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Abstract. A methodology for the simulation of the
wind power scenario for a short term horizon (one or two
days in advance) is proposed. The covariance of the histor-
ical errors and the wind power forecast are use to generate
a conditional random variable that represent the power
wind production as a scenario. With the information pro-
vided by the scenario simulation, the energy deviation dur-
ing a period and the prediction interval for each hour are
obtained. The Beta distribution is used to represent the
behaviour of the wind power production due to its better
performance.

With the results, it is possible to quantify the uncer-
tainty of wind energy production. Finally, comparing the
covariance and correlation of the simulated errors with his-
torical errors, the procedure of the methodology is vali-
dated.
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1 Introduction

When working with wind energy, one of the most dif-
ficult tasks is dealing with the uncertainty associated
to the future production. From the technical point of
view, all the forecast wind power errors must be com-
pensated to supply the power demanded by the load.
In the energy market context, these uncertainties in-
crease the risks that the utilities are exposed to, since
the deviations in the production can be penalized eco-
nomically by the System Operator (SO). The energy
cost is then increased, and this is the main reasons
for seeking to quantify the uncertainty of the forecast
wind power.

The agents use the wind forecasting tools, either
meteorological, statistic or a combination of both, to
estimate the wind power production for a short time
horizon. This information is generally required for SO
and must be provided by the utility. Moreover, it is an
indispensable tool for the design of market strategies.

The information provided by the prediction tools is

the power wind estimation and some levels of reliabil-
ity associated with the prediction. However, this in-
formation is not enough to know the order of possible
deviations of the energy. The analysis of the historical
data provides valuable information that can be used
to estimate the wind production uncertainty.

In [1] the wind power and the load demand pre-
dictions is analysed, to achieve the uncertainty and
quantify it. The study case is a small island, where
the proportion of wind energy is relevant compared
with the total load demand. In this work, the error
is not related to the prediction horizon and the pre-
diction deviations are calculated in absolute terms.
The methodology is validated on typical days, pro-
filing and quantifying the economical deviation when
dealing with different scenarios and levels of uncer-
tainty.

An alternative approach for calculating the predic-
tion error is made in [2] using a dependent function
of the prediction horizon and the amount of installed
power. In [3], an empirical approach is used to calcu-
late the prediction error as a proportion of the total
production, based only on the prediction time horizon.

In [4], a methodology that relates the prediction er-
rors at different prediction horizons through a covari-
ance matrix is used. In this work, the wind power pro-
duction is represented as a Non-Parametric function
to simulate the behaviour of the variable in scenarios.

The representation of the wind power prediction as
a Beta distribution is proposed in [5], used to calcu-
late the probability function of errors in the predic-
tion. The prediction horizon is used to determine the
parameters of the probability distribution.

The motivation of the present work is accurately
calculate the possibles deviations of the energy, con-
sidering the interdependence among the errors and
the wind power at different time horizons. A joint
probability distribution will be the ideal solution to
achieve the possible energy errors during a future pe-
riod, but the non-linear and the non-Normality of the
wind power production made this task complex. The
possibles deviations of the energy and the prediction
intervals are necessary to achieve the proper operation
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of the electrical system, through dimensioning of the
storage elements, development of reserves programs
and market strategies, amount other operational prob-
lems.

The historical forecast errors at different horizons
are used to calculate the covariance matrix, and this
matrix is use to generate a multidimensional random
variable that simulates the prediction errors, main-
taining the interdependence structure. A statistics
transformations is applied before obtaining the condi-
tioned variable that represent the possible production
scenarios for future horizon. Finally, energy devia-
tions and the prediction intervals are calculated.

2 Proposed Methodology

A data set of a real wind farm is use as study case; the
information for two consecutive years is available for
analysis (this data set is explained with more details
in next sections).

With these data, the forecast errors are calculated
as the difference between power productions and pre-
dictions. The information required for the analysis
consists of wind power production, hour by hour, and
the forecasts made in the past with the predictive tool
for every hour, performed h hours earlier:

êt+h|t = pt+h − p̂t+h|t ∀ t, h

εt =
[
êt|t−1, êt|t−2, · · · , êt|t−H

]T ∀ t, h (1)

Where the notation t+ h|t refers to the predictions
made for hour t+h at time t; and h = [1, 2, . . . , H].
In (1), errors can be represented as a normal dis-

tribution [1, 6] but the conditional errors in the wind
power prediction can not be represented in that way
[7]. The information of the prediction errors can be
concentrated in a covariance matrix Σt, as shown in
equation 2.

