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Abstract

We propose an extension of a seasonal modulation smooth model with P -splines for
times series data using a mixed model formulation. A smooth trend with seasonality
decomposition can be estimated simultaneously. We extend the model to consider the
forecasting of new future observations in the mixed model framework. Two different
approaches are used for forecasting in the context of mixed models, and the equiva-
lence of both methods is shown. The methodology is illustrated with monthly sulphur
dioxide (SO2) levels in a selection of monitoring sites in Europe from January 1990 to
December 2001.

Keywords: P -splines; Mixed Models; times series forecasting; varying-coefficient
models; harmonic regression

1 Introduction
The decomposition of trend and seasonality is a classic problem in time series analysis.
For instance, in environmental monitoring, measurements of variables such as temper-
ature, humidity, wind direction or air pollution are collected by devices positioned over
a region of interest and data are collected in a regular temporal pattern. In this paper,
we considered measurements on sulphur dioxide (SO2) concentration levels (in µg/m3)
over Europe from January 1990 to December 2001. The data were collected through
the ’European monitoring and evaluation programme’ (EMEP) under the Co-operative
Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pol-
lutants in Europe (see further information available at htpp:\\www.emep.int). The
main sources of sulphur dioxide are combustion of sulphur containing fuels and indus-
trial processes, which is emitted to the atmosphere as a gas. Residential combustion
for heating (principally fossil fuels as coal and heavy oils) is also a source of sulphure
dioxide in particular in winter.

Since 1980 EMEP’s main task has been to estimate air pollution emission across mem-
bers of the European Union. The Council Directive of July 15, 1980 on Air Quality
Limit Values and Guide Values for Sulphur Dioxide and Suspended Particulates1 were

180/779/EEC, O.J. l229, 30.08.1980, pp. 30-48
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Figure 1.1: Time series plot of log(SO2) data.

adopted to protect human health and the environment against adverse effects from SO2

and Suspended Particulates. The study of the trends confirmed the decrease of SO2

emissions which have been reduced by an average of 20% between 1980 and 1990 in
the Member States. There are several impacts of high levels of SO2 for human health
(asthma), environment (vegetation) and deterioration of materials and objects of cultural
heritage.

Figure 1.1 shows the time series plots of monthly averages of sulphur dioxide (SO2)
concentration levels in µg/m3 measured in two monitoring sites in Illmitz (Austria, with
station code AT02) and Barcombe Mills (England, with station code GB07). The data
are in log scale to remove skewness. Notice that there are some missing observations
(mostly due to equipment failure, replacement or calibration). In particular, for station
AT02 there is a big gap between October 1995 and March 1999, for station GB07 the gap
is between August 1993 and October 1994. There is clear evidence of temporal trends
and seasonal effects. These effects are shown in Figure 1.2. Both series present some
for of dynamics, possibly interpretable as non-stationarity. For AT02 data, the mean
levels of logSO2 shows a decreasing pattern across the years and a seasonal pattern
with lower levels in the summer months of (June to August). The plots for GB07 data
present a different behaviour, in particular during the period 1991 to the end of 1993,
the seasonal effect is less evident.

Consider a sequence of x1, ..., xn time points, the response variable y can be modelled
as:

yi = t(xi) + s(xi) + εi, i = 1, ...n (1.1)

where t(·) represents the temporal trend, s(·) the seasonal pattern, and εi is an error
term. A simple approach for seasonal time series consist of a parametric regression
model, where t(·) is a polynomial regression model of order mth, i.e.

t(xi) = β0 + β1xi + β2x
2
i + ...+ βmx

m
i , (1.2)

and s(·) can be expressed as a sum of J Fourier series, i.e.

s(xi) =

J∑
j=1

aj cos(2πjxi/p) + bj sin(2πjxi/p), (1.3)
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Figure 1.2: Boxplots of logSO2 levels by year and month.

where p is the period (e.g. p = 12 for monthly data), aj and bj are the regression co-
efficients for each harmonic. The estimation of this harmonic regression model is done
by ordinary least squares. However, the parametric assumption is too restrictive, and
hence, more flexibility might be needed to specify the form of the functions in (1.1). Flex-
ibility can be provided using a non-parametric approach, letting t(·) and s(·) be smooth
functions. In the non-parametric framework, Cleveland et al. (1990) proposed a trend
and seasonality decomposition based on loess scatterplot smoother that might be useful
for descriptive purposes. However, when there are big gaps in the data (as for AT02),
the performance of loess or other local linear smoothers as kernels has to be carefully
considered as they can run into difficulties with very small weights/bandwidths.

In this paper, we consider a flexible modelling approach based on the popular method
of penalized splines (or P -splines) proposed by Eilers and Marx (1996). In particular, we
consider the extension proposed in Eilers and Marx, 2002 and Eilers et al. (2008) where
trend and seasonality in (1.1) are modelled as smooth terms using basis functions. Sea-
sonality is accounted for by trigonometric terms based on Fourier series, combined with
a varying-coefficients model (Hastie and Tibshirani, 1993). Both components can be
estimated in the generalized additive model framework. The aim of this paper is to
investigate smoothing methods to decompose seasonal time series into time trend and
seasonality that can be estimated simultaneously in an unified framework, and addi-
tionally, forecast future values.
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The paper is organized as follows. In Section 2, we introduce the modulation model
in Eilers et al. (2008) and extend its formulation into a mixed model. The trend and sea-
sonality of the logSO2 data for the selected stations is analysed in Section 3. In Section
4, we propose two alternative methods for forecasting new future observations using
smooth modulation mixed models. We show the relationship between both methods,
and showed that they yield the same results. Section 5 we evaluate the forecast proce-
dures for the logSO2 data. Some final discussion is given in Section 6.

