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The Gurson model is widely used in the continuum-mechanics framework to analyse the ductile fracture
process promoted by the nucleation, growth, and coalescence of voids. Further works improved the
original Gurson model by introducing two parameters, q1 and q2, to adjust model predictions to
the numerical results of a periodic array of cylindrical and spherical voids in hardening materials.
This modified model is known as the Gurson–Tvergaard (GT) model. Commonly, these parameters are
considered constants or dependent only on the material-hardening properties. However, there is evidence
that these parameters also depend on the triaxiality of the stress field, as well as on initial porosity. In
this work, a consistent fully implicit integration of the constitutive equations of the GT model, considering
the q-parameters dependent on the triaxiality and the initial porosity of the stress field, is presented,
and the corresponding consistent tangent operator is proposed. The model is validated by comparing
the stress–strain behaviour, as well as the evolution of void volume fraction, of a voided cell and the
equivalent cell of GT material with dependent parameters. The cases considered correspond to variable
triaxiality stress fields, present in non-proportional loading conditions.
1. Introduction

It is well known that the basic mechanisms of ductile fracture
in metallic alloys involve three principal stages. The first consists
of the nucleation of microvoids at the second-phase particle and
inclusions. The second stage corresponds to the extensional and di-
latational growth of microvoids induced by the stress applied and
strain-rate field. The third step consists of the coalescence by the
tearing of the ligaments between enlarged voids.

The first quantitative analysis of the growth mechanics of an
isolated void in non-linear materials under triaxial loading condi-
tions was given by McClintock (1968) for cylindrical voids, and by
Rice and Tracey (1969) for spherical ones.

In the continuum-mechanics framework, the most widely used
model to describe the aforementioned processes was originally
developed by Gurson (1977). The derivation of its yield function
used spherical voids, based the void-growth mechanics on axi-
symmetric stress states, following the approach of Rice and Tracey
(1969).

Tvergaard (1981, 1982) modified the model by introducing two
parameters, q1 and q2, to adjust model predictions to numerical re-
sults of periodic arrays of cylindrical and spherical voids in harden-
ing materials. For a moderate strain hardening material (N = 0.1),
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Tvergaard found that the values that best fit the micromechanical
cell model results correspond with q1 = 1.5 and q2 = 1.0.

For the two adjusting parameters introduced by Koplik and
Needleman (1988) proposed the values of q1 = 1.25 and q2 = 1.0.
These values provide improved agreement between GT model and
the finite-element results of a voided cell. However, other re-
searchers suggest other values for the q1 and q2 parameters Brocks
et al. (1995). On the other hand, Faleskog et al. (1998) found that
q1 and q2 should be considered as functions of both strength and
strain-hardening properties.

Moreover, Kim et al. (2004) have pointed out that the q-
parameters also should vary with the triaxiality of the stress field,
as well as the initial porosity. Analyzing a representative material
volume (RMV) containing a spherical void and an equivalent cell of
a GT material, Kim et al. (2004) have established such dependence.

However, in the GT model used and implemented in the FE
codes, this fact is not taken into account, and the q-parameters
are treated as fully constant or only dependent on the material-
hardening properties.

This work presents the modifications of the GT model consid-
ering that the q-parameters depend on the triaxiality of the stress
field and the initial porosity. A consistent fully implicit integra-
tion of the constitutive equations related to this model, as well
as the corresponding consistent tangent operator, are proposed.
The model is validated comparing the stress–strain behaviour and
the evolution of porosity of a voided cell and the equivalent con-
tinuum cell of GT material with dependent parameters. The load
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Fig. 1. Macroscopic effective stress–strain for (a) fixed q2 and (b) fixed q1, and void-volume fraction evolution for (c) fixed q2 and (d) fixed q1 for f0 = 0.0071 and T = 2.0
(Kim et al., 2004).
cases considered correspond to non-proportional stress fields con-
ditions.

2. The classical Gurson–Tvergaard model

For considering the presence of voids in ductile materials, one
of the most extended model is the GT, with yield condition of the
form:

Φ(Σe,Σh, σ̄ , f ;q1,q2)

= Σe
2

σ̄ 2
+ 2q1 f cosh

(
3q2Σh

2σ̄

)
− 1 − (q1 f )2 (1)

first defined by Gurson (1977), and subsequently modified by Tver-
gaard (1981, 1982) introducing the factors q1 and q2 to extend the
initial results of shear band bifurcation predictions into full nu-
merical analysis containing a periodic array of voids. Here, f is the
void-volume fraction; σ̄ is the flow stress satisfying the harden-
ing relation of the matrix material and dependent of the effective
plastic strain ε̄p , σ̄ = σ̄ (ε̄p); and Σh and Σe are the macroscopic
hydrostatic and effective stress with the expressions:

