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1 Introduction

In this article, we consider discrete time models for describing the evolution of an age-
structured population, which is divided into k groups or intervals of age, each interval
of age having the same length. We assume that the unit of time is the same as the age
class width, and it is called the projection interval. In each population, the length of
all the intervals of age is the same but, of course, this common length depends on the
population we are studying: one week, six months, one year, 15 years,... The key idea
is to choose a suitable length for the age intervals in each population, depending on the
reproductive cycles (see Caswell (2001) and Tuljapurkar et al. (2012)).

For each group or interval of age, we need to specify two rates:

– The survival rate, si (for i = 1, . . . , k − 1), namely, the proportion of individuals
of group i which will survive to the next period of time (becoming individuals of
group i+ 1). Notice that sk is zero.

– The reproductivity or fertility rate, fi (for i = 1, . . . , k), namely, the average
number of surviving offsprings of each individual of group i.

Let us denote by Ni(t) (for i = 1, ..., k) the number of individuals of group i in a
given period of time, t. The relationship between consecutive periods of times can be
expressed by means of the following equations:

N1(t) = f1N1(t− 1) + · · ·+ fkNk(t− 1)

N2(t) = s1N1(t− 1)

N3(t) = s2N2(t− 1)

· · ·
Nk(t) = sk−1Nk−1(t− 1)

These equations can also be formulated in a matrix notation:
N1(t)
N2(t)
N3(t)

...
Nk(t)

 =


f1 f2 · · · fk
s1 0 · · · 0
0 s2 · · · 0
...

...
. . .

...
0 · · · sk−1 0




N1(t− 1)
N2(t− 1)
N3(t− 1)

...
Nk(t− 1)

 (1)

This is a special square matrix in which all the elements are zero, except possibly
those in the first row and those in the first subdiagonal below the diagonal. This type
of matrix is usually called population projection matrix and it was firstly introduced
by Leslie (1945) for studying age-structured populations. The matrix is also called
Leslie matrix and, in the original formulation, usually only females are included because
only females produce offspring. When all the transitions (including reverse) between
stages are possible, the population projection matrix is called the Lefkovich matrix (see
Lefkovitch (1965)).

Population projection matrices are very useful for studying, in an easy way, the
evolution of a population (see e.g. Kajin et al. (2012)). In particular, they are very
interesting for describing the long term evolution, in those cases in which the composition
or the population achieves an equilibrium:
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– The larger eigenvalue, λ, of the Leslie matrix determines the growth rate of the
population, in the sense that the size of the whole population, and the size of each
group of age is multiplied by the value of λ in each period of time (in the long
term). Of course, when 0 < λ < 1, the population size decreases over time, and
when λ > 1, the population size increases over time.

– The normalized eigenvector, corresponding to the larger eigenvalue of the Leslie
matrix, gives the stabilized proportions of each group of age (in the long term).

The problem, in practice, is that it is not possible to know neither the exact values of
the reproductivity rates, f1, . . . , fk, nor the exact values of the survival rates, s1, . . . , sk−1.
This problem will be studied and solved in the following sections considering a stochastic
version of the basic Leslie matrix models, by assuming additive random noise for each
of the k classes of ages that we handle.

First, we have used a Bayesian linear model to estimate the posterior distribution
of the parameters, by means of MCMC procedure (see e.g. Buckland et al. (2007),
Clark (2005) and Clark et al. (2005)), using in this case the Jags software by means
of the package runjags (Denwood M.J. (2011)) from the R project (R Core Team, R
Foundation for Statistical Computing (2012)). Then, we have also applied a data cloning
method to estimate the parameters. Data cloning methods have been developed to tackle
with ecological complex models (see Lele et al. (2007) and Lele et al. (2010)). These
methods give estimations of the parameters, by simulating the posterior distribution of
them with a MCMC algorithm, which converge to those obtained by maximum likelihood
(ML) method. With data cloning, it is not so relevant, in practice, which type of prior
distribution is considered.

The article is organized as follows:
In Section 2, we pose a statistical model in which fertility rates and survival rates are

unknown parameters. In Section 3, the Bayesian approach is considered and the chosen
prior distributions are introduced and explained. We compute the conditional posterior
distributions of the parameters and we consider a MCMC algorithm in order to simulate
them. In Section 4, the Bayesian approach is applied to real data from the population of
the Steller sea lions in the Alaska coast since 1978 to 2004. First, in Subsection 4.1, usual
Bayesian estimates are obtained and analyzed; then, in Subsection 4.2, the technique of
data cloning is introduced an apply to these real data. In Section 5, we give some final
conclusions.

