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Abstract

Traditional tests for conditional heteroscedasticity are based on testing for sig-
nificant autocorrelations of squared or absolute observations. In the context of high
frequency time series of financial returns, these autocorrelations are often positive
and very persistent, although their magnitude is usually very small. Moreover, the
sample autocorrelations are severely biased towards zero, specially if the volatility
is highly persistent. Consequently, the power of the traditional tests is often very
low. In this paper, we propose a new test that takes into account not only the
magnitude of the sample autocorrelations but also possible patterns among them.
This aditional information makes the test more powerful in situations of empirical
interest. The asymptotic distribution of the new statistic is derived and its finite
sample properties are analized by means of Monte Carlo experiments. The perfor-
mance of the new test is compared with other alternative tests. Finally, we illustrate
the results analysing several real time series of financial returns.
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1. INTRODUCTION

It is well known that high frequency time series of returns are characterized by evolving
conditional variances. As a consequence, some non-linear transformations of returns, such
as squares or absolute values, are autocorrelated. The corresponding autocorrelations are
often small, positive and decay very slowly towards zero. This last characteristic has been
usually related with long-memory in volatility; see, for example, Ding et al. (1993). Two of
the most popular models to represent the dynamic evolution of volatilities are the General-
ized Autoregressive Conditional Heteroscedasticity (GARCH) model of Engle (1982) and
Bollerslev (1986) and the Autoregressive Stochastic Volatility (ARSV) model proposed
by Taylor (1986). Both models generate series with autocorrelated squares. However,
Carnero et al. (2001) show that, unless the kurtosis is heavily restricted, GARCH models
are not able to represent autocorrelations as small as the ones often observed in practice.
On the other hand, ARSV models are more flexible to represent the empirical charac-
teristics often observed in high frequency returns. Furthermore, little is known about
the autocorrelations of squared or absolute returns generated by the most popular long-
memory GARCH model, the Fractionally Integrated GARH (FIGARCH) model proposed
by Baillie et al. (1996) while the autocorrelations of powers of absolute observations of
Long Memory Stochastic Volatility (LMSV) models have been derived by Harvey (1998).
Consequently, in this paper, we focus on testing for conditional homoscedasticity in the
context of Stochastic Volatility (SV) models.

For the reasons previously explained, the identification of conditional heteroscedasticity
is often based on testing whether squared or absolute returns are autocorrelated; see,
for example, Andersen and Bollerslev (1997) and Bollerslev and Mikkelsen (1999) among
many others. Testing for uncorrelatedness of a particular transformation of returns, f(yt),
can be carried out using the portmanteau statistic suggested by Box and Pierce (1970)
given by

Q(M) = T
TX

k=1

r2(k) (1)

where r(k) =

TP
t=k+1

(f(yt)−f)(f(yt−k)−f)
TP

t=1

(f(yt)−f)2
, f =

TP
t=1

f(yt)

T
and T is the sample size. In this paper,

we consider two popular transformations, namely f(yt) = y2t or f(yt) = |yt|.
The Q(M) statistic applied to squared observations was proposed by McLeod and Li

(1983) who show that, if the eighth order moment of yt exists, its asymptotic distribution
can be approximated by a χ2(M) distribution. From now on, the statistic in (1) is denoted
as McLeod-Li statistic even if it is applied to absolute returns. Notice that the χ2(M)

asymptotic distribution of the Box-Pierce statistic requires that the series to be tested for
uncorrelation is an independent sequence with finite fourth order moment; see Hannan
(1970). Therefore, when the Q(M) statistic is implemented to absolute values, only the
fourth order moment of returns should be finite for the asymptotic distribution to hold.
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Alternatively, Peña and Rodriguez (2002) have proposed a portmanteau test based on
the M th root of the determinant of the autocorrelation matrix of order M . The proposed
statistic, denoted by DM , is given by

DM = T
h
1− |RM |1/M

i
(2)

where

RM =


1 er(1) ... er(M)er(1) 1 ... er(M − 1)
... ... ... ...er(M) er(M − 1) ... 1


and er(j) is the standardized sample autocorrelation of order j given by er(j) =qT+2

T−j r(j)
1.

If the eighth order moment of yt exists, the asymptotic distribution of the DM statistic
applied to squared observations can be approximated by a Gamma distribution, G(θ, τ )
with θ = 3M(M + 1)/4(2M + 1) and τ = 3M/2(2M + 1). The same result holds for
absolute values if the fourth order moment of returns is finite.

