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1 Introduction

The firms’ behaviour about investment in fixed capital has been widely studied in

the last four decades because of its central role in economic growth and aggregate

fluctuactions. The adjustment costs and irreversibility behind firm investment deci-

sions introduces interesting dynamic considerations. The baseline investment model

arises from the neoclassical factor demand model in which the adjustment in the

amount of physical capital that is productive is costly and takes time to complete (see

Chirinko, 1993). Adjustment costs for investment have traditionally been assumed

to be strictly convex, what usually provides a good description for the behaviour of

investment in physical capital at the aggregate level. Nonetheless, at the firm level,

a significant fraction of firms show moderately long episodes of zero investment, fol-

lowed by episodes of sharp positive investment which amounts a high percentage of

installed capital. This evidence of infrequent and lumpy adjustments challenges the

smooth adjustment pattern implied by the standard neoclassical investment model

with convex adjustment costs. Since then, richer adjustment cost structures have

been proposed (see Bertola and Caballero, 1994; Dixit and Pindyck, 1994; and Abel

and Eberly, 1994 and 1997; among others). The structure of adjustment costs deter-

mines the timing of investment decisions and may entail rigidities in the process of

capital accumulation, and in turn it may have macroeconomic consequences.

In this paper, we propose an empirical model of fixed capital investment at the

firm level, and estimate it using an unbalanced longitudinal sample of 1; 428 Spanish

manufacturing companies. The preliminary analysis of our data confirms the impor-

tance of infrequent and lumpy investment. In accordance with such evidence, we

posit a dynamic model of investment with irreversibility and a general specification

of adjustment costs which includes convex and nonconvex components. We are very

intrigued about the importance of different components of adjustment costs in the

pattern of firm investment.

Our methodological approach is built upon a dynamic programming framework.

We concentrate on the firm discrete decision on whether to invest or not, and derive

the corresponding discrete choice dynamic programming problem. Unlike models for



a continuous decision, the optimal decision rule of a dynamic discrete decision can-

not be expressed as a set of differentiable first order conditions. Instead, optimal

decision rules for dynamic discrete decisions are characterized by inequality condi-

tions. Essentially, the econometric model consists on a discrete choice model that is

nonstandard due to the fact that the critical thresholds depend on the comparison

of the value functions evaluated at each alternative. This requires the resolution of

a nested fixed point algorithm, which must solve the dynamic programming model

at each iteration of the parameter estimation problem. In such spirit, Rust (1987)

proposed a solution-estimation algorithm, which has been scarcely applied because

of its high computational cost. Hotz and Miller (1993) exploited the existence of

a one-to-one mapping between the normalized value functions and the conditional

choice probabilities to propose the Conditional Choice Probability (CCP) estima-

tor, which circumvents the need of solving the model at each iteration. The CCP

estimator was shown much less computationally demanding, yet at the expense of

efficiency. In Sánchez-Mangas (2002) the CCP is applied to the estimation of a dy-

namic structural model of irreversible investment. Recently, Aguirregabiria and Mira

(2002) have proposed an estimation method, the Nested Pseudo-Likelihood (NPL)

algorithm, based on a representation of the dynamic programming model solution

in the space of conditional choice probabilities. The NPL bridges the gap between

the two estimation strategies mentioned above, including the Hotz and Miller’s CCP

estimator and Rust’s NFXP estimators as extreme cases. In this paper, we apply

the NPL algorithm to estimate the adjustment cost parameters of our dynamic dis-

crete choice model of investment. Up to our knowledge, this is the first exercise of

application of this estimation method.

The rest of the paper is organized as follows. In Section 2 we describe the dataset

used in this study. Section 3 sets up a dynamic structural model of irreversible

investment with non-convex adjustment costs. In Section 4 we describe our estimation

strategy. Section 5 reports the estimation results and Section 6 concludes.
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2 Data and preliminary evidence

The main data set is an unbalanced panel of Spanish manufacturing companies,

recorded in the database Encuesta sobre Estrategias Empresariales (Survey on Busi-

ness Strategies, ESEE hereinafter). The ESEE is produced by Fundación Empresa

Pública, a public institute financed by the Spanish Ministry of Industry. The original

data set was designed with the aim of providing a representative sample of Span-

ish manufacturing firms. For this purpose, all the companies with more than 200

employees were surveyed (and, accordingly with the information provided by those

responsible for the data set, about 70% completed the survey), and smaller companies

with more than 10 employees were selected on the basis of a stratified sampling. The

data contain annual information at the firm level of the balance sheet and other eco-

nomic variables. Our final sample contains 1; 428 companies between 1990 and 2002,

whose nature has not been substantially altered in the sample period (so that we

discard mergers or splits), with nonmissing information about the variables relevant

for the study in at least four consecutive years. We also exclude observations with

extreme changes in fixed capital, output, intermediate inputs and in the wage bill.1

We focus on grosss investment in fixed capital. The investment rate at year t is

defined as the ratio between gross expenditure in that year and the capital stock at

the beginning of that year. We analyze the investment rate for the whole dataset

and by firm size. In Figure 1, we show the sample distribution of annual firm-level

gross investment rates, that we have right-censored for investment rates above 100

percent. The distribution is strongly skewed to the right. A significant fractions of

firms do not invest or invest very little. The investment rate is lower than 2:5% in 20

percent of cases, and 13 percent of observations show zero investment. On the other

hand, we observe a significant fraction of observations on the right tail, pointing out

that a large fraction of firms experience a large investment episode at some time.

The evidence provided by Figure 1 resembles the findings in recent empirical studies

1The criterion used is based in the quantiles 1 and 99 for relative changes in these selected
variables (defined symmetrically as the change in the variable with regard to the average value of
the variable in t and t ¡ 1).
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about investment behavior by firms in different countries, like Barnett and Sakellaris

(1995), Doms and Dunne (1998) or Nielsen and Schiantarelli (1998), among others.

