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Abstract

Aiming at reducing the rather high percentage of CO2 emissions at-

tributed to the electrical energy production industry, a new generation

of power plants has been introduced which produce electricity by using

primary energy resources which are said to be renewable, such as wind,

solar, geothermal and biomass. This has had not only the benefit of

reducing CO2 emissions into the atmosphere to a trickle, by the new

power plants but to also encourage a great deal of technological ad-

vance in both the manufacturing sector and in research institutions.

Wind power is arguably the most advanced form of renewable energy

generation today, from the bulk energy production and economic van-

tages.

This doctoral thesis rigorously deals with the analysis, assessment

and description of the impact of double-fed variable speed wind tur-

bine on the dynamic behaviour of both, the wind farm itself and its

interconnection with the conventional power generation system.

Analytical analysis of the results published in the open literature is

used as a tool to gain a solid understanding of the dynamic behaviour

of power systems with wind generation.

The influence of the characteristics of the electrical system and wind

turbines or external parameters on stability is assessed using modal

analysis. Studies conducted have focused on the analysis of transient

stability and small signal stability for the damping of oscillations in

power systems and its enhancement. Analysis of small signal stability
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and transient stability analysis are carried out using modal analysis

and dynamic simulations in the time domain.

This thesis proposes the implementation of sliding mode control

techniques for the DFIG WT converters, both the Machine-Side Con-

verter (MSC) and the Grid-Side Converter (GSC). The proposed con-

trol system is assessed on conventional dynamic power systems with

wind power generation under different test case scenarios.

The newly developed SMC control scheme demonstrates the impor-

tance of employing non-linear control algorithms since they yield good

operational performances and network support. This is of the utmost

important since in power systems with wind power generation is crit-

ically important to ensure the robust operation of the whole system

with no interaction of controllers.

Sliding Mode Control shows to be more robust and flexible than

the classical controller, opening the door for a more widespread future

participation of DFIG-WECS in the damping of power system oscilla-

tions.
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Resumen

Con el objetivo de reducir el elevado porcentaje de las emisiones de

CO2 atribuidas al sector de la generación de enerǵıa eléctrica, se ha

introducido una nueva generación de centrales eléctricas cuya fuente

primaria de enerǵıa es de naturaleza renovable como las eólicas, so-

lares, geotérmicas y de biomasa. Esto no sólo beneficia la reducción

de las emisiones de CO2 a la atmósfera sino que también estimula e

impulsa el avance tecnológico, tanto en el sector manufacturero como

en los centros de investigación. En la actualidad la enerǵıa eólica es

probablemente la fuente de enerǵıa renovable más avanzada, desde la

producción de enerǵıa hasta las ventajas económicas.

La presente Tesis Doctoral se ha centrado en analizar, evaluar y

describir rigurosamente el impacto de los aerogeneradores de veloci-

dad variable doblemente alimentados en el comportamiento dinámico

tanto del propio sistema eólico como de su interconexión con el sistema

śıncrono convencional de generación de enerǵıa eléctrica.

El análisis anaĺıtico de los resultados publicados en la literatura es

utilizado como herramienta para una mejor comprensión del compor-

tamiento dinámico de los sistemas de potencia con generación eólica.

La influencia de las caracteŕısticas del sistema eléctrico y de los

aerogeneradores o parámetros externos sobre la estabilidad es evalu-

ada empleando análisis modal. Los estudios realizados se han enfocado

en el análisis de estabilidad transitoria y de pequeña señal para la eval-

uación de la amortiguación de oscilaciones en las redes eléctricas de
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potencia. Análisis de estabilidad de pequeña señal y análisis de esta-

bilidad transitoria son llevados a cabo usando análisis modal y simula-

ciones dinámicas en el dominio del tiempo.

En esta tesis se propone la aplicación de técnicas de control en

modo deslizante en los convertidores de los aerogeneradores doblemente

alimentados, tanto en el convertidor de la máquina como en el con-

vertidor de la red. El sistema de control propuesto es evaluado en

redes dinámicas de generación convencional con generación eólica, con-

siderando diferentes escenarios.

El recientemente sistema de control CMD desarrollado demuestra

la importancia de implementar algoritmos de control no lineales, ya que

producen un buen rendimiento y dan soporte a la red. Esto es suma-

mente importante ya que en los sistemas de potencia con generación

de enerǵıa eólica es vital asegurar el funcionamiento eficiente de todo

el sistema sin interacción de los controladores.

El Control en modo deslizante demuestra ser más robusto y flexible

que el controlador clásico, abriendo la puerta a un futuro con una

mayor participación de generación eólica en la amortiguación de las

oscilaciones de potencia.
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pación y apoyo, Yimy, Quino, por toda la ayuda desde mi llegada

a la universidad, Luch́ıa, amiga, gracias por darme un espacio en tu

corazón, has sido mi soporte en muchos momentos dif́ıciles, gracias por

permitirme compartir tantas cosas contigo, que incréıbles momentos
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Chapter 1

Introduction

Electrical energy demand continuous to grow unabated fuelled by rapid

technological change and economic development. However, the in-

creases in energy consumption have been met, to a larger extent, by

building new power plants of the conventional kind, particularly those

that burn fossil fuels. This has resolved the pressing issue of electrical

energy demand but has led to excessive and dangerous levels of carbon

(CO2) emissions into the atmosphere. Recent estimates of CO2 emis-

sions put the contribution of the electrical energy production industry

at more than 40% of the total global. This is followed by 22% contri-

bution of the transport sector and 20% of the manufacturing sector.

Aiming at reducing the rather high percentage of CO2 emissions

attributed to the electrical energy production industry, a new genera-

tion of power plants has been introduced which produce electricity by

using primary energy resources which are said to be renewable, such as

wind, solar, geothermal and biomass. This has had not only the bene-

fit of reducing CO2 emissions into the atmosphere to a trickle, by the

new power plants but to also encourage a great deal of technological

advance in both the manufacturing sector and in research institutions.

Wind power is arguably the most advanced form of renewable en-

ergy generation today, from the bulk energy production and economic
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vantages. It is fair to say that the central status that the wind power

generation has reached within the global electricity supply industry has

been the result of far-sighted public energy policies pursued by individ-

ual governments and international organizations, where economic in-

centives figure prominently. For instance, in the United States of Amer-

ica, Production Tax Credits (PTC) or Investment Tax Credits (ITC)

were introduced to promote the development of new technologies in the

renewable energy sector and to bring down the competitive barrier with

respect to the conventional forms of electricity generation [1]. In con-

trast, wind energy projects in Europe have been supported mainly from

the profits side by feed-in premium and fee-in tariffs (FIT) which are

over electricity market prices [2]. The past decade has witnessed rather

impressive developments in wind power technology, particularly in Eu-

rope, where the individual wind turbines have grown in size and the

number of wind power installations has multiplied rapidly. However, as

reported in [3], in developing countries and emerging economies, more

wind power capacity was installed in 2010 for the first time.

1.1 Motivation

There is a general agreement that the increasing penetration of wind

power will impact quite significantly power system operation and sys-

tem stability [4, 5]. The dynamic behaviour of power systems with

large wind energy plants require careful examination and a full system

characterization in order to evaluate the operating parameters of the

system, operating regions and control strategies to follow. Likewise, it

is essential to identify both benefits and drawbacks relating to location,

the technologies employed and power penetration levels as well as to

consider the new requirements regarding the integration of wind power

into the power system.

This research project explores one key aspect relating to stability

threats concerning the impact of increasing wind power penetrations,
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more specifically, it researches on the damping of electromechanical os-

cillations.

The double fed induction generator (DFIG) is today one of the most

popular schemes for variable-speed wind turbines which has been in-

troduced to replace the fixed-speed, squirrel-cage induction generators.

This variable speed technology offers advantages such as four quadrant

power capabilities, maximum aerodynamic efficiency, reduced mechan-

ical stress and a relatively small converter size.

The DFIG control capabilities have been researched quite amply by

other researchers and it has been shown that wind power can increase

the damping of inter-area oscillations and that advanced controls may

be used to enhance even further their damping performance.

Technological advances have lead to the development of more effi-

cient strategies based on advanced and modern control techniques such

as Fuzzy Logic Control, Robust Control, Adaptive Control and Slid-

ing Mode Control (SMC). Among all these control techniques, SMC

emerges as a particularly suitable option to deal with electronically

controlled variable speed operating WECS, owing to its potential to

eliminate the undesirable effects of parameter variations with mini-

mum complexity of implementation [6], [7].

To push further the boundaries of power system stability investi-

gations with particular reference of multi-machine systems with signif-

icant content of WECS, the research reported in this thesis looks at

applying a robust and flexible solution to the control capabilities of the

double fed wind generators that yields an improvement to the stabil-

ity of power systems with a high penetration of DFIGs. The solution

put forward is based on the SMC method and the analysis is geared

towards the assessment of network oscillations damping.
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1.2 Objectives and approach of the thesis

This thesis aims to study the dynamic performance of grid connected

wind energy conversion systems (WECS) with double-fed induction

generators (DFIG) and its impact on power system stability. The fo-

cus is on evaluating the stability of the DFIG control system itself and

on assessing the stability of the system to which it is connected, for dif-

ferent wind power penetration levels using both, small-signal and time

domain based analyse. These studies complement each other rather

well and they are widely accepted amongst the power systems engi-

neering community [8] to be an entirely suitable approach to evaluate

power system oscillations.

A single-machine infinite bus system is assessed with the sole aim

of investigating local modes in a rather exhaustive manner. It is ar-

gue that this kind of system is the best test bed available to study

such modes in a robust manner, without the interference of external

noise. A multi-machine framework is developed to lend further cre-

dence to the above assertion but more importance to study inter-area

oscillations. The developed multi-machine frame work enables de in-

vestigations of combined power systems with conventional synchronous

generation systems and DFIG-based wind turbines controlled by two

different approaches: one of them is the most widely employed classical

control technique which is based on Field Oriented Control (FOC); the

second one is a new control method based on non-linear Sliding Mode

Control. In this research work the role of FOC is to form a basis for

comparison for the results obtained with SMC.

It should be brought to attention that the non-linear SMC tech-

nique has been applied in variable-speed WECS but that it has been

applied to the mechanical circuits as opposed to the electrical ones,

i.e., the focuses has been on mechanical power maximization and pitch

control. Research work on SMC applied to the electrical control of
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WECS is very limited, for instance, no modal analysis has not been

reported.

In this thesis SMC is applied to the machine side converter to con-

trol the supplied rotor voltage and to the grid side converter to control

the reactive power generated by the wind turbine. The common objec-

tive is to ameliorate electromechanical oscillations.

The specific objectives of the research can be outlined as follows.

• To assess the dynamic performance of a DFIG when connected

to a very strong equivalent grid.

• To assess the dynamic performance of a power system when syn-

chronous conventional generators are replaced by DFIG-based

wind farms.

• To analyse the correlation between the damping of electrome-

chanical oscillations, the DFIG-based wind turbine control sys-

tems and wind power penetration levels.

• To put forward a control strategy to improve on the damping

of electromechanical oscillations of combined power systems with

wind power generation.

1.3 Contributions

• A critical assessment of parameters variation of a DFIG-based

wind turbine led to the identification of the critical variables that

affect most the frequency and damping of the dominant oscilla-

tion modes.

• A non-linear control strategy based on sliding mode control has

been put forward. The dynamic performance of the DFIG-based

wind turbine with such a controller is evaluated under a wide

range of operation conditions.
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• A better understanding of the dynamic performance of the DFIG-

based wind turbine has been achieved by implementation of the

proposed controller and its comparison with a classical control

implementation based on the decoupled field oriented control us-

ing dq components.

• The development of an analytical tool for eigenvalue analysis of

a grid connected DFIG, suitable for both, an equivalent grid and

a multi-machine power system.

• A comparative analysis of the dynamic behaviour of DFIG-based

wind turbines is performed. To this end, small signal stability

and transient stability analyse are carried out for different wind

power scenarios drawing special attention to the phenomena of

power oscillations.

• A critical assessment of the impact of wind integration into the

power grid, is carried out with emphasis on the nature of power

oscillations of electrical systems. This is carried out by replacing

conventional synchronous generation with wind generation of the

DFIG type,employing different network topologies and, in each

case, starting from its power flow solution.

1.4 Thesis organization

The thesis is organized in seven chapters. Chapter 1 is the introduc-

tory chapter where a background to the research study is presented. It

includes a succinct review of wind power together with the objectives,

motivation and contributions of this research.

Chapter 2 presents a review of power system stability concepts and

provides current definitions of transient stability and small signal sta-

bility. The chapter further reviews the state-of-the-art in wind power

engineering, with particular regard to power system stability and the
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analysis mechanisms used to assess the effect of DFIG-based wind farms

on the electrical network.

Chapter 3 presents models of variable-speed wind turbines with

DFIG systems and the non-linear sliding mode control put forward in

this research as applied to the DFIG.

Chapter 4 analyse the dynamic behaviour of the DFIG-based wind

turbine with the proposed control system by drawing comparisons with

a conventional controller based on the modal analysis approach. Com-

puter simulation results are presented to show the effectiveness of the

proposed controller.

Chapter 5 assesses the impact of wind generation and the DFIG

control system on the dynamic characteristics of different power net-

work topologies. The assessment is geared towards small-signal stabil-

ity analysis.

Chapter 6 addresses the transient performance of the DFIG-based

wind turbines relaying on simulations results to assess the impact of

reactive power control under increasing wind penetration levels and

subjected to grid disturbances.

Chapter 7 bring the thesis to a close stating the overall conclusions

and key findings of the research work carried, as well as directions and

recommendations for further research work.
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Chapter 2

Power System Stability

Concepts

The present chapter includes a review of general concepts relating to

power system stability in order to contextualize this research. The

classification of stability problems in the power grid along with the

methods that have been proposed for its analysis are summarized. An

overview of variable-speed wind turbines performance in this framework

is also presented.

2.1 Power System Stability

The continuing growth in power systems interconnections as well as the

introduction of new technologies and control equipment, and the in-

creasing number of operation actions carried out under highly stressed

operating conditions explain the fact that power systems stability re-

mains a topic of paramount importance in power system operation.

Some challenging problems in power system management are vindicate

because power systems are operated closer to security limits, environ-

mental constraints restrict the expansion of transmission network and

the necessity of power transfers over long distances has increased. Ris-

ing energy consumption, attention on environmental concerns and de-
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velopment in renewable technologies have encouraged the installation

of renewable energies. Within the renewable energies, wind energy

plays today a potential role; it has developed to a mature stage and is

becoming widely used all over the world. However, better power ex-

change capabilities over long distances is one of essential characteristics

of transmission systems to achieve a higher penetration level of wind

power.

In order to contextualize the subject, a definition of power system

is quoted from IEEE task force on terms and definitions [9]:

“A network of one or more electrical generating units, loads, and/or

power transmission lines, including the associated equipment electri-

cally or mechanically connected to the network.”

It should be remarked that this definition is made solely from the

vantage of engineering with no consideration to either political, geo-

graphical or any other jurisdictional boundary.

Over the years, several definitions of power systems stability have

been formulated aiming at clarifying technical and physical aspects of

the problem from the system theory perspective. The stability concert

more consistent with the emphasis placed in this research project is

the one relating to the system’s ability to ride-through disturbances

arising the system itself and its capacity to settle down to a new stable

operating state after the effects of such disturbance disappears.

A formal definition of power system stability is provided by [10],

“Power system stability is the ability of an electric power system, for a

given initial operating condition, to regain a state of operating equilib-

rium after being subjected to a physical disturbance, with most system

variables bounded so that practically the entire system remains intact.”

10



CHAPTER 2. POWER SYSTEM STABILITY CONCEPTS

To a greater or lesser extent, all possible disturbances may fall into

two categories: small and large signal disturbances. In a small distur-

bance the equations that describe the dynamics of the power system

may be linearised around a base operating point for the purpose of

analysis. Small load or generation changes may be designated to be

small disturbances whilst sudden voltage changes resulting from short-

circuit faults, switching operations, loss of generation or transmission

circuits will come under the category of large disturbances.

For the purposes of system analysis, power system stability is di-

vided into two broad classes [9, 11].

1. Small signal stability or steady-state stability. A power

system is said to be stable, for a given steady-state operating

condition, if following a small disturbance, it reaches a steady-

state operating condition which is identical or close to the pre-

disturbed operating condition. This is also known in some quar-

ters as small disturbance stability of a power system [9].

2. Transient stability. A power system is said to be transiently

stable at a given steady-state operating condition if following a

large disturbance it reaches an acceptable new steady-state op-

erating condition.

It should be emphasized that transient stability is a function of

both, the operating condition and the disturbance, whereas small-signal

stability is a function only the operating condition.

Although power system stability is essentially a single problem, the

phenomenon can take different forms. Therefore a classification into

more manageable categories is essential for meaningful practical anal-

ysis and for the resolution of power system stability problems. The

different forms of stability phenomena, according to the root cause

of instability, or otherwise are categorized into three main subclasses:

rotor angle stability, voltage stability, and frequency stability; even
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though these three issues are not widely disjointed when a major dis-

turbance arises in utility-size power systems. A brief description of

each form is given as follows:

Rotor angle stability

For a power system to remain stable, it is a pre-condition that there is

sufficient synchronizing torque as well as sufficient damping torque for

each one of the synchronous machines in operation. These are the two

components of the net electrical torque acting on a generator. The syn-

chronizing torque is the component of the torque incremental change

which is in phase with the rotor angle perturbation. On the other hand,

damping torque is the component of torque which is in phase with the

speed deviation. Lack of sufficient synchronizing torque results in a

periodic or non-oscillatory instability, whereas lack of damping torque

results in an oscillatory instability [12, 13].

Solution of the differential equations representing the system will

yield at least one positive real root, or one pair of complex roots with

real parts. In cases of small disturbances, this class of stability can

be assessed by analysing the roots of the linearised system, whilst in

cases of large disturbances, because of the non-linearities involved, the

difference between the torque components (synchronizing and damping

torque) can only be estimated from the nature of the trajectories [9].

Voltage Stability

Insufficient reactive power support may induce voltage instability prob-

lems leading to a wide-area voltage collapse. When one or more gen-

erators reach their reactive power limits the ability to transfer power

becomes severely restricted restricted. It may be argued that loads

are the driving force of voltage instability; the tendency of distribution

voltage regulators, tap changing transformers, and thermostats is to

re-establish the consumed power by the loads, following a disturbance

12
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[14]. Such a response increases the stress on the high voltage network

owing to the rising power consumption; exceeding the capacity of the

network and causing, in turn, a further voltage reduction. [15, 16].

Unlike rotor angle stability, the distinction between small-signal

and large is blurred. Voltage stability can be seen as a single problem

where a combination of both, linearised and non-linear analytical tools

is applied.

Frequency Stability

Frequency stability is a phenomenon that involves the whole system.

It is the ability of the power system to maintain the steady-state fre-

quency within acceptable limits following a severe system contingency.

The system frequency will decrease following an event that reduces

the total active power output; system frequency is a key indicator of

mismatch between generation and demand.

All things considered, frequency stability depends primarily on the

overall system response to a contingency and on the availability of

system power reserve. In general, apart from insufficient generation

reserve, frequency stability problems concern deficiencies in equipment

responses, poor control coordination and protection equipment [10].

Although power system stability is classified according to causes

of instability with suitable analysis tools and property corrective mea-

sures, any one instability form (rotor-angle stability, voltage stability,

frequency stability) may not occur in its pure form, particularly in

highly stressed power systems and for cascading events, and one in-

stability form may, in the end, lead to another one. Thus, the differ-

entiation between them is important to understand the causes of the

problem in order to develop appropriate design operating procedures.

In general, keeping in mind that stability is an integral property of

a system, quite independently from its classification, the solution of a
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specific problem should not be at the expense of creating a different

kind of stability problem. Therefore, a comprehensive assessment of

the stability phenomenon, involving different aspects of the problem,

is essential.

In modern power systems where conventional synchronous gener-

ation is replaced by wind generation the stability impact evaluation

must to be considered. In power systems with a large wind power pen-

etration there will be large asynchronous active power flows that can

help to preserve rotor angle stability of the system. However, angular

stability support of the synchronous units may depend on the man-

ner in which reactive power is injected from wind systems. Insufficient

reactive power support from wind generation can lead to voltage sta-

bility issues [17, 18]. Also, the frequency stability of the system will

be impacted if synchronous generation is displaced by wind generation

[19, 20]. Power system stability assessment with large-scale wind power

integration is restricted due to the lack of appropriate dynamic models.

2.2 Small Signal Stability

2.2.1 Characteristics of the Small Signal Stability

Problems

Interactions amongst system components bring about the phenomena

associated with small signal stability. For instance, diverse oscillations

modes are caused by the generators’ rotors swing against each other.

The two kinds of electromechanical oscillation modes most widely spo-

ken of are:

1. Local mode involves a small portion of the system. Oscillations of

one or two remotely located power stations swinging against the

rest of the power system are called local mode oscillations. These

are amongst the most commonly found problems. Oscillations of
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electrically close machines swinging against each other are called

inter-machine or inter-plant mode oscillations.

The local mode oscillations have frequencies typically in the range

of 1 to 3 Hz.

There are other possible local modes associated with control modes,

such as those involving the inadequate tuning of control sys-

tems (generator excitation systems, HVDC converters, FACTS

equipment) [21] and the turbine-generator rotational (mechan-

ical) components [22]. These are the so-called torsional mode

oscillations and involve the interaction of the turbine shaft dy-

namics with these controls.

2. Inter-area oscillations relates to oscillations of a group of gener-

ators in one area against those in another area, usually across a

long or a weak tie-line. If the oscillation frequency is very low,

in the range of 0.1 to 0.3 Hz, the system is breaking up into two

parts, each one swinging against the other. Modes of higher oscil-

lation frequencies, in the range of 0.4 to 1 Hz, involve subgroups

of generators swinging against each other.

The duration of these two modes will depend on their relative damping,

which is, in many systems, a critical factor to operate in a secure mode.

2.2.2 Modal Analysis

The behaviour of a dynamic system, such as a WT-DFIG, may be de-

scribed by a set of n first-order, non-linear, ordinary algebraic-differential

equations (DAE) of the following form [21, 23, 24]:

dxi
dt

= fi(x1, x2, ..., xn; z1, z2, ..., zm; u1, u2, ..., ur) (2.1)

0 = gi(x1, x2, ..., xn; z1, z2, ..., zm; u1, u2, ..., ur) (2.2)

where i = 1, 2, ..., n.
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Using vector-matrix notation, the system can be expressed by

ẋ = f(x, z,u) (2.3)

0 = g(x, z,u) (2.4)

with

x =


x1

x2
...

xn

 z =


z1

z2
...

zm

 u =


u1

u2
...

ur

 f =


f1

f2
...

fn

 g =


g1

g2
...

gn


(2.5)

where x, z, and u are the column-vectors of the states, algebraic,

and input variables, respectively; n is the order of the system, m is

the number of algebraic variables, r is the number of inputs. f and g

are vectors of non-linear functions relating state, algebraic and input

variables to derivatives of the state variables and to algebraic equations,

respectively.

The system output can be expressed in terms of the state variables,

algebraic variables and input variables in the following form:

y = h(x, z,u) (2.6)

where y is the column vector of outputs and h is a vector of non-

linear algebraic output equation.

The system’s state is an important concept in state-space represen-

tations. It encapsulates all the necessary information to describe the

system at any instant in time. A set of linearly independent system

variables, referred to as the state variables, along with the inputs to

the system yield a complete description of the system’s behaviour [21].

Either physical quantities (such as voltage, torque, angle, speed) or

mathematical variables associated with the differential equations de-
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scribing the system dynamics may be chosen as state variables. How-

ever, the state variables are not unique and whatever the set of state

variables selected, it will provide the essentially same information about

the system.

Modal analysis starts from a power flow solution corresponding to

a particular loading condition (initialisation procedure) to determine

an operating point (x0, z0, y0). The differential-algebraic equations are

linearised around the operating point by applying Taylor Series Expan-

sion. The Taylor series represents a non-linear function as an infinite

sum of terms calculated from the values of its derivatives evaluated at

a single point.

Neglecting terms of order two and above and eliminating the alge-

braic variables z, a procedure for small perturbations is established,

ẋi = ẋi0 + ∆ẋi = fi [(x0 + ∆x0), (u0 + ∆u0)]

= fi(x0,u0) +
∂fi
∂x1

∆x1 + ... +
∂fi
∂xn

∆xn

+
∂fi
∂u1

∆u1 + ... +
∂fi
∂ur

∆ur (2.7)

Since ẋi0 = fi(x0,u0),

∆ẋi =
∂fi
∂x1

∆x1 + ...
∂fi
∂xn

∆xn +
∂fi
∂u1

∆u1 + ...
∂fi
∂ur

∆ur

with i = 1, 2, ..., n

In a likewise manner, and with reference to (2.6),

∆yj =
∂gj
∂x1

∆x1 + ...
∂gj
∂xn

∆xn +
∂gj
∂u1

∆u1 + ...
∂gj
∂ur

∆ur

with j = 1, 2, ..., n.
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The prefix ∆ denotes a small deviation, thus

∆x = x− x0 ∆y = y − y0 ∆u = u− u0

The linearised system model is of the form

∆ẋ = A ∆x + B ∆u (2.8)

∆y = C ∆x + D ∆u (2.9)

where

A =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn
∂x1

· · · ∂fn
∂xn

 B =


∂f1
∂u1

· · · ∂f1
∂ur

...
. . .

...
∂fn
∂u1

· · · ∂fn
∂ur



C =


∂h1
∂x1

· · · ∂h1
∂xn

...
. . .

...
∂hm
∂x1

· · · ∂hm
∂xn

 D =


∂h1
∂u1

· · · ∂h1
∂ur

...
. . .

...
∂hm
∂u1

· · · ∂hm
∂ur



The partial derivatives are evaluated at the equilibrium point cor-

responding to where the small perturbation are being analyzed. An

equilibrium point is a point where all the derivatives ẋ1, ẋ2, ..., ẋn are

simultaneously zero and defines the points on the trajectory with zero

velocity.

In Equations (2.8) and (2.9),

∆x is the state vector of dimension n

∆y is the output vector of dimension m
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CHAPTER 2. POWER SYSTEM STABILITY CONCEPTS

∆u is the input vector of dimension r

A is the state or plant matrix of size nxn

B is the control or input matrix of size nxr

C is the output matrix of size mxn

D is the (feed-forward) matrix which defines the proportion of

inputs appearing directly in the outputs, size mxr

Eigenvalues and eigenvalue properties

Small signal stability analysis studies the properties of the system

((2.8), (2.9)) around (x0, z0, y0) through an eigenvalue analysis of the

state matrix A. Each eigenvalue, denoted by λ, describes one special

dynamic behaviour of the system called a mode which is obtained from

A matrix.

For an operating point to be stable, the real parts of all eigenvalues

of A must lie in the left half-plane of the complex plane (i.e, with neg-

ative real parts). This ensures that oscillations will decay with time

and will return to a steady state following a small disturbance. The

opposite will occur if an eigenvalue has a positive real part. The am-

plitude of the modes will increase exponentially and the power system

will be unstable at that operating point.

If A is real, complex eigenvalue occur in conjugate pairs, and each

pair would correspond to an oscillatory mode. Fig. 2.1 shows the pos-

sible natural modes of a system.

The eigenvalues of A contain essential information about the mode’s

frequencies and their damping after a small disturbance. The real part

component gives the damping and the imaginary component gives the

frequency of oscillation.
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Figure 2.1: Possible combination of eigenvalues pairs (left). Their trajecto-
ries (middle) and time responses (right).
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For a complex eigenvalue λi = σi ± jωi, the damping ratio ζ is

defined as:

ζi = − σi√
σ2
i + ω2

i

(2.10)

with ζ ∈ [−1, 1].

The damping ratio ζ determines the rate of decay of the ampli-

tude of the oscillation. The time constant τ of the amplitude decay is

τ = 1/|σ| [21].

The damping is an important measure of the quality of the system’s

transient response. A poorly damped system oscillates for a relatively

long time following a disturbance, an undesirable characteristic which

ought to be minimized.