Σt = (εtεTt ) (2)

This covariance matrix concentrates all the avail-
able information present on the historical errors and
the interdependence of them. The covariance matrix
for this single case is stationary, but can be update
using newer values like is done in [4]. Figure 1(a) rep-
resents the covariance matrix calculated with all the
historical data. Figure 1(b) represents the correla-
tion matrix of the forecasting errors, enabling to see
the linear relationship between each pair of prediction
time horizons.

The strategy proposed here uses the simulation of
the wind energy production in the short term to ob-
tain the behaviour through the conditional distribu-
tion. The simulated scenarios are analysed to find the
possible energy deviations during a period and the
prediction intervals for each hour.

The simulation scenarios must reproduce the be-
haviour of the wind power production. Therefore, dif-
ferent Beta distribution are used in each hour, instead

of Gaussian distributions, because the variable be-
haviour using Beta distribution is better represented,
[8, 9, 7, 5].

Using a Multivariate Gaussian random number gen-
erator a variable of dimension H is created, which
simulates the forecasting errors behaviour, X(s)

h , (3);
with mean zero and a covariances matrix, Σt. A set
of possibles predictions errors are generated s times,
achieving the structure and uncertainty in each ran-
dom variable.

Xh ∼ Nh(µ0,Σt) (3)

For simplicity, the prediction errors are assumed
stationary of second order and with mean value null.
According to the previous assumption, a statistical
transformation is applied to X(s)

h , from a joint Gaus-
sian distribution to a conditional Beta distribution.
This process requires two steps, from the joint Gaus-
sian distribution to the Uniform distribution, and
then, from the Uniform distribution to the conditional
Beta Distributionm, equations (4) and (5).

Y
(s)
h = F (X(s)

h | µh, σh) ∀ s, h (4)

Where µh is a vector of zeros and σh is the vector
that contains the standard deviation of the predic-
tion errors, std(êt|t−h). The Uniform variable can be
considers as a random seed coming from the simula-
tion errors (joint Gaussian distribution) to generate
the conditional Beta Distribution.

The simulated wind power production scenarios for
the future horizon, p(s)

t+h|t, are represented using Beta
distributions, obtained through:

p
(s)
t+h|t = F−1(Y (s)

h | α̂t,h, β̂t,h) ∀ s, h (5)

In (5), the parameters of the conditional Beta dis-
tribution α̂t,h and β̂t,h are calculated in function of
µ̂t,h and σ̂2

t,h, as it is shown (6) and (7).

α̂t,h = µ̂t,h

(
µ̂t,h (1− µ̂t,h)

σ̂2
t,h

− 1

)
∀ h (6)

β̂t,h = (1− µ̂t,h)

(
µ̂t,h (1− µ̂t,h)

σ̂2
t,h

− 1

)
∀ h (7)

Where the conditional mean value is considered
as the expected wind power production for the near
future, µ̂t,h = p̂t+h|t, and the conditional variance
is approximately the variance of historical errors,
σ̂2
t,h = Var(êt|t−h). A conditional variance, more ac-

curate, could also consider the expected production
Var(êt|t−h|p̂t|t−h), which will be included in future re-
leases.
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(a) Covariance matrix.
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Fig 1: Historical Analysis of the errors.

3 Results

A Study Case

The data set for the study case consists of the pro-
duction of wind power, hour by hour, and power fore-
casts for each hour, made h hours earlier, from March
2001 to April 2003. The prediction of wind power was
obtained by using the forecasting tool SIPREOLICO
[10, 11], developed by the University Carlos III of
Madrid for Red Eléctrica de España, the operator of
the electrical system. With this data set, the predic-
tion errors and correlation matrix are calculated.

All the data are normalized with the nominal ca-
pacity of the wind farm. There are 18,937 power mea-
sures and predictions for each hour. However, not all
the data set is available because technical interrup-
tions (either of the wind farm or the forecasting tool),
so the data was filtered in order to exploit as much
information as possible.