The pattern of smooth capital adjustment predicted by the baseline investment model

is thus contradicted by the data. Instead, many firms decide not to invest during a

few years (inaction), and, when they do, its investment amounts a high proportion

of installed capital (lumpiness).

[Figure 1]

In Table 1 we provide further evidence about firm behaviour on investment. For

each year, we report the percentage of observations with zero investment in the first

column, and the percentage of cases with investment rates above 20 percent, in the

second. In any sample year, at least 10 percent of firms do not invest at all. In

addition, at least 24 percent of firms show an investment spike larger than 20 percent

of installed capital in any sample year. Furthermore, we can observe in this table a

cyclical behavior. Inaction is a countercyclical phenomenon, since the highest per-

centage of observation with zero investment occurred in 1993, year in which the GDP

and the gross formation of fixed capital underwent, respectively, a decrease of 0.68%

and 11.72% with respect to 1992. On the contrary, investment spikes are a cyclical

phenomena.

[Table 1]

We also analyze the incidence of infrequency and lumpiness distinguishing by

firm size: small, medium and large firms.2 In Table 2, we show the distribution

of firms in the sample in the first column, the percentage of observations with zero

investment (inaction) in the second column and the percentage of observations with

an investment rate greater than 20% of the installed capital (lumpiness) in the third

colum. In accordance with the size definition, about half of the firms in our sample are

2We follow the classification criterion established by the European Commission. According to
this criterion, small firms are those with no more than 50 employees and no more than 7 million euro
of annual turnover. Medium firms are those with more than 50 and no more than 250 employees
and an annual turnover greater than 7 million euro and lesser than 40 million euro. Large firms are
those with more than 250 employees and an anual turnover greater than 40 million euro.
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small (up to 50 employees). The most striking fact is that the frequency of inaction

di¤ers very much by firm size. Almost a quarter of small firm observations experience

zero investment, in contrast to medium and large firms, for which inaction frequencies

amount to 4:7 and 1:5 percent, respectively. Hence, the probability inaction appears

to tend towards zero as firm size increases, so that indivisibilities of capital goods are

likely to be behind inaction in smaller firms. Nonetheless, the incidence of lumpiness,

does not differ across firms sizes, being greater than 30 percent in all categories.

[Table 2]

In order to provide a better description of the investment behaviour by firm,

we have ranked, following Doms and Dunne (1998) each firm investment rate in

descending order, showing the mean and the median investment rate in each rank in

Figure 2. We can see that the average investment rate of the two highest investment

realizations by firm is above 30 percent, exceeding 50 percent,in the highest episode,

and drops significantly in the subsequent occurrences. The average is below 20 percent

for the third highest realization, and drops to 12 after that. The median reproduces

a similar pattern, although with lower values, in accordance with the right-skewed

distribution of the investment rate.

[Figure 2]

In order to have a clearer insight of the relevance of investment spikes, we have

computed, for each rank of investment constructed earlier, its weight in total invest-

ment of the firm in the sample period. We present this information on Figure 3, from

which we can see that, on average, about 44 percent of investment has been carried

out in an only year, and about two thirds in just two years.

[Figure 3]

In addition, we look at the importance of large investment spikes by time. In Figure

4, the solid line shows the fraction of observations in the year whose investment rate is

above 20%, and the dotted line shows the percentage of total investment in that year

attributed to these lumpy observations. As it was seen in Table 1, observations with
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investment spikes in any year amount between 24 and 37 percent of observations, and

account for a fraction of total investment in the year between 42 and 74 percent. On

average, lumpiness accounts approximately for half of the total gross investment, and

smoother adjustments account for another half. Our evidence resembles the empirical

findings in Cooper, Haltiwanger and Power (1999) for a large set of US manufacturing

firms.

[Figure 4]

This descriptive analysis of investment behavior in Spanish manufacturing firms

highlights the importance of inaction and investment spikes. These phenomena are

far away from the pattern of smooth capital adjustment derived from the investment

models proposed in the literature until recent years. An appropriate empirical model

at the micro level ought be able to capture this sort of behaviour, since the empirical

predictions of the baseline neoclassical model are in contradiction with the data.

We then take into account of irreversibilities and non convex components in our

specification of adjustment costs.

3 A dynamic structural model of fixed capital in-
vestment

3.1 Theoretical framework

Our theoretical setup follows closely Sánchez-Mangas (2002) and Cooper and Halti-

wanger (2006). Consider a risk neutral firm that produces an homogeneous good

using as inputs labor and capital equipment with some firm-specific characteristics.

At each year, the firm decides its level of employment and purchases of new capital

in order to maximize the expected discounted stream of current and future profits

over an infinite time horizon. We assume that the firm behaves as a price taker with

respect to input prices, and thus they are exogenous to the firm. However, we allow

for imperfect competition in the product market, asssuming monopolistic competi-

tion, by which the firm faces a constant elasticity demand function. Its current gross

profit function at period t (gross of investment decisions), in output units, is given
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by:

¦t = Yt(Kt; Lt; At)¡ wtLt (1)

where Yt is real output, which depends on Kt, the capital stock installed at the

beginning of the period; Lt, physical units of labor, and a productivity shock At; and

wt is the wage rate relative to output price. We assume that labor can be adjusted

costlessly, so the decision on employment is static, and then the optimal condition

for labor can be obtained and substituted into current gross profits to obtain

¦t = Yt(Kt; L
¤
t ; At)¡ wtL

¤
t (2)

where L¤t is the optimally chosen employment level.3 Hence, the profit function in

terms of capital stock can be written as:

¦t = RtK
µc
t (3)

where Rt is a profitability shock, which depends on the productivity shock, the rel-

ative wage and the technological parameters. Assuming a Cobb-Douglas production

function

Yt = AtK
®K
t L®L

t

and constant returns to scale, and recalling our assumption for imperfect competition

in the product market, the expression for the markup parameter µc would be

µc =
(1¡ ®L) (1¡ ")

1¡ ®L (1¡ ")

where ®L is the labor technological parameter and " is the inverse of the product

demand elasticity. Under perfect competition, " = 1.