Several researchers have addressed the issue of small signal secu-

rity, which is strongly related to the damping of system oscillations

[25, 26, 27, 28]. Minimum admissible dampings have been defined to

be in the range 3 to 5%.

The oscillation frequency f of the ith mode, in Hz, is defined as:

fi =
ωi
2 π

(2.11)

Mode shape and eigenvectors

The shape of a mode that corresponds to a certain eigenvalue is de-

scribed by its associated right eigenvector, which defines the relative

activity of the system’s dynamic states on each mode.

The eigenvectors are determined regarding the chosen states for the

formulation of the power system model, but it is not a good indicator of

the importance of states to a mode, since eigenvectors are not unique.

The left eigenvector weighs the contribution of the states within a

mode.
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2.2. SMALL SIGNAL STABILITY

The right eigenvector Φi and the left eigenvector Ψi associated with

the ith eigenvalue λi satisfy

AΦi = λiΦi (2.12)

Ψi
tA = Ψi

tλi (2.13)

Eigenvalue sensitivity

Differentiating equation (2.12) with respect to akj the element of A in

kth row and jth column yields

∂A

∂akj
Φi + A

∂Φi

∂akj
=

∂λi
∂akj

Φi + λi
∂Φi

∂akj

Pre-multiplying by Ψi

Ψi
∂A

∂akj
Φi + Ψi(A− λiI)

∂Φi

∂akj
= Ψi

∂λi
∂akj

Φi

and knowing that ΨiΦi = 1 and Ψi(A− λiI) = 0, the above equa-

tion simplifies to

Ψi
∂A

∂akj
Φi =

∂λi
∂akj

Since the only non-zero partial derivatives of A with respect to akj

are equal to 1 (corresponding to element in the kth row and jth column),

∂λi
∂akj

= Ψik Φji (2.14)

Therefore the sensitivity of the eigenvalue λi to the element akj of

the state matrix is equal to the product of the left eigenvector element

Ψik and the right eigenvector element Φji [21] .

Participation Factors

Participation factor represents a measure of the contribution of each

dynamic state in a given mode or eigenvalue.
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In terms of eigenvectors, the participation factor may be defined

by:

pfki =
ΨkiΦik

Ψt
iΦi

(2.15)

where Ψki and Φik are the kth entries in the left and right eigenvec-

tors associated with the ith eigenvalue.

The participation matrix Pf , proposed in [29, 30], is defined as:

Pf =
[
pf1 pf2 ... pfn

]
(2.16)

with

pfi =


pf1i
pf2i

...

pfni

 =


Φ1iΨi1

Φ2iΨi2

...

ΦniΨin

 (2.17)

By using the scale property of an eigenvector it is possible to choose

a scaling that simplifies the use of participation factors. Thus, by choos-

ing eigenvectors such Ψi
tΦi = 1, a normalised form of the participation

factor is defined as:

pfni
=
|Φni| |Ψin|
n∑
i=1

|Φni| |Ψin|
(2.18)

where n is the number of state variables, pfni
is the participation

factor of the system. The pfni
magnitude represents a measure of the

relative participation of the nth state variable into mode i, and vice

versa. A further normalization can be done by making the highest of

the participation factors equal to unity. From equation (2.14), it can

be observed that the participation factor pfki is equal to the sensitivity

of the eigenvalue λi to the diagonal element akk of A,

pfki =
∂λi
∂akk

(2.19)
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2.2. SMALL SIGNAL STABILITY

In power systems, participation factors can be used as a comple-

mentary measure to the suitability of power system stabilizers (PSS)

placement.

Transfer Function

Although eigenvalue analysis of the system state matrix is carried out

to examine small signal stability of power systems, modal analysis is

very useful when it comes to control design, addressing the open-loop

transfer function and its relationship to the state matrix and its eigen-

properties.

The transfer function has the general form of:

G(s) = K
N(s)

D(s)
(2.20)

By applying the method used in [21], it can be seen that G(s) may

be written as:

G(s) =
n∑
i=1

Ri

s− λi
(2.21)

where the residues, Ri, in terms of the eigenvectors

Ri = c ΦiΨi b (2.22)

It can be seen that the poles of G(s) are given by the eigenvalues

of A.

2.2.3 Methods for Modal analysis

The eigenvalues of the system state matrix can be computed by solv-

ing the characteristic equation of first and second order systems. For

higher-order systems a method that has been widely used is the QR

transformation method [31, 32].

In this method, a tridiagonal matrix Q is constructed from a set of

orthogonal transformations applied to A matrix. A good description

of the method can be found in [33].
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Application of the QR method is confined to small size power sys-

tems with up to approximately 80 generators. Due to computer limita-

tions it has only used in systems containing up to about 800 modes [28].

For larger power systems, special techniques have been developed,

in which partial modal analysis is used. The first algorithm was the

Analysis of Essentially Spontaneous Oscillations in Power Systems (AE-

SOPS), originally presented in [34], which uses the quasi-Newton itera-

tion method to find eigenvalues associated with rotor angle modes close

to initial value set. It is able of handle up to about 2000 states.

Other more efficient methods such as the Inverse Iteration, Gener-

alized Rayleigh Quotient Iteration, Modified Arnoldi [35] and, Simulta-

neous Inverse Iteration [35] have been proposed. All these methods are

based on iterative multiplication of a vector by the system state matrix

A. The Program for Eigenvalue Analysis of Large Systems (PEALS)

combines the AESOPS and the modified Arnoldi method. It is pre-

sented in [36].

On the other hand, Selective Modal Analysis (SMA) focuses on

the relevant eigenvalues in a specific area and therefore, storage and

computer requirements are heavily reduced. This method is described

in [30] and [37].

2.3 Transient Stability Analysis

The so-called transient stability analysis aims to assess the dynamic

response of a power system when subjected to a contingency, such as

line outage or a short circuit of different types: phase-to-ground, phase-

to-phase-to-ground, or three-phase. Although they are commonly as-

sumed to occur in transmission lines, occurrences in buses or trans-

former should also be considered. Of course, as the transient analysis

pertains to stability under large disturbances, the non-linearities of the
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2.3. TRANSIENT STABILITY ANALYSIS

model have to be taken into account and, hence, linearization of the

power system is deemed as not valid.

In contrast to the small signal stability analysis, the system com-

monly presents a stable pre and post-disturbance equilibrium. The

point in question is whether or not the trajectory of the system follow-

ing the contingency is unstable and reaches a new stable equilibrium

operating point. Caution needs to be exercised though, because al-

though the system may reach a stable operating point from the mathe-

matical vantage, it cannot be considered transiently stable if the mode

of operation is not an acceptable one. From a mathematical viewpoint,

“transient stability implies that an acceptable post-disturbance steady-

state operating condition of the power system is asymptotically stable

and the response to the given disturbance is such that the trajectories

of the operating quantities tend to this operating condition as time in-

crease” [38].

The study’s period of interest may be cover 3 to 5 seconds and per-

haps extended to go up to 10 seconds in some special cases.

With regards to the simulation method some of the most important

techniques that have been used thus far are a) carrying out numerical

integrationof the differential equations that describe the system and ob-

serve the power system response; b) using Lyapunov-based approaches

based on energy functions of the power system; and c) carrying out

probabilistic solutions.

The stability or otherwise of the first solution a), is determined

by the convergence (divergence) of the time domain simulation. The

accuracy of this approach depends only on the numerical integration

method and on the system model. In a complete contingency analysis

this is applied in off-line environments, but for on-line applications

the computational burden of the method is an important issue to be

considered.
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The second approach is known as the transient energy function

(TEF), a method in which a stability criterion substitutes the numer-

ical integration. TEF is based on an analytical representation of the

system to determinate the transient kinetic and the potential energy

for the post-contingency system. The energy responsible for the devi-

ation from synchronous operation is quantified by the transient kinetic

energy, whereas the integral of the instantaneous real power mismatch

between electrical and mechanical power at generator buses defines the

potential energy [39].

In the last method, stability is assessed by examining probability

distribution functions resulting from initiating factors such as fault

type, fault location, system conditions, (loading and configuration)

which are probabilistic in nature. This seems to be a tool more suitable

for planning purposes; statistically meaningful results require a large

amount of computation time [40].

2.4 Wind Power Generation Systems

Although many wind turbine designs have been proposed over the

years, the horizontal axis, three-blades, upwind turbines have prevailed

because they have proved to offer an efficient configuration.

Fixed-speed and variable speed are the two types used for wind

energy conversion; fixed- speed operation is generally associated with

smaller turbines whereas variable speed operation is associated with

the largest machines.

2.4.1 Fixed-speed Wind Turbines

The fixed-speed or constant speed generator is based on a directly

coupled conventional squirrel-cage induction generator whose slip, and

hence the rotor speed, vary depending on the amount of generated

power.
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2.4. WIND POWER GENERATION SYSTEMS

However, the rotor speed variation is generally 1 or 2 percent [5, 41].

The configuration of a FRC is illustrated in Fig. 2.2.

Squirrel-cage induction generators always consume reactive power

and therefore, the factor power correction is provided by capacitors at

each wind turbine. The power control is done by stall and pitch con-

trol which allow reducing the aerodynamic efficiency of the rotor. The

first one (stall) corresponding to the design of the rotor blades reduces

the efficiency of wind speed above nominal value. With pitch control

the efficiency is reduced by turning the blades out of the wind using

hydraulic mechanisms or electric motors [41].

Both, advantages and drawbacks of this generation system can be

summarizes as follows [41, 42]:

• This is a relatively simple generation system and less expensive.

• FSIG-based wind farms can contribute to network damping but

their ability to survive network faults is poor.

• The fluctuations of the drive train torque produced by fluctua-

tions in wind speed could lead to high structural loads due to the

lack of capability to vary the rotor speed. This requires a more

mechanically robust turbine.

Gearbox

SCIG

Grid

Wind

Capacitor 
bank

Figure 2.2: Configuration of a fixed-speed wind turbine.
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2.4.2 Variable-speed Wind Turbines

The two most common variable-speed wind turbines configurations are

the double fed induction generator (DFIG) wind turbine and the fully

rated converter wind turbine. The double fed induction generator wind

turbine is essentially a wound rotor induction generator with slip rings

and a back-to-back converter between the rotor slip rings and the grid,

and with the stator directly connected to the grid. Fully rated converter

(FRC) wind turbine may employ induction generator or wound-rotor

or permanent-magnet synchronous generator and the power electronic

converter is directly connected to the generator’s stator. The typical

configuration of a FRC is shown in Fig. 2.3.

FRC with permanent magnet synchronous offers a better perfor-

mance due to higher efficiency and less maintenance because of the

fact that it does not have rotor current. No gearbox, high power den-

sity and easy to control are some advantages of this configuration. The

main drawbacks are the cost of the machine which is incremented by

permanent magnets and, on the other side, there are no methods to

control the strength of the magnetic field and hence, the power factor

[43].

The variable-speed wind turbine equipped with a double fed in-

duction generator and controlled by the back-to-back converter is the

concept of electricity-producing wind turbine examined in this work.

IG/SG

Grid

Wind
Power converter

Figure 2.3: Typical configuration of a FRC-connected wind turbine.
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Grid

DFIG

Gearbox

Wind

Power converter

Figure 2.4: Typical configuration of a DFIG-based wind turbine.

A typical configuration is shown in Fig. 2.4. It consists of an induction

wound rotor generator with slip rings to take current into and out of

the rotor. The variable-speed operation is obtained by injecting a con-

trollable voltage into the rotor through a variable frequency converter

[44, 45]. The frequency converter is regularly based on AC/DC IGBT-

based voltage source converter (VSC) linked by a DC bus [41, 5]. It

is rated at approximately 30% of the generator’s power [46, 47]. The

stator of the DFIG is directly connected to the power grid.

The configuration of this variable-speed wind turbine concept allows

the decoupling of the grid frequency (electrical) and the rotor speed

(mechanical) [48, 49]. The power is supplied from the stator to the

power network and provided or absorbed from the grid through the

rotor circuit. For normal operating conditions, the converter control

can be set to provide the minimum amount of reactive power output.

The most prominent benefit of this concept is the output power

maximization by the possibility of changing rotational speed. The

range of rotational speed can be −40% up to +30% of the synchronous

speed [46]. However a disadvantage of this topology is that both, gen-

erator (related to slips rings and brushes) and gearbox require mainte-

nance and periodic checkups.
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2.5 Variable-speed Wind Turbine Systems

Integrated in Power Systems

Technical aspects, such as the use of converter utility interfaces, the in-

herent uncontrollability of the wind, and the existence of machines of

smaller size make a distinction between wind power system generation

and conventional synchronous generation systems and their interac-

tion with power networks. Impacts both, local (power flows, busbar

voltages, protection schemes, power quality) and system-wide (system

dynamics, system stability, reactive power, voltage and frequency sup-

port) affect the system’s behaviour either in the vicinity or as a whole.

As described above, fixed-speed and variable-speed wind turbines

are the two main categories used at wind power systems. However

thanks to the development of power electronics and their cost reduc-

tion, the variable-speed wind technology becomes a competitive can-

didate for the wind energy system operation. This is the addressed

technology in this thesis.

Variable-speed turbines can affect their terminal voltage by mod-

ifying the exchange of reactive power. The use of power electronic

converters in this kind of wind turbine is an important subject. Re-

garding power quality the attention is focused on harmonic distortion.

In case of faults, the wind turbine may be disconnected from the grid

by intervention of the converter control system: in FRC wind turbine

by blocking the turn-on pulses for the converter; in DFIG-based wind

turbines, in case of too high rotor voltages, the rotor windings are

short-circuited by a crowbar protection system.

This is an important issue concerning the power system stability.

The consequences of disconnecting the wind turbines in a high wind

penetration scenario, i.e., above 10% [46], can lead to voltage drops

which degrade the power generation performance. Thus, nowadays,
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new technical requirements for the reliable operation of large wind en-

ergy systems interconnected to the power grid are imposed by grid

codes [50, 51].

Dynamic advantages of the variable-speed DFIG wind turbines in-

clude enhancement of machine stability margin and damping of system

oscillations. However, under transient conditions, as the ones me above

mentioned, the generator works as a traditional squirrel cage induction

generator due to the fact that the protection scheme acts to short cir-

cuit the rotor.

Comparative studies between this concept with synchronous gen-

erators (SG) and squirrel cage induction generators (SCIG) have been

considered to analyze how the dynamic behaviour of the DFIG itself

affects stability of the power system. The studies have been carried

out by considering both frequency domain and time domain approach.

An analysis using a frequency-domain approach based on eigenvalue

analysis has been performed to examine the impact of the DFIG-based

wind turbine on the low-frequency oscillatory modes of the synchronous

machines [52, 53, 54, 55, 56]. The time domain approach has been ex-

tensively used throughout the literature to investigate voltage dynamics

of power systems subject to large disturbances [57, 58, 59, 60, 61].

The decoupled controllability of the d-axis and q-axis component

of the DFIG rotor voltage vector confers greater flexibility. It is a sig-

nificant difference between DFIG and both, SG and SCIG. In case of

SG, developed excitation systems use additional control such as power

system stabilizer to control the field voltage, to damp system oscilla-

tions, and, in general, to enhance the whole system dynamic perfor-

mance. In case of SCIG, additional components, e.g. power electronic-

based compensator, are inherent associated with any dynamic control

[62, 63, 64, 65].
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Otherwise, in recent years a growing interest in studying the DFIG

frequency support is justified because the DFIG does not contribute to

any inertial response to frequency events (as a fixed-speed wind turbine

with induction machine does) [66]. Although it has not been studied

extensively, some papers deal with the impact of DFIG frequency re-

sponse [19, 67, 68], but because of their assumptions, there are some

discrepancies between the pointed out conclusions. None of these pa-

pers discusses the limiting factors of DFIG frequency support.

The interest on this topic also increases along with the risk of oc-

currence of frequency variations because of interactions between large

active power variations, an installed high wind power capacity, and the

existence of frequency controllers in the conventional power stations.

In order to quantify the extra active power support provided from

a variable-speed wind turbine at a certain wind speed, it is calculated

the amount of energy that can be extracted from the wind turbine with

along the extra energy from the stored rotational energy in the turbine-

generator [69]. As expected, the capability of providing an extra active

power support of the wind turbine is reduced at high wind speed con-

ditions (above medium wind speed) and hence, the dimensions of the

turbine mechanical design and the power rating of the generator side

converter need to be suitably adjusted. In [70], a variable proportional

controller to facilitate a temporary extra wind turbine active power

support in high wind speed conditions is proposed, in which a maxi-

mum delivery of 5% and 10% extra active power was reported.

Implementation of primary frequency regulation in wind turbines

can be found in [20, 71, 72, 73, 74, 75].

Acknowledging the control capabilities of the DFIG, the authors in

[55], brought forward a power system stabilizer for a wind turbine em-

ploying a DFIG and showed that this PSS could significantly influence

the contribution of a DFIG-based wind farm to network damping. The

power system stabilizer was designed to operate with a flux magnitude
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and an angle controller (FMAC) scheme, by which the terminal voltage

and the stator power output can be controlled via the magnitude of the

rotor flux vector and its angular position.

The control strategies usually adopted are those one based on in-

ertial control, using the kinetic energy stored in the rotating masses

and the proportional control implemented in conventional units. The

possibility of releasing kinetic energy from a DFIG-based wind turbine

system by adding an extra control loop, sensitive to the network fre-

quency, has also been applied in works as [76, 19] and compared to

fixed-speed wind turbines [42, 67].

Considering the published results it can be concluded that variable

speed DFIG farms with frequency control managed to increase the

eigenvalues damping, improving as well the dynamic response of the

frequency. This improvement is more significant in DFIG-based wind

farms with frequency control than in the fixed-speed SCIG.
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Chapter 3

Variable-Speed Wind Power

Generation Systems

Some basic considerations concerning the performance of wind turbines

in electrical power systems are presented in this chapter. To this end,

an introduction to aerodynamic aspects of wind turbines is presented,

followed by a brief overview of the concept of modelling, simulation

aspects, and the main elements of a variable-speed wind turbine model

in connection with the type of studies addressed in this work.

3.1 Introduction

Computer simulations of complex systems, as it is the case of wind

turbines, make possible to investigate a wide range of properties of key

technology aspects such as design, construction and applications.

It is fair to say that investigation has its own requirements concern-

ing its necessary level of modelling detail and the model data require-

ments all of which need to be agreed on before simulation can start.

This is strongly related to the accuracy and reliability of the obtained

results.
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In this way, an overview of the wind turbine generation system is

first presented aimed at having a good understanding of the technology

with a view to assess the relevance of each one of its components within

the scope of this thesis.

3.2 Wind Speed

The modelling of power fluctuations of wind farms in continuous op-

eration may be a key requirement to obtain realistic results in most

studies. Wind speed is one of the most difficult variables to predict

in order to estimate the wind farms energy production and to get an

acceptable analysis of its behaviour when connected to the electrical

network.

Theoretical estimations can be collected by means of statistical data

related to wind variations at a particular location, although these are

better suited for planning stage in terms cost, electricity output per unit

and area. To ensure that all design limits are satisfied, the performance

evaluation of wind power generation system schemes has be considered

in the full range of wind speed variations. Stochastic and deterministic

effects (caused by turbulences, the tower shadow, etc.) have been taken

into account by means of various wind functions.

For power output of a wind turbine the long-term variations of the

mean wind velocity are of great importance while short-term fluctua-

tions determine the fatigue loading on the wind turbine structure.

The wind, in time, can be regarded as having a quasi-static mean

speed which fluctuations superimposed on the average value. Random

variations of the instantaneous speed from the mean wind speed in

periods below 10 minutes are considered as termed turbulences [77].

Turbulences are caused by the airflow over the earth’s surface and are

influenced by orography characteristics, soil surfaces or by the presence

of obstacles such as buildings.
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The mean wind speed v̄w (generally over a period of ten minutes),

ignoring short-term fluctuations, is determined by the level of wind

speed. Thus, the instantaneous wind speed can be expressed as a

function of a steady mean wind speed v̄w(y, z) and a field of turbulence

vT (y, z, t) corresponding to the superimposed fluctuating part of the

wind speed

v(y, z, t) = v̄w(y, z) + vT (y, z, t) (3.1)

A more common measure of the wind variability is the turbulence in-

tensity index, which is defined as the relation of the standard wind

speed deviation to the mean wind speed

IvT =
σw
v̄w

(3.2)

This index can be up to 20% over forest or urban areas [78].

Other kind of wind fluctuations denominated gusts, also exist and

may vary from a few to several tens of seconds. The average wind

speed is often modelled by a Weibull distribution function whose den-

sity function is given by

p(v) =
(a
b

)(v
b

)a−1
exp

[
−
(v
b

)a]
(3.3)

where p(v) is the probability related to wind speed v, b is the scale

factor, and a is the form factor.

The so-called Rayleigh distribution is a special case of Weibull dis-

tribution, in which the a parameter is assumed to be equal to 2 [79, 80].

Both distributions fit quite well to most wind histograms and b and a

can be determined by applying common estimation methods such as

the standard deviation method (SD), the maximum likelihood method

(MLM), and the least squares method (LSM) [81]. Wind speed in-

creases with height because of friction at the earth surface [82]. The

increase rate of wind speed is given by

v(z) = v0

(
z

z0

)α
(3.4)
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where v is the predicted wind speed at height z and v0 is the wind speed

at height z0. This results in a significant increase in power greater

heights. At the same time, α is an empirical parameter of the wind

shear and it can take a value of either 1/7 (during the day) and 1/5

(during the night) [83]. For more specialised information on wind speed

in wind turbines the following references [84, 85], are particularly useful.

3.3 Mechanical System of a Wind Tur-

bine

The wind mechanical turbine model represents essentially the shaft

dynamics of the wind turbine and its control system. The main me-

chanical turbine components are the blades, hub, shafts and depending

on the wind turbine technology, the gearbox.

In this section, the energy conversion process is addressed to explain

the role that the drive train elements play in the wind power extraction

process. Afterwards the shaft system model is presented.

3.3.1 Principles of wind energy conversion

Elementary momentum theory

The elementary “momentum theory” provides a common physical basis

for the understanding and operation of wind energy conversion. The

analysis considers a control volume bordered by a surface of a stream

tube and two cross-sections of the stream tube, as shown in Fig 3.1.

An uniform ‘actuator disc’ represents the turbine.

This theory states that the kinetic energy of an air mass m, moving

at a velocity v can be expressed as

E =
1

2
mv2 (3.5)
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Pmech

Actuator 

disc

v2

axial

Stream-tube

v1 v'

Figure 3.1: Flow model of momentum theory

The volume V flowing through a certain cross-sectional area A,

through which the air passes at velocity v, is

V̇ = vA (3.6)

and the mass flow with air density ρ is

ṁ = ρvA (3.7)

The energy passing through the cross-section A per second, which

has been produced by the kinetic energy of the moving air and the

mass flow, is identical to the power P

P =
1

2
ρv3A (3.8)

The mass flow through the stream-tube must remain unchanged

everywhere. Therefore, the flow velocity increases due to its narrow

cross-sectional area.

The power difference of the air flow upstream and downstream of

the converter yields the mechanical energy that has been previously
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extracted from the airflow

P =
1

2
ρA1v

3
1 =

1

2
ρA2v

3
2 =

1

2
ṁ(v21 − v22) (3.9)

Downstream v1 is the wind velocity before it gets to the converter,

whereas v2 is the flow velocity behind the converter. In theory, the

power would reach its maximum level when the downstream velocity is

zero. However, the wind speed cannot be reduced to zero in practice.

This equation is of great importance since it reveals that the power in-

creases with the cube of wind speed and only linearly with air density

and swept area.

Conservation of momentum provides the relationship between the

converter thrust, T , and the rate of change of momentum of the airflow,

T = ṁ(v1 − v2) (3.10)

The net force on the control volume must be equal and opposite to

the converter thrust, which is an equal force exerted by the converter

on the air stream. In this sense the required power is

P = Fv
′
= ṁ(v1 − v2)v

′
(3.11)

Thus the mechanical power extracted from the air stream can be

deduced from both, the power difference between the upstream and

downstream of the converter and the thrust and the flow velocity. By

equating (3.9) and (3.11)

1

2
ṁ(v21 − v22) = ṁ(v1 − v2)v

′
(3.12)

The power coefficient Cp is defined as the ratio of the wind power

and the mechanical power output of the converter,

Cp =
Pwind turbine

Pair

(3.13)
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A theoretical ideal maximum coefficient Cp, which was derived by

Betz [78], is Cp = 16
27

= 0.593 1

The dependency of the power coefficient on such a relationship,

when looked at from the energy vantage, is what it is termed tip-speed

ratio λ, which is determined by the ratio of the rotor blade’s tangential

velocity in the undisturbed axial airflow and the wind speed. It is

commonly referenced to the tangential velocity of the rotor blade tip,

uT .

λ =
uT
vw

=
tangential velocity of the rotor blade tip

wind speed
(3.14)

or

λ =
ωR

v
(3.15)

where

ω = rotational speed of rotor

R = radius to tip of rotor

v = upwind free wind speed, m s−1

The tip-speed ratio λ, and the power coefficient Cp are dimension-

less and are well suited to characterize the performance of any size of

wind turbine rotor, as it will be described later in the chapter.

Blade element momentum

The physical framework from which the analysis of conversion of kinetic

energy to mechanical energy is developed, should not be separated from

the actual capabilities of the energy converter. Under real conditions,

the power output depends on the aerodynamic forces that have been

employed to produce it.

1It is frequently called the Betz factor or Betz limit. Modern wind turbines,
operate close to the power coefficient limit, with Cp up to 0.5 and are therefore
optimized because of this.
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Such forces, expressed as a function of the local aerodynamic lift

and drag coefficients, can be derived by using the blade element theory,

which divides the rotor blade into a number of elements. Both, the

velocity component in the span-wise direction and three-dimensional

effects are ignored.

Fig. 3.2 shows all the forces and velocities relative to the blade

chord line at radius r. The blade elements are formed by the local ro-

tor blade chord and the radial extension of the element δr. The incident

resultant velocity, vr, is obtained from the combination of the axial flow

velocity in the rotor plane and the tangential speed at the radius of the

blade cross-section. The angle of attack is an aerodynamic parameter

formed from vr in the cross-sectional plane of the blade. The blade

pitch angle is a geometrical parameter (design parameter) referring to

the plane of rotation.

The lift force, L, is perpendicular to the flow direction, and the

drag force, D, is parallel to the flow direction. These forces are defined

by following relations

L =
1

2
ρairv

2
r cCL (3.16)

D =
1

2
ρairv

2
r cCD (3.17)

where c is the chord of the blade section and CL and CD are the

lift and the drag coefficients, respectively, which can be determined by

using the airfoil data catalogues.

The normal and tangential forces, FN and FT , acting on the blade

sections are

FN = L cosφ+D sinφ (3.18)

FT = L sinφ+D cosφ (3.19)

with φ being the angle between the relative velocity and the rotor

plane,

φ = arctan
(vaxial
rω

)
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dr
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b : blade pitch angle

a : angle of attack
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Figure 3.2: Flow velocities and aerodynamics forces at a blade element
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3.3. MECHANICAL SYSTEM OF A WIND TURBINE

On this basis, the exerted forces on the blade element moving though

the stream tube-strip can be calculated. Assuming that there is no

aerodynamic interference between the strips, the forces on the blade

elements distributed over the blade length can be added, and hence

the aerodynamic force distribution over the blade length is obtained.

The rotor torque is obtained by the integration of the tangential

force distribution and the power coefficient Cp or the rotor power with

the rotor speed.

The rotor thrust is obtained from the axial force distribution. Thus,

both the rotor performance and the aerodynamic loading for a given

rotor geometry can be determined by applying the blade theory.

Further details on theoretical modelling concepts are available in

the literature [78, 86, 87].

3.3.2 Wind turbine rotor performance and model

for power system studies

The power, torque and rotor thrust are the three main indicators used

to assess the performance of a wind turbine, depending on how these

vary with wind speed.

The amount of energy taken from the wind and the gearbox size

are defined by the power and the developed torque, respectively. The

wind turbine tower design is strongly linked to the rotor thrust.

