
A lazy learning approach for building

classification models

Inés M. Galván, José M. Valls, Miguel Garćıa and Pedro Isasi

Carlos III University - Computer Science Department,
Avenida de la Universidad, 30 - 28911 Leganés (Madrid), Spain

igalvan@inf.uc3m.es

Abstract

In this paper we propose a lazy learning strategy for building classi-
fication learning models. Instead of learning the models with the whole
training data set before observing the new instance, a selection of patterns
is made depending on the new query received and a classification model
is learnt with those selected patterns. The selection of patterns is not
homogeneous, in the sense that the number of selected patterns depends
on the position of the query instance in the input space. That selection
is made using a weighting function in order to give more importance to
the training patterns that are more similar to the query instance. Our
intention is to provide a lazy learning mechanism suited to any machine
learning classification algorithm. For this reason, we study two different
methods to avoid fixing any parameter. Experimental results show that
classification rates of traditional machine learning algorithms based on
trees, rules or functions can be improved when they are learnt with the
lazy learning approach proposed.

keywords: Lazy Learning, Classification Models, Pattern Selection

1 Introduction

Most of the machine learning algorithms (MLAs) -based on trees, rules, func-
tions, etc.- are eager learning methods, in the sense that the generalization is
carried out beyond the training data before observing the new instance. This
is, first a model is built using the complete training data set and, afterwards,
this model is used to classify the test instances.

When the training data are not evenly distributed in the input space, these
global learning methods could be affected by a decrease of their generalization
capabilities. Also, a model built up with the complete training data might
not provide the most appropriate performance for all test instances because,
intuitively, in the machine learning context, models try to extract the general

1

Nota adhesiva
Published in: International journal of intelligent systems, Vol. 26, n. 8 (May 2011), pp. 773-786



properties of data and not the individual ones. The reason of this behavior is
that eager methods, in general, try to minimize the global error and this might
not be the most appropriate for certain regions of the input space. Some times,
this might be an interesting property, but other times this behavior could af-
fect negatively to the generalization capability of machine learning classification
models.

Local learning methods are an alternative approach [Atkenson et al., 1997],
[Wettschereck et al., 1997]. They select, from the whole examples set, those
patterns that are considered more appropriate for the learning task. The selec-
tion is made for each new query test presented to the system, by means of some
kind of similarity measurement to that pattern. Those local methods are usually
known as lazy learning or instance-based learning algorithms [Aha et al., 1991].

The typical example of lazy systems is the k-NN algorithm [Dasarathy, 1991].
In this case, the selected learning patterns are the k closest ones to the test
instance by some distance metric, usually the Euclidean distance. The classi-
fication of the new query instance is just the most common class among the
k selected examples. Other lazy approaches appear in the literature. For in-
stance, Bottou and Vapnik [Bottou and Vapnik, 1992] proposed to build local
linear neural networks models for each query pattern, selecting the k closest
examples from the training set. In [Zhu and Yang, 2008] the authors propose
a lazy bagging approach for classification. They use the k nearest neighbor
from the training set and use the discovered k-NN to build bootstrap bags for
bagging prediction. Also, the authors introduce a sampling-entropy-based ap-
proach to determine automatically the value of k. There are situations in which
lazy approaches might get better generalization capability than eager models.
However, the idea of selecting the k nearest patterns is based on the assumption
that all the test patterns have the same structure and need the same selection
procedure. This assumption could be invalid because the input space is neither
isotropic nor homogeneous and has irrelevant and non-homogeneous features.

In [Galvan, 2001] and [Valls, 2007] we showed that the generalization capa-
bility of artificial neural networks can be improved when a lazy approach is
used. Instead of training the neural networks with all the available data, they
are trained with a selection of examples when a new instance is received. Thus,
for each query instance a local non-linear neural model is built. To do this,
the method detects how many training patterns are needed and weights them
according to their similarity to the test instance. The proposed lazy method
helped to improve the performance of both multilayer and radial basis neural
networks.

