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The classical J2 plasticity theory is widely used to describe the plastic response of metallic materials.
However, this theory does not provide satisfactory predictions for materials which exhibit pressure sen
sitive yielding or plastic dilatancy. Another difficulty is the difference between the values of yield stresses
in tension and compression for isotropic materials, the so called strength differential effect (SD), leading
to the asymmetry of the elastic range. The Burzyński yield condition, proposed in 1928, can be used to
overcome some of these problems. In this paper an implicit integration of the elasto plastic constitutive
equations for the paraboloid case of Burzyński’s yield condition is formulated. Also, the tangent operator
consistent with the integration algorithm was developed and is presented. The proposed model was
implemented in a commercial Finite Element code and different kinds of tests reported in the literature
were simulated. The comparison between the numerical and experimental results shows that the plastic
ity theory with the paraboloid case of Burzyński’s yield condition describes adequately the strength dif
ferential effect, which is present in many kinds of materials significant for recent applications.
1. Introduction

The analysis of complex structural components, their design
optimization and structural reliability assessment require the use
of proper and accurate constitutive models to describe a material
behaviour. To date, an overwhelming majority of structural analy
sis employ the classical J2 plasticity theory to describe the plastic
response of metallic alloys. This theory assumes that hydrostatic
stress has no effect on plastic flow and the material is incompress
ible in the plastic regime.

However, there are reported in the literature on experimental
results for metallic solids under quasi static conditions, which ex
hibit pressure sensitive yielding and plastic dilatancy and reveal
inconsistency of the model based on the Huber Mises yield condi
tion [1,2]. In particular, this effect can be significant in designing,
structural elements or machine parts in which stress concentra
tions may appear resulting in the increase of the value of the first
stress invariant.

Another difficulty to be taken into account is the difference of
the values of yield stresses in tension and compression for isotropic
materials, the so called strength differential effect, leading to the
asymmetry of the elastic range.

The observed hydrostatic stress effect on the yield behaviour of
the investigated metallic materials is commonly described in the
literature by means of the adaptation of the criterion known in
the soil mechanics in which the linear dependence of the yield lim
it on hydrostatic stress is assumed. Such a criterion was proposed
originally in 1928 by Burzyński [3] and repeated later by other
authors, e.g. by Drucker and Prager [4,5]. Recently, this kind of cri
terion has been used to model the pressure sensitive yielding of
metals [6 8]. However, it is known that the criterion represented
by a conical failure surface in the space of principal stresses can
only roughly approximate real behaviour of a material in the lim
ited range of hydrostatic stress and fails to describe properly the
states near to the apex of the failure cone [9].

In this paper the general Burzyński yield condition is reviewed
showing that the Huber Mises, Drucker Prager and paraboloid
Burzyński Torre conditions can be received as particular cases of
this more general model.

Then, an implicit integration of the elastoplastic constitutive
equations for the paraboloid Burzyński yield condition is formu
lated. Also, the tangent operator consistent with the integration
algorithm was developed and is presented. The proposed model
was implemented in the Finite Element code ABAQUS through
the user subroutine UMAT. This is a new contribution, which can
find wide applications in practical analysis of complex states of
stress in plasticity as well as viscoplasticity of metals and metal
matrix composites [10]. In the latter paper an identical paraboloid
yield criterion was considered. The authors related it with the
names of Mises and Schleicher ([11] for a more detailed discussion
of the historical background of the development of the paraboloid
failure criteria). However, Zhang et al. [10] do not provide an inte
gration algorithm of the developed equations of plasticity with the
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paraboloid yield condition or an implementation into a finite ele
ment code. Therefore, the results presented in our paper are impor
tant and relevant for recent applications.

