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In this work a constitutive relation for ice at high strain rates and an algorithm for its numerical integra
tion are developed. This model is based on the Drucker Prager plasticity criteria, which allows a different
behavior in tension and in compression. In addition a failure criteria, based on pressure cut offs, is imple
mented to describe the ice damage. In order to validate the constitutive model, numerical simulations
were compared with experimental results, in which ice cylinders were impacted against a steel plate,
allowing the measurement of the contact load. Three different numerical solvers are used in order to ana
lyze its performance to appropriately modeling the ice behavior.
1. Introduction

Aircraft structures may be subjected to a variety of environmen
tal impact hazards. Radome, radar antenna, landing lights, canopy,
windshield, lateral section or intake of the engine nacelle, turbine
blades, wing or tail empennage leading edges are eventually tar
gets of high velocity impact loading during flight, takeoff, and
landing. Today, the risk of structural and system failures, as well
as of occupant injuries, is well recognized in aircraft design. There
are a number of different causes for these shocks. Together with
bird strikes, hailstones are the most critical because of their high
probability of occurrence and their consequences. Also the ice re
leased from the edge of a propeller blade may impact the nacelle
of the twin engine or the fuselage. In the field of spacecraft, ice pre
sents one of the more serious debris impact threats to the Space
Shuttle orbiter thermal protection systems. Ice that forms on the
fuel lines of the external tank, if dislodged during flight, can impact
orbiter tiles or the reinforced carbon carbon wing leading edge
(Fasanella et al., 2006). Therefore, these structures should show
tolerance to damage caused by ice impact, and their design should
consider ice impact as a potential threat. Consequently, the
mechanical behavior of ice has to be characterized through
experimental test, and numerical tools models suitable for the sim
ulation of ice at high strain rates have to be developed. Ice, how
ever, is not a structural material, and commercial codes does not
have appropriate models for it.

The mechanical behavior of ice has been widely studied for arctic
ship transportation, oil and gas facilities, and for cold ocean or glacier
research. All these studies refer to Ih ice, the most common ice in
ente).
earth, occurring when liquid water is cooled below 0 �C at ambient
pressure. It can also deposit from vapor with no intervening liquid
phase, such as in the accretion of glaze or rime ice at the airfoil of air
planes. Ih ice possesses the hexagonal crystal structure reflected in
the shape of snow flakes. The other crystal forms of ice are thermo
dynamically stable only at high pressures. Deformation of ice in the
previous fields occurs at low strain rates (10 7 to 10 1 s 1) thus creep
and quasi static experimental test are performed to gain knowledge
about its behavior (Cole, 1988; Haynes, 1978; Gold, 1988; Schulson,
1990, 2001; Petrovic, 2003). These tests shown a noticeable influ
ence of the formation conditions of ice, leading to single crystal or
polycrystal columnar or granular structures with different grain
sizes, on the mechanical properties. The presence of inclusions or air
bubbles, acting as stress concentrators, also influences the mechan
ical properties. Therefore, some researchers resort to ice manufac
turing companies to make provision of a standard material. Young’s
modulus has been reported to be in the range of 9.7 11.2 GPa and
Poisson’s ratio varies from 0.29 to 0.32. Tensile strength varies be
tween 0.7 and 3.1 MPa and depends on the specimen volume, follow
ing a Weibull statistical distribution. Compressive strength ranges
between 5 and 25 MPa. Some properties (such as compressive
strength) are strongly modified by temperature as well, so experi
mental results are commonly provided for a given set of pre defined
temperatures ( 10, 20, 30, 40 �C). Ice shows brittle behavior in
tension due to crack nucleation and cleavage. Like other brittle
materials, confinement and pressure increases ductility and
strength, the mechanism usually hypothesized being intergranular
friction. However, a change to brittle compressive failure appears
at strain rates higher than 10 2 s 1.