In the current work, the goal is to extend the basic ideas of the lazy strategy
already studied for neural networks [Galvan, 2001, Valls, 2007] for any classifica-
tion machine learning algorithms. Given a MLA, called base algorithm, for each
query instance a local model is built with the base algorithm using a subset of
the whole training dataset. The subset of relevant patterns is not homogeneous
and it is obtained using a weighting function, in order to give more importance
to the training examples that are more similar to the query instance. A weight-
ing function should assign high weights to the closest training examples to the

2



new query instance received. It reaches the maximum value when the distance
to the query is null, decreasing the value smoothly as this distance increases.
The number of retrieved patterns is given by that function and will depend on
the new query point location in the input space. We have chosen a simple and
parameter-free function: the inverse function.

In our former works related to Radial Basis Neural Networks [Valls, 2007]
a parameter called radius is used to control the number of selected patterns.
That radius allows to define a hyper-sphere centered in the new query instance
in a way that all the training patterns inside its surface are selected to build up
the local models with which the query instance will be predicted. Our studies
showed that the radius is not a crucial parameter of the lazy radial basis neural
networks because the results are very similar in a wide radius interval.

However, when the lazy strategy is applied to classification MLAs, the radius
parameter becomes a crucial factor in the classifiers behaviour. In [Galvan, 2009]
was concluded that it is not possible to fix a radius parameter appropriate for
any MLA and any dataset. Each MLA might require a different number of
training examples and therefore a different radius value, due to the different
paradigms these methods are based on. Also the specific characteristics of dif-
ferent classification datasets could need different radius values. In some cases,
for a fixed classifier and dataset, the classification rate might not be very de-
pendent of the radius. However, our intention is to provide a lazy learning
mechanism suited to any MLA. For this reason, in this work we study two dif-
ferent ways (two different methods) to avoid fixing any parameter. In the first
method, the selection of training patterns only depends on the training instance
weighting value, given by the inverse function. We do this in the simplest way,
taking the integer part of this real value. This integer number will indicate the
number of times the training instance will be included in the training set. In the
second method, a procedure to automatically determine the radius parameter
is proposed. Both alternatives will be explained in detail in section 2.

As we have mentioned before, this lazy approach can be applied to any MLA.
In our experiments, it is applied to classification algorithms based on different
paradigms, specifically C4.5, PART, Support Vector Machine and NaiveBayes
algorithms. We compare both eager and lazy approaches for different MLAs. A
large collection of benchmark learning problems taken form the UCI repository
is used to test the method. The results show that the lazy approach can reach
better generalization properties than eager or traditional methods. The aim
of this work is to offer a lazy strategy that can be applied to any classifier,
improving the accuracy they reach when used in the eager or traditional way.

This paper is structured as follows. Section 2 describes the method including
the alternatives mentioned above. Section 3 describes the experimental valida-
tion and finally, Section 4 summarizes what has been achieved and proposes
new avenues of research.

3



2 Lazy Learning Procedure

The general idea consists on learning a classification model for each query in-
stance using only a selection of training patterns, those patterns close to the
query instance, in terms of the Euclidean distance. A key issue of this method
is to weight the examples in relation to their distance to the query instance in
such a way that the closest examples have the highest weight. Thus, a weighting
measure must be associated to each example. In order to use standard MLA,
we replicate the examples as a way of weighting them. Therefore, the selected
examples are included one or more times in the resulting training subset and
the MLA is learnt with the most useful information, discarding those patterns
that do not provide any knowledge.

The weight associated to each example is calculated using a kernel function
which must reach its maximum value when the distance to the query point is
null and must decrease smoothly as this distance increases. Although there are
many functions that fulfill the above conditions, we have chosen the inverse
function because is simple, intuitive and has no parameters.

Although all the training examples have a weight, not all of them must be
selected. We have considered two ways of selecting the examples:

• The selection criterium depends directly on the examples weight value. In
this case, we do it in the simplest way: The integer part of the weight
value indicates how many times the example is replicated in the training
subset.