For power system studies the wind turbine is represented by a non-

linear wind power model relating power output Pt to wind speed vw and

power coefficient Cp. Since the interest is mainly focused on the input

torque, the complex airflow dynamics and their associated mechanical

vibrations and deformations are ignored.
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The available shaft power Pt is calculated as, [5]

Pt =
1

2
ρair v

3
w AwtCp (λ, β) (3.20)

where ρair is the mass density of air, Awt is the wind turbine rotor

swept area, the power coefficient Cp, is a function of the tip speed ratio

λtip and the pitch angle β.

Fig. 3.3 illustrates a power coefficient curve with the pitch angle, β

as parameter. The power coefficient is maximum for a unique tip-speed

ratio. For a fixed-speed wind turbine, operation at maximum power

coefficient corresponds to a particular wind speed; however in variable-

speed wind turbines it is possible to cover a wide range of wind speeds.

Cp− λ curves are obtained from field measurements and are gener-

ally provided by manufacturers. Numerical approximations have been

used to obtain the Cp−λ curves for academic purposes. Using a generic

equation developed in reference [49], Cp can be calculated as

Cp = c1

(
c2
λi
− c3β − c4βc5 − c6

)
exp
−c7
λi

+ c10λ (3.21)
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Figure 3.3: Power Coefficient as a function of tip speed ratio and the pitch
angle.
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where

λ−1i =

[(
1

λ+ c8 β

)
−
(

c9
β3 + 1

)]−1
The Cp parameters ci, are given in Table 3.1.

A straightforward and convenient way to obtain the dynamic per-

formance relating to the operating point is by means of power and

torque coefficients curves resulting from the theoretical analysis men-

tioned above.

Power curves of wind turbines give the steady-state relationship

between the net electrical power output and the wind speed at hub

height. These are normally given by the turbine manufacturer.

Fig. 3.4 shows an example of a typical power curve for a wind

turbine.

Table 3.1: Approximation of power curve for a variable-speed
wind turbine

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10
0.73 151 0.58 0.002 2.14 13.2 18.4 -0.02 -0.003 0

Wind speed         (m/s)

E
le

ct
ric

al
 p

ow
er

  
 (

M
W

)

vw

Prated
vw,rated

vw,co

vw,ci

Figure 3.4: Typical Power curve for a wind turbine
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The points corresponding to cut-in wind speed, vw,ci, and rated wind

speed, vw,rated, represent the wind speed value at which the machine

will deliver the minimum useful power and the rated power, Prated,

respectively. Due to safety restrictions, the delivery electrical power is

limited at a maximum wind speed, termed cut-out wind speed, vw,co.

The cut-in and the cut-out wind speed are given by the wind designer.

All wind velocities are measured at hub height.

Approximated values for an average annual wind speed of 8 m/s are

[5]:

• cut-in wind speed: 5m s−1

• rated wind speed: 12− 14m s−1

• cut-in wind speed: 25m s−1

In small network disturbance studies a simple turbine model with

constant input power or torque (constant wind speed, rotor speed and

pitch angle) can be used, since the variation in rotor speed, and hence

pitch angle are small.

3.3.3 Shaft system

The shaft system represents the coupling between mechanical and elec-

trical parameters of a wind turbine. For small-signal stability studies

of wind turbines with DFIG’s, a multi-mass drive train must be con-

sidered.

A complete shaft system of a turbine-generator unit can be modelled

as three masses connected by two shafts, as shown in Fig. 3.5. It

consists of turbine, low-speed shaft, gearbox, high-speed shaft, and

generator.

High turbine inertia and low stiffness between the turbine and gen-

erator rotor are distinctive characteristics of wind turbines in contrast

with conventional steam and hydro turbines [88]. Low mechanical shaft

stiffness, viewed from the high-speed shaft, is a result of the gearbox.
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A simplified two-mass model, shown in Fig 3.6, can be obtained

by comparing the shaft stiffness and the masses of the same speed

reference. If k∗LS = kLS/n
2
gb is the low-speed shaft stiffness referred to

the high-speed side, the high-speed side can be considered rigid respect

to the low-speed shaft, since the gear ratio for machines rated between

300 kW and 2000 kW (with higher rotational speeds between 48 and

17 r.p.m.) is between about 1:31 and 1:88 [86].

Thus, one of the masses is related to the wind turbine (low-speed

shaft) representing the lumped-mass of hub and blades, while the sec-

ond mass represents the equivalent shaft, the high-speed shaft, in which

gearbox and generator inertia are lumped together. The shaft stiffness

in Fig 3.6 is represented by ksh.

turbine                    

low speed 
shaft high speed 

shaftTm

Te

gearbox                 
generator

Figure 3.5: Three-mass model of drive train

turbine                       

Tm Te

generator +
gearbox

ksh

Figure 3.6: Two-mass model of drive train
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The two-mass approach is recommended for power system stability

studies because the flexibility (or softness) of the shafts are correctly

represented [89]. It should be emphasised that the gearbox of the wind

turbine represents a low mechanical stiffness, ksh, hence, the two-mass

model is used to preserve correctly the drive train dynamics [90].

The resonance frequency of the low speed shaft is in the range be-

tween 1 and 2 Hz for multi-megawatt wind turbine generators, and

therefore within the frequency band of interest (0.1-10 Hz). The res-

onance frequencies of the gearbox and the high speed shaft are above

this band, hence, these are considered to be infinitely stiff [41].

Moreover, the modes associated with the blades and the hubs are

either well damped or their frequencies are out of the range of interest

[90].

The dynamics equations for the shaft system can be obtained from

Newton’s equations of motion for each mass,

J∗t
dω∗t
dt

= (T ∗t − Tsh) (3.22)

Jg
dωg
dt

= (Tsh − Te) (3.23)

dθωt
dt

= ωeleB (ω∗t − ωg) (3.24)

with shaft mechanical torque given by:

Tsh = ksh θωt + c
dθωt
dt

(3.25)

where Jt and Jg are the inertia of the turbine and generator; ωt and

ωR are the turbine and generator speed; Tt and Tg are the torques of

the turbine and generator; ωωt is the shaft torsional angle; and ksh and

c are the equivalent shaft stiffness and damping coefficient. All turbine

variables (angular speed and torque) are referred to the generator side

of the gearbox and are denoted by a superscripted asterisk.
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In power systems it is helpful to normalize all variables and parame-

ters using per unit notation, in order to make all variables dimensionless

and simplify the computation and the system analysis. For that, ap-

propriate reference bases should be chosen, and thus the per unit value

is given by the ratio between the actual value and the base value,

per unit value =
actual value

base value
(3.26)

The following base speed and base torque are defined to express the

drive train system in per unit values

ωtB =
ωRB
ngb

(3.27)

TtB = TeB ngb (3.28)

where ωRB = ωelB/npp is the base speed of the generator with ωelB

the electrical speed equal to 2πf , and npp the generator’s pole-pair

number, TeB = Prated/ωRB is the base of the generator electrical torque

and, ngb is the gearbox ratio.

With the turbine speed inertia and torque referred to the high-speed

shaft by ω∗t = ngbωt, J
∗
t = Jt/n

2
gb and T ∗t = Tt/ngb, respectively, and

the turbine bases (ωtB, TtB), equation (3.22) in per unit can be written

as
Jt
n2
gb

ωRB
ωtpu
dt

= TeB(Ttpu − Tshpu) (3.29)

and together with the inertia constant of the turbine (in seconds),

Ht =
1

2

Jt ωRB
n2
gb TeB

(3.30)

yields to the turbine speed equation,

dωtpu
dt

=
1

2Ht

(Ttpu − Tshpu) (3.31)
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Similarly, the rotor generator speed equation ((3.23)) in per unit

form is obtained
dωgpu
dt

=
1

2Hg

(Tshpu − Tepu) (3.32)

where the electromagnetic torque, Te, in per unit, as presented in

next section, is calculated as

Te = iSd ΨSq − iSq ΨSd (3.33)

The shaft torque from (3.25) can be expressed in per unit by apply-

ing the per unit definition (equation (3.26)) with the stiffness base

as kB = TeB/(1 el.rad) and the base damping coefficient as cB =

TeB/(1 el.rad/1 s)

Tshpu = kshpu θωt + cpu
dθωt
dt

(3.34)

The equation (3.24) for the equivalent twist angle is expressed in

actual units (radians). The equations for the drive train system are

summarized as below. The system model in this document is assumed

to be expressed in per unit notation, therefore the subscript ‘pu’ and

superscript ‘∗’ are omitted, from now on,

dωt
dt

=
1

2Ht

(Tt − Tsh) (3.35)

dωg
dt

=
1

2Hg

(Tsh − Te) (3.36)

Tsh = ksh θωt + c
dθωt
dt

(3.37)

dθωt
dt

= ωeleB (ωt − ωg) (3.38)

3.4 Electrical System of a Wind Turbine

Equipped with DFIG

Along with the mechanical drive train, the electrical system is a fun-

damental part of a wind turbine. The electrical system comprises the
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components necessary to convert the mechanical energy into electric

power, including electrical auxiliaries and control systems.

The electrical generator is the central component for the mechani-

cal/electrical energy conversion process in a wind turbine. Nowadays,

wind turbines equipped with double fed induction generators are the

most widely used variable speed wind turbine technology for large wind

turbines (above 1 MW). It consists essentially of a wound rotor induc-

tion generator with slip rings and a back-to-back converter between the

rotor slip rings and the grid, and with the stator directly connected to

the grid. A typical configuration is shown in Fig. 2.4.

The main features of this generator are:

• The range of rotational speed can be −40% up to +30% of the

synchronous speed [46].

• The frequency converter is rated at approximately 30% of the

rated generator power [46, 47].

• The grid frequency (electrical) and the rotor speed (mechanical)

are decoupled [48, 49].

• The power is supplied from the stator to the power network and

provided or absorbed from the grid through the rotor circuit.

Likewise, the controllability of the electrical system is an important

aspect linked to the energy quality of the power system and plays an

important role to ensure its security and stability.

3.4.1 Generator Model

The induction generator comprises three-phase windings in the stator

Sa , Sb
, Sc and three-phase windings in the rotor Ra , Rb

, Rc distributed

120◦ as shown Fig. 3.7.
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Figure 3.7: Stator and rotor circuits of an induction machine

The angle θSR corresponds to the angular displacement between the

phase Sa of the stator winding and Ra of the rotor winding.

The stator and rotor angular velocity are represented by ωS and ωR

in electrical radians per second, respectively. The synchronous speed

ωsyn is given by the ratio of the electrical frequency of the applied stator

voltage fS and the number of pole pairs npp as

ωsyn =
f

npp
(3.39)

where f is in Hz and, ωsyn in rad/s.

When the rotor operates either below or above the synchronous

speed, rotor voltages are induced in the rotor windings with a frequency

fR equal to the slip frequency

fR = s fS (3.40)
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where the slip s is given by

s =
ωsyn − ωR
ωsyn

(3.41)

Stable state performance

The equivalent circuit of at double fed induction generator is shown in

Fig. 3.8. In this, V S and IS represent the phase stator voltage and

current, V R and IR the rotor voltage and current, RS and RR the sta-

tor and rotor resistances, Lsl and Lrl are the stator and rotor leakage

inductances and Lo the magnetizing inductance.

From Fig. 3.8 stator and rotor voltage (referred to the stator) are

expressed as

V S = −RS IS + jωS Lsl IS + jωS Lo (IS + IR) (3.42)

V R

s
= −RR

s
IR + jωS Lrl IR + jωS Lo (IS + IR) (3.43)

The electromechanical torque is given by

Te = 3|IR|2RR
npp
sωS
− 3< [V R I

∗
R]
npp
sωS

(3.44)

Then, the torque is slip dependent.

RS Lsl Lrl

Lo

IRIS

VRVS

+ +

_ _

RR 

s

s

Figure 3.8: Steady-state equivalent circuit of the DFIG
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Figure 3.9: Typical torque-slip characteristic of an induction machine

Fig. 3.9 illustrates the relationship between torque and slip. When

rotor operates below the synchronous speed (i.e., slip increases) the

machine operates in motoring mode; if rotor speed is greater than

synchronous speed (negative slip) the machine operates in generating

mode.

Dynamic analysis

Depending on stator and rotor windings, the voltage dynamics of the

machine can be described by

vSa(t) = −RS iSa(t)− dΨSa(t)

dt
(3.45)

vSb
(t) = −RS iSb

(t)− dΨSb
(t)

dt
(3.46)

vSc(t) = −RS iSc(t)−
dΨSc(t)

dt
(3.47)

vRa(t) = −RR iRa(t)− dΨRa(t)

dt
(3.48)

vRb
(t) = −RR iRb

(t)− dΨRb
(t)

dt
(3.49)

vRc(t) = −RR iRc(t)−
dΨRc(t)

dt
(3.50)
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where vSa(t), vSb
(t), vSc(t) are the instantaneous stator voltages of

phases a, b, c; iSa(t), iSb
(t), iSc(t) are the stator phase currents ; ΨSa(t),

ΨSb
(t), ΨSc(t) are the stator flux linkages and, RS is the stator resis-

tance. Similar definitions are applied to the rotor.

Stator and rotor flux linkages are produced by the currents flow-

ing through the windings. By assuming symmetrical stator, and rotor

structures and a balanced system (iSa+ iSb+ iSc = 0), the flux linkages

are given byΨSa

ΨSb

ΨSc

 =

LS LSm LSm

LSm LS LSm

LSm LSm LS


iSa

iSb

iSc

+

LRSaa LRSab
LRSac

LRSba
LRSbb

LRSbc

LRSca LRScb
LRScc


iRa

iRb

iRc


ΨRa

ΨRb

ΨRc

 =

LR LRm LRm

LRm LR LRm

LRm LRm LR


iRa

iRb

iRc

+

LSRaa LSRab
LSRac

LSRba
LSRbb

LSRbc

LSRca LSRcb
LSRcc


iSa

iSb

iSc


(3.51)

with
LS = LSself

− LSo

LR = LRself
− LRo

LS, LR are the stator and rotor inductances representing the total

self inductance of the winding as the sum of a magnetizing induc-

tance (LSself
, LRself

) and a mutual inductance between two windings

(LSo , LRo).

All other inductances LSRaa , LSRba
, LSRca , LRSaa , LRSab

, LRSac , etc.,

are the mutual inductances between stator and rotor windings. Mutual

inductances depend on the angle between the two windings; then for

the phase a of stator and rotor windings

LSRaa = LSR cos θSR (3.52)

where LSR is the peak value of the mutual inductance between sta-

tor and rotor windings. Similarly all other mutual inductances are

obtained.
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Equations (3.45)-(3.51) can be written in the general matrix form

as

vS = −dΨS

dt
−RS iS

vR = −dΨS

dt
−RR iR (3.53)

ΨS = LS iS + LSR iR

ΨR = LR iR + LRS iS (3.54)

where vS, vR, iS, iR are the three-phase voltage and current vectors,

and the matrices LSR = LSR are

LSR = LSR

 cos θSR cos
(
θSR + 2π

3

)
cos
(
θSR − 2π

3

)
cos
(
θSR − 2π

3

)
cos θSR cos

(
θSR + 2π

3

)
cos
(
θSR + 2π

3

)
cos
(
θSR − 2π

3

)
cos θSR


(3.55)

d-q Model

The dynamic equation of a three-phase DFIG can be represented in the

d-q frame since the resultant equations are especially suited for control

and simulation purposes.

The Park transformation can be written as

xdq =

[
xd

xq

]
= T(θ)

xaxb
xc

 (3.56)

with

T(θ) = K


sin θ sin(θ − 2π

3
) sin(θ + 2π

3
)

cos θ cos(θ − 2π
3

) cos(θ + 2π
3

)
1√
2

1√
2

1√
2

 (3.57)

where θ is the rotation angle and the factor K is taken as usually√
2

3
for power invariant transformations.

57
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DFIG

By applying the transformation to equations (3.45)-(3.50)

vSd = −RS iSd −
dΨSd

dt
− ωSΨSq (3.58)

vSq = −RS iSq −
dΨSq

dt
+ ωSΨSd (3.59)

vRd = RR iRd −
dΨRd

dt
− s ωSΨRq (3.60)

vRq = −RR iRq −
dΨRq

dt
+ s ωSΨRd (3.61)

with rotor and stator d-q fluxes given by

ΨSd = LS iSd + Lo iRd (3.62)

ΨSq = LS iSq + Lo iRq (3.63)

ΨRd = LR iRd + Lo iSd (3.64)

ΨRq = LR iRq + Lo iSq (3.65)

Per unit

In order to normalize the electrical system, the power and the voltage

are usually chosen as base quantities; that is to say, equal to one per

unit under rated condition.

The wind turbine electrical system in dq-axis reference frame ((3.58)-

(3.61)) is described in per unit (pu) values based on nominal voltage, on

the three-phase nominal power of the generator, and on the electrical

speed of the generator,

VB =
√

3VLLrated
[ V ] (3.66)

SB = S3φ,rated [ VA ] (3.67)

ωelB = 2πf

[
el.rad

s

]
(3.68)

where f is the electrical grid frequency in Hz.
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Thus, the base current and impedance are defined as

IB =
SB
VB

[A] , ZB = 3
V 2
B

SB
[ Ω ]

The base voltage of low and high voltage side are referred to the

same side by the turns ratio of the transformer. The mechanical and

electrical speeds are related by the pole-pair number as

ωRB =
ωelB
npp

[
mech.rad

s

]
(3.69)

The bases of the electromagnetic and turbine torque are given by

TeB = SB/ωRB and TtB = SB/ωtB, respectively, with ωtB = ωRB/ngb

as defined in the previous section. The base torque is in [Nm].

With the per-unit definition in (3.26), stator and rotor voltage equa-

tions in d-q reference frame ((3.58)-(3.61)) in per-unit notation can be

rewritten as

vSd = −RS iSd −
1

ωelB

dΨSd

dt
− ωSΨSq (3.70)

vSq = −RS iSq −
1

ωelB

dΨSq

dt
+ ωSΨSd (3.71)

vRd = −RR iRd −
1

ωelB

dΨRd

dt
− s ωSΨRq (3.72)

vRq = −RR iRq −
1

ωelB

dΨRq

dt
+ s ωSΨRd (3.73)

ΨSd = LS iSd + Lo iRd (3.74)

ΨSq = LS iSq + Lo iRq (3.75)

ΨRd = LR iRd + Lo iSd (3.76)

ΨRq = LR iRq + Lo iSq (3.77)

Notice that subscript “pu” is not indicated in the previous equations

as the model used in the remainder of this text is expressed in per-unit

(unless otherwise stated).
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The electromagnetic torque expression in per-unit can be written

in terms of stator and rotor flux as

Te =
Lo

LSLR − L2
o

(ΨRdΨSq −ΨRqΨSd) (3.78)

3.5 Converter System and Control Strate-

gies

The DFIG is connected to the grid by two power converters to form

a back-to-back HVDC-link as shown schematically in Fig. 3.10. The

link consists of two VSCs, one connected to the rotor of the DFIG and

the other to the grid-side. The two VSCs share a common capacitor

on their dc-sides.

The range of rotor speed variation is dependent on the rating of

the rotor VSC. The grid-side VSC is used to regulate the active and

reactive power exchange between the generator and the grid. This is

represented as a controlled current source injecting an ac current at

grid frequency to the network. The machine-side converter (MSC) is

related to the active power flow control. The MSC is controlled such

that maximum wind power is extracted at sub-synchronous regimes

and constant torque is tracked at synchronous regime.

Grid

~ 
~ 

DFIGTm

From wind 
turbine

Figure 3.10: Schematic of a DFIG-based wind turbine.
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The DFIG converter control has been generally dealt with classical

methods. The most widely employed control techniques are based on

field oriented control (FOC) [91] and direct control techniques like the

direct control torque (DTC), direct self control (DSC) and direct power

control (DPC) [92, 93, 94]. The direct control techniques, as applied

to the DFIG, are based on rotor flux regulation as opposed to stator

flux regulation which applies to squirrel cage induction machine.

Technological advances have lead to develop more efficient strate-

gies based on advanced and modern control techniques such as Fuzzy

Logic Control, Robust Control, Adaptive Control, etc. Among them,

Sliding Mode Control (SMC) emerges as a particularly suitable option

to deal with electronically controlled variable speed operating WECS.

Interest in this control approach has emerged due to its potential to

eliminate the effects of parameter variations with minimum complex-

ity of implementation [6], [7]. The non-linear SMC technique has been

widely applied in variable-speed wind systems but it has been applied

at only the mechanical system, i.e., the thrust has been on power max-

imization and on the pitch controller.

In this thesis a non-linear technique based on Sliding Mode Con-

trol (SMC) is put forward as an alternative approach to control the

converter of a DFIG-based wind system. A FOC based scheme is also

applied as a basis of comparison with the new results obtained with

the proposed SMC.

3.5.1 Machine Side Converter

3.5.2 Field Oriented Control (FOC)

The control of the MSC has been generally carried out by the classical

field-oriented control to carry out a decoupled regulation of active and

reactive power delivery through the stator. In the FOC method, the

active and reactive powers are controlled separately by means of d-q

components of the rotor currents using PI controllers [95].
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The block diagram of the FOC in a DFIG application is shown in

Fig. 3.11. In this control scheme, the dq-axis frame of reference is

linked to the stator voltages, with the stator flux vector in the direc-

tion of the d -axis. Hence, the components of the stator voltage vectors

are vSd = 0 and vSq = |vS|.

Using the current-dependent flux expressions (3.74)-(3.77),

iSq = −Lo
LR

iRq (3.79)

Neglecting the stator resistances, the active and reactive powers

generated by the machine may be written down as:

PS = vSq iSq = −vSq
Lo
LR

iRq (3.80)

QS = − vSq iSd = ωS (LS iSd + Lo iRd) iSd (3.81)

The size of the rotor-side converter is determined bearing in mind

the power distribution in both circuits of the machine and, at the same

time, being capable of controlling the supplied power to the rotor cir-

cuit.

PI

Current

Controller
e

jqs
SVM

DFIG
Power 

Computation

Qref

Pref

Reactive Power 

Controller

Active Power 

Controller

iRd Ref

iRq Ref

vRd

vRq

vR

Machine signals vS

Q

P

              -

              -

PI

PI

Figure 3.11: Block diagram of a vectorial control of a DFIG.
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The reference values for the rotor currents are determined from the

steady-state relationship between the rotor and stator currents, with

the stator resistance neglected,

iR =
vS

ωS Lo
− LS
Lo
iS (3.82)

Assuming known values of the stator reference active and reactive

powers, the corresponding reference currents referring to the rotor are

iRdRef
=
|vS|
ωS Lo

+
LS
|vS|Lo

QSRef
(3.83)

iRqRef
= − LS

Lo
iSq PSRef

(3.84)

The rotor voltage components are obtained from the dynamic equa-

tions of the machine-side controller as follows.

For the d -axis control loop

dXQS

dt
= QSRef

−QS = QSerr (3.85)

dXid

dt
= KQS

QSerr +
KQS

TQS

XQS
− iRd (3.86)

uRd = Kid
dXid

dt
+
Kid

Tid
Xid (3.87)

For the q-axis control loop

dXP

dt
= PRef − P = Perr (3.88)

dXiq

dt
= KPPerr +

KP

TP
XP − iRq (3.89)

uRq = Kiq
dXiq

dt
+
Kiq

Tiq
Xiq (3.90)

where QSerr is the reactive power error; XQS
is the state variable

of the outer controller; Xid is the state variable of the inner controller,

Perr is the active power error; XP and Xiq are the state variables of the

outer and inner controllers. The parameters Kid, Kiq, KP , KQS
are the
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controller proportional gains (P-gains). The parameters Tid , Tiq , TP ,

TQS
are the controller reset times or integral times (I-times).

3.5.3 Sliding Mode Control (SMC)

The design of the rotor controller is developed through a theoretical

framework based on the combination of a geometric approach and slid-

ing mode techniques, as put forward in [96]. The key idea of sliding-

mode control (SMC) is to allow a desired performance of the system

to follow a specified sliding surface. Interest in this control approach

has emerged due to its potential to eliminate the effects of parameter

variations with minimum complexity of implementation [6, 7].

Design method

The sliding mode control design consists of two steps:

• First Step: selection of an equilibrium sliding surfaces (x), such

that the internal zero-dynamics is stable and the enforcing sliding

mode in this manifold (x) = 0. Considering the non-linear system

ẋ = Ax+B u+ h

y = s(s)
(3.91)

where x ∈ Rn , u(x) ∈ Rm, B(x) ∈ Rnxm, and y ∈ R.

x, u, and B, represent the state, control vectors and control input

matrix, h represents the external uncertainties and disturbances.

The disturbances are assumed to be bounded as follows: |h1| ≤
H1, |h2| ≤ H2.

The system (3.91) is transformed to the regular form [6]

ẋ1 = A11 x1 + A12 x2 + h (3.92)

ẋ2 = A21 x1 + A22 x2 +B2 u+ h (3.93)

64



CHAPTER 3. VARIABLE-SPEED WIND POWER GENERATION SYSTEMS

where x1 ∈ Rn−m, x2 ∈ Rm, and B2 is an mxm non-singular

matrix.

Let the tracking error e = x∗ − x where x∗ is the commanded

value. The system can be expressed as

de

dt
= ė = Ae+B u+ ĥ (3.94)

where ĥ = h− (A− I)x∗.

The sliding mode manifold can be defined as

s = Ce =
[
F b2

] [e1
e2

]
= Fe1 + e2 (3.95)

with F ∈ Rmxn The state vector e2 is selected as a function of

the state vector e2 as

e2 = −F e1 (3.96)

Shaping the desired dynamics of the system

ė1 = (A11 − A12F )e1 (3.97)

where matrix F is chosen such that AsysSM
= A11 − A12F has

stable eigenvalues and the system response has the desired be-

haviour while the system is in sliding mode.

• Second Step: After switching surface design, the next important

aspect is guaranteeing the existence of a sliding mode. These

conditions may be derived from a Lyapunov function

V (x) > 0

V (x) =
1

2
sT s

(3.98)

The time derivative of V (x) is given by

V̇ (x) =
1

2
sT
∂s

∂x
ẋ = sT

∂s

∂x
(f(x) +B(x)u) (3.99)
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where s =
[
s1, s2, ..., sm

]T
and

∂s

∂x
=

[
∂s1
∂x

,
∂s2
∂x

, ...,
∂sm
∂x

]T
mxn

In order to design a sliding mode control scheme to drive the

system trajectories onto the sliding mode s = 0 for t > 0, it may

be assumed that ṡ(x) = 0 too, and then the equivalent control

law is obtained. From (3.95)

u(x) = −
[
∂s

∂x
B

]−1 [
∂s

∂x
A

]
(3.100)

and substituting u(x) into (3.91) to yield the sliding mode dy-

namics as

ẋ = A+B

(
−
[
∂s

∂x
B

]−1 [
∂s

∂x
A

])
(3.101)

Sliding surfaces of a DFIG

In a wind turbine DFIG is necessary to regulate both, the active and

the reactive power to a set point ordered by the wind farm control

system. This is so in order to meet the demanded generation control

capability by the grid connection requirements [97, 98].

The block diagram of the SMC in a variable speed wind turbine

application in this research project is shown in Fig. 3.12.

The reference value for the stator active power is determined from

the electromagnetic torque expression given by (3.78) and by the flux-

currents relationship between the rotor and the stator ((3.74)-(3.77)).

The objective of active power control can be set through the indi-

vidual sliding manifold determined by

s1 = PSRef
−
(
−ωS Lo ΨSd ΨRq

σ LS LR

)
(3.102)
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Sliding Mode
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vRd
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              -

              -

Figure 3.12: Block diagram of a sliding mode control of a DFIG.