Although Peña and Rodriguez (2002) show that for squared returns, the DM test is
more powerful than the McLeod-Li test, both tests have rather low power specially when
the volatility is very persistent; see, Pérez and Ruiz (2003) for exhaustive Monte Carlo
experiments in the context of LMSV models. The low power could be attributed to
substantial finite sample negative biases of the sample autocorrelations and to the very
small magnitude of the population autocorrelations. Therefore, these tests may fail to
reject homoscedasticity when the returns are conditionally heteroscedastic.

However, notice that asymptotically the sample autocorrelations of independent series
with finite fourth order moment are not only identically distributed normal variables with
zero mean and variance 1/T but also mutually independent; see Hannan (1970). There-
fore, the estimated autocorrelations are not expected to have any distinct pattern in
large samples. However, the McLeod-Li and Peña-Rodriguez tests have only focus on the
first implication of the null hypothesis, namely that the sample autocorrelations should
have zero mean. These tests ignore the information on the patterns of successive esti-
mated autocorrelations and, consequently, cannot distinguish between the correlogram of
an uncorrelated variable that has all the autocorrelation coefficients small and randomly
distributed around zero and the correlogram of a variable that has relatively small au-
tocorrelations with a distinct pattern for very long lags. In this paper, we propose a
new statistic to test for uncorrelatedness in non-linear transformations of returns that
considers the information about possible patterns in successive correlations. This test
is based on ideas developed by Koch and Yang (1986) in the context of testing for zero
cross-correlations between series of multivariate dynamic systems.

Finally, given that, as mentioned before, we are analyzing the performance of tests
for conditional homoscedasticity in the context of SV models, we also consider the test

1Peña and Rodriguez (2003a) has proposed a modified version of the DM statistic based on the
logarithm of the determinant. This new statistic has better size properties for large M and better power
properties.
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proposed by Harvey and Streibel (1998) who focus on the ARSV(1) model given by

yt = σ∗εtσt, t = 1, ..., T (3)

log(σ2t ) = φ log(σ2t−1) + ηt

where σ∗ is a scale parameter, σt is the volatility and εt and ηt are mutually independent
Gaussian white noise processes with zero mean and variances one and σ2η respectively.
The model is stationary if |φ| < 1. The same condition guarantees the existence of the
fourth order moment; see Ghysels et al. (1996) for a detailed description of the statistical
properties of SV models. The variance of the log-volatility process is given by σ2h =
σ2η/(1− φ2) and it is assumed to be finite and fixed. Therefore, the variance of ηt can be
written as a function of the persistence parameter as follows, σ2η = (1 − φ2)σ2h. Observe
that if, as it is often observed in real time series of high frequency returns, the persistence
parameter φ is close to one, then σ2η should be close to zero for a given value of the
variance of log(σ2t ). In this case, the volatility evolves very smoothly through time. In
the limit, if φ = 1 then σ2η = 0 and yt is conditionally homoscedastic. Harvey and Streibel
(1998) proposes to test the null of conditional homoscedasticity, i.e. H0 : σ

2
η = 0, using

the following statistic:

NM = −T−1
T−1X
k=1

r(k)k. (4)

They show that, if the second order moment of f(yt) is finite, the NM statistic has
asymptotically the Crámer-von Mises distribution for which the 5% critical value is 0.461.
Furthermore, the corresponding test is the Locally Best Invariant (LBI) test for the pres-
ence of a random walk2. They implement the test to squared and absolute observations
and show that the finite sample power is higher when the latter transformation is used.

The rest of the paper is organized as follows. Section 2 describes the new statistic and
derives its asymptotic distribution. In section 3, we carry out Monte Carlo experiments to
assess the finite sample size and power of the new statistic against short memory ARSV
models. These finite sample properties are compared with the properties of the McLeod-
Li, Peña-Rodriguez and Harvey-Streibel tests. In section 4, the test is implemented to test
for uncorrelatedness in squared and absolute of daily returns of several financial prices.
Finally, section 5 concludes the paper.