Less attention has been paid to the study of ice at high strain
rates. There are however some articles relating microstructure,
temperature and strain rate with its response under compressive
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loads. Different devices were used to study the behavior at high
strain rates: high speed universal testing machine up to 50 s 1

(Jones, 1997; Combescure et al., 2011), drop weight tower up to
300 s 1 (Fasanella et al., 2006) and split Hopkinson pressure bar
up to 2600 s 1 (Dutta, 1993; Kim and Keune, 2007; Shazly et al.,
2009). The results suggest that the response at high strain rates ap
pears to be independent of microstructure. As in quasi static con
ditions, strength increases with temperature decrease. The peak
strength of ice has a steady increase up to strain rates having
103 s 1 order of magnitude, and the relation seems to be conve
niently approximated by a power law. Some authors (Kim et al.,
2003; Pereira et al., 2006) launched cylindrical or spherical ice pro
jectiles at ballistic velocities onto a rigid target supported by a dy
namic load cell to measure the contact force during an impact
event. The corresponding results have been later used by the same
or other authors to validate numerical models. Regarding tensile
behavior, experimental results (Petrovic, 2003) show brittle failure
and a negligible influence of strain rate in the strength of ice.

Literature describing constitutive equations for the simulation
of ice impact is likewise scarce. The most simple ones (Kim and
Keune, 2000; Anghileri et al., 2005) used standard models available
in commercial codes to describe the mechanical behavior of ice, J2
elastoplastic model with plastic strain failure and pressure failure;
after failure the material behaves like a fluid carrying only hydro
static pressures. Other authors (Park and Kim, 2010) used a J2 elas
toplastic model with a tensile failure criterion, which assumes that
failure occurs when the pressure becomes more tensile than the
user specified hydrostatic cutoff stress; the deviatoric stress of
the failed material is set to zero and stress remains at the cutoff
pressure. The first constitutive equation specifically developed
for ice deforming at high strain rates was that of Carney et al.
(2006), who proposed a logarithmic strain rate sensitivity and
pressure dependent strength. The model also considers different
failure modes: critical value of the plastic strain, pressure cut off
in compression and pressure cut off in tension. Combescure et al.
(2011) used a constitutive equation based on the damage model
of Mazars and modified it to allow degradation for compressive
stress states and to include viscous effects. Well beyond the range
of impact velocities distinctive of aircraft applications, Sherburn
and Horstemeyer (2010) proposed and validated a constitutive
model for the hypervelocity range based on the Bammann Chie
sa Johnson rate and temperature dependent equation and on the
Mie Gruniesen equation of state. In that work, ice is considered
as a target instead of as projectile.

In this paper an original model to simulate the behavior of ice
under impact conditions is described and validated. The model
gathers the essential features of the mechanical behavior of ice at
high strain rates, as deduced from the test performed by other
authors, and presents the advantage that their parameters may
be taken from the results of these experimental works. The model
has been implemented in the commercial code LS DYNA (LSTC,
2010) and three different solvers (Lagrangian mesh, arbitrary
Lagrangian Eulerian mesh and smoothed particles hydrodynamics)
have been considered to reproduce the experimental data reported
by Carney et al. (2006). Advantages and disadvantages of the three
solvers have been evaluated. Additionally, once the material model
was validated, the influence of the projectile slenderness in impact
force has been studied, through a parametric study of projectile
dimensions.
2. Ice numerical model description

In order to simulate the ice behavior under high strain rates, a
constitutive equation based on the Drucker and Prager (1952)
model has been proposed.
2.1. Material modeling

2.1.1. Hypoelastic approach
The motion of a deformable body can be described through the

deformation gradient tensor F. This tensor transforms an infinites
imal material vector dX into the corresponding spatial vector dx,
i.e.

dx FdX ð1Þ

To separate the recoverable and non recoverable contributions
of the deformation gradient, the Kröner Lee multiplicative split
of F is assumed (Kröner, 1959; Lee, 1969).