The net current profits (net of investment) are given by

~¼i = ¦t ¡ ptKtit ¡ AC(Kt; it; pt),

3Assuming a Cobb-Douglas production function Yt = atK
®K
t L®L

t with constant returns to scale,
optimal choice of labor is given by

L¤
t =

"
A1¡"

t ®L

¡
1 + 1

"

¢

wt

# 1
1¡®L(1¡")

K
(1¡®L)(1¡")

1¡®L(1¡")

t ,

where " is the inverse of demand elasticity.
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where pt is the unit price of capital relative to product price, and it denotes the

investment rate, defined as It/Kt, where It denotes gross investment (new capital

purchases). It is worth noticing that the investment problem in defined in terms of

the investment rate it; instead of the investment in physical units, It.4 Besides, when

the firm acquires new capital equipment, it faces some adjustment costs, which we

represent through the function AC(Kt; it; pt). We assume there is one period time-to-

build, i.e, the new equipment is productive one period after its acquisition. Capital

retirement and physical depreciation are exogenously given to the firm. The capital

stock follows a transition rule given by

Kt+1 = Kt ((1¡ ±t) + it) , (4)

where ±t 2 (0; 1) is the depreciation rate, which includes not only the economic

depreciation of the capital stock but also the capital scrapping due to obsolescence.

The specification for adjustment costs includes both variable and fixed costs com-

ponents:

AC(Kt; it; pt) = V C(Kt; it; pt) + FC(Kt) (5)

Variable costs V C(¢), which include those costs associated with the installation of new

capital equipment, are assumed to be convex, following the standard specification

used in the baseline neoclassical investment model. Our specification for variable

costs considers the following quadratic function:

V Ct = V C(Kt; it; pt) =
1
2
µQptKti

2
t , (6)

µQ being a constant parameter. The fixed adjustment cost component FC(¢) captures

internal costs entailed by firm reorganization needed to make the new equipment

fully productive, such as reorganization of the productive process and retraining of

employees. We assume these costs to be proportional to the installed capital stock:

FCt = FC(Kt) = 1(it > 0) µFKt, (7)

4There is widespread evidence in empirical work on firms’ behavior about the large amount of
firm heterogeneity even after controlling for observed characteristics. For this reason, we have chosen
as decision a measure of investment normalized by the installed capital stock.
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where 1(:) is the indicator function and µF is a constant parameter.

The productivity shock At is exogenous and assumed to follow a first-order Markov

process with transition density Áa(At+1jAt). Relative capital price and wages are

assumed to follow first-order Markov processes with transitional densities Áp(pt+1jpt)

and Áw(wt+1jwt), respectively. At the beginning of period t, the firm knows its levels

of capital and labor inputs, the input prices in the industry where it operates and

the realizations of productivity and cost shocks.

We assume that the investment decision is completely irreversible, i.e., the firm

decides its purchases of new equipment that, after being acquired, cannot be sold.5

The firm then faces the decision of inaction (not invest) or to undertake a strictly

positive investment, so the decision variable in this problem is it ¸ 0. Let st =

(Kt; Lt;At) be the vector of state variables at period t. The firm’s decision problem

can be written as:

max
fit¸0g

1X

t=0

¯tE [¦(it; st)] (8)

where ¯ 2 (0; 1) is the discount factor, related to the interest rate of the economy.

The Bellman’s equation for this problem is given by:

V (st) = max
fit¸0g

¦(it; st) + ¯EV (st+1j st; it) (9)

where EV (st+1j st; it) is the expected conditional value function

EV (st+1j st; it) =

Z
V (st+1)Á(dst+1j st; it) (10)

and Á(dst+1j st; it) is the transition probability of the state variables.

3.2 Optimal decision rule

In our model, each firm faces a double decision: the discrete choice on whether to

invest or not, and, the continuous decision about the amount of positive investment

if it decided to invest. The are two potential reasons behind the zero investment

5In contrast with models assuming the existence of imperfect second-hand markets in which the
selling price for capital is lower than its true value, here we take the extrem case in which the
second-hand market does not exist because the re-selling price is zero.
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decision. On the one hand, the irreversibility of investment because of the imposibility

of re-selling purchased capital once after acquired by the the firm. On the other

hand, the existence of sizeable fixed adjustment costs, which hamper small capital

adjustments, and may eventually force the firms to postpone worthy investment.

These two sources of inaction make that the investment rate is censored at zero.

If irreversibility were the only source of censoring in investment, then the value

function would keep being continuous and concave. However, the existence of fixed

adjustment costs brings a discontinuity in the one-period profit function, making the

value function to be nonconcave. The decision rules for these class of problems have

been characterized by Bertsekas (1976), using properties of ·-concave functions. Scarf

(1959), Slade (1998) or Aguirregabiria (1999) are examples of these type of decision

rules in the context of inventories and price adjustment models.