2. A NEW TEST FOR CONDITIONAL HOMOSCEDASTICITY

As we mentioned before, conditionally heteroscedastic processes generate time series
with autocorrelated squares and absolute observations. Consequently, we propose to test
for conditional homoscedasticity using the information contained in the sample autocor-
relations of these non-linear transformations, f(yt). The new test for uncorrelatedness
of f(yt) takes into account that, under the null hypothesis, if the fourth order moment

2See Ferguson (1967) for the definition of the Locally Best test.
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of f(yt) exists, the sample autocorrelations of f(yt) are asymptotically independent and
identically distributed Normal variables with zero mean and variance 1/T . Therefore,
this statistic not only tests whether the sample autocorrelations are significantly different
from zero but also incorporates information about possible patterns among successive
autocorrelation coefficients, r(k). We propose the following statistic

Q∗i (M) = T
M−iX
k=1

"
iX

l=0

r(k + l)

#2
; i = 0, 1, 2, . . . ,M − 1. (5)

Notice that for each value of the number of autocorrelations considered, M , we have a
collection of statistics, choosing different values of i. Each of these statistics has different
information on the possible pattern of the sample autocorrelations. For example, when
i = 0, the McLeod-Li statistic in (1) is obtained as a particular case. In this case, the
statistic is obtained adding up the squared estimated autocorrelations. If all of these au-
tocorrelations are small, the statistic will be small and the null hypothesis is not rejected.
However, when i = 1, the statistic incorporates information about the correlation between
sample autocorrelations one lag apart. In this case, if they are strongly correlated, the
null hypothesis can be rejected even if the coefficients r(j) are very small. When i = 2,
the correlations between coefficients two lags apart is also considered and so on.

The statistic Q∗i (M) is a quadratic form in T 1/2r(M), where r(M) = (r(1), . . . , r(M))
given by

Q∗i (M) = T r0(M)Air(M),

where Ai = C0iCi is a symmetric matrix of dimension M. In general C0i is a matrix of
dimension M × (M − i), where each column is composed by the first i+1 values equal to
ones and the rest equal to zeroes. Given that, under the null hypothesis, the asymptotic
distribution of T 1/2r(M) is N(0, IM), the statistic Q∗i (M) has asymptotically the same
distribution as the random variable,

Q(W ) =
MX
j=1

λjW
2
j ,

where Wj are independent standard normal variables and λj are the eigenvalues of Aj;
see Box (1954). Therefore, the asymptotic distribution of Q∗i (M) depend on the eigen-
values of Ai, and consequently on M and i. Peña and Rodriguez (2002) propose to use
a computationally simpler approximation of the asymptotic distribution due to Satterth-
waite (1941, 1946) and Box (1954). In particular, the distribution of Q∗i (M) can be
approximated by a gamma distribution, G(θ, τ ) with parameters θ = a2

2b
and τ = a

2b
where

a = (i+1)(M− i) and b = (M−2i)(i+1)2+2Pi
j=1 j

2(M−1+ i−3(j−1)). Notice that a
is the trace of the matrix Ai given by tr(Ai) =

PM
j=1 λj and b the trace of AiAi, given by

tr(AiAi) =
PM

j=1 λ
2
j . For example, if i = 0, then a = M and b = M and, therefore, the

usual χ2(M) asymptotic distribution is obtained. On the other hand, if for instance, i = 1,

then the parameters of the Gamma distribution are given by θ = (M−1)2
3M−4 and τ = M−1

3M−4 .
For reasons that will be clearer later, another interesting case is i =M/3−1. In this case,
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the corresponding parameters are θ = 54M+72M2+24M3

2(45M+12M2+7M3+54)
and τ = 108M+162

45M+12M2+7M3+54
. Fi-

nally, consider the case i = M − 1, with θ = −6M
2(M3−4M2−M−2) and τ =

−6
M3−4M2−M−2 . In

this case, the asymptotic distribution of the statistic Q∗M−1(M)/M can be approximated
by a χ2(1).

Finally, the asymptotic distribution of Q∗i (M) can be further simplified using the power
transformation proposed by Chen and Deo (2001) to improve the normality of test statis-
tics in finite samples. In particular,

σ−1
¡
Q∗i (M)

1/β − µ¢ ∼ N(0, 1)

where β = 3
2

³PM
j=1 λ

2
j

´2 ·
3
2

³PM
j=1 λ

2
j

´2
−
³PM

j=1 λj

´³PM
j=1 λ

3
j

´¸−1
, µ = a

1
β−1

2
β−1
β2
a
1
β
−22b

and σ = (2b)1/2

βa
1− 1

β
. To facilitate the use of this approximation, Table 1 reports the values

of the constants µ, σ and β for some particular cases that can be useful in the empirical
analysis of real time series.

3. SIZE AND POWER IN FINITE SAMPLES

In this section, we analyze the finite sample performance of the Q∗i (M) statistic by
means of Monte Carlo experiments. The main objectives are to analyze whether the
asymptotic distribution is an adequate approximation to the finite sample distribution
under the null hypothesis and to compare the size and power of the new statistic with the
McLeod-Li, Peña-Rodriguez and Harvey-Streibel statistics. Furthermore, we give some
guidelines as to which values of M and i are more adequate for the cases of interest from
an empirical point of view.