The second objective control is the reactive power tracking, defined

by considering the minimization of the DFIG’s copper losses. It can be

expressed through the following sliding variable:

s2 = QRef −
(
− Lo |vS| iRd
ωS (LS + Lo)

− |vS|
2

ωS Lo

)
(3.103)

3.5.4 Grid Side Converter

Since the DFIG-based wind system is particularly sensitive to volt-

age variations, disturbed grid voltage conditions have to be considered

in the GSC control design. The dc-link voltage is kept constant by

the control of the grid-side converter and ensures steady active power

output from the whole system. As GSC controls affect primarily the

dynamics of dc-link, they are not specifically applied to wind driven

DFIG applications. These dynamic characteristics of the dc link can be

well encapsulated by representing their impact on the DFIG’s rotor by

a dynamic equivalent voltage source, which is a function of the power

balance at the dc bus,

Pdc = Pg + PR (3.104)

Pdc = vdc idc = C vdc
dvdc
dt

(3.105)
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According to the DFIG-converter configuration, it can be stated

that

PR = Poutput − PS (3.106)

Moreover, in accordance with (3.104) and (3.105),

Pg = Poutput − PS (3.107)

the dc link voltage will be kept around its reference value. An ex-

haustive literature search indicates that the GSC controls employ PI

controllers where the dc link voltage and the reactive power are com-

manded by different loop controls.

Regarding reactive power flow control, different operating strategies

may be pursued depending on the sharing of reactive power production

between the DFIG stator and the grid-side converter [91, 99, 100].

Control of the DFIG based on SMC has been addressed both un-

der ideal [101, 102] and unbalanced grid voltage conditions [103, 104].

In [101] a non-linear sliding-mode control scheme was employed in a

direct active and reactive power control (DPC) of a grid-connected

DFIG-based wind turbine system. In [104] a DFIG-based wind turbine

operating under unbalanced and/or harmonically distorted grid voltage

conditions was addressed.

In this work, the control of the GSC is carried out using SMC under

grid disturbances to assess the dynamical control performance of the

DFIG.

3.6 Conclusions

In this chapter a wind turbine system model with double fed induction

generator was presented. The turbine performance was described by

means of the energy conversion theory and general considerations re-

garding simulations for wind turbines in electrical power systems were
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presented. Simple turbine model assuming constant wind speed, rotor

speed and pitch angle can be used in studies in which the variation in

rotor speed is small as in the case of small disturbance studies with

constant wind speed. However it is not suitable for studies with chang-

ing wind speed or significant rotor speed variation.

Non-linear algebraic models in which power output is obtained from

the wind speed were used in power system stability analysis. The drive

train was modelled by the two-mass model approach in order to rep-

resent correctly the shaft dynamics. The electrical system model was

expressed in per-unit notation and d-q reference frame. The converter

configuration was described and the machine side controller was de-

tailed. The rotor voltage was determined either applying FOC-based

or SMC-based algorithm. In the scheme put forward, the grid-side

converter controls regulate the reactive power which flows through con-

verter to grid and influence mainly the dc-link dynamics by maintaining

the voltage of dc-capacitor into a fixed value.
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Chapter 4

Double-fed Induction

Generator Grid Connected

applying Sliding Mode

Control

The small-signal stability assessment of a wind turbine with doubly-fed

induction generator under sliding mode control is carried out in this

chapter. The Double-fed Induction Generator is represented by its sev-

enth order model and subjected to a wide range parameter variation

aiming at carrying out a rather comprehensive dynamic stability assess-

ment of the system. In order to evaluate the impact that controllers

have on the system modes of a Double-fed Induction Generator-based

wind system, the sliding mode control (SMC) algorithm is used and

compared to the classical field-oriented control (FOC).

4.1 Background

Wind energy has shown to be one of the most competitive and effi-

cient renewable energy sources and, as a result, its use is continuously

increasing. It has been reported that in June 2010, the total installed
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wind energy capacity around the world stood at 175,000 MW [105].

However, incorporation of wind energy units into power networks not

only modifies power flows but may also induce under-voltages or over-

voltages at specific points of the network [106], as well as in certain cases

introduce dynamic stability problems. Doubly-Fed Induction Genera-

tors (DFIG) are the most widespread technology around the world and

they offer the ability of a decoupled PQ control and the possibility of

maintaining their steady state under small perturbations. The increase

of wind energy penetration based on power converters is reducing the

effective inertia of power networks [107], increasing thus the need to

improve the dynamic behaviour of WTs under disturbances.

When performing small signal and transient stability analysis, mod-

els of generators, shafts and their controls must be accurate within the

range of oscillation modes. The use of inaccurate models of equipment

and controls will yield erroneous results in most cases [108]. In [109],

a two-axis model with constant lumped parameters is used for tran-

sient stability analysis in which the mechanical part of the turbine is

all but omitted. Also it is customary to neglect the stator dynamics

[55, 110, 111]. However, the associated modes could have significant

effects on DFIG transient behaviour, as it has been shown in [112].

Classic controllers of DFIGs are usually based on Field Oriented

Control (FOC), where its performance relies on the tuning of the PI

parameters according to the adopted model of the wound induction

machine, the flexible shaft coupling and the converters. Very little re-

search has been done on analyzing the effect of non-linear control on the

improvement of the stability assessment. Technology break-throughs

have allowed the incorporation of advanced control systems into wind

energy generation systems (WECS) and the development of more ef-

ficient strategies based on modern control techniques such as: Fuzzy

Logic Control, Robust Control, Adaptive Control, etc. Among them,

Sliding Mode Control (SMC) emerges as a particularly suitable option
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to deal with electronically controlled variable speed operating WECS.

Interest in this control approach has emerged due to its potential to

eliminate the effects of parameter variations with minimum complex-

ity of implementation [6], [7]. In recent years, the application of SMC

techniques to electrical drives and wind-energy generation [113], [114]

has been studied.

The small-signal stability of a wind turbine with DFIG has been as-

sessed under different operating modes and control tuning [115]. How-

ever, the study was carried out using the 5th reduced order model

(ROM) of the induction generator and the control representation was

simplified and based on decoupled vector control principles.

To overcome these limitations, this study uses a full 7th order DFIG

model. The model comprises the wind turbine, the DFIG and its asso-

ciated back-to-back HVDC link and its associated controls. Connection

of the DFIG to a strong equivalent grid is assumed at this stage of de-

velopment. This study is particularly useful to check the stability of

the DFIG itself and its controls.

The dynamic stability of the system is investigated by eigenvalue

assessment for a wide range of parameter variations. The modal anal-

ysis carried out elucidates the main effects existing on system modes

of a DFIG-based wind system by applying the classical FOC control

and the SMC techniques. This study may form basis on which to es-

tablish guidelines to improve the small-signal stability of DFIG wind

turbines by applying non-linear controls such as the SMC. The results

were obtained with a computer program written in MATLAB.

4.2 Simulation and Results

The small-signal stability of a DFIG directly connected to an equivalent

grid is studied by examining the eigenvalues, eigenvalue properties and

participation factors for a number of different system conditions.
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The simulation used for this analysis contains models of the turbine,

drive train, generator, electrical network and controllers.

It is important to emphasize how the dynamic behaviour of the

DFIG-based WT system changes under different modes of operation.

First, modal analysis (analysis of eigenvalue locations, eigenvalue

properties and participation factors) of the open-loop DFIG is carried

out to gain a solid understanding of the inherent strengths and weak-

nesses of the system with no control.

From the linearised DAE model (2.8), the system state matrix, Asys

can be obtained:

∆ẋ = Asys ∆x (4.1)

The state vector is defined by

x =
[
iSd iSq eSd eSq ωt ωR θωt

]T
(4.2)

The terminal voltage is 1 pu and remains constant throughout the

simulation. The reactive power output is zero. The parameters of the

DFIG wind turbine system are listed in Table 4.1.

The linearised model (4.1) is used for the small-signal stability anal-

ysis. For the given case of the DFIG-based WT system, the charac-

Table 4.1: DFIG-WT data

DFIG parameters

RS RR Lo Lsl Lrl Hg npp Pwrated

(pu) (pu) (pu) (pu) (pu) (s) (MW)

0.0048 0.0059 3.953 0.092 0.099 2.5 2 2

Ht k c vwrated
Rblade ngb Cpmax λtipopt

(s) ( pu
el.rad

) ( pu.s
el.rad

) (m
s
) (m)

0.5 0.3 0.01 17 45 100.5 0.45 7.84
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teristic equation is a seventh-order equation; thus, it will yield seven

eigenvalues for a specific steady-state value of the rotor speed. There-

fore, in general, one of the eigenvalues must be real and the other six

eigenvalues form three sets of complex conjugate pairs.

4.2.1 Effect of operating point

Synchronous operation: Firstly, the grid-connected DFIG wind

turbine system at zero slip is studied. The active power injection to

the grid is 0.5806 pu.

Table 4.2 shows the eigenvalues, eigenvalue properties and partici-

pation factors of the dominant states of the WT-DFIG at this operating

point. It can be seen that the system is dynamically stable, since all

the real parts of the eigenvalues have negative values.

There are three oscillating modes associated with stator and rotor

dynamics and one non-oscillating mode associated with rotor dynam-

ics. The mode with the highest oscillation frequency is an electrical

mode associated with the DFIG stator state variables (iSd, iSq) which

oscillates around 50 Hz. The medium frequency, at about 6 Hz, is an

electro-mechanical mode associated with rotor electrical and rotor me-

chanical dynamics. It is contributed by the internal voltage eSd, and

generator speed ωR.

The lowest frequency mode is a mechanical mode associated with

shaft and turbine dynamics, by torsion angle θωt and turbine speed ωt,

of frequency about 0.6 Hz. It is the dominant mode.

Table 4.2: Eigenvalues, properties and participation factors of
the DFIG-WT at zero-slip

λi σi ± jωi fosc (Hz) ζi (pu) pni

λ1,2 (E) -8.024 ± j313.92 49.962 0.0255 iSd 50% iSq 50%
λ3,4 (EM) -6.159 ± j41.699 6.6360 0.1461 eSd 48% ωR 50%
λ5,6 (M) -0.600 ± j4.1579 0.6610 0.1429 ωt 50% θωt 47%
λ7 (E) -9.757 - - eSq 100%
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The non-oscillating mode is a real eigenvalue associated with rotor

electrical dynamics, by the internal voltage eSq. As it can be seen from

Table 4.2, the λ1,2 is a poorly damped mode (∼ 2.5%). All other modes

are well damped (ζ > 10 %).

Sub/super-synchronous operating: In these cases, the total

active power injected at the point of common coupling is 0.26146 pu at

the sub-synchronous regime and 0.99583 pu at the super-synchronous

regime.

Table 4.3 shows the eigenvalues, eigenvalue properties and par-

ticipation factors of the dominant states of the WT-DFIG at sub-

synchronous speed and Table 4.4 shows similar information but for

the super-synchronous speed. It can be observed that the system is

dynamically stable at both operating modes.

There are three oscillating modes associated with stator and rotor

dynamics and one non-oscillating mode associated with mechanical dy-

namics. The mode with the highest oscillation frequency is an electrical

mode associated with the DFIG stator state variables (iSd, iSq) which

oscillates around 50 Hz. The medium frequency electrical mode, about

12-13 Hz, is associated with the rotor through the dynamics of the

internal voltages eSd and eSq and a small contribution of rotor speed

(∼ 12%).

Table 4.3: Eigenvalues, properties and participation factors of
the WT-DFIG at sub-synchronous operation

λi σi ± jωi fosc (Hz) ζi (pu) pni

λ1,2 (E) -8.044 ± j313.85 49.951 0.0256 iSd 50% iSq 50%
λ3,4 (EM) -8.086 ± j84.031 13.374 0.0957 eSd 50% eSq 40%

ωR 12%
λ5,6 (EM) -3.078 ± j8.910 1.418 0.3265 θωt 54% ωR 33%

ωt 10% eSq 8%
λ7 (M) -0.881 - - ωt 80% ωR 17%
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Table 4.4: Eigenvalues, properties and participation factors of
the WT-DFIG at super-synchronous operation

λi σi ± jωi fosc (Hz) ζi (pu) pni

λ1,2 (E) -8.014 ± j313.96 49.969 0.02551 iSd 50% iSq 50%
λ3,4 (EM) -10.380 ± j74.47 11.853 0.13805 eSd 50% eSq 30%

ωR 15%
λ5,6 (EM) -1.278 ± j9.098 1.4481 0.13918 θωt 50% ωR 27%

ωt 10% eSq 10%
λ7 (M) -0.00157 - - ωt 77% ωR 15%

The lowest frequency mode is contributed by shaft and rotor dy-

namics, by θωt, ωR and to a lesser extent by eSq (∼ 10%), with an

oscillation frequency of about 1.4 Hz. The non-oscillating mode is the

dominant mode and consists in a mechanical mode contributed by the

generator speed ωR, and turbine speed ωt. The stability margin of the

low frequency and non-oscillating mode is smaller at super-synchronous

operation.

The operating point has a significant effect on all the eigenval-

ues, except for the high frequency mode. Oscillation frequency of the

λ3,4 and theλ5,6 modes is lower in the synchronous mode. At sub-

synchronous operation, the damping ratio of the λ3,4 mode is lower

and the damping ratio of the λ5,6 increases almost twice. At super-

synchronous operating, the values of the damping ratio of all the modes

are the same as those found in the case of synchronous operation.

Participation factors are also affected; in synchronous mode, dy-

namics tend to be more coupled.

As expected, the mechanical mode is the slowest mode at all speeds.

4.2.2 Effect of machine parameters

Electrical and mechanical parameters vary with the machine size, de-

sign and working conditions, so it is useful to consider the order of
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magnitude of the various parameters and the extent to which each

parameter influences particular modes.

In this subsection, a modal analysis of DFIG is carried out to inves-

tigate the effect of changing DFIG parameters on eigenvalues and the

degree of participation of state variables in the system modes. Changes

from 0.01% to around 300% in machine parameters were introduced to

assess their impact at different operating modes, i.e., for the whole of

rotor speed range.

Electrical parameters: Stator and rotor machine resis-

tances and magnetization inductance.

The machine resistances RS and RR exert a significant effect on the

open-loop eigenvalue placement and on the participation factor. The

relationship between stator and rotor resistance is RR = 1.2292RS.

Smaller resistance values alter the system stability at non- synchronous

speed. Displacement of real part magnitude of all eigenvalues σi, is di-

rectly proportional to resistances variation, i.e., it tends to increase

negatively with resistance value increases.

The real part magnitudes of the high-frequency and medium-frequency

oscillating modes have an almost linear variation with resistance vari-

ation for the whole operating range. The frequency is affected more

with resistance value increases. The most significant changes are for

the oscillation frequency of the λ3,4 and λ5,6 modes. The oscillation

frequency of λ3,4 decreases up to -4.5% at synchronous speed and the

oscillation frequency of λ5,6 decreases up to -13% (from RS to 3RS) be-

low synchronous speed. The frequency of the λ1,2 is affected to a lesser

extent (∼ −0.5% from RS to 3RS) for the whole operating range. The

damping ratio improves with increasing resistance values.

The main outcomes at both, synchronous and non-synchronous op-

eration are:

At synchronous speed, the system is dynamically stable for the
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tested range of resistance variation as it can be seen in Fig. 4.1. The

low-frequency mode is the dominant mode. Its real part magnitude and

damping ratio decrease by up to -65% for resistances values of 0.01%

and increase almost twice as much for resistance values of 300%.

The damping ratio of the high and medium-frequency modes im-

prove linearly with increasing resistance values and oscillations are

damped out faster. As shown in Fig. 4.1 participation factors are

not significantly affected; they do not increase beyond 2% for larger

resistive machines. At sub/super-synchronous operating, the variation

of the stator and rotor resistance changes the placement of eigenvalues

and affects the participation factor.

Fig. 4.2 and Fig. 4.3 show the eigenvalues, eigenvalue properties

and participation factors of the WT-DFIG at both, sub-synchronous

and super-synchronous regimes.
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Figure 4.1: Effect of the machine resistances variation at synchronous
regime.
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Figure 4.2: Effect of machine resistances variation at sub-synchronous op-
eration.
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Figure 4.3: Effect of machine resistances variation at super-synchronous
operation.
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The medium-frequency mode becomes unstable at sub-synchronous

operation if the resistance is neglected. The real part magnitude of

the lowest frequency mode varies ±60% at sub-synchronous operation

within the range of resistance value considered. As the real mode at

non-synchronous operation is the closest to the imaginary axis, it is the

dominant mode. At super-synchronous operation, it has the smallest

stability margin and it becomes unstable for RS < 0.004 pu (below

0.83RS).

As shown in Fig. 4.2, increasing resistance affects the participa-

tion factors of the mechanical and non-oscillating modes. Contribution

of the state variables associated with λ5,6 increases around 10%. The

shaft dynamics, by θωt, increases its participation in the real mode at

sub-synchronous speed. Oscillations are damped out faster for more

resistive machines (above RS).

Variation on magnetization inductance Lo seems to alter only the

stability of the real mode at super-synchronous operation when it in-

creases above 5% (Lo > 4.15 pu), as shown in Figs. 4.4, 4.5 and 4.6.
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Figure 4.4: Effect of the leakage inductance variation at synchronous regime.
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Figure 4.5: Effect of leakage inductance variation at sub-synchronous oper-
ation.
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Figure 4.6: Effect of leakage inductance variation at super-synchronous op-
eration.
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The real part of the rest of the modes does not decrease beyond 1%

with magnetization inductance increases. The effects are significant for

smaller values of Lo below 15 % (Lo < 0.5). The stability margin of all

modes increases 50 %. Hence, the damping ratio increases up to 50 %,

as shown in Fig. 4.4. The oscillation frequency of the lowest frequency

mode increases up to 30 %.

Effects of Lo on eigenvalue properties at both, sub-synchronous and

super-synchronous operation are shown in Figs. 4.5 and 4.6, respec-

tively. The λ1,2 (E) mode is the fastest mode at sub/super-synchronous

regime. Participation factors are influenced only to some extent at

non-synchronous speed. The contribution of generator ωR, to the elec-

tromechanical mode tends to increase; i.e., it tends to an EM mode for

Lo < 0.2 (5%). Concerning the λ5,6 and λ7 modes, the participation

of the associated variables varies by about ±5%. The contribution of

rotor mechanical and shaft dynamics to the λ7 mode increases at sub-

synchronous speed.

Mechanical parameters.

As expected, varying inertia constants and stiffness do not affect

the electrical modes significantly. The relationship between generator

and turbine inertia constants is Hg = 0.2Ht. For heavier machines, the

stability margin tends to decrease, except for the medium-frequency

mode at sub-synchronous speed, which tends to increase (up to ±12%

for 3Ht), and also for the real mode at synchronous operation which

does not change. For the electrical high-frequency mode, changes do

take place in the real part but to a lesser extent, decreasing by about

-0.5% with increases of Ht to 3Ht and increases up to 5% with the

smaller inertia value considered, for whole range speed.

The main effects at synchronous speed, are shown in Fig. 4.7. The

dominant mode is the lowest frequency mode, λ5,6. The imaginary part

tends to decrease with inertia constants increases.
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Figure 4.7: Effect of inertia constants variation at synchronous regime.

Therefore, as expected, heavier machines present lower oscillation

frequencies. The oscillation frequency of λ3,4 and λ5,6 modes varies

between 2.2 times and -40% in the range of variation considered for

the inertia constants which go from 0.2Ht to 3Ht.

Fig. 4.7 shows the effects of inertia constants on eigenvalue prop-

erties. It can be observed that the damping ratio of the medium-

frequency mode increases/decreases by about ±5 percent for Ht =

7.5/Ht = 0.5. As expected, the mechanical mode is the slowest mode

and its τ increases with increasing Ht. Its damping ratio goes up to

5% with decreasing Ht. The participation factors do not seem to be

affected at this operating point.

In case of non-synchronous operation, the λ7 mode is the dominant

mode. The stability margin of λ5,6 and λ7 modes reduces by about 60

percent with increases of Ht to 3Ht, as shown in Figs. 4.8 and 4.9.
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The oscillation frequency of the λ3,4 grows (up to 40% and 60%)

by decreasing the inertia constant to 0.5Ht at sub/super-synchronous

operation. For heavier machines, it reduces by about 8%, at sub-

synchronous speed and by about 2% at super-synchronous speed (for

3Ht).

The oscillation frequency of the conjugate λ5,6 mode increases 1.54

times for 0.5Ht and decreases by about 35% for 3Ht at sub-synchronous

operation. On the other hand, it increases 1.63 times for 0.5Ht and de-

creases by about 40% for 3Ht at super-synchronous operation. Hence,

the λ5,6 mode is poorly damped out, having a large constant time, in

case of heavier machines operating at higher speeds.

Participation factors are strongly affected by inertia constants. Elec-

trical and mechanical dynamics tend to be more tightly coupled for

lighter machines (H < 2), as shown in Figs. 4.8 and 4.9.
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Figure 4.8: Effect of inertia constants variation at sub-synchronous regime.
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Figure 4.9: Effect of inertia constants variation at super-synchronous regime.

Concerning the shaft stiffness variations, changes are significant

only in the medium-frequency and in the low-frequency modes. For

stiffer drive trains, the stability margin of medium-frequency system

modes decreases whereas the low-frequency mode tend to increase. Os-

cillation frequencies increase with k value increases and the damping

ratios deteriorate for the whole range speed. The participation factors

are also affected negatively.

At synchronous speed, the system dynamics change with increasing

shaft stiffness above 6.6k (k > 2), as shown in Fig. 4.10. The dominant

mode changes for stiffer drive trains at this regime, as observed from

the results presented in Fig. 4.10.

With k less than 7.5, the λ5,6 is the dominant mode; otherwise,

the dominance passes onto λ3,4. The λ3,4 mode is the slowest mode

for k > 13. There is an electro-mechanical mode of low oscillation
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frequency (between 6-7 Hz) for k < 2, which is a mechanical mode,

associated with rotor mechanical and shaft dynamics, by k > 12. The

oscillation frequency increases to 17.9 Hz for k = 30. Th eigenvalue

properties are shown in Fig. 4.10.

The oscillation frequency of the mechanical mode, λ5,6, varies be-

tween 0.6 and 1.33 Hz for 0.003 < k < 1.5 and remains constant up to

about 2 Hz above k = 7. The λ5,6 mode tends to become an electro-

mechanical mode from k > 3 mainly contributed by turbine speed ωt

and internal voltage eSd. It can be seen in Fig. 4.10 that for stiffer drive

trains, the λ3,4 mode is a poorly damped mode having the longest time

constant. The λ3,4 diminishes below 10 percent for k > 3.
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Figure 4.10: Effect of shaft stiffness variation on modes at synchronous
regime.
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At sub/super-synchronous speed, the system dynamics change in

the case of very stiff mechanical systems (k > 23) and are strongly

coupled for 6 < k < 23. The λ7 mode is the dominant mode at both,

sub-synchronous and super-synchronous speed, as shown in Figs. 4.11

and 4.12.

For larger stiffness, the stability margin of λ3,4 is significantly re-

duced (by about 65 percent for k = 30). The λ3,4 mode is an electrical

mode which oscillates with a frequency around 12-13 Hz for k < 2, but

it becomes a mechanical mode with an oscillation frequency between

16-18 Hz, associated with rotor mechanical and shaft dynamics (ωR,

θωt), by k > 23.

For stiffer drive trains, λ3,4 mode is a poorly damped mode having

the longest time constant. Its damping ratio diminishes below 10 per-

cent for k > 9 at super-synchronous speed. The oscillation frequency

of the λ5,6 increases up to around 7-9 Hz for k > 20.
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Figure 4.11: Effect of shaft stiffness variation on modes at sub-synchronous
regime.
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Figure 4.12: Effect of shaft stiffness variation on modes at super-synchronous
regime.

4.2.3 Effect of DFIG-order model

A 5th reduced order model (ROM) which does not include the stator

transients has been used by several researches [55, 110, 111].

Table 4.5 shows the modal parameters of the DFIG machine when

a 5th reduced order model is employed. It is noticed that the stability

margin reduces compared to the case when an exact 7th order model is

used (Table 4.2 - 4.4). The electrical high-frequency modes are elimi-

nated.

An important aspect that could be highlighted is the fact that at

super-synchronous regime one of the modes is unstable; however, this

mode does not exist when an exact 7th full-order model is employed.

Furthermore, the effects of the grid should be taken into account for

more accurate results; the dynamics of the machine may be changed

and push some of the modes into the right half plane.
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Table 4.5: Eigenvalues of the DFIG-WT modelled by a 5th ROM

λi σi ± jωi σi ± jωi σi ± jωi
(ωR = 0.7672 p.u ) (ωR = 1 p.u ) (ωR = 1.1981 p.u )

λ3,4 (EM) -4.741 ± j80.26 -5.31 ± j37.072 -10.689 ± j73.323
λ5,6 (EM) -3.1343 ± j9.27 -0.617 ± j4.125 -0.588 ± j9.206
λ7 (M) -0.817 -7.8287 +0.35455

4.2.4 Effect of grid stiffness

The effect of the grid stiffness is assessed by varying the short circuit

ratio of the grid. The results are shown in Fig. 4.13. It can be seen

that grid impacts mainly the electrical high-frequency mode.
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Figure 4.13: Effect of short circuit ratio variation at zero-slip.
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Larger values of short circuit ratio Ssc slide the highest frequency

mode (stator electrical mode) into the right half plane. Hence, the

more inductive the external grid the more the need arises for series

compensation or other controls measures in order to diminish the ef-

fective value of the equivalent inductance.

In case of a strong external networks, the high-frequency electrical

dynamics decay quite fast. For the medium-frequency mode (rotor

electro-mechanical mode), the damping ratio decreases with decreasing

Ssc.

The low-frequency mode (turbine mechanical mode) is, relatively

speaking, less sensitive to external line parameters. This is to be ex-

pected since the grid impedance is an electrical parameter. The non-

oscillating mode (rotor electrical mode) is a real eigenvalue closer to

the imaginary axis for large values of Ssc.

Participation factors are not significantly affected by grid strength.

Although frequency and damping ratio change, the stator mode re-

mains decoupled from the other modes, a situation that applies to

both, strong and weak grids cases.

4.2.5 Influence of the control strategy

To assess the effect of the machine-side controller on local modes, two

different control algorithms are applied to the 7th full-order model

DFIG wind turbine model. The control algorithms are the so-called

FOC and SMC. The study is carried out for the whole range of rotor

speed.

The WT-DFIG system under FOC is in fact an eleventh-order

model. The state vector is defined by

x =
[
iSd iSq eSd eSq ωt ωR θωt xc

]T
(4.3)
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with

xc =
[
Φid Φiq ΦTe ΦQs

]T
where xc is the state vector of the machine-side converter controller.

The state vector of the WT-DFIG system under SMC is defined by

(4.2).

Tables 4.6 and 4.7 show the eigenvalues, properties and the par-

ticipation factors of dominant states of the WT-DFIG system under

FOC. There are two oscillating modes. The highest frequency mode,

unlike the mode in open-loop, is associated with a coupling between

the q-axis stator current component (iSq) and rotor electrical dynamics

(eSd), but it should be notice that the damping ratio is lower.

The lowest frequency mode is a mechanical mode contributed by

θωt and ωR, oscillating with a frequency of around 1.6 Hz with an

acceptable damping (> 10%).

Table 4.6: Eigenvalues and properties of the WT-DFIG with
field-oriented control (FOC)

ωR = 0.91535 p.u. ωR = 1 p.u. ωR = 1.1981 p.u.
mode λi λi λi

# ( fosc (Hz), ζi (pu)) ( fosc (Hz), ζi (pu)) ( fosc (Hz), ζi (pu))

λ1 -14780 -15139 -14554
λ2 -3391.2 -3636.7 -3634.5
λ3,4 -25.815 ± j292 -17.668 ± j289.75 -10.403 ± j292.12

(46.47, 0.08806) ( 46.11, 0.06086) (46.49, 0.03559)
λ5 -438.71 -435.88 -440.29
λ6 -180.57 -188.73 -195.12
λ7 -22.69 -23.715 -23.734
λ8,9 -1.8849 ± j10.466 -1.8903 ± j10.465 -1.895 ± j10.464

(1.66 ,0.1772) (1.66, 0.1777) (1.66, 0.1781)
λ10 -0.0884 -0.1004 -0.1128
λ11 -6.234 -6.667 -6.641
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Table 4.7: Participation factors of the modes of the WT-DFIG
with field-oriented control (FOC)

mode Dom. States
# pni

λ1 iSd 100%
λ2 iSq 100%
λ3,4 eSq 48%, eSd 47%
λ5 Φiq 100%
λ6 Φid 95%
λ7 ΦTe 99%
λ8,9 ωR 42%, θωt 50%
λ10 ωt 83%, ωR 16%
λ11 ΦQs 99%

Below synchronous speed, the mechanical mode, associated with ro-

tor and turbine dynamics, moves close to zero, i.e., the stability margin

decreases with decreasing rotor speed.

