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Abstract: In this work, closed-form expressions for the buckling loads of a weakened column with different boundary conditions are
presented. The cracked-column model is based on the well-known method consisting of dividing the column into two segments connected
by a rotational linear spring whose flexibility is related to the crack size and the geometry of the cross section. For the formulation of
closed-form expressions, the perturbation method is used and the results are compared with those found by directly solving the eigenvalue
problem.
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Introduction

The analysis of the stability of Euler-Bernoulli columns is a fun-
damental topic to design structures in civil, mechanical, aeronau-
tical, nuclear, and offshore fields. Buckling is one of the most
usual modes of instability of columnlike structures. Buckling of
intact columns under various end conditions was discussed by
Timoshenko and Gere �1965�. On the other hand, defects such as
cracks can appear in structures as a consequence of manufactur-
ing process as well during service loads. It is well-known that the
presence of cracks diminishes the stiffness of a structure, leading
to higher displacements for the same loads and a decrease in
natural frequencies.

A widely used method to analyze the mechanical behavior of
damaged �weakened� beams is to consider it as two beams con-
nected at the cracked section by a rotational spring whose stiff-
ness is related to the crack size and the geometry of the cross
section �Freund and Herrmann 1976�. This model requires the
continuity of displacements, bending moment, and shear force
and it promotes a discontinuity in the slope of the beam deflection
proportional to the bending moment transmitted. This cracked
beam model can describe not only the weakness due to a notch or
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crack, but also the behavior of robotic arm joint. Using this con-
cept of rotationally restrained junction, Wang et al. �2004� deter-
mined the exact buckling-load values of weakened columns with
several end conditions.

Caddemi and Caliò �2008� have solved the problem of buck-
ling of the multicracked Euler-Bernoulli column. The presence of
a concentrated crack is modeled considering singularities in the
flexural stiffness by means of Dirac’s delta distributions. Biondi
and Caddemi �2005, 2007� showed that this method is equivalent
to the internal rotational spring.

Explicit solutions are desirable for the practice of engineering
and, in this work, closed-form expressions are presented for the
buckling loads of Euler-Bernoulli weakened columns with differ-
ent boundary conditions. The crack is considered as an internal
rotational linear spring connecting the uncracked parts of the
column, whose flexibility is related to the crack size and the
geometry of the cross section. The analytical expressions are de-
rived using the perturbation method to solve the eigenvalue
problem resulting from the mathematical description of a cracked
column’s response behavior. The results are compared with
those found by applying other procedures, and validity limits are
established.

Buckling Loads by the Direct Method

Let us consider a column of length L and constant width W, cross
section area A, and moment of inertia I. We consider now that the
column has a crack, always open, of depth a, located at a distance
b, measured from one from the supports �see Fig. 1�. Following
the method proposed by Freund and Herrmann 1976 and further
followed by many others �Adams et al. 1978; Morassi 1993;
Narkis 1994; Fernández-Sáez et al. 1999; Fernández-Sáez and
Navarro 2002; Krawczuk et al. 2003; Wang et al. 2004; Loya
et al. 2006�, we can model the cracked beam as two beams con-
nected at the cracked section by a rotational spring whose stiff-
ness is related to the crack size and the geometry of the cross

section.

1

Cita bibliográfica
Published: Journal of Engineering Mechanics, vol. 136, n. 5, may 2010. Pp. 674-679 



The transverse displacement of each segment of the beam,
vk�x�, obeys the following equation:

EI
d4vk�x�

dx4 + Fc

d2vk�x�
dx2 = 0 �k = 1,2� �1�

Subscript k=1 means upper part of the cracked column and
subscript k=2 means lower part. This model preserves the conti-
nuity of displacement, bending moment, and shear force, and it
promotes a discontinuity in the slope of the column deflection at
the cracked section, ��, which is proportional to the bending
moment transmitted, M�b�

�� = CmM�b� �2�

where Cm=flexibility constant that can be expressed as

Cm =
W

EI
m��, geometry of the cross section of the beam� �3�

m being a function that depends on the crack depth ratio
�=a /W as well as on the geometry of the cross section of the
column, and can be evaluated using the theory of fracture me-
chanics. For the particular case of a beam of rectangular cross
section, the function m takes the form �Tada et al. 1985�

m��� = 2� �

1 − �
�2

�5.93 − 19.69� + 34.14�2 − 35.84�3 + 13.2�4�

�4�

Using the new dimensionless variables and constants given by

V =
v
L

� =
v
L

�2 =
FcL

2

EI
�5�

we can formulate the following eigenvalue problem:

Vk
IV + �2Vk� = 0 �6�

Eq. �6� must be solved with the corresponding end conditions
and the following compatibility conditions at the cracked section
�=b /L.
• Continuity of the transverse deflection