• The selection criterium depends on a new parameter, independent of the
weight value. This parameter is the radius of a sphere centered in the test-
ing pattern. Only the examples situated into the sphere will be selected.

In the following paragraphs, we describe the general procedure to select the
training subset.

Let us consider q an arbitrary testing pattern described by a n-dimensional
vector. Let X = {(xk, yk), k = 1, ..., N} be the whole available training data
set, where xk are the input attributes and yk the corresponding class. For each
new pattern q, the steps are the following:

First, the Euclidean distance (dk) between each training example xk and
q is evaluated. In order to make the method independent on the distances
magnitude, relative values are used. Thus, a relative distance, drk is calculated
for each training pattern: drk = dk/dmax, where dmax is the distance from the
query to the furthest training pattern.

Next, the inverse function is used to calculate a weight for each training
pattern. Thus, the weight K(xk), is the inverse of the relative distance drk:

K(xk) = 1
drk

; k = 1 . . .N (1)

These values K(xk) are normalized in such a way that the sum of them
equals the number of training patterns in X, this is:

4



KN (xk) = V ·K(xk) (2)

where V =
N

∑N
k=1 K(xk)

(3)

At this point every training instance has a real weight value associated.
Now, the training subset, named Xq, associated to the testing instance q must
be built.

As we said before, we want to study two different approaches to build Xq,
depending on the criterium used to select the training examples:

• Integer Part Approach The selection criterium only depends on the
normalized weight values (KN(xk)) that will be used to indicate how many
times the training pattern (xk, yk) is repeated into the new training sub-
set. Hence, they must be transformed into natural numbers. The most
intuitive way to perform that transformation is to take the integer part
of the weight value (KN (xk)). Thus, the pattern (xk, yk) is replicated nk

times in Xq, where nk is calculated as: nk = Int(KN (xk)).

• Radius Approach The selection criterium depends on a new parameter
named radius (r). Depending on the dataset, the integer approach could
select too many patterns, mainly in classification problems where a big
amount of data are available. With the radius approach, the idea is to
select only the training examples whose relative distance to the testing
pattern, drk, is lower than r. In other words, only the training patterns
situated into a sphere centered in the testing pattern q and whose radius
is r, will be selected. The number of times, nk, that the selected training
patterns are replicated into the subset Xq depends on the weight values.

Thus, the following rule is used to generate nk:

if drk < r then
nk = int(KN(xk)) + 1

else
nk = 0

(4)

where int(KN (xk)) + 1 is the nearest integer greater than KN(xk).

When this approach is used, it is necessary to set the radius to an ap-
propriate value, using the information of the training set. In the next
subsection, we explain how the radius is automatically set.

Once the new subset Xq is built using either of both approaches, the base
MLA is trained with it. Thus, a local model will be built in order to predict
the testing pattern class.

In order to apply the lazy strategy explained before for any MLA, a feature
must be taken into account: when the testing pattern is located into a region

5



of the input space where the examples are scarce, it might happen that no
training examples are selected. This is a general fact that can happen with
both approaches (Integer and Radius approaches). When this situation occurs,
an alternative way to select the training patterns must be taken. In our work,
if the subset Xq associated to a query q is empty, then the whole training set is
used to build the model (more precisely: if Xq is empty, then Xq ← X). Thus,
the method behaves like a global method when no training patterns are near
the query instance. In addition, this transition form local to global approach is
made automatically by means of the Kernel function.

2.1 Radius value determination

When a test set is to be classified by the lazy radius approach, a radius value
must be fixed and it must be automatically calculated using the training set.
As we said before, the appropriate value could depend on the base MLA used to
build the classification model and also on the data set. Obviously, test instances
can not be used to decide the most appropriate radius value for each MLA (their
class value is not supposed to be available).

A n-fold cross validation procedure over the training set, varying the radius
value, might be a possible way to determine the most appropriate radius. The
training set would be divided into n folds and the lazy strategy explained be-
fore would be applied using the n folds as test sets, as it is usually done for this
procedure. Other similar way would consist on using the leave-one-out tech-
nique over the training data set. In this case, each training pattern would be
considered a test instance while the rest of patters would make up the training
set.