For the time t the covariance matrix of the errors,
Σt, and the wind power prediction, p̂t+h|t are avail-
able. The horizon has been chosen as H = 38 hours,
taken as reference the Spanish regulation, where util-
ity must inform to the SO the estimated production
of one day (24 hours) 14 hours before [12]. For the
proposed analysis, 10,000 simulated scenarios are sim-
ulated to quantify the uncertainty of the prediction.
The proposed method is not CPU-time demanding,
so for other types of analysis the number of scenarios
could be increased.

Based on the simulated scenarios, the possible en-
ergy deviations and the prediction intervals are calcu-
lated.

B Scenarios Simulation

Figure 2 shows only thirty of the simulated scenarios,
p

(s)
t+h|t, and the wind power prediction, p̂t+h|t. Each

scenario follows a path that inherits the sequence of
the errors, which means that each point of the sce-

nario depends on its previous value, the historical er-
rors variance and the wind power prediction.

Figure 3 plots the prediction intervals obtained from
all the scenarios simulated, represented in bands; in
addition, the wind power forecasting, p̂t+h|t and power
production, pt+h are drawn. Each band represents the
probability that the wind power production has to be
within the range covered by this probability range at
future time h. The band with the bigger size cor-
responds to 90% and within this, is the 80% band,
being a little narrower and darker. The scale con-
tinues in this way until the 10% band, which is the
narrowest and darkest. For a smaller band range, less
is the probability for the wind power production to be
within it.

The main advantage of the proposed methodology is
the simplicity to achieve the simulated scenarios and
the ability to quantify the uncertainty in the wind
power predictions, taking into account the relationship
between the errors at different time horizons and the
conditioned behaviour of the wind power prediction.

C Energy Deviations

Due to the uncertainty in the wind power forecast, it
is necessary to reserve an amount of energy to cover
the energy deviation between programmed and real
productions. In some cases, the amount of energy re-
served is oversized or calculated on a heuristic way,
with the intention of avoiding operation problems.
However, these conservative strategies means that re-
sources are not exploited in a sustainable way and in
some cases are underutilized.

The advantage of the simulated scenarios is the pos-
sibility to calculate the energy deviation, as the inte-
gral of the difference between the wind power forecast
and the wind simulated scenarios, (8). In the present
work, the magnitudes of the deviations and the fre-
quency in which they occur are calculated. The last 24
hours of simulated time horizon are consider, h1 = 15
and h2 = 38 (as mentioned above, using as reference
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Fig 2: Possibles scenarios and forecast
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Fig 4: Energy deviation for all scenario, E(s)

the Spain regulation). Figure 4 shows the histogram
of the energy deviations. With this curve it is possible
to chose the amount of energy related with a proba-
bility level of errors.

E(s) =
∫ h2

h1

(
p̂t+h|t − p

(s)
t+h|t

)
dh ∀ s (8)

D Monitoring the Errors Structure

As a validation of the method procedure, the possi-
bles errors are calculated as the difference of the sim-
ulated scenarios, p(s)

t+h|t, and the real power produc-
tion, p̂t+h|t. The covariance and correlation matrices
of the simulated data are shown in Figures 5(a) and
5(b) respectively. These matrices are similar with the
matrices obtained from historical data, Figures 1(a)
and 1(b). It is possible to see that both covariance
and correlation matrices maintains the same structure
and values during the steps in the transformations.

4 Conclusions

The method presented here allows the calculation of
the errors in the prediction for the wind power pro-
duction through the simulated scenarios, using the in-
terdependence of the errors presented in the historical
data.

The uncertainty behaviour of the wind power pro-
duction was replicated with simulation scenarios. The
main advantage of the methodology is that each point
in the prediction path of each the scenarios depends
of the values of the previous points and is conditional
for the wind power prediction value, recreating the na-
ture of the original variable. This makes possible to
model the non-linear and asymmetrical behaviour of
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Fig 5: Analysis of the scenarios simulation errors

the wind power prediction variable.
The calculation of simulated trajectories is very

promising because is it possible to obtain the possi-
ble energy deviation and the prediction errors inter-
vals, making easy to understand the behaviour of the
wind energy production and the relationship with its
prediction. The information obtained is useful to cal-
culate the optimal operation of the control centre for
renewable energy, to design investment strategies, to
calculate the optimal operation of systems with stor-
age capacity and others operations problems.
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