V1��� = V2��� �7�

Fig. 1. Model of the cracked column
• Jump in the slope of deflection

�� = V2���� − V1���� = �V2���� �8�

• Continuity of the bending moment, M

V2���� = V1���� �9�

• Continuity of the shear force, Q

V2���� + �2V2���� = V1���� + �2V1���� �10�

here, �= �W /L�m��� is the crack-severity parameter.
The general solution of Eq. �6� satisfying the above compat-

ibility conditions can be expressed as

V1��� = V0 +
�0

�
sin���� +

M0

�2 �1 − cos����� +
Q0

�2 �� −
sin����

�
�

0 	 � 
 � �11�

V2��� = V1��� + �V1����
�0

�
sin���� − ���; � 	 � 
 1 �12�

In this expression V0, �0, M0, and Q0, are, respectively, the
nondimensional displacement, slope, bending moment, and shear

force at �=0. The nondimensional bending moment, M̄, and shear

force Q̄ can be written from the true corresponding variables M
and Q as

M̄ =
ML

EI
; Q̄ =

QL2

EI
�13�

Then, imposing the end conditions, a homogeneous algebraic
linear system arises. To allow a nontrivial solution, the determi-
nant of the coefficient matrix should be zero and, consequently,
the corresponding characteristic equation can be obtained. For
typical boundary conditions, the following characteristic equa-
tions are derived:

Pinned-pinned

sin��� − �� · sin���1 − ��� · sin���� = 0 �14�

Clamped-free

cos��� − �� · cos���� · sin���1 − ��� = 0 �15�

Clamped-pinned

� cos��� − sin��� + �� sin���1 − ���	sin���� − � cos����
 = 0

�16�

Clamped-clamped

2 −
1

2
�4 + ��2�cos��� −

1

2
��2 cos�� − 2��� + � sin����� − 1� = 0

�17�

The above equations coincide with the ones developed by
Wang et al. �2004� and they must be numerically solved to obtain
the critical buckling loads. Note that for the case of undamaged
column ��=0�, �=� with �2=FL2 /EI, being F the buckling load
corresponding to the undamaged column.

Perturbation Method: First-Order Solutions

Alternatively, the perturbation method can be applied to solve

Eq. �6�. The perturbative solution is reached by extending the
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method originally proposed by Morassi �1993� for the vibrations
of cracked Euler-Bernoulli beams, with the assumption that the
solutions for the cracked and the uncracked beams are slightly
different.

Accordingly, the following expansions are introduced:

V1��� = V��� + �Y1��� + O��2� �18�

V2��� = V��� + �Y2��� + O��2� �19�

�2 = �2 + �
2 + O��2� �20�

Here, V��� is the transverse displacement corresponding to the
undamaged column that obeys the following differential equation:

VIV + �2V� = 0 �21�

and �=small parameter of the same order as the flexibility of
the linear spring representing the crack. Y1���, Y2���, and 
 are
variables of the problem that have to be determined as a part of
the solution.

Substituting the new variables into Eq. �6� and keeping the
first-order terms, the following equations for the new variables
Y1���, and Y2��� are reached:

Y1
IV��� + �2Y1���� = − 
2V����, 0 	 � 	 � �22�

Y2
IV��� + �2Y1���� = − 
2V����, � 	 � 	 1 �23�

To solve these equations, we must apply the corresponding
boundary and compatibility conditions. The boundary conditions
are:

Simply supported end

Yi = Yi� = 0 �24�

Fixed end

Yi = Yi� = 0 �25�

Free end

Yi� = 0, Yi� + �2Yi� = − 
V� �26�

In the above equations, i=1 for the upper end and i=2 for the
lower one.

The compatibility conditions at the cracked section ��=�� are:
continuity of the transverse deflection

Y2��� − Y1��� = 0 �27�

Jump in the slope deflection

Y2���� − Y1���� =
1

�
�V���� �28�

Continuity of the bending moment

Y2���� − Y1���� = 0 �29�

Continuity of the shear force

Y2���� − Y1���� + �2�Y2���� − Y1����� = 0 �30�

Multiplying Eqs. �22� and �23� by V��� and integrating over
the whole length of the beam, the following equation can be

written:
�
0

�

�Y1
IV��� + �2Y1�����V���d� +�

�

1

�Y2
IV��� + �2Y2�����V���d�

= − 
2�
0

1

V����V���d� �31�

After two integrations by parts, Eq. �31� becomes

H1 + H2 + H3 + H4 = − 
2H5 �32�

where H1, H2, H3, H4, and H5 have the following expressions:

H1 =�
0

1

�VIV��� + �2V�����f���d� �33�

being

f��� = �Y1��� , 0 	 � 	 �

Y2��� , � 	 � 	 1

 �34�

H2 = Y1�0��V��0� + �2V��0�� − V�0��Y1��0� + �2Y1��0��

+ V��0�Y1��0� − V��0�Y1��0� �35�

H3 = V���	Y1���� − Y2���� + �2�Y1���� − Y2�����
 + V����	Y2����

− Y1���� + �2�Y2��� − Y2����
 + V�����Y1���� − Y2�����

+ V�����Y2��� − Y1���� �36�

H4 = V�1��Y2��1� + �2Y2��1�� − Y2�1��V��1� + �2V��1��

+ V��1�Y2��1� − V��1�Y2��1� �37�

H5 =�
0

1

V����V���d� �38�

Since V��� is the solution of Eq. �21�, it follows that H1=0.
Taking into account the boundary conditions and the compatibil-
ity conditions, H2=H3=0, and H4 is simplified as