Very often, classification data sets have few available training instances. If
the radius is determined using n-fold cross validation over the training set, the
success classification rate might be biased by the small size of the resulting
training sets. For this reason, we believe more convenient to use the leave-one-
out technique.

Hence, if Sx is the training set of instances, the mechanism to determine the
radius value is the following:

• A radius value is fixed.

– The lazy strategy based on the radius approach explained above is
applied to the set Sx following a leave-one-out technique.

– The test classification rate for this radius value is obtained.

• The radius value is varied and the procedure is repeated.

• The radius value with the best classification rate is returned.

In domains where the number of training instances is very large, we use a
reduced subset of data randomly selected (for instance 50% or 20%), due to the
high computational cost involved. Preliminary experiments show that using a

6



reduced subset is similar to using the whole training data set, when the number
of instances is large enough.

3 Experimental Validation

3.1 Experimental Setup

In order to validate the proposed lazy learning approach, we have performed
our experiments on a collection of machine learning datasets available from the
UCI Machine Learning Repository 1. All of them are classification domains and
have numerical attributes, since our method uses Euclidean distances between
patterns, although discrete attributes could also be used with the appropriate
distance. A summary of some of the properties of these datasets is given in
Table 1.

Table 1: Datasets Description
Name Abbreviation Instances Attributes Classes

Balance Scale Balance 625 4 3
Bupa (Liver Disorders) Bupa 345 6 2
Car Evaluation Car 1728 6 4
Glass Glass 214 9 6
Ionosphera Ionos 351 34 2
Iris Iris 150 4 3
Thyroid Gland NewThyoid 215 5 3
Pima Indians Diabetes Diabetes 768 7 2
Segmentation Segmt 2310 19 7
Sonar Sonar 208 60 2
Vehicle Vehicle 846 18 4
Wine Wine 178 13 3

Letter Recognition Letter 16000-4000 16 26
Pen-Based Recog. of Hand-
written Digits

PenDigits 7494-3498 16 10

Statlog (Landsat Satellite) SatImage 4435-2000 36 6

Some datasets (Letter, PenDigits and SatImage) are provided with a test
set. For the rest of domains, with no test set available, we perform 5 runs
using 10-fold cross validation, which involves a total of 50 runs. In all cases, the
attributes values have been normalized to the [0, 1] interval.

The lazy approach presented before can be applied to any MLA. In this
work, with the aim of representing a wide range of paradigms, we have chosen
as the base MLA the following algorithms:

• A classification algorithm based on trees, C4.5 [Quinlan, 1993].

• An algorithm based on rules, PART [Quinlan, 1993]

1http://archive.ics.uci.edu/ml/

7



• An algorithm based on functions approximations, Support Vector Ma-
chines [Vapnik, 1998].

• An algorithm based on probabilities, NaiveBayes [Langley et al., 1992].

The experiments were performed using the WEKA software package 2 which
includes implementations of the classifiers mentioned before: J48 (a variant of
C4.5), PART, SMO (an implementation of SVM) and NaiveBayes algorithm.
The results for eager or traditional versions of MLAs are obtained directly with
WEKA using for each classifier the default parameters provided by the tool.
Lets remind that the eager versions of the MLAs are the standard way of using
the algorithms, that is, a global classification model is built using the complete
training dataset. After the learning or training phase, the test instances are
classified by the model.

We have modified the WEKA Software to integrate the lazy approach studied
in this work. Both lazy methods or versions have been implemented: the integer
part and the automatic radius method. Thus, the comparison of eager and lazy
versions is possible because the implementation and parameters of the base
algorithms are identical in both eager and lazy approaches. Also, the different
data folds are the same for all the algorithms.

3.2 Experimental Results

The experimental results using both versions of the lazy approach (Integer Part
and Automatic Radius) and using four different base algorithms (J48, Part,
SMO, NaiveBayes, respectively) are shown in Tables 2, 3, 4, 5. These tables
also include the performance of the eager versions of the base algorithms.