The optimal decision rule for investment is given by:

i(st; µ) =

½
i¤(st; µ) if i¤(st; µ) > 0 and °(st; µ) > 0
0 otherwise

(11)

where i¤(st; µ) is the optimal interior solution characterized by

~¼i(s; i
¤(s; µ); µ) + ¯EVi(s; i

¤(s; µ); µ) = 0; (12)

with ~¼i ´ @~¼=@i and EVi = @EV=@i and the function °(st; µ) is given by

~¼(srt; i
¤(st; µ); µ)¡FC(st; µ)¡~¼(st; 0; µ)+¯ [EV (st; i

¤(st; µ); µ)¡ EV (st; 0; µ)] : (13)

Hence, the set of optimality conditions are given by a first order condition for

the interior solution, given by (12), and the two inequalities determining the discrete

choice between an interior and a corner solution. The first inequality, i¤(st; µ) > 0,

features the non-negativity constraint due to the irreversibility of the investment

decision, so that the interior solution will be optimal only if optimal investment is

positive. If condition (12) holds for a negative value i(st; µ) < 0, then the firm will

choose i(st; µ) = 0; due to irreversibility. The second inequality, °(st; µ) > 0, is related

to the existence of fixed adjustment costs: °(st; µ) > 0 requires intertemporal profits

to be high enough so as to overcome fixed costs of investment.
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Our model is a dynamic choice model in which the decision variable is left-censored

at zero. The two sources of censoring, irreversibility and fixed adjustment costs, dis-

cussed earlier, are indistinguishable for the econometrician. When the intertemporal

profit, gross of fixed adjustment costs, is maximized for a negative value of invest-

ment, the optimal decision is inaction due to irreversibility. When it is maximized for

a positive level of investment, but the value obtained with this level does not suffice

to overcome the fixed costs of adjustment, the optimal decision is also inaction.

We have seen that the full set of first order conditions for the optimal investment

rule (11) consists on a marginal condition of optimality for interior solutions and

threshold conditions for the optimal discrete choice on whether to invest or not. This

set of optimality conditions depends on the structural parameters. Our estimation

strategy will disregard the …rst order condition for strictly positive investment, and

exploit only those conditions determining the optimal discrete choice between zero

and nonzero investment.6

4 Model estimation

We have an unbalanced panel of firms with information on output, capital, labor,

investment and input prices.

fYnt; Knt; Int; pnt; wnt; n = 1; :::;N ; t = 1; :::; Tng

We are interested in exploiting this sample to estimate the structural parameters.

Our econometric model consists on the profit function, the stochastic process for the

profitability shock, and the dynamic model for investment. The set of structural pa-

rameters includes the markup parameter in the gross profit function; the parameters

that describe the transition probabilities of input prices and profitability shock; the

adjustment costs parameters: µQ and µF ; and the parameters of the distribution of

those state variables which are unobservable for the econometrician.
6Since corner solutions are very frequent in our dataset, the subsample of observations that we

can use to exploit moment conditions associated to marginal conditions of optimality (i.e, Euler
equations) is relatively small. Besides, parameters associated with fixed costs can only be identified
by exploiting the discrete decision between interior and corner solution.
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For estimation purposes, we proceed in two stages. In a first stage, we exploit

the gross profit function so as to estimate the markup parameter and the transition

probabilities of the state variables. Afterwards, we can obtain estimates of the pro-

ductivity shock Ant; and construct the profitability shocks Rnt. In a second stage,

we estimate the remaining structural parameters. For that purpose, we exploit the

optimal discrete choice on whether to invest or not, to obtain estimates of the ad-

justment costs parameters µQ and µF and the parameters in the distribution of the

unobservable state variables.

4.1 Estimation of the gross profit function

With respect to the estimation of the gross profit function, taking natural logarithms

in (3), we have

¼nt = µcknt + rnt (14)

where ¼nt = ln(¦nt) , knt = ln(Knt); rnt = ln(Rnt). We allow the following structure

for the (unobserved) profitability shock:

rnt = At + ´n + vnt

vnt = ½vn;t¡1 + unt

unt » (0; ¾2u)

where At is an aggregate effect, ´n is a time invariant firm-specific effect, and vnt

is a first-order autoregressive idiosyncratic shock. Substituting in (14), we get the

following dynamic representation,

¼nt = °1¼n;t¡1 + °2knt + °3kn;t¡1 +A¤
t + ´¤n + unt (15)

where A¤
t = At ¡ ½At¡1, ´¤n = (1 ¡ ½)´n, and the parameters satisfy the following

restrictions in terms of the parameters of interest as

°1 = ½,

°2 = µc,

°3 = ¡µc½.
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The model is thus overidentified in terms of the parameters of interest. Therefore,

given consistent estimates of the unrestricted parameter vector ° = (°1; °2; °3)
0 and

its variance-covariance matrix, the restrictions can be tested and imposed by min-

imum distance to obtain estimates for the restricted parameter vector (µc; ½)
0. To

estimate the unrestricted parameter vector, we apply the “extended GMM” estima-

tor proposed by Arellano and Bover (1995). In addition to moment conditions for the

first-differences transformation of the model, by which the first difference of the idio-

synchratic error is orthogonal to lagged values of the RHS variables, we also exploit

moment conditions for the untransformed model, by which, under certain regularity

conditions, fulfill no correlation between the composity error term rnt and the first

differences of the lagged RHS variables. Recent empirical work have noticed that

in the presence of highly persistent variables, such as sales, capital or employment,

GMM estimators based only on moment conditions for the first-differences transfor-

mation of the model provide imprecise results (see Mairesse and Hall, 1996, for an

application to the estimation of production functions). In this setting, the further

moment conditions for the untransformed model may improve parameter identifica-

tion. Since our specification of the profit function as a linear function of the capital

stock is based on the constant returns to scale hypothesis, we tested the validity of

this hypothesis and obtained estimates imposing constant returns to scale.

4.2 Estimation of the adjustment costs parameters

After estimating the gross profit function, we can recover the productivity shock and

construct the profitability shock Rnt, so that we can treat it as an observable state

variable in the estimation of the adjustment costs parameters. Let snt = (x0nt; "
0
nt)

0

be the vector of state variables, where xnt stands for state variables observed by

the firm and the econometrician and "nt stands for state variables which are un-

observable for the econometrician. In the firm’s decision problem, once the gross

profit function has been estimated, the vector of observable state variables is given

by xnt = (pnt; Knt; Rnt)
0:

Let d = f0; 1g be the index for the optimal discrete choice, where d = 0 means

that the inaction is the optimal decision for the n-th firm at period t, i.e, i(snt) = 0;
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and d = 1 means that the optimal decision is to undertake an investment project, i.e,

i(snt) > 0.