2 Penalized spline modulation model
For data with seasonal patterns Eilers et al. (2008) proposed a smooth modulation model
given by:

E[yi] = f(xi) +
J∑
j=1

{gj(xi) cos(jωxi) + hj(xi) sin(jωxi)}, (2.1)

where f(·) accounts for the smooth trend, and g(·) and h(·) are smooth series that de-
scribe the local amplitudes of cosine and sine waves, and ω = 2π/p. The number of
harmonics J required for the seasonal component is usually taken as 1 or 2 to reduce
the number of parameters to be estimated. For J = 1, we can rewrite model (2.1) in a
compact matrix form:

y = Bθ + ε, ε ∼ N (0,Λ), (2.2)

where Λ is a covariance matrix of the error term. In this paper we assume uncorrelated
i.i.d. errors, i.e. Λ = σ2I . However correlated errors can be included using the method
proposed by Durbán and Currie (2003). The full regression matrixB is formed by blocks
(for trend and (co)-sine components), i.e.

B = [B|CB|SB], (2.3)

where B is a B-spline basis of size n × c (here, for simplicity, we have used basis
of the same size for every term in the model). The number of B-spline basis func-
tions c depends on the number of knots and the order of the spline. In general we
consider ndx equidistant inner knots and cubic splines, and hence c = ndx + 3. For
the modulation component we have the varying-coefficient terms CB and SB where
C = diag {cos(ωxi)}, and S = diag {sin(ωxi)}. Figure 2.1 show the components of the
regression basis B in (2.3) on the x-axis with ndx = 10, and hence, a total of 13 basis
functions. Notice that, B is the B-spline basis for the trend component, and modulation
component bases CB and SB basically scale the rows of B in the (co)-sine frequency
domain (middle and bottom panels of Figure 2.1).

The vector of regression coefficients θ = (θ, θc, θs)
′, are penalized by a block-diagonal

matrix, such that θ′Pθ, with the block-diagonal matrix P = λ ⊗ D′qDq, with λ =

diag(λ, λ̆, λ̆). In practice, a single smoothing parameter λ̆ is set for the (co)-sine mod-
ulation. The matrix Dq is a difference matrix of penalty order q. Examples of difference
matrices for q = 1 and q = 2 are

D1 =


−1 1 0 0 · · ·

0 −1 1 0 · · ·
0 0 −1 1 · · ·
...

...
...

...
. . .

 or D2 =


1 −2 1 0 · · ·
0 1 −2 1 · · ·
0 0 1 −2 · · ·
...

...
...

...
. . .

 .
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Figure 2.1: Component of regression matrix B in (2.2), with ndx = 10. The first three
columns of the bases are shown to illustrate the scaling of the basis B by C and S.

Marx et al. (2010) extend the modulation model to a bilinear model where the shape
of each period is the same, but the size varies smoothly. In this paper we consider model
in (2.1), which also allows the amplitudes to vary smoothly. Assuming normality for the
logSO2 concentration levels, we minimize the penalized log-likelihood

Sp = ‖y −Bθ‖2 + P , (2.4)

with explicit solution for given λ:

θ̂ = (B′B + P )−1B′y. (2.5)

The optimization of λ and λ̆ are usually done by cross-validation or Akaike or Bayesian
information criteria. An important expression to calculate is the so-called hat-matrixH ,
such that

ŷ = Bθ̂ = Hy,

with
H = B(B′B + P )−1B′y. (2.6)

The effective dimension (ED) of the fitted model (Hastie and Tibshirani, 1990) is approx-
imately the trace(H), and can be efficiently computed as

ED = trace{(B′B + P )−1B′B}. (2.7)
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In model (2.2), the ED of each term in the model is the trace of the portion of diagonal
terms of H corresponding to each term. Standard error bands for given λ can also be
constructed easily:

Var(θ̂) = σ2(B′B + P )−1B′B(B′B + P )−1.

Thus for each component of the model, we can obtain the associated covariance matrix
as:

Ck = σ2Bk{(B′B + P )−1B′B(B′B + P )−1}kBk,

where {·}k denotes the diagonal block associated with the kth component. Hence, for
J = 1, we have k = 1, 2, 3 and B1 = B, B2 = CB and B3 = SB. The square root of the
diagonal elements of Ck are used for the error bands for each component.

2.1 Smooth modulation mixed model formulation
The representation of a penalized spline model as a mixed model has become very pop-
ular in recent years (see Durbán and Currie (2003) or Wood (2006) for a detailed review).
The aim is to find a new basis that allows the representation of model (2.2) with its as-
sociated penalty as a mixed model:

y = Xβ +Zα+ ε, ε ∼ N (0, σ2I) α ∼ N (0,G), (2.8)

where G is the covariance matrix of the random effects that depends on the variance
components. Now, we have that Xβ are the fixed effects term, and Zα is the (smooth)
random component. The smoothing parameters λ and λ̆ becomes the ratio between the
error term and the random effect variances, τ2 and τ̆2, for the trend and modulation
terms respectively, and they can be estimated by residual maximum likelihood (REML).

There are different alternatives for the reparameterization of the original P -spline
model into a mixed model depending on the bases and the penalty used. The idea is to
find a transformation Ω such that:

BΩ = [X : Z],

where Ω is an orthogonal matrix. We split the matrix Ω into two submatrices (for
the fixed and the random components respectively), i.e. Ω = [Ωf : Ωr], and such that
X = BΩf and Z = BΩr. Since the fixed effects are unpenalized, the matrix X , may be
replaced by any sub-matrix such that: (i) the composed matrix [X : Z] has full rank (this
also implies that bothX andZ have full column rank) and (ii)X andZ are orthogonal,
i.e. X ′Z = 0. For the sub-matrix Ωr, there are different alternatives, we follow the ap-
proach by Currie et al. (2006) and Lee (2010), and use the singular value decomposition
(SVD) on the penalty matrix D′qDq, i.e.