3.1 Size

To analyze the finite sample size of the test, we have generated series by white noise
processes with three different distributions, Normal and Student-t with ν = 5 and 9
degrees of freedom. The Student-t distributions have been chosen because it has been
often observed in empirical applications that the marginal distribution of financial returns
is leptokurtic and we want to analyze the performance of the tests in the presence of
leptokurtic although homoscedastic time series. Moreover, the degrees of freedom are
selected in such a way that the eight order moment of returns exists when ν = 9 and does
not exit when ν = 5. All the results are based on 20000 replicates.

Table 2 reports the empirical sizes of the DM , Q(M), NM and Q∗i (M) tests. We
considerM = 12, 24 and 36 and i = 1, M/3−1 andM−1. The nominal size is 5% and the
sample sizes are T = 500 and 2000. The critical values have been obtained using both the
Gamma and Normal approximations described in Section 2 with similar results. Therefore,
Table 2 only reports the empirical sizes obtained using the Gamma distribution. All the
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statistics are implemented for both squared and absolute observations. The empirical sizes
obtained for the Student-9 distribution are always between the sizes reported in Table 2
for the Gaussian and Student-5 cases, and are not reported here to save space.

Looking first at the results when the series are generated by a Student-5 white noise, it
is possible to observe that all the tests considered can suffer of important size distortions
when they are applied to squared observations. In this case, the empirical size is larger
than the nominal for theDM , Q(M) andQ∗i (M) tests with small values of i. Consequently,
the tests would reject the hypothesis of homoscedasticity more often than expected when
homoscedastic series are generated by a leptokurtic Student-t distribution with less than
8 degrees of freedom. Furthermore, the size distortions are not reduced when the sample
size increases. For example, the sizes of D24, Q(24) and Q∗1(24) are 6.4%, 6.4% and 5.5%
respectively when T = 500 and 7.8%, 8.6% and 7.3% when T = 2000. Therefore, it is
evident that, as expected given that the eight order moment is not defined, in this case,
the asymptotic distribution is a bad approximation to the finite sample distribution of
the statistics considered. The size distortions of Q∗i (M) are smaller than for the Q(M)
and DM tests but are still big enough as to be taken into account. Figure 1, that plots
the differences between empirical and nominal sizes of Q∗i (M), i = 0, ...,M − 1 and
M = 12, 24 and 36, illustrates these size distortions. On the other hand, notice that the
asymptotic distribution of the NM test only requires the second moment of yt to be finite
and consequently, as reflected in Table 2 its size is close to the nominal. Finally, Table 2
shows that when the tests are applied to absolute observations, the nominal and empirical
sizes of all the tests considered are very close; see also Figure 2 that shows that the size
of Q∗i (M) is rather close to the nominal for all M and i even for moderate sample sizes.

Focusing now on the results reported in Tables 2 and 3 for absolute observations gener-
ated by homoscedastic Student-5 and Gaussian white noises respectively, it is possible to
observe that given T andM , the empirical sizes of Q∗i (M) decreases with i. Figures 1 and
2, that plots the corresponding differences between the empirical and nominal sizes, show
that for M = 12, 24 and 36, the smallest differences are obtained when i is approximately
3, 5 and 11 respectively. Therefore, it seems that the nominal size is closer to the nominal
if the following ad hoc rule is applied i = [M/3]− 1. In any case, it is important to point
out that for all values of M and i considered, the size of Q∗i (M) is remarkably close to
the nominal specially for the larger sample sizes.

Summarizing, the Monte Carlo experiments reported in this section show that, if i =
M/3− 1 and the fourth order moment of yt exists, the asymptotic distribution provides
an adequate approximation to the sample distribution of Q∗i (M) when it is applied to
absolute returns. If is implemented to squared observations, the eighth order moment
should be finite. Consequently, we recommend to test for conditional heteroscedasticity
using absolute returns; see also Harvey and Streibel (1998) and Pérez and Ruiz (2003).
From now on, in this paper, all the results are based on implementing the alternative
statistics considered to absolute observations.
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3.2 Power short memory models

To analyze the finite sample power of Q∗i (M), we have generated artificial series by
the ARSV(1) in (3) for different coefficients of variation given by squared C.V. = exp(
σ2h)− 1 = 0.22, 0.82 and 1.72. These values have been chosen to resemble the parameter
values often estimated when the ARSV model is fitted to real time series of financial
returns; see Jacquier et al. (1994). The sample sizes considered are T = 100, 512 and
1024.