2 The statistical problem

We consider an interpretation of the deterministic equations (1) by means of two sam-
pling statistical models:

Statistical model for estimating fertility rates

Let us assume that, in a determined period of time, there are Nj(t − 1) individuals in
the j th group of age (for j = 1, . . . , k). For the next period of time, we expect to have
about N1(t) = f1N1(t− 1) + · · ·+ fkNk(t− 1) individuals in the first group of age, i.e.,
N1(t) must be understood as an expected size for the following period of time. Moreover,
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the reproductivity rates, f1, . . . , fk must be understood as unknown parameters, where
f1, . . . , fk > 0.

Each animal of the Nj(t − 1) individuals of group j (for j = 1, . . . , k) produces Aji
offsprings (i = 1, . . . , Nj(t− 1)), where Aji is a random variable with mean fj.

The total number of offsprings of the Nj(t− 1) individuals of group j is the random
variable Dj(t−1) = Aj1+ . . .+AjNj(t−1). So, Dj(t−1) is the sum of Nj(t−1) independent

and identically distributed random variables and, therefore, the distribution of Dj(t−1)
can be approximated by a Normal distribution with expectation fjNj(t − 1) (provided
that Nj(t− 1) is large enough).

So, the total number of offsprings for the next period of time is N1(t) = D1(t −
1) + · · ·+Dk(t− 1), where the distribution of N1(t) can be approximated by a Normal
distribution, provided that Nj(t− 1), for j = 1, . . . , k, are large enough.

In this way, N1(t) must be understood as a random variable. The sampling density
for this random variable is

N1(t) ∼ N(f1N1(t− 1) + · · ·+ fkNk(t− 1);σ1),

where f1, . . . , fk are unknown parameters (of interest), and σ1 is a (nuisance) unknown
parameter.

Statistical model for estimating survival rates

Let us assume that, in a determined period of time, there are N1(t − 1) individuals in
the first group of age.

For the next period of time, we expect to have about N2(t) individuals in the second
group of age, i.e., N2(t) must be understood as an expected size for the following period
of time. Moreover, the survival rate, s1, must be understood as an unknown parameter,
where 0 < s1 < 0.

Each animal of the N1(t− 1) individuals of group 1 may survive to the next period
of time (and become an individual of group 2) with probability s1. So, the total number
of individuals in group 2 for the next period of time, N2(t), is a random variable with
Binomial distribution, Bin(N1(t−1); s1). The distribution of N2(t) can be approximated
by a Normal distribution, provided that N1(t− 1) is large enough.

In this way, N2(t) must be understood as a random variable. The sampling density
for this random variable is

N2(t) ∼ N(s1N1(t− 1);σ2),

where s1 is an unknown parameter (of interest), and σ2 is a (nuisance) unknown param-
eter.

In the same way, Nj(t) (for j = 3, . . . , k) must be understood as a random variable.
The sampling density for this random variable is

Nj(t) ∼ N(sj−1Nj−1(t− 1);σj),

where sj−1 is an unknown parameter (of interest), and σj is a (nuisance) unknown
parameter (for j = 3, . . . , k).
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3 Bayesian approach

In this section, we will use Bayesian statistical methods for making inferences on the
parameters, f1, . . . , fk, σ

2
1, . . . , σ

2
k and s1, . . . , sk−1.

Let us assume that we have observed n(t) = (n1(t), . . . , nk(t)) for t = 1, . . . ,m. As
we have seen in Section 2, the sampling density of N1(t) is (approximately) N(f1N1(t−
1) + . . . + fkNk(t − 1);σ1), where f1, . . . , fk are unknown parameters (of interest), and
σ1 is a (nuisance) unknown parameter.

In the same way, the random variable Nj(t), for j = 2, . . . , k is (approximately)
distributed as N(sj−1Nj−1(t− 1);σj), where sj−1 are unknown parameters (of interest),
and σj are (nuisance) unknown parameters.