Σh = 1

3
Σ : 1; Σe =

√
3

2
Σ ′ : Σ ′; Σ ′ = Σ − Σh : 1 (2)

Σ being the Cauchy stress tensor, and (1)i j = δi j the unit second
order tensor.
For hypoelastic-plastic materials, the macroscopic rate of defor-
mation tensor, Ė, can be decomposed as the sum of an elastic (Ėe)
and a plastic part (Ėp) i.e.:

Ė = Ėe + Ėp (3)

and the relation between the elastic strain rate and the macro-
scopic stress rate is given by:

Σ̇ = C : Ėe = C : (Ė − Ėp)
(4)

C being the tensor of isotropic elastic moduli:

C = 2GI′ + K 1 ⊗ 1 (5)

with G = E/(2(1+ν)) and K = E/(3(1−2ν)) elastic constants, E is
Young’s modulus and ν is Poisson’s ratio, and I′ the unit deviatoric
fourth order tensor given by:

(I′)i jkl = 1

2
(δikδ jl + δilδ jk) − 1

3
δi jδkl. (6)

Assuming that the rate of equivalent plastic work in the matrix
material is equal to the macroscopic plastic work, it follows that:

(1 − f )σ̄ ˙̄εp = Σ : Ėp . (7)

The plastic part of the rate of macroscopic deformation Ėp has
a direction normal to the flow potential i.e.:

Ėp = λ̇
∂Φ

∂Σ
(8)

λ̇ being the plastic flow proportionality factor given by:

λ̇ = (1 − f )σ̄ ˙̄εp

Σ : ∂Φ
. (9)
∂Σ 2



Fig. 2. Variation of q1 and q2 parameters with triaxiality and f0, for a material with strain-hardening properties: E = 200 GPa, σ0 = 400 MPa and N = 0.1 (Kim et al., 2004).
Considering plastic incompressibility of matrix material (elastic
compressibility is neglected), the evolution of void-volume fraction
(considering only growth) can be written as:

ḟ = (1 − f )Ėp : 1. (10)

The above formulation must be complemented with the load-
ing/unloading Kuhn–Tucker conditions:

λ̇ � 0, Φ � 0, λ̇Φ = 0. (11)

This implies that λ̇ = 0 and Φ < 0 during elastic loading or un-
loading, and λ̇ > 0 and Φ = 0 during plastic loading. The continued
plastic loading requires the consistency condition Φ̇ = 0.

3. Dependence of parameters of Gurson–Tvergaard model with
triaxiality

To study the effects of triaxiality and initial porosity on mate-
rial response, Kim et al. (2004) modeled the representative ductile
material by detailed finite-element analyzes using two different
approaches: a unit cell that contains at its center an isolate spher-
ical hole of initial void-volume fraction f0 and obeying the theory
of J2 flow plasticity, and a homogeneous continuum unitary cell,
governed by the GT constitutive relation and with the same void-
volume fraction as the voided one.

The results reported by these authors (Kim et al., 2004) in-
dicate the sensitivity of the macroscopic stress–strain behaviour
and the void growth history with different qi values. Fig. 1 (Kim
et al., 2004) shows the influence of the qi parameters in the
stress–strain and void-volume fraction–strain curves for T = 2.0
and f0 = 0.0071, and thus it is possible to determine the values
of q1 and q2, which minimize the difference between the stress–
strain curve and the evolution of porosity of both unitary cells
(voided and continuum).

Fig. 2 (Kim et al., 2004), shows the optimal values of q1 and
q2 for a representing structural steel of intermediate strength
and moderate strain hardening in a wide range of triaxialities
and initial void-volume fractions, from f0 = 0.001, to 0.025 and
1 � T � 3, very common in structural applications. The figure re-
flects the strong dependence of q1 and q2 with stress triaxiality
and initial void-volume fraction, and clearly shows the influence
of these conditions in the choice of optimal q values. This depen-
dence is not taken into account in numerical analysis by FEM.
4. Consistent integration procedure of GT model with
non-constant q parameters

The numerical integration of the constitutive model, in the con-
text of the finite-element method, is a strain-driven process where
the total strain tensor increment, �E, is given at a quadrature
point, and both the stress tensor and the state variables should
be updated at time (n + 1). The incremental integration is local
in space and occurs at each quadrature point inside the finite ele-
ments.