The modes associated with the controller depend on the tuning of

the proportional-integral (PI) controllers. For example, it can be cou-

pled with the state variables of the machine.

Eigenvalues, eigenvalue properties and participation factors of the

dominant modes in a WT-DFIG system under SMC are shown in Ta-

bles 4.8 and 4.9. It can be observed that there are two conjugated

modes and that there are no electro-mechanical modes as it was the

case with FOC.

The highest frequency mode, which is associated with electrical

dynamics by iSq and eSq, oscillates with a frequency of around 50 Hz.

Its damping is much improved compared to the one obtained with FOC.

The oscillating mechanical mode is a well damped out mode associated

with shaft and rotor mechanical dynamics, θωt and ωR. It oscillates

with a frequency of around 1.6 Hz.

There are no modes associated with the controller.
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Table 4.8: Eigenvalues and properties of the WT-DFIG with
sliding-mode control (SMC)

ωR = 0.91535 p.u. ωR = 1 p.u. ωR = 1.1981 p.u.
mode λi λi λi

# ( fosc (Hz), ζi (pu)) ( fosc (Hz), ζi (pu)) ( fosc (Hz), ζi (pu))

λ1 -7086.1 -7107.1 -7107.2
λ2 -7003.1 -7009.1 -7022.6
λ3,4 -118.11 ± j287.27 -74.272 ± j302.31 -56.291 ± j306.12

(45.72, 0.38025) (48.11, 0.23859) ( 48.72, 0.18085)
λ5,6 -1.886 ± j10.466 -1.892 ± j10.465 -1.897 ± j10.464

(1.66, 0.17818) (1.66, 0.1779) (1.66, 0.1783)
λ7 -0.0816 -0.1004 -0.1128

Table 4.9: Participation factors of the modes of the WT-DFIG
with sliding-mode control (SMC)

mode Dom. States
# pni

λ1 iSd 94%
λ2 iSq 94%
λ3,4 eSq 49%, eSd 47%
λ5,6 θωt 50%, ωR 42%
λ7 ωt 83%, ωR 16%

By control application, the electrical and mechanical dynamics are

de-coupled at both synchronous and non-synchronous operation. The

same degree of participation of state variables in the system modes

remains throughout the whole range speed.

Effect of terminal voltage (Advantages of using SMC)

To demonstrate the effectiveness and robustness of the SMC, the dy-

namic behavior of the system regarding terminal voltage variation was

examined. Fig. 4.14 shows the effect on the high-frequency mode. It

can be noticed that SMC shows a superior performance.
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Figure 4.14: Eigenvalues and damping ratio of a DFIG with FOC and SCM
under stator voltage variation.

In contrast to the FOC response, SMC improves the damping with

decreasing terminal voltage, making it a good candidate for dealing

with grid perturbations. Furthermore, the electrical dynamics of the

WT-DFIG is faster with SMC.

4.3 Conclusions

DFIG models and control strategies have been presented for the study

of small-signal stability. Modal analysis has been applied to assess the

influence of different parameters such as order model, machine param-

eters, grid strength or control strategy. Stability of the DFIG wind

turbine under FOC depends on the tuning of the proportional-integral

controllers and on an appropriate knowledge of the impact of machine

parameters. It has been proved that SMC is a very convenient way

to improve the DFIG stability and that it is very robust under a wide

range of machine parameters and networks variations.

The controller of the DFIG wind turbine under SMC ensures can-

cellation of electro-mechanical coupling without introducing additional

modes. Moreover, this control scheme introduces additional damping

which is amenable to reduce local oscillations and an overall better

performance than the classical controller FOC.
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Chapter 5

Stability Analysis of

Multi-machine Systems with

Wind Power Generation

All the studies presented in this chapter focus on assessing the impact

of double-fed induction generators on oscillatory stability. The key

factors influencing the system inherent oscillations are brought to the

fore. Then, the main contributing factors of the double-fed induction

generator to system stability are drawn by using modal analysis.

Throughout the chapter, a wide range of simulations are used to

show by numerical example the prowess of the concepts and meth-

ods put forward in this research. Two different power systems are

used: a three-machine system and a four-machine, two-area system.

These enable a good understanding of the electromechanical oscilla-

tions phenomenon and illustrate rather well the improvements that

can be achieved by using DFIG-based wind turbine controllers.

A small signal stability analysis is carried out for two scenarios.

Firstly, all generators are considered to be conventional synchronous

generators and, secondly, one of the synchronous generator is replaced

by one DFIG-based wind farm which, in turn, is controlled by two

different control schemes. One of them is the well-known and widely

implemented Field Oriented Control FOC algorithm; the other is based
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on a robust design technique termed Sliding Mode Control SMC. The

latter represents a relatively new control application in the area of wind

energy which is rapidly gaining adepts.

The first scenario is used to provide a base line case against which

the impact of wind generation on the network dynamics, can be quan-

tified with a degree of realism.

5.1 Background

The subject of power system stability has received a great deal of at-

tention for decades. In the open literature, the phenomenon of stability

in multi-machine power systems has been addressed from great many

angles by hundreds of researchers. Over the years the research has

addressed issues such as model development, power system equipment

and topologies, control methods, system operating conditions, solution

methods and many other issues.

Operation and dynamics characteristics of systems comprising syn-

chronous generation are already well established and understood. More-

over, due to the tendency to operate systems near their stability limits,

additional schemes have been added to maintain the system dynamics

at acceptable levels. All this has increased further the awareness of

power system oscillation and has provided the motivation to develop

new technology to keep them at bay. A good example of this is the use

of power electronic devices, referred to as FACTS (flexible AC trans-

mission systems) devices [116, 117, 118].

Dynamic studies of mixed synchronous and induction generators is

an issue that is receiving increasing attention, particularly over the last

decade, as the growing penetration levels of DFIGs has increased.

Key contributions have been made toward the understanding of the

interaction of conventional generation with wind power generation by

resorting of transient and modal analysis studies.
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In one of the early works [90], the dynamic and transient stability

properties of wind turbine generators integrated into a power system

were explored. The study addressed both, single and grouped wind

turbines subjected to the influence of electrical and wind speed dis-

turbances. Further studies on the dynamic characteristics of electrical

networks with wind energy generation can be found in [52],[111].

The dynamic properties of electrical networks with wind generation

seem to acquire a degree of improvement compared to those systems

with no wind generation. One plausible explanations is that the de-

mands on synchronous generators becomes less onerous with increases

in wind energy, particularly under heavy wind regimes. In addition,

from the DFIG-based wind turbines point of view, the decoupling ca-

pability of the power electronic converter control does not introduce

new oscillatory modes and, consequently, this prevents the wind tur-

bine from being involved in power system oscillations.

A topic that is becoming increasingly important in the field of power

system stability is related to small signal stability of grid-connected

wind power generation [4, 52, 119, 120]. In particular, the damping

of oscillations which characterizes the phenomena of stability has seen

increased research activity in recent years [74, 115, 119, 120, 121, 122,

123]. A point of great relevance has been the influence of increased

DFIG penetration on the stability of inter-area oscillations.

It is shown in [120] that the effect of increased DFIG penetration

is generally favorable since the damping of the inter-area oscillation

increases. However, there are certain cases where the wind turbine is

in voltage control mode and the system becomes stiffer, resulting in

a less well damped inter-area mode which may even become unstable.

Therefore an appropriate controller tuning of the voltage/VAR control

loop is necessary to avoid instability.

An assessment of the impact of eigenvalues location of inter-area

modes has been addressed by conducting a study of wind power level

variations, [4, 52, 54, 74, 119]. Careful observation of the movement of
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the eigenvalues through the complex plane, lead to the conclusion that

for high levels of wind power penetration the dynamic performance is

superior since the eigenvalue damping increases and the dynamic re-

sponse of the frequency improves [74]. Further evidence of this was

presented in [54], in connection with the impact that a large wind farm

exerts on the oscillation modes of a two-area, four-generator power

system. The study indicates that the inter-area mode tends to become

more stable as the wind generator approaches its rated power, whereas

the opposite is true for systems with synchronous generator.

It has been further verified in [4] that a small increase of both

damping and frequency occurs for the inter-area modes by increasing

gradually the wind power and by reducing, by the same amount, con-

ventional power production, within the same area. However, it was

also observed from several patterns of increasing wind power and load,

that damping reduces whit wind power increases and contributes to

congestion in weak interconnection lines, i.e. when increasing wind

power generation pushes the power system stress level up [124].

In [121], the affected modes by inertia changes (due to the premise

that the increased penetration of DFIG-based wind farms reduces the

system inertia) are identified and then excited by introducing appro-

priate disturbances. The method suitably identifies the benefits and

drawbacks of increasing DFIG penetration from the vantage of small

signal stability and related studies.

Other interesting proposals have been put forward to enhance the

system dynamic performance. By way of example,the use of power

system stabilizers (PSSs) in DFIGs has been proposed recently [55,

122, 125, 126, 127]. The authors in [55] quite insightfully identified

the control capabilities of the DFIG and put forward the idea of a

power system stabilizer for a wind turbine employing the DFIG; they

showed that the PSS can significantly influence the contribution that
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a DFIG-based wind farm can make to network damping. The power

system stabilizer was designed to operate with a flux magnitude and

angle controller (FMAC) scheme, where the terminal voltage and sta-

tor power output can be controlled through the magnitude of the rotor

flux vector and its angular position.

In [128] and [129] other types of PSS configurations and controllers

for DFIGs were also introduced. In [128] a conventional PSS was com-

pared with two other PSSs in which their output signals were added

to the power and to the voltage side of the DFIG control system, re-

spectively. It was concluded that a DFIG fitted with the capability to

improve PSS to improve the damping of inter-area power system os-

cillations and that the wind farm may have the potential to positively

contribute to power system damping. The impact of the voltage con-

trol loop on system dynamic performance is examined in [129]. It was

found that besides the penetration level, this control loop has the great-

est impact on inter-area oscillations in comparison with other control

loops such as phase-locked loop (PLL) and pitch angle control, which

exerts a negligible impact.

Since the active and reactive power of variable-speed wind turbines

can be modulated to damp power system oscillations [123], auxiliary

controllers with power modulation (active, reactive or a combination

thereof) have been employed. Power damping control is achieved by

adding auxiliary corrective signals to the control of the machine side

converter of a DFIG-based wind turbine.

In [125], it is pointed out that by active power modulation, ad-

ditional damping to inter-area oscillations can be introduced. The

proposed active power modulation is accomplished by introducing a

supplemental signal at the control loops which contains the inter-area

oscillation information. Results demonstrated that with proper control,

DFIGs have the capability to damp inter-area oscillations. However,
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one potential disadvantage of active power modulation of wind gener-

ation is its interaction with torsional dynamics of the wind turbines,

since the active power is directly related to the electromagnetic torque.

If P modulation yields oscillations of low-frequency in wind genera-

tors, these may interact with torsional oscillation because of theirs

low-frequency oscillations. This concern, already addressed in [126],

led to the outcome that the damping of the shaft mode decreases due

to active power modulation in wind farms while reactive power modu-

lation is immune to such risk.

Likewise, a combined PSS and active damping controller by eigen-

structure assignment to improve both, the DFIG shaft oscillation and

the power system electromechanical damping was a worthwhile contri-

bution put forward in [127]. The authors demonstrated the use and

capability of the method via its application to the design of a DFIG

controller required to improve both, the damping of DFIG shaft oscil-

latory modes and the network electromechanical damping.

In [122], a coordinated tuning of the damping controller to enhance

the damping of the oscillatory modes by using a bacteria foraging tech-

nique was developed. However, the study was limited to a single DFIG

WT system connected to an infinite bus. Hence, extensions to a multi-

machine DFIG system should be made to quantify the actual impact

of DFIGs on power system stability.

It is stated in [130] that the PSS function in variable-speed wind

generators does not actually require the use of compensators to pro-

duce damping torque due to the fast action of power electronic con-

verter controllers. However, it is possible to increase the selectivity of

the modal damping capabilities and to reduce the sensitivity to distur-

bances through the use of tuned filters. PSS functions based on the

energy function approach (EFA-PSS) and frequency deviation (WPSS),

are normally used in VSC-HVDC and FACTS devices, and may also be
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used in this application. The energy function method consists of defin-

ing a function to represent the energy in the system, which is composed

of kinetic and potential energy. The gradient of this energy is mini-

mized by active and reactive power control laws. Both PSS controllers

use active and reactive power modulation.

Similar damping capabilities of wind farms with both PSS functions

are given but both require high proportional gains. On the other hand,

with the tubed Band-Pass Filter in the WPSS, the reactive power con-

trol loop of the EFA-PSS showed vulnerability to voltage disturbances,

which can limit the proportional gain. Active power modulation is

more effective if the PCC of the DFIG-based wind farm is located elec-

trically close to a synchronous generator plant. The opposite holds for

reactive modulation but it requires a large reactive power modulation.

By careful examination of results pertaining to the various scenarios,

it was observed that the amount of PQ modulation impacts directly

the damping potential. Moreover, it was noticed that with a broader

distribution of wind resources, the damping capabilities of the PSS

controller increase while the real and reactive power modulation level

decrease.

Nevertheless, in spite of the fact that the design methodologies for

active and reactive power modulation-based PSSs have great potential,

published work on PSSs remains scant [123].

5.2 The Three-Machine, Nine-Bus System

The nine-bus power system of the Western Systems Coordinating Coun-

cil (WSCC) [24] shown in Fig 5.1 is used as the first test case. It com-

prises three generators, three loads, three transformer and six trans-

mission lines.

Generator 1 is a hydro-generator. Generator 3 is a steam-generator

and Generator 2 is a double fed induction generator (DFIG) although

Generator 2 is considered first to be a steam turbine-driven synchronous
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generator in order to provide a baseline case against which to compare

the impact on the network dynamic performance, by the wind genera-

tor. The loads are modelled as constant power load type.

The synchronous generators are represented by their two-axis model

and fitted with an IEEE Type I exciter (slow acting with low gain),

shown in Fig. 5.2. The fourth-order two-axis model in the dq frame

is described by equations (5.1)-(5.4). Equations (5.5)-(5.7) are the

differential equations for the IEEE Type I exciter (Fig. 5.2).

dδi
dt

= ωSGi
− ωe (5.1)

2Hi

ωe

dωSGi

dt
= TMi − E ′diIdi − E ′qiIqi −

(
X ′qi −X ′di

)
IdiIqi − . . .

. . .−Di (ωSGi
− ωe) (5.2)

T ′qoi
E ′di
dt

= − E ′di +
(
Xqi −X ′qi

)
Iqi (5.3)

T ′doi
E ′qi
dt

= − E ′qi + (Xdi −X ′di) Idi + Efdi (5.4)
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Figure 5.1: 3-Machine, 9-Bus System
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Figure 5.2: IEEE Type I exciter

TEi

Efdi
dt

= − (KEi
+ SEi

)Efdi + VRi
(5.5)

TFi

Rfi

dt
= −Rfi +

KFi

TFi

Efdi (5.6)

TAi

VRi

dt
= − VRi

+KAi
Rfi −

KAi
KFi

TFi

Efdi + . . .

. . .+KAi
(Vrefi − VSGi

+ Vsi) (5.7)

The exciter is assumed to be identical for all three machines. Power

System Stabilizers (PSS) were not employed in this model so as to en-

able a more straightforward assessment of the impact of Generator 2.

The machine data and the exciter data are given in Table 5.1.

The double fed induction generator is modelled by a 7th order model

as described in Chapter 3. The electrical and mechanical data for the

DFIG-WT are given in Table 5.1.

The system MVA base is 100, and the system frequency is 50 Hz.

The rated power of generators is: Generator 1 = 247.5 MVA, Generator

2 = 192 MVA, and Generator 3 = 128 MVA.

The impedances are in per unit on the system 100 MVA base and

are given in Table 5.2. The power flow solution for the nominal case,

is shown in Table 5.3.
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Table 5.1: Machines Data

Generator Data

Bus Xd Xq X
′
d X

′
q T

′
do T

′
qo H D

# (pu) (pu) (pu) (pu) (s) (s) (s)

1 0.146 0.0969 0.0608 0.0969 8.96 0.31 23.64 0.0254
2 0.8958 0.8645 0.1198 0.1969 6.0 0.535 6.4 0.0066
3 1.3125 1.2578 0.1813 0.25 5.89 0.6 33.01 0.0026

Exciter Data

KA TA KE TE KF TF Aexc Bexc

(s) (s) (s)

20 0.2 1 0.314 0.063 10.35 0.0039 1.555

DFIG parameters

RS RR Lo Lsl Lrl Hg npp Pwrated

(pu) (pu) (pu) (pu) (pu) (s) (MW)

0.0048 0.0059 3.953 0.092 0.099 2.5 2 2

Ht k c vwrated Rblade ngb Cpmax λtipopt

(s) ( pu
el.rad) ( pu.s

el.rad) (ms ) (m)

0.5 0.3 0.01 17 45 100.5 0.45 7.84

Table 5.2: System data for the 3-machine System (Fig. 5.1)

System line data

From bus To bus R X Bc (total)

1 4 0.00 0.0576 0.00

7 2 0.00 0.0625 0.00

3 9 0.00 0.0586 0.00

4 6 0.0170 0.0920 0.158

9 6 0.0390 0.1700 0.358

9 8 0.0119 0.1008 0.209

7 8 0.0085 0.0720 0.149

7 5 0.0320 0.1610 0.306

5 4 0.0100 0.0850 0.176
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Table 5.3: Load Flow Results of the 3-machine, 9 bus system

Bus Bus Voltage PG QG PL QL

Type (pu) (pu) (pu) (pu) (pu)

1 Swing 1.0400∠0.000◦ 0.7163 0.2671 - -

2 P-V 1.0250∠9.242◦ 1.6300 0.0668 - -

3 P-V 1.0250∠4.642◦ 0.8500 -0.1085 - -

4 P-Q 1.026∠−2.216◦ - - - -

5 P-Q 0.996∠−3.982◦ - - 1.25 0.50

6 P-Q 1.013∠−3.693◦ - - 0.90 0.30

7 P-Q 1.0260∠3.685◦ - - - -

8 P-Q 1.0160∠0.700◦ - - 1.00 0.35

9 P-Q 1.0330∠1.945◦ - - - -

Modal analysis is carried out for different operating conditions.

Four active power output values by the generator connected at bus

2 are chosen in order to consider the effects of increasing wind power

penetration levels on the grid: 15%, 30%, 50% and 85%. The dispatch

of the generator at bus 3 is kept constant.

The system performance for all four operating conditions is assessed

by comparing the results when Generator 2 is modelled as a conven-

tional synchronous generator (base case) with those obtained when the

DFIG wind turbine generator replaces the conventional synchronous

generator. This establishes the dynamic stability characteristics of the

system and quantifies the contribution of wind generation to system

stability.

The DFIG was simulated with two control schemes, one is the clas-

sical Field Oriented Control (FOC) and the other is a control approach

based on the Sliding Mode Control (SMC).

The system state vector is xn = [x1 x2 x3]
T , where xn is the state

variables vector of the generator connected at bus i.
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The state vector of the synchronous generator is made up of the

states of the two-axis model as well as the state variables of the exciter

model

xSG =
[
δ ω E ′d E ′q Efd Rf VR

]T
(5.8)

where three last three states correspond to the exciter model.

The state variables vector of the DFIG WT takes of the form

xWT =
[
iSd iSq eSd eSq ωt ωR θωt xc

]T
(5.9)

with xc being the state vector of the DFIG controller.

The order of the state variables vector for the DFIG depends on

the order of the type of applied control strategy. This is detailed in

Chapter 3.

For each operating condition two cases are analyzed:

a. Power network with no wind generation

In this case the eigenvalue analysis is performed assuming that all

three generation units are conventional synchronous generators.

The system is a 21th order one,

xSGn =
[
δi ωi E ′di E ′qi Efdi Rfi VRi

]T
(5.10)

for i = 1, 2, 3.

b. Power network with wind generation

In these studies the generator at bus 2 is assumed to be a DFIG-

based wind farm and two different controllers are utilized, namely

FOC and SMC. When the FOC-based controller is used, the sys-

tem is a 24th order system with the following state variables

xn =
[
xSGi

xWT

]T
(5.11)
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with xSGi
being the state vector of the synchronous generators

for i = 1, 2 and, xWT = being the state vector of the DFIG-based

wind turbine given by (5.9), where xc =
[
Xid Xiq XTe XQS

]T
are the state variables of the FOC-based controller.

When the SMC-based controller is used, the system is a 21th order

system with the state vector given by equation (5.11) where xWT

is a 7th order system.

5.2.1 Power Network with no Wind Generation

An electrical power system in which the exported power is supplied by

a conventional synchronous generator is considered first to provide a

base line against which wind penetration studies can be assessed.

Table 5.4 summarizes all the relevant information concerning the

small-signal study for this case. It can be noticed that the system is

stable.

This test system shows two rotor angle oscillations (λ1,2 andλ3,4)

and one real rotor speed mode (λ19). The 1.74 Hz mode λ3,4 corre-

sponds to rotor speed of the machines 3 and 2, where the machine 3

is dominant, and the 1.17 Hz mode λ1,2 is related to machines 1 and

2, with the latter providing most of the contribution. This is the least

damped mode with a damping ratio of 4.395%.

The real rotor speed mode, λ19, contributed by machines 1 and 2,

depends mainly on the rotor speed of machine 1.

The rest of the modes are the local and inter-machine modes as-

sociated with excitation control. The exciter’s modes are all very well

damped. The zero eigenvalue is not shown.
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Table 5.4: System Modes of the 3-machine system: Two-axis Synchronous Generator with IEEE I exciter

Mode Eigenvalue Frequency Damping Dominant Machine Participation
# σi ± jωi f (Hz) ratio ζ(pu) states at bus factor (%)

λ1,2 -0.3261 ± j7.4138 1.1799 0.04395 δ, ω 2 31.6, 31.7
1 13.4, 13.4

λ3,4 -0.9092 ± j10.982 1.7479 0.08250 δ, ω 3 41.5, 41.5
2 9.5, 9.5

λ5,6 -5.6101 ± j7.9667 1.2679 0.57576 VR, Efd, Rf 2 45.6, 45.1, 13.0
λ7,8 -5.2139 ± j7.8330 1.2467 0.55410 VR, Efd, Rf 1 45.7, 44.4, 13.8
λ9,10 -5.4107 ± j7.9291 1.2619 0.56366 VR, Efd, Rf 3 45.1, 44.2, 13.5
λ11 -5.3428 - - E ′d 2 53.58

3 49.0
λ12 -4.0872 - - E ′d 3 53.4

2 47.8
λ13,14 -0.3891 ± j1.1145 0.17738 0.32967 E ′q, Rf 1 29.9, 21.7

2 16.8, 12.4
λ15,16 -0.3830 ± j0.7370 0.11731 0.46110 E ′q, Rf 1 25.5, 19.0

2 23.3, 18.2
λ17,18 -0.3136 ± j0.5031 0.08007 0.52899 E ′q, Rf 3 37.7, 32.3

2 18.5, 13.2
λ19 -0.1645 - - ω 1 72.4

2 18.6
λ20 -3.2258 - - E ′d 1 100
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Fig. 5.3, describes the eigenvalues movement of the two rotor angle

oscillatory modes λ1,2 and λ3,4 for the 9 bus system when the active

power output of the generator 2 changes from 15% to 85%; four levels

are considered: 15%, 30%, 50%, 85%.

The top two figures of Fig. 5.3 show the eigenvalues movement and

their respective participation factors are shown in the lower row. The

arrow indicates the direction of increasing power output.

From the participation factors results, it can be observed that the

xn state variable contribution changes little at all the various operating

conditions considered, namely (15%, 30%, 50% and 85% of Generator

2’s power output.
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WSCC system. The upper figures depict the eigenvalues movement and; the
lower figures the participation factors.
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The small-signal stability margin of the rotor-speed oscillations,

which is understood to be the distance of the real-part of the eigen-

values (stable eigenvalues with negative real-part) measured from the

imaginary axis of the complex plane; decreases with progressive in-

creases of active power (Fig. 5.3).

The real part magnitude of the inter-machine mode, λ1,2, decreases

up to 65% from lower to higher power whilst the real part magnitude

of the mode λ3,4, decreases up to 15%. Hence, the damping is reduced

from 13.2% to 4.4% and, from 9.17% to 8.25%, respectively (Fig. 5.4).

The oscillation frequencies of the modes, as shown in Fig. 5.4 (left),

are affected little by power generation changes, with the variation being

less than 5% between the two extreme operating conditions (15% and

85% of P of G2).
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active power output of G2 increases . The upper figures depict the eigenvalue
properties of the λ1,2 mode and; the lower figures depict the eigenvalue
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5.2.2 Power Network with Wind Generation

In these studies the generator connected at bus 2 is now assumed to be

a DFIG-based wind farm. The DFIG is fitted with the two distinct con-

trol strategies, which have been introduced in previous chapters. The

first one is based on the conventional Field Oriented Control (FOC)

and the second is based on the robust design technique Sliding Mode

Control (SMC).

The benefits of using mixed power generation, involving conven-

tional synchronous generators and DFIG WT, is assessed below, with

two different kinds of DFIG controls being implemented.

Three cases are singled out for analyses:

Case 1: All three generators G1, G2, G3 are of the conventional syn-

chronous generation type

Case 2: G2 represents wind generation with a DFIG-WT with FOC

Case 3: G2 represents wind generation with a DFIG-WT with SMC

The damping ratio is the key parameter with which to assess the

impact that the DFIG has on the dynamics of the system.

Under this scenario, depicted in Fig. 5.5, the system shows two

rotor angle oscillations (λ1,2, λ3,4): λ1,2 relating to the machine con-

nected at bus 1 and, λ3,4 relating to the machine connected at bus 3.

The upper figures (first row) depict the eigenvalues movement and the

lower figures the participation factors corresponding to Case 2: Gener-

ator 2 is a DFIG-WT with FOC, (middle row figures ) and for Case 3:

Generator 2 is a DFIG-WT with SMC, (bottom row figures).

Firstly, it can be seen that the system stability is strongly affected

by the operating point. The oscillatory modes tend to become more

stable as the wind power penetration increases; this is in contrast to
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5.2. THE THREE-MACHINE, NINE-BUS SYSTEM

the base case (power network with no wind generation), where the sys-

tem stability margin decreases with output power generation increases

(Fig. 5.3, top).

As expected, oscillations associated to the machine 2 only exist in

the base case (with no wind generation).
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Figure 5.6: Mode shape of the oscillatory modes. Case 1: Base case; Case 2:
G2 as a DFIG-WT with FOC; and Case 3: G2 as a DFIG-WT with SMC.

This can also be checked by examining the mode shape given by

the elements of the right eigenvectors. Fig. 5.6 shows the mode shape

corresponding to the rotor-speed state, where the presence of the gen-

erators’ rotor-angle modes can be appreciated as well as the absence of

the Generator 2’s contribution. This applies to both cases, 2 and 3:

• Case 1: All synchronous generators. G1, G2 and, G3 participate

in the rotor-speed mode λ1,2 where G1 oscillates against the other

two. From the rotor-speed mode λ3,4 it is possible to observe the

participation of the G2 and G3, which oscillate against each other.

• Case 2: DFIG WT with FOC. G2 does not contribute to the

oscillatory modes.

• Case 3: DFIG WT with SMC. Activity of G2 to the oscillatory

modes is not noticeable.
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Figure 5.7: Eigenvalues properties of the a) mode λ1,2; b) mode λ3,4; of the 9
bus system with wind power penetration increases. Case 1: Base case; Case
2: G2 as a DFIG-WT with FOC controller; and Case 3: G2 as a DFIG-WT
with SMC controller.