In order to validate the discussed constitutive model of plas
ticity with the paraboloid case of Burzyński’s yield condition, the
tensile test on notched tensile specimens of the 2024 T3 alumi
num alloy performed earlier by Wilson [6] were simulated. The
computations were compared with the experimental data and
the results of numerical calculations made with the application
of the Drucker Prager yield condition presented in [6]. Also,
the experimental data obtained by Iyer and Lissenden [12] for
the polycrystalline nickel base alloy Inconel 718, which reveals
the strength differential effect, were applied. Numerical simula
tions of experimental tests of a thin walled tube subjected to
tension combined with torsion, as well as a thin walled tube
subjected to compression combined with torsion, were per
formed. Such non proportional loading paths containing corners
provide a rigorous test of a plasticity model. The comparison
of the results of computations with experimental data shows
that the application of the plasticity theory with the Burzyński
case of the paraboloid yield condition is more consistent with
experiment than the classical plasticity theory with the Huber
Mises yield condition.
2. The Burzyński yield condition

The study of the literature of the subject shows that the ori
ginal results of Burzyński presented in his doctoral thesis and in
his further papers [3,13] are of fundamental significance and re
main important also for recent studies of models of solids with
asymmetric behaviour of the elastic range. It concerns soils
and rocks (e.g. applications in modelling of interaction of a cut
ting tool with geological settings [14]), as well as modern mate
rials (e.g. polymers [15], composites and porous solids [16,17].

The concept of the Burzyński yield condition was presented in
detail and compared with several later independent propositions
by _Zyczkowski [18,19] as well as Skrzypek [20] and Jirásek et al.
[21]. The yield criterion proposed by Huber, Mises and Hencky
[22 24] for isotropic solids characterized with equal values of yield
stresses in tension and compression was well established and con
firmed experimentally in the twenties of the last century. The open
question remained, however, in the subject of yield criteria for
isotropic materials revealing different values of yield stresses in
tension and compression, the so called strength differential (SD)
effect.

Yield conditions with plastic behaviour depending on hydro
static pressure may be described by equations of rotationally
symmetric surfaces in the space of principal stresses with the sym
metry axis: r1 = r2 = r3. Their general form is: f(rm, re) = 0) where
rm is the hydrostatic stress and re corresponds to the effective
stress.

rm
1
3
r : 1; re

3
2
r0 : r0

r
; r0 r rm : 1 ð1Þ

with r the Cauchy stress tensor, r
0

the stress deviator, and 1 the
unit second order tensor.

The Burzyński’s formulation in the general form f(rm, re) = 0 is
presented as a three parameter condition, having physical founda
tions in an energy based criterion [3,11,13]:

Ar2
e þ Br2

m þ Crm 1 0 ð2Þ

Burzyński evaluated the parameters A, B and C using uniaxial ten
sion (to obtain the yield stress rT

Y ), uniaxial compression (to obtain
rC

Y ) and simple shear tests (sS) resulting in the following [19]:
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In order to account for isotropic hardening rT
Y ;rC

Y and sS are as
sumed to be dependent on the effective plastic deformation �ep. This
equation describes in the space of principal stresses a hyperboloid
(if 3ðsSÞ2 < rC

YrT
Y ), or an ellipsoid (if 3ðsSÞ2 > rC

YrT
Y ). To reduce the

number of independent parameters to two, some particular cases
of the relation between sS 3

p
with rT

Y and rC
Y are analysed [19].

With the relation:
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Eq. (3) turns into the formula of a circular cone (Burzyński Druc
ker Prager cone):

re þ 3
rC

Y rT
Y

rC
Y þ rT

Y

rm 2
rC

YrT
Y

rC
Y þ rT

Y

0 ð5Þ

while with sS 3
p

rT
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Y

q
the relation in Eq. (3) transforms into the

equation of a paraboloid, called by _Zyczkowski the Burzyński Torre
paraboloid yield condition [19,25].
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Introducing the relation between uniaxial compression and uniaxial
tension yield stresses k rC

Y=rT
Y , Eq. (6) can be written as:
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Y rT
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after solving with respect to rT
Y and extracting the positive root, this

equation takes the form:
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Further, if rC
Y rT

Y rY and sS rY= 3
p

, the Huber Mises circular
cylinder is obtained.