For the domains with an unique dataset available, where 5 runs of a 10-fold
crossvalidation procedure is performed, we use two tailed t-test with alpha =
0.05 to evaluate the comparisons significance. Tables show the average success
rate for the test data and the significance test result when comparing with the
eager version of the algorithm (first column). For PenDigits, SatImage and
Letters domains, provided with training and test sets, the significance tests
have no meaning, so they have not been performed. The notation used is the
following: ”(+)” means that the average value is significantly better than the
result provided by the eager approach; ”(=)” indicates that the difference is not
significant; and, ”(-)” means that the lazy approach is significantly worse than
the eager approach.

Tables 2 and 3 show that in most datasets both lazy approaches (Integer
Part and Automatic Radius) improve the performance of eager versions of SMO
and Naive Bayes algorithms. Both lazy approaches for SMO are significantly
better than eager version in 12 out of 15 domains. Similar behavior has the
Naive Bayes algorithm where in 10 domains out of 15 the integer part method
behaves better than the eager one, and in 9 out of 15 the automatic radius
method outperforms the eager one. It is also interesting to remark that for

2http://www.cs.waikato.ac.nz/ml/weka/

8



Table 2: Classification success rate: eager and lazy approaches for SMO
Dataset Eager Approach Lazy Approach Lazy Approach

Integer Part Automatic Radius

Balance 87.77 90.78 (+) 90.04 (+)
Bupa 58.04 70.33 (+) 68.19 (+)
Car 93.68 97.06 (+) 98.68 (+)
Glass 57.74 72.5 (+) 67.29 (+)
Ionos 88.1 94.14 (+) 91.18 (+)
Iris 96.67 95.73 (=) 95.8 (=)
NewThyoid 89.4 96.37 (+) 95.55 (+)
Diabetes 76.85 78.02 (=) 76.3 (=)
Segmt 92.94 96.03 (+) 97.04 (+)
Sonar 76.27 88.17 (+) 85.12 (+)
Vehicle 74.37 78.73 (+) 80.87 (+)
Wine 99 98.76 (=) 97.75 (=)

Letter 82.15 91.25 96.63
PenDigits 94.94 97.85 98.12
SatImage 85.21 89.37 89.07

Table 3: Classification success rate: eager and lazy approaches for NaiveBayes
Dataset Eager Approach Lazy Approach Lazy Approach

Integer Part Automatic Radius

Balance 90.62 90.62 (=) 90.57 (=)
Bupa 55.25 68.66 (+) 66.1 (+)
Car 85.6 91.67 (+) 94.92 (+)
Glass 46.17 71.76 (+) 68.29 (+)
Ionos 82.4 91.41 (+) 92.2 (+)
Iris 95.47 96 (=) 95.33 (=)
NewThyoid 96.84 97.02 (=) 97.31 (=)
Diabetes 75.68 75.94 (=) 75 (=)
Segmt 80.25 89.98 (+) 95.44 (+)
Sonar 67.73 83.67 (+) 83.1 (+)
Vehicle 44.85 72.5 (+) 74.44 (+)
Wine 97.29 98.87 (=) 97.41 (=)

Letter 65.05 80.03 96.7
PenDigits 82.11 91.13 97.01
SatImage 79.8 84.76 84.86

9



Table 4: Classification success rate: eager and lazy approaches for J48
Dataset Eager Approach Lazy Approach Lazy Approach

Integer Part Automatic Radius

Balance 77.89 80.03 (+) 84.95 (+)
Bupa 66.38 62.47 (=) 65.35 (=)
Car 92.34 95.88 (+) 97.49 (+)
Glass 72.99 73.24 (=) 73.14 (=)
Ionos 89.63 90.44 (=) 90.71 (=)
Iris 94.8 94.53 (=) 95.07 (=)
NewThyoid 92.67 91.67 (=) 93.03 (=)
Diabetes 74.17 72.5 (=) 73.31 (=)
Segmt 96.78 97.23 (=) 97.07 (=)
Sonar 73.86 78.07 (=) 79.06 (=)
Vehicle 71.87 71.89 (=) 72.36 (=)
Wine 93.59 94.59 (=) 94.04 (=)