Following a Backward–Euler algorithm, elastoplastic constitutive
equations can be written at the end of the step as (Aravas, 1987;
Zhang, 1995):

• From the yield condition (Eq. (1)):

Φ � 0. (12)

• From Eq. (4):

Σ (n+1) = Σ (n) + C : (�E − �Ep)
(13)

and introducing Σ trial
(n+1) = Σ (n) + C : �E:

Σ (n+1) = Σ trial
(n+1) − C : �Ep . (14)

• From Eq. (8):

�Ep = 
λ
∂Φ

∂Σ
(15)

and separating hydrostatic and deviatoric components:

�Ep = 
λ

(
1

3

∂Φ

∂Σh
1 + ∂Φ

∂Σe

3Σ ′

2Σe

)
(16)

or:

�Ep = 
εp1 + 
εqn (17)

n being the unit vector in the deviatoric space normal to the
yield:

n = 3Σ ′

2Σe
(18)

and 
εp , 
εq defined as (Aravas, 1987):


εp = 
λ
∂Φ

, 
εq = 
λ
∂Φ

. (19)

∂Σh ∂Σe 3



Combining the latter equations to eliminate 
λ, we get the
following relation:


εp
∂Φ

∂Σe
− 
εq

∂Φ

∂Σh
= 0. (20)

• From Eq. (7):

Σ : �Ep = (1 − f )σ̄
ε̄p → (Σh
εp + Σe
εq)

= (1 − f )σ̄
ε̄p . (21)

• From Eq. (10):


 f = (1 − f )�Ep : 1 → 
 f = (1 − f )
εp . (22)

In the last expressions (Eqs. (12)–(22)), all variables are referred to
time (n + 1), omitted from the equations for simplicity.

Bearing in mind the identity n(n+1) = ntrial
(n+1) , with ntrial =

(3(Σ ′)trial)/(2Σ trial
e ) (Aravas, 1987), and after some algebraical ma-

nipulations and simplifications from Eqs. (12)–(22), we find that
the non-linear implicit equations (scalar) that should be solved
are:

(a) 
εp
∂Φ

∂Σe
− 
εq

∂Φ

∂Σh
= 0,

(b) 
ε̄p = (Σh
εp + Σe
εq)/
(
(1 − f )σ̄

)
,

(c) 
 f = (1 − f )
εp,

(d) Φ(Σh,Σe, σ̄ , f ) = 0,

(e) σ̄ = σ̄
(
ε̄p)

(23)

with

Σh = Σ trial
h − K
εp and Σe = Σ trial

e − 3G
εq (24)

all variables evaluated in (n + 1) and omitted for simplicity.
From Eq. (23), the unknown values 
εp , 
εq , f , σ̄ , ε̄p are ob-

tained by an iterative process using a Newton–Raphson procedure.
The stress tensor, at time (n + 1) can be updated as:

Σ (n+1) = 2

3
Σe(n+1)n

trial
(n+1) + Σh(n+1)1. (25)

The variation of parameters q1 and q2 with triaxiality (T =
Σh/Σe), should be considered in the implicit integration includ-
ing this dependence in the derivative of Φ in the form:

δΦ(Σh,Σe, σ̄ , f ,q1,q2)

=
[(

∂Φ

∂Σh

)
+

(
∂Φ

∂q1

)(
dq1

dT

)(
∂T

∂Σh

)

+
(

∂Φ

∂q2

)(
dq2

dT

)(
∂T

∂Σh

)]
δΣh

+
[(

∂Φ

∂Σe

)
+

(
∂Φ

∂q1

)(
dq1

dT

)(
∂T

∂Σe

)

+
(

∂Φ

∂q2

)(
dq2

dT

)(
∂T

∂Σe

)]
δΣe +

(
∂Φ

∂σ̄

)
δσ̄ +

(
∂Φ

∂ f

)
δ f . (26)

For infinitesimal strain problems, and to achieve the quadratic
rate of asymptotic convergence of iterative solution based on New-
ton’s method, a consistent tangent operator J (different in general
from the continuum one) is proposed (Simo and Taylor, 1985) as
the result of enforcing the consistency condition at the end of the
step (n + 1):

J =
(

∂Σ

∂E

)
(n+1)

=
(

∂�Σ

∂�E

)
(n+1)

. (27)

From Eqs. (13) and (17), and separating hydrostatic and deviatoric
components, δ�Σ can be written as:
δ�Σ = C : (δ�E − δ�Ep)
= (2GI′ + K 1 ⊗ 1) : δ�E

− Kδ
εp1 − 2Gδ
εqn − 2G
εqδn. (28)

Deriving the yield condition (Eq. (1)), the plastic flow (Eq. (8)),
the evolution of the two state variables ε̄p and f (Eqs. (7)
and (10)) and bearing in mind the relations from Eq. (24):

δΣh = δΣ trial
h − Kδ
εp, δΣe = δΣ trial

e − 3Gδ
εq

it is possible to get, after some algebraical manipulation, the fol-
lowing expressions:

δ
εp = C11δΣ
trial
h + C12δΣ

trial
e ,

δ
εq = C21δΣ
trial
h + C22δΣ

trial
e ,

δε̄p = C31δΣ
trial
h + C32δΣ

trial
e ,

δ f = C41δΣ
trial
h + C42δΣ

trial
e (29)

and all Cij coefficients determined in an univocal way (see Ap-
pendix A).