Under the Additive Separability (AS) assumption (Rust, 1987), the vector of

unobservable state variables is given by "nt = ("
0
nt; "

1
nt) ; where "0nt is associated with

the decision d = 0 and "1nt with the decision d = 1; and these unobservable state

variables enter the one-period profit function in an additive fashion. The additive

separability assumption allows us to write:

e¼d(snt; µ) = e¼d(xnt; µ) + "d
nt for d = 0; 1 (16)

where

e¼1(snt; µ) = RntK
µc
nt ¡ pntKnt int ¡ µQ

2
pntKnti2nt ¡ µFKnt + "1nt

e¼0(snt; µ) = RntK
µc
nt + "0nt

The unobservable state variables account for the fact that the actual expected profit,

though observable to the firm, is unobservable for the econometrician. We assume

that "d
nt; d = f0; 1g, to be independent and identically distributed with zero mean

and variance ¾2".

Let us consider the following multiplicative decomposition of the expected current

profits:

E
h
e¼d(xnt; µ)

i
= ¼d(xnt)

0 ¹(µ) for d = 0; 1 (17)

Since the adjustment costs parameters enter this function linearly, the decomposition

(17) is given by:

e¼0(xnt) =

0
@

RntK
µc
nt

0
0

1
A e¼1(xnt) =

0
@

RntK
µc
nt ¡ pntKntE [intjxnt; dnt = 1]

¡1
2
pntKntE

£
(int)

2
¯̄
xnt; dnt = 1

¤
¡Knt

1
A

¹(µ) =

0
@
1
µQ

µF

1
A

The first component of e¼1(xt) accounts for the firm gross profit minus the purchase

cost of new capital stock. The second and third components are related, respectively,

to the quadratic and fixed adjustment costs of new capital stock.
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Let us consider the Conditional Independence (CI) assumption (Rust, 1987),

which establishes that the conditional transition probability of the state variables

can be factorized as:

pdf (xt+1; "t+1jxt; "t; dt) = pdf ("t+1j xt+1) pdf(xt+1jxt; dt) (18)

This assumption has two strong implications. First, conditional on the discrete choice

and the current value of the observable state variables, the future observable state

variables do not depend on unobservables. Second, the existence of autocorrelated

unobservable state variables, which greatly complicate the estimation of the decision

problem, is discarded.

Under assumptions AS and CI and the multiplicative decomposition given by

(17), the optimal discrete choice can be written as:

d¤nt = d () d = argmax
j=0;1

©
¼j(xnt)

0¹ (µ) + "j
nt + ¯ EV j (xnt; µ)

ª

The log-likelihood function for this problem is

lnL =
NX

n=1

TnX

t=1

X

d=0;1

1 (d¤nt = d) ln (Pr(d¤nt = djxnt)) (19)

where , for d = f0; 1g ;

P d(xnt) = Pr(d
¤
nt = djxnt) =

= Pr

½
d = argmax

j=0;1

©
¼j(xnt)

0¹ (µ) + "j
nt + ¯ EV j (xnt; µ)

ª¯̄
¯̄ xnt

¾
=

=

Z
1

½
d = argmax

j=0;1

©
¼j(xnt)

0¹ (µ) + "j
nt + ¯ EV j (xnt; µ)

ª¾
q (d"j x)

The conditional choice probabilities entering the log-likelihood function are ex-

pressed in terms of the unknown conditional value functions EV d (xnt; µ). An obvi-

ous approach to estimate the structural parameters is a solution method consisting in

some nested algorithm in the spirit of Rust’s Nested Fixed Point (1987). This tech-

nique consists in an outer algorithm that maximizes the likelihood function and an

inner algorithm which solves the dynamic programming problem, i.e., which computes

15



the functions EV d (xnt; µ) ; at each iteration in the search for the parameter estimates.

The main drawback of these techniques that solve the dynamic programming prob-

lem is that is computationally very demanding. Hotz and Miller (1993) proposed an

alternative estimation method, the Conditional Choice Probability (CCP) estimator,

which circumvents the need of solving the fixed point problem at each iteration of the

outer algorithm. Is is based on the one-to-one mapping between the normalized value

functions and the conditional choice probabilities. This estimation method has been

applied in Aguirregabiria (1999) and Slade (1998) for the estimation of models of

inventories and price change decisions. The much lower computational cost, however,

is at the expense of lesser e¢ciency of the estimates. In a recent work, Aguirregabiria

and Mira (2002) proposed the Nested Pseudo-Likelihood estimator (NPL), which en-

joys the computational advantages of the Hotz and Miller’s CCP estimator, but is

able to reach the efficiency provided by the class of Rust’s NFXP algorithms. As it is

occurs with the CCP estimator, the NPL is based on the representation of conditional

value functions in terms of observable state variables, conditional choice and transi-

tion probabilities and structural parameters. The keypoint of this estimation method

is the Policy Iteration operator, which is an operator that maps the conditional value

functions into the space of the conditional choice probabilities

P = ª(P ) ´ ¤ (' (P )) ,

where '(¢) is an operator which maps a vector of conditional choice probabilities into

a vector of conditional value functions, and the operator ¤(¢) maps a vector in the

value function space into a vector of conditional choice probabities. Aguirregabiria

and Mira (2002) show that the set of optimal choice probabilities P a is fixed point

of ª(¢): Thus, the NPL algorithm is, as the NFXP algorithm, a nested algorithm

in which a fixed point problem must be solved. But this fixed point problem is not

de…ned in the value function space, but in the conditional probability space. In the

NPL algorithm, unlike the NFXP algorithm, is the outer algorithm which computes

the …xed point, while the inner algorithm iterates in a pseudo-likelihood function

using Hotz and Miller’s representation.