Figure 3 plots the percentage of rejections of the Q(M), DM , NM and Q∗i (M) tests as
a function of the persistence parameter, φ, for M = 24 and T = 100 and 512. Remember
that when φ = 1, σ2η = 0 and, consequently, given that the series are homoscedastic the
percentage of rejections is 5%. First of all, this figure shows that the power of the NM
test is highest when φ is close to the boundary and, consequently, the series is close to
the null of heteroscedasticity and the sample size is very small. When the persistence of
volatility decreases or the sample size is moderately large, the NM has important losses
of power relative to its competitors. Notice that for the sample sizes usually encountered
in the empirical analysis if financial time series, the powers of the Q(M), DM and Q∗i (M)
tests are larger than the power of NM . On the other hand, comparing now the powers
of Q(M), DM and Q∗i (M), we can observe that if the sample size is T = 100, the power
of Q∗i (M) is the largest for all the values of the parameters considered in Figure 3, i.e.
φ ≥ 0.8. Finally, if T = 512, the power of Q∗i (M) is larger when C.V. = 0.22 and very
similar for the other two C.V. considered. The powers of the three tests are similar and
close to one for larger sample sizes.

To illustrate how the proposed test has higher power than its competitors, even in
the more persistent cases, in which the Mc-Leod-Li and Peña-Rodriguez tests are well
known to have difficulties to identify the presence of conditional heterocedasticity, Table
3 reports the powers of these tests implemented to absolute observations for M = 12, 24
and 36 and T = 512 and 1024 when the parameters are φ = 0.98 and σ2η = 0.1. The
power of the Q∗M/3−1(M) test is the higest for all M and T . For example, if T = 512 and
M = 12, then the power is 67.6% if the DM test is implemented for absolute returns, 74%
if the McLeod-Li is used and 83.3% if the new test with i = M/3 − 1 is implemented.
Therefore, the new test has higher power and better size properties without increasing
much the computational burden.

Notice that in Figure 3, the power of Q∗i (M) has been considered as a function of φ
for fixed C.V. Therefore, in this figure both parameters φ and σ2η are moving together.
However, it could be of interest to analyze how the power depends on the two parameters
of the ARSV(1) model separately. It is expected that the power increases separately with
both parameters, φ and σ2η. To analyze this point, Figure 4 plots the powers of Q

∗
i (24)

for T = 500 as a function of φ and σ2η. This figure illustrates clearly that, as expected,
the power is an increasing function of both parameters, σ2η and φ. It also shows that
the power depends more heavily on the persistence parameter φ than on the variance σ2η.
When the persistence parameter is relatively low, the power is low even if σ2η is large.
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However, if φ is large, the power is large even if σ2η is small.

4. Power long memory models

As we have mentioned before, another stylized fact often observed in the sample auto-
correlations of squared and absolute returns is their slow decay towards zero, suggesting
that volatility may have long memory. In this section, we analyze the power of Q∗i (M) in
the presence of long memory. Furthermore, we also explore how the information contained
in the Q∗i (M) statistic for successive values of i can be used to obtain an indication of the
possible presence of long memory.

In the context of SV models, Breidt et al. (1998) and Harvey (1998) have proposed inde-
pendently the LMSV model where the log-volatility follows an ARFIMA(p, d, q) process.
The corresponding LMSV(1,d,0) model is given by

yt = εtσt, t = 1, ..., T (6)

(1− L)d(1− φL) log(σ2t ) = µ+ ηt

where 0 ≤ d < 1 is the long memory parameter and L is the lag operator such that Ljxt =
xt−j. All the parameters and noises are defined as in the short memory ARSV(1) model
in (3) except the variance of ηt that, in model (6), is given by σ

2
η =

[Γ(1−d)]2(1+φ)
Γ(1−2d)F (1;1+d;1−d;φ)σ

2
h

where Γ(·) and F (·; ·; ·; ·) are the Gamma and Hypergeometric functions respectively.
To analyze whether theQ∗i (M) statistic is also more powerful than its competitors in the

presence of long memory, 5000 time series have been generated by model (6) with the same
C.V. as in Section 3 and two values of the long memory parameter d = {0.2, 0.4}. These
values have been chosen because the asymptotic properties of the sample autocorrelations
of squared and absolute observations are only known when d < 0.25, see Perez and Ruiz
(2003). Figures 5 and 6 plot the powers of the Q(M), DM , NM and Q∗i (M) tests for
d = 0.2 and d = 0.4 respectively. These figures show that the conclusions about the
relative performance in terms of the power of the alternative tests are the same as in the
short memory case. The NM is more powerful only when the series are very close to
be homoscedastic and the sample size is very small. On the other hand, the Q∗i (M) test
clearly overperforms the Q(M) and DM tests when the sample size or the C.V. are small.
Finally, notice that for large sample sizes and C.V. the power of the three tests are very
similar and close to one. In any case, it is important to point out that, comparing Figures
4, 5 and 6, it is evident that the power of all tests decreases dramatically with the long
memory parameter d. To illustrate this loss of power, Figure 7 plots the powers of the
Q∗0(12) and Q

∗
4(12) as a function of d for fixed {φ = 0.9, σ2η = 0.01} and {φ = 0, σ2η = 0.1}.