With the following relations:

δΣ trial
h = K (δ�E)kk,

δΣ trial
e = 3

2Σ trial
e

(Σ ′)trial : δ(Σ ′)trial,

δn = δntrial = 3

2Σ trial
e

δ(Σ ′)trial − 3

2(Σ trial
e )2

δΣ trial
e (Σ ′)trial (30)

and considering Eq. (28), the tangent operator J can be written as:

J = K (1 − K C11)1 ⊗ 1 +
(

2G − 6
G2
εq

Σ trial
e

)
I′

+ 3K G

Σ trial
e

C121 ⊗ (Σ ′)trial + 3K G

Σ trial
e

C21(Σ
′)trial ⊗ 1

+ 9
G2

(Σ trial
e )2

(
−C22 + 
εq

Σ trial
e

)
(Σ ′)trial ⊗ (Σ ′)trial (31)

with Cij the values from Eqs. (29). The variation of q1 and q2
with T is considered in J, including this dependence in the deriva-
tion of Eqs. (1) and (8).

In a finite deformation framework, and to preserve incremen-
tal objectivity, the rate equations are rewritten in a neutralized or
corotational configuration (Simo and Taylor, 1985; Doghri, 2000;
Ponthot, 2002). In this new configuration, the objective stress rate
is defined as a simple time derivative, and rate equations are, in
general, form identical to the small deformation frame, which can
be used to integrate the elastoplastic constitutive model for finite
deformation problems.

The proposed algorithm has been implemented in ABAQUS/
Standard (2005) through a UMAT user subroutine.

5. Unit-cell model with non-proportional loads

The following section is organized as follows. First, we present
the unitary cell model and its application for analyzing duc-
tile material. Next, we describe the method developed elsewhere
(Faleskog et al., 1998; Kim et al., 2004) to impose boundary con-
ditions in unitary cells in order to maintain triaxiality constant
during the loading history. Lastly, we present the extension of this
method for the case object of this work, triaxiality not being con-
stant but variable following a generic function.
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Fig. 3. Axi-symmetric unit cylindrical cell containing a void at its centre.

Fig. 4. Geometry and displacements imposed on an unitary J2 voided cell and on an unitary continuum Gurson cell.
5.1. The unit-cell model

Following Tvergaard (1982), and Koplik and Needleman (1988),
we consider the continuum to consist of a periodic assemblage of
hexagonal cylinder unit cells with a spherical void at the centre of
each one. To facilitate axi-symmetric calculations, we make further
simplification to approximate the hexagonal cylinder unitary cell
by a cylindrical unitary cell.

Let us consider a unit cylindrical cell, with a material that obeys
the theory of J2 plasticity, with an initial radius R0 and initial
half length L0 containing a single void at its centre of radius r0
and initial void-volume fraction f0 = 2

3 r3
0/(R2

0 L0). The behaviour
of the voided cell (Tvergaard, 1982; Koplik and Needleman, 1988)
is studied considering an axisymmetric unit cell, with geometry
illustrated in Fig. 3.

The unitary axi-symmetric voided representative material vol-
ume (RMV) can be approximated by a homogeneous unitary con-
tinuum cell (Fig. 4), governed by a GT constitutive relation, having
the same initial radius, length (R0 and L0), and void-volume frac-
tion ( f0) as the voided one, and subjected to the same macroscopic
loading history, which can be obtained prescribing the displace-
ments on the outer surfaces of each cell model. In both unitary
cells, none of the boundaries have shear traction and, in the voided
RMV, the void surface is traction free.

In deformation processes, it is assumed that the cylindrical and
the top outer surfaces of the unitary cell model are always parallel
and perpendicular to the X-axis, respectively. Under this assump-
tion, the radial and axial displacements U1 and U2 are homoge-
neous on each external boundaries of the unit cell. The macro-
scopic logarithmic principal and effective strains have the form:

E11 = E33 = ln

(
R

R0

)
; E22 = ln

(
L

L0

)
;

Ee = 2

3
|E22 − E11| (32)

and the rates of the macroscopic logarithmic principal strains are
given by:

Ė11 = Ė33 = Ṙ

R
, Ė22 = L̇

L
(33)

where R0 and R = (R0 + U1) are the initial and current radius of
the deformed cell respectively, and L0 and L = (L0 + U2) are the
initial and present height.