F FeFp ð2Þ

where Fe and Fp represent the reversible elastic deformation and
inelastic deformation of the material, respectively. This decomposi
tion implies the so called plastic intermediate configuration defined
by Fe 1

, which is valid only locally. For impact applications, elastic
strains (and rates) are commonly very small compared to unity or
to plastic strains (and rates). With this restriction, we may arrive
to the additive decomposition of the rate of deformation tensor in
its corresponding elastic and plastic components, generally as
sumed for hypoelastic plastic materials (Nemat Nasser, 1982; Khan
and Huang, 1995)

d de þ dp ð3Þ
2.1.2. Elastic behavior
Assuming the hypothesis of hypoelastic behavior, the elastic

strain rate is provided by the following expression of Hooke’s law

rr C : de C : d dp� �
ð4Þ

where rr is an objective rate of the Cauchy stress tensor and C is
the Hooke stress strain tensor defined by the elastic constants G
and K.

2.1.3. Inelastic behavior
For the description of the inelastic behavior of ice, the model

considers the experimental observations made by several authors
(Schulson, 2001; Shazly et al., 2006, 2009), namely pressure depen
dence of strength, increase in compressive strength with strain
rate, and residual strength after damage. Therefore, the model as
sumes a Drucker and Prager (1952) yield function to define the
pressure dependence

f r r0y þ 3ap
� �

ð5Þ

where 3a is a parameter related to the internal friction angle of the
material and r0y is the material cohesion (Fig. 1). �r is the equivalent
stress defined as

r 3
2

s : s

r
ð6Þ

s being the deviatoric stress tensor, and p the hydrostatic pressure
defined as

p
r : 1

3
ð7Þ

Both a and r0y parameters may be related with the uniaxial
stress limits in compression rC and tension rT

a
rC rT

rC þ rT
ð8Þ

r0y
2rCrT

rC þ rT
ð9Þ
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Fig. 1. Yield locus in the fp;rg space, and direction of stress return.
so that the Drucker Prager yield surface is completely defined once
rC and rT are known (Fig. 1). According to the experimental find
ings of several authors (Jones, 1982, 1997; Shazly et al., 2006;
Kim and Keune, 2007), the compressive strength is dependent on
strain rate; the same authors suggested that the viscous depen
dence is approximately linear in a log log plot (see Fig. 2), so a
power law with strain rate sensitivity m was proposed

rC
_ep
� �

rC0

_ep

_e0

 !m

ð10Þ

_�ep being the equivalent plastic strain rate

_ep 2
3

dp
: dp

r
ð11Þ

Regarding tensile behavior, as aforementioned, experimental
results (Petrovic, 2003) show brittle failure and a negligible influ
ence of strain rate in the strength of ice, so a constant value was
chosen for rT .
Fig. 2. Strain rate sensitivity of compressive strength of ice (Jones, 1982, 1997;
Shazly et al., 2006; Kim and Keune, 2007).
To describe the inelastic flow, associative plasticity laws are of
ten inappropriate since they overestimate the volumetric part of
the plastic strain (Jirsek and Bazănt, 2002). Therefore a non associ
ated plastic flow rule is chosen

dp _k
@W
@r

_kWr ð12Þ

where _k is the plastic multiplier, and the plastic potential W is for
mally analogous to the yield function (Eq. (5)) but has a lower slope
with the pressure aW

W r ð3aWpþ!Þ ð13Þ

� being a dummy parameter and aW ka with 0 6 k < 1. The stress
gradient of the plastic potential may be expressed as

Wr
3
2

s
r
þ aW1 ð14Þ

and the flow rule

dp _k
3
2

s
r
þ aW1

� �
ð15Þ

The solution of the above equations must be subjected to the
Kuhn Tucker complementary conditions