The relevant limit curves of the Burzyński model in the plane
rm re are shown in Fig. 1.

Unlike yield formulations such as the Huber Mises and Drucker
Prager criteria or others, having mostly an empirical character, the
Burzyński model has not been implemented into a commercial finite
element code. In this article, the Burzyński paraboloid model is ana
lysed and used for the first time in the algorithm of integration of the
plasticity equations with the paraboloid yield condition and imple
mented in the Finite Element program ABAQUS.

3. Integration of the plastic equations with the Burzyński–Torre
paraboloid yield condition

Within the finite element method the integration process is
local in space and occurs at quadrature points of the finite ele
ments. The incremental integration of the constitutive model is a
strain driven process in which the total strain tensor increment
at each quadrature point is given at a certain time and both the
stress and the state variables should be updated.

For structural metals elastic strains are usually very small com
pared to unity or to plastic strains. For hypo elastic materials and
with this restriction, the rate of deformation tensor _e, can be
decomposed as the sum of an elastic _ee and a plasic part _ep into
the form:

_e _ee þ _ep ð9Þ

and the stress rate, in terms of the elastic deformation rate tensor
is:

_r C : ð _e _epÞ ð10Þ
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Fig. 1. The Burzyński yield condition and its specific cases: an ellipsoid, paraboloid, cylinder and cone.
In the above equation C is the tensor of isotropic elastic moduli:

C 2GI0 þ K1� 1 ð11Þ

where G = E/2(1 + m) and K = E/3(1 2m) are elastic constant, and E
and m are Young’s modulus and Poisson’s ratio respectively. Also 1
is the unit second order tensor and I

0
is the unit deviatoric fourth

order tensor. The plastic part of the rate of deformation tensor
has a direction normal to the flow potential, i.e:

_ep _k
@U
@r

ð12Þ

with _k being the plastic proportionality factor, and U the Bur
zyński Torre paraboloid yield surface:

U rm;re;rT
Y

� � 1
2k
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e
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The plastic part of the macroscopic strain increment and the
effective plastic strain increment are related by:

r : _ep rT
Y

_ep ð14Þ

The plastic flow proportionality factor _k can be written as:

_k
rT

Y
_ep

r : @U
@r

ð15Þ

To complete the formulation, the Kuhn Tucker loading unload
ing conditions are considered:

_k P 0; U 6 0; _kU 0 ð16Þ

which means that _k 0 and U < 0 during elastic loading or unload
ing and _k > 0 and U = 0 during plastic loading. The equation _kU 0
represents the consistency condition.

To integrate the set of non linear equations into a finite element
scheme at the level of a material point two different tasks must be
accomplished. The first one consists in update stress and state vari
ables driven by the strain increment. The second is related to cre
ate a consistent tangent operator to preserve the quadratic
convergence of the iterative solution based on Newton’s method.

Numerical solutions of Eqs. (10), (12), (14), (16) in order to
obtain _r; _ep; _k and _�ep, are developed following the fully implicit
backward Euler integration using the classical return mapping
algorithm [26,27]. The return is performed at time (n + 1) with
the corresponding updated stress:

rðnþ1Þ rtrial
ðnþ1Þ C : Dep rtrial

ðnþ1Þ ð2GI0 þ K1� 1Þ : Dep ð17Þ
with the trial stress given by:

rtrial
ðnþ1Þ rðnÞ þ C : De ð18Þ

From the yield condition during plastic loading in Eq. (16) we
have:

U 0 ð19Þ

From the associated flow rule in Eq. (12) and separating hydro
static and deviatoric components we obtain:
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or:

Dep 1
3

Dep1þ Deqnðnþ1Þ ð21Þ

In the above: n(n+1) = (3r
0
/(2re))(n+1) is the unit vector in the devia

toric space normal to the yield surface, and Dep and Deq are vari
ables introduced by Aravas [28] in the following form:
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ð22Þ

and transformed using Eq. (22) to eliminate Dk into:
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0 ð23Þ