D′qDq = [ Uf : Ur ]

[
Oq

Σ

] [
U ′f
U ′r

]
,

whereOq is square matrix of zeroes of order q and Σ are the (c−q) positive eigenvalues.
Uf contains the null part (of dimension c × q), and Ur contains the span or the non-null
part of the decomposition (of dimension c× (c− q)).
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For simplicity, let us first consider the trend component, i.e. B, and coefficient θ. The
fixed part for the trend can be taken as the design matrix of a polynomial of order q− 1,
i.e.

X = [1n : xi : x2i : ... : xq−1i ], (2.9)

where 1n is a column vector of ones. For the random part, the random effects matrix Z
is defined as:

Z = BΩr with Ωr = UrΣ
−1/2, of dimension c× (c− q). (2.10)

With this reparameterization, the penalty θD′qDqθ becomes α′α, and the covariance ma-
trix for the random effects becomes a multiple of an identity matrix, i.e. G = τ2Ic−q.
Given that Ω is orthogonal, it is straightforward to obtain the relationship between the
inverse of the covariance matrix G of the random effects and the penalty D′D, i.e.:

G−1 = Ω′rD
′DΩr ⇐⇒ D′D = ΩrG

−1Ω′r. (2.11)

The order of the penalty q denotes the q− 1 grade polynomial of the fixed part when
the smoothing parameters are very large (the null model), and hence, the random part
can be considered as smooth deviates from the null model. In model (2.2), we consider
a first order penalty for the modulation terms, then, the null terms for the modulation
are cos(ωxi) and sin(ωxi) respectively. Then for J = 1, we have a fixed effect matrix for
the smooth modulation model in (2.2) given by:

X = [1n|xi|...|xq−1i | cos(ωxi)| sin(ωxi)], (2.12)

which is a design matrix of a harmonic regression model. Now, we define the random
part for the modulation components. As in the case the trend component, we use the
SVD of the penalty with first order differences, i.e. D̆′D̆. The complete random effects
matrix for the model in (2.2) is

Z = [Z|CZ̆|SZ̆], (2.13)

where Z̆ = BΩ̆. Now Ω̆ = ŬrΣ̆
−1/2, of size c×(c−1) (Ŭ and Σ̆ are obtained from the svd

of D̆′D̆). Finally, the covariance matrix for the modulation components is Ğ = τ̆2I2(c−1),
therefore, G = blockdiag(G, Ĝ). As shown in Section 2, standard errors and confidence
bands can be easily obtained by approximating the variance of each smooth term f̂k. In
the mixed model framework Ruppert et al. (2003) suggest an approximation calculated
with respect to the conditional distribution to account the randomness in the random
effects α.

3 Trend and seasonality analysis of the logSO2 data
In this Section, we analyze the logSO2 levels for the stations in Austria (AT02) and Eng-
land (GB07) introduced in Section 1. To construct the model we used ndx = 20 inner
knots for B, and a third order penalty q = 3 for the trend. We considered a first Fourier
frequency for the modulation component (i.e. J = 1). Estimated smoothing parameters
and σ̂2 are shown in Table 3.1, as well as the effective dimension of each component
(trend and seasonality). Note that both quantities include the effective degrees of free-
dom for the fixed components, i.e. 3 for the polynomial trend, and 2 the (co)-sine. The
number of Fourier series can be chosen using an information criteria, here we use AIC
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Table 3.1: Estimated σ̂2, λ, λ̆, and ED for fitted models for AT02 and GB07 stations.

logSO2 σ̂2 λ λ̆ ED (trend) ED (modulation) AIC BIC
AT02 0.08 23.63 4.22 6.06 10.43 43.80 92.78
GB07 0.11 0.29 4.21 11.54 11.95 60.67 149.07

(Akaike information criteria) and BIC (Bayesian information criteria), they are defined
as:

IC = RSS + δED,

where RSS is the residual sum of squares, and δ = 2 for AIC and δ = log(n) for BIC.
AIC and BIC values are also useful for model selection for the number of Fourier series.
We also fitted the models with J = 2 and obtained greater AIC/BIC values of 47.02 and
100.68 for AT02 and 67.57, and 149.07 for GB07. This results show that for these data a
first Fourier frequency might be enough for the seasonal effects.

Figure 3.1 show the trend and seasonality decomposition of the selected data. The
smooth fitted trends for AT02 and GB07 stations respectively are represented in Figure
3.1a and Figure 3.1c. The dashed lines represents the polynomial trends of grade q − 1

(i.e. Xβ̂)and the solid line is the smooth trend obtained as the sum of the polynomial
trend and the smooth deviations from the polynomial (i.e. Xβ̂ + Zα̂). The figures show
that the trend for AT02 is smoother than the GB07 station trend. For AT02 the large gap
between October 1995 and March 1999 is interpolated by the model with wider error
bands around that period. A similar result can be noticed for GB07 in the smaller gap
between August 1993 and October 1994. Figure 3.1b and Figure 3.1d show the fitted val-
ues of the smooth modulation models with the corresponding confidence errors bands.
The modulation component is shown in top panels of Figure 3.2, the dashed lines corre-
spond to the fixed harmonic terms, and the full line is the sum of the fixed part the random
modulation effect. Bottom panels of Figure 3.2 show only the random effects modula-
tion component. These figures illustrate how random modulation component account
for the deviates from the harmonic fixed effect to accommodate the smooth modulation
component. Notice that, for the periods with gaps, the magnitude of this random com-
ponent is smaller than in the other periods of the time series, and these periods are close
to the fixed harmonic fit.