Then, the likelihood functions for every t = 2, . . . ,m are

f(n1(t)|f1, . . . , fk, σ2
1,n(t− 1)) =

1√
2πσ1

exp

{
− 1

2σ2
1

(n1(t)− n1(t− 1)f1 − · · ·

· · · − nk(t− 1)fk)
2}

f(n2(t)|s1, σ2
2,n(t− 1)) =

1√
2πσ2

exp

{
− 1

2σ2
2

(n2(t)− n1(t− 1)s1)
2

}
...

f(nk(t)|sk−1, σ
2
k,n(t− 1)) =

1√
2πσk

exp

{
− 1

2σ2
k

(nk(t)− nk−1(t− 1)sk−1)
2

}
.

Then, the likelihood function given n(t) is:

f(n(t)|θ,n(t− 1)) =
k∏
j=1

f(nj(t)|θ,n(t− 1))

= f(n1(t)|f1, . . . , fk, σ2
1,n(t− 1))

k−1∏
j=1

f(nj+1(t)|sj, σ2
j+1,n(t− 1))

for t = 2, . . . ,m, and θ = (f1, . . . , fk, σ
2
1, . . . , σ

2
1, s1, . . . , sk−1).

As the process N = (N(t))mt=1 is Markovian, we can obtain the likelihood function
given that we have observed n = (n(t))mt=1 :

L(θ|n) =
m∏
t=2

f(n(t)|θ,n(t− 1)).

We take as prior distributions for the parameters, log-normal distributions for f1, . . . , fk,
uniform distributions on (0, 1) for s1, . . . , sk−1 and inverse-gamma distributions for σ2

1, . . . , σ
2
k.

That is,

fj ∼ logN(µj, τ
2
j ),

σ2
j ∼ IGamma(αj, βj),

with density functions given by

π(fj) =
1

fjτj
√

2π
exp

{
− 1

2τ 2j
(ln fj − µj)2

}
,
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π(σ2
j ) =

β
αj

j

Γ(αj)
(σ2

j )
−αj−1 exp

{
−βj
σ2
j

}
,

for j = 1, . . . , k and

sj ∼ U(0, 1)

for j = 1, . . . , k − 1.
This gives as prior distribution on θ :

π(θ) =
k∏
j=1

[
π(fj)π(σ2

j )
] k−1∏
j=1

π(sj).

Then, the corresponding conditional posterior distributions for fj are:

π(fj|θ−fj ,n) ∝ exp

{
−1

2

1

σ2
1

m∑
t=2

(n1(t)− n1(t− 1)f1 − · · · − nk(t− 1)fk)
2

}
1

fj
exp

{
− 1

2τ 2j
(ln fj − µj)2

}
for j = 1, . . . , k, and θ−fj denotes all the parameters but fj.
The conditional posterior distributions for σ2

j are the following inverse-gamma dis-
tributions:

(σ2
1|θ−σ2

1
,n) ∼ IGamma(α̃1, β̃1)

α̃1 = α1 + (m− 1)/2

β̃1 = β1 +
1

2

m∑
t=2

(n1(t)− n1(t− 1)f1 − · · · − nk(t− 1)fk)
2

(σ2
j |θ−σ2

j
,n) ∼ IGamma(α̃j, β̃j)

α̃j = αj + (m− 1)/2

β̃j = βj +
1

2

m∑
t=2

(nj(t)− nj−1(t− 1)sj−1)
2

for j = 2, . . . , k, and θ−σ2
j

denotes all the parameters but σ2
j .

Finally,

π(sj|θ−sj ,n) ∝ exp

{
−1

2

1

σ2
j+1

m∑
t=2

(nj+1(t)− nj(t− 1)sj)
2

}
I(0,1)(sj)

for j = 1, . . . , k − 1, and θ−sj denotes all the parameters but sj.
Therefore, MCMC sampling procedure consists of simulating from the previous con-

ditional distributions in order to obtain samples from the joint posterior distribution of
the parameters (see e.g. Robert and Casella (2004)).
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4 Application to real data

In Holmes et al. (2007), the population of the Steller sea lions (Eumetopias jubatus)
located in the Alaska coast is studied with an age-structured model from a frequentist
point of view. It is observed a significant decline in the population of sea lions. Data
were collected along 27 years since 1978 to 2004, although there are several years with
partial or complete missing observations. Data consist of two groups of age: pup and
adult classes.

4.1 Bayesian estimates

In this subsection, we apply the Bayesian approach described before in order to analyze
these data. The algorithms have been programmed using Jags (see Plummer (2003))
software in all cases by means of the package runjags (Denwood M.J. (2011)) from the R
project (R Core Team, R Foundation for Statistical Computing (2012)). One advantage
of using Jags is that it constructs the full conditional distributions and it carries out the
Gibbs sampling from the model specifications. All codes are available from the authors,
upon request.