H4 = −
1

�
��V�����2 − 
2�V�1�V��1� − V�0�V��0�� �39�

Therefore, from Eqs. �20�, �32�, �38�, and �39�, a closed-form
expression for �2 can be derived as

�2 = �2 − �
�V�����2

V�1�V��1� − V�0�V��0� − �0
1V����V���d�

�40�

This method provides expressions for the eigenvalue of buck-
ling of Euler-Bernoulli cracked columns with simple boundary
conditions from the well-known eigenvalue ��2� and buckling
modes �V���� of the uncracked beam.

The above general Eq. �40� can be applied to simple boundary
conditions. Here, four different cases have been considered.

Pinned-pinned column: for this case, the first eigenvalue for
the uncracked column is �=�, and the corresponding buckling
mode is given by

V��� = A sin���� �41�

Then, Eq. �40� takes the form

�2 = �2�1 − 2��sin ���2� �42�

and the first buckling load dimensionless with that corresponding
¯
to the uncracked column, Pc=� /�, is
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P̄c = �1 − 2� sin2���� �43�

Clamped-free column

� =
�

2

V��� = A�1 − cos��

2
��� �44�

�2 =
�2

4
	1 − ��1 − cos�����
 �45�

P̄c = �1 − ��1 − cos����� �46�

Clamped-pinned column

� = h� with h = 1/�0.699

V��� = A�sin�h��� − h�� cos�h���� �47�

�2 = h2�2�1 −
24h���h�� cos�h��� + sin�h����2

4�3h3 − 6� cos�2h��h + �3 – 6h2�2�sin�2h��
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Fig. 2. First buckling load for different values of crack severity for a
cracked pinned-pinned column: �a� crack located at �=0.25; �b�
crack located at �=0.50
�48�
P̄c =�1 −
24h���h�� cos�h��� + sin�h����2

4�3h3 − 6� cos�2h��h + �3 – 6h2�2�sin�2h��

�49�

Clamped-clamped column

� = 2�

V��� = A�cos�2��� − 1� �50�

�2 = 4�2�1 − 2� cos2�2���� �51�

P̄c = ��1 − 2� cos2�2���� �52�

Results

To check the accuracy of the proposed method, a comparison
between the first buckling load determined by the direct method
�“Buckling Loads by the Direct Method” section� and by the
perturbation method �“Perturbation Method. First-Order Solu-
tions” section� was performed for several cases corresponding to
the different boundary conditions. Fig. 2 shows the variation of
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Fig. 3. First buckling load for different values of crack severity for a
cracked clamped-free column: �a� crack located at �=0.25; �b� crack
located at �=0.50
the first buckling load with crack severity �, of a simply sup-
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ported column containing a crack located at section �=0.25
�Fig. 2�a�� and �=0.50 �Fig. 2�b��. The first-order solution differs
from the direct solution less than 5% until a � value of 0.16 for
a crack located at �=0.25, and �=0.46 for a crack located at
�=0.50.

Similar information for the case of a clamped-free column is
given in Fig. 3. For these end conditions, the first-order and direct
results differ less than 5% until � values of 0.18 and 0.33 for a
crack located at �=0.25 and �=0.50, respectively.

For a clamped-pinned column with a crack located at �
=0.25 �Fig. 4�a��, the differences between the buckling load ob-
tained with the direct method and the perturbation technique is
always less than 3%. Note that in this case, the crack has a little
effect on the buckling load, because of the bending moment trans-
mitted by this section is very small �the bending moment is null at
�=0.30�. For a crack located at �=0.50, �Fig. 4�b��, the first-order
solution differs from the direct solution less than 5% until values
of crack severity of �=0.25.

Finally, the results corresponding to a clamped-clamped col-
umn are given in Fig. 5. When the crack section is located at
�=0.25 �Fig. 5�a��, the crack has no effect on the first buckling
load due to the null bending moment at the cracked section. This
fact is recognized by the two solution methods considered. For a
crack located at �=0.50, �Fig. 5�b��, the first-order solution dif-
fers from the direct solution less than 5% for values of crack
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Fig. 4. First buckling load for different values of crack severity for a
cracked clamped-pinned column: �a� crack located at �=0.25; �b�
crack located at �=0.50
severity less that �=0.16.
Conclusions

The perturbation method has been used in this work to reach
closed-form solutions for the buckling loads of Euler-Bernoulli
weakened columns with different boundary conditions. The
model of cracked column used is based on the well-known
method consisting of dividing the column into two segments con-
nected by a rotational spring whose flexibility is related to the
bending moment transmitted by the cracked section.

The first-order approximated solutions provided by the pertur-
bation method have been compared with those found with the
direct method for different boundary conditions, cracked-section
position, and crack severity, showing in each case the validity
limits of this approach.
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