Letter 87.7 89.65 94.2
PenDigits 92.05 94.28 96.25
SatImage 83.36 83.41 84.26

Table 5: Classification success rate: eager and lazy approaches for PART
Dataset Eager Approach Lazy Approach Lazy Approach

Integer Part Automatic Radius

Balance 82.88 83.03 (=) 84.57 (=)
Bupa 65.67 63.72 (=) 63.1 (=)
Car 95.68 97.66 (+) 97.86 (+)
Glass 73.61 73.99 (=) 72.58 (=)
Ionos 90.6 91.3 (=) 90.15 (=)
Iris 94.4 94.53 (=) 95.2 (=)
NewThyoid 94.8 92.59 (=) 95.16 (=)
Diabetes 72.68 73.12 (=) 71.41 (=)
Segmt 96.61 97.08 (=) 97.05 (=)
Sonar 78.76 77.76 (=) 80.49 (=)
Vehicle 72.41 73.03 (=) 72.2 (=)
Wine 92.58 94.03 (=) 95.29 (=)

Letter 88.58 90.68 93.75
PenDigits 93.65 94.39 96.19
SatImage 82.76 83.46 85.16

10



some data sets the improvement over the eager classification rate is very large
when one of the lazy methods is used. For instance, when Naive Bayes is the
base algorithm, the results for Bupa domain improve around 10%, 23% for
Glass, 10% for Segmentation, 15% for Sonar and 27% for Vehicle. When the
base algorithm is SMO, a similar situation occurs. For Bupa the improvement
over the eager version of the algorithm is around 10%, for NewThyoid 6%, for
Sonar 8%, for Vehicle 4%, for Letter 9% and SatImage 4%. In some of these
cases, the classification rates of eager versions of NaiveBayes and SMO are very
poor, and therefore, the algorithm improvement potential is quite large.

For J48 and PART algorithms (see Tables 4 and 5), both lazy approaches
overcome the eager versions of the algorithms for 5 (Balance, Car, Letter,
PenDigits and SatImage) and 4 (Car, Letter, PenDigits and SatImage) datasets,
respectively. In the rest of domains the lazy approaches performance is simi-
lar than eager versions, that is differences are not statistically significant. In
general, it seems that lazy versions of algorithms based on trees or rules are
not so efficient as lazy versions of other types of algorithms. However, for some
datasets (Balance, Car, Letter and PenDigits for J48; Letter for Part) the lazy
approaches can improve around or more than 5% over the eager versions of the
methods.

We also want to remark that in domains where both the training and the
test sets are provided (Letters, PenDigits and SatImage), the lazy versions of
the four base algorithms behave better than the eager ones. This behavior is
probably due to the amount of available data (much larger than in the rest of
domains). When the number of training examples is very high, the use of a
different local model for each test instances seems to be more appropriate that
the use of a single global model for all of them.

3.3 Comparative Analysis of the two lazy approaches

Comparing both lazy approaches, from a general point of view it is not possible
to conclude than one approach is better than the other. Figures 1, 2, 3, and
4 represent the differences in the classification success rate between each lazy
approach (Integer Part or Automatic Radius) and the eager version for each
base algorithm (Fig.1: SMO, Fig.2: Naive Bayes, Fig.3: J48 and Fig.4: PART).
If those differences are positive it means that the lazy method behaves better
than the eager method. If they are negative, then the lazy version is worst than
the eager one. These values refer to the mean, although it has been analyzed
before that negative differences are not statistically significant. We observe that
both lazy approaches behave in a similar way, in the sense that if a lazy version
is better than the eager one, then in most cases the other lazy version has the
same tendency. The same behaviour occurs when a lazy version is equal or
worst (in the classification success rate) than the eager one.

Figures 3 and 4 show that for J48 and PART algorithms the automatic radius
method is usually better than the integer part method. This tendency is not so
clear for SMO and Naive-Bayes algorithms (Figures 1 and 2).