_k P 0; f 6 0; _kf 0 ð16Þ

and the consistency condition

_k _f 0 ð17Þ
2.1.4. Failure conditions
As proposed by Carney et al. (2006), there are two different

pressure cut off limits, the first one in tension Plim
T and the other

in compression Plim
C . The ice is assumed to fail if

p < Plim
T

rT

3
ð18Þ

or if

p > Plim
C

rC

3
ð19Þ

In both cases, the failure condition sets the deviatoric stress to
zero and the pressure is allowed to be only greater or equal to zero;
it is supposed that after failure the broken ice could only withstand
hydrostatic compressive stresses. The distortion energy density
Udist stored in the ice at failure conditions p rC=3, which is lost
during the computation when the deviatoric stress is set to zero,
can be easily calculated using the Eqs. (5) and (8) (10). The ratio
of this energy and the kinetic energy density Uk 1=2qv2

0 reveals
that the loss is negligible in the range of strain rates developed dur
ing the impact ðUdist=Uk � 10 3Þ. In compression, pressure and vol
umetric strain are related by the bulk modulus K. The parameters
for the ice appear in Table 1, which were taken from the available
literature.

2.2. Integration algorithm

Within the finite element method, the integration process is lo
cal in space, it occurs at quadrature points of the finite elements.
The incremental integration of the constitutive model is regarded
as a strain driven process, in which the total strain tensor incre
ment at each quadrature point is given at a certain time and both
the stress and the state variables should be updated. Within the
frame of the corotational configuration, the return mapping
algorithm is proposed to solve the above equations. A complete im
plicit formulation would lead to a substantial increase of the com
putational cost. Then a semi implicit return mapping algorithm is
3



Table 1
Model parameters for ice.

Density q 897.6 kg/m3

Young’s modulus E 9.31 GPa
Poisson rate m 0.33
Initial compressive strength rC0 10.976 MPa
Compressive strain rate sensitivity m 0.093783
Tensile strength rT0 1.72 MPa
Internal friction factor k 1.15
proposed to integrate the constitutive equations, in which the
direction of inelastic flow is evaluated at time nþ 1, and the slope
of both the yield function a and of the plastic potential aW are eval
uated at time n. Since the yield surface remains constant during the
plastic return, the first iteration enables to determine the incre
ment in the plastic multiplier and update the stress. Appendix A
details the integration procedure proposed to implement the mod
el in the finite element code LS Dyna.
3. Numerical solvers

Nowadays engineering applications need numerical tools to im
prove the design process reliability and decrease the design global
cost. Commercial finite element codes offer different numerical
solvers, to model continuum mechanics problems. Therefore, in
this research three different integration methods, Lagrangian, arbi
trary Lagrangian Eulerian (ALE) and smoothed particles hydrody
namic (SPH), have been evaluated in order to study its
performance to simulate the behavior of the ice under high strain
rates. These three solvers are usually applied to non linear prob
lems, such as impact.

In order to validate the proposed numerical model, experimen
tal test of ice under high strain rates are needed. For this purpose
the experimental results obtained by Pereira et al. (2006) and pre
sented by Carney et al. (2006) were chosen. In these tests, cylindri
cal ice projectiles were launched against a steel plate tied to a cell
load, using a helium gas gun. The size of ice cylinders was 17.5 mm
diameter and 42.2 mm in length; the circular steel plate used
as target has 63.5 mm of diameter as is shown in Fig. 3. A test
campaign was accomplished at different impact velocities; the
main result of those tests was the load vs. time registered in
the load cell, which is going to be used in the present work to
validate the proposed model.

The Lagrangian finite element solver is one of the most com
monly used in continuum mechanics. This method links the mesh
and the material, which may cause excessive distortion and hence
numerical instabilities in problems in which the material deforms
considerably. The ALE approach combines the Lagrangian and
Fig. 3. Sketch of the ice cylinder impactor and plate. Dimensions in mm.
Eulerian methods (in the latter the mesh is fixed in space and
the material flows through it); it takes advantage of both integra
tion methods, computational efficiency of the Lagrangian and the
capability of allowing large deformation of the Eulerian. Finally
the smoothed particles hydrodynamic is a meshless method, in
which the material is represented as a discretized group of parti
cles, which are linked by the material properties. These properties
are weighted by a function of the distance between particles; the
formulation of this method allows large deformations in the mate
rial. Fig. 4 shows examples of the three aforementioned meshes for
an ice cylinder.