Bearing in mind the relation nðnþ1Þ ntrial
ðnþ1Þ [29], and introducing

the expression of Eq. (21) in Eq. (18), it can be written that:
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ðnþ1Þ KDep1 2GDeqntrial

ðnþ1Þ ð24Þ

with:
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ðnþ1Þ

3r0

2re
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1
3
rtrial
ðnþ1Þ : 1; and rtrial

eðnþ1Þ
3
2
r0trial
ðnþ1Þ : r0trial

ðnþ1Þ

r

which allows one to obtain, separating Eq. (24) into its deviatoric
and hydrostatic components, the following relations:

rmðnþ1Þ rtrial
mðnþ1Þ KDep

reðnþ1Þ rtrial
eðnþ1Þ 3GDeq

ð25Þ

From the integration of Eq. (14) we have:

rT
Yðnþ1ÞDep rðnþ1Þ : Dep ðrmDep þ reDeqÞðnþ1Þ ð26Þ
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After some algebraic transformations on Eqs. (19), (23), (26), the
three scalar non linear equations which should be solved to obtain
Dep, Deq, and �ep read:

ðaÞU rm;re;rT
Y

� �
6 0

ðbÞDep
@U
@re

� �
Deq

@U
@rm

� �
0

ðcÞDep ðrmDep þ reDeqÞ=rT
Y

ð27Þ

with rT
Y rT

Yð�epÞ; rm rtrial
m KDep and re rtrial

e 3GDeq, and all
variables evaluated in (n + 1) and omitted for simplicity. The values
of the variables are obtained following an iterative process using
the Newton Raphson procedure, with the updated stress at time
(n + 1) of the form:

rðnþ1Þ
2
3
reðnþ1Þntrial

ðnþ1Þ þ rmðnþ1Þ1 ð28Þ
Table 1
Material properties for the 2024-T351 aluminum alloy at room temperature.

E (MPa) m rT
0 ðMPaÞ n l rC

0 ðMPaÞ

71,708 0.33 384.05 15 0.86 407.49
4. Consistent tangent operator

To preserve the quadratic rate of asymptotic convergence of the
iterative solution based on Newton’s method, a consistent tangent
operator J, different in general from the continuum tangent moduli,
is proposed by the enforcement of the consistency condition at the
end of the step (n + 1) [26]:

J
@r
@e

� �
ðnþ1Þ

@Dr
@De

� �
ðnþ1Þ

ð29Þ

Deriving Eq. (10) and omitting the subscript (n + 1) for simplicity, it
follows:

dDr ð2GI0 þ K1� 1Þ : dDe KdDep1 2GdDeqn 2GDeqdn

ð30Þ

and from Eq. (25):

drm drtrial
m KdDep dre drtrial

e 3GdDeq

Considering the above relations and deriving the yield function
(27.a) the plastic flow (27.b) the evolution of �ep (27.c) and after
some algebraic transformations the following equations are ob
tained as a function of drtrial

m and drtrial
e :

dDep C11drtrial
m þ C12drtrial

e

dDeq C21drtrial
m þ C22drtrial

e
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e
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with Cij coefficients known.
Bearing in mind the relations:
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e
r0trial : dr0trial

dn dntrial 3
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e
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the consistent tangent operator can be written as:
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e
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rtrial
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C121� r0 trial þ 3KG

rtrial
e

C21r
0 trial � 1

þ 9
G2

rtrial
e

� �2 C22 þ
Deq

rtrial
e

� �
r0 trial � r0 trial ð33Þ

It should be noted that no matrix inversion is necessary in the
definition of this operator.
The proposed algorithm was implemented in the commercial
Finite Element code ABAQUS/Standard [30] through a user subrou
tine UMAT.
5. Simulation of tests on notched tensile specimens of 2024 T3
aluminum alloy [6]