We first consider the complete model shown in Section 3. The original deterministic
equations are:

N1(t) = f1N1(t− 1) + f2N2(t− 1)

N2(t) = s1N1(t− 1)

where f1, f2 and s1 are the parameters of the models. We assign vaguely informative
prior distributions: log-normal distribution with mean equal to 0 and variance equal to
100, for f1 and f2; uniform distribution between 0 and 1, for s1; gamma distribution
with mean equal to 1 and variance equal to 10 for σ2

1 and σ2
2.

We run 3 chains with a total number of 20000 iterations (10000 to burn-in) and
thinning equal to 5. The posterior means, standard deviations and quantiles of the
corresponding chains of each parameter are shown in Table 1.

Mean SD 2.5% 50% 97.5%

f1 0.6470 0.2405 0.0044 0.6773 0.9548

f2 0.2333 0.1845 0.0000 0.2185 0.6706

s1 0.9594 0.0438 0.8432 0.9734 0.9991

σ2
1 1.0125 0.2383 0.6399 0.9829 1.5633

σ2
2 3.7224 0.8168 2.5283 3.5923 5.7181

Table 1: Statistics of the simulated posterior distributions of parameters.
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Figure 1: Density plots of the posterior distributions of parameters

Nevertheless, we find some drawbacks with these estimates. The estimated ker-
nel densities from the MCMC samples of the posterior distributions of f1 and f2 are
multimodal and there are parameters convergence problems (see Figure 1). A possible
explanation for this problem is that we have assumed that the first group of age (pups)
can be reproductive, and this assumption is not very realistic.

Therefore, we next consider a simpler model, where we assume that pups cannot
be reproductive, namely, f1 = 0. In this model, we will also compute the posterior
distribution of the largest eigenvalue, λ, and the corresponding normalized eigenvector,
(eigen1, eigen2).

We assign the same vaguely informative prior distributions as in the previous model.
Then, we run 3 chains with a total number of 20000 iterations (10000 to burn-in) and
thinning equal to 5.

The posterior means, standard deviations and quantiles of the corresponding chains
of each parameter are shown in Table 2.
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Mean SD 2.5% 50% 97.5%

f2 0.6911 0.0274 0.6403 0.6900 0.7490

s1 0.9753 0.0261 0.9031 0.9837 0.9994

σ2
1 1.0446 0.2679 0.6632 0.9993 1.7091

σ2
2 3.5695 0.6870 2.4960 3.4756 5.1909

λ 0.8208 0.0199 0.7789 0.8215 0.8579

eigen1 0.4570 0.0059 0.4464 0.4566 0.4701

eigen2 0.5430 0.0059 0.5299 0.5434 0.5536

Table 2: Statistics of the simulated posterior distributions of parameters.

In this model, the estimated kernel densities from the MCMC samples of the posterior
distributions are unimodal, and a post hoc analysis of the chains did not show a significant
departure from convergence (see Figure 2).

Figure 2: Density plots of the posterior distributions of parameters

The main conclusions we can obtain from the results in Table 2 are:

1. The posterior mean and the posterior median of the parameter f2 are very similar,
approximately, 0,69. The practical meaning of this value is that the fertility rate
is estimated to be 0,69 for each adult (each period of time or projection interval).
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2. The posterior mean and the posterior median of the parameter s1 are very similar,
approximately, 0,98. The practical meaning of this value is that the survival rate
is estimated to be a 98% for pups (each period of time or projection interval).

3. The posterior mean and the posterior median of the largest eigenvalue, λ, are very
similar, approximately, 0,82. The practical meaning of this value is that (in the
long term) the size of the population is estimated to decline a 18% each year.

4. The normalized eigenvector corresponding to λ is estimated to be, approximately,
(0,46 ; 0,54). The practical meaning of this vector is that (in the long term) a 46%
of the population will be pups and a 54% will be adults.

We consider now the predictive distributions of N1(t) and N2(t) for all these years.
We can estimate the predictive posterior means for each year with missing data and, on
the other hand, we can check the adjustment of the model to the real data by comparing
predicted values to actual values.

In Tables 3 and 4, the first column shows the real data for N1(t) and N2(t), where
the notation NA denotes a missing observation. The second column shows the predictive
posterior mean for each year, and the remaining columns show the posterior median and
the estimated HPD interval (with probability 0.95) for each year.