In this work, the numerical simulations are accomplished using
the commercial finite element code LS Dyna v971 considering each
of the parts that are involved in the test: steel plate, cell load and
ice projectile. For the steel plate, due to the fact that no plastic
deformation is observed during the test, elastic behavior and a
Lagrangian mesh of 9000 hexahedrons is used. The behavior of
the cell load is represented by a mass spring system, as proposed
by Carney et al. (2006), to take into account the back panel and
support stiffness; this system is composed by three spring ele
ments and a concentrated mass (Fig. 5). The three aforementioned
spatial discretization methods have been used to simulate the
cylindrical ice projectile in order to compare the results. The
Lagrangian mesh of the projectile uses 10000 hexahedron ele
ments; the ALE mesh consists in 17680 hexahedron elements, part
of them are void surrounding the ice projectile; finally the SPH
model is composed by 57280 particles. In the three cases the mesh
size was obtained after a mesh sensitivity process. In the Lagrang
ian mesh an erosion criteria based on a maximum value of 1.5 for
the equivalent strain has been established to avoid numerical
problems due to mesh distortion; the elements are removed when
their velocity is close to zero, and hence the kinetic energy of the
ice lost by this erosion is negligible. The ice material was modeled
using the developed model, which was implemented in a user sub
routine. The properties are presented in Table 1. Fig. 6 shows the
impact sequence for the three integration methods. Regarding
the SPH numerical solver, no tensile instability has been found.
This kind of problem that affects this meshless method is easily de
tected because particles tend to group in clusters (Swegle and Jeff,
2000), which was not found in the simulations.
4. Numerical simulations and model validation

To evaluate the proposed material model for the ice, experi
mental and numerical results are compared in Figs. 7 and 8 which
correspond to ice impacts at 152 m/s and 213 m/s respectively.
These figures depict the time history of the force induced in the
load cell for the three different integration methods analyzed. At
Fig. 4. Numerical approaches: left Lagrangian, center ALE and right SPH.
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Fig. 5. Masses and springs calculated to reproduce the experimental set-up (Carney
et al., 2006).

Fig. 6. Impact sequence for the three integration procedures at
t 0 ms; t 0:087 ms 0:176 ms. Left Lagrangian, center ALE and right SPH.

Fig. 7. Impact force vs. time curves; experimental and numerical results for the
three numerical solvers. Impact velocity: 152 m/s.

Fig. 8. Impact force vs. time curves; experimental and numerical results for the
three numerical solvers. Impact velocity: 213 m/s.
152 m/s all integration methods show good results, giving an
appropriate value for the maximum force and pulse extension;
only the SPH integration method slightly overestimates this value
respect to the experimental results. At higher velocity, 213 m/s, the
Lagrangian integration method predicts faithfully the force in
duced by the ice on the load cell, whereas the other two methods
overestimate the maximum force, giving the ALE mesh a better
approach compared to the SPH. The lower values predicted by
the Lagrangian method are possibly related with the erosion crite
ria, which removes the element when a high level of strain is
achieved (Heimbs, 2011). The three methods give appropriate re
sults, being the Lagrangian the one that predicts the history of
the force with more accuracy.

In order to analyze the differences between the three different
integration methods, an analysis of the linear momentum transfer
between the projectile and the plate is conducted. Fig. 9 shows the
linear momentum for the ice and the target plate as function of
time for an impact velocity of 152 m/s. Observing the Lagrangian
case, is easy to note that the ice projectile is the one that less
5



Fig. 9. Linear momentum in the impact direction vs. time curves for the ice
projectile and the target plate for the three numerical solvers. Impact velocity:
152 m/s.

Fig. 10. Slenderness comparison.