The relevant property modes of the wind power penetration and

the DFIG controller type are shown in Fig. 5.7. This figure shows

the oscillation frequencies of the swing-rotor modes (left plot) and the

damping ratios (right plot).

The mode λ1,2,corresponds to the machine at bus 1 which oscillates

with a frequency close to one-third the frequency in the base case (case

1). It can be seen that for Case 3, when the DFIG-WT is controlled

by SMC, there is an enhancement of the mode damping of up to 5%

compared to the one obtained by FOC in Case 2.

The oscillation frequency of mode λ3,4, associated to Generator 3,

in Fig. 5.7(b), is about 10% higher than when Generator 2 is a syn-

chronous generator. The reason is that the hydro-turbine unit is quite

heavy and the contribution of Generator 2 to this mode in the base

case is quite marginal, as it can be observed from Fig. 5.3. Likewise,

the damping ratio is around 2% better than the base case.

This case has furnished preliminary results that show that a DFIG

WT with SMC yields excellent results in small-signal stability assess-
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ment of small systems and that it has a great deal of potential in this

area of electrical power systems; hence, a larger system is investigated

next.

5.3 The Two-area System

The small signal studies presented in this section were performed using

a similar system to that of [21]. The one-line diagram is given in Fig.

5.8. It consists of two areas, each one containing two generators. The

loads are modelled as constant MVA.

Generators G1, G3 and G4 represent conventional synchronous gen-

eration; G2 represents either conventional synchronous generation or

wind power generation. In the latter case, a DFIG-based wind turbine

represents a wind farm.

The synchronous generators are all identical machines which are

represented using the detailed two-axis model with IEEE type I exciter

model. The differential equations for the synchronous unit are given by

equations (5.1)-(5.4). The synchronous machine data is given in Table.

5.5. The exciter model in block diagram form and its associated data

are given in Fig. 5.2 and Table. 5.1.
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Figure 5.8: Two-area system
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Table 5.5: Machine Data in per unit on the rated MVA base

Rs Xd Xq X
′

d X
′
q T

′

do T
′
qo H D

0.00028 1.8 1.7 0.3 0.55 8.0 0.4 54 0.0

Both, the synchronous generators models and the DFIG WT mod-

els are assumed to operate under the same conditions as in the previous

section. Data for the DFIG-WT is given in Table 4.1.

The system base power is 100 MVA and the system frequency is

50 Hz. The generator rated powers are: Generator 1 = 1000 MW,

Generator 2 = 500 MW, Generator 3 = 1000 MW, and Generator 4 =

500 MW.

The parameters of the lines in per unit on the system 100 MVA

base and 230 kV base are:

r = 0.0001pu/km xL = 0.001pu/km bC = 0.00175 pu/km

Table 5.6 summarizes the power flow results for the case of 42% of

generation from Generator 2.

Table 5.6: Load Flow Results of the two-area system

Bus Bus Voltage PG QG PL QL

# type (pu) (pu) (pu) (pu) (pu)
1 P-V 1.0100 ∠ 0.6290◦ 4.9000 0.3218 — —
2 P-V 1.0100 ∠−8.164◦ 2.1000 -0.0492 — —
3 Swing 1.0100 ∠ 0.0000◦ 4.9205 0.3326 — —
4 P-Q 1.0100 ∠−7.242◦ 2.3000 -0.0254 — —
5 P-Q 1.0080 ∠−4.770◦ — — — —
6 P-Q 1.003 ∠−11.730◦ — — — —
7 P-Q 1.002 ∠−15.712◦ — — 7.00 0.35
8 P-Q 1.023 ∠−15.610◦ — — — —
9 P-Q 1.001 ∠−15.260◦ — — 7.00 0.35
10 P-Q 1.002 ∠−11.150◦ — — — —
11 P-Q 1.0080 ∠−4.159◦ — — — —
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Modal analyses for four different operating conditions were carried

out. The conditions correspond to a variation of the output power from

Generator 2 by considering wind power penetration levels of 0.28%,

0.42%, 0.6%, and 0.76%. The dispatch from generators G1, and G4 is

kept constant.

For each one of the four operating conditions considered, the results

when Generator 2 in Area 1 is modelled as a conventional synchronous

generator are compared against those obtained when the generator is

replaced by a single DFIG wind turbine generator. The aim is to es-

tablish the dynamic stability characteristics that enable an assessment

of the contribution of wind generation to stability at various levels of

wind penetration.

The state variables vector of the system is composed of

xn =
[
x1 x2 x3 x4

]T
where xn indicates the state variables vector of generator connected at

bus i.

The state vector of a synchronous generator is made up of the states

of the two-axis model as well as of the state variables of the exciter

model described in previous section (equation (5.8)).

For each operating condition two cases are analyzed:

a. Power network with no wind generation.

In this case the eigenvalue analysis is carried out assuming that

all generation, in both areas, are of the conventional synchronous

generator type.

From power dispatch variations, the response of electro-mechanical

oscillatory modes is analyzed. This is accomplished by increasing

the power output of Generator 2.
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In this case the system is a 28th order model with equation (5.10)

providing the basic building block, with i = 1, 2, 3, 4.

b. Power network with wind generation.

Generator 2 of Area 1 is assumed to be a DFIG-based wind farm

and two different controllers are employed, namely the FOC-

based and SMC-base controllers.

The influence of the wind power penetration on the behaviour of

the swing modes of the system is examined. The assessment of

this impact is compared to the one obtained from the case with

no wind power generation.

When the FOC-based controller is used, the system is a 32nd

order one with the following state variables

xn =
[
xSGi

xWT

]T
(5.12)

with xSGi
being the state vector of the synchronous generators

for i = 1, 2, 3 and, xWT = state vector of the DFIG-based wind

turbine where xc =
[
Xid Xiq XTe XQS

]T
being the state vari-

ables of the FOC-based controller.

When a SMC-based controller is used, the system is a 28th order

one with the state vector given by equation (5.12) where xWT is

a 7th order system.

5.3.1 Power Network With No Wind Generation.

The Base Line Case

In this case the exported power is supplied by a steam turbine driven

synchronous generator. It provides the base line case against which the

results obtained with the system containing wind power generation, will

be contrasted to.
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Table 5.7 reports on the eigenvalues and modal properties for the

operating point given in Table 5.6. The zero eigenvalues are not shown.

It can be observed that the system is stable, since the real part

magnitudes of all eigenvalues are on the left side of the complex plane.

The oscillatory modes correspond to local and inter-area modes asso-

ciated with generator angles and speeds, and exciter state variables.

The swing-rotor modes (λ1,2, λ3,4, λ5,6) are the dominant modes;

they are poorly damped (< 5%) and exhibit the largest time constants.

They have a frequency within the range from 1.7 to 2.5 Hz.

The test system shows an intra-area oscillation between buses 1 and

2, λ1,2, and inter-area oscillations between buses 1 and 3 and 4, λ3,4,

and, between buses 2 and 4, λ5,6. Notice that the generators in the test

system do not represent one single generator, but a group of strongly

coupled, coherent generators.

The influence of the active power dispatch variations on the be-

haviour of the swing modes is depicted in Figs. 5.9, 5.10 and 5.11. The

figures at the top show the eigenvalues movement; their respective par-

ticipation factors are shown below the figure of eigenvalues movement.

The behaviour of the mode λ1,2 is shown in Fig. 5.9, Fig. 5.10

shows the mode λ3,4 and, Fig. 5.11 shows the behaviour of the mode

λ5,6. The arrow in the figures indicates the direction of increasing dis-

patch from Generator 2.

Mode λ1,2 is an intra-area oscillation associated to generators in

Area 1 (G1, G2) (Fig. 5.9(a) - bottom figure). From the top plot in

Fig. 5.9(a), the reduction in stability margin is quite striking (up to

about -40% reduction) for this intra-area oscillation, when the active

power output of Generator 2 increases progressively for the whole range

of power output considered.
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Table 5.7: System modes of the two-area system without wind generation

Mode Eigenvalue Frequency Damping Dominant Machine Participation

# σi ± jωi f (Hz) ratio ζ(pu) states at bus factor (%)

λ1,2 -0.9123 ± j15.426 2.4551 0.05903 δ, ω 1 18.5, 18.5

2 15.6, 15.6

λ3,4 -0.7759 ± j15.741 2.5053 0.04923 δ, ω 3 22.2, 22.2

1 12.1, 12.1

4 12.0, 12.0

λ5,6 -0.4370 ± j11.09 1.7650 0.03937 δ, ω 2 17.8, 17.8

4 17.1, 17.1

λ7,8 -5.2165 ± j7.813 1.2435 0.55527 VR, Efd 1 14.2, 13.9

3 13.4, 13.1

2 10.5, 10.2

4 9.2, 8.9

λ9,10 -5.2674 ± j7.895 1.2565 0.55499 VR, Efd 3 17.4, 17.0

1 15.5, 15.2

λ11,12 -5.3042 ± j7.947 1.2648 0.55514 VR, Efd 2 29.9, 29.0

1 17.9, 17.4

λ13,14 -5.3112 ± j7.949 1.2653 0.55551 VR, Efd 4 30.6, 29.8
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λ15 -4.6106 - - E ′d 2 64.6
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3 30.1

λ17 -3.8543 - - E ′d 3 40.7

1 34.0

2 14.7

4 13.5

λ18 -2.9843 - - E ′d 1, 3 29.9, 28.1

2, 4 22.0, 18.3

λ19,20 -0.4132 ± j1.1113 0.1768 0.3485 E ′q, Rf 3 17.8, 13.2

1 17.2, 12.8

λ21,22 -0.4341 ± j0.77713 0.1236 0.4876 E ′q, Rf 1 20.9, 16.4

3 20.8, 16.3

λ23,24 -0.4179 ± j0.47285 0.0752 0.6622 E ′q, Rf 2 22.5, 18.3

4 11.8, 9.6

λ25,26 -0.4149 ± j0.45413 0.0722 0.6745 E ′q, Rf 4 26.4, 21.5

2 15.1, 12.3
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Figure 5.9: Impact of power output increases of G2 on the intra-area mode
λ1,2 of the two-area system. a) Eigenvalue movement (top) and participa-
tion factors (bottom). b) Oscillation frequency (top) and damping ratio
(bottom). The arrow indicates the direction of increasing wind power pen-
etration. Base case.

The frequency of oscillation is only lightly affected by power vari-

ation, (Fig. 5.9(b) - top), but it nevertheless increases at the higher

power output rate of Generator 2, e.g., from 2.39 Hz at 28% of P to

2.47 Hz at 76% of P ; representing a change of about 6%. Conversely,

the damping is much affected; it reduces by about 45% (Fig. 5.9(b) -

bottom.

Mode λ3,4 is an intra-area oscillation associated to generators in

Area 2 (G3, G4) (Fig. 5.10(a) - bottom). However, the angle and rotor

speed of G1 contribute, to a smaller extent, depending on the specific

operating conditions. It is observed from Fig. 5.10 (a) - bottom that

this mode tends to be an inter-area mode when generation of G2 is

about 42% but, the rotor speed and angle of generator 3 in Area 2 are

the dominant states.

From Fig. 5.10(a) - top, it can be seen that real part magnitude of

the eigenvalue moves to the left half plane, from the origin; it changes

by about 20%.
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Figure 5.10: Impact of power output increases of G2 on the intra-area mode
λ3,4 of the two-area system. a) Eigenvalue movement (top) and participa-
tion factors (bottom). b) Oscillation frequency (top) and damping ratio
(bottom). The arrow indicates the direction of increasing wind power pen-
etration . Base case.

The frequency of oscillation is to a lesser degree influenced by the

power dispatch change, (Fig. 5.10(b) - top). It only increases by about

1.6%. Hence, the damping ratio decreases up to 18%, Fig. 5.10(b) -

bottom.

Mode λ5,6 is an inter-area oscillation as it can be confirmed by look-

ing at the participation factors in Fig. 5.11(a) - bottom. From Fig.

5.11(a) - top, it can be observed that the stability margin of this os-

cillatory mode reduces with increases of the active power output of

Generator 2. It decreases up to 60% between extreme operating con-

ditions (from 28% to 76% of PG2).

The frequency of oscillation in Fig. 5.11(b) - top varies only up

to 2%, and hence the damping is reduced from 5.4% for PG2 = 28%

to 3.4% for PG2 = 76%, Fig. 5.11(b) - bottom. This is the dominant

mode.
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Figure 5.11: Impact of increasing power output of G2 on the intra-area
mode λ5,6 of the two-area system. a) Eigenvalue movement (top) and par-
ticipation factors (bottom). b) Oscillation frequency (top) and damping
ratio (bottom). The arrow indicates the direction of increasing wind power
penetration. Base case.

5.3.2 Power Network with Wind Generation

To assess the potential benefits that wind power may bring into the

operation of the power system, the conventional synchronous Generator

2 of Area 1 is replaced by a DFIG wind farm. The power contributed

by wind farm was taken to represent a variable wind penetration into

Area 1.

The study carried out in this section with the DFIG WT uses both

the FOC and the SMC strategies, one at the time. The oscillatory

modes of the test system with the two DFIG-WT controllers are shown

below.

Table 5.8, indicates the exciter-field oscillatory modes correspond-

ing to the three cases under study: 1) Generator 2 as a steam turbine

synchronous generator, 2) Generator 2 as a DFIG WT controlled by

FOC and 3) Generator 2 as a DFIG WT controlled by SMC. These low

frequency and well-damped modes remain practically with no change.

The same is true for all other operating conditions.
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Table 5.8: Properties and dominant states of the exciter-field modes

Case fosc ζ Dominant Machine Case fosc ζ Dominant Machine
(Hz) (pu) states at bus (Hz) (pu) states at bus

1 1.2432 0.5539 VR, Efd 1, 2 2 1.2408 0.5555 VR, Efd 1, 3, 4
3 1.2405 0.5560 VR, Efd 1, 3, 4

1 1.2633 0.5534 VR, Efd 2, 1 2 - - - -
3 - - - -

1 1.2564 0.5542 VR, Efd 4, 3, 1 2 1.2574 0.5542 VR, Efd 1, 3, 4
3 1.2574 0.5542 VR, Efd 1, 3, 4

1 1.2646 0.5557 VR, Efd 4, 3 2 1.2647 0.5557 VR, Efd 3, 4
3 1.2647 0.5557 VR, Efd 3, 4

1 0.1805 0.3426 E ′q, Rf 3, 1 2 0.1941 0.2986 E ′q, Rf 1, 3
3 0.1854 0.3057 E ′q, Rf 1, 3

1 0.1233 0.4942 E ′q, Rf 1, 3 2 0.1196 0.5020 E ′q, Rf 1, 3
3 0.1188 0.5050 E ′q, Rf 1, 3

1 0.0782 0.6671 E ′q, Rf 2, 1, 4 2 - - - -
3 - - - -

1 0.0718 0.6798 E ′q, Rf 4, 3 2 0.0721 0.6778 E ′q, Rf 4, 3
3 0.0721 0.6779 E ′q, Rf 4, 3
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Figs. 5.12-5.17 present the results of the two cases, variation of

wind power penetration and DFIG WT controlled by both control op-

tions. The impact on the eigenvalues of the oscillatory modes of the

system is illustrated in Figs. 5.12, 5.13, 5.14. The eigenvalue movement

is depicted in Figs. 5.12(a), 5.13(a), and 5.14(a) with their respective

participation factors in Figs. 5.12(b), 5.13(b), and 5.14(b). The par-

ticipation factors of the DFIG WT controlled by FOC are shown on

top and those of the DFIG WT controlled by SMC are shown at the

bottom. The eigenvalue properties are shown in part (c) of Figs. 5.12,

5.13 and, 5.14; the frequency of oscillation on the LHS and the damp-

ing ratio on the RHS.

In this case, the system shows an intra-area oscillation between

buses 3 and 4 (λ1,2) and inter-area oscillations between bus 1 and bus

4 (λ3,4) and between bus 1 and buses 3 and 4 (λ5,6), as observed from

the participation factors in Figs. 5.12(b), 5.13(b), and, 5.14(b), respec-

tively.

As expected, the intra-area mode, associated with the area in which

the type of generation is modified, does not exist. Likewise, inter-are

oscillations involving Generator 2 in the baseline case do not existent

when Generator 2 is a DFIG WT, they are distributed the remaining

synchronous generators.

The system stability is strongly affected by the point of operation

in which the controller algorithm of the DFIG WT plays an important

role, as seen below.

The behaviour of the intra-area mode of Area 2 (λ1,2) at different

wind power penetration levels is depicted in Fig. 5.12. The intra-area

mode loci drawn with solid and dashed lines correspond to the DFIG-

FOC and to the DFIG-SMC, respectively. It can be seen that the

effect of the DFIG controller scheme is practically the same for both

algorithms; the response of λ1,2 by SMC is only 1% better than the one

offered by FOC.
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The stability margin of λ1,2, increases by about 15% when wind

generation increases from 28% to 76% while the frequency of oscillation

changes by only 1%, as shown in Fig. 5.12(a).

The contribution of state variables on the modes remains with no

change in both circumstances, with wind power penetration variations

and with changes in DFIG controllers. This can be corroborated from

Figs. 5.12(b) where the participation factors with FOC are shown on

top and the participation factors with SMC are shown at the bottom.

The λ1,2 is a low frequency oscillatory mode at around 2.49 Hz (Fig.

5.12(c), left) which is poorly damped, it reaches around 5% for 28%

of P and 6% at high levels of wind penetration, i.e., 76% of P (Fig.

5.12(c), right).

The behaviour of the inter-area modes λ3,4 and λ5,6 at different wind

power penetration levels is depicted in Figs. 5.13 and 5.14, respectively.

The effect of the DFIG controller schemes on the inter-area mode

λ3,4 is very much the same for both, FOC and SMC. The magni-

tudes |σ3,4| of the FOC controller for the four operating points con-

sidered (from 28% to 76%) are: 0.4425 s−1, 0.4507 s−1, 0.4858 s−1 and,

0.5463 s−1 whereas for the SMC controller are: 0.4653 s−1, 0.4708 s−1,

0.5128 s−1 and, 0.5724 s−1. The phase angles decrease in value from

12.71 rad/s to 12.58 rad/s for the FOC-based controller and from 12.67 rad/s

to 12.36 rad/s for the SMC controller. The oscillation frequency is about

2 Hz and it is a poorly damped mode (ζ3,4 < 5)% (Fig.5.13(c), LHS for

FOC and RHS for SMC).

It can be noticed that the effect of the DFIG controller scheme is

practically the same for both algorithms; the response of λ3,4 by the

SMC-based controller is only a 1 % better than the one furnished by

the FOC-based controller.

In the case of the inter-area mode λ5,6 the impact of the controller is

markedly different. The system with the SMC-based controller shows

a much improved performance than the FOC-based controller.
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Figure 5.12: Impact of increasing wind power penetration at bus 2 on the
intra-area mode λ1,2 of the two-area system. a) Eigenvalue movement;
b) Participation factors with FOC-based controller (top) and with SMC-
based controller (bottom); c) Oscillation frequency (left) and damping ratio
(right). The arrow indicates the direction of increasing wind power pene-
tration. Case 2 and Case 3.
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Figure 5.13: Impact of increasing wind power penetration at bus 2 on the
intra-area mode λ3,4 of the two-area system. a) Eigenvalue movement;
b) Participation factors with FOC-based controller (top) and with SMC-
based controller (bottom); c) Oscillation frequency (left) and damping ratio
(right). The arrow indicates the direction of increasing wind power pene-
tration. Case 2 and Case 3.
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Figure 5.14: Impact of increasing wind power penetration at bus 2 on the
intra-area mode λ5,6 of the two-area system. a) Eigenvalue movement;
b) Participation factors with FOC-based controller (top) and with SMC-
based controller (bottom); c) Oscillation frequency (left) and damping ratio
(right). The arrow indicates the direction of increasing wind power pene-
tration. Case 2 and Case 3.
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The stability margin of this mode (λ5,6), by the DFIG WT con-

trolled with SMC is almost three times as high as that of the DFIG

WT with FOC. Moreover, the magnitude |σ3,4|, shown in Fig. 5.14(a)

for increasing wind power penetrations, shows increases with FOC

from 0.1321 s−1 to 0.1925 s−1 whereas with SMC shows values between

0.3955 s−1 and 0.5377 s−1. The difference in the oscillation frequency is

of up to 9%. Hence, the damping ratios for the SMC controller for 28%

and 76% of wind power are 14.54% and 17.28% (Fig. 5.14(c), bottom)

and the damping ratios for the FOC controller are 5.27% and 5.67%

(Fig. 5.14(c), top), respectively.

From these results, it may be concluded that just as in the WSCC

system the oscillatory modes tend to be more stable as the DFIG WT’s

active power output approaches its nominal value. This is in stark con-

trast to the system with a steam turbine driven synchronous generator.

As illustrated in Fig. 5.15, the intra-area mode of Area 2 of the

two-area system with wind power generation λ1,2, is compared to the

intra-area mode of Area 2 of the two-area system with no wind power

generation, λ3,4 in Fig 5.15(a).

The comparison between the effects of the wind power penetration

and the DFIG controller type on the inter-area mode with wind power

generation λ3,4, and the inter-area mode of the system with no wind

power generation λ5,6 is shown in Fig. 5.15(b). The latter are the

dominant modes in each case, with and with no wind generation

The oscillation frequency of the swing-rotor mode is slightly higher

when generator at bus 2 is a DFIG, since the equivalent generator in

Area 1 becomes lighter by the change of synchronous inertia. This

means effectively that this effect is related to the removal of the syn-

chronous generator.

It can be seen that the greater change (around 13%) is in the inter-

area mode (Fig. 5.15(b)) while the intra-area mode is practically not

affected by the presence of the wind turbine.
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It should be noticed that the inter-are mode of the test power sys-

tem with wind power penetration is not linked to the same buses as in

the base case (with no wind generation).

The damping ratio is a critical parameter in the system stability.

Thus, the obtained damping ratio for the three cases (G2 as a SG, G2

as a DFIG WT FOC and G2 as a DFIG WT SMC) can then be used

to judge the effect of DFIG control algorithms on the stability phe-

nomena. Moreover, it can directly be assessed by means of graphical

information about the eigenvalue movement.

The SMC controller case exhibits more desirable characteristics

than the FOC controller. Although the damping ratio of the SMC

controller for the inter-area mode between buses 1 and 4 (λ3,4), is only

5% better than the FOC controller, its impact on the damping of the

inter-area mode between bus 1 and the buses in the Area 2 is far mode

significant, it is about three times higher.

Moreover, the increase of wind power level contributes to enhance

the performance of the system with DFIG WT SMC, whereas the op-

erating condition does not affect the performance with FOC controller.

It is noticed that DFIG oscillations are also present in this case,

similarly to the case of a DFIG directly connected to a strong grid.

The DFIG with SMC presents a better dynamic behaviour than the

DFIG with FOC.

The behaviour of the electrical mode of the DFIG, λ7,8, is shown

in Fig. 5.16. In Fig. 5.16(a), the magnitude of the DFIG with SMC

exhibits values twice as larger as the DFIG with FOC. The magnitudes

|σ9,10| in Case 2 are 10.17 s−1, 14.19 s−1, 19.59 s−1 and, 23.77 s−1 while

in Case 3 are: 24.39 s−1, 30.52 s−1, 38.34 s−1 and 44.17 s−1. These values

correspond to increases in wind power generation of 28%, 42%, 60%

and, 76%, respectively.
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Figure 5.16: Impact of increasing wind power penetration at bus 2 on the
intra-area mode λ7,8 of the two-area system. a) Eigenvalue movement;
b) Participation factors with FOC-based controller (top) and with SMC-
based controller (bottom); c) Oscillation frequency (left) and damping ratio
(right). The arrow indicates the direction of increasing wind power pene-
tration. Case 2 and Case 3.
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This is a high frequency oscillatory mode near the grid frequency,

Fig. 5.16(c), left.

As shown in Fig. 5.16(c), right, the damping is higher using the

SMC-based strategy (bottom plot).

When the DFIG supplies power operating above synchronous speed

(for instance 76% of P ), the damping of the electrical mode by SMC

control is 10.7% in contrast to the 6.5% offered by the FOC control.

The behaviour of the mechanical mode of the DFIG, λ9,10, is shown

in Fig. 5.17. Similarly to the case of the electrical mode, the magnitude

of the mechanical oscillation with the DFIG under SMC-based control

scheme also exhibits values twice as large as than those under FOC, as

shown in Fig. 5.17(a); while |σ7,8| has values of around 4 s−1, in Case

3 and it has values of around 1.8 s−1 in Case 2.

This mode oscillates with a frequency of around 1.6 Hz, Fig.5.17(c),

LHS plot. As shown in Fig. 5.17(c), RHS plot, the damping is higher

with SMC, bottom plot. Despite the fact that this is a well damped

out mode (> 15%), the damping of the electrical mode by SMC control

is about 37% compared to the 17% offered by the FOC control.

The damping of the mechanical mode remains almost with no change

in the face of DFIG WT power generation changes.

Therefore, the stability margins afforded by SMC to both electrical

and mechanical modes, is about double the stability margins offered

by FOC.

These results show quite amply that the SMC controller exhibits

a superior performance over the FOC controller. Hence,power system

stability may be improved through a wider deployment of the DFIG

SMC wind technology.
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Figure 5.17: Impact of increasing wind power penetration at bus 2 on the
intra-area mode λ9,10 of the two-area system. a) Eigenvalue movement;
b) Participation factors with FOC-based controller (top) and with SMC-
based controller (bottom); c) Oscillation frequency (left) and damping ratio
(right). The arrow indicates the direction of increasing wind power pene-
tration. Case 2 and Case 3.
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CHAPTER 5. STABILITY ANALYSIS OF MULTI-MACHINE SYSTEMS
WITH WIND POWER GENERATION

5.4 Conclusions

The impact of the integration of wind power generation systems with

double-fed induction generators has been assessed in this chapter. The

advantage of using this variable-speed wind turbine concept in mixed

generation to improve on the stability of power networks has been

demonstrated under different test case scenarios, by computer simula-

tion.

Field Oriented Control and Sliding Mode Control strategies have

been used to elucidate on the contribution that wind generator con-

trollers may exert on network damping. The analytical validation

illustrates the effectiveness and potential capability of the proposed

Sliding Mode Control approach to provide a dynamic enhancement of

the DFIG itself, and to achieve a much superior performance of grid

connected wind turbines.
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Chapter 6

Transient Stability

This chapter addresses the issue of transient stability assessment of

wind power generators with particular reference to power system os-

cillations damping. A control system based on Sliding Mode Control

principles is investigated in DFIG WT systems to contribute to network

operational support. Simulation results are provided and discussed to

show the potential of the nonlinear controller to enhance damping of

inter-area oscillations.

6.1 Background

It should be remarked that many important contributions have been

made toward the understanding of dynamic interactions between con-

ventional generation and wind power generation, by resorting to tran-

sient stability models and methods and linearized models suitable for

modal analyses.

In early works [90], the dynamic and transient stability properties of

wind turbine generators integrated into power systems were explored.

The study was addressed considering both, single and grouped wind

turbines and the influence of electrical and wind speed disturbances.

Further studies to understand the dynamic characteristics of electri-

cal network comprising wind energy generation can also be found in

[52],[111].
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6.1. BACKGROUND

Determining the impact of DFIG generation on large-scale power

system stability has been a major concern for quite some time, includ-

ing among others things, the dynamic response to short-circuit faults

and system perturbations due to synchronous generators and transmis-

sion line outages, damping of oscillations, etc.

It has been reported in the open literature that DFIG WT have

the capacity to augment the transient stability margin of conventional

synchronous generators when integrated in the same electrical network

[100, 131, 132]. One of the reasons given is that the DFIG’s two rotor

current regulators also act upon the other generators in the vicinity,

improving their dynamic behaviour. Moreover, DFIG deployment re-

duces the dynamic reactive compensation demands on both neighbour-

ing generators and the power network, which would reduce instances

of voltage collapses in the power network.