This representation of conditional value functions in terms of observable state
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variables, conditional choice and transition probabilities and structural parameters

was reformulated by Aguirregabiria (1999), who showed that these value functions

could be expressed as:

EV d(xnt; µ) = W d(xnt)
0 ¸(µ)

where

W d(xnt) = F̂ d(xnt)
³
I ¡ ¯F̂ (xnt)

´¡1
Ã X

d=0;1

P̂ d(xnt) ¤ ¼d(xnt)
X

d=0;1

P̂ d(xnt) ¤ gd(xnt)

!

(20)

¸(µ) = (¹(µ)0 1)0 ; ¤ denotes the element-by-element product, the functions gd(xt)

are given byr:

gd(xnt) = E
£
"d

nt

¯̄
xnt; d

¤
nt = d

¤

and P̂ d(xt), F̂ d(xt) and F̂ (xt) are nonparametric estimators of the conditional choice

probabilities, and the conditional and unconditional transition probabilities respec-

tively.

The vector W d(xt) is related to the expected and discounted stream of the fu-

ture components associated with the corresponding components of the one period

profit function ¼d(xt): The conditional expectation of the unobservable state vari-

ables, gd(xnt); can be written if terms of conditonal choice probabilities. If we as-

sume, for example, an extreme value distribution for "d
nt; this function is given by

E
£
"d

t

¯̄
xt; d

¤
t = d

¤
= ° ¡ ln £

P d (xt)
¤
; where ° is the Euler’s constant. With this dis-

tributional assumption, it is straightforward from (20) to obtain a closed expression

for the conditional value functions EV d(xnt; µ):

For an arbitrary vector of choice probabilities P; the pseudo-likelihood function is

defined as:

~l =

NX

n=1

TnX

t=1

X

d=0;1

1 (d¤nt = d) lnªd
µ(xnt; P ) (21)
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where

ªd
µ(xnt; P ) =

exp
©
¼d(xt)

0¹ (µ) + ¯ W d(xt)
0 ¸(µ)

ª
P

j=0;1

exp f¼j(xt)0¹ (µ) + ¯ W j(xt)0 ¸(µ)g (22)

Once the pseudo-likelihood function is formulated, the NPL algorithm is imple-

mented as follows. Let F̂ d (d = 0; 1) be non parametric estimates of the conditional

transition probabilities. Let µ̂
(0)

be an initial vector of parameters, and P̂ (0) an initial

vector of conditional choice probabilites (e.g, a nonparametric consistent estimator).

For the iteration R ¸ 1, the NPL algorithm consists in the following steps:

Step 1: Represent the conditional choice value functions in terms of the conditional

choice probabilities, using the Hotz and Miller’s representation as in (20).

Step 2: Obtain an update of the pseudo-likelihood estimator µ̂
(R)

:

µ̂
(R)
= argmax

µ2£

NX

n=1

TX

t=1

X

d=0;1

1 (dnt = djxnt) lnª
d

µ̂
(R¡1)

³
P̂ (R¡1)

¯̄
¯ xnt

´

where

ªd

µ̂
(R¡1)

³
P̂ (R¡1)

¯̄
¯xnt

´
= Pr (dnt = djxnt) ´ ªd

³
µ̂
(R¡1)

; P̂ (R¡1); F̂ d
¯̄
¯ xnt

´

Step 3: Update the vector of conditional choice probabilities using the estimator

µ̂
(R)

obtained in step 2.

P̂ (R) = ªd
³

µ̂
(R)

; P̂ (R¡1); F̂ d
¯̄
¯ xnt

´

Iterate in R until convergence in P̂ and µ̂:

Aguirregabiria and Mira (2002) showed that when the NPL is initialized with

consistent estimators of the vector of conditional choice probabilities, successive it-

erations return a sequence of estimators that include the Hotz and Miller’s CCP

estimator (for R = 1) and the Rust’s NFXP estimator (when R ! 1) as extreme

cases. The gains in efficiency from the first to the second iteration is important, but

the gains in succesive iterations is much lower. Furthermore, the asymptotic distri-

bution of all the estimators in the sequence is the same and equal to that of the

maximum likelihood estimator.
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5 Estimation results

The estimation results for the gross profit function are shown in Table 3. We have

provided the estimates for the full sample, and also for small and large firms, in

accordance with the size definition mentioned earlier. In the upper panel, we provide

the extended GMM unrestricted estimates. The results for the full sample and for the

subsample of small firms look alike, the coefficients showing the expect signs in (15).

The estimates are pretty precise in both cases. As specification tests, we provide

the test for second order autocorrelation, which follows a standard normal under the

null of no autocorrelation in the original idiosynchratic error term, and the Sargan

test of overidentifying restrictions. We do not find evidence against the specification

in the full sample estimates. However, the value of the Sargan test is too high for

the subsample of small firms. Finally, the GMM results for the subsample of large

firms are remarkably different with regard to the full sample and small firm results.

The coefficient estimates are very imprecise, and the Sargan test provides stronger

evidence against the specification.

The minimum distance estimates, which provide the estimation of the structural

parameters corresponding to the markup parameter and the autocorrelation in shocks,

provide an estimate of the markup parameter which is fairly close to one. This would

imply a situation which is not very far from perfect competition. The results appear

very different for the subsample of large firms, in which the markup parameter is

much lower, providing evidence of signifficant market power. Given the estimates,

it appears that the full sample estimates are mostly dominated by the small firms

behaviour, what explains why results are relatively close to perfect competition. The

magnitude of the estimate for µc for the subsample of large firms is in accordance with

the one in Cooper and Haltiwanger (2006). Our estimate for the full sample, though,

is much larger. This result can be explained by the fact that the US sample in Cooper

and Haltiwanger (2006) consists of large plants, which are more comparable with our

subsample of large firms.