Fig. 11. Impact force vs. time for different slenderness values; impact velocity
213 m/s.
momentum loses, and correspondingly the target is the one to
which less momentum is transferred (during the first 0.1 ms); this
is in accordance with Fig. 7, in which the Lagrangian case exhibits
the lowest impact force: less momentum transferred implies less
force. In the SPH case, the momentum transferred to the target is
the highest from t = 0.08 ms, which is in accordance to the maxi
mum force found in the Fig. 7. Finally, the linear momentum trans
ferred to the target in the ALE case, is the highest in the first
instants, and the lowest onwards; this explains why the maximum
of the impact force for this case occurs before the other two.

In order to obtain the optimal integration method in terms of
computational cost and relative error, a comparison between the
integration methods is shown in Table 2; in order to quantify the
error, the maximum value of the force was used. The computa
tional time is referred to the time of the fastest method, which is
the Lagrangian for both studied impact velocities; this method is
also the one that better approximates the experimental results,
with errors below the 1%. The other two methods, ALE and SPH, re
quire higher computational time (more that ten times) and have
higher error predictions, being the SPH the worst one as
aforementioned.

5. Analysis of the influence of the slenderness

Since the results of numerical simulations computed with
Lagrangian method are the most accurate, this method is chosen
to analyze the effect of the slenderness on the impact force, at
Table 2
Comparison of the three numerical solvers in terms of computational cost and error.

Method Impact Vel. (m/s) Relat. CPU time Relat. error %

Lagrangian 152 tref
152

0.29

213 tref
213

0.14

ALE 152 10:97 � tref
152

1.34

213 10:25 � tref
213

10.65

SPH 152 16:42 � tref
152

7.94

213 14:09 � tref
213

20.54
different velocities, keeping the total ice mass constant. Five differ
ent slenderness (kV l=d, where l and d are the length and diame
ter of the cylinder respectively) have been considered, being
kV 2:41 the reference one, which has been previously validated
with experimental tests. To complete the five cases to be analyzed,
two different aspect ratios values below and above the reference
value were chosen (Fig. 10). Those additional cases have not been
compared with experimental results.

The impact force as a function of time for the different projec
tiles is shown in Fig. 11 for impacts at 213 m/s. As the aspect ratio
increases the maximum impact force diminishes and the instant in
which the maximum impact force occurs is delayed. As it has been
verified in the numerical simulations, the ice cylinder velocity does
not change during the impact; hence the total time needed to
completely splash against the load cell could be approximately
6



Fig. 12. Maximum impact force vs. impact velocity for different slenderness values.
estimated as tc l=v , being this time higher for the most slender
cases; this fact explains the delay of the peak force as the slender
ness increases. To explain the variation of the maximum force va
lue with the aspect ratio, two effects must be considered; the first
one is related to the area of the ice cylinder, as it increases (lower
value of slenderness) the volume (and hence the mass) of ice im
pacted per unit of time increases, inducing in the plate a higher
force value. In addition of this geometrical effect, there is another
one related with the ice properties; as it has been stated before,
the strength of the ice increases with the compression state, and
due to the confinement effect, this compression is higher for the
cases in which the aspect ratio is lower.

Fig. 11 shows results for a single impact velocity, at 213 m/s. In
order to verify the dependence of the maximum impact force, for
different impact velocities, Fig. 12 is plotted. In this graph it is pos
sible to observe that the maximum impact force increases with im
pact velocity, and in addition for every impact velocity the most
slender cylinders always gives lower values.

6. Conclusions

In this work a constitutive model to reproduce the behavior of
the ice at high strain rates has been developed; the model is based
on the Drucker Prager yield criterion; the model has been imple
mented in a user subroutine to be use with the finite element code
LS DYNA. The model has been validated using experimental results
obtained from the literature. Nevertheless it has to be noted that in
order to asses a more strict validation of the constitutive model,
additional experiments should be done because in this work it
has been observed that the fracture energy is very small compared
to the total kinetic energy. Three different integration methods
have been studied to model the ice, Lagrangian, ALE and SPH; the
developed model works properly with the three methods. All of
them adequately reproduce the behavior of the ice in terms of
the force induced during the impact, but the Lagrangian is the
one that gives more accurate results with errors below 3%. Finally
a parametric study has been performed, in order to study the influ
ence of the slenderness of ice cylinders on the induced force during
impact. It has been concluded that larger contact area end hence
shorter cylinders promotes high impact loads.
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Appendix A. Numerical integration of the constitutive model.