In [132], simulation studies carried out with and with no wind power

integrated into the power grid, showed that in cases of severe grid faults

the fast control schemes of the DFIG converters do help to ride through

the fault and to maintain the integrity of the whole system. It was also

pointed out that a DFIG WT does not suffer problems of angular sta-

bility, as it is the case with conventional synchronous generators and

that DFIG WT integration makes up for an improved transient perfor-

mance of the system.

A great deal of very useful conclusions have been drawn by com-

paring the transient stability margins of power networks with variable-

speed wind system and those of power networks with fixed speed wind

systems. Attention has been drawn to the inherent risk that fixed speed

wind turbines have of undergoing voltage and rotor speed instability,

initiated by a short-circuit fault or by the tripping of a synchronous

generator and a key conclusion has been that that risk is much lower

with variable speed wind turbines [133].
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CHAPTER 6. TRANSIENT STABILITY

The impact of DFIG WT on weak transmission systems was inves-

tigated in [56], where the results showed that DFIGs yield an improved

damping performance compared to conventional synchronous genera-

tors of equivalent ratings, a study carried out for various wind plant

load factors and covering a range of dynamic response of the turbines

to short-circuit faults. It is recommended in [134] that transient simu-

lation studies be carried out to assess the post-disturbance behaviour

of a power system for a range of credible operating scenarios and dis-

turbances, even if the system eigenvalues have been determined and

showed the system to be stable.

The impact of short-circuit faults, load disturbances and voltage

dips on the dynamic performance of DFIG WTs has also been ad-

dressed in [135, 136, 119]. It was found in [135] that the dynamic

behaviour of a DFIG subjected to a voltage dip is dominated by the

stator dynamics with poorly damped modes. These, in turn, are greatly

affected by the rotor current control bandwidth and active damping,

rotor back-emf voltages and DFIG power factor. In [136] a new con-

trol scheme was put forward in order to provide the DFIG WT with a

much improved voltage control and voltage recovery following a fault.

Furthermore, the authors claim that the new control scheme give the

DFIG WT the capacity to withstand fault clearances over synchronous

generator with conventional excitation control, for an ample margin.

At the modelling and simulation level, a major disadvantage of the

DFIG WT has been the relative complexity and computing demands

of its mathematical model, which hinders the transient analysis of the

system and limits the simulations studies of whole wind generation

system. Great many research efforts have been made to overcome this

outstanding issue. In order to reduce simulation times and the power

system model complexity, DFIG-based wind turbine models compatible

with transient analysis programs have been developed and published in

the open literature [110, 137, 138]. By way of example, in [110] a sim-
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6.1. BACKGROUND

plified DFIG WT model was developed where the power converter is

represented by an equivalent voltage source, which regulates the rotor

current to meet the scheduled active and reactive power production.

The model performance was tested by simulating the interaction be-

tween the Arklow Bank Wind Farm and the Irish National Grid. The

proposed model is computationally efficient and suitable for large scale

power system analysis but owing to the intrinsic assumption made in

the model, it cannot be used to study the internal dynamic perfor-

mance of the power converter.

The authors in [137] published a simplified model of the DFIG,

alternative to the third-order model, which renders a more intuitive

estimation of the DFIG performance under transient conditions. The

model yields explicit information of the active and reactive power in-

jections through the stator, as well as balance and unbalanced voltage

drops due to grid faults. The model reproduces the behaviour of the

DFIG by resorting to two second-order transfer functions. The work

at [138], puts forward yet another alternative, it uses selective modal

analysis to reduce the wind turbine model for time domain simulations

by focusing on the most relevant modes and variables. The model was

applied in two test systems and it showed to match closely the be-

haviour of the original power system, in cases of transmission lines and

synchronous generators outages.

The impact of reduced inertia (due to increased wind power pene-

tration) on transient stability performance has been also examined. It

has been found that the transient performance is negatively affected by

certain disturbances, which nevertheless may be ameliorated by control

to overcome the decoupling of the inertia in DFIGs.

It has been discussed in Chapter 2, that various mechanisms are

available to provide the DFIG with frequency response capability; for

instance, primary frequency control based on grid frequency deviation
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CHAPTER 6. TRANSIENT STABILITY

[19], frequency response by unloading the wind turbine [20, 72], sup-

plementary control similar to the natural inertial response [67], etc.

The authors in [121], assessed the impact of increased DFIG pen-

etration on transient stability through the excitation of the dominant

modes, by applying specific faults at buses close to the generators with

the largest participation factors. Both detrimental and beneficial ef-

fects of increased DFIG penetration on the system were identified by

applying this technique covering a range of fault scenarios.

6.2 DFIG dynamic model

In a double-fed induction generator the wound rotor is fed through

a variable frequency converter via the slip rings which are attached

to the rotor circuit. The rotor converter is commonly referred to as

the machine side converter (MSC). The stator windings are directly

connected to the grid. This arrangement is schematically depicted in

Fig. 6.1.

VS

VR

dc

Rotor

Side 

Converter

Grid

Side 

Converter

Figure 6.1: Converter configuration for the DFIG-based wind turbine
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6.3. DFIG CONTROL DESIGN

6.2.1 Dynamic equations of the machine

In this study the DFIG is represented by a balanced continuous-time

model by replacing the flux-currents relations in equations (3.70)-(3.73).

This yields the following dq axis equations expressed in per unit,

vSdq
= −RSiSdq

− LS
ωelB

diSdq

dt
− Lo
ωelB

diRdq

dt
+ jωSLSiSdq

+ jωSLoiRdq

(6.1)

vRdq
= −RRiRdq

− Lo
ωelB

diSdq

dt
− LR
ωelB

diRdq

dt
+ jsωSLoiSdq

+ jsωSLRiRdq

(6.2)

where ωelB, is the electrical base speed, s = 1 − ωR
ωS

, is the slip fre-

quency, and ωR, is the rotor speed.

6.3 DFIG Control Design

6.3.1 Sliding Control Design in the Machine Side

Converter

From equations (6.1)-(6.2), the rotor voltage at the machine side con-

verter terminals can be obtained as follows:

(
vSdq

vRdq

)
= − 1

ωelB

(
LS Lo

Lo LR

)
d

dt

(
iSdq

iRdq

)
+

(
−RS + jLS jωSLo

jsωSLo −RR + jsωSLR

)(
iSdq

iRdq

)

Solving for the current derivatives,

d

dt

(
iSdq

iRdq

)
=

ωelB

σLRLS

(
LR −Lo

−Lo LS

)(
−RS + jLS jωSLo

jsωSLo −RR + jsωSLR

)(
iSdq

iRdq

)
− . . .

. . .− ωelB

σLRLS

(
LR −Lo

−Lo LS

)(
vSdq

vRdq

)
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with σ = 1− L2
o

LSLR

d

dt

(
iSdq

iRdq

)
=

ωelB

σLSLR

 LR (−RS + jLS)− LojsωSLo −jωSLRLo − Lo (−RR + jsωSLR)

−Lo (−RS + jLS) + LSsωSjLo −jωSLoLo + LS (−RR + jsωSLR)

 . . .

. . .

(
iSdq

iRdq

)
+

ωelB

σLSLR

(
LR −Lo

−Lo LS

)(
vSdq

vRdq

)

Developing further this equations and separating imaginary and real

terms, yields,

d

dt

(
iSd

+ jiSq

iRd
+ jiRq

)
=

ωelB

σLSLR

(
−RSLR + j

(
LSLR − L2

osωS

)
LoRR + jLRLoωS (1− s)

LoRS − jLoLS (1− sωS) −RRLS + jωS

(
LSLRs− L2

o

)) . . .

. . .

(
iSd

+ jiSq

iRd
+ jiRq

)
+

ωelB

σLSLR

(
LR −Lo

−Lo LS

)(
vSd

+ jvSq

vRd
+ jvRq

)

d

dt


iSd

iSq

iRd

iRq

 =
ωelB

σLSLR

Ksr,1


iSd

iSq

iRd

iRq

+


LR 0 −Lo 0

0 LR 0 −Lo

−Lo 0 LS 0

0 −Lo 0 LS



vSd

vSq

vRd

vRq




with

Ksr,1 =


−RSLR −LSLR + L2

osωS LoRR LRLoωS (1− s)
LSLR − L2

osωS −RSLR LRLoωS (1− s) LoRR

LoRS −LoLS (1− sωS) −RRLS −ωS

(
LSLRs− L2

o

)
LoLS (1− sωS) LoRS ωS

(
LSLRs− L2

o

)
−RRLS



This expression may be expressed in a more general form;

d

dt
x = Ax + Bu = Ax + BSuS + BRuR (6.3)

with

A =
ωelB

σLSLR
Ksr,1, BS =

ωelB

σLSLR


LR 0

0 LR

−Lo 0

0 −Lo

 , BR =
ωelB

σLSLR


−Lo 0

0 −Lo

LS 0

0 LS


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Furthermore equation (6.3) may be transformed into an expression

given in terms of state variables and control inputs applying the trans-

formation matrix,

T =


LS 0 Lo 0

0 LS 0 Lo

0 0 1 0

0 0 0 1

 (6.4)

which coincides with the stator flux expression, ΨS = LSiS + LoiR

Then, the product T BR is,
LS 0 Lo 0

0 LS 0 Lo

0 0 1 0

0 0 0 1

 ωelB
σLSLR


−Lo 0

0 −Lo
LS 0

0 LS

 =
ωelB
σLSLR


0 0

0 0

LS 0

0 LS


These equations may be expressed as a non-linear equation

ẋ = f(x) + Bu (6.5)

where

• x =
[
iSd
, iSq , iRd

, iRq , ωR

]T
∈ <n is state vector with n = 5

• u =
[
vRd

, vRq

]T
∈ <m the control input vector with m = 2,

i.e., the rotor voltages as seen from the Machine Side Converter

(MSC).

To implement the sliding mode control, the dynamic system (6.5) ought

to be expressed as a discrete difference equation. In this case, the first

derivative is approximated with the backward Euler rule, yielding a

model of the form:

ẋ(t) ≈ x[k + 1]− x[k]

τ
(6.6)

where τ is the sampling time.
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Then the discrete version of the continuous equation (6.5) is

x[k + 1] = f(x) + Bu (6.7)

The extended linearization method, also termed apparent lineariza-

tion, enables to identify the existence of a family of equilibrium oper-

ating points with inputs and outputs identical to the non-linear system.

Thus, the extended linear system of (6.7) takes the form

x[k + 1] = A[k]x[k] + B[k]u[k] + D[k] (6.8)

where A[k], B[k] and D[k] are matrices that depend on the kth sample

and are taken to be constant during each sampling time τ .

Equilibrium point. To find the equilibrium point of the machine

voltage equations (6.1)-(6.2) all the time derivatives are set to zero

vSdq
= −RS iSdq

+ jωSLS iSdq
+ jωSLo iRdq

(6.9)

vRdq
= −RR iRdq

+ js ωSLo iSdq
+ js ωSLRiRdq

(6.10)

Neglecting the stator and rotor resistances [139, 140, 141] yields,

vSdq
= jωSLS iSdq

+ jωSLo iRdq

vRdq
= js ωSLo iSdq

+ js ωSLRiRdq

expressed in matrix form(
vSdq

vRdq

)
=

(
jωSLS jωSLo

js ωSLo js ωSLR

)(
iSdq

iRdq

)

and by equating to zero

0 = −

(
jωSLS jωSLo

js ωSLo js ωSLR

)(
iSdq

iRdq

)
+

(
vSdq

vRdq

)
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and pre-multiplying by

(
LR −Lo
−Lo LS

)

0 =

(
LR −Lo
−Lo LS

)[(
−jωSLS −jωSLo
−js ωSLo −js ωSLR

)(
iSdq

iRdq

)
+

(
vSdq

vRdq

)]
yields

0 =

(
−jωSLSLR + js ωSLoLo −jωSLRLo + js ωSLRLo

jωSLSLo − js ωSLoLS jωSL
2
o − js ωSLRLS

)(
iSdq

iRdq

)
+ . . .

. . .+

(
LR −Lo
−Lo LS

)(
vSdq

vRdq

)

0 =

(
−jωS (LRLS − sL2

o) −jωSLoLR (1− s)
jLoLSωS (1− s) −jωS (sLRLS − L2

o)

)(
iSd

+ jiSq

iRd
+ jiRq

)
+ . . .

. . .+

(
LR −Lo
−Lo LS

)(
vSd

+ jvSq

vRd
+ jvRq

)
yields,

0 =Ksr,2


iSd

iSq

iRd

iRq

+


LR 0 −Lo 0

0 LR 0 −Lo
−Lo 0 LS 0

0 −Lo 0 LS



vSd

vSq

vRd

vRq


where

Ksr,2 =


0 ωS

(
LRLS − sL2

o

)
0 ωSLoLR (1− s)

−ωS

(
LRLS − sL2

o

)
0 −ωSLoLR (1− s) 0

0 −ωSLoLS (1− s) 0 ωS

(
sLRLS − L2

o

)
ωSLoLS (1− s) 0 −ωS

(
sLRLS − L2

o

)
0



pre-multiplying this expression by a transformation matrix

T =


LS 0 Lo 0

0 LS 0 Lo

0 0 1 0

0 0 0 1


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yields an expression which coincides with the stator flux ΨS = LSiS +

LoiR, gives the system around the equilibrium point 0

0 = A0x0 + BS0uS0 + BR0uR0 (6.11)

with

x0 =
[
iSd

iSq iRd
iRq

]T
, being the state vector

uR0 =
[
vRd0

vRq0

]T
, being the control input vector

uS0 =
[
vSd0

vSq0

]T
, being the stator input vector

A0, BS0, BR0, being constant matrices given by

A0 =


0 ωSLSσLSLR 0 ωSLoσLSLR

−ωSLSσLSLR 0 −ωSLoσLSLR 0

0 −ωSLoLS(1− s) 0 ωS(sLRLS − L2
o)

ωSLoLS(1− s) 0 −ωS(sLRLS − L2
o) 0



BS0 =


σLRLS 0

0 σLRLS

−Lo 0

0 −Lo

 , BR0 =


0 0

0 0

LS 0

0 LS



Sliding Control

A controller is designed to be constrained to the sampling frequency

with the control signal changing only at sampling instances. As de-

scribed in Chapter 3 the design procedure of the controller comprises

two steps, one related to computation of the sliding surface and the

other to the establishment of the control law. The design procedure in

discrete form is described below:
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• Step 1 Computation of a sliding surface s[k] = Sx[k] with suit-

able internal dynamics. In order to find the sliding surface s[k] a

linear transformation is performed to bring the system (6.5) into

the so called regular form [6],

ẋ1 = f1(x1, x2, t)

ẋ2 = f2(x1, x2, t) +B2(x1, x2, t)u (6.12)

where x1 ∈ <n−m, x2 ∈ <m, and B2 is an m xm non-singular

matrix. The block ẋ1 does not depend on control, whereas the

dimension of ẋ2 coincides with that of the control.

For the controllable system (6.5) there exists an invertible trans-

formation Trx ∈ <n(x)n, defined as:

z = Trxx (6.13)

with Trx ∈ <n×n being the matrix of the linear transformation.

In this new state coordinates the system becomes:

z[k + 1] = Ā[k]z[k] + B̄[k]u + D̄[k] (6.14)

or in a more explicit form,[
z1[k + 1]

z2[k + 1]

]
=

[
A11[k] A12[k]

A21[k] A22[k]

][
z1[k]

z2[k]

]
+ . . .

. . .+

[
0n−m×m

B̄2[k]

]
u[k] +

[
D̄1[k]

D̄2[k]

]
(6.15)

where z1 ∈ <n−m and z2 ∈ <m are all matrices Āij∀i, j = 1..2,

D̄i∀i = 1..2 of appropriate dimensions and B̄2 ∈ <m×m has full

rank.

Let e[k] = z[k] − zref be the new state vector where zref is the

requested reference value. The system may be expressed in these
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new coordinates as

e[k + 1] = Ā[k]e[k] + B̄[k]u+ D̃[k] (6.16)

where D̃[k] = D̄ + (Ā[k]− I) zref

If the sliding mode manifold in these new coordinates is linear,

then

s[k] = Ce[k] = [ F Im×m ]

[
e1[k]

e2[k]

]
= Fe1[k] + e2[k] (6.17)

with F ∈ <m×n. Assuming that a controller exits that forces the

system into sliding mode (i.e. s[k] = 0), the following relationship

applies

e2[k] = −Fe1[k] (6.18)

Substituting the above equation into Eq. (6.15) yields

e1[k + 1] = (A11[k]− A12[k]F )e1[k] = Asm[k]e1[k] (6.19)

Matrix F is chosen such that Asm[k] = A11 − A12F has stable

eigenvalues and performs the desired dynamics of the closed-loop

while the system is in sliding mode.

Notice that once the system is in sliding mode the order of the

closed loop system dynamics is characterized by Eq. (6.19) whose

order is (n − m), an order that it is less than the order of the

original uncontrolled system (n).

• Step 2 Establishing a control law that steers the system towards

the sliding surface at a finite time and keeps the closed loop

dynamics confined to the manifold. To reach the sliding surface

in one sampling period, i.e. s[k + 1] = 0, the reaching law is

s[k + 1] = CĀ[k]e[k] + CB̄[k]u[k] + CD̃[k] = 0
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6.3. DFIG CONTROL DESIGN

ueq[k] = − (CB)−1
(
CA[k]e[k] + CD̃[k]

)
This can be decomposed as the sum of

ueq[k] = − (CB)−1
(
CAe[k] + CD̃[k]

)
− (CB)−1Ce+ (CB)−1Ce

= − (CB)−1 s[k]− (CB)−1
(

(CA− C)e[k] + CD̃[k]
)

and

s[k + 1] = s[k] + (CA[k]− C)e[k] + CB[k]u[k] + CD̃[k] (6.20)

To circumvent the problem of excessively large control inputs a

typical approach is to bound the control input [142]. Assuming

that the control can vary within certain limits ‖u[k]‖ ≤ uo such

as ∥∥(CB)−1
∥∥∥∥∥(CA[k]− C)e[k] + CD̃[k]

∥∥∥ ≤ uo

the control

u[k] =


ueq[k] for ‖ueq[k]‖ ≤ uo

uo
ueq[k]

‖ueq[k]‖
for ‖ueq[k]‖ > uo

(6.21)

satisfies the constraints on the control resources and yields motion

in the sliding manifold. To prove convergence, consider the case

‖ueq[k]‖ > uo. From Eq.(6.20)

s[k + 1] = s[k] + (CA[k]− C)e[k] + CB[k]u[k] + CD̃[k]

= s[k] + (CA[k]− C)e[k] + CBuo
ueq[k]

‖ueq[k]‖
+ CD̃[[k]

= s[k] + (CA[k]− C)e[k] + CD̃[[k]

− uo
s[k] +

(
(CA− C)e[k] + CD̃[k]

)
‖ueq[k]‖

= (s[k] + (CA[k]− C)e[k] + CD̃[[k])

(
1− uo
‖ueq[k]‖

)
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Thus

‖s[k + 1]‖ =
∥∥∥s[k] + (CA[k]− C)e[k] + CD̃[[k]

∥∥∥(1− uo
‖ueq[k]‖

)
≤ ‖s[k]‖+

∥∥∥(CA[k]− C)e[k] + CD̃[[k]
∥∥∥− uo∥∥(CB)−1

∥∥
≤ ‖s[k]‖

Hence, ‖s[k]‖ decreases monotonously and, after a finite number

of steps ‖ueq[k]‖ < uo is achieved and discrete-time sliding mode

will take place from next sample.

Similarly to Eq.(6.21), the control law [143],

u[k] =


−(CB)−1s[k] for ‖(CB)−1s[k]‖ ≤ uo

−uo
(CB)−1s[k]

‖(CB)−1s[k]‖
for ‖(CB)−1s[k]‖ > uo

(6.22)

does not depend on the plant parameters A, D.

Example

The dynamic performance of the machine-side converter controller is

assessed by transient analysis of a DFIG directly connected to an equiv-

alent grid, for a number of different commanded values, i.e. the Sliding

Mode Control designed for the machine side converter control is tested

under mechanical torque and stator reactive power step changes.

The wind turbine system is modelled by its 5th order model, where

the stator and rotor currents and the rotor speed are the state variables,

thus, the state vector is defined as:

x =
[
iSd iSq iRd iRq ωR

]T
(6.23)

The terminal voltage is 1 pu and remains constant.
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Table 6.1: DFIG-WT data

DFIG parameters

RS RR Lo LS LR H Pwrated

(pu) (pu) (pu) (pu) (pu) (s) (MW)

0.0038 0.0044 3.00 3.2250 3.2100 3.5 2

The parameters of the DFIG wind turbine system are listed in Table

6.1.

Firstly, the mechanical torque is forced to its lower value and the

wind turbine operates with zero reactive power output. Then, the me-

chanical torque is kept constant at -1 per unit whereas the reference of

reactive power is step changed.

The proposed control method provides a torque-reactive power de-

coupled control through the regulating q-axis current and d -axis cur-

rent, respectively.

• Change in the input mechanical torque:

A change in the input mechanical torque is caused by a change in

the active power output reference; with the active power output ob-

tained from the optimal power-speed curve.

Fig. 6.2 shows the simulated results where the input mechanical

torque step changed at 0.2 sec from −1 pu to −0.5 pu. It can be ob-

served that the active power is controlled by the q-axis stator and rotor

current while d -axis stator and rotor current remains constant during

the mechanical torque variation.

The output rotor voltage of the MSC, determined by SMC, is shown

in Fig. 6.3 and Fig. 6.4 depicts the control law functions of the MSC

regulator.
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Figure 6.2: Stator and rotor currents with Tm reference variation

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

time (s)

v R
 (

pu
)

 

 

v
Rd

v
Rq

Figure 6.3: Rotor voltage with Tm reference variation

157

:.._----

.~ .. 

:' ... _._._ .. -

• __ . ,f 

• 

· 

· 

_ . _ . • . - J. -----'1 

--- - ~-- -- ~------ -- --

• 

• • 

J 



6.3. DFIG CONTROL DESIGN

0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

 

 

0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

time (s)

re
fe

re
nc

es
 (

pu
)

 

 
u

II,P

u
II,Q

u
I, P

u
I,Q

Figure 6.4: Control law functions with Tm reference variation

• Change in the stator reactive power reference:

A variation on the stator reactive power reference is a rather effective

mean to demonstrate the influence of the d -axis current control in mod-

ulating the reactive power output in order to enable the control of the

generator terminals.

Fig. 6.5 shows the stator and rotor currents and Fig. 6.6 shows the

voltage control at the machine terminals.

The rotor voltage output of the MSC is shown in Fig. 6.7. It can be

observed that the d -axis component of the rotor voltage varies accord-

ing to the change of reactive power and the q-axis component of the

rotor voltage remains practically constant following the reactive power

command variation.

Fig. 6.8 depicts the SMC control law functions of the MSC regula-

tor.
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6.3.2 Sliding Control Design in the Grid Side Con-

verter

The GSC is connected to the grid through a grid-side filter and it is

used to control dc-link voltage and reactive power exchange with the

grid. Fig. 6.9 shows the diagram of the back-to-back converter, where

Zf is the grid-side filter impedance, vf is the output voltage at the

grid-side converter, Eg is the grid voltage and vdc is the dc bus voltage.

Dynamic equations of the GSC

The per unit dq axis voltage equations can be written as

vfd + jvfq = egd + jegq +Rf (ifd + jifq) + Lf
1

ωelB

d

dt
(ifd + jifq) + . . .

. . .+ jωSLf (ifd + jifq) (6.24)

vfd = egd +Rf ifd + Lf
1

ωelB

d

dt
ifd − ωSLf ifq (6.25)

vfq = egq +Rf ifq + Lf
1

ωelB

d

dt
ifq + ωSLf ifd (6.26)

The stator and the rotor converters are related through the active

power balance in the dc link capacitor:

vdcCdc
dvdc
dt

= (−Pg − PR) (6.27)

GSC RSC
ZfIf

Eg

PR

vf vR

IRvdc

Figure 6.9: Diagram of the GSC for the DFIG-based wind turbine
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with
PR = <{vRi∗R}
Pg = <

{
egi
∗
f

} (6.28)

By aligning the d q-axis with the voltage eg such that eg = egd, and

egq = 0, the direct axis component of the grid side converter current

controls the active power trough the stator converter,

Pg = <{egd (ifd − jifq)} = egdifd (6.29)

thereby equation (6.27) becomes,

vdcCdc
dvdc
dt

= (−egdifd − PR)

and reordering the voltage and dc link capacitor equations

vfd = egd +Rf ifd + Lf
1

ωelB

d

dt
ifd − ωSLf ifq

vfq = egq +Rf ifq + Lf
1

ωelB

d

dt
ifq + ωSLf ifd

vdcCdc
dvdc
dt

= (−egdifd − PR)

gives,

d

dt
ifd =

ωelB
Lf

(vfd − egd −Rf ifd + ωSLf ifq) (6.30)

d

dt
ifq =

ωelB
Lf

(vfq − egq −Rf ifq − ωSLf ifd) (6.31)

dvdc
dt

=
1

Cdcvdc
(−egdifd − PR) (6.32)

and in matrix form,

d

dt

ifdifq
vdc

 =


ωelB
Lf

(−egd −Rf ifd + ωSLf ifq)
ωelB
Lf

(−egq −Rf ifq − ωSLf ifd)
1

Cdcvdc
(−egdifd − PR)

+


ωelB
Lf

0

0

 vfd +


0

ωelB
Lf

0

 vfq

(6.33)
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The system equations can be written in the form

ẋ = f (x) + g1(x)u1 + · · ·+ gm(x)um (6.34)

y1 = h1 (x)

...

ym = hm (x) (6.35)

where

y1 = h1 (x) = ifq (6.36)

y2 = h2 (x) = vdc (6.37)

Feedback Linearization

The key idea of feedback linearization is to algebraically transform the

non-linear system dynamics into fully or partly linear control problem;

then linear control techniques can be applied [144]. The basic method

for accomplishing input-output linearization is to differentiate the out-

puts yi with respect to time until the control inputs appear and then

new inputs are designed that cancel out the non-linearities.

Consider the MIMO system described by (6.34)- (6.35). It is as-

sumed that each output yi has a defined relative degree γi, which rep-

resents the times that the output is differentiated.

By using Lie’s [144, 145] derivatives the process of repeated differ-

entiation begins with

ẏi = Lfh(x) + Lgh(x)u (6.38)

with a Lie derivative given by Lfh =
∂h

∂x
f.

Lie’s derivative of order zero is denoted by Lf h and Lie’s derivatives

of higher order are given by Lif h = Lh
(
Li−1f h

)
.
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In terms of Lie derivatives the output yi has a relative degree γi

if, ∃ an integer LgiL
`
f ≡ 0 ∀ ` < γi − 1, ∀ 1 ≤ i ≤ m, ∀x ∈ U , and

Lgi L
γi−1
f h(x) 6= 0. U ⊂ <n which is in a given neighbourhood of

the equilibrium point of the system. The system’s relative degree r, is

defined to be the sum of the relative degrees of all the output variables.

Lie’s derivative for the ith output is given by

y
(ri)
i = Lrif hi(x) +

m∑
j=1

LgjL
ri−1
f hi(x)uj (6.39)

assuming that ri is the smallest integer such that at least one of

the inputs appears in the ith output and with LgjL
ri−1
f hi(x) 6= 0 for at

least one j. By taking the Lie’s derivative for each ith output, yields,
y
(γ1)
i
...

y
(γmi)
i

 =


Lγ1f h1(x)

...

Lγmf hm(x)

+ E(x)u (6.40)

where

E(x) =


Lg1L

r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

...
. . .

...