We want to remark that for datasets where the amount of data is very large

11



Figure 1: Lazy Approaches comparison for SMO base algorithm

Figure 2: Lazy Approaches comparison for NB base algorithm

Figure 3: Lazy Approaches comparison for J48 base algorithm

12



Figure 4: Lazy Approaches comparison for PART base algorithm

(Car, Letter, PenDigits and SatImage) the automatic radius method attains
better results than the integer part method. This difference is very clear with
PART and J48 for the four datasets. With Naive-Bayes, in four datasets the
automatic radius method behaves better than the integer part one, except in
SatImage where both methods behave similarly. With SMO this difference is
only clear for Letter and Car domains, whereas for PenDigits and SatImage
both methods are similar. The large amount of data could facilitate the search
of the appropriate radius. In any case, the integer part method also behave
better than the eager method, although the improvement is not that high.

Finally, and with the aim of giving a general idea about the improvement of
the lazy learning approach versus the eager one for different domains, Table 6
summarizes the best results for all the datasets. The first column indicates the
domain; the second one shows the best classification success rate obtained with
any of the eager versions of the algorithms and the third one shows which base
algorithm attained that result. The forth and fifth columns display the results
corresponding to the lazy approaches: the forth column shows the best classi-
fication rate and the fifth one shows which lazy algorithm obtained that best
result. The best classification rates for each domain , with statistic significance,
is marked in bold. We can see that the best performance is achieved with a lazy
approach of some base algorithm in 8 datasets out from the 15 datasets used for
the experimental validation. They are Bupa, Car, Ionos, Sonar, Vehicle, Letter,
PenDigits and SatImage. In these cases, the improvement of the lazy algorithm
is 3.95%, 3%, 4.08%, 9.41%, 6.5%, 7.49%, 3.18%, 4.16%, respectively. For the
rest of datasets, lazy approaches do not improve the eager algorithms, providing
similar results (from a statistic points of view).

4 Conclusions

Most machine learning algorithms (MLAs) -based on trees, rules, functions, etc.-
are eager learning methods; they build a model using the complete training

13



Table 6: Best success rate classification
Dataset Eager Approach Lazy Approach

Best Algorithm Best Algorithm
Success Rate Success Rate

Balance 90.62 NB 90.78 LazySMO (Integer)
Bupa 66.38 J48 70.33 LazySMO (Integer)
Car 95.68 PART 98.68 LazySMO (Radius)

Glass 73.61 PART 73.99 LazyPart (Integer)
Ionos 90.06 PART 94.14 LazySMO (Integer)
Iris 96.67 SMO 96 LazyNB (Integer)

NewThyoid 96.84 NB 97.31 LazyNB (Radius)
Diabetes 76.85 SMO 78.02 LazySMO (Integer)
Segmt 96.78 J48 97.23 LazyJ48 (Integer)
Sonar 78.76 PART 88.17 LazySMO (Integer)
Vehicle 74.37 SMO 80.87 LazySMO (Radius)
Wine 99.00 SMO 98.87 LazyNB (Integer)

Letter 88.58 PART 96.70 LazyNB (Radius)
PenDigits 94.94 SMO 98.12 LazySMO (Radius)
SatImage 85.21 SMO 89.37 LazySMO (Integer)

dataset and, afterwards, this model is used to classify the test instances. In
general, these models try to extract the general properties of data and not the
individual ones because they try to minimize the global error and this might not
be the most appropriate for certain regions of the input space. Sometimes, this
behavior could affect negatively to the generalization capability of the models.
Lazy learning methods are an alternative approach. For each test instance to be
classified, they select, from the whole training set, the most appropriate samples
for the learning task. The selection is made by means of some kind of similarity
measurement to the test pattern.