Once we have constructed the profitability shock Rnt from the previous, we de-

compose it into an aggregate and an idiosyncratic shock ~Rnt; such that Rnt = Rt
~Rnt:
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Following Cooper and Haltiwanger (2000), the aggregate shock is simply the annual

mean of the profitability shock Rnt, and the idiosyncratic shock ~Rnt is the deviation

from that mean. Both components have been taken in logarithms, so

rnt = rt + ~rnt

where rnt = ln(Rnt); rt = ln(Rt) and ~rnt = ln( ~Rnt). Thus, the vector of observable

state variables we use in the estimation is given by xnt = (pt; rt; ~rnt; Knt):

The NPL estimation method, as in Rust’s NFXP or Hotz and Miller’s CCP esti-

mators, requires a discretization of the observable state variables. The details on this

discretization and on the initial estimates of the conditional choice probabilities and

the conditional transition probabilities are shown in the Appendix.

In the NPL algorithm, the inner algorithm maximizes the pseudo-likelihood func-

tion. The conditional choice probabilities entering this function takes the expression

of the probabilities in a logit model, in which the explanatory variables are the com-

ponents of the vectors ¼d (xnt) and W d (xt) : In general, in this type of models it is not

possible to identify the variance of the error term. However, in this case, since one

of the explanatory variables, the one corresponding to the revenue function, appears

with parameter restricted to be 1, it is possible to identify the variance of the error

term.

The structural estimation results using the NPL algorithm are shown in Table 4.

The discount factor ¯ has been fixed at 0.975. We have estimated the model with

different values of ¯ (from 0.95 to 0.99).

[To be written]

6 Conclusions

In this paper we have estimated a dynamic structural model of irreversible investment

for Spanish manufacturing firms. Our dataset exhibits some of the characteristics re-

ported in the recent microeconomic investment literature, with sizeable frequencies of

zero and lumpy investment. Based on these facts, we have proposed a dynamic struc-

tural investment model with irreversibilities in which nonconvex components have
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been included in the adjustment cost function. Our specification for the adjustment

cost function includes both quadratic and fixed components.

In line with Cooper and Haltiwanger (2006), we have derived a dynamic program-

ming problem of discrete choice, in which firms choose whether to make a positive

investment or to postpone investment to the future. As estimation approach, we have

proceed in two stages. In the first stage, we have estimated the gross profit function

and use the entailed structural parameters to construct the proffitability shock. We

then have included such proffitability shock as an observable state variable in the

discrete choice model of investment in the second stage. To estimate the adjust-

ment cost parameters, we implement the nested pseudo-likelihood (NPL) algorithm

recently proposed by Aguirregabiria and Mira (2002).

[To be written]
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Appendix

A1. CONSTRUCTION OF VARIABLES

Employment: Number of employees at december 31th, is the sum of permanent

workers and the average number of temporary workers. The weights to calculate the

average number of temporary workers is: 1/4 if the average time in the firm is less

than 6 months, 3/4 if it is more than 6 months and less than one year and 1 if it is

more than one year.

Output: Gross output at retail prices is calculated as total sales.

Capital stock: The dataset contains information on the book value and the

average age of the stock of fixed capital and the year of the last regulation. It also

includes data on gross nominal investment during the year. Following Alonso-Borrego

and Collado (1999), taking period t as reference year, the market value of the stock

of fixed capital in period t is calculated as:

Knt = (1¡ ±n)
agentKBnt

qt

qmn

where agent is the average age of the capital stock of firm n at period t; ±n is the

depreciation rate of the sector in which firm n operates, KBnt is the book value of

the stock of fixed capital, qt is the price deffator of the stock of fixed capital and mn is

the year of the last regulation in firm n: The price index is the GDP implicit deffator

of investment goods, which is constant over time. The depreciation rate varies across

sectors.

Taking t as the reference year, the market value of the stock of fixed capital for

any year s 6= t is calculated using a perpetual inventory method:

Kns = (1¡ ±n)Kn;s¡1
qs

qs¡1
+ Ins if s > t

Kns =
(Kn;s+1 ¡ In;s+1)

(1¡ ±n)

qs

qs+1

if s < t

where Ins is the investment accounted by the firm n in period t: Using this approach

it is possible to obtain negative values of Kns for s < t: In that case the market

value of the capital stock is set to missing. In an attempt to reduce this problem,

22



the market value of the capital stock for any firm has been calculated using different

years as reference. Finally, the chosen reference year was tha one that minimizes the

number of missing values in the capital stock.

A2. DISCRETIZATION OF THE STATE VARIABLES

The aggregate shock rt has been discretized in only two cells corresponding to low

and high shock. The idiosyncratic shock and the capital stock have been discretized

in 7 cells using a unifom grid on the empirical distribution of these variables. Due

to the very low variability of the capital price in the dataset, it has been taken as

constant. Besides, preliminary analysis on the relevance of this variable on the firms’

investment pattern in the dataset yield to consider it non significant at the usual

levels. The discretization we have carried out yields 98 cells in the space of the state

variables.

A3. NONPARAMETRIC ESTIMATION OF CONDITIONAL CHOICE PROBABILI-

TIES AND CONDITIONAL TRANSITION PROBABILITIES

We have obtained nonparametric estimates of the probability that a high (low)

value of the aggregate shock is followed by a high (low) value, obtaining the following

transition probability matrix for the aggregate shock:

Pr (rt+1j rt) low rt+1 high rt+1

low rt 0.682 0.318
high rt 0.318 0.682

Let us denote by M1; M2 and M3 the number of cells in the discretizaton of the

variables rt; ~rnt and ~knt respectively. In this case, M1 = 2 and M2 =M3 = 7: Let m =

1; :::; M be the index for the cells of tridimensional state variable xnt =
³
rt; ~rnt; ~knt

´
;

where M = M1 £ M2 £ M3 = 2£ 7£ 7 = 98: Let rc; ~rc and ~kc be the values of the

discretized state variables and let rm; ~rm and ~km be the values of discretized state

variables correspondig to the m-th cell, that is, xm = (rm; ~rm,~km).
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The initial estimates of the conditional choice probabilities and the conditional

transition probabilities of the capital stock and the idiosyncratic shock have been

obtained using trivariate kernel estimators.