The power of both statistics seem to depend heavily on the parameter φ. When φ = 0,
even for moderate samples as T = 1024, very large values of d (over 0.35) are needed for
the power to be over 20%. However, when φ = 0.9, the power is bigger than 20% for all
values of the long-memory parameter d. Furthermore, Figure 7 also illustrate the gains
of power of the Q∗i (M) test with respect to the McLeod-Li test.
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Finally, to illustrate the power gains of the Q∗i (M) test in the context of LMSV models,
Table 3 reports the results of the Monte Carlo experiments for some selected designs
which are characterized by generating series where it is hard to detect the conditional
heteroscedasticity. In particular, we consider {φ = 0.9, d = 0.2, σ2η = 0.01} and {φ = 0,
d = 0.4, σ2η = 0.1}. In this table, it is possible to observe that in the presence of long-
memory, the gains in power of Q∗i (M) with respect to the Q(M), DM and NM statistics
can be very important. For example, when φ = 0.9, d = 0.2 and σ2η = 0.01 and T = 512,
the powers of the Q(12), D12 and NM tests are 45%, 39.2% and 37.6% respectively,
while the power of Q∗3(12) is 59.3%. Therefore, in this case, the power of Q∗i (M) is
31.78%, 51.28% and 57.71% larger than the powers of Q(12), D12 and NM . There is
a substantial increase in power. Even for relatively large sample sizes as T = 1024, the
powers of the Q(12), D12 and NM are 71.5%, 69% and 46.6% respectively, while the
power of Q∗3(M) is 85.7%. Consequently, the gains in power of the new test proposed in
this paper compared with the alternative tests, could be very important specially in the
presence of long-memory in the volatility process.

5. EMPIRICAL APPLICATION

In this section, we implement the Q(M), DM , NM and Q∗i (M) statistics to test for
conditional homoscedasticity of returns of exchange rates of the Canadian Dollar, Euro
and Swiss Franc against the US Dollar, observed daily from 1st April 2000 until 21st of
May 2003 with T = 8483. To avoid the influence of large outliers on the properties of
the homoscedasticity tests, the series of returns have been filtered by the observations
larger than 5 sample standard deviations; see Carnero et al. (2003) for the influence of
outliers on tests for conditional homoscedasticity in the context of GARCH models. The
three series of returns have been plotted in Figure 8 together with the corresponding
autocorrelations of absolute returns which are rather small, always under 0.1 in absolute
value. However, observe that, with the exception of the Swiss Franc, the autocorrelations
are mainly positive which is imcompatible with independent observations.

Table 4 reports, for each exchange rate, the ratio between the value of the statistic and
the corresponding 5% critical value for the NM, DM , Q(M) and Q∗M/3−1(M) statistics
for M = 10, 20, 30 and 50 when implemented to absolute returns. Looking at the results
for the Canadian Dollar, the McLeod-Li and Peña-Rodriguez tests do not reject the null
hypothesis of conditional homoscedasticity for any value of M . The Harvey-Streibel test
rejects the null although the statistic is relatively close to the critical value. Finally, the
Q∗M/3−1(M) statistic rejects clearly the null, specially for large values ofM as, for example,
M = 30 or 50. Therefore, the conclusions on whether the Canadian Dollar returns are
homoscedastic are contradictory depending on the statistics used to test the null.

A similar result is obtained for the returns of the exchange rates of the Euro against the

3The data are freely available from the web page of Professor Werner Antweiler, University of British
Columbia, Vancouver BC, Canada. The exchange rates have been transformed into returns as usual by
taking first differences of logarithms and multiplying by 100, i.e., yt = 100(log(pt)− log(pt−1)).
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Dollar. In this case, the McLeod-Li and Peña-Rodriguez tests are just on the boundary of
the non-rejection region when the size is 5% and the number of correlations considered in
the statistic is 20, 30 or 50. Furthermore, ifM = 10, these tests suggest that this series is
conditionally homoscedastic. However, the Harvey-Streibel and the Q∗M/3−1(M) statistics
clearly reject the null hypothesis.