Lg1L
rm−1
f hm(x) · · · LgmL

rm−1
f hm(x)


If the decoupling matrix E(x) is invertible, then the input transfor-

mation

u = E(x)−1


v1 − Lγ1f h1(x)

...

vm − Lγmf hm(x)

 (6.41)

yields the decoupled dynamics

y
(γi)
i = vi (6.42)

The output variables of the GSC aimed at achieving a reactive

power control in order to maintain the dc voltage constant are given

by (6.36)-(6.37).
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Differentiation of the output y1 with respect to time reveals a rela-

tive degree of one

ẏ1 =
ωelB
Lf

(−egq −Rf ifq − ωSLf ifd) +
ωelB
Lf

vfq (6.43)

Now, differentiation of the output y2 with respect to time twice

(ri = 2), yields,

ẏ2 =
ωelB
Cdcvdc

(−egdifd − PR) (6.44)

ÿ2 =
ωelB
Cdcvdc

(
−egd

ω

Lf
(−egd −Rf ifd + ωSLf ifq + vfd)− ṖR

)
− . . .

. . .− ωelB
Cdcv2dc

ωelB
Cdcvdc

(−egdifd − PR)(−egdifd − PR) (6.45)

Hence, the whole system has a relative degree of three.

These equations may be expressed in compact form as(
ẏ1

ÿ2

)
= α + β

(
vfd

vfq

)
(6.46)

where

α =

 −ωelB
Lf

vfqss

ωelB
Cdcvdc

(
ωelB
Lf

egdvfdss − ṖR
)
−Kdc(−egdifd − PR)2



β =

 0
ωelB
Lf

−egd
ω2
elB

LfCdcvdc
0



with

vfqss = egq +Rf ifq + ωSLf ifd,

vfdss = egd +Rf ifd − ωSLf ifq,

Kdc =
ω2
elB

C2
dcv

3
dc
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Thereafter, equation (6.46) can be rewritten as:(
v1

v2

)
= α + β

(
vfd

vfq

)
(6.47)

and the following linear form results:(
ẏ1

ÿ2

)
=

(
v1

v2

)
(6.48)

Since β is non-singular (except for −egd
ω3
elB

L2
fCdcvdc

= 0) in the oper-

ating range of vdc and egd, the control law can be computed as follows(
vfd

vfq

)
= β−1

((
v1

v2

)
− α

)
(6.49)

Sliding Control

To design two sliding control for the equation (6.48), two decoupled

controllers for each variable (y1, y2) are realized as follows:

• Reactive current controller of the GSC:

The output reactive current is defined as (6.36) by

ẏ1 = v1

Using the Euler’s discretization, gives the first derivative

ẋ(t) ≈ x[k + 1]− x[k]

τ

where τ is the sampling time, yields

y11,k+1 = y11,k + τv1,k (6.50)
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Defining the following sequence of maps

ω0,k = y11,k − yrefk

ω1,k = ω0,k+1 = y11,k+1 − yrefk+1

= y11,k + τv1,k − yrefk+1 (6.51)

which clearly expresses the dependence of the output variable y1 at

time k + 1 on the state x(k) and the input sequence u(k), u(k + 1).

The inverse transformation is given by,

y11,k = ω0,k + yrefk (6.52)

then the transformed system is,

ω0,k+1 = ω1,k

= ω0,k + τv1,k + yrefk − yrefk+1 (6.53)

It should be remarked that when the inputs and the initial state

of (6.53) are properly set, the various components of the state of this

system reproduce the output of the system and its next value,

v1,k = uk+1

ω0,k = yk (6.54)

then

ω1,k = yk+1 (6.55)

As the system model is described in controllable canonical form

then a function,

sk = α0ω0,k + α1ω1,k + . . .+ αn−2ωn−2,k + ωn−1,k (6.56)

with the coefficients chosen in such a manner that the polynomial

p(λ) = λn−1 + αn−2λ
n−2 + . . .+ α0 (6.57)
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in the complex variables λ, is Hurwitz, defines a sliding surface as,

sk = ω0,k (6.58)

and a control u such that a sliding mode occurs on sk = 0

ω0,k = 0

which define the equilibrium point y11,k→∞ = yref .

In the next instant of time the sliding mode is:

sk+1 = 0

then

sk+1 = ω0,k+1 = 0

Incorporating this restriction in (6.53)

ω0,k + τv1,k + yrefk − yrefk+1 = 0

so that the control variable becomes,

v1,k =
1

τ

(
−ω0,k − yrefk + yrefk+1

)
v1,k =

1

τ

(
−y11,k + yrefk+1

)
(6.59)

It should be emphasized that the reactive current control depends

only on the reference value in the next instant of time yrefk+1, and the

reactive current measurement in the current instant of time y11,k

• dc voltage controller in the GSC:

To keep the dc voltage constant in (6.48), the second output y2 is

to be used

ÿ2 = v2
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Representing the output function y2 in controllable canonical form

[146]

y21 = y2

ẏ21 = ẏ2 = y22

which may be written in matrix form,(
ẏ21

ẏ22

)
=

(
0 1

0 0

)(
y21

y22

)
+

(
0

1

)
v2 (6.60)

In the same way that it was done for the output y1, a discrete-time

frame will be followed: Let us consider the Euler’s discretization of the

first derivative

ẋ(t) ≈ x[k + 1]− x[k]

τ

where τ is the sampling time.

y21,k+1 = y21,k + τy22,k

y22,k+1 = y22,k + τv2,k (6.61)

In order to transform the system into the generalized observability

canonical form (GOBCF) [147], the following sequence of maps are

defined

ω0,k = y21,k − yrefk

ω1,k = ω0,k+1 = y21,k+1 − yrefk+1

= y21,k + τy22,k − yrefk+1

ω2,k = ω1,k+1 = y21,k+1 + τy22,k+1 − yrefk+2

= y21,k + 2τy22,k + τ 2v2,k − yrefk+2 (6.62)

with the inverse transformation given by

y21,k = ω0,k + yrefk

y22,k = τ−1ω1,k − τ−1ω0,k − τ−1yrefk + τ−1yrefk+1 (6.63)
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The transformed system then reads

ω0,k+1 = ω1,k

= ω0,k + yrefk + . . .

. . .+ 2τ
(
τ−1ω1,k − τ−1ω0,k − τ−1yrefk + τ−1yrefk+1

)
+ . . .

. . .+ τ 2v2,k − yrefk+2

= −ω0,k + 2ω1,k + τ 2v2,k − yrefk + 2yrefk+1 − y
ref
k+2 (6.64)

As aforementioned in the case of y1 it should be clear that if

v2,k = uk+1

ω0,k = yk (6.65)

then

ω1,k = yk+1 (6.66)

The sliding surface, defined by function (6.56), may be expressed

in terms of the transformed coordinates

sk = αoω0,k + ω1,k (6.67)

Incorporating the sliding condition sk = 0, gives

0 = αoω0,k + ω1,k = αoω0,k + ω0,k+1

or

ω0,k+1 + αoω0,k = 0

which is stable at the equilibrium point ω0,k→∞ = 0; that is,

y21,k→∞ = yref
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In the next instant of time, the sliding motion is required to stay

at the equilibrium point, which means

sk+1 = 0

then

sk+1 = αoω0,k+1 + ω1,k+1 = 0

Incorporating this restriction in (6.53)

αoω1,k +
(
−ω0,k + 2ω1,k + τ 2v2,k − yrefk + 2yrefk+1 − y

ref
k+2

)
= 0

the control for vdc is given by

v2,k =
1

τ 2

(
ω0,k − (αo − 2)ω1,k + yrefk − 2yrefk+1 + yrefk+2

)
where

ω0,k = y21,k − yrefk

ω1,k = ω0,k+1 = y21,k + τy22,k − yrefk+1

ω2,k = ω1,k+1 = y21,k + 2τy22,k + τ 2v2,k − yrefk+2

Hence,

v2,k =
1

τ2

(
y21,k − yrefk − (αo − 2) (y21,k + τy22,k − yrefk+1) + yrefk

)
− . . .

. . .− 1

τ2

(
2yrefk+1 + yrefk+2

)
(6.68)

If measurements of vdc,k, egd,k, ifd,k, PR,k are available, then the

value of y21,k and y22,k can be obtained from

y21,k = vdc,k (6.69)

y22,k =
ω

Cdcvdc,k
(−egd,kifd,k − PR,k) (6.70)

Alternatively, these quantities can be estimated by using an observer.
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With the values of v1,k,v2,k given by (6.59),(6.68), the values of vfd,

vfq according to (6.49) are obtained.

Notice that, if the control voltage of the converter is limited to a

maximum value ulim, it should verified that

‖uk,eq‖ =

∥∥∥∥∥
(
vfd

vfq

)∥∥∥∥∥ < ulim

Otherwise, the control signal should be limited to a maximum value

according to the expression:

uk =


uk,eq for ‖uk,eq‖ ≤ ulim

ulim
uk,eq
‖uk,eq‖

for ‖uk,eq‖ > ulim

Example

In this section, the transient response of the GSC control is assessed in

connection with voltage and current set point step changes. The wind

turbine is represented by a generic model which incorporates features

of wind turbine electrical controls relevant to transient stability studies.

Simulations of the grid side converter were carried out with the

following parameters:

- The filter parameters: Lf = 0.2, Rf = 0.002, Cdc = 3.5

- For the proposed controller, the design parameter αo = 0.9 and

the sampling interval was chosen to be τ = 0.1ms

- The dc voltage and reactive power references are vrefdc = 2.1,

QGSC = 0.3

The control performance is shown in Figs. 6.10 - 6.14. It is observed

in Figs. 6.10 and 6.11 that dc voltage and reactive current at the stator

side of the DFIG match rather well their respective reference signals.
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Figure 6.10: udc control in the GSC
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6.3. DFIG CONTROL DESIGN

Fig. 6.12 depicts the dq axis components of the output voltage at

the GSC. On the other hand, if the rotor active power is varied, i.e.,

disturbed, the GSC control acts to maintain the dc-link voltage at the

specified voltage level, as shown Fig. 6.13.
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Figure 6.12: Control variable d-q
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Figure 6.13: Response to a change in the active power flow from the MSC.
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Figure 6.14: Detailed dq axis if with PR change

The GSC q-axis component is not affected by variations of rotor

active power. This result confirms the decoupled operation of the DFIG

converter, as shown Fig. 6.14. Moreover, the response of the other

variables that are not directly controlled in the system are governed by

the dynamic equations; for example, the d -axis current ifd is directly

linked to the active power supplied to the network.

6.4 Sliding Mode Control for Damping Inter-

area Oscillations in Power Systems

The Sliding Mode Control strategies shown in previous sections for the

MSC and GSC, are now applied to a multi-area power system with

wind generation. The GSC is in charge of damping power oscillations

in the multi-area power system, by making use of its reactive power

capabilities.

The dynamic model of a multi-machine power system comprising
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6.4. SLIDING MODE CONTROL FOR DAMPING INTER-AREA
OSCILLATIONS IN POWER SYSTEMS

N machines may be described by the classical swing equation [21, 148,

149, 150]

δ̇i = ωi − ω0

ω̇i =
1

2Hi

(
−Di

(
ωi − ω0

)
+ Pmi − Pei

)
(6.71)

for i = 1, . . . , N

where the state variables δi, ωi are the relative generator power an-

gle and the relative rotor speed of machine i, respectively. Hi is the

inertia constant, Di is the per unit damping constant, ω0 is the sys-

tem speed, Pmi is the mechanical input power, and Pei is the electrical

power.

A power network comprising two dynamic areas and one wind farm

is depicted in Fig. 6.15. The transmission power network can be ex-

pressed as an admittance matrix Y of size (N + m, N + m) where N

is the number of generator buses and m is the number of wind farms

with reactive current injection capability, as schematically shown in

Fig. 6.16. The power network is taken to have L load buses.

2

Area 2Area 2

1

3

Area 1Area 1

Figure 6.15: Two areas system with wind power generation
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Figure 6.16: Equivalent Power System for SMC control design

The active power delivered to the system is given by

Pei = <

{
N∑
j=1

V i I
∗
i

}
(6.72)

with

Ii =
N∑
j=1

Y ijV j =
N∑
j=1

[Gij cos (δi − δj) +Bij sin (δi − δj)]Vj (6.73)

where Gij the conductance and Bij the susceptance between nodes

i and j in per unit.

In the particular case of N = 2 generators and m = 1 wind farms,

the power injected by generators is given by

Pe1 = <{V 1I
∗
1} = <

{
2∑
j=1

V1Y
∗
1jV

∗
j + V1Y

∗
13V

∗
3

}
(6.74)
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Pe2 = <{V 2I
∗
2} = <

{
2∑
j=1

V2Y
∗
2jV

∗
j + V2Y

∗
23V

∗
3

}
(6.75)

Defining δ12 = δ1 − δ2, and ω12 = ω1 − ω2, the relative power swing

dynamics between the two areas is described by

δ̇12 = ω12

ω̇12 = fij + bV ∗3 (6.76)

where

fij =
1

2Hi

[
−Diωi + Pmi −

2∑
k=1

ViVk [Gik cos(δi − δk) +Bik sin(δi − δk)]

]
− . . .

. . .− 1

2Hj

[
−Djωj + Pmj −

2∑
k=1

VjVk [Gjk cos(δj − δk) +Bjk sin(δj − δk)]

]

b =− 1

2Hi
Vi [Gi3 cos(δi − δ3) +Bi3 sin(δi − δ3)]− . . .

. . .− 1

2Hj
Vj [Gj3 cos(δj − δ3) +Bj3 sin(δj − δ3)]

for i = 1; j = 2

get express ω̇ = f + bu, where the indexes i, j have been omitted

for brevity; δ and ω are the system’s state variables, f represents the

balance between mechanical power input (Pm) and electrical power

output (Pe) and bu defines the control objective which force the relative

rotor speed to zero. All terms involved in this equation arise from

(6.71).

The current injection from the wind farm at bus 3 is

I3 =
2∑

k=1

Y3kVk + Y33V3 (6.77)

Thus, the electrical active and reactive power output delivered by the
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wind farm is given by [151]

Pe3 = < (V 3I
∗
3)

= V 2
3 G33 − V3

2∑
k=1

Vk [G3k cos (δ3 − δk) +B3k sin (δ3 − δk)]

Q3 = = (V 3I
∗
3)

= −V 2
3 B33 + V3

2∑
k=1

Vk [G3k sin (δ3 − δk)−B3k cos (δ3 − δk)]

Consider the two-machine equivalent of a two-area power system,

given in Fig. 6.17. Each coherent area is represented by a single equiv-

alent machine which is connected to at buses 1 and 2 through power

transformers.

The synchronous generators are represented by the classical model

so that the internal voltage is denoted as Eqi = Eqi∠δi, i = 1, 2. The

voltages at buses 1, 2 and 3 correspond to nodal voltage at the point

of connection of each machine, V i = Vi∠δi, i = 1, 2, 3. The reactance

Xd consists of the sum of machine’s transient reactance and the trans-

former reactance. The line’s reactances are X1 and X2. The current I

is the current injected by the wind farm.

1
Xd1

Eq1

I

3

Eq2

2

G1

X1 X2

G2V1 V2

Xd2

Figure 6.17: Classical two-machine power system model with wind genera-
tion
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Taking voltage V 2 = V2∠0 as reference then voltage V 1 can be

expressed as

V 1 = V3 + jX1I1 (6.78)

with

I1 =
Eq1∠δ1 − V1∠θ1

j Xd1

(6.79)

and

V 3 = V2 + jX2 (I + I1) (6.80)

Substituting (6.79) and (6.80) into (6.78), gives,

V 1 = V2 + jX2I + j (X1 +X2)
Eq1∠δ1 − V1∠θ1

j Xd1

(6.81)

Further manipulation yields,

V 1 =

(
Xd1

Xd1 +X1 +X2

)(
V 2 +

X1 +X2

Xd1
Eq1

)
+

(
Xd1

Xd1 +X1 +X2

)
jX2I

When the current I injected by the wind farm is in quadrature with

the voltage at PCC, it would only yield reactive power injection, i.e.,

no active power component,

I = I∠
(
θ1 +

π

2

)
= jI∠θ1

Therefore

V1∠θ1 =

(
Xd1

Xd1 +X1 +X2

)(
V 2 +

X1 +X2

Xd1
Eq1∠δ1

)
−
(

Xd1

Xd1 +X1 +X2

)
X2I∠θ1

Where separate expressions for magnitude and phase angle are given
as:

V1 =

∣∣∣∣( Xd1

Xd1
+X1 +X2

)(
V 2 +

X1 +X2

Xd1
Eq1∠δ1

)∣∣∣∣− ( Xd1

Xd1 +X1 +X2

)
X2I

θ1 = ∠

(
Xd1

Xd1 +X1 +X2

)(
V 2 +

X1 +X2

Xd1
Eq1∠δ1

)
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Alternatively,

V1 = c1 + c2I (6.82)

where

c1 =

∣∣∣∣( Xd1

Xd1 +X1 +X2

)(
V 2 +

X1 +X2

Xd1
Eq1∠δ1

)∣∣∣∣
c2 = −

(
Xd1

Xd1 +X1 +X2

)
X2

These expressions may be incorporated into the power equation,

Pe1 =
1

Xd1

V1Eq1 sin (δ1 − θ1) =
1

Xd1

(c1 + c2I)Eq1 sin (δ1 − θ1)

and into the dynamical equation

δ̇1 = ω1 − ω0

ω̇1 =
1

2H

(
−D1 (ω1 − ω0) + Pm1 −

1

Xd1

(c1 + c2I)Eq1 sin (δ1 − θ1)
)

which can also be written down as:

δ̇1 = ω1 − ω0

ω̇1 = d1 (δ, ω) + d2 (δ) I (6.83)

where

d1 =
1

2H1

(
−D1 (ω1 − ω0) + Pm1 −

1

Xd1

c1Eq1 sin (δ1 − θ1)
)

d2 =
1

2H1

(
− 1

Xd1

c2Eq1 sin (δ1 − θ1)
)

In discrete-time form,

δk+1 = δk + τωk − τω0

ωk+1 = ωk + τd1k (δk, ωk) + τd2k (δk) Ik (6.84)
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Lyapunov theory may be used to determine both the solutions of the

controller and its associated stability properties. A Lyapunov function

candidate is selected to find out the control that enforces the sliding

mode into the sliding surfaces [6]. For proved stability, the Lyapunov

function candidate is of the form

2V = sT s

= s21 + s22

= (ω1 − ω0)
2 + (ω2 − ω0)

2

(6.85)

whose derivative is

V̇ = (ω1 − ω0) ω̇1 + (ω2 − ω0) ω̇2

where

ω̇1 = f1 + g1u

ω̇2 = f2 + g2u

For the purpose of control derivation, functions f1, f2, are very

small and include terms with no control variables, and can therefore

be neglected. Let us consider only terms with control variables, thus

ω̇1 ' g1u

ω̇2 ' g2u

such that

V̇ = [(ω1 − ω0) g1 + (ω2 − ω0) g2]u (6.86)

Then, the control signal u can be selected as a discontinuous func-

tion as [6]

u = −k [(ω1 − ω0) g1 + (ω2 − ω0) g2]−Msign [(ω1 − ω0) g1 + (ω2 − ω0) g2]

(6.87)

with k and M being constant positive values.
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Thus, the derivative of positive definite function (6.86) is of form

V̇ = −k ((ω1 − ω0) g1 + (ω2 − ω0) g2)
2 −M |(ω1 − ω0) g1 + (ω2 − ω0) g2|

which leads to the conclusion that V̇ < 0 and the system is asymptot-

ically stable for k sufficiently high but finite and an arbitrary value of

M .

Example

The dynamic analysis is carried out by applying the above SMC ap-

proach to the network used in [136]. The one-line diagram is given

in Fig 6.18. It comprises a wind farm connected to bus 3 and con-

ventional thermal generation connected to the main system through

coupling transformers and transmission lines.

Generator 1 and Generator 3 represent steam turbine-driven syn-

chronous generators; Generator 2 represents an equivalent DFIG-based

wind farm. Synchronous generators are represented by their voltage-

behind-transient-reactance model.

2 3

1
Slack Bus

G1

L1

L2

X = 0.15

X = 0.15

X = 0.15 X = 0.15

X = 0.3

X = 0.15

46 7

X’d1 = 0.308

H1 = 3.84

D1 = 0.00261

G2

G3

X’d3 = 0.35

H3 = 5

D3 = 0.0254

Figure 6.18: 3-machine
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Table 6.2: Load Flow Results of the 3-machine system

Bus Bus Voltage PG QG PL QL

Type (pu) (pu) (pu) (pu) (pu)

1 Swing 1.0∠0◦ 2.80 0.150 2.4 0.0

2 P-V 1.0∠1.59◦ 0.80 0.330 - -

3 P-V 1.0∠19.9◦ 0.80 0.3142 - -

4 P-Q 0.93∠−35.412◦ - - 2.0 2.0

The generators rated power is: Generator 1 = 21000 MVA, Gener-

ator 2 = 2400 MVA, and Generator 3 = 2800 MVA. The system base

MVA is 1000 and system frequency is 50 Hz. The system data are in

per unit on the system MVA base and given in Fig. 6.18. The system

state is described by the power flow results shown in Table 6.2.

The GSC is in charge of damping oscillations between machine 1

and machine 3. To assess the system behaviour when affected by a

small disturbance in the form of a mechanical power reduction of 10%

in G1.

Figs. 6.19 and 6.20 illustrate the perturbed condition. The DFIG

control strategy enhances the oscillatory behaviour by injecting dy-

namic reactive power to the system. The reactive current injection is

depicted in 6.21. The four plots correspond to four values of gain factor

k = 0, 2, 5, 10 in Eq. (6.87).

It is observed that the SMC applied to the GSC works very effi-

ciently to damp out inter-area oscillations. It should be emphasized

that the reactive current from the GSC is bounded between ±0.2 pu,

although the required value for this disturbance quite small (only 0.11

pu).

The chattering effect only appears when the system reaches the

equilibrium point. This chattering effect is quite small, but it may be

reduced even further by fine tuning the gain factor M used in equation

(6.87).
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Figure 6.19: Generator rotor speed of area 1 and area 2
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Figure 6.21: Reactive current from the GSC

6.5 Conclusions

The newly developed SMC control scheme demonstrates the impor-

tance of employing non-linear control algorithms since they yield good

operational performances and network support. This is of the utmost

important since in power systems with wind power generation is crit-

ically important to ensure the robust operation of the whole system

with no interaction of controllers.

Sliding Mode Control based strategies applied in doubly fed induc-

tion generators have the potential to provide a superior dynamic and

transient performance than that afforded by classical control method-

ologies. In mixed generation networks, bulk wind generation based on

variable speed wind turbines, if suitably controlled, can be accommo-

dated in the network without introducing transient or dynamic stability

issues. Quite the contrary, the findings of this research seem to add

further weight to those of other researchers that suitably controlled

DFIGs can contribute positively to network operation and to an over-

all enhancement of the network dynamic characteristics.
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Chapter 7

General Conclusions and

Future Research Avenues

This research work has addressed the timely issue of the dynamic per-

formance assessment of DFIG Wind Energy Conversion Systems, with

particular reference to its control system and the impact of the wind

power plant on the electrical power grid and vice-versa. The work has

been carried out in connection with a DFIG-WECS connected to an

equivalent strong system to investigate the issue of local oscillation

modes within the wind power plant itself and in a combined multi-

machine power system environment to investigate the issue of inter-

area modes.

A non-linear DFIG controller based on Sliding Mode Control was

proposed and its performance compared with that of a classical con-

troller based on Field Oriented Control. Sliding Mode Control showed

to be more robust and flexible than the classical controller, opening

the door for a more widespread future participation of DFIG-WECS in

the damping of power system oscillations. Modal analysis and time do-

main simulations were chosen to good effect as the study methods with

which to interpret the responses of the dynamic models addressed in

this research. They encompass both one DFIG-WECS connected to an

equivalent strong system and the case of a multi-machine power system
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including conventional generation and DFIG-WECS. In both cases the

aim has been to assess the impact of wind turbine generator control

in system stability, particularly in electromechanical oscillations damp-

ing. The assessment has been rather comprehensive, including different

electrical grid topologies operating under a wide range of power gener-

ation scenarios.

The most significant findings and contributions of this thesis to-

gether with future avenues of research works in this area of electrical

power systems research are given below:

It has been found rather useful in order to contextualize the impor-

tance of the research, to have started by examining the general aspects

of power system stability and to have written down definitions and spe-

cific stability concepts in order to bring into the discussion, at a later

stage in the thesis, the contribution that DFIG-WECS and SMC will

make to power systems operation in the not too distant future. In the

same tenor, it was also deemed important to outline the most relevant

wind turbine components models available for power system dynamics,

with reference to small-signal and transient stability analyses.

The new application of Sliding Mode Control has been compre-

hensive not only in the sense that it encompasses both the machine

side converter and the grid side converter but also in the sense that it

has been applied to cases of multi-machine power systems containing a

combination of conventional synchronous generation and variable speed

wind power generators. Moreover, a wide range of operating scenarios

was considered and the new control strategy based on SMC, which is

non-linear, showed a very robust performance. A case in point is the

generator model and control strategies for the study of small-signal

stability of a wind turbine generator connected to an equivalent grid,

presented in Chapter 4. The modal analysis results for this simplified

representation of the power grid correctly include the effects of oper-
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ating conditions, machine parameters and models, grid strength and

control system strategy. The results obtained corroborate that oper-

ating conditions, machine and system parameters affect markedly the

location and nature of the oscillatory modes but also that the control

approach adopted plays a major role. More specifically, it was found

that stability of the DFIG-based wind turbine using FOC depends to a

large extent on the tuning of the proportional-integral controllers and

on having good knowledge of the machine parameters - a change in

operating scenarios or system topology may require a re-tuning of the

proportional-integral controllers. Conversely, it was found that SMC is

a very convenient vehicle to improve on the DFIG stability; it showed

to be very robust under machine parameter and network variations.

It yields electro-mechanical coupling cancellation without introducing

additional modes and provides extra-damping which, in turn, reduces

local oscillations. In brief, SMC presents a far better performance than

the classical controller FOC, in this application.

Since the integration of wind power generators in the power grid

is on the increase, particularly the integration of wind power genera-

tion systems with double-fed induction generators, having a solid un-

derstanding of the impact that these generators will have on system

stability, is a current issue of paramount importance. Comprehensive

computer simulation studies have been carried out to gain a greater

insight into the benefits or otherwise of using variable-speed wind tur-

bine in mixed generation systems to improve on the stability of the

overall power networks. FOC- and SMC-based strategies were used to

evaluate the contribution that the controllers of the wind power gen-

eration units were able to exert on network damping. This showed the

effectiveness that SMC has in enhancing the dynamic performance of

the DFIG plant as well as the great potential that it has in drawing an

even superior dynamic performance of grid connected wind turbines.

This was further corroborated by carrying out transient studies using

time domain simulations of multi-machine power systems with embed-

ded wind power generation. It was found that the best control strategy
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was: (i) to apply SMC in the machine side converter to control the ro-

tor voltage in order to operate the wind turbine at optimum efficiency,

at the desired power factor; (ii) to apply SMC in the grid side converter

to maximize the damping of electromechanical oscillations by drawing

on its reactive power capability - the control law was derived using a

defined Lyapunov function. More punctually, the multi-machine power

system studies carried out in this research indicate the following:

• That a double fed induction generator has the potential to pro-

vide a superior dynamic and transient performance than that of

a conventional synchronous generator

• That in mixed generation networks, bulk wind generation based

on variable speed wind turbines, if suitably controlled, can be

accommodated on a network without introducing transient or

dynamic stability issues and that they can contribute positively

to network operation and contribute to an overall enhancement

of the network dynamic characteristics

• That the newly developed SMC control scheme demonstrates the

importance of employing non-linear control algorithms since they

yield good operational performances and network support. This

is the most important since in power systems with wind power

generation is critically important to ensure the robust operation

of the whole system with no interaction of controllers.

7.1 Future Research Avenues

Concerning recommendations for future research in this area of elec-

trical power systems, the following topics seem a natural extension of

this research:

• The proposed SMC control should be implemented in larger elec-

trical power systems, including networks with a higher degree of

complexity
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• In order to test the performance of the sliding mode control

approach in a real-time, a suitable laboratory environment and

eventually a field-trial implementation ought to be carried out

• To take full advantage of the flexibility offered by the SMC, it

looks a rather attractive proposition to apply it other wind power

generation technologies such as the full power-converter system
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