In order to analyse the behaviour of the proposed model and the
integration algorithm, different tensile tests performed experimen
tally by Wilson [6] were simulated. The material considered is the
2024 T351 aluminum alloy. The true stress true strain material
characteristc ðrT

Y eÞ obtained from uniaxial tensile tests [6]
follows the Ramberg Osgood power law hardening relationship:

e
e0

rT
Y

rT
0

þ l rT
Y

rT
0

� �n

ð34Þ

where rT
0 is the reference stress (taken as the 0.2% offset of the yield

strength), e0 rT
0=E is the reference strain, and l and n are the

hardening coefficient and hardening exponent respectively. These
properties, including the Young Modulus E and Poisson’s ratio m
constants, are listed in Table 1. A compression test were also con
ducted by Wilson [6], and the resulting rC

0 is given in Table 1.
The geometry and dimension details of the notched round bar

specimens are given in Fig. 2, where the nominal diameter is
d = 12.7 mm the neck diameter is tn = 6.35 mm (d/tn = 0.5), and
the notch flank angle of the tubes a is equal to 45� in all cases.
The chosen notch root radii have three different values of
r = 0.127, 0.254 and 0.508 mm.

The experimental tests were simulated with the Finite Element
commercial code ABAQUS/Standard [30]. Due to the symmetry of
the model, only a quarter of the specimen needs to be taken into
account. The numerical analysis consists of 5700 axi symmetric
8 node elements with reduced integration, and with a refined
mesh near the notched region. The finite element mesh and the
detail of the mesh in the notched region for the case of
r = 0.508 mm are shown in Fig. 3.

Figs. 4 6 show the load displacement curves obtained in
numerical situation using the Burzyński paraboloid model for dif
ferent values of the strength differential factor k:k = 1, 1.06, 1.1
and 1.2. These results are compared with the experimentally ob
served behaviour of the specimen [6].

If the behaviour of the material at compression is the same as at
tension, the Burzyński Torre paraboloid yield function, with the va
lue of k rC

0=rT
0 1, leads to the Huber Mises yield criterion. In all

of the analysed specimens, the response of the notched round bar for
this value k = 1.0 overshoots the real response of the material. The
same behaviour was obtained by Wilson [6] for the Huber Mises
yield function. Using the constant value of k rC

0=rT
0 407:49=

384:05 1:06 (Table 1) during the simulation, gives the results
which better predict the behaviour of the specimen and the simula
tions match the experimental data when the chosen k values are in
the range of 1.06 and 1.1.
6. Simulation of tests on the Inconel 718 thin-walled tubes
subjected to torsion after tension or compression [12]

The strength differential effect has been also observed by Gil
et al. [31,32] in the aged Inconel 718, a nickel base superalloy used
4



Fig. 2. Configuration of the notched specimen with an axisymmetric close up of the
notch.
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Fig. 4. Load–displacement results for r = 0.127 mm [6].
extensively for aeropropulsion structures. The elastic properties of
the material are E = 165 GPa and m = 0.297, and the stress strain
responses in uniaxial tension and compression reported by Iyer
an Lissenden [12] are presented in Fig. 9. Iyer and Lissenden [12]
proposed a set of experiments with non proportional loads to char
acterize this material. The experiments developed by [12] consist
in axial torsional tests of tubular specimens (subjected to an axial
force and torque as shown in Fig. 7) with the outer and inner
Fig. 3. The finite element mesh and the detail
diameters of D0 = 21.0 mm and Di = 15.9 mm respectively, and
the length Lg = 25 mm. The measured quantities considered were:
axial displacement (d), load (P), torque (T), and angle of twist (h).
From these quantities, the stresses and strains were calculated as:

r11
4P

p D2
0 D2

i

	 
 e11
d
Lg

ð35Þ

for tension and compression tests, and

r12
16TD0

p D4
0 D4

i

	 
 e12
c12

2
D0h
2Lg

ð36Þ

for torsion tests. The path of biaxial loading applied to the speci
mens and simulations consists in a uniaxial tension followed by tor
sion (see Fig. 10a) and a uniaxial compresion followed by torsion
(Fig. 10b). These tests were simulated by the FEM with the
Burzyński Torre paraboloid model.
mesh near the noth region (r = 0.508 mm).
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Fig. 5. Load–displacement results for r = 0.254 mm [6].
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Fig. 6. Load–displacement results for r = 0.508 mm [6].