A.1. Constitutive model in a corotational frame

For the integration of the above set of nonlinear rate equations
in a finite deformation frame, incremental objectivity is achieved
by rewriting them in a corotational configuration (Simó and
Hughes, 1998; Doghri, 2000a; Hagege, 2004). To formalize this
approach, - being a spatial skew symmetric tensor, a group of
rotations R can be generated so that

_R -R; Rðt 0Þ 1 ðA:1Þ

t being time, and with

- -T ðA:2Þ

and

R 1 RT ðA:3Þ

Typical choices of - include the spin tensor w and the tensor X
defined as

X _RRT ðA:4Þ

where R is the polar rotation tensor. The Cauchy stress tensor and
the rate of deformation tensor are rotated as

rR RTrR; dR RT dR ðA:5Þ

Time differentiation of the rotated Cauchy stress leads to

_rR RT _rþ r- -rð ÞR RTrrR ðA:6Þ

Here, rr coincides with the Jaumann stress rate if - w. The
Hughes Winget algorithm (1980) is used to compute R in this case
with an approximated formula valid for small increments. If - is
chosen to be equal to x (and hence R R), rr coincides with
the Green Naghdi McInnis stress rate. Thus, a complicated objec
tive stress rate can be computed as a simple time derivative. Taking
advantage of the orthogonality of R, the symmetry of the Cauchy
stress and rate of deformation tensors and the isotropy of the elas
tic tensor ðCR CÞ, the constitutive equations defined above, in
which tensors are involved, are form identical in the corotational
configuration but with spatial variables now replaced by rotated
variables. Moreover, all the constitutive equations of the model
involving only scalars remain unchanged.

The increment of total deformation in the corotational frame
DeR, needed for the calculation of the trial stress (see Eq. (A.8) in
following section) could be determined by an objective approxima
tion of the rate of deformation tensor dnþ1=2 calculated by the mid
point rule (Simó and Hughes, 1998; Doghri, 2000a).

A.2. Discretization of the constitutive equations in the corotational
frame

Within the finite element method, the integration process is lo
cal in space, it occurs at quadrature points of the finite elements.
The incremental integration of the constitutive model is regarded
as a strain driven process, in which the total strain tensor incre
ment at each quadrature point is given at a certain time and both
the stress and the state variables should be updated. Within the
frame of the corotational configuration, the return mapping
7



algorithm is proposed to solve the above equations. If a Newton
Raphson scheme is used to solve the set of non linear equations,
a complete implicit formulation would lead to a substantial in
crease of the computational cost. Then a semi implicit return map
ping algorithm is proposed to integrate the constitutive equations,
in which the direction of inelastic flow is evaluated at time nþ 1,
and the slope of both the yield function a and of the plastic poten
tial aW are evaluated at time n. The corresponding updated stress is
then written as

rnþ1 rtrial
nþ1 þ Drret ðA:7Þ

where trial stress is given by

rtrial
nþ1 rn þ C : De ðA:8Þ

with rn being the stress at time n and De the increment of total
deformation. The return stress Drret is given by

