); see Chapter 1.
To illustrate the behavior of xn,k(λ,c, j;α) we show two figures and two tables. We plot Q(α)

3 (λ,c, j; x)
for α, c, and j fixed and vary λ, to show that, depending on the value of λ, the smallest zero can be less
than or equal to c. In Figure A.2(a) we choose α = 1, j = 2, and c = 0, that is, c is an endpoint of the
orthogonality interval. In Figure A.2(b) we choose α = 1, j = 2, and c = −2.
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(a) Q(1)
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(b) Q(1)
3 (λ,−2,2; x)

Figure A.2: Location of the smallest and greatest zero of Qn(λ,c, j; x)

In order to illustrate the behavior of the zeros of the polynomials Q(α)
4 (λ,c, j; ·) presented in Theorem

A.1.1, we present some numerical computations in Tables A.3 and A.4. In the first one we show the
zeros x4,k(λ,c, j;α), with α = 1, c = 0 and j = 2 for several choices of λ. Observe that, since the point
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c is on the left side of the interval of orthogonality, all the zeros of these polynomials are decreasing
functions of λ, and they converge to the zeros of G(1)

4 (0,2; ·), defined in (A.4), which are −3.63913,
1.16543, 4.00543, and 9.23750.

Table A.3: Zeros of Q(1)
4 (λ,0,2; x) = x4−(20−120λ/(3+13λ))x3 +(360/(3+13λ))x2−(240−5040λ/(3+

13λ))x + 120−3600λ/(3 + 13λ) for some values of λ (λ0 = λ1 = 3/17)
λ x4,1(λ,0,2;1) x4,2(λ,0,2;1) x4,3(λ,0,2;1) x4,4(λ,0,2;1)
1/100 0.71843 2.49658 5.60038 10.8012
1/10 0.39195 1.89442 4.85101 10.0719
λ0 = λ1 0 1.60262 4.57292 9.82446
1 −2.21826 1.22608 4.11868 9.37350
10 −3.46229 1.17104 4.01682 9.25187
100 −3.62101 1.16599 4.00657 9.23895
1000 −3.63731 1.16549 4.00554 9.23765

In Table A.4 we choose the same values of α and j, but in this case c = −2. The zeros x4,k(λ,c, j;α)
are also monotonic functions and converge to the zeros of G(1)

4 (−2,2; ·), which are −7.76110, 1.07579,
3.76689, and 8.77556.

Table A.4: Zeros of Q(1)
4 (λ,−2,2; x) = x4− (20−396λ/(3+28λ))x3 + (120−5016λ/(3+28λ))x2− (240−

15840λ/(3 + 28λ))x + 120−11088λ/(3 + 28λ) for some values of λ (λ0 = 15/322 and λ1 = 471/3854)
λ x4,1(λ,0,2;1) x4,2(λ,0,2;1) x4,3(λ,0,2;1) x4,4(λ,0,2;1)
1/100 0.660855 2.33685 5.33702 10.4580
λ0 0 1.58118 4.50358 9.62953
1/10 −1.47545 1.26126 4.13306 9.25354
λ1 −2 1.219141 4.06667 9.17819
10 −7.62158 1.07713 3.77041 8.78110
100 −7.74700 1.07593 3.76724 8.77611
1000 −7.75969 1.07580 3.76693 8.77561
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Appendix B

Uvarov spectral transformation

In this appendix we deal with a transformation of a quasi-definite functional by the addition of
Dirac’s linear functionals supported on r different points located either on the unit circle or on its com-
plement. Consider the quasi-definite linear functional L introduced in (2.22), and let LU be the linear
functional such that its associated bilinear functional satisfies

〈 f ,g〉LU
= 〈 f ,g〉L+

r∑
i=1

mi f (αi)g(αi), mi ∈R\{0}, |αi| = 1.

Necessary and sufficient conditions for the regularity of the perturbed linear functional LU are deduced.
We also obtain the corresponding linear C-functions.

B.1 Mass points on the unit circle

Using an analog method to the one used in Daruis et al. [2007], we can show

Theorem B.1.1. The following statements are equivalent:

i) LU is a quasi-definite linear functional.

ii) The matrix D−1
r +Kn−1 is non-singular, and

kn +ΦH
n

(
D−1

r +Kn−1
)−1
Φn , 0, n > 1.

Moreover, the sequence of monic polynomials orthogonal with respect to LU is given by

Ψn(z) = Φn(z)−Kn−1(z)
(
D−1

r +Kn−1
)−1
Φn, n > 1, (B.1)
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with

Kn−1(z) = [Kn−1(z,α1),Kn−1(z,α2), . . .Kn−1(z,αr)], Dr = diag[m1,m2, . . . ,mr],

Φn = [Φn(α1),Φn(α2), . . . ,Φn(αr)]T ,

and

Kn−1 =


Kn−1(α1,α1) Kn−1(α1,α2) · · · Kn−1(α1,αr)
Kn−1(α2,α1) Kn−1(α2,α2) · · · Kn−1(α2,αr)

...
...

. . .
...

Kn−1(αr,α1) Kn−1(αr,α2) · · · Kn−1(αr,αr)


.