Fig. 7. Dimensions of the thin-walled tubes.

Fig. 8. Finite element mesh of thin walled tubes.
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Fig. 9. Stress–strain curves for the Inconel 718 at tension and compression [12].

(a) (b)
Fig. 10. Path of biaxial loading applied to the specimens: tension followed by
torsion (a), compression followed by torsion (b).
The finite element mesh used in the computations in ABAQUS/
Standard [30], with a total of 4600 8 node elements, is shown in
Fig. 8, and the simulations of the specimen considering the non
proportional load paths cases are compared with the experimental
results given by [12].

Figs. 11 14 present the comparison between experimental
results and simulations for the Burzyński Torre paraboloid model
with two different values of the strength differential factor:
rC

Y=rT
Y 1:0 (where the strength differential is not considered)
and k = 1.1 for two non proportional load paths: tension followed
by torsion (Figs. 11 and 12) and compression followed by torsion
(Figs. 13 and 14).

In Figs. 11 and 12, where the load path applied to the specimen
consists in traction torsion tests following the displacement path
(axial and radial) shown in Fig. 10a, the obtained curves for both
k values provide good agreement with experimental data.

However, in Figs. 13 and 14, a significant discrepancy is shown
for the torsion after compression test (Fig. 10b) between the
6
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Fig. 11. Comparison between numerical and experimental results of tension
followed by torsion tests: tension.

0 0.005 0.01 0.015 0.02 0.025 0.03
Strain

0

100

200

300

400

500

600

St
re

ss
   

   
  [

M
Pa

]

Exp. torsion
k=1.00 torsion 
k=1.10 torsion

σ
12

γ12

Fig. 12. Comparison between numerical and experimental results of tension
followed by torsion tests: torsion after tension.
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Fig. 13. Comparison between numerical and experimental results of compression
followed by torsion tests: compression.
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Fig. 14. Comparison between numerical and experimental results of compression
followed by torsion tests: torsion after compression.
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experimental data and the results of simulations where the Bur
zyński model with k = 1.0 is used. Note that this case corresponds
with the consideration of the non SD effect. Nevertheless, for
k = 1.1 there is an excellent agreement between the numerical re
sults and the experimental data, highlighting how important con
sidering of the strength differential effect for a correct simulation
of the behaviour of the material at such a loading path is.
7. Conclusions

With the plasticity theory based on the Burzyński yield condi
tion, we have simulated tensile tests on notched specimens of
the 2024 T3 aluminum alloy [6], as well as tests on the thin walled
tubes of Inconel 718 subjected to torsion after tension or compres
sion [12]. The comparison between numerical and experimental
results reveals that the application of the plasticity theory with
the paraboloid case of the Burzyński yield condition correlates bet
ter with experimental data than the results obtained with use of
the classical plasticity theory with the Huber Mises yield condi
tion. These observations can lead to more general conclusion that
the discussed plasticity model with the paraboloid yield condition
makes it possible to describe adequately the strength differential
(SD) effect present also in other materials, as. e.g. high strength
metals, in particular with nano grains, as well as, in polymers,
for example in polycarbonates. The presented analysis creates also
a possibility for the formulation of a similar integration scheme in
the case of anisotropic materials for instance as in the methodol
ogy developed by Oller et al. [33] which is based on the paraboloid
isotropic yield criterion as a starting point. The criterion is to be ad
justed by certain transformation to the behaviour of an orthotropic
material.
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