The macroscopic true principal stresses, or the average reaction
forces per unit area of the deformed cell boundary (Σ11 = Σ33 and
Σ22), are the work conjugate stresses to the macroscopic princi-
pal strains. The effective and macroscopic hydrostatic stresses, Σe
and Σh , and the triaxiality T are expressed, in terms of the macro-
scopic true principal stresses (Σ11, Σ22 and Σ33), as:

Σe = |Σ22 − Σ11|; Σh = 1

3
(Σ22 + 2Σ11); T = Σh

Σe
(34)

and the triaxiality T can be written as a function of ρ (the ratio
between Σ11 and Σ22) in the form:

T = 1

3

1 + 2ρ

|1 − ρ| , ρ = Σ11

Σ22
. (35)
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5.2. Boundary conditions for proportional macroscopic loading

Following the method developed by Faleskog et al. (1998), Kim
et al. (2004), for the maintenance of the same macroscopic loading
during the entire deformation history, the displacements U1 and
U2 on the outer surfaces of each cell model (U1(VC) and U2(VC) in
the voided cell model and U1(GC) and U2(GC) in the Gurson con-
tinuum cell) are prescribed in both cells (Fig. 4).

Noting that the macroscopic strain rates ( Ė11, Ė22, Ė33), and the
macroscopic true stresses (Σ11, Σ22, Σ33) are equal to the volume
average values in a cell (Hill, 1967), the total rate of work of defor-
mation, Ẇ , is:

Ẇ = V Σ11 Ė11 + V Σ22 Ė22 + V Σ33 Ė33 (36)

V being the present volume occupied by a cell. In the axisym-
metric case, Ė11 = Ė33, Σ11 = Σ33, and the total rate of work of
deformation takes the form:

Ẇ = 2V Σ11 Ė11 + Σ22 Ė22. (37)

Defining P11 = 2V Σ11, P22 = V Σ22 as generalized forces, which
can be viewed as work-rate conjugate quantities to Ė11 and Ė22,
respectively, the expression of Ẇ becomes:

Ẇ = P11 Ė11 + P22 Ė22 (38)

with the following relation between P11 and P22 (Eq. (35)):

P11

P22
= 2ρ. (39)

Using the transformation:(
Ė(I)
Ė(II)

)
= N

(
Ė11
Ė22

)
,

(
P (I)
P (II)

)
= N

(
P11
P22

)

N being an orthonormal matrix of the form:

N =
(

β2 −β1
β1 β2

)
, N−1 = NT

where β1 and β2 have the expressions:

β1 = 2ρ√
1 + 4ρ2

; β2 = 1√
1 + 4ρ2

(40)

the total rate of deformation work can be written, in terms of the
transformed forces and rates of deformation, as:

Ẇ = P (I) Ė(I) + P (II) Ė(II). (41)

Checking P (I) and Ė(II) as boundary conditions of the incremental
boundary value problem in the form P (I) = 0, Ė(II) = cte, we get
the following conditions:

P (I) = 0,

Ė(II) = cte (42)

that are equivalent to:

P11

P22
= 2ρ → Σ11

Σ22
= ρ,

β1 Ė11 + β2 Ė22 = cte (43)

and imposing these conditions in both unitary cells ( J2 voided cell
and continuum Gurson cell), it follows:
(

Σ11

Σ22

)
VC

=
(

Σ11

Σ22

)
GC

= ρ,

(β1 Ė11 + β2 Ė22)VC = (β1 Ė11 + β2 Ė22)GC,

β1, β2 function of ρ. (44)
From Eqs. (33) and (40), the variation of L and R can be written
as:

Ṙ = R(β2 Ė(I) + β1 Ė(II)); L̇ = L(−β1 Ė(I) + β2 Ė(II)). (45)

There are different numerical procedures, controlled by displace-
ment or by force, to impose constant stress triaxiality in the
boundaries of the axisymmetric representative volume element
(Lin et al., 2006). Faleskog et al. (1998), and Kim et al. (2004)
provide details on how to prescribe displacements on the outer
surfaces of the cell model, in order to maintain the macroscopic
stress ratio ρ , and consequently the triaxiality T , constant during
the whole loading history. In that case, U1 and U2 are obtained
after the direct integration of Eqs. (45) and have the expressions:

U1 = R0
[
1 + exp(β2 E(I) + β1 E(II))

]
,

U2 = L0
[
1 + exp(−β1 E(I) + β2 E(II))

]
. (46)

This method overcomes problems associated with cell softening
due to void growth.

5.3. Boundary conditions for non-proportional macroscopic loading

In the case of triaxiality T , and consequently ρ , not constant
during the loading history, as is assumed in this work, Eq. (45)
cannot be solved analytically and U1 and U2 fail to satisfy Eq. (46).
In this case, radial and axial velocity U̇1 and U̇2 must be imposed
in the outer surfaces of the Gurson and Voided Cell after numeri-
cally solving:

U̇1(VC) = (R0 + U1(VC)) · (β2 Ė(I(VC)) + β1 Ė(II)),

U̇2(VC) = (L0 + U2(VC)) · (−β1 Ė(I(VC)) + β2 Ė(II)),

U̇1(GC) = (R0 + U1(GC)) · (β2 Ė(I(GC)) + β1 Ė(II)),

U̇2(GC) = (L0 + U2(GC)) · (−β1 Ė(I(GC)) + β2 Ė(II)). (47)

Displacement boundary conditions are implemented in ABAQUS/
Standard finite element code (ABAQUS/Standard, 2005) via a MPC
user subroutine.