Proof. First, let us assume that LU is a quasi-definite linear functional and denote by {Ψn}n>0 its corre-
sponding sequence of monic orthogonal polynomials. Thus,

Ψn(z) = Φn(z) +

n−1∑
k=0

λn,kΦk(z), λn,k = −
1
kk

r∑
i=1

miΨn(αi)Φk(αi), n ≥ 1.

Then, we have

Ψn(z) = Φn(z)−
r∑

i=1

miΨn(αi)Kn−1(z,αi). (B.2)

In particular, for j = 1, . . . ,r, we have the following system of r linear equations and r unknowns Ψn(α j),
j = 1,2, ...,r,

Ψn(α j) = Φn(α j)−
r∑

i=1

miΨn(αi)Kn−1(α j,αi).

Therefore, 
1 + m1Kn−1(α1,α1) m2Kn−1(α1,α2) · · · mrKn−1(α1,αr)

m1Kn−1(α2,α1) 1 + m2Kn−1(α2,α2) · · · mrKn−1(α2,αr)
...

...
. . .

...

m1Kn−1(αr,α1) m2Kn−1(αr,α2) · · · 1 + mrKn−1(αr,αr)


Ψn =Φn,

where Ψn = [Ψn(α1),Ψn(α2), . . . ,Ψn(αr)]. In other words,

(Kn−1Dr + Ir)Ψn =Φn.

Since LU is assumed to be quasi-definite, the matrix Kn−1Dr + Ir is non-singular and, therefore,
(B.1) follows from (B.2).
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On the other hand, assume ii) holds. For 0 ≤ k ≤ n−1, we have

〈Ψn,Φk〉LU =

〈
Φn(z)−

r∑
i=1

miΨn(αi)Kn−1(z,αi),Φk(z)
〉

+

r∑
i=1

miΨn(αi)Φk(αi)

= −

r∑
i=1

miΨn(αi)〈Kn−1(z,αi),Φk(z)〉+
r∑

i=1

miΨn(αi)Φk(αi) = 0,

using the reproducing kernel property in the last expression. Furthermore,

〈Ψn,Φn〉LU = kn +

r∑
i=1

miΨn(αi)Φn(αi) = kn +ΦH
n Dr Ψn = kn +ΦH

n (Kn−1 + D−1
r )−1Φn , 0,

which proves that {Ψn}n>0, defined by (B.1), is the sequence of monic polynomials orthogonal with
respect to LU . �

Notice that for r = 1, the regularity condition for LU becomes 1 + m1Kn−1(α1,α1) , 0, n ≥ 0, as
shown in Daruis et al. [2007].

Theorem B.1.2. For z ∈D, the C-function associated with LU is

FU (z) = F(z) +

N∑
i=1

mi

(
αi + z
αi− z

)
.

Proof. Denoting c̃−k = 〈LU ,z−k〉, we have

FU (z) = c̃0 + 2
∞∑

k=1

c̃−kzk = F(z) +

r∑
i=1

mi

(
αi + z
αi− z

)
,

i.e., FU (z) has simple poles at z = αi. �

B.2 Mass points outside the unit circle

The next step is to consider a perturbationLD such that its corresponding bilinear functional satisfies

〈 f ,g〉LD
= 〈 f ,g〉L+

r∑
i=1

(
mi f (αi)g(α−1

i ) + mi f (α−1
i )g(αi)

)
, mi ∈ C\{0}, |αi| , 0,1. (B.3)

By analogy with the previous case, we can obtain the following result.

Theorem B.2.1. The following statements are equivalent:

i) LD is a quasi-definite linear functional.

ii) The matrix D̃−1
2r + K̃n−1 is non-singular, and

kn + Φ̃H
n

(
D̃−1

2r + K̃n−1
)−1
Ψ̃n , 0, n > 1. (B.4)
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Moreover, the corresponding sequence of monic polynomials orthogonal with respect to LΩ is given by

Ψ̃n(z) = Φn(z)− K̃n−1(z)
(
D̃−1

2r + K̃n−1
)−1
Φ̃n, n > 1, (B.5)

with

Φ̃n(α) = [Φn(α1), . . . ,Φn(αr),Φn(α−1
1 ), . . . ,Φn(α−1

r )]T , D̃2r = diag{m1, . . . ,mr,m1, . . . ,mr},

K̃n−1 = [Kn−1(z,α1), . . .Kn−1(z,αr),Kn−1(z,α−1
1 ), . . . ,Kn−1(z,α−1

r )],

K̃n−1 =

 Rn−1(α,α) Rn−1(α,α−1)

Rn−1(α−1,α) Rn−1(α−1,α−1)

 , Rn−1(α,α) =


Kn−1(α1,α1) · · · Kn−1(α1,αr)

...
. . .

...

Kn−1(αr,α1) · · · Kn−1(αr,αr)

 .
Proceeding as in the proof of Theorem B.1.2, we obtain

Theorem B.2.2. For z ∈D, the C-function associated with LD is

FD(z) = F(z) +

r∑
i=1

mi
αi + z
αi− z

+ mi
α−1

i + z

α−1
i − z

 ,
i.e., FD(z) has simple poles at z = αi and z = α−1

i .
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