Notice that the predicted values are close to the actual values and the estimated
HPD intervals include the actual values in all these cases.
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N1.Original mean.Pred 2.5%.Pred 50%.Pred 97.5%.Pred

17835 17825.9129 15613.6900 17826.7500 19983.6625

19886 18774.1027 16293.1500 18738.3000 21451.2075

NA 19667.5289 17085.1675 19635.2000 22382.2200

NA 13789.7102 8256.4633 13803.4500 19282.5225

NA 15796.6545 10673.1925 15810.3000 20872.3400

NA 9860.1999 3305.4065 9863.8000 16499.4100

15019 14375.4613 11267.2875 14422.6000 17266.5525

NA 7514.4115 859.6350 7550.7600 14182.5775

11598 13121.8950 10812.3975 13097.7000 15560.2525

NA 6286.2519 499.4133 6279.3950 11968.4425

NA 8156.2473 3471.3123 8182.0750 12804.1025

6394 6059.4277 3085.0633 6069.0250 8974.5238

4648 5926.1801 3810.6958 5911.4700 8172.8977

4057 4875.5646 2773.2155 4853.7350 7103.5117

3646 4336.3730 2166.3773 4327.8800 6541.9532

3176 3952.7268 1845.4098 3944.8200 6105.2165

2831 2767.1512 -173.8028 2788.8850 5661.7325

NA 3122.3494 960.8739 3104.1050 5338.8713

NA 2354.1419 -2407.7405 2344.7800 7113.6865

2056 2692.3802 515.5751 2692.0050 4832.8192

1876 2326.4589 177.5042 2314.3500 4532.9227

NA 2392.8985 250.4562 2390.9000 4593.1505

1675 1608.5363 -1251.2535 1595.5050 4477.8692

1540 2190.9913 127.7382 2185.6050 4331.1110

1608 1555.2286 -1315.9493 1546.7250 4448.8035

NA 2338.9151 249.7018 2336.2200 4489.4268

1578 1507.9984 -1355.9712 1518.4200 4414.1917

Table 3: Real data N1(t), predictive posterior mean, median and HPD intervals

11



N2.Original mean.Pred 2.5.Pred 50.Pred 97.5.Pred

27155 27185.1199 19977.1600 27208.3000 34334.0100

28460 17405.0576 10014.2850 17439.3500 24741.5775

NA 19392.6618 12030.3200 19409.6000 26631.5925

NA 19469.8959 11614.1500 19557.0500 27043.8000

NA 13590.0600 4164.4053 13654.5000 22450.0450

NA 15802.6567 6925.9250 15872.8000 24444.4050

NA 9772.1244 -69.0556 9861.0600 19270.9350

19002 14670.3281 7265.2410 14684.4500 21937.6400

NA 7472.3022 -2283.1920 7532.4550 17003.2325

NA 11329.2117 4121.4423 11376.2000 18639.6450

NA 6420.2901 -2567.5992 6483.9300 15232.2050

8552 8019.0728 -420.7472 8087.0300 16240.7050

7050 6217.6741 -877.7903 6235.5700 13337.7150

6273 4566.7273 -2718.2838 4563.3350 11758.1350

5721 3929.1436 -3219.5595 3886.4600 11159.7925

NA 3554.7445 -3812.2867 3539.5450 10807.4675

4520 3030.0880 -4246.2618 3036.8050 10321.0750

NA 2743.7408 -4571.9108 2717.3850 10084.4875

3915 3100.3327 -4570.2440 3083.4100 10752.7200

3352 2333.2751 -6049.4407 2386.5700 10433.4775

3467 2000.5593 -5373.0212 2048.5100 9273.8912

NA 1876.0020 -5401.0065 1895.6400 9152.3500

3180 2324.5061 -5180.4608 2348.6550 9834.0530

NA 1625.3428 -5681.5315 1605.5000 9133.8677

3366 1501.4333 -5871.3358 1529.3800 8627.5825

NA 1582.2276 -5682.2018 1628.2950 8817.5312

3055 2319.0093 -5042.2410 2287.8750 9853.0598

Table 4: Real data N2(t), predictive posterior mean, median and HPD intervals

4.2 Data Cloning

The data cloning method is a general technique to compute maximum likelihood esti-
mates along with their asymptotic variances by means of the computation of the poste-
rior distributions by using a MCMC methodology (see Lele et al. (2007) and Lele et al.
(2010)).