4 Forecasting with P -splines
In times series data, it is important to extrapolate or forecast future observations. Cur-
rie et al. (2004) proposed a method for fitting and forecasting simultaneously with P -
splines when the coefficients are estimated using penalized least squares. They treat
the forecasting of future values as a missing value problem and estimate the fitted and
forecasted values simultaneously.

For simplicity, we first illustrate the forecast of the trend component, and then, we
show that it is straightforward to include the forecast of the modulation component.
Suppose, given n observations of the response variable y, that we want to predict new
n1 values y1 at x1. The new vector of observations is y∗ = (y, y1)

′. We need a new
extendedB-spline basisB∗ constructed from a new set of knots that extends the original
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Figure 3.1: Trend and Fitted values for AT02 and GB07 stations.

knots used to fit the observed data y, and also includes a basis for the n1 observations to
forecast. Let us consider this new augmented basis B∗ as

B∗ =

[
B O

B(1) B(2)

]
, of size n∗ × c∗, (4.1)

where B is the n × c basis used for fitting the trend component, B(1) and B(2) are aux-
iliary B-spline basis for prediction up to n∗ = n+ n1 values, of sizes n1 × c and n1 × c1
respectively, and c∗ = c+ c1. Figure 4.1 illustrates the component of the new basis (4.1)
for forecasting data from January 2002 to December 2004 (the grey shaded area), where
B(1) extends the original basis B for the new n1 observations, and B(2) for the new c1
coefficients. Associated to the new basis B∗, we define a new vector of coefficients, θ∗,
of length c∗ × 1. Since, we need to increase the number of knots to cover the new range
of the covariate values x1, we also have to define a new penalty matrix, let’s say D∗′q D∗q
built from a difference matrix D∗ of size (c∗ − q)× c∗. Following the construction of the
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Figure 3.2: Smooth modulation components for AT02 and GB07 stations.

basis in (4.1), we can split the new difference matrix D∗ as:

D∗ =

[
D O

D(1) D(2)

]
, (4.2)

whereD is the difference matrix of size (c−q)×c, the sub-matrixD(1) is of size (c1−q)×c,
and D(2) is a square matrix of size (c1 − q)× (c1 − q).

Currie et al. (2004) showed that defining a diagonal weight matrix W of size n∗ with
diagonal elements equal to 0 if the data is missing/forecasted and 1 if the data is ob-
served. Then, a convenient form to estimate and forecast simultaneously is to use the
penalized least square solution given by:

θ̂∗ =
(
B∗′WB∗ + λD∗′q D

∗
q

)−1
B∗Wy∗, (4.3)

where arbitrary future values y1 are chosen for y∗. This approach emphasizes the role
of the penalty as it determines the form of the forecast. Indeed, the choice of q has no
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Figure 4.1: Construction of the new extended B-spline basis for forecasting new values.

discernible effect on the observed values but a dramatic effect on the forecasted values.
For q = 1, 2, 3 the extrapolation is constant, linear and quadratic respectively. We discuss
the performance of the forecast with different penalty orders in Section 5.

Currie et al. (2004) addressed some interesting invariance properties of the forecast-
ing method. Using the partition of the new basis in (4.1) and the partition of the new
difference matrix D∗ in (4.2) it can be proven that: (i) the first 1, ..., c0 coefficients of θ̂∗,
are exactly those obtained from fit of y0, i.e.: θ̂∗1,...,c = θ̂0; (ii) the new predicted values
are ŷ1 = B(2)θ̂1, where θ̂1 are the last c1 coefficients of θ̂∗, and (iii) the coefficients for the
predicted n∗ values are: θ̂∗ = (θ̂,−D−1(2)D(1)θ̂)

′. Hence, the estimation procedure with
missing values in (4.3) can be divided in a two-stage procedure: first fit the actual data,
and then forecast new values.

4.1 Forecasting with smooth mixed models
Now, we extend the forecasting method with P -splines to the smooth modulation model
in (2.2) using the mixed model formulation in Section 2.1. In order to obtain the mixed
model reparameterization, we need to reparameterize the extended B-spline basis in
(4.1) with a transformation matrix Ω∗ such that:

B∗Ω∗ = [X∗ : Z∗]. (4.4)

We define this new matrix Ω∗ = (Ω∗f : Ω∗r ). We propose two alternative methods to
perform the forecasts. As we are in the mixed model framework, we start by using the
standard method for predicting future observations in mixed models, as it is shown in
Gilmour et al. (2004). However, the extension of this approach to a more general set-
ting (e.g. multidimensional case) can be complicated and computationally demanding.
Therefore, we propose a second approach based on the reparameterization of the penal-
ized spline model proposed in Currie et al. (2004) with missing values. Both methods
differ on which transformation matrix Ω∗ is chosen, and implicitly, in the covariance
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structure between the random effects of the observed and predicted values. We show
the relationship between both methods.