Finally, looking at the results for the Swiss-Franc exchange rates, the situation is some-
how reverse. As in previous examples, the Q(M) and D(M) tests are close to the bound-
ary of the rejection region when the size is 5%. However, the other two tests are more
conclusive and they do not reject the null.

Therefore, in the three examples considered in this section, it seems that taking into
account not only the magnitude but also the pattern of the sample autocorrelations of
absolute returns help to obtain a clearer answer on whether the corresponding returns
are homoscedastic or heteroscedastic. In the three cases, the statistics that only accounts
for the magnitude of the autocorrelations are rather inconclusive while our proposed test
gives a clearer answer. In these empirical examples, the answer of the test proposed by
Harvey and Streibel (1998) is in concordance with the Q∗M/3−1(M) statistic.

6. CONCLUSIONS

In this paper, we propose a new test for conditional heteroscedasticity that takes into
account that the autocorrelations of squared and absolute returns are usually small but
always positive. Incorporating this additional information, the new test has larger power
than several alternative tests previously proposed in the literature.

We derive the asymptotic distribution of the statistic and show, by means of Monte
Carlo experiments, that it is an adequate approximation to the finite sample distribution,
at least for the sample sizes usually encountered in financial time series. The results of
these experiments also show that, in general, the size of the test is closer to the nominal
when the test is implemented on absolute observations rather than on squares.

With respect to the power, we show that, in the context of SV models, the new statistic
has larger power than the McLeod-Li and Peña-Rodriguez tests specially if the volatil-
ity is highly persistent or has long memory. Therefore, the new test is more powerful
without loosing its size properties. When compared with the Harvey and Streibel (1998)
test, we show that the latter test has larger power in a very narrow region close to the
homoscedasticity if the sample size is very small. However, the power of the test seriously
deteriorates when the volatility is not highly persistent as can be the case, for example,
when analyzing environmental series; see Tol (1996) and Peña and Rodriguez (2003b).
Furthermore, even if the volatility is highly persistent if the sample size is moderate or
large, as often encountered in the empirical analysis of financial time series of returns, the
power properties of our proposed test are clearly better than the Harvey-Streibel test.
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M\i 1 [M/3]− 1 M − 1
10 (3.93, 1.55, 1.46) (3.93, 1.54, 1.45) (3.35, 1.19, 1.57)
20 (3.89, 1.28, 1.75) (5.62, 2.33, 1.45) (3.16, 0.87, 2.02)
30 (3.88, 1.14, 1.94) (6.22, 2.55, 1.49) (3.10, 0.73, 2.33)
50 (3.87, 1.00, 2.22) (6.41, 2.46, 1.60) (3.06, 0.60, 2.80)

Table 1. Values of the constants (β, µ, σ−1) for some particular cases in the normal ap-
proximation to the asymptotic distribution of Q(M).

Gaussian white noise
y2t |yt|

M\T 500 2000 500 2000
12 DM 0.048 0.050 0.051 0.050

Q(M) 0.048 0.050 0.053 0.048
Q∗1(M) 0.048 0.048 0.052 0.053
Q∗3(M) 0.045 0.049 0.049 0.051
Q∗11(M) 0.040 0.046 0.044 0.047

24 DM 0.045 0.048 0.048 0.049
Q(M) 0.054 0.051 0.058 0.050
Q∗1(M) 0.056 0.052 0.059 0.054
Q∗7(M) 0.046 0.049 0.051 0.049
Q∗23(M) 0.034 0.046 0.039 0.045

36 DM 0.041 0.048 0.050 0.049
Q(M) 0.059 0.051 0.062 0.052
Q∗1(M) 0.059 0.056 0.064 0.054
Q∗11(M) 0.049 0.050 0.052 0.051
Q∗35(M) 0.028 0.043 0.033 0.045
NM 0.050 0.047 0.053 0.051

Student-5 white noise
y2t |yt|

500 2000 500 2000
0.061 0.069 0.047 0.051
0.065 0.074 0.051 0.054
0.052 0.061 0.049 0.053
0.039 0.048 0.047 0.051
0.028 0.037 0.041 0.048
0.064 0.078 0.044 0.049
0.064 0.086 0.054 0.055
0.055 0.073 0.054 0.054
0.032 0.045 0.048 0.049
0.023 0.036 0.036 0.046
0.062 0.082 0.039 0.048
0.063 0.089 0.056 0.053
0.053 0.079 0.059 0.056
0.030 0.044 0.050 0.048
0.020 0.034 0.031 0.043
0.044 0.046 0.048 0.049