6. Numerical results

In this section, the response of the macroscopic stress–strain
and the evolution of void-volume fraction in the axi-symmetric
cell model using the dependence of q1 and q2 Gurson’s parame-
ters with triaxiality and initial void-volume fraction, are analyzed.
For this purpose, the macroscopic response with qi = f ( f0, T ) is
compared with the results of the GT model, considering constant
q values, and with the behaviour of a cell with a spherical void at
its centre, and obeying the theory of J2 flow plasticity.

The considered value of the ratio R0/L0 between the initial ra-
dius and the initial half length of the unitary cell is equal to 1, and
two different relations between r0/L0, 0.11 and 0.22, corresponding
to 0.001 and 0.0071 values of f0, are studied.

Due to symmetry, only a quarter of the region needs to be
modeled. A typical finite element mesh used in the computations,
including a detail in the region near the void surface, is shown in
Fig. 5, with a total of 1600 axi-symmetric 8-node elements with
reduced integration, 40 elements on the void surface, and 40 in
the radial and axial direction, respectively.

The continuous field of unknowns qi for different initial void-
volume fractions, can be approximated from calibrated discrete qi
results obtained in Kim et al. (2004) (see Figs. 6 and 7), by poly-
nomial functions of the form:

qi( f0, T ) = Ai T
3 + Bi T

2 + Ci T + Di, i = 1,2. (48)
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Fig. 5. Finite-element mesh for f0 = 0.001.

Fig. 6. Polynomial interpolation function for f0 = 0.001.

Fig. 7. Polynomial interpolation function for f0 = 0.0071.
Table 1
Interpolation coefficients for f0 = 0.001.

Ai Bi Ci Di

q1 0.39 −2.88 6.74 −3.25
q2 −0.02 0.20 −0.63 1.56

Table 2
Interpolation coefficients for f0 = 0.0071.

Ai Bi Ci Di

q1 0.03 −0.50 1.86 −0.34
q2 −0.10 0.67 −1.51 2.04

The corresponding interpolation coefficients Ai , Bi , Ci , and Di are
given in Tables 1 and 2.
The chosen triaxiality ratios to be studied cover the range from
1 � T � 3, which goes from the rather blunt notched bar speci-
mens for which T ≈ 1 (Needleman and Tvergaard, 1984), to the
triaxiality prevailing in crack tip fields for lightly hardening solids,
T ≈ 3 (McMeeking, 1977).

Three different continuous variation of triaxiality with macro-
scopic effective strain, Ee , are imposed as boundary conditions in
both unitary cells, following a quadratic, and two linear functions,
with positive and negative slope, respectively:

(a) T = −8

(
Ee

0.1

)2

+ 8

(
Ee

0.1

)
+ 1,

(b) T =
(

Ee

0.1

)
+ 1,
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(c) T = −1

2

(
Ee

0.1

)
+ 3. (49)

The variation of T with Ee for the three cases considered are given
in Fig. 8.

The material chosen obeys the true stress–strain, power-law
hardening relation of the form:

ε̄ = σ̄

E
, σ̄ � σ0,

ε̄ = σ0

E

(
σ̄

σ0

)1/N

, σ̄ > σ0 (50)

with the parameters E = 200 GPa, ν = 0.3, σ0 = 400 MPa, and
N = 0.1 chosen by Kim et al. (2004) and representative of a typical
structural steel of medium strength and moderate strain hardening.

For a material with moderate hardening N = 0.1, and strength
σ0/E = 0.002, for the range of initial void volume fraction 0.001 �
f0 � 0.004 and triaxialities 1.55 � T � 2.67, Faleskog et al. (1998)
calibrate qi parameters considering constant triaxiality and found
that the optimal q1, q2 values for these ranges furnish the values
q1 = 1.46 and q2 = 0.931.

Figs. 9–11 show the macroscopic stress–strain response of the
GT unitary cell with three different sets of qi parameter constants,
(q1 = 1.25, q2 = 1.0; q1 = 1.5, q2 = 1.0; and q1 = 1.46, q2 = 0.931),
and also considering q1 and q2 varying with triaxiality through the
polynomial function given in (Eq. (49)) and coefficients showed in
Tables 1 and 2 for the initial void-volume fractions analyzed ( f0 =
0.001 and f0 = 0.0071, respectively). These results are compared
with the ones found with a J2 voided unitary cell subjected to the
same macroscopic loading history and identical initial void-volume
fraction.