4.1.1 Method 1: smoothing mixed models forecasting as BLUP’s

Prediction in linear mixed models has been a topic of discussion by some authors (see
Gilmour et al. (2004) and Welham et al. (2004)). These authors define the prediction to
be a linear function of the best linear unbiased predictor (BLUP) of random effects with
the best linear unbiased estimate (BLUE) of the fixed effects in the model. To illustrate
this approach, we follow Gilmour et al. (2004) and consider the augmented model:(

y
y1

)
=

(
X
X1

)
β +

(
Z O
Z(1) Z(2)

)(
α
α1

)
+

(
ε
ε1

)
. (4.5)

The augmented random effects α∗ = (α, α1)
′ have covariance matrix

Var[α∗] = G∗ =

(
G G01

G10 G11

)
. (4.6)

Gilmour et al. (2004) showed that the new predicted values are

ŷ1 = X1β̂ + Z1α̂, (4.7)

with
Z1 = (Z(1) + Z(2)G10G

−1). (4.8)

The estimates of α̂1 can be obtained by simply augmenting the original set of random
effects as:

α̂1 = G10G
−1α̂. (4.9)

Following this approach, for the reparametization of the P -spline model into (4.5),
we define the sub-matrix corresponding to the random part as the block-diagonal ma-
trix:

Ω∗r =

(
Ωr 0
0 Ω1

)
, (4.10)

where Ωr is the transformation matrix used for the observed data, and Ω1 the one for the
predicted values. Hence, we have

Z(1) = B(1)Ωr, and Z(2) = B(2)Ω1. (4.11)

Using the result in (2.11), the covariance matrix G∗ in (4.6), is obtained as

G∗ =
(
Ω∗′r D

∗′D∗Ω∗r
)−1

, (4.12)

where D∗ is the extended difference matrix in (4.2). There are many ways in which Ω1

may be chosen, for simplicity (see Appendix A.1) we chose Ω1 = D−1(2), then, it can be
shown that (4.12) becomes:

G∗ =

(
G G01

G10 G11

)
= τ̂2

(
I −Ω′rD

′
(1)

−D(1)Ωr I +D(1)ΩrΩ
′
rD
′
(1)

)
.

12



Then, the random effects matrix Z1 in (4.8) is

Z1 = Z(1) − Z(2)D(1)Ωr, (4.13)

and the random effects for the predicted values in (4.9) becomes:

α̂1 = −D(1)Ωrα̂. (4.14)

Observe that this first method can be viewed as a two-stages approach where first
the actual data are fitted, and then with the fitted parameters and variance components,
Equation (4.5) is used to obtain the predictions.

4.1.2 Method 2: smoothing mixed models forecasting as a missing values
problem

The second alternative method for forecasting is based on the idea in Currie et al. (2004)
of considering the forecasting as a missing values problem. We use the SVD of the
penalty D∗′D∗, and define Ω∗r directly as

Ω∗r = U∗r Σ∗
−1/2

r .

Then, the model becomes
y∗ = X∗β + Z∗α∗ + ε∗,

where

X∗ =

(
X
X1

)
, and Z∗ = B∗Ω∗r . (4.15)

The estimation is done using the mixed model system of equations:(
β̂
α̂∗

)
=

(
X∗′WX∗ X∗′WZ∗

Z∗′WX∗ Z∗′WZ∗ +G∗
−1

)−1(
X∗W
Z∗W

)
y∗,

whereW is the diagonal matrix of length n∗with 0 entries if the data is missing/forecasted
and 1 if the data is observed, and variance componentes are estimated by REML. Notice
that, the main difference with the other method in Section 4.1.1 relies on the definition
of Ω∗r , which also defines a different random effects matrix, Z∗ in (4.15) is different from
Z1 in (4.13). With this second method, the covariance matrix of the random effects α∗ is
a multiple of an identity matrix, i.e.

G∗ = τ̂2In∗ , (4.16)

and then, the observed and predicted random effects are uncorrelated. An important
result of both methods is that the fitted and forecasted values (i.e. ŷ∗), and the estimated
variance components (τ̂2) are exactly the same, and hence, the invariance property of
the forecasts addressed in Currie et al. (2004) is maintained.

4.2 Forecasting with smooth modulation mixed models
Finally, we use the methods introduced in Section 4.2 to forecast the modulation com-
ponent. We have to extend the B-spline basis for the modulation components. The full
smooth modulation regression model matrix has the form:

B∗ = [B∗|C∗B∗|S∗B∗], (4.17)
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where the (co)-sine modulation components are added block-wise. Basically, we only
have to define the varying-coefficient matrices for the range of the x∗ time points, i.e.
C∗ = diag(cos(ωx∗)) and S∗ = diag(sin(ωx∗)), for the additive modulation blocks C∗B∗

and S∗B∗, and then use the methods proposed in previous sections to forecast the mod-
ulation components. The vector of coefficient is θ∗ = (θ∗, θ∗c , θ

∗
r )′, and the penalty matrix

for the modulation component is the first order difference matrix D̆∗.

D̆∗ =

(
D̆1 0

D̆(1) D̆(2)

)
. (4.18)

We can use any of the two methods proposed. For method 1 in Section 4.1.1, we
define

Ω̆∗r =

(
Ω̆r 0

0 Ω̆1

)
, (4.19)

with Ω̆1 = D̆−1(2). The fixed term has the columns corresponding to the fourier series, i.e.

cos(ωx∗), and sin(ωx∗). We obtain the modulation mixed models prediction matrix Z̆1

with method 1 by using Equations (4.11), (4.13) and (4.14), with D̆∗ and Ω̆r. Hence, the
random effect matrix for the (co)-sine prediction values are

C∗Z̆1 and S∗Z̆1.

For method 2 in Section 4.1.2, we compute the SVD on D̆∗′D̆∗ and define:

Ω̆∗r = Ŭ∗r Σ̆∗
−1/2

r . (4.20)

Then modulation random effects prediction matrix for the (co)-sine terms are

C∗Z̆∗ and S∗Z̆∗.