Table 2. Empirical sizes of Q(M), DM , NM and Q∗i (M) tests, i = 1,M/3−1 andM−1 for
squared and absolute observations of homoscedastic Gaussian and Student-5 white noise
series of sizes T = 500 and 2000.
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T = 512 T = 1024
Parameters M = 12 M = 24 M = 36 M = 12 M = 24 M = 36
{φ, d, σ2η}
{0.98, 0, 0.01} DM .676 .674 .647 .939 .946 .938

Q(M) .727 .725 .713 .965 .968 .964
Q∗M/3−1 .828 .855 .860 .986 .994 .990
NM .665 .665 .665 .775 .775 .775

{0.9, 0.2, 0.01} DM .392 .370 .326 .706 .690 .646
Q∗0 .450 .405 .365 .746 .715 .664
Q∗M/3−1 .593 .573 .563 .857 .850 .830
NM .376 .376 .376 .466 .466 .466

{0, 0.45, 0.1} DM .229 .209 .189 .493 .476 .453
Q∗0 .253 .251 .220 .504 .516 .514
Q∗M/3−1 .363 .380 .392 .661 .683 .693
NM .382 .382 .382 .564 .564 .564

Table 3. Empirical powers of the DM , Q(M), Q∗M/3−1 and NM tests for absolute observa-
tions of LMSV (1, d, 0) processes.

a) Canadian dollar
M 10 20 30 50

Q(M) 0.70 0.75 0.68 0.61
Q∗i (M) 1.05 1.72 2.29 1.97

DM 0.51 0.65 0.64 0.62
NM 1.28 1.28 1.28 1.28

b) EUROS

10 20 30 50

0.94 1.30 1.31 1.17

1.77 2.60 3.66 3.48
0.84 1.04 1.11 1.07

3.34 3.34 3.34 3.34

c) Swiss franc

10 20 30 50

0.59 0.91 1.01 0.91

0.56 0.31 0.50 0.37
0.56 0.83 0.98 0.95

0.69 0.69 0.69 0.69

Table 4. Ratio between the value of the statistic and the corresponding 5% critical value
for the NM, DM , Q(M) and Q∗M/3−1(M) statistics for M = 10, 20, 30 and 50 when imple-
mented to absolute returns..
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Fig. 1. Differences between empirical and nominal rejection probabilities, α = 0.05, of
the Q∗i (M) test, i = 0, . . . ,M−1, for non-linear transformations of Student-t5 noises with
T=500 (· · · ), T=1000 (−·), T=2000 (−−) and T=4000 (–).
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Fig. 2. Differences between empirical and nominal rejection probabilities, α = 0.05, of
the Q∗i (M) test, i = 0, . . . ,M − 1, for non-linear transformations of Gaussian noises with
T=500 (· · · ), T=1000 (−·), T=2000 (−−) and T=4000 (–).

17



0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
σ2

h =0.2  d=0

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
σ2

h =0.2  d=0

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
σ2

h =0.6  d=0

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
σ2

h =0.6  d=0

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
σ2

h =1  d=0

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
σ2

h =1  d=0

Fig. 3. Empirical powers of the Q(24) (· · · ), D24 (−·), NM (−−) and Q∗7(24) (–) tests for
absolute observations of ARSV (1) processes with T=100 (left panels) and T=512 (right
panels) and C.V.=0.22 (first row), 0.82 (second row) and 1.72 (third row).
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Fig. 5. Empirical powers of the Q(24) (· · · ), D24 (−·), NM (−−) and Q∗7(24) (–) tests
for absolute observations of LMSV processes with long memory parameter d=0.2 and
sample sizes T=100 (left panels) and T=512 (right panels) and C.V.=0.22 (first row),
0.82 (second row) and 1.72 (third row).
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Fig. 6. Empirical powers of the Q(24) (· · · ), D24 (−·), NM (−−) and Q∗7(24) (–) tests
for absolute observations of LMSV processes with long memory parameter d=0.4 and
sample sizes T=100 (left panels) and T=512 (rigt panels) and C.V. = 0.22 (first row),
0.82 (second row) and 1.72 (third row).
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Fig. 7. Empirical powers of the nominal 5% QML(12) (lines) and Q∗4(12) (lines with
circles) tests for the absolute transformation of LMSV (1, d, 0) processes with T=512
(–), T=1024 (−−) and T=4096 (· · · ).
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Fig. 8. Series of returns with the corresponding autocorrelations of absolute returns.
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