For the first evolution of triaxiality with macroscopic effec-
tive stress considered, (T = −8( Ee

0.1 )2 + 8( Ee
0.1 ) + 1), Fig. 9(a) and

(b) show that the cases that best fit the voided-cell evolution
of macroscopic effective stress are obtained with q1 and q2 vari-
able, and considering q1 = 1.46 and q2 = 0.931 constant, both for
f0 = 0.001 (a) and f0 = 0.0071 (b). Also with f0 = 0.0071, the
constant values q1 = 1.25 and q2 = 1.0, provide a good agreement
with voided-cell results.

For the second macroscopic evolution of triaxiality analyzed,
(T = ( Ee

0.1 ) + 1), Fig. 10 (a) and (b) show that the macroscopic
stress–strain response that differs more from the Von Mises voided
cell corresponds to q1 = 1.5, q2 = 1.0 and q1 = 1.46, q2 = 0.931 for
f0 = 0.001, and to q1 = 1.5 and q2 = 1.0 for f0 = 0.0071. When
q1, q2 are considered variable, the result agrees quite well with
the voided J2 cell behaviour.

In Fig. 11 (a) and (b), where the macroscopic triaxiality follows
the function (T = − 1

2 ( Ee
0.1 ) + 3), the Gurson unitary cell with q1 =

1.5 and q2 = 1.0, or q1 = 1.25 and q2 = 1.0, does not approximate
results from those obtained with J2 unitary voided cell, and only
considering values of q1 and q2 dependent on T or q1 = 1.46, q2 =
0.931 achieves good approximations of the expected behaviour of
the model (for f0 = 0.001 and f0 = 0.0071).

Figs. 12–14 show the evolution of the void-volume fraction f
as a function of Ee for the initial porosities f0 = 0.001 and f0 =
0.0071 when the loading is applied to the cells with the three dif-
ferent variation of triaxialities analyzed. In Fig. 12, the macroscopic
triaxiality imposed follows a quadratic function, and in Figs. 13 and
14, the evolution of triaxiality obey a linear function with posi-
tive and negative slope respectively, corresponding with Eqs. (49).
For the cases considered, it is observed how the response that
best fit the J2 voided cell behaviour of void-volume fraction cor-
responds, till the beginning of coalescence, to the use of variable
qi parameters, and for every case, excepting the one of Fig. 13(a),
also considering qi parameters constant and equal to q1 = 1.46 and
q2 = 0.931 provide good results. From the phase of coalescence or
dramatic increase of f , the GT model does not provide a realistic
information of the evolution of porosity due to the inability of the
Fig. 8. Imposed variation of triaxiality (T ) with macroscopic effective strain (Ee ). (a) Quadratic, (b) linear-increasing and (c) linear-decreasing evolution.

Fig. 9. Macroscopic effective stress–strain curves for different qi parameters and T = −8( Ee
0.1 )2 + 8( Ee

0.1 ) + 1. (a) f0 = 0.001, (b) f0 = 0.0071.
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Fig. 10. Macroscopic effective stress–strain curves for different qi parameters and T = ( Ee
0.1 ) + 1. (a) f0 = 0.001, (b) f0 = 0.0071.

Fig. 11. Macroscopic effective stress–strain curves for different qi parameters and T = − 1
2 ( Ee

0.1 ) + 3. (a) f0 = 0.001, (b) f0 = 0.0071.

Fig. 12. Void-volume fraction–strain curves for different qi parameters and T = −8( Ee
0.1 )2 + 8( Ee

0.1 ) + 1. (a) f0 = 0.001, (b) f0 = 0.0071.

Fig. 13. Void-volume fraction–strain curves for different qi parameters and T = ( Ee
0.1 ) + 1. (a) f0 = 0.001, (b) f0 = 0.0071.
9



Fig. 14. Void-volume fraction–strain curves for different qi parameters and T = − 1
2 ( Ee

0.1 ) + 3. (a) f0 = 0.001, (b) f0 = 0.0071.
model to predict the behaviour of the material during this final
stage prior to material separation.

7. Conclusions

A consistent fully implicit integration procedure of the constitu-
tive equations of the GT model with the q-parameters dependent
on the triaxiality of the stress field is presented, and the corre-
sponding consistent tangent operator is proposed.

To validate the model, we have compared results corresponding
to stress–strain behaviour and evolution of void-volume fraction of
a voided cell with a surrounding material that obeys the J2 plas-
ticity theory and a equivalent cell of GT material with triaxiality-
dependent parameters.

To consider the influence of the solution on the variability
of the triaxiality during the loading process, we have developed
a method to impose boundary conditions corresponding to non-
proportional loading cases.