To illustrate the forecast, we predict the logSO2 levels for year 2002. Figure 4.2 and
Figure 4.3 show the forecasted trend and final predictions (including the seasonal pro-
jections) for AT02 and GB07 stations with second and third penalty orders for the trend
component. Notice that, for second order penalty (q = 2) the trend forecast is linear,
and for third order (q = 3) the trend forecast is quadratic. For AT02 the choice of the
penalty order for the new observations has a small effect in the forecasts, but for GB07
this choice has a dramatic impact.

5 Forecast analysis of the logSO2 data
To evaluate the performance of the forecasting method with different penalty orders, we
divided the available data set into two subsamples. The first subsample of the data (from
January 1990 to December 2000) is the estimation subsample and is used to fit the model,
and the second subsample (from January to December 2001) is the forecasting subsample
and is used to evaluate the point forecasts. There are different ways we can analyse the
performance of a forecasting method. The standard procedure consists of consider a
common origin T (for example January 2001) and compute forecast for a sequence of h
horizons, based on data from the estimation subsample.
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(b) Forecast for station AT02 with q = 2.
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(c) Trend forecast for station AT02 with q = 3.

1990 1992 1994 1996 1998 2000 2002

−
1

0
1

2
3

Year

lo
g

(S
O

2
)

(d) Forecast for station AT02 with q = 3.

Figure 4.2: Trend and Fitted values for AT02 and GB07 stations aaa.

We consider three accuracy measures: the mean absolute deviation (MAD), the square
root mean square error (RMSE) and the Mean absolute percentage error (MAPE). For h−
step ahead forecasts, these measures are defined as:

MAD(h) =
1

m

m−1∑
j=0

|yT+h+j − ŷT+j(h)|, (5.1)

RMSE(h) =

√√√√ 1

m

m−1∑
j=0

(
yT+h+j − ŷT+j(h)

)2
, (5.2)

MAPE(h) =
1

m

m−1∑
j=0

∣∣∣∣yT+h+j − yT+j(h)

yT+h+j

∣∣∣∣ , (5.3)

where m is the number of h-step ahead forecasts available in the forecasting subsample.
In practice, one often chooses one measure, and the model with the smallest magnitude
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(a) Trend forecast for station GB07 with q = 2.
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(b) Forecast for station GB07 with q = 2.
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(c) Trend forecast for station GB07 with q = 3.
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(d) Forecast for station GB07 with q = 3.

Figure 4.3: Trend and Fitted values for AT02 and GB07 stations.

is proposed as the best h-step ahead forecasting model (it is possible that different hmay
result in selecting different models (Hyndman and Koehler, 2006)). Our aim is to com-
pare the second and third order penalties for different prediction horizons (h = 1, 2, .., 6
and h = 12). Table 5.1 shows the accuracy measures for AT02 and GB07 stations. We
found that for both cases the forecasts with second order penalties has a better perfor-
mance. Figure 5.2 shows the comparison of second and third order penalty forecasts for
the selected stations and h = 12. Figure 5.1b shows the forecasts for station GB07, the
results for this particular station are very poor due to the strong non-linear behaviour of
the trend (as shown in Figure 4.3). Notice that, the forecasts also depends on the origin
T chosen for the forecast. To check the forecasting in different situations, we also evalu-
ate the forecast performance varying the forecast origin T and maintaining a consistent
forecast horizon to h = 6. This procedure draws attention to the forecast errors at a par-
ticular horizon h but also show how the forecast error changes as the horizon lengthens
(see Makridakis et al., 1998, for details). The accuracy measures for forecast origin at
June 2001 are shown in Table 5.2. Observe that the results are more accurate for h = 6.
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(b) h = 12 forecasts for GB07

Figure 5.1: Comparison of second and third order penalty forecast for h = 6 and h = 12
horizons.

Table 5.1: Accuracy measures for forecasting h periods ahead with q penalty orders.

AT02 Forecast horizon (h)
Penalty order (q) 1 2 3 4 5 6 12

MAD 2 0.705 0.389 0.351 0.270 0.318 0.288 0.311
3 0.748 0.443 0.416 0.331 0.390 0.328 0.379

RMSE 2 0.705 0.501 0.439 0.380 0.409 0.378 0.461
3 0.748 0.538 0.486 0.423 0.470 0.429 0.535

MAPE 2 0.586 0.371 0.436 0.489 0.758 0.676 0.658
3 0.622 0.458 0.553 0.868 1.145 0.959 1.048

GB07 Forecast horizon (h)
Penalty order (q) 1 2 3 4 5 6 12

MAD 2 0.569 0.479 0.388 0.451 0.527 0.548 0.779
3 0.676 0.622 0.569 0.671 0.786 0.845 1.312

RMSE 2 0.569 0.488 0.416 0.481 0.569 0.584 0.854
3 0.676 0.624 0.576 0.697 0.837 0.894 1.440

MAPE 2 5.079 7.121 5.346 4.692 4.440 4.252 12.106
3 6.038 9.687 7.802 6.894 6.545 6.419 20.778

Station Penalty order (q) MAD RMSE MAPE
AT02 2 0.236 0.249 0.941

3 0.313 0.437 0.739
GB07 2 0.297 0.337 1.544

3 0.279 0.298 3.798

Table 5.2: Accuracy measures for AT06 and GB07 considering the forecast origin at 06/2001
for h = 6.
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Figure 5.2: Comparison of second and third order penalty forecast for h = 6 and forecast
origin at 06/2001.

6 Discussion
Smoothing techniques have become a very popular tool for estimation of trends. How-
ever, for time series data with seasonality, simultaneous smoothing and forecasting is
still an open subject of research. In this paper we have proposed a mixed model formu-
lation of the seasonal modulation model using varying-coefficient terms. This approach
allows us to decompose the fitted curve into trend and seasonality.