Drret C : Dep C : Dk
3
2

snþ1

rnþ1
þ aW1

� �

3GDk
snþ1

rnþ1
3KaWDk1 ðA:9Þ

Then, the updated stress may be written as

rnþ1 rtrial
nþ1 3GDk

snþ1

rnþ1
3KaWDk1 ðA:10Þ

with Dk; snþ1 and �rnþ1 as unknowns. This last equation clearly
shows the proportionality between s and strial (radial return), which
could equally be stated as

snþ1

rnþ1

strial
nþ1

rtrial
nþ1

ðA:11Þ

Additional equations for the calculation of the unknowns are
the yield condition f 0 and the equation of the return stress
(A.9); these last two equations must be solved simultaneously.
Both equations are written in the form of residuals R1 and R2 suit
able for Newton Raphson iteration

R1 C 1 : Drret þ DkWr 0 ðA:12Þ
R2 f rð Þ 0 ðA:13Þ

Linearization of these equations (considering that drret dr if
we begin the iteration from the trial state) gives

Rðiþ1Þ
1 � RðiÞ1 þ C 1 : drðiÞ þ DkðiÞ

@Wr

@r

� �ðiÞ
:

drðiÞ þ dkðiÞWðiÞr 0 ðA:14Þ

Rðiþ1Þ
2 � RðiÞ2 þ

@f
@r

� �ðiÞ
: drðiÞ 0 ðA:15Þ

i being the subiteration index. These equations give drðiÞ and dkðiÞ.
Solving for the plastic multiplier increment

dkðiÞ
RðiÞ2

@f
@r

� �ðiÞ
: TðiÞ : RðiÞ1

@f
@r

� �ðiÞ
: TðiÞ : WðiÞr

ðA:16Þ

T 1 being the fourth order tensor

T 1 C 1 þ Dk
@Wr

@r
ðA:17Þ

From Eqs. (14) and (A.11) we see that the return direction re
mains constant during the iteration, so that Eq. (A.12) is lineal
and RðiÞ1 0. Thus, expression (A.16) is written as
dkðiÞ
f ðiÞnþ1

@f
@r

� �ðiÞ
: TðiÞ : WðiÞr

ðA:18Þ

and drðiÞ

drðiÞ dkðiÞTðiÞ : WðiÞr ðA:19Þ

Tensor T can be easily computed considering that the Hessian of
the plastic potential fits with the Hessian of the yield function in J2

plasticity

@Wr

@r
1
r

3
2

Idev r� r
� �

ðA:20Þ

Idev being the deviatoric projector

Idev I
1
3

1� 1 ðA:21Þ

with I the unit fourth order tensor

ðIÞijkl dikdjl ðA:22Þ

and r is the direction of the inelastic flow in J2 plasticity given by the
deviatoric tensor

r
3
2

s
r

ðA:23Þ

Thus, applying the Sherman Morrison formula

T C
6G2Dk

3GDkþ r
Idev

2
3

r� r
� �

ðA:24Þ

Taking into account that the gradient of f is

@f
@r

3
2

s
r
þ a1 ðA:25Þ

Eq. (A.18) is written as

dkðiÞ
f ðiÞnþ1

3Gþ 9Ka � aW

f ðiÞnþ1

3Gþ 9Kka2 ðA:26Þ

Since the yield surface remains constant during the return, the
first subiteration enables us to determine Dk and the stress is up
dated by Eq. (A.10) considering the proportionality between snþ1

and strial
nþ1.

From the expression of the plastic return Drret given by Eq.
(A.9), we can easily determine its spherical and deviatoric compo
nents by projecting onto the axes fp; �rg

Dpret Drret : 1
3

3KDkaW ðA:27Þ

Drret 3
2

9G2Dk2

ðrtrial
nþ1Þ

2 strial
nþ1 : strial

nþ1

 !1=2

3GDk ðA:28Þ

and the slope of the return direction in the bidimensional space
fp; �rg (Fig. 1) is given by

jret Drret

Dpret

G
KaW

ðA:29Þ

Finally, updated compressive stress (Eq. (10)) is then calculated
with updated values of equivalent plastic strain rate

_ep
nþ1

2
3

dp
nþ1 : dp

nþ1

r
_knþ1 1þ 2a2

W

q Dk
Dt

1þ 2a2
W

q
ðA:30Þ
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