In a MCMC procedure, we generate samples from the posterior distribution π(θ|n)
that is proportional to the product of the likelihood function L(θ|n) and a given proper
prior distribution π(θ), but it is not necessary to calculate the likelihood function therein.

In data cloning, we generate samples from the posterior distribution, π(k)(θ|n), that
is proportional to the kth power of the likelihood, [L(θ|n)]k, multiplied by a proper prior
distribution, π(θ).

The expression [L(θ|n)]k is the likelihood for k copies of the original data and, for k
large enough, π(k)(θ|n) converges to a multivariate normal distribution with mean equal
to the ML estimate of the parameters, and covariance matrix equal to 1/k times the
inverse of the Fisher information matrix for the ML estimates (see Lele et al. (2007)).

In this way, after obtaining samples from the posterior distribution from a MCMC
procedure, we compute the sample means, and they provide an approximation of the
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maximum likelihood estimates of the parameters.
The data cloning algorithm can be summarized in the following steps:

Step 1: Create k-cloned data set n(k) = (n,n, . . . ,n), where the observed data vector
is repeated k times.

Step 2: Using an MCMC algorithm, generate random numbers from the posterior
distribution that is based on a prior π(θ) and the cloned data vector n(k) =
(n,n, . . . ,n), where the k copies of n are assumed to be independent of each
other. In practice, any proper prior distribution can be used.

Step 3: Compute the sample mean and variances of the values (θ)j, j = 1, . . . ,M (for
M iterations of the MCMC run) generated from the marginal posterior distribu-
tion. The ML estimates of (θ)j correspond to the posterior mean values and the
approximate variances of the ML estimates correspond to k times the posterior
variances.

We complete the analysis of the Steller sea lions data by applying the data cloning
technique. As there is an important number of missing data, classical techniques do not
work well, but by means of data cloning we can use the Bayesian approach to compute
the predictive distributions of the missing observations in a natural way. Then, we
obtain the ML estimators derived from the posterior distributions of the parameters.

We have programmed the algorithm using package dclone from the R project (R Core
Team, R Foundation for Statistical Computing (2012)). We consider, after checking a
set of possible values, that 50 is a suitable number of clones. Then, we have used the
same prior distributions as in Section 3, but taking the option of updating them as
each clone is introduced in the calculation of the posterior distributions (see examples
in Sólymos (2010)).

The confidence intervals (95%) for the parameters, based on the Wald approximation,
are shown in Table 5.

2.5% 97.5%

f2 0.6423 0.7375

s1 0.9934 1.0057

σ2
1 0.4956 1.3405

σ2
2 2.1266 4.3699

λ 0.8017 0.8591

eigen1 0.4452 0.4624

eigen2 0.5376 0.5548

Table 5: Confidence intervals (95%) for parameters

Notice that intervals shown in Table 5 (obtained from the cloning method) are quite
similar to intervals shown in Table 2 (obtained from the usual Bayesian methods). Re-
member that intervals obtained from the cloning method have to be interpreted in a
frequentist sense (although the cloning method is based on Bayesian methodology).
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5 Final conclusions

Discrete time models are used in Ecology for describing the evolution of an age-structured
population. Usually, they are considered from a deterministic viewpoint but, in practice,
this is not very realistic. The statistical model we propose in this article is a reasonable
model for the case in which the evolution of the population is described by means of a
Leslie matrix. In this statistical model, fertility rates and survival rates are unknown
parameters and they are estimated by using the Bayesian approach.

Real data from the population of the Steller sea lions located in the Alaska coast
since 1978 to 2004 are analyzed.

First, the usual Bayesian methods are applied and the main results are:
(1) Either the posterior mean or the posterior median can be used for estimating the

fertility and survival rates because they are very similar.
(2) The largest eigenvalue of the Leslie matrix and its normalized eigenvector are

very interesting to estimate because they have a clear practical meaning as explained
in the introduction. Either the posterior mean or the posterior median can be used for
estimating them because they are very similar.

(3) The predicted values for the number of pups and adults are close to the actual
values, and the estimated HPD intervals include the actual values in all the cases.

Therefore, Bayesian methods seem to be quite suitable for analyzing these type of
problems.

Then, data cloning method is used. This a general technique to approximate maxi-
mum likelihood estimates along with their asymptotic variances by means of the compu-
tation of the posterior distributions by using a MCMC methodology. The data cloning
method is applied to the same real data, and the results we obtain are very reasonable
when they are compared to the actual values.
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