In this work we propose to apply a lazy approach to any classification ma-
chine learning algorithm. Given a MLA, called base algorithm, for each query
instance a local model is built with the base algorithm using a subset of the
whole training dataset. This subset of similar patterns is not homogeneous and
it is obtained using the inverse function, as a parameter-free weighting function,
in order to give more importance to the training examples that are more similar
to the query instance. We present two different methods that avoid fixing any
parameter: in the first one, the selection of training patterns only depends on
the training instance weighting value, given by the inverse function. The integer
part of this value indicates the number of times the training instance will be
included into the training set. In the second approach, a parameter (the radius)
is needed, but the method is able to automatically determine it.

In order to validate the proposed lazy learning method, we have performed
our experiments on a collection of 15 machine learning datasets available from
the UCI Machine Learning Repository. Both variants of the lazy approach (the
integer part method and the radius method) have been compared using four
different base algorithms: J48, Part, SMO, and NaiveBayes.

14



The results of our experiments show that the lazy approaches proposed in
this work could be an easy alternative to improve the generalization of eager
versions of any MLAs. For SMO and NaiveBayes, both lazy approaches im-
prove the performance of eager versions of these algorithms in most datasets.
Moreover, for some datasets, the improvement of one of the lazy methods over
the eager one is quite large. For Part and J48 algorithms, lazy methods out-
perform the eager one in 4 and 5 datasets respectively. In the rest of domains,
the performance of the lazy methods are not significatively different from the
eager one. It is also possible to observe that when the amount of data is very
large, the lazy versions of all the base algorithms behave significatively better
than the eager ones. In these kind of domains, the use of a specific local model
for each test instance seems to be more appropriate than a single global model
for all the test instances.

We have compared the performance of both lazy approaches. For domains
with a big amount of data, in general, the automatic radius approach behave
better than the integer part one. This could be due to the fact that the large
amount of data could facilitate the search of the appropriate radius.

5 Acknowledgment

This work has been funded by the Spanish Ministry of Science under contract
TIN2008-06491-C04-03 (MSTAR project)

References

[Aha et al., 1991] Aha, D., Kibler, D., and Albert, M. K. (1991). Instance-based
learning algorithms. Machine Learning, 6:37–66.

[Atkenson et al., 1997] Atkenson, C., Moore, A., and Schaal, S. (1997). Locally
weighted learning. Artificial Intelligence Review, 11:11–73.

[Wettschereck et al., 1997] Wettschereck, D., Aha, D., and Mohri, T. (1997). A
review and empirical evaluation of feature weighting methods for a class of
lazy learning algorithms. Artificial Intelligence Review, 11:273–314.

[Dasarathy, 1991] Dasarathy, B. (1991). Nearest neighbour(NN) norms: NN
pattern classification techniques. IEEE Computer Society Press.

[Bottou and Vapnik, 1992] Bottou, L. and Vapnik, V. (1992). Local learning
algorithms. Neural Computation, 4(6):888–900.

[Zhu and Yang, 2008] Xingquan Zhu and Ying Yang (2008). A Lazy Bagging
Approach to Classification. Pattern Recognition, 41 (10): 2980–2992.

[Galvan, 2001] I.M. Galván and P. Isasi and R. Aler and J.M. Valls (2001). A
Selective Learning Method to Improve the Generalization of Multilayer Feed-

15



forward Neural Networks. International Journal of Neural Systems, 10:167-
177.

[Valls, 2007] José M. Valls, Inés M. Galván and Pedro Isasi (2008). LRBNN: A
Lazy RBNN Model. AI Communications, 20(2):71-86

[Galvan, 2009] Ineś M. Galván and José M. Valls and Nicolas Lecomte and
Pedro Isasi(2009). A lazy Approach for Machine Learning Algorithms. 5th
IFIP Conference on Artificial Intelligence Applications & Innovations (AIAI
2009), 296: 517-522.

[Quinlan, 1993] Quinlan, R. (1993). C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA.

[Vapnik, 1998] Vapnik, V. (1998). Statistical Learning Theory. John Wiley and
Sons.

[Langley et al., 1992] Langley, P., Iba, W., and Thompson, K. (1992). An anal-
ysis of bayesian classifiers. In National Conference on Artificial Intelligence.

16