Welham et al. (2006) proposed a similar mixed model approach based on the so-
called L-splines (Heckman and Ramsay, 2000; Gu, 2002) with smoothing splines and
truncated polynomials as basis functions. L-splines are a large family of smoothing
splines defined in terms of a linear differential operator to construct the appropriate
kernel function. This differential operator gives the set of core functions that we obtain
in the fixed effects matrix X in (2.12), but we use the C and S diagonal matrices for the
varying coefficients terms that rescales the original B-spline basis B. We found our ap-
proach easier to implement, and also easy to extend for forecasting future observations.

We showed some examples from environmental air monitoring data, where the in-
terest relies on both interpolation and extrapolation of monthly time series, and we ex-
tend this formulation to forecast future observations. We showed how using the mixed
model reparameterization we can use two methods for forecasting seasonal time se-
ries, both methods are equivalent giving the same results for the forecasts. Further, the
estimates of the coefficients and the fitted values within the range of the training set,
the trace of the fitted model and the optimal value of the smoothing parameter do not
change whether we include or exclude the missing values to be forecast. However, the
method presented in Section 4.1.2 is computationally more efficient; also, when we treat
the forecasting of future values as a missing value problem we can estimate the fitted
and forecast values simultaneously, and forecasting becomes a natural consequence of
the smoothing process.

We have seen that the order of penalty function, which is less relevant in the smooth-
ing of data, is now critical, because it is the penalty function that determines the form of
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the forecast. In both examples a penalty of order 2 was preferred (for any lag forecasted)
by all the accuracy measures, however, this might not be the case in some situations,
and should always be checked. The issue of forecast origin was addressed, and more
rigoruous a more rigorous evaluation of the forecasts can also be applied as for example
parametric bootstrap (see Tsay, 2001, for details). The model fit well for both stations,
but the forecasting of future observations performed better for the station in Austria,
due to the strong non-stationarity of the data in England.

Other approaches can be combined or more fully explored, including: periodic smooth-
ing with circular B-spline bases or special periodic penalties as shown in Eilers and Marx
(2010), forecasting with the bilinear model proposed in Marx et al. (2010), and compar-
ing with other forecasting methods (mostly from the econometrics field). The mixed
model formulation also allows for an straightforward hierarchical Bayesian approach
using MCMC. In this paper, we assumed uncorrelated errors, we checked there were
no autocorrelation structure in the residuals. However, the approach proposed also
provides a unified framework for smoothing, forecasting and also the incorporation au-
tocorrelated errors as in Durbán and Currie (2003).

Acknowlegements
This research was funded by the Spanish Ministry of Science and Innovation (projects
MTM 2008-02901, and MTM2011-28285-C02-02). The research of Dae-Jin Lee was funded
by an NIH grant for the Superfund Metal Mixtures, Biomarkers and Neurodevelopment
project 1PA2ES016454-01A2. The authors are also grateful to Iain Currie for discussion
on the projections with P -splines, and Prof. Adrian W. Bowman for providing the SO2

data.

References
Cleveland, R. B., Cleveland, W. S., McRae, J. E., and Terpenning, I. (1990). Stl: A

seasonal-trend decomposition based on loess. Journal of Official Statistics, 6(1):3–73.

Currie, I. D., Durbán, M., and Eilers, P. H. C. (2004). Smoothing and forecasting mortality
rates. Statistical Modelling, 4(4):279–298.

Currie, I. D., Durbán, M., and Eilers, P. H. C. (2006). Generalized linear array models
with applications to multidimensional smoothing. J. R. Statist. Soc. B, 68:1–22.

Durbán, M. and Currie, I. D. (2003). A note on P -spline additive models with correlated
errors. Computational Statistics, 18:251–262.

Eilers, P. H. C., Gampe, J., Marx, B. D., and Rau, R. (2008). Modulation models for
seasonal time series and incidence tables. Statist. Med., 27:3430–3441.

Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties.
Stat. Sci., 11:89–121.

Eilers, P. H. C. and Marx, B. D. (2002). Generalized linear additive smooth structures.
Journal of Computational and Graphical Statistics, 11(4):758–783.

19



Eilers, P. H. C. and Marx, B. D. (2010). Splines, knots and penalties. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(6):637–653.

Gilmour, A., Cullis, B., Welham, S., Gogel, B., and Thompson, R. (2004). An efficient
computing strategy for prediction in mixed linear models. Computational Statistics &
Data Analysis, 44:571–586.

Gu, C. (2002). Smoothing Spline ANOVA Models. Springer Series in Statistics. Springer.

Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective. Springer-Verlag.

Hastie, T. and Tibshirani, R. (1993). Varying-coefficient models. J. R. Statist. Soc. B,
55(4):757–796.

Heckman, N. E. and Ramsay, J. O. (2000). Penalized regression with model-based penal-
ties. The Canadian Journal of Statistics, 28(2):241–258.

Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy.
International Journal of Forecasting, 22(4):679–688.

Lee, D.-J. (2010). Smothing mixed model for spatial and spatio-temporal data. PhD thesis,
Department of Statistics, Universidad Carlos III de Madrid, Spain.

Makridakis, S., Wheelwright, S., and Hyndman, R. J. (1998). Forecasting: methods and
applications. John Wiley & Sons: New York, 3rd edition.

Marx, B. D., Eilers, P. H. C., Gampe, J., and Rau, R. (2010). Bilinear modulation models
for seasonal tables of counts. Statistics and Computing, 20:191–202.

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, UK.
ISBN: 0521785162.