Three different loading histories with variable triaxiality in the
range 1 � T � 3, present in non-proportional loading conditions,
have been taken into account, and the results show excellent
agreement between the two cell models, with qi parameters as
a function of triaxiality and f0, and, in general, with qi parame-
ters constant and corresponding to the calibrated values obtained
by Faleskog et al. (1998) for the strength and strain hardening con-
sidered here.
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Appendix A

The constants Cij involved in the solution of Eq. (29):

δ
εp = C11δΣ
trial
h + C12δΣ

trial
e ,

δ
εq = C21δΣ
trial
h + C22δΣ

trial
e ,

δε̄p = C31δΣ
trial
h + C32δΣ

trial
e ,

δ f = C41δΣ
trial
h + C42δΣ

trial
e

can be obtained solving the following expressions:

C11 = B21 A12 − B11 A22

A21 A12 − A11 A22
, C12 = B22 A12 − B12 A22

A21 A12 − A11 A22
,

C21 = B11 A21 − B21 A11

A21 A12 − A11 A22
, C22 = B12 A21 − B22 A11

A21 A12 − A11 A22
,

C31 = h11C11 + h12C21 + h13, C32 = h11C12 + h12C22 + h14,

C41 = h21C11 + h22C21 + h23, C42 = h21C12 + h22C22 + h24

where h11, h12, h13, h14, h21, h22, h23 and h24 give the evolution of
the state variables ε̄p and f as a function of δ
εp , δ
εq , δΣ trial

h
and δΣ trial

e in the form:

δε̄p = h11δ
εp + h12δ
εq + h13δΣ
trial
h + h14δΣ

trial
e ,

δ f = h21δ
εp + h22δ
εq + h23δΣ
trial
h + h24δΣ

trial
e

with all hij values solved deriving Eqs. (23)(b) and (23)(c) and con-
sidering the relations of Eq. (24), and the values A11, A12, B11, B12,
A21, A22, B21 y B22 following the relations:

A11 = ΦΣe − K
εp · (ΦΣeΣh + ΦΣeq1 · q1T · TΣh + ΦΣeq2 · q2T · TΣh )

+ K
εq · (ΦΣhΣh + ΦΣhq1 · q1T · TΣh + ΦΣhq2 · q2T · TΣh )

+ (
εpΦΣe σ̄ − 
εqΦΣh σ̄ ) · σ̄ε̄p · h11

+ (
εpΦΣe f − 
εqΦΣh f ) · h21,

A12 = ΦΣh − 3G
εp · (ΦΣeΣe + ΦΣeq1 · q1T · TΣe + ΦΣeq2 · q2T · TΣe )

+ 3G
εq · (ΦΣhΣe + ΦΣhq1 · q1T · TΣe + ΦΣhq2 · q2T · TΣe )

+ (
εpΦΣe σ̄ − 
εqΦΣh σ̄ ) · σ̄ε̄p · h12

+ (
εpΦΣe f − 
εqΦΣh f ) · h22,

B11 = −
εp · (ΦΣeΣh + ΦΣeq1 · q1T · TΣh + ΦΣeq2 · q2T · TΣh )

+ 
εq · (ΦΣhΣh + ΦΣhq1 · q1T · TΣh + ΦΣhq2 · q2T · TΣh )

− (
εpΦΣe σ̄ − 
εqΦΣh σ̄ ) · σ̄ε̄p · h13

− (
εpΦΣe f − 
εqΦΣh f ) · h23,

B12 = −
εp · (ΦΣeΣe + ΦΣeq1 · q1T · TΣe + ΦΣeq2 · q2T · TΣe )

+ 
εq · (ΦΣhΣe + ΦΣhq1 · q1T · TΣe + ΦΣhq2 · q2T · TΣe )

− (
εpΦΣe σ̄ − 
εqΦΣh σ̄ ) · σ̄ε̄p · h14

− (
εpΦΣe f − 
εqΦΣh f ) · h24,

A21 = −K · (ΦΣh + Φq1 · q1T · TΣh + Φq2 · q2T · TΣh )

+ Φσ̄ · σ̄ε̄p · h11 + Φ f · h21,
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A22 = −3G · (ΦΣe + Φq1 · q1T · TΣe + Φq2 · q2T · TΣe )

+ Φσ̄ · σ̄ε̄p · h12 + Φ f · h22,

B21 = −ΦΣh − Φq1 · q1T · TΣh − Φq2 · q2T · TΣh − Φσ̄ · σ̄ε̄p · h13

− Φ f · h23,

B22 = −ΦΣe − Φq1 · q1T · TΣe − Φq2 · q2T · TΣe − Φσ̄ · σ̄ε̄p · h14

− Φ f · h24

being ΦΣe = ∂Φ/∂Σe , q1T = ∂q1/∂T , ΦΣeΣe = ∂2Φ/∂Σ2
e , etc.
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