The conditional choice probability Pr (d = 1jxm) has been estimated as:

^
Pr (d = 1jxm) =

NP
n=1

TnP
t=1

1 (dnt = 1)K3 (xnt; x
m)

NP
n=1

TnP
t=1

K3 (xnt; xm)

; for m = 1; :::; M

where K3 is the trivariate gaussian kernel:

K3 (xnt; x
m) =

1

(2¼)3=2
exp

8
<
:¡1

2

2
4
µ

rt ¡ rm

h1

¶2

+

µ
~rnt ¡ ~rm

h2

¶2

+

Ã
~knt ¡ ~km

h3

!2
3
5
9
=
;

where h1; h2 and h3 are bandwith parameters chosen using the Silverman’s rule.

Since ~rnt is an exogenous variable, its conditional transition probability is esti-

mated as:

^
Pr

¡
~rc
t+1 = rm

¯̄
~rc
t = rl

¢
=

NP
n=1

TnP
t=1

1
¡
~rc
n;t+1 = rm

¢
K1

¡
~rnt; rl

¢

NP
n=1

TnP
t=1

K1 (~rnt; rl)

for m; l = 1; :::;M2; where K1 is a univariate gaussian kernel:

K1

¡
~rnt; r

l
¢
=

1

(2¼)1=2
exp

(
¡1
2

µ
~rnt ¡ rl

h1

¶2
)

:

The capital stock is an endogenous variable and we must estimate the conditional

transition probability conditional on d = 0 and conditional on d = 1: We have

obtained nonparametric estimates of these probabilities:

^
Pr

³
~kc

t+1 = ~k
l
¯̄
¯ xm; d

´
=

NP
n=1

TnP
t=1

1
³
~kc

n;t+1 =
~kl

´
1 (dnt = d)K3 (xnt; x

m)

NP
n=1

TnP
t=1

1 (dnt = d)K3 (xnt; xm)

for d = 0; 1; l = 1; :::;M3 and m = 1; :::M:

From these estimates we obtain the M £ 1 vector P 1(x) = Pr (d = 1jx) of esti-

mated conditional choice probabilities and the M £ M matrices F 1 (x) and F 0 (x)
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of estimated transition probabilities of the state variables, conditional on d = 1 and

d = 0 respectively.

A4. ESTIMATION OF THE AMOUNT OF INVESTMENT IF d = 1

The functions E [intjxnt; dnt = 1] and E
£
(int)

2
¯̄
xnt; dnt = 1

¤
appear in the one-

period profit function conditional on the decision d; ~¼d(snt): Following a methodology

similiar to Slade (1998), we have obtained nonparametric estimates of these expec-

tations. First, we have discretized the variable fint; dnt = 1g ; that is, considering

the observations such that int > 0; using a uniform grid on the empirical distribution

function of this variable. Let H be the number of cells in this discretization. We

have considered H = 7. Let ic be the value of the discretized investment rate and

ih the value of the discretized investment rate in the cell h = 1; :::; H: The function

E [ijxm; d = 1] ; for m = 1; :::; M; has been estimated as:

HX

h=1

ihPr
¡
ih

¯̄
xm; d = 1

¢

where the probability Pr
¡
ih

¯̄
xm; d = 1

¢
has been estimated nonparametrically as:

Pr
¡
ih

¯̄
xm; d = 1

¢
=

NP
n=1

TnP
t=1

1
¡
icnt; = ih

¢
1 (dnt = 1)K3 (xnt; xm)

NP
n=1

TnP
t=1

1 (dnt = 1)K3 (xnt; xm)

for h = 1; :::;H y m = 1; :::; M: So we have obtained the M £ 1 vector of estimated

values of E [ijx; d = 1] : The M £ 1 vector of estimated values of E [i2jx; d = 1] has

been estimated accordingly.
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Year Inaction¤ Lumpinessx

1991 14.71 36.76
1992 14.80 36.02
1993 17.41 26.39
1994 16.15 30.38
1995 15.15 33.40
1996 14.15 30.18
1997 12.61 34.08
1998 10.71 39.81
1999 10.99 36.24
2000 10.76 33.64
2001 10.00 29.86
2002 10.63 23.65
Total 13.06 32.81

¤Zero investment xInv. rate above 20%.

Table 1: Incidence of inaction and lumpiness by year.

Firm size (%). Inaction¤ Lumpinessx

Small (49.89) 23.10 32.97
Medium (24.41) 4.73 31.71

Large (25.69) 1.50 33.53
Total 100 13.06 32.81

¤Zero investment xInv. rate above 20%.

Table 2: Incidence of inaction and lumpiness by firm size
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Sample
All firms Small firms Large firms

GMM estimates
knt 0.72 0.69 0.11

(0.27) (0.28) (0.34)
kn;t¡1 -0.13 -0.06 0.46

(0.27) (0.29) (0.35)
¼n;t¡1 0.30 0.26 0.20

(0.09) (0.10) (0.11)
2nd order autocorr. 1.86 1.42 0.80
p-value 0.06 0.16 0.42
Sargan 155.05 180.61 185.87
p-value 0.17 0.01 0.01
Minimum distance estimates
µc 0.83 0.83 0.59

(0.07) (0.08) (0.17)
½ 0.29 0.24 0.17

(0.09) (0.09) (0.10)
p-value MD test 0.65 0.60 0.11
Heteroskedasticity- robust standard errors in parentheses.
Year binary dummies included to control for common shocks.

Table 3: Estimates of the gross profit function

Structural parameter estimates (NPL algorithm)
1 stage 2 stages 3 stages 4 stages 5 stages 6 stages

µQ

µF

¾"

LogL
Pseudo-R2

Table 4: Structural parameter estimates. Standard errors in parenthesis
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