Tsay, R. S. (2001). Analysis of Financial Time Series. Wiley Series in Probability and Statis-
tics.

Welham, S., Cullis, B., Gogel, B., Gilmour, A., and Thompson, R. (2004). Prediction in
mixed linear models. Australian and New Zealand Journal of Statistics, 46(3):325–347.

Welham, S., Cullis, B., Kenward, M. G., and Thompson, R. (2006). The analysis of longi-
tudinal data using mixed models L-splines. Biometrics, 62(2):392–401.

Wood, S. N. (2006). Generalized Additive Models - An introduction with R. Texts in Statistical
Science. Chapman & Hall.

20



A Appendix

A.1 Estimation of new observations by method 1 in Section 4.1.1
As we showed in Section 2.8, in order to obtain the mixed model reparameterization of
the P -spline model for prediction of new observation in (4.5), we need to find a trans-
formation matrix such that

B∗Ω∗ = [X∗ : Z∗], (A.1)

where Ω∗ = (Ω∗f : Ω∗r ). For method 1, we define Ω∗r as the block-diagonal matrix:

Ω∗ =

(
Ωr 0
0 Ω1

)
, (A.2)

where Ω is the transformation matrix used for the observed data, and Ω1 the one for the
predicted values. Hence, we have that (A.1) becomes:

B∗Ω∗ =

(
B O

B(1) B(2)

)(
Ωr 0
0 Ω1

)
=

(
X Z O

X1 Z(1) Z(2)

)
Now, we need to obtain the covariance matrix G∗ of the augmented random effects

α∗. Given the result shown in (2.11), we have

G∗ =
(
Ω∗′r D

∗′D∗Ω∗r
)−1

=

(
G G01

G10 G11

)
, (A.3)

with D∗ defined in (4.2).

Let be A = D∗Ω∗, A is a square matrix, so the inverse of A′A is

(A′A)−1 = A−1A′
−1

= A−1(A−1)′.

Given the result in (Harville, 1997, page 99) for the inverse of block-partitioned ma-
trices:

A−1 =

(
U 0
V W

)−1
=

(
U−1 0

−W−1V U−1 W−1

)−1
We have that:

(D∗Ω∗)−1 =

(
DΩr 0
D(1)Ωr D(2)Ω1

)−1
=

(
(DΩr)

−1 0
−(D(2)Ω1)

−1D(1)Ω(DΩr)
−1 (D(2)Ω1)

−1

)
.

Then

G∗ =

(
(DΩr)

−1 0
−(D(2)Ω1)

−1D(1)Ω(DΩr)
−1 (D(2)Ω1)

−1

)(
(DΩr)

−1 0
−(D(2)Ω1)

−1D(1)Ω(DΩr)
−1 (D(2)Ω1)

−1

)′
=

=

(
(DΩr)

−1 0
−(D(2)Ω1)

−1D(1)Ω(DΩr)
−1 (D(2)Ω1)

−1

)( (
(DΩr)

−1)′ (−(D(2)Ω1)
−1D(1)Ω(DΩr)

−1)′
0

(
(D(2)Ω1)

−1)
)′ )

=

=

(
G00 G01

G10 G22

)

21



where

G = (DΩr)
−1((DΩr)

−1)′ = (DΩr)
−1((DΩr)

′)−1 = I

G01 = (DΩr)
−1 (−(D(2)Ω1)

−1D(1)Ωr(DΩr)
−1)′ =

= −(DΩr)
−1((DΩr)

−1)′(D(1)Ωr)
′((D(2)Ω1)

−1)′ =

= −(D(1)Ωr)
′((D(2)Ω1)

−1)′ = −(D(1)Ωr)
′((D(2)Ω1)

′)−1

G10 = G′01 =

= −(D(2)Ω1)
−1D(1)Ωr(DΩr)

−1 ((DΩr)
−1)′ =

= −(D(2)Ω1)
−1D(1)Ωr(DΩr)

−1 ((DΩr)
′)−1 =

= −(D(2)Ω1)
−1D(1)Ωr

G22 = −(D(2)Ω1)
−1D(1)Ωr(DΩr)

−1 (−(D(2)Ω1)
−1D(1)Ωr(DΩr)

−1)′ + (D(2)Ω1)
−1 ((D(2)Ω1)

−1)
)′

=

= (D(2)Ω1)
−1D(1)Ω(DΩr)

−1((DΩr)
′)−1((DΩr)

′)−1((D(2)Ω1)
−1D(1)Ωr)

′ + (D(2)Ω1)
−1 ((D(2)Ω1)

−1)
)′

=

= · · · =
= (D(2)Ω1)

−1D(1)Ωr(D(1)Ωr)
′((D(2)Ω1)

′)−1 + (D(2)Ω1)
−1 ((D(2)Ω1)

−1)
)′
.

If we choose Ω1 = D−1(2), we obtain a simpler expression for the covariance matrix G∗ as:

G∗ =

(
G G01

G10 G11

)
= τ̂2

(
I −Ω′rD

′
(1)

−D(1)Ωr I +D(1)ΩrΩ
′
rD
′
(1)

)
.

Similarly we can obtain its inverse as:

G∗−1 =

(
G00 G01

G10 G11

)
= 1

τ̂2

(
I + Ω′rD

′
(1)D(1)Ωr Ω′rD

′
(1)

D(1)Ωr I

)
.

Gilmour et al. (2004) demonstrate that the random effects vector for the predicted
values are:

α̂1 = −(G11)−1G01α̂ = G10G
−1α̂.

In our case, with the definitions of G11 = I , G01 = D(1)Ωr, and G01 = −D(1)Ωr, we
obtain that

α̂1 = D(1)